-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
test_nn_binary.py
104 lines (89 loc) · 3.42 KB
/
test_nn_binary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
from fate_client.pipeline.utils import test_utils
from fate_client.pipeline.components.fate.evaluation import Evaluation
from fate_client.pipeline.components.fate.reader import Reader
from fate_client.pipeline import FateFlowPipeline
from fate_client.pipeline.components.fate.nn.torch import nn, optim
from fate_client.pipeline.components.fate.nn.torch.base import Sequential
from fate_client.pipeline.components.fate.homo_nn import HomoNN, get_config_of_default_runner
from fate_client.pipeline.components.fate.nn.algo_params import TrainingArguments, FedAVGArguments
def main(config="../../config.yaml", namespace=""):
# obtain config
if isinstance(config, str):
config = test_utils.load_job_config(config)
parties = config.parties
guest = parties.guest[0]
host = parties.host[0]
arbiter = parties.arbiter[0]
epochs = 5
batch_size = 64
in_feat = 30
out_feat = 16
lr = 0.01
pipeline = FateFlowPipeline().set_parties(guest=guest, host=host, arbiter=arbiter)
reader_0 = Reader("reader_0", runtime_parties=dict(guest=guest, host=host))
reader_0.guest.task_parameters(
namespace=f"experiment{namespace}",
name="breast_homo_guest"
)
reader_0.hosts[0].task_parameters(
namespace=f"experiment{namespace}",
name="breast_homo_host"
)
conf = get_config_of_default_runner(
algo='fedavg',
model=Sequential(
nn.Linear(in_feat, out_feat),
nn.ReLU(),
nn.Linear(out_feat ,1),
nn.Sigmoid()
),
loss=nn.BCELoss(),
optimizer=optim.Adam(lr=lr),
training_args=TrainingArguments(num_train_epochs=epochs, per_device_train_batch_size=batch_size),
fed_args=FedAVGArguments(),
task_type='binary'
)
homo_nn_0 = HomoNN(
'nn_0',
runner_conf=conf,
train_data=reader_0.outputs["output_data"]
)
homo_nn_1 = HomoNN(
'nn_1',
input_model=homo_nn_0.outputs['output_model'],
test_data=reader_0.outputs["output_data"]
)
evaluation_0 = Evaluation(
'eval_0',
runtime_parties=dict(guest=guest, host=host),
metrics=['auc'],
input_datas=[homo_nn_1.outputs['test_output_data']]
)
pipeline.add_tasks([reader_0, homo_nn_0, homo_nn_1, evaluation_0])
pipeline.compile()
pipeline.fit()
print(pipeline.get_task_info("eval_0").get_output_metric())
if __name__ == "__main__":
parser = argparse.ArgumentParser("PIPELINE DEMO")
parser.add_argument("--config", type=str, default="../config.yaml",
help="config file")
parser.add_argument("--namespace", type=str, default="",
help="namespace for data stored in FATE")
args = parser.parse_args()
main(config=args.config, namespace=args.namespace)