-
-
Notifications
You must be signed in to change notification settings - Fork 8
/
mlkem768.go
820 lines (728 loc) · 26.1 KB
/
mlkem768.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package mlkem768 implements the quantum-resistant key encapsulation method
// ML-KEM (formerly known as Kyber), as specified in [NIST FIPS 203].
//
// Only the recommended ML-KEM-768 parameter set is provided.
//
// [NIST FIPS 203]: https://doi.org/10.6028/NIST.FIPS.203
package mlkem768
// This package targets security, correctness, simplicity, readability, and
// reviewability as its primary goals. All critical operations are performed in
// constant time.
//
// Variable and function names, as well as code layout, are selected to
// facilitate reviewing the implementation against the NIST FIPS 203 document.
//
// Reviewers unfamiliar with polynomials or linear algebra might find the
// background at https://words.filippo.io/kyber-math/ useful.
import (
"crypto/rand"
"crypto/subtle"
"encoding/binary"
"errors"
"golang.org/x/crypto/sha3"
)
const (
// ML-KEM global constants.
n = 256
q = 3329
log2q = 12
// ML-KEM-768 parameters. The code makes assumptions based on these values,
// they can't be changed blindly.
k = 3
η = 2
du = 10
dv = 4
// encodingSizeX is the byte size of a ringElement or nttElement encoded
// by ByteEncode_X (FIPS 203, Algorithm 5).
encodingSize12 = n * log2q / 8
encodingSize10 = n * du / 8
encodingSize4 = n * dv / 8
encodingSize1 = n * 1 / 8
messageSize = encodingSize1
decryptionKeySize = k * encodingSize12
encryptionKeySize = k*encodingSize12 + 32
CiphertextSize = k*encodingSize10 + encodingSize4
EncapsulationKeySize = encryptionKeySize
SharedKeySize = 32
SeedSize = 32 + 32
)
// A DecapsulationKey is the secret key used to decapsulate a shared key from a
// ciphertext. It includes various precomputed values.
type DecapsulationKey struct {
d, z [32]byte // decapsulation key seed
ρ [32]byte // sampleNTT seed for A, stored for the encapsulation key
h [32]byte // H(ek), stored for ML-KEM.Decaps_internal
encryptionKey
decryptionKey
}
// Bytes returns the decapsulation key as a 64-byte seed in the "d || z" form.
func (dk *DecapsulationKey) Bytes() []byte {
var b [SeedSize]byte
copy(b[:], dk.d[:])
copy(b[32:], dk.z[:])
return b[:]
}
// EncapsulationKey returns the public encapsulation key necessary to produce
// ciphertexts.
func (dk *DecapsulationKey) EncapsulationKey() []byte {
// The actual logic is in a separate function to outline this allocation.
b := make([]byte, 0, EncapsulationKeySize)
return dk.encapsulationKey(b)
}
func (dk *DecapsulationKey) encapsulationKey(b []byte) []byte {
for i := range dk.t {
b = polyByteEncode(b, dk.t[i])
}
b = append(b, dk.ρ[:]...)
return b
}
// encryptionKey is the parsed and expanded form of a PKE encryption key.
type encryptionKey struct {
t [k]nttElement // ByteDecode₁₂(ek[:384k])
a [k * k]nttElement // A[i*k+j] = sampleNTT(ρ, j, i)
}
// decryptionKey is the parsed and expanded form of a PKE decryption key.
type decryptionKey struct {
s [k]nttElement // ByteDecode₁₂(dk[:decryptionKeySize])
}
// GenerateKey generates a new decapsulation key, drawing random bytes from
// crypto/rand. The decapsulation key must be kept secret.
func GenerateKey() (*DecapsulationKey, error) {
// The actual logic is in a separate function to outline this allocation.
dk := &DecapsulationKey{}
return generateKey(dk)
}
func generateKey(dk *DecapsulationKey) (*DecapsulationKey, error) {
var d [32]byte
if _, err := rand.Read(d[:]); err != nil {
return nil, errors.New("mlkem768: crypto/rand Read failed: " + err.Error())
}
var z [32]byte
if _, err := rand.Read(z[:]); err != nil {
return nil, errors.New("mlkem768: crypto/rand Read failed: " + err.Error())
}
return kemKeyGen(dk, &d, &z), nil
}
// NewKeyFromSeed deterministically generates a decapsulation key from a 64-byte
// seed in the "d || z" form. The seed must be uniformly random.
func NewKeyFromSeed(seed []byte) (*DecapsulationKey, error) {
// The actual logic is in a separate function to outline this allocation.
dk := &DecapsulationKey{}
return newKeyFromSeed(dk, seed)
}
func newKeyFromSeed(dk *DecapsulationKey, seed []byte) (*DecapsulationKey, error) {
if len(seed) != SeedSize {
return nil, errors.New("mlkem768: invalid seed length")
}
d := (*[32]byte)(seed[:32])
z := (*[32]byte)(seed[32:])
return kemKeyGen(dk, d, z), nil
}
// kemKeyGen generates a decapsulation key.
//
// It implements ML-KEM.KeyGen_internal according to FIPS 203, Algorithm 16, and
// K-PKE.KeyGen according to FIPS 203, Algorithm 13. The two are merged to save
// copies and allocations.
func kemKeyGen(dk *DecapsulationKey, d, z *[32]byte) *DecapsulationKey {
if dk == nil {
dk = &DecapsulationKey{}
}
dk.d = *d
dk.z = *z
g := sha3.New512()
g.Write(d[:])
g.Write([]byte{k}) // Module dimension as a domain separator.
G := g.Sum(nil)
ρ, σ := G[:32], G[32:]
dk.ρ = [32]byte(ρ)
A := &dk.a
for i := byte(0); i < k; i++ {
for j := byte(0); j < k; j++ {
A[i*k+j] = sampleNTT(ρ, j, i)
}
}
var N byte
s := &dk.s
for i := range s {
s[i] = ntt(samplePolyCBD(σ, N))
N++
}
e := make([]nttElement, k)
for i := range e {
e[i] = ntt(samplePolyCBD(σ, N))
N++
}
t := &dk.t
for i := range t { // t = A ◦ s + e
t[i] = e[i]
for j := range s {
t[i] = polyAdd(t[i], nttMul(A[i*k+j], s[j]))
}
}
H := sha3.New256()
ek := dk.EncapsulationKey()
H.Write(ek)
H.Sum(dk.h[:0])
return dk
}
// Encapsulate generates a shared key and an associated ciphertext from an
// encapsulation key, drawing random bytes from crypto/rand.
// If the encapsulation key is not valid, Encapsulate returns an error.
//
// The shared key must be kept secret.
func Encapsulate(encapsulationKey []byte) (ciphertext, sharedKey []byte, err error) {
// The actual logic is in a separate function to outline this allocation.
var cc [CiphertextSize]byte
return encapsulate(&cc, encapsulationKey)
}
func encapsulate(cc *[CiphertextSize]byte, encapsulationKey []byte) (ciphertext, sharedKey []byte, err error) {
if len(encapsulationKey) != EncapsulationKeySize {
return nil, nil, errors.New("mlkem768: invalid encapsulation key length")
}
var m [messageSize]byte
if _, err := rand.Read(m[:]); err != nil {
return nil, nil, errors.New("mlkem768: crypto/rand Read failed: " + err.Error())
}
// Note that the modulus check (step 2 of the encapsulation key check from
// FIPS 203, Section 7.2) is performed by polyByteDecode in parseEK.
return kemEncaps(cc, encapsulationKey, &m)
}
// kemEncaps generates a shared key and an associated ciphertext.
//
// It implements ML-KEM.Encaps_internal according to FIPS 203, Algorithm 17.
func kemEncaps(cc *[CiphertextSize]byte, ek []byte, m *[messageSize]byte) (c, K []byte, err error) {
if cc == nil {
cc = &[CiphertextSize]byte{}
}
H := sha3.Sum256(ek[:])
g := sha3.New512()
g.Write(m[:])
g.Write(H[:])
G := g.Sum(nil)
K, r := G[:SharedKeySize], G[SharedKeySize:]
var ex encryptionKey
if err := parseEK(&ex, ek[:]); err != nil {
return nil, nil, err
}
c = pkeEncrypt(cc, &ex, m, r)
return c, K, nil
}
// parseEK parses an encryption key from its encoded form.
//
// It implements the initial stages of K-PKE.Encrypt according to FIPS 203,
// Algorithm 14.
func parseEK(ex *encryptionKey, ekPKE []byte) error {
if len(ekPKE) != encryptionKeySize {
return errors.New("mlkem768: invalid encryption key length")
}
for i := range ex.t {
var err error
ex.t[i], err = polyByteDecode[nttElement](ekPKE[:encodingSize12])
if err != nil {
return err
}
ekPKE = ekPKE[encodingSize12:]
}
ρ := ekPKE
for i := byte(0); i < k; i++ {
for j := byte(0); j < k; j++ {
ex.a[i*k+j] = sampleNTT(ρ, j, i)
}
}
return nil
}
// pkeEncrypt encrypt a plaintext message.
//
// It implements K-PKE.Encrypt according to FIPS 203, Algorithm 14, although the
// computation of t and AT is done in parseEK.
func pkeEncrypt(cc *[CiphertextSize]byte, ex *encryptionKey, m *[messageSize]byte, rnd []byte) []byte {
var N byte
r, e1 := make([]nttElement, k), make([]ringElement, k)
for i := range r {
r[i] = ntt(samplePolyCBD(rnd, N))
N++
}
for i := range e1 {
e1[i] = samplePolyCBD(rnd, N)
N++
}
e2 := samplePolyCBD(rnd, N)
u := make([]ringElement, k) // NTT⁻¹(AT ◦ r) + e1
for i := range u {
u[i] = e1[i]
for j := range r {
// Note that i and j are inverted, as we need the transposed of A.
u[i] = polyAdd(u[i], inverseNTT(nttMul(ex.a[j*k+i], r[j])))
}
}
μ := ringDecodeAndDecompress1(m)
var vNTT nttElement // t⊺ ◦ r
for i := range ex.t {
vNTT = polyAdd(vNTT, nttMul(ex.t[i], r[i]))
}
v := polyAdd(polyAdd(inverseNTT(vNTT), e2), μ)
c := cc[:0]
for _, f := range u {
c = ringCompressAndEncode10(c, f)
}
c = ringCompressAndEncode4(c, v)
return c
}
// Decapsulate generates a shared key from a ciphertext and a decapsulation key.
// If the ciphertext is not valid, Decapsulate returns an error.
//
// The shared key must be kept secret.
func Decapsulate(dk *DecapsulationKey, ciphertext []byte) (sharedKey []byte, err error) {
if len(ciphertext) != CiphertextSize {
return nil, errors.New("mlkem768: invalid ciphertext length")
}
c := (*[CiphertextSize]byte)(ciphertext)
// Note that the hash check (step 3 of the decapsulation input check from
// FIPS 203, Section 7.3) is foregone as a DecapsulationKey is always
// validly generated by ML-KEM.KeyGen_internal.
return kemDecaps(dk, c), nil
}
// kemDecaps produces a shared key from a ciphertext.
//
// It implements ML-KEM.Decaps_internal according to FIPS 203, Algorithm 18.
func kemDecaps(dk *DecapsulationKey, c *[CiphertextSize]byte) (K []byte) {
m := pkeDecrypt(&dk.decryptionKey, c)
g := sha3.New512()
g.Write(m[:])
g.Write(dk.h[:])
G := g.Sum(nil)
Kprime, r := G[:SharedKeySize], G[SharedKeySize:]
J := sha3.NewShake256()
J.Write(dk.z[:])
J.Write(c[:])
Kout := make([]byte, SharedKeySize)
J.Read(Kout)
var cc [CiphertextSize]byte
c1 := pkeEncrypt(&cc, &dk.encryptionKey, (*[32]byte)(m), r)
subtle.ConstantTimeCopy(subtle.ConstantTimeCompare(c[:], c1), Kout, Kprime)
return Kout
}
// pkeDecrypt decrypts a ciphertext.
//
// It implements K-PKE.Decrypt according to FIPS 203, Algorithm 15,
// although s is retained from kemKeyGen.
func pkeDecrypt(dx *decryptionKey, c *[CiphertextSize]byte) []byte {
u := make([]ringElement, k)
for i := range u {
b := (*[encodingSize10]byte)(c[encodingSize10*i : encodingSize10*(i+1)])
u[i] = ringDecodeAndDecompress10(b)
}
b := (*[encodingSize4]byte)(c[encodingSize10*k:])
v := ringDecodeAndDecompress4(b)
var mask nttElement // s⊺ ◦ NTT(u)
for i := range dx.s {
mask = polyAdd(mask, nttMul(dx.s[i], ntt(u[i])))
}
w := polySub(v, inverseNTT(mask))
return ringCompressAndEncode1(nil, w)
}
// fieldElement is an integer modulo q, an element of ℤ_q. It is always reduced.
type fieldElement uint16
// fieldCheckReduced checks that a value a is < q.
func fieldCheckReduced(a uint16) (fieldElement, error) {
if a >= q {
return 0, errors.New("unreduced field element")
}
return fieldElement(a), nil
}
// fieldReduceOnce reduces a value a < 2q.
func fieldReduceOnce(a uint16) fieldElement {
x := a - q
// If x underflowed, then x >= 2¹⁶ - q > 2¹⁵, so the top bit is set.
x += (x >> 15) * q
return fieldElement(x)
}
func fieldAdd(a, b fieldElement) fieldElement {
x := uint16(a + b)
return fieldReduceOnce(x)
}
func fieldSub(a, b fieldElement) fieldElement {
x := uint16(a - b + q)
return fieldReduceOnce(x)
}
const (
barrettMultiplier = 5039 // 2¹² * 2¹² / q
barrettShift = 24 // log₂(2¹² * 2¹²)
)
// fieldReduce reduces a value a < 2q² using Barrett reduction, to avoid
// potentially variable-time division.
func fieldReduce(a uint32) fieldElement {
quotient := uint32((uint64(a) * barrettMultiplier) >> barrettShift)
return fieldReduceOnce(uint16(a - quotient*q))
}
func fieldMul(a, b fieldElement) fieldElement {
x := uint32(a) * uint32(b)
return fieldReduce(x)
}
// fieldMulSub returns a * (b - c). This operation is fused to save a
// fieldReduceOnce after the subtraction.
func fieldMulSub(a, b, c fieldElement) fieldElement {
x := uint32(a) * uint32(b-c+q)
return fieldReduce(x)
}
// fieldAddMul returns a * b + c * d. This operation is fused to save a
// fieldReduceOnce and a fieldReduce.
func fieldAddMul(a, b, c, d fieldElement) fieldElement {
x := uint32(a) * uint32(b)
x += uint32(c) * uint32(d)
return fieldReduce(x)
}
// compress maps a field element uniformly to the range 0 to 2ᵈ-1, according to
// FIPS 203, Definition 4.7.
func compress(x fieldElement, d uint8) uint16 {
// We want to compute (x * 2ᵈ) / q, rounded to nearest integer, with 1/2
// rounding up (see FIPS 203, Section 2.3).
// Barrett reduction produces a quotient and a remainder in the range [0, 2q),
// such that dividend = quotient * q + remainder.
dividend := uint32(x) << d // x * 2ᵈ
quotient := uint32(uint64(dividend) * barrettMultiplier >> barrettShift)
remainder := dividend - quotient*q
// Since the remainder is in the range [0, 2q), not [0, q), we need to
// portion it into three spans for rounding.
//
// [ 0, q/2 ) -> round to 0
// [ q/2, q + q/2 ) -> round to 1
// [ q + q/2, 2q ) -> round to 2
//
// We can convert that to the following logic: add 1 if remainder > q/2,
// then add 1 again if remainder > q + q/2.
//
// Note that if remainder > x, then ⌊x⌋ - remainder underflows, and the top
// bit of the difference will be set.
quotient += (q/2 - remainder) >> 31 & 1
quotient += (q + q/2 - remainder) >> 31 & 1
// quotient might have overflowed at this point, so reduce it by masking.
var mask uint32 = (1 << d) - 1
return uint16(quotient & mask)
}
// decompress maps a number x between 0 and 2ᵈ-1 uniformly to the full range of
// field elements, according to FIPS 203, Definition 4.8.
func decompress(y uint16, d uint8) fieldElement {
// We want to compute (y * q) / 2ᵈ, rounded to nearest integer, with 1/2
// rounding up (see FIPS 203, Section 2.3).
dividend := uint32(y) * q
quotient := dividend >> d // (y * q) / 2ᵈ
// The d'th least-significant bit of the dividend (the most significant bit
// of the remainder) is 1 for the top half of the values that divide to the
// same quotient, which are the ones that round up.
quotient += dividend >> (d - 1) & 1
// quotient is at most (2¹¹-1) * q / 2¹¹ + 1 = 3328, so it didn't overflow.
return fieldElement(quotient)
}
// ringElement is a polynomial, an element of R_q, represented as an array
// according to FIPS 203, Section 2.4.4.
type ringElement [n]fieldElement
// polyAdd adds two ringElements or nttElements.
func polyAdd[T ~[n]fieldElement](a, b T) (s T) {
for i := range s {
s[i] = fieldAdd(a[i], b[i])
}
return s
}
// polySub subtracts two ringElements or nttElements.
func polySub[T ~[n]fieldElement](a, b T) (s T) {
for i := range s {
s[i] = fieldSub(a[i], b[i])
}
return s
}
// polyByteEncode appends the 384-byte encoding of f to b.
//
// It implements ByteEncode₁₂, according to FIPS 203, Algorithm 5.
func polyByteEncode[T ~[n]fieldElement](b []byte, f T) []byte {
out, B := sliceForAppend(b, encodingSize12)
for i := 0; i < n; i += 2 {
x := uint32(f[i]) | uint32(f[i+1])<<12
B[0] = uint8(x)
B[1] = uint8(x >> 8)
B[2] = uint8(x >> 16)
B = B[3:]
}
return out
}
// polyByteDecode decodes the 384-byte encoding of a polynomial, checking that
// all the coefficients are properly reduced. This fulfills the "Modulus check"
// step of ML-KEM Encapsulation.
//
// It implements ByteDecode₁₂, according to FIPS 203, Algorithm 6.
func polyByteDecode[T ~[n]fieldElement](b []byte) (T, error) {
if len(b) != encodingSize12 {
return T{}, errors.New("mlkem768: invalid encoding length")
}
var f T
for i := 0; i < n; i += 2 {
d := uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16
const mask12 = 0b1111_1111_1111
var err error
if f[i], err = fieldCheckReduced(uint16(d & mask12)); err != nil {
return T{}, errors.New("mlkem768: invalid polynomial encoding")
}
if f[i+1], err = fieldCheckReduced(uint16(d >> 12)); err != nil {
return T{}, errors.New("mlkem768: invalid polynomial encoding")
}
b = b[3:]
}
return f, nil
}
// sliceForAppend takes a slice and a requested number of bytes. It returns a
// slice with the contents of the given slice followed by that many bytes and a
// second slice that aliases into it and contains only the extra bytes. If the
// original slice has sufficient capacity then no allocation is performed.
func sliceForAppend(in []byte, n int) (head, tail []byte) {
if total := len(in) + n; cap(in) >= total {
head = in[:total]
} else {
head = make([]byte, total)
copy(head, in)
}
tail = head[len(in):]
return
}
// ringCompressAndEncode1 appends a 32-byte encoding of a ring element to s,
// compressing one coefficients per bit.
//
// It implements Compress₁, according to FIPS 203, Definition 4.7,
// followed by ByteEncode₁, according to FIPS 203, Algorithm 5.
func ringCompressAndEncode1(s []byte, f ringElement) []byte {
s, b := sliceForAppend(s, encodingSize1)
for i := range b {
b[i] = 0
}
for i := range f {
b[i/8] |= uint8(compress(f[i], 1) << (i % 8))
}
return s
}
// ringDecodeAndDecompress1 decodes a 32-byte slice to a ring element where each
// bit is mapped to 0 or ⌈q/2⌋.
//
// It implements ByteDecode₁, according to FIPS 203, Algorithm 6,
// followed by Decompress₁, according to FIPS 203, Definition 4.8.
func ringDecodeAndDecompress1(b *[encodingSize1]byte) ringElement {
var f ringElement
for i := range f {
b_i := b[i/8] >> (i % 8) & 1
const halfQ = (q + 1) / 2 // ⌈q/2⌋, rounded up per FIPS 203, Section 2.3
f[i] = fieldElement(b_i) * halfQ // 0 decompresses to 0, and 1 to ⌈q/2⌋
}
return f
}
// ringCompressAndEncode4 appends a 128-byte encoding of a ring element to s,
// compressing two coefficients per byte.
//
// It implements Compress₄, according to FIPS 203, Definition 4.7,
// followed by ByteEncode₄, according to FIPS 203, Algorithm 5.
func ringCompressAndEncode4(s []byte, f ringElement) []byte {
s, b := sliceForAppend(s, encodingSize4)
for i := 0; i < n; i += 2 {
b[i/2] = uint8(compress(f[i], 4) | compress(f[i+1], 4)<<4)
}
return s
}
// ringDecodeAndDecompress4 decodes a 128-byte encoding of a ring element where
// each four bits are mapped to an equidistant distribution.
//
// It implements ByteDecode₄, according to FIPS 203, Algorithm 6,
// followed by Decompress₄, according to FIPS 203, Definition 4.8.
func ringDecodeAndDecompress4(b *[encodingSize4]byte) ringElement {
var f ringElement
for i := 0; i < n; i += 2 {
f[i] = fieldElement(decompress(uint16(b[i/2]&0b1111), 4))
f[i+1] = fieldElement(decompress(uint16(b[i/2]>>4), 4))
}
return f
}
// ringCompressAndEncode10 appends a 320-byte encoding of a ring element to s,
// compressing four coefficients per five bytes.
//
// It implements Compress₁₀, according to FIPS 203, Definition 4.7,
// followed by ByteEncode₁₀, according to FIPS 203, Algorithm 5.
func ringCompressAndEncode10(s []byte, f ringElement) []byte {
s, b := sliceForAppend(s, encodingSize10)
for i := 0; i < n; i += 4 {
var x uint64
x |= uint64(compress(f[i+0], 10))
x |= uint64(compress(f[i+1], 10)) << 10
x |= uint64(compress(f[i+2], 10)) << 20
x |= uint64(compress(f[i+3], 10)) << 30
b[0] = uint8(x)
b[1] = uint8(x >> 8)
b[2] = uint8(x >> 16)
b[3] = uint8(x >> 24)
b[4] = uint8(x >> 32)
b = b[5:]
}
return s
}
// ringDecodeAndDecompress10 decodes a 320-byte encoding of a ring element where
// each ten bits are mapped to an equidistant distribution.
//
// It implements ByteDecode₁₀, according to FIPS 203, Algorithm 6,
// followed by Decompress₁₀, according to FIPS 203, Definition 4.8.
func ringDecodeAndDecompress10(bb *[encodingSize10]byte) ringElement {
b := bb[:]
var f ringElement
for i := 0; i < n; i += 4 {
x := uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 | uint64(b[4])<<32
b = b[5:]
f[i] = fieldElement(decompress(uint16(x>>0&0b11_1111_1111), 10))
f[i+1] = fieldElement(decompress(uint16(x>>10&0b11_1111_1111), 10))
f[i+2] = fieldElement(decompress(uint16(x>>20&0b11_1111_1111), 10))
f[i+3] = fieldElement(decompress(uint16(x>>30&0b11_1111_1111), 10))
}
return f
}
// samplePolyCBD draws a ringElement from the special Dη distribution given a
// stream of random bytes generated by the PRF function, according to FIPS 203,
// Algorithm 8 and Definition 4.3.
func samplePolyCBD(s []byte, b byte) ringElement {
prf := sha3.NewShake256()
prf.Write(s)
prf.Write([]byte{b})
B := make([]byte, 64*η)
prf.Read(B)
// SamplePolyCBD simply draws four (2η) bits for each coefficient, and adds
// the first two and subtracts the last two.
var f ringElement
for i := 0; i < n; i += 2 {
b := B[i/2]
b_7, b_6, b_5, b_4 := b>>7, b>>6&1, b>>5&1, b>>4&1
b_3, b_2, b_1, b_0 := b>>3&1, b>>2&1, b>>1&1, b&1
f[i] = fieldSub(fieldElement(b_0+b_1), fieldElement(b_2+b_3))
f[i+1] = fieldSub(fieldElement(b_4+b_5), fieldElement(b_6+b_7))
}
return f
}
// nttElement is an NTT representation, an element of T_q, represented as an
// array according to FIPS 203, Section 2.4.4.
type nttElement [n]fieldElement
// gammas are the values ζ^2BitRev7(i)+1 mod q for each index i, according to
// FIPS 203, Appendix A (with negative values reduced to positive).
var gammas = [128]fieldElement{17, 3312, 2761, 568, 583, 2746, 2649, 680, 1637, 1692, 723, 2606, 2288, 1041, 1100, 2229, 1409, 1920, 2662, 667, 3281, 48, 233, 3096, 756, 2573, 2156, 1173, 3015, 314, 3050, 279, 1703, 1626, 1651, 1678, 2789, 540, 1789, 1540, 1847, 1482, 952, 2377, 1461, 1868, 2687, 642, 939, 2390, 2308, 1021, 2437, 892, 2388, 941, 733, 2596, 2337, 992, 268, 3061, 641, 2688, 1584, 1745, 2298, 1031, 2037, 1292, 3220, 109, 375, 2954, 2549, 780, 2090, 1239, 1645, 1684, 1063, 2266, 319, 3010, 2773, 556, 757, 2572, 2099, 1230, 561, 2768, 2466, 863, 2594, 735, 2804, 525, 1092, 2237, 403, 2926, 1026, 2303, 1143, 2186, 2150, 1179, 2775, 554, 886, 2443, 1722, 1607, 1212, 2117, 1874, 1455, 1029, 2300, 2110, 1219, 2935, 394, 885, 2444, 2154, 1175}
// nttMul multiplies two nttElements.
//
// It implements MultiplyNTTs, according to FIPS 203, Algorithm 11.
func nttMul(f, g nttElement) nttElement {
var h nttElement
// We use i += 2 for bounds check elimination. See https://go.dev/issue/66826.
for i := 0; i < 256; i += 2 {
a0, a1 := f[i], f[i+1]
b0, b1 := g[i], g[i+1]
h[i] = fieldAddMul(a0, b0, fieldMul(a1, b1), gammas[i/2])
h[i+1] = fieldAddMul(a0, b1, a1, b0)
}
return h
}
// zetas are the values ζ^BitRev7(k) mod q for each index k, according to FIPS
// 203, Appendix A.
var zetas = [128]fieldElement{1, 1729, 2580, 3289, 2642, 630, 1897, 848, 1062, 1919, 193, 797, 2786, 3260, 569, 1746, 296, 2447, 1339, 1476, 3046, 56, 2240, 1333, 1426, 2094, 535, 2882, 2393, 2879, 1974, 821, 289, 331, 3253, 1756, 1197, 2304, 2277, 2055, 650, 1977, 2513, 632, 2865, 33, 1320, 1915, 2319, 1435, 807, 452, 1438, 2868, 1534, 2402, 2647, 2617, 1481, 648, 2474, 3110, 1227, 910, 17, 2761, 583, 2649, 1637, 723, 2288, 1100, 1409, 2662, 3281, 233, 756, 2156, 3015, 3050, 1703, 1651, 2789, 1789, 1847, 952, 1461, 2687, 939, 2308, 2437, 2388, 733, 2337, 268, 641, 1584, 2298, 2037, 3220, 375, 2549, 2090, 1645, 1063, 319, 2773, 757, 2099, 561, 2466, 2594, 2804, 1092, 403, 1026, 1143, 2150, 2775, 886, 1722, 1212, 1874, 1029, 2110, 2935, 885, 2154}
// ntt maps a ringElement to its nttElement representation.
//
// It implements NTT, according to FIPS 203, Algorithm 9.
func ntt(f ringElement) nttElement {
k := 1
for len := 128; len >= 2; len /= 2 {
for start := 0; start < 256; start += 2 * len {
zeta := zetas[k]
k++
// Bounds check elimination hint.
f, flen := f[start:start+len], f[start+len:start+len+len]
for j := 0; j < len; j++ {
t := fieldMul(zeta, flen[j])
flen[j] = fieldSub(f[j], t)
f[j] = fieldAdd(f[j], t)
}
}
}
return nttElement(f)
}
// inverseNTT maps a nttElement back to the ringElement it represents.
//
// It implements NTT⁻¹, according to FIPS 203, Algorithm 10.
func inverseNTT(f nttElement) ringElement {
k := 127
for len := 2; len <= 128; len *= 2 {
for start := 0; start < 256; start += 2 * len {
zeta := zetas[k]
k--
// Bounds check elimination hint.
f, flen := f[start:start+len], f[start+len:start+len+len]
for j := 0; j < len; j++ {
t := f[j]
f[j] = fieldAdd(t, flen[j])
flen[j] = fieldMulSub(zeta, flen[j], t)
}
}
}
for i := range f {
f[i] = fieldMul(f[i], 3303) // 3303 = 128⁻¹ mod q
}
return ringElement(f)
}
// sampleNTT draws a uniformly random nttElement from a stream of uniformly
// random bytes generated by the XOF function, according to FIPS 203,
// Algorithm 7.
func sampleNTT(rho []byte, ii, jj byte) nttElement {
B := sha3.NewShake128()
B.Write(rho)
B.Write([]byte{ii, jj})
// SampleNTT essentially draws 12 bits at a time from r, interprets them in
// little-endian, and rejects values higher than q, until it drew 256
// values. (The rejection rate is approximately 19%.)
//
// To do this from a bytes stream, it draws three bytes at a time, and
// splits them into two uint16 appropriately masked.
//
// r₀ r₁ r₂
// |- - - - - - - -|- - - - - - - -|- - - - - - - -|
//
// Uint16(r₀ || r₁)
// |- - - - - - - - - - - - - - - -|
// |- - - - - - - - - - - -|
// d₁
//
// Uint16(r₁ || r₂)
// |- - - - - - - - - - - - - - - -|
// |- - - - - - - - - - - -|
// d₂
//
// Note that in little-endian, the rightmost bits are the most significant
// bits (dropped with a mask) and the leftmost bits are the least
// significant bits (dropped with a right shift).
var a nttElement
var j int // index into a
var buf [24]byte // buffered reads from B
off := len(buf) // index into buf, starts in a "buffer fully consumed" state
for {
if off >= len(buf) {
B.Read(buf[:])
off = 0
}
d1 := binary.LittleEndian.Uint16(buf[off:]) & 0b1111_1111_1111
d2 := binary.LittleEndian.Uint16(buf[off+1:]) >> 4
off += 3
if d1 < q {
a[j] = fieldElement(d1)
j++
}
if j >= len(a) {
break
}
if d2 < q {
a[j] = fieldElement(d2)
j++
}
if j >= len(a) {
break
}
}
return a
}