From 9599f42d3b3908aaf05095475f5af8abf738612e Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Fri, 7 Jul 2023 15:45:53 -0700 Subject: [PATCH 01/63] initial single trainer commit --- configs/goc_single_debug.yml | 137 ++++ ocpmodels/common/utils.py | 33 + ocpmodels/datasets/lmdb_dataset.py | 5 + ocpmodels/models/gemnet_oc/gemnet_oc.py | 16 +- ocpmodels/modules/evaluator.py | 99 ++- ocpmodels/modules/loss.py | 10 +- ocpmodels/trainers/base_trainer.py | 77 +-- ocpmodels/trainers/ocp_trainer.py | 801 ++++++++++++++++++++++++ 8 files changed, 1109 insertions(+), 69 deletions(-) create mode 100644 configs/goc_single_debug.yml create mode 100644 ocpmodels/trainers/ocp_trainer.py diff --git a/configs/goc_single_debug.yml b/configs/goc_single_debug.yml new file mode 100644 index 000000000..d0ddacced --- /dev/null +++ b/configs/goc_single_debug.yml @@ -0,0 +1,137 @@ +trainer: ocp + +dataset: + train: + src: /checkpoint/saro00/mpf_datasets/s2efs/0/train.lmdb + #src: /datasets01/open_catalyst/oc20/082422/struct_to_energy_forces/val/id_30k + val: + #src: /datasets01/open_catalyst/oc20/082422/struct_to_energy_forces/val/id_30k + src: /checkpoint/saro00/mpf_datasets/s2efs/0/val.lmdb + test: + #src: /datasets01/open_catalyst/oc20/082422/struct_to_energy_forces/val/id_30k + src: /checkpoint/saro00/mpf_datasets/s2efs/0/val.lmdb + +logger: tensorboard + +task: + dataset: lmdb + + train_on_free_atoms: True + eval_on_free_atoms: True + + metrics: + - energy_mae + - energy_mse + - energy_within_threshold + - forces_mae + - forces_cos + - stress_mae + + primary_metric: forces_mae + + targets: + energy: + irreps: 0 + loss: mae + level: system + coefficient: 1 + normalizer: + mean: -5.9749126 + stdev: 1.866159 + forces: + irreps: 1 + loss: mae + level: atom + coefficient: 100 + normalizer: + stdev: 1.866159 + stress: + isotropic_stress: + irreps: 0 + loss: mae + level: system + coefficient: 1 + normalizer: + mean: 43.27065 + stdev: 674.1657344451734 + anisotropic_stress: + irreps: 2 + loss: mae + level: system + coefficient: 1 + normalizer: + stdev: 143.72764771869745 + +model: + name: gemnet_oc + num_spherical: 7 + num_radial: 128 + num_blocks: 4 + emb_size_atom: 256 + emb_size_edge: 512 + emb_size_trip_in: 64 + emb_size_trip_out: 64 + emb_size_quad_in: 32 + emb_size_quad_out: 32 + emb_size_aint_in: 64 + emb_size_aint_out: 64 + emb_size_rbf: 16 + emb_size_cbf: 16 + emb_size_sbf: 32 + num_before_skip: 2 + num_after_skip: 2 + num_concat: 1 + num_atom: 3 + num_output_afteratom: 3 + cutoff: 12.0 + cutoff_qint: 12.0 + cutoff_aeaint: 12.0 + cutoff_aint: 12.0 + max_neighbors: 30 + max_neighbors_qint: 8 + max_neighbors_aeaint: 20 + max_neighbors_aint: 1000 + rbf: + name: gaussian + envelope: + name: polynomial + exponent: 5 + cbf: + name: spherical_harmonics + sbf: + name: legendre_outer + extensive: True + output_init: HeOrthogonal + activation: silu + scale_file: configs/s2ef/all/gemnet/scaling_factors/gemnet-oc.pt + + regress_forces: True + direct_forces: True + forces_coupled: False + + quad_interaction: True + atom_edge_interaction: True + edge_atom_interaction: True + atom_interaction: True + + num_atom_emb_layers: 2 + num_global_out_layers: 2 + qint_tags: [1, 2] + +optim: + batch_size: 1 + eval_batch_size: 1 + load_balancing: atoms + eval_every: 5000 + num_workers: 2 + lr_initial: 5.e-4 + optimizer: AdamW + optimizer_params: {"amsgrad": True} + scheduler: ReduceLROnPlateau + mode: min + factor: 0.8 + patience: 3 + max_epochs: 80 + ema_decay: 0.999 + clip_grad_norm: 10 + weight_decay: 0 diff --git a/ocpmodels/common/utils.py b/ocpmodels/common/utils.py index 976e2bc35..66b05f06a 100644 --- a/ocpmodels/common/utils.py +++ b/ocpmodels/common/utils.py @@ -1121,3 +1121,36 @@ def scatter_det(*args, **kwargs): torch.use_deterministic_algorithms(mode=False) return out + + +change_mat = torch.tensor( + [ + [3 ** (-0.5), 0, 0, 0, 3 ** (-0.5), 0, 0, 0, 3 ** (-0.5)], + [0, 0, 0, 0, 0, 2 ** (-0.5), 0, -(2 ** (-0.5)), 0], + [0, 0, -(2 ** (-0.5)), 0, 0, 0, 2 ** (-0.5), 0, 0], + [0, 2 ** (-0.5), 0, -(2 ** (-0.5)), 0, 0, 0, 0, 0], + [0, 0, 0.5**0.5, 0, 0, 0, 0.5**0.5, 0, 0], + [0, 2 ** (-0.5), 0, 2 ** (-0.5), 0, 0, 0, 0, 0], + [ + -(6 ** (-0.5)), + 0, + 0, + 0, + 2 * 6 ** (-0.5), + 0, + 0, + 0, + -(6 ** (-0.5)), + ], + [0, 0, 0, 0, 0, 2 ** (-0.5), 0, 2 ** (-0.5), 0], + [-(2 ** (-0.5)), 0, 0, 0, 0, 0, 0, 0, 2 ** (-0.5)], + ] +).detach() + + +def irreps_sum(l): + total = 0 + for i in range(l + 1): + total += 2 * i + 1 + + return total diff --git a/ocpmodels/datasets/lmdb_dataset.py b/ocpmodels/datasets/lmdb_dataset.py index fb6ce268c..72501eb63 100644 --- a/ocpmodels/datasets/lmdb_dataset.py +++ b/ocpmodels/datasets/lmdb_dataset.py @@ -151,6 +151,11 @@ def __getitem__(self, idx: int): if self.transform is not None: data_object = self.transform(data_object) + if "stress" in data_object: + data_object.stress = data_object.stress.reshape(1, -1) + data_object.energy = data_object.y + data_object.forces = data_object.force + return data_object def connect_db(self, lmdb_path: Optional[Path] = None): diff --git a/ocpmodels/models/gemnet_oc/gemnet_oc.py b/ocpmodels/models/gemnet_oc/gemnet_oc.py index 48efd98dd..aa81c694f 100644 --- a/ocpmodels/models/gemnet_oc/gemnet_oc.py +++ b/ocpmodels/models/gemnet_oc/gemnet_oc.py @@ -1355,10 +1355,22 @@ def forward(self, data): E_t = E_t.squeeze(1) # (num_molecules) F_t = F_t.squeeze(1) # (num_atoms, 3) - return E_t, F_t + + outputs = { + "energy": E_t, + "forces": F_t, + "isotropic_stress": torch.rand( + (E_t.numel(), 1), device=E_t.device + ), + "anisotropic_stress": torch.rand( + (E_t.numel(), 5), device=E_t.device + ), + } else: E_t = E_t.squeeze(1) # (num_molecules) - return E_t + outputs = {"y": E_t} + + return outputs @property def num_params(self) -> int: diff --git a/ocpmodels/modules/evaluator.py b/ocpmodels/modules/evaluator.py index ae38d40c1..6eb97c4ab 100644 --- a/ocpmodels/modules/evaluator.py +++ b/ocpmodels/modules/evaluator.py @@ -9,6 +9,7 @@ import torch from typing import Dict, Union +from ocpmodels.common.utils import change_mat """ An evaluation module for use with the OCP dataset and suite of tasks. It should @@ -50,10 +51,26 @@ class Evaluator: "is2re": ["energy_mae", "energy_mse", "energy_within_threshold"], } - task_attributes = { - "s2ef": ["energy", "forces", "natoms"], - "is2rs": ["positions", "cell", "pbc", "natoms"], - "is2re": ["energy"], + metric_attributes = { + "forcesx_mae": ["forces"], + "forcesy_mae": ["forces"], + "forcesz_mae": ["forces"], + "forces_mae": ["forces"], + "forces_cos": ["forces"], + "forces_magnitude": ["forces"], + "energy_mae": ["energy"], + "energy_force_within_threshold": ["energy", "forces", "natoms"], + "energy_mse": ["energy"], + "energy_within_threshold": ["energy"], + "average_distance_within_threshold": [ + "positions", + "cell", + "pbc", + "natoms", + ], + "positions_mae": ["positions"], + "positions_mse": ["positions"], + "stress_mae": ["isotropic_stress", "anisotropic_stress"], } task_primary_metric = { @@ -62,20 +79,21 @@ class Evaluator: "is2re": "energy_mae", } - def __init__(self, task: str) -> None: - assert task in ["s2ef", "is2rs", "is2re"] + def __init__(self, task: str = None, eval_metrics: str = None) -> None: self.task = task - self.metric_fn = self.task_metrics[task] + self.metric_fns = self.task_metrics.get(task, eval_metrics) def eval(self, prediction, target, prev_metrics={}): - for attr in self.task_attributes[self.task]: - assert attr in prediction - assert attr in target - assert prediction[attr].shape == target[attr].shape + + for metric in self.metric_fns: + for attr in self.metric_attributes.get(metric, {}): + assert attr in prediction + assert attr in target + assert prediction[attr].shape == target[attr].shape metrics = prev_metrics - for fn in self.task_metrics[self.task]: + for fn in self.metric_fns: res = eval(fn)(prediction, target) metrics = self.update(fn, res, metrics) @@ -110,43 +128,43 @@ def update(self, key, stat, metrics): def energy_mae(prediction, target): - return absolute_error(prediction["energy"], target["energy"]) + return mae(prediction["energy"], target["energy"]) def energy_mse(prediction, target): - return squared_error(prediction["energy"], target["energy"]) + return mse(prediction["energy"], target["energy"]) def forcesx_mae(prediction, target): - return absolute_error(prediction["forces"][:, 0], target["forces"][:, 0]) + return mae(prediction["forces"][:, 0], target["forces"][:, 0]) def forcesx_mse(prediction, target): - return squared_error(prediction["forces"][:, 0], target["forces"][:, 0]) + return mse(prediction["forces"][:, 0], target["forces"][:, 0]) def forcesy_mae(prediction, target): - return absolute_error(prediction["forces"][:, 1], target["forces"][:, 1]) + return mae(prediction["forces"][:, 1], target["forces"][:, 1]) def forcesy_mse(prediction, target): - return squared_error(prediction["forces"][:, 1], target["forces"][:, 1]) + return mse(prediction["forces"][:, 1], target["forces"][:, 1]) def forcesz_mae(prediction, target): - return absolute_error(prediction["forces"][:, 2], target["forces"][:, 2]) + return mae(prediction["forces"][:, 2], target["forces"][:, 2]) def forcesz_mse(prediction, target): - return squared_error(prediction["forces"][:, 2], target["forces"][:, 2]) + return mse(prediction["forces"][:, 2], target["forces"][:, 2]) def forces_mae(prediction, target): - return absolute_error(prediction["forces"], target["forces"]) + return mae(prediction["forces"], target["forces"]) def forces_mse(prediction, target): - return squared_error(prediction["forces"], target["forces"]) + return mse(prediction["forces"], target["forces"]) def forces_cos(prediction, target): @@ -158,11 +176,11 @@ def forces_magnitude(prediction, target): def positions_mae(prediction, target): - return absolute_error(prediction["positions"], target["positions"]) + return mae(prediction["positions"], target["positions"]) def positions_mse(prediction, target): - return squared_error(prediction["positions"], target["positions"]) + return mse(prediction["positions"], target["positions"]) def energy_force_within_threshold( @@ -252,6 +270,31 @@ def average_distance_within_threshold( return {"metric": success / total, "total": success, "numel": total} +def stress_mae(prediction, target): + device = prediction["isotropic_stress"].device + cg_decomp_mat = change_mat.to(device) + + zero_vectors = torch.zeros( + (prediction["isotropic_stress"].shape[0], 3), + device=device, + ) + prediction_irreps = torch.concat( + [ + prediction["isotropic_stress"].reshape(-1, 1), + zero_vectors, + prediction["anisotropic_stress"].reshape(-1, 5), + ], + dim=1, + ) + prediction_stress = torch.einsum( + "ba, cb->ca", cg_decomp_mat, prediction_irreps + ).reshape(-1) + + target_stress = target["stress"] + + return mae(prediction_stress, target_stress) + + def min_diff(pred_pos, dft_pos, cell, pbc): pos_diff = pred_pos - dft_pos fractional = np.linalg.solve(cell.T, pos_diff.T).T @@ -276,8 +319,8 @@ def cosine_similarity(prediction: torch.Tensor, target: torch.Tensor): } -def absolute_error( - prediction: torch.Tensor, target: torch.Tensor +def mae( + prediction: dict, target: dict ) -> Dict[str, Union[float, int]]: error = torch.abs(target - prediction) return { @@ -287,8 +330,8 @@ def absolute_error( } -def squared_error( - prediction: torch.Tensor, target: torch.Tensor +def mse( + prediction: dict, target: dict ) -> Dict[str, Union[float, int]]: error = (target - prediction) ** 2 return { diff --git a/ocpmodels/modules/loss.py b/ocpmodels/modules/loss.py index 7ab36c500..b7b8a50c4 100644 --- a/ocpmodels/modules/loss.py +++ b/ocpmodels/modules/loss.py @@ -46,9 +46,10 @@ def forward( class DDPLoss(nn.Module): - def __init__(self, loss_fn, reduction: str = "mean") -> None: + def __init__(self, loss_fn, loss_name: str = "mae", reduction: str = "mean") -> None: super().__init__() self.loss_fn = loss_fn + self.loss_name = loss_name self.loss_fn.reduction = "sum" self.reduction = reduction assert reduction in ["mean", "sum"] @@ -66,10 +67,11 @@ def forward( logging.warning("Found nans while computing loss") input = torch.nan_to_num(input, nan=0.0) - if natoms is None: - loss = self.loss_fn(input, target) - else: # atom-wise loss + if self.loss_name.startswith("atomwise"): loss = self.loss_fn(input, target, natoms) + else: + loss = self.loss_fn(input, target) + if self.reduction == "mean": num_samples = ( batch_size if batch_size is not None else input.shape[0] diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index ffdfa2167..bd56b6b8b 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -126,7 +126,7 @@ def __init__( logger_name = logger if isinstance(logger, str) else logger["name"] self.config = { "task": task, - "trainer": "forces" if name == "s2ef" else "energy", + "trainer": "ocp", "model": assert_is_instance(model.pop("name"), str), "model_attributes": model, "optim": optimizer, @@ -180,11 +180,6 @@ def __init__( else: self.config["dataset"] = dataset - self.normalizer = normalizer - # This supports the legacy way of providing norm parameters in dataset - if self.config.get("dataset", None) is not None and normalizer is None: - self.normalizer = self.config["dataset"] - if not is_debug and distutils.is_master() and not is_hpo: os.makedirs(self.config["cmd"]["checkpoint_dir"], exist_ok=True) os.makedirs(self.config["cmd"]["results_dir"], exist_ok=True) @@ -206,7 +201,9 @@ def __init__( print(yaml.dump(self.config, default_flow_style=False)) self.load() - self.evaluator = Evaluator(task=name) + self.evaluator = Evaluator( + task=name, eval_metrics=self.config["task"].get("metrics", None) + ) def load(self) -> None: self.load_seed_from_config() @@ -283,6 +280,7 @@ def get_dataloader(self, dataset, sampler) -> DataLoader: return loader def load_datasets(self) -> None: + logging.info(f"Loading dataset: {self.config['task']['dataset']}") self.parallel_collater = ParallelCollater( 0 if self.cpu else 1, self.config["model_attributes"].get("otf_graph", False), @@ -292,6 +290,7 @@ def load_datasets(self) -> None: self.val_loader = None self.test_loader = None + # load train, val, test datasets if self.config.get("dataset", None): self.train_dataset = registry.get_dataset_class( self.config["task"]["dataset"] @@ -338,23 +337,22 @@ def load_datasets(self) -> None: self.test_sampler, ) - # Normalizer for the dataset. - # Compute mean, std of training set labels. - self.normalizers = {} - if self.normalizer.get("normalize_labels", False): - if "target_mean" in self.normalizer: - self.normalizers["target"] = Normalizer( - mean=self.normalizer["target_mean"], - std=self.normalizer["target_std"], - device=self.device, - ) - else: - self.normalizers["target"] = Normalizer( - tensor=self.train_loader.dataset.data.y[ - self.train_loader.dataset.__indices__ - ], - device=self.device, - ) + # load relaxation dataset + if "relax_dataset" in self.config["task"]: + self.relax_dataset = registry.get_dataset_class("lmdb")( + self.config["task"]["relax_dataset"] + ) + self.relax_sampler = self.get_sampler( + self.relax_dataset, + self.config["optim"].get( + "eval_batch_size", self.config["optim"]["batch_size"] + ), + shuffle=False, + ) + self.relax_loader = self.get_dataloader( + self.relax_dataset, + self.relax_sampler, + ) @abstractmethod def load_task(self): @@ -467,24 +465,26 @@ def load_checkpoint(self, checkpoint_path: str) -> None: self.scaler.load_state_dict(checkpoint["amp"]) def load_loss(self) -> None: - self.loss_fn: Dict[str, str] = { - "energy": self.config["optim"].get("loss_energy", "mae"), - "force": self.config["optim"].get("loss_force", "mae"), - } - for loss, loss_name in self.loss_fn.items(): + self.loss_fn = {} + for target_name in self.train_targets: + self.loss_fn[target_name] = self.train_targets[target_name].get( + "loss", "mae" + ) + + for target, loss_name in self.loss_fn.items(): if loss_name in ["l1", "mae"]: - self.loss_fn[loss] = nn.L1Loss() + self.loss_fn[target] = nn.L1Loss() elif loss_name == "mse": - self.loss_fn[loss] = nn.MSELoss() + self.loss_fn[target] = nn.MSELoss() elif loss_name == "l2mae": - self.loss_fn[loss] = L2MAELoss() + self.loss_fn[target] = L2MAELoss() elif loss_name == "atomwisel2": - self.loss_fn[loss] = AtomwiseL2Loss() + self.loss_fn[target] = AtomwiseL2Loss() else: raise NotImplementedError( f"Unknown loss function name: {loss_name}" ) - self.loss_fn[loss] = DDPLoss(self.loss_fn[loss]) + self.loss_fn[target] = DDPLoss(self.loss_fn[target], loss_name) def load_optimizer(self) -> None: optimizer = self.config["optim"].get("optimizer", "AdamW") @@ -651,7 +651,14 @@ def validate(self, split: str = "val", disable_tqdm: bool = False): self.ema.store() self.ema.copy_to() - evaluator, metrics = Evaluator(task=self.name), {} + evaluator, metrics = ( + Evaluator( + task=self.name, + eval_metrics=self.config["task"].get("metrics", None), + ), + {}, + ) + rank = distutils.get_rank() loader = self.val_loader if split == "val" else self.test_loader diff --git a/ocpmodels/trainers/ocp_trainer.py b/ocpmodels/trainers/ocp_trainer.py new file mode 100644 index 000000000..490a841e8 --- /dev/null +++ b/ocpmodels/trainers/ocp_trainer.py @@ -0,0 +1,801 @@ +""" +Copyright (c) Facebook, Inc. and its affiliates. + +This source code is licensed under the MIT license found in the +LICENSE file in the root directory of this source tree. +""" + +import logging +import os +import pathlib +from collections import defaultdict +from pathlib import Path + +import numpy as np +import torch +import torch_geometric +from tqdm import tqdm + +from ocpmodels.common import distutils +from ocpmodels.common.registry import registry +from ocpmodels.common.relaxation.ml_relaxation import ml_relax +from ocpmodels.common.utils import change_mat, check_traj_files, irreps_sum +from ocpmodels.modules.evaluator import Evaluator +from ocpmodels.modules.normalizer import Normalizer +from ocpmodels.modules.scaling.util import ensure_fitted +from ocpmodels.trainers.base_trainer import BaseTrainer + + +@registry.register_trainer("ocp") +class OCPTrainer(BaseTrainer): + """ + Trainer class for the Structure to Energy & Force (S2EF) and Initial State to + Relaxed State (IS2RS) tasks. + + .. note:: + + Examples of configurations for task, model, dataset and optimizer + can be found in `configs/ocp_s2ef `_ + and `configs/ocp_is2rs `_. + + Args: + task (dict): Task configuration. + model (dict): Model configuration. + dataset (dict): Dataset configuration. The dataset needs to be a SinglePointLMDB dataset. + optimizer (dict): Optimizer configuration. + identifier (str): Experiment identifier that is appended to log directory. + run_dir (str, optional): Path to the run directory where logs are to be saved. + (default: :obj:`None`) + is_debug (bool, optional): Run in debug mode. + (default: :obj:`False`) + is_hpo (bool, optional): Run hyperparameter optimization with Ray Tune. + (default: :obj:`False`) + print_every (int, optional): Frequency of printing logs. + (default: :obj:`100`) + seed (int, optional): Random number seed. + (default: :obj:`None`) + logger (str, optional): Type of logger to be used. + (default: :obj:`tensorboard`) + local_rank (int, optional): Local rank of the process, only applicable for distributed training. + (default: :obj:`0`) + amp (bool, optional): Run using automatic mixed precision. + (default: :obj:`False`) + slurm (dict): Slurm configuration. Currently just for keeping track. + (default: :obj:`{}`) + """ + + def __init__( + self, + task, + model, + dataset, + optimizer, + identifier, + normalizer=None, + timestamp_id=None, + run_dir=None, + is_debug=False, + is_hpo=False, + print_every=100, + seed=None, + logger="tensorboard", + local_rank=0, + amp=False, + cpu=False, + slurm={}, + noddp=False, + ): + super().__init__( + task=task, + model=model, + dataset=dataset, + optimizer=optimizer, + identifier=identifier, + normalizer=normalizer, + timestamp_id=timestamp_id, + run_dir=run_dir, + is_debug=is_debug, + is_hpo=is_hpo, + print_every=print_every, + seed=seed, + logger=logger, + local_rank=local_rank, + amp=amp, + cpu=cpu, + slurm=slurm, + noddp=noddp, + ) + + def load_task(self): + self.targets = self.config["task"]["targets"] + self.num_targets = 1 + + self.train_targets = {} + for target in self.targets: + if "irreps" in self.targets[target]: + self.train_targets[target] = self.targets[target] + else: + for subtarget in self.targets[target]: + self.train_targets[subtarget] = self.targets[target][ + subtarget + ] + self.train_targets[subtarget]["parent"] = target + + # Normalizer for the dataset. + self.normalizers = {} + for target in self.train_targets: + self.normalizers[target] = Normalizer( + mean=self.train_targets.get("mean", 0), + std=self.train_targets.get("std", 1), + device=self.device, + ) + + self.eval_metrics = self.config["task"]["metrics"] + + # assert len(self.targets.keys() - self.eval_metrics.keys()) == 0 + + # Takes in a new data source and generates predictions on it. + @torch.no_grad() + def predict( + self, + data_loader, + per_image=True, + results_file=None, + disable_tqdm=False, + ): + ensure_fitted(self._unwrapped_model, warn=True) + + if distutils.is_master() and not disable_tqdm: + logging.info("Predicting on test.") + assert isinstance( + data_loader, + ( + torch.utils.data.dataloader.DataLoader, + torch_geometric.data.Batch, + ), + ) + rank = distutils.get_rank() + + if isinstance(data_loader, torch_geometric.data.Batch): + data_loader = [[data_loader]] + + self.model.eval() + if self.ema: + self.ema.store() + self.ema.copy_to() + + if self.normalizers is not None and "target" in self.normalizers: + self.normalizers["target"].to(self.device) + self.normalizers["grad_target"].to(self.device) + + predictions = {"id": [], "energy": [], "forces": [], "chunk_idx": []} + + for i, batch_list in tqdm( + enumerate(data_loader), + total=len(data_loader), + position=rank, + desc="device {}".format(rank), + disable=disable_tqdm, + ): + with torch.cuda.amp.autocast(enabled=self.scaler is not None): + out = self._forward(batch_list) + + if self.normalizers is not None and "target" in self.normalizers: + out["energy"] = self.normalizers["target"].denorm( + out["energy"] + ) + out["forces"] = self.normalizers["grad_target"].denorm( + out["forces"] + ) + if per_image: + systemids = [ + str(i) + "_" + str(j) + for i, j in zip( + batch_list[0].sid.tolist(), batch_list[0].fid.tolist() + ) + ] + predictions["id"].extend(systemids) + batch_natoms = torch.cat( + [batch.natoms for batch in batch_list] + ) + batch_fixed = torch.cat([batch.fixed for batch in batch_list]) + # total energy target requires predictions to be saved in float32 + # default is float16 + if ( + self.config["task"].get("prediction_dtype", "float16") + == "float32" + or self.config["task"]["dataset"] == "oc22_lmdb" + ): + predictions["energy"].extend( + out["energy"].cpu().detach().to(torch.float32).numpy() + ) + forces = out["forces"].cpu().detach().to(torch.float32) + else: + predictions["energy"].extend( + out["energy"].cpu().detach().to(torch.float16).numpy() + ) + forces = out["forces"].cpu().detach().to(torch.float16) + per_image_forces = torch.split(forces, batch_natoms.tolist()) + per_image_forces = [ + force.numpy() for force in per_image_forces + ] + # evalAI only requires forces on free atoms + if results_file is not None: + _per_image_fixed = torch.split( + batch_fixed, batch_natoms.tolist() + ) + _per_image_free_forces = [ + force[(fixed == 0).tolist()] + for force, fixed in zip( + per_image_forces, _per_image_fixed + ) + ] + _chunk_idx = np.array( + [ + free_force.shape[0] + for free_force in _per_image_free_forces + ] + ) + per_image_forces = _per_image_free_forces + predictions["chunk_idx"].extend(_chunk_idx) + predictions["forces"].extend(per_image_forces) + else: + predictions["energy"] = out["energy"].detach() + predictions["forces"] = out["forces"].detach() + if self.ema: + self.ema.restore() + return predictions + + predictions["forces"] = np.array(predictions["forces"]) + predictions["chunk_idx"] = np.array(predictions["chunk_idx"]) + predictions["energy"] = np.array(predictions["energy"]) + predictions["id"] = np.array(predictions["id"]) + self.save_results( + predictions, results_file, keys=["energy", "forces", "chunk_idx"] + ) + + if self.ema: + self.ema.restore() + + return predictions + + def update_best( + self, + primary_metric, + val_metrics, + disable_eval_tqdm=True, + ): + if ( + "mae" in primary_metric + and val_metrics[primary_metric]["metric"] < self.best_val_metric + ) or ( + "mae" not in primary_metric + and val_metrics[primary_metric]["metric"] > self.best_val_metric + ): + self.best_val_metric = val_metrics[primary_metric]["metric"] + self.save( + metrics=val_metrics, + checkpoint_file="best_checkpoint.pt", + training_state=False, + ) + if self.test_loader is not None: + self.predict( + self.test_loader, + results_file="predictions", + disable_tqdm=disable_eval_tqdm, + ) + + def train(self, disable_eval_tqdm=False): + ensure_fitted(self._unwrapped_model, warn=True) + + eval_every = self.config["optim"].get( + "eval_every", len(self.train_loader) + ) + checkpoint_every = self.config["optim"].get( + "checkpoint_every", eval_every + ) + primary_metric = self.config["task"]["primary_metric"] + # TODO: support for old naming conventions - is2re, s2ef, etc. + # primary_metric = self.config["task"].get( + # "primary_metric", self.evaluator.task_primary_metric[self.name] + # ) + if ( + not hasattr(self, "primary_metric") + or self.primary_metric != primary_metric + ): + self.best_val_metric = 1e9 if "mae" in primary_metric else -1.0 + else: + primary_metric = self.primary_metric + self.metrics = {} + + # Calculate start_epoch from step instead of loading the epoch number + # to prevent inconsistencies due to different batch size in checkpoint. + start_epoch = self.step // len(self.train_loader) + + for epoch_int in range( + start_epoch, self.config["optim"]["max_epochs"] + ): + self.train_sampler.set_epoch(epoch_int) + skip_steps = self.step % len(self.train_loader) + train_loader_iter = iter(self.train_loader) + + for i in range(skip_steps, len(self.train_loader)): + self.epoch = epoch_int + (i + 1) / len(self.train_loader) + self.step = epoch_int * len(self.train_loader) + i + 1 + self.model.train() + + # Get a batch. + batch = next(train_loader_iter) + + # Forward, loss, backward. + with torch.cuda.amp.autocast(enabled=self.scaler is not None): + out = self._forward(batch) + loss = self._compute_loss(out, batch) + loss = self.scaler.scale(loss) if self.scaler else loss + self._backward(loss) + scale = self.scaler.get_scale() if self.scaler else 1.0 + + # Compute metrics. + self.metrics = self._compute_metrics( + out, + batch, + self.evaluator, + self.metrics, + ) + self.metrics = self.evaluator.update( + "loss", loss.item() / scale, self.metrics + ) + + # Log metrics. + log_dict = {k: self.metrics[k]["metric"] for k in self.metrics} + log_dict.update( + { + "lr": self.scheduler.get_lr(), + "epoch": self.epoch, + "step": self.step, + } + ) + if ( + self.step % self.config["cmd"]["print_every"] == 0 + and distutils.is_master() + and not self.is_hpo + ): + log_str = [ + "{}: {:.2e}".format(k, v) for k, v in log_dict.items() + ] + logging.info(", ".join(log_str)) + self.metrics = {} + + if self.logger is not None: + self.logger.log( + log_dict, + step=self.step, + split="train", + ) + + if ( + checkpoint_every != -1 + and self.step % checkpoint_every == 0 + ): + self.save( + checkpoint_file="checkpoint.pt", training_state=True + ) + + # Evaluate on val set every `eval_every` iterations. + if self.step % eval_every == 0: + if self.val_loader is not None: + val_metrics = self.validate( + split="val", + disable_tqdm=disable_eval_tqdm, + ) + self.update_best( + primary_metric, + val_metrics, + disable_eval_tqdm=disable_eval_tqdm, + ) + if self.is_hpo: + self.hpo_update( + self.epoch, + self.step, + self.metrics, + val_metrics, + ) + + if self.config["task"].get("eval_relaxations", False): + if "relax_dataset" not in self.config["task"]: + logging.warning( + "Cannot evaluate relaxations, relax_dataset not specified" + ) + else: + self.run_relaxations() + + if self.scheduler.scheduler_type == "ReduceLROnPlateau": + if self.step % eval_every == 0: + self.scheduler.step( + metrics=val_metrics[primary_metric]["metric"], + ) + else: + self.scheduler.step() + + torch.cuda.empty_cache() + + if checkpoint_every == -1: + self.save(checkpoint_file="checkpoint.pt", training_state=True) + + self.train_dataset.close_db() + if self.config.get("val_dataset", False): + self.val_dataset.close_db() + if self.config.get("test_dataset", False): + self.test_dataset.close_db() + + def _forward(self, batch_list): + # forward pass. + return self.model(batch_list) + + def _compute_loss(self, out, batch_list): + natoms = torch.cat( + [batch.natoms.to(self.device) for batch in batch_list], dim=0 + ) + natoms = torch.repeat_interleave(natoms, natoms) + batch_size = natoms.numel() + + loss = [] + if self.config["task"].get("train_on_free_atoms", True): + fixed = torch.cat( + [batch.fixed.to(self.device) for batch in batch_list] + ) + mask = fixed == 0 + + for target_name in self.train_targets: + if "parent" not in self.train_targets[target_name]: + target = torch.cat( + [ + batch[target_name].to(self.device) + for batch in batch_list + ], + dim=0, + ) + # property is a decomposition of a higher order tensor + else: + irreps = self.train_targets[target_name]["irreps"] + if irreps > 2: + raise NotImplementedError + + target = [ + torch.einsum( + "ab, cb->ca", + change_mat.to(self.device), + batch[self.train_targets[target_name]["parent"]], + ) + for batch in batch_list + ] + + target = torch.cat( + [ + batch[ + :, + max(0, irreps_sum(irreps - 1)) : irreps_sum( + irreps + ), + ] + for batch in target + ], + dim=0, + ) + + pred = out[target_name] + + if ( + self.config["task"].get("train_on_free_atoms", True) + and self.train_targets[target_name].get("level", "system") + == "atom" + ): + target = target[mask] + pred = pred[mask] + natoms = natoms[mask] + + if self.normalizers.get(target_name, False): + target = self.normalizers[target_name].norm(target) + + mult = self.train_targets[target_name].get("coefficient", 1) + + loss.append( + mult + * self.loss_fn[target_name]( + pred, + target, + natoms=natoms, + batch_size=batch_size, + ) + ) + + # Sanity check to make sure the compute graph is correct. + for lc in loss: + assert hasattr(lc, "grad_fn") + + loss = sum(loss) + return loss + + def _compute_metrics(self, out, batch_list, evaluator, metrics={}): + natoms = torch.cat( + [batch.natoms.to(self.device) for batch in batch_list], dim=0 + ) + + if self.config["task"].get("eval_on_free_atoms", True): + fixed = torch.cat( + [batch.fixed.to(self.device) for batch in batch_list] + ) + mask = fixed == 0 + + s_idx = 0 + natoms_free = [] + for _natoms in natoms: + natoms_free.append( + torch.sum(mask[s_idx : s_idx + _natoms]).item() + ) + s_idx += _natoms + natoms = torch.LongTensor(natoms_free).to(self.device) + + targets = {} + for target_name in self.train_targets: + if "parent" not in self.train_targets[target_name]: + target = torch.cat( + [ + batch[target_name].to(self.device) + for batch in batch_list + ], + dim=0, + ) + else: + irreps = self.train_targets[target_name]["irreps"] + parent_target_name = self.train_targets[target_name]["parent"] + + if parent_target_name not in targets: + parent_target = torch.cat( + [ + batch[parent_target_name].to(self.device) + for batch in batch_list + ], + dim=0, + ) + targets[parent_target_name] = parent_target + + target = [ + torch.einsum( + "ab, cb->ca", + change_mat.to(self.device), + batch[parent_target_name], + ) + for batch in batch_list + ] + + target = torch.cat( + [ + batch[ + :, + max(0, irreps_sum(irreps - 1)) : irreps_sum( + irreps + ), + ] + for batch in target + ], + dim=0, + ) + + if ( + self.config["task"].get("eval_on_free_atoms", True) + and self.train_targets[target_name].get("level", "system") + == "atom" + ): + target = target[mask] + out[target_name] = out[target_name][mask] + + targets[target_name] = target + if self.normalizers.get(target_name, False): + out[target_name] = self.normalizers[target_name].denorm( + out[target_name] + ) + + targets["natoms"] = natoms + out["natoms"] = natoms + + metrics = evaluator.eval(out, targets, prev_metrics=metrics) + return metrics + + def run_relaxations(self, split="val"): + ensure_fitted(self._unwrapped_model) + + # When set to true, uses deterministic CUDA scatter ops, if available. + # https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html#torch.use_deterministic_algorithms + # Only implemented for GemNet-OC currently. + registry.register( + "set_deterministic_scatter", + self.config["task"].get("set_deterministic_scatter", False), + ) + + logging.info("Running ML-relaxations") + self.model.eval() + if self.ema: + self.ema.store() + self.ema.copy_to() + + evaluator_is2rs, metrics_is2rs = Evaluator(task="is2rs"), {} + evaluator_is2re, metrics_is2re = Evaluator(task="is2re"), {} + + # Need both `pos_relaxed` and `y_relaxed` to compute val IS2R* metrics. + # Else just generate predictions. + if ( + hasattr(self.relax_dataset[0], "pos_relaxed") + and self.relax_dataset[0].pos_relaxed is not None + ) and ( + hasattr(self.relax_dataset[0], "y_relaxed") + and self.relax_dataset[0].y_relaxed is not None + ): + split = "val" + else: + split = "test" + + ids = [] + relaxed_positions = [] + chunk_idx = [] + for i, batch in tqdm( + enumerate(self.relax_loader), total=len(self.relax_loader) + ): + if i >= self.config["task"].get("num_relaxation_batches", 1e9): + break + + # If all traj files already exist, then skip this batch + if check_traj_files( + batch, self.config["task"]["relax_opt"].get("traj_dir", None) + ): + logging.info(f"Skipping batch: {batch[0].sid.tolist()}") + continue + + relaxed_batch = ml_relax( + batch=batch, + model=self, + steps=self.config["task"].get("relaxation_steps", 200), + fmax=self.config["task"].get("relaxation_fmax", 0.0), + relax_opt=self.config["task"]["relax_opt"], + save_full_traj=self.config["task"].get("save_full_traj", True), + device=self.device, + transform=None, + ) + + if self.config["task"].get("write_pos", False): + systemids = [str(i) for i in relaxed_batch.sid.tolist()] + natoms = relaxed_batch.natoms.tolist() + positions = torch.split(relaxed_batch.pos, natoms) + batch_relaxed_positions = [pos.tolist() for pos in positions] + + relaxed_positions += batch_relaxed_positions + chunk_idx += natoms + ids += systemids + + if split == "val": + mask = relaxed_batch.fixed == 0 + s_idx = 0 + natoms_free = [] + for natoms in relaxed_batch.natoms: + natoms_free.append( + torch.sum(mask[s_idx : s_idx + natoms]).item() + ) + s_idx += natoms + + target = { + "energy": relaxed_batch.y_relaxed, + "positions": relaxed_batch.pos_relaxed[mask], + "cell": relaxed_batch.cell, + "pbc": torch.tensor([True, True, True]), + "natoms": torch.LongTensor(natoms_free), + } + + prediction = { + "energy": relaxed_batch.y, + "positions": relaxed_batch.pos[mask], + "cell": relaxed_batch.cell, + "pbc": torch.tensor([True, True, True]), + "natoms": torch.LongTensor(natoms_free), + } + + metrics_is2rs = evaluator_is2rs.eval( + prediction, + target, + metrics_is2rs, + ) + metrics_is2re = evaluator_is2re.eval( + {"energy": prediction["energy"]}, + {"energy": target["energy"]}, + metrics_is2re, + ) + + if self.config["task"].get("write_pos", False): + rank = distutils.get_rank() + pos_filename = os.path.join( + self.config["cmd"]["results_dir"], f"relaxed_pos_{rank}.npz" + ) + np.savez_compressed( + pos_filename, + ids=ids, + pos=np.array(relaxed_positions, dtype=object), + chunk_idx=chunk_idx, + ) + + distutils.synchronize() + if distutils.is_master(): + gather_results = defaultdict(list) + full_path = os.path.join( + self.config["cmd"]["results_dir"], + "relaxed_positions.npz", + ) + + for i in range(distutils.get_world_size()): + rank_path = os.path.join( + self.config["cmd"]["results_dir"], + f"relaxed_pos_{i}.npz", + ) + rank_results = np.load(rank_path, allow_pickle=True) + gather_results["ids"].extend(rank_results["ids"]) + gather_results["pos"].extend(rank_results["pos"]) + gather_results["chunk_idx"].extend( + rank_results["chunk_idx"] + ) + os.remove(rank_path) + + # Because of how distributed sampler works, some system ids + # might be repeated to make no. of samples even across GPUs. + _, idx = np.unique(gather_results["ids"], return_index=True) + gather_results["ids"] = np.array(gather_results["ids"])[idx] + gather_results["pos"] = np.concatenate( + np.array(gather_results["pos"])[idx] + ) + gather_results["chunk_idx"] = np.cumsum( + np.array(gather_results["chunk_idx"])[idx] + )[ + :-1 + ] # np.split does not need last idx, assumes n-1:end + + logging.info(f"Writing results to {full_path}") + np.savez_compressed(full_path, **gather_results) + + if split == "val": + for task in ["is2rs", "is2re"]: + metrics = eval(f"metrics_{task}") + aggregated_metrics = {} + for k in metrics: + aggregated_metrics[k] = { + "total": distutils.all_reduce( + metrics[k]["total"], + average=False, + device=self.device, + ), + "numel": distutils.all_reduce( + metrics[k]["numel"], + average=False, + device=self.device, + ), + } + aggregated_metrics[k]["metric"] = ( + aggregated_metrics[k]["total"] + / aggregated_metrics[k]["numel"] + ) + metrics = aggregated_metrics + + # Make plots. + log_dict = { + f"{task}_{k}": metrics[k]["metric"] for k in metrics + } + if self.logger is not None: + self.logger.log( + log_dict, + step=self.step, + split=split, + ) + + if distutils.is_master(): + logging.info(metrics) + + if self.ema: + self.ema.restore() + + registry.unregister("set_deterministic_scatter") From 68afdeb5e950ccad2e42569c9b5fe4072047767b Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Mon, 10 Jul 2023 17:45:04 -0700 Subject: [PATCH 02/63] more general evaluator --- ocpmodels/modules/evaluator.py | 142 ++++++++++++++++----------------- 1 file changed, 67 insertions(+), 75 deletions(-) diff --git a/ocpmodels/modules/evaluator.py b/ocpmodels/modules/evaluator.py index 6eb97c4ab..4c66df8a7 100644 --- a/ocpmodels/modules/evaluator.py +++ b/ocpmodels/modules/evaluator.py @@ -33,44 +33,36 @@ class Evaluator: task_metrics = { - "s2ef": [ - "forcesx_mae", - "forcesy_mae", - "forcesz_mae", - "forces_mae", - "forces_cos", - "forces_magnitude", - "energy_mae", - "energy_force_within_threshold", - ], - "is2rs": [ - "average_distance_within_threshold", - "positions_mae", - "positions_mse", - ], - "is2re": ["energy_mae", "energy_mse", "energy_within_threshold"], - } - - metric_attributes = { - "forcesx_mae": ["forces"], - "forcesy_mae": ["forces"], - "forcesz_mae": ["forces"], - "forces_mae": ["forces"], - "forces_cos": ["forces"], - "forces_magnitude": ["forces"], - "energy_mae": ["energy"], - "energy_force_within_threshold": ["energy", "forces", "natoms"], - "energy_mse": ["energy"], - "energy_within_threshold": ["energy"], - "average_distance_within_threshold": [ - "positions", - "cell", - "pbc", - "natoms", - ], - "positions_mae": ["positions"], - "positions_mse": ["positions"], - "stress_mae": ["isotropic_stress", "anisotropic_stress"], + "s2ef": { + "energy": {"metrics": ["energy_mae"]}, + "forces": { + "metrics": [ + "forcesx_mae", + "forcesy_mae", + "forcesz_mae", + "forces_mae", + "forces_cos", + "forces_magnitude", + "energy_force_within_threshold", + ] + }, + }, + "is2rs": { + "positions": { + "metrics": [ + "average_distance_within_threshold", + "positions_mae", + "positions_mse", + ] + } + }, + "is2re": { + "metrics": [ + "energy_mae", + "energy_mse", + "energy_within_threshold", + ] + }, } task_primary_metric = { @@ -81,21 +73,27 @@ class Evaluator: def __init__(self, task: str = None, eval_metrics: str = None) -> None: self.task = task - self.metric_fns = self.task_metrics.get(task, eval_metrics) + self.target_metrics = self.task_metrics.get(task, eval_metrics) def eval(self, prediction, target, prev_metrics={}): - for metric in self.metric_fns: - for attr in self.metric_attributes.get(metric, {}): - assert attr in prediction - assert attr in target - assert prediction[attr].shape == target[attr].shape + # TODO: arbitrary type check + # for metric in self.metric_fns: + # assert attr in prediction + # assert attr in target + # assert prediction[attr].shape == target[attr].shape metrics = prev_metrics - for fn in self.metric_fns: - res = eval(fn)(prediction, target) - metrics = self.update(fn, res, metrics) + for target_property in self.target_metrics: + for fn in self.target_metrics[target_property]["metrics"]: + metric_name = ( + f"{target_property}_{fn}" + if target_property not in fn + else fn + ) + res = eval(fn)(prediction, target, target_property) + metrics = self.update(metric_name, res, metrics) return metrics @@ -127,38 +125,31 @@ def update(self, key, stat, metrics): return metrics -def energy_mae(prediction, target): - return mae(prediction["energy"], target["energy"]) - - -def energy_mse(prediction, target): - return mse(prediction["energy"], target["energy"]) - - -def forcesx_mae(prediction, target): +def forcesx_mae(prediction, target, key=None): return mae(prediction["forces"][:, 0], target["forces"][:, 0]) -def forcesx_mse(prediction, target): +def forcesx_mse(prediction, target, key=None): return mse(prediction["forces"][:, 0], target["forces"][:, 0]) -def forcesy_mae(prediction, target): +def forcesy_mae(prediction, target, key=None): return mae(prediction["forces"][:, 1], target["forces"][:, 1]) -def forcesy_mse(prediction, target): +def forcesy_mse(prediction, target, key=None): return mse(prediction["forces"][:, 1], target["forces"][:, 1]) -def forcesz_mae(prediction, target): +def forcesz_mae(prediction, target, key=None): return mae(prediction["forces"][:, 2], target["forces"][:, 2]) -def forcesz_mse(prediction, target): +def forcesz_mse(prediction, target, key=None): return mse(prediction["forces"][:, 2], target["forces"][:, 2]) +<<<<<<< HEAD def forces_mae(prediction, target): return mae(prediction["forces"], target["forces"]) @@ -184,7 +175,7 @@ def positions_mse(prediction, target): def energy_force_within_threshold( - prediction, target + prediction, target, key=None ) -> Dict[str, Union[float, int]]: # Note that this natoms should be the count of free atoms we evaluate over. assert target["natoms"].sum() == prediction["forces"].size(0) @@ -219,7 +210,7 @@ def energy_force_within_threshold( def energy_within_threshold( - prediction, target + prediction, target, key=None ) -> Dict[str, Union[float, int]]: # compute absolute error on energy per system. # then count the no. of systems where max energy error is < 0.02. @@ -237,7 +228,7 @@ def energy_within_threshold( def average_distance_within_threshold( - prediction, target + prediction, target, key=None ) -> Dict[str, Union[float, int]]: pred_pos = torch.split( prediction["positions"], prediction["natoms"].tolist() @@ -270,7 +261,7 @@ def average_distance_within_threshold( return {"metric": success / total, "total": success, "numel": total} -def stress_mae(prediction, target): +def stress_mae(prediction, target, key=None): device = prediction["isotropic_stress"].device cg_decomp_mat = change_mat.to(device) @@ -310,8 +301,8 @@ def min_diff(pred_pos, dft_pos, cell, pbc): return np.matmul(fractional, cell) -def cosine_similarity(prediction: torch.Tensor, target: torch.Tensor): - error = torch.cosine_similarity(prediction, target) +def cosine_similarity(prediction: dict, target: dict, key=slice(None)): + error = torch.cosine_similarity(prediction[key], target[key]) return { "metric": torch.mean(error).item(), "total": torch.sum(error).item(), @@ -320,33 +311,34 @@ def cosine_similarity(prediction: torch.Tensor, target: torch.Tensor): def mae( - prediction: dict, target: dict + prediction: dict, target: dict, key=slice(None) ) -> Dict[str, Union[float, int]]: - error = torch.abs(target - prediction) + error = torch.abs(target[key] - prediction[key]) return { "metric": torch.mean(error).item(), "total": torch.sum(error).item(), - "numel": prediction.numel(), + "numel": error.numel(), } def mse( - prediction: dict, target: dict + prediction: dict, target: dict, key=slice(None) ) -> Dict[str, Union[float, int]]: - error = (target - prediction) ** 2 + error = (target[key] - prediction[key]) ** 2 return { "metric": torch.mean(error).item(), "total": torch.sum(error).item(), - "numel": prediction.numel(), + "numel": error.numel(), } def magnitude_error( - prediction: torch.Tensor, target: torch.Tensor, p: int = 2 + prediction: dict, target: dict, key=slice(None), p: int = 2 ) -> Dict[str, Union[float, int]]: assert prediction.shape[1] > 1 error = torch.abs( - torch.norm(prediction, p=p, dim=-1) - torch.norm(target, p=p, dim=-1) + torch.norm(prediction[key], p=p, dim=-1) + - torch.norm(target[key], p=p, dim=-1) ) return { "metric": torch.mean(error).item(), From 3c62f4ac6771cfe4cb09dd74d35372b2870d5190 Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Mon, 10 Jul 2023 17:45:53 -0700 Subject: [PATCH 03/63] backwards tasks --- ocpmodels/common/utils.py | 14 +++++++++++--- 1 file changed, 11 insertions(+), 3 deletions(-) diff --git a/ocpmodels/common/utils.py b/ocpmodels/common/utils.py index 66b05f06a..50b0cda80 100644 --- a/ocpmodels/common/utils.py +++ b/ocpmodels/common/utils.py @@ -994,9 +994,16 @@ class _TrainingContext: gp_utils.setup_gp(config) try: setup_imports(config) - trainer_cls = registry.get_trainer_class( - config.get("trainer", "energy") - ) + trainer_name = config.get("trainer", "ocp") + # backwards compatibility for older configs + if trainer_name == "forces": + task_name = "s2ef" + elif trainer_name == "energy": + task_name = "is2re" + else: + task_name = "ocp" + + trainer_cls = registry.get_trainer_class(trainer_name) assert trainer_cls is not None, "Trainer not found" trainer = trainer_cls( task=config["task"], @@ -1015,6 +1022,7 @@ class _TrainingContext: cpu=config.get("cpu", False), slurm=config.get("slurm", {}), noddp=config.get("noddp", False), + name=task_name, ) task_cls = registry.get_task_class(config["mode"]) From 569375c3c35023d2f7cdf318173cf7b21b98a305 Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Mon, 10 Jul 2023 17:46:53 -0700 Subject: [PATCH 04/63] debug config --- configs/goc_single_debug.yml | 24 +++++++++++++++--------- 1 file changed, 15 insertions(+), 9 deletions(-) diff --git a/configs/goc_single_debug.yml b/configs/goc_single_debug.yml index d0ddacced..caca567e1 100644 --- a/configs/goc_single_debug.yml +++ b/configs/goc_single_debug.yml @@ -19,13 +19,19 @@ task: train_on_free_atoms: True eval_on_free_atoms: True - metrics: - - energy_mae - - energy_mse - - energy_within_threshold - - forces_mae - - forces_cos - - stress_mae + evaluation_metrics: + energy: + metrics: + - mae + - mse + - energy_within_threshold + forces: + metrics: + - mae + - cosine_similarity + stress: + metrics: + - stress_mae primary_metric: forces_mae @@ -119,8 +125,8 @@ model: qint_tags: [1, 2] optim: - batch_size: 1 - eval_batch_size: 1 + batch_size: 4 + eval_batch_size: 4 load_balancing: atoms eval_every: 5000 num_workers: 2 From 2e284cc0afff512ee8a560471d76a5459d3c6cca Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Tue, 11 Jul 2023 18:01:36 -0700 Subject: [PATCH 05/63] predict support, evaluator cleanup --- configs/goc_single_debug.yml | 30 +- ocpmodels/common/utils.py | 54 +-- ocpmodels/modules/evaluator.py | 4 +- ocpmodels/trainers/base_trainer.py | 607 +++++++++++++++++++++++++++-- ocpmodels/trainers/ocp_trainer.py | 500 +----------------------- 5 files changed, 621 insertions(+), 574 deletions(-) diff --git a/configs/goc_single_debug.yml b/configs/goc_single_debug.yml index caca567e1..cf12a638c 100644 --- a/configs/goc_single_debug.yml +++ b/configs/goc_single_debug.yml @@ -52,21 +52,21 @@ task: normalizer: stdev: 1.866159 stress: - isotropic_stress: - irreps: 0 - loss: mae - level: system - coefficient: 1 - normalizer: - mean: 43.27065 - stdev: 674.1657344451734 - anisotropic_stress: - irreps: 2 - loss: mae - level: system - coefficient: 1 - normalizer: - stdev: 143.72764771869745 + level: system + decomp: + isotropic_stress: + irreps: 0 + loss: mae + coefficient: 1 + normalizer: + mean: 43.27065 + stdev: 674.1657344451734 + anisotropic_stress: + irreps: 2 + loss: mae + coefficient: 1 + normalizer: + stdev: 143.72764771869745 model: name: gemnet_oc diff --git a/ocpmodels/common/utils.py b/ocpmodels/common/utils.py index 50b0cda80..d11262ee8 100644 --- a/ocpmodels/common/utils.py +++ b/ocpmodels/common/utils.py @@ -1131,29 +1131,37 @@ def scatter_det(*args, **kwargs): return out -change_mat = torch.tensor( - [ - [3 ** (-0.5), 0, 0, 0, 3 ** (-0.5), 0, 0, 0, 3 ** (-0.5)], - [0, 0, 0, 0, 0, 2 ** (-0.5), 0, -(2 ** (-0.5)), 0], - [0, 0, -(2 ** (-0.5)), 0, 0, 0, 2 ** (-0.5), 0, 0], - [0, 2 ** (-0.5), 0, -(2 ** (-0.5)), 0, 0, 0, 0, 0], - [0, 0, 0.5**0.5, 0, 0, 0, 0.5**0.5, 0, 0], - [0, 2 ** (-0.5), 0, 2 ** (-0.5), 0, 0, 0, 0, 0], - [ - -(6 ** (-0.5)), - 0, - 0, - 0, - 2 * 6 ** (-0.5), - 0, - 0, - 0, - -(6 ** (-0.5)), - ], - [0, 0, 0, 0, 0, 2 ** (-0.5), 0, 2 ** (-0.5), 0], - [-(2 ** (-0.5)), 0, 0, 0, 0, 0, 0, 0, 2 ** (-0.5)], - ] -).detach() +def cg_decomp_mat(l, device): + if l not in [2]: + raise NotImplementedError + + if l == 2: + change_mat = torch.tensor( + [ + [3 ** (-0.5), 0, 0, 0, 3 ** (-0.5), 0, 0, 0, 3 ** (-0.5)], + [0, 0, 0, 0, 0, 2 ** (-0.5), 0, -(2 ** (-0.5)), 0], + [0, 0, -(2 ** (-0.5)), 0, 0, 0, 2 ** (-0.5), 0, 0], + [0, 2 ** (-0.5), 0, -(2 ** (-0.5)), 0, 0, 0, 0, 0], + [0, 0, 0.5**0.5, 0, 0, 0, 0.5**0.5, 0, 0], + [0, 2 ** (-0.5), 0, 2 ** (-0.5), 0, 0, 0, 0, 0], + [ + -(6 ** (-0.5)), + 0, + 0, + 0, + 2 * 6 ** (-0.5), + 0, + 0, + 0, + -(6 ** (-0.5)), + ], + [0, 0, 0, 0, 0, 2 ** (-0.5), 0, 2 ** (-0.5), 0], + [-(2 ** (-0.5)), 0, 0, 0, 0, 0, 0, 0, 2 ** (-0.5)], + ], + device=device, + ).detach() + + return change_mat def irreps_sum(l): diff --git a/ocpmodels/modules/evaluator.py b/ocpmodels/modules/evaluator.py index 4c66df8a7..bdfeb0866 100644 --- a/ocpmodels/modules/evaluator.py +++ b/ocpmodels/modules/evaluator.py @@ -9,7 +9,7 @@ import torch from typing import Dict, Union -from ocpmodels.common.utils import change_mat +from ocpmodels.common.utils import cg_decomp_mat """ An evaluation module for use with the OCP dataset and suite of tasks. It should @@ -263,7 +263,7 @@ def average_distance_within_threshold( def stress_mae(prediction, target, key=None): device = prediction["isotropic_stress"].device - cg_decomp_mat = change_mat.to(device) + cg_decomp_mat = cg_decomp_mat(2, device) zero_vectors = torch.zeros( (prediction["isotropic_stress"].shape[0], 3), diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index bd56b6b8b..e98dd1d4b 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -18,6 +18,7 @@ import torch import torch.nn as nn import torch.optim as optim +import torch_geometric import yaml from torch.nn.parallel.distributed import DistributedDataParallel from torch.utils.data import DataLoader @@ -32,7 +33,13 @@ ) from ocpmodels.common.registry import registry from ocpmodels.common.typing import assert_is_instance -from ocpmodels.common.utils import load_state_dict, save_checkpoint +from ocpmodels.common.utils import ( + cg_decomp_mat, + check_traj_files, + irreps_sum, + load_state_dict, + save_checkpoint, +) from ocpmodels.modules.evaluator import Evaluator from ocpmodels.modules.exponential_moving_average import ( ExponentialMovingAverage, @@ -46,13 +53,6 @@ @registry.register_trainer("base") class BaseTrainer(ABC): - @property - def _unwrapped_model(self): - module = self.model - while isinstance(module, (OCPDataParallel, DistributedDataParallel)): - module = module.module - return module - def __init__( self, task, @@ -71,7 +71,7 @@ def __init__( local_rank: int = 0, amp: bool = False, cpu: bool = False, - name: str = "base_trainer", + name: str = "ocp", slurm={}, noddp: bool = False, ) -> None: @@ -201,8 +201,10 @@ def __init__( print(yaml.dump(self.config, default_flow_style=False)) self.load() + # TODO: asserts for targets+evaluation config definitions self.evaluator = Evaluator( - task=name, eval_metrics=self.config["task"].get("metrics", None) + task=name, + eval_metrics=self.config["task"].get("evaluation_metrics", None), ) def load(self) -> None: @@ -354,9 +356,37 @@ def load_datasets(self) -> None: self.relax_sampler, ) - @abstractmethod def load_task(self): - """Initialize task-specific information. Derived classes should implement this function.""" + self.targets = self.config["task"]["targets"] + self.num_targets = 1 + + self.train_targets = {} + for target in self.targets: + if "decomp" in self.targets[target]: + for subtarget in self.targets[target]["decomp"]: + self.train_targets[subtarget] = self.targets[target][ + "decomp" + ][subtarget] + self.train_targets[subtarget]["parent"] = target + self.train_targets[subtarget]["level"] = self.targets[ + target + ].get("level", "system") + else: + self.train_targets[target] = self.targets[target] + + # Normalizer for the dataset. + # Default - no normalization + self.normalizers = {} + for target in self.train_targets: + self.normalizers[target] = Normalizer( + mean=self.train_targets.get("mean", 0), + std=self.train_targets.get("std", 1), + device=self.device, + ) + + self.eval_metrics = self.config["task"].get("evaluation_metrics", {}) + + assert len(self.eval_metrics.keys() - self.targets.keys()) == 0 def load_model(self) -> None: # Build model @@ -400,6 +430,13 @@ def load_model(self) -> None: self.model, device_ids=[self.device] ) + @property + def _unwrapped_model(self): + module = self.model + while isinstance(module, (OCPDataParallel, DistributedDataParallel)): + module = module.module + return module + def load_checkpoint(self, checkpoint_path: str) -> None: if not os.path.isfile(checkpoint_path): raise FileNotFoundError( @@ -633,9 +670,347 @@ def hpo_update( test_metrics=test_metrics, ) - @abstractmethod - def train(self): - """Derived classes should implement this function.""" + def update_best( + self, + primary_metric, + val_metrics, + disable_eval_tqdm=True, + ): + if ( + "mae" in primary_metric + and val_metrics[primary_metric]["metric"] < self.best_val_metric + ) or ( + "mae" not in primary_metric + and val_metrics[primary_metric]["metric"] > self.best_val_metric + ): + self.best_val_metric = val_metrics[primary_metric]["metric"] + self.save( + metrics=val_metrics, + checkpoint_file="best_checkpoint.pt", + training_state=False, + ) + if self.test_loader is not None: + self.predict( + self.test_loader, + results_file="predictions", + disable_tqdm=disable_eval_tqdm, + ) + + def train(self, disable_eval_tqdm=False): + ensure_fitted(self._unwrapped_model, warn=True) + + eval_every = self.config["optim"].get( + "eval_every", len(self.train_loader) + ) + checkpoint_every = self.config["optim"].get( + "checkpoint_every", eval_every + ) + primary_metric = self.config["task"]["primary_metric"] + # TODO: support for old naming conventions - is2re, s2ef, etc. + # primary_metric = self.config["task"].get( + # "primary_metric", self.evaluator.task_primary_metric[self.name] + # ) + if ( + not hasattr(self, "primary_metric") + or self.primary_metric != primary_metric + ): + self.best_val_metric = 1e9 if "mae" in primary_metric else -1.0 + else: + primary_metric = self.primary_metric + self.metrics = {} + + # Calculate start_epoch from step instead of loading the epoch number + # to prevent inconsistencies due to different batch size in checkpoint. + start_epoch = self.step // len(self.train_loader) + + for epoch_int in range( + start_epoch, self.config["optim"]["max_epochs"] + ): + self.train_sampler.set_epoch(epoch_int) + skip_steps = self.step % len(self.train_loader) + train_loader_iter = iter(self.train_loader) + + for i in range(skip_steps, len(self.train_loader)): + self.epoch = epoch_int + (i + 1) / len(self.train_loader) + self.step = epoch_int * len(self.train_loader) + i + 1 + self.model.train() + + # Get a batch. + batch = next(train_loader_iter) + + # Forward, loss, backward. + with torch.cuda.amp.autocast(enabled=self.scaler is not None): + out = self._forward(batch) + loss = self._compute_loss(out, batch) + loss = self.scaler.scale(loss) if self.scaler else loss + self._backward(loss) + scale = self.scaler.get_scale() if self.scaler else 1.0 + + # Compute metrics. + self.metrics = self._compute_metrics( + out, + batch, + self.evaluator, + self.metrics, + ) + self.metrics = self.evaluator.update( + "loss", loss.item() / scale, self.metrics + ) + + # Log metrics. + log_dict = {k: self.metrics[k]["metric"] for k in self.metrics} + log_dict.update( + { + "lr": self.scheduler.get_lr(), + "epoch": self.epoch, + "step": self.step, + } + ) + if ( + self.step % self.config["cmd"]["print_every"] == 0 + and distutils.is_master() + and not self.is_hpo + ): + log_str = [ + "{}: {:.2e}".format(k, v) for k, v in log_dict.items() + ] + logging.info(", ".join(log_str)) + self.metrics = {} + + if self.logger is not None: + self.logger.log( + log_dict, + step=self.step, + split="train", + ) + + if ( + checkpoint_every != -1 + and self.step % checkpoint_every == 0 + ): + self.save( + checkpoint_file="checkpoint.pt", training_state=True + ) + + # Evaluate on val set every `eval_every` iterations. + if self.step % eval_every == 0: + if self.val_loader is not None: + val_metrics = self.validate( + split="val", + disable_tqdm=disable_eval_tqdm, + ) + self.update_best( + primary_metric, + val_metrics, + disable_eval_tqdm=disable_eval_tqdm, + ) + if self.is_hpo: + self.hpo_update( + self.epoch, + self.step, + self.metrics, + val_metrics, + ) + + if self.config["task"].get("eval_relaxations", False): + if "relax_dataset" not in self.config["task"]: + logging.warning( + "Cannot evaluate relaxations, relax_dataset not specified" + ) + else: + self.run_relaxations() + + if self.scheduler.scheduler_type == "ReduceLROnPlateau": + if self.step % eval_every == 0: + self.scheduler.step( + metrics=val_metrics[primary_metric]["metric"], + ) + else: + self.scheduler.step() + + torch.cuda.empty_cache() + + if checkpoint_every == -1: + self.save(checkpoint_file="checkpoint.pt", training_state=True) + + self.train_dataset.close_db() + if self.config.get("val_dataset", False): + self.val_dataset.close_db() + if self.config.get("test_dataset", False): + self.test_dataset.close_db() + + def _forward(self, batch_list): + return self.model(batch_list) + + def _compute_loss(self, out, batch_list): + natoms = torch.cat( + [batch.natoms.to(self.device) for batch in batch_list], dim=0 + ) + natoms = torch.repeat_interleave(natoms, natoms) + batch_size = natoms.numel() + + loss = [] + if self.config["task"].get("train_on_free_atoms", True): + fixed = torch.cat( + [batch.fixed.to(self.device) for batch in batch_list] + ) + mask = fixed == 0 + + for target_name in self.train_targets: + if "parent" not in self.train_targets[target_name]: + target = torch.cat( + [ + batch[target_name].to(self.device) + for batch in batch_list + ], + dim=0, + ) + # property is a decomposition of a higher order tensor + else: + irreps = self.train_targets[target_name]["irreps"] + if irreps > 2: + raise NotImplementedError + + target = [ + torch.einsum( + "ab, cb->ca", + cg_decomp_mat(2).to(self.device), + batch[self.train_targets[target_name]["parent"]], + ) + for batch in batch_list + ] + + target = torch.cat( + [ + batch[ + :, + max(0, irreps_sum(irreps - 1)) : irreps_sum( + irreps + ), + ] + for batch in target + ], + dim=0, + ) + + pred = out[target_name] + + if ( + self.config["task"].get("train_on_free_atoms", True) + and self.train_targets[target_name].get("level", "system") + == "atom" + ): + target = target[mask] + pred = pred[mask] + natoms = natoms[mask] + + if self.normalizers.get(target_name, False): + target = self.normalizers[target_name].norm(target) + + mult = self.train_targets[target_name].get("coefficient", 1) + + loss.append( + mult + * self.loss_fn[target_name]( + pred, + target, + natoms=natoms, + batch_size=batch_size, + ) + ) + + # Sanity check to make sure the compute graph is correct. + for lc in loss: + assert hasattr(lc, "grad_fn") + + loss = sum(loss) + return loss + + def _compute_metrics(self, out, batch_list, evaluator, metrics={}): + natoms = torch.cat( + [batch.natoms.to(self.device) for batch in batch_list], dim=0 + ) + + if self.config["task"].get("eval_on_free_atoms", True): + fixed = torch.cat( + [batch.fixed.to(self.device) for batch in batch_list] + ) + mask = fixed == 0 + + s_idx = 0 + natoms_free = [] + for _natoms in natoms: + natoms_free.append( + torch.sum(mask[s_idx : s_idx + _natoms]).item() + ) + s_idx += _natoms + natoms = torch.LongTensor(natoms_free).to(self.device) + + targets = {} + for target_name in self.train_targets: + if "parent" not in self.train_targets[target_name]: + target = torch.cat( + [ + batch[target_name].to(self.device) + for batch in batch_list + ], + dim=0, + ) + else: + irreps = self.train_targets[target_name]["irreps"] + parent_target_name = self.train_targets[target_name]["parent"] + + if parent_target_name not in targets: + parent_target = torch.cat( + [ + batch[parent_target_name].to(self.device) + for batch in batch_list + ], + dim=0, + ) + targets[parent_target_name] = parent_target + + target = [ + torch.einsum( + "ab, cb->ca", + cg_decomp_mat(2).to(self.device), + batch[parent_target_name], + ) + for batch in batch_list + ] + + target = torch.cat( + [ + batch[ + :, + max(0, irreps_sum(irreps - 1)) : irreps_sum( + irreps + ), + ] + for batch in target + ], + dim=0, + ) + + if ( + self.config["task"].get("eval_on_free_atoms", True) + and self.train_targets[target_name].get("level", "system") + == "atom" + ): + target = target[mask] + out[target_name] = out[target_name][mask] + + targets[target_name] = target + if self.normalizers.get(target_name, False): + out[target_name] = self.normalizers[target_name].denorm( + out[target_name] + ) + + targets["natoms"] = natoms + out["natoms"] = natoms + + metrics = evaluator.eval(out, targets, prev_metrics=metrics) + return metrics @torch.no_grad() def validate(self, split: str = "val", disable_tqdm: bool = False): @@ -651,12 +1026,10 @@ def validate(self, split: str = "val", disable_tqdm: bool = False): self.ema.store() self.ema.copy_to() - evaluator, metrics = ( - Evaluator( - task=self.name, - eval_metrics=self.config["task"].get("metrics", None), - ), - {}, + metrics = {} + evaluator = Evaluator( + task=self.name, + eval_metrics=self.config["task"].get("evaluation_metrics", None), ) rank = distutils.get_rank() @@ -713,14 +1086,6 @@ def validate(self, split: str = "val", disable_tqdm: bool = False): return metrics - @abstractmethod - def _forward(self, batch_list): - """Derived classes should implement this function.""" - - @abstractmethod - def _compute_loss(self, out, batch_list): - """Derived classes should implement this function.""" - def _backward(self, loss) -> None: self.optimizer.zero_grad() loss.backward() @@ -756,11 +1121,180 @@ def _backward(self, loss) -> None: if self.ema: self.ema.update() + # Takes in a new data source and generates predictions on it. + @torch.no_grad() + def predict( + self, + data_loader, + per_image=True, + results_file=None, + disable_tqdm=False, + ): + ensure_fitted(self._unwrapped_model, warn=True) + + if distutils.is_master() and not disable_tqdm: + logging.info("Predicting on test.") + assert isinstance( + data_loader, + ( + torch.utils.data.dataloader.DataLoader, + torch_geometric.data.Batch, + ), + ) + rank = distutils.get_rank() + + if isinstance(data_loader, torch_geometric.data.Batch): + data_loader = [[data_loader]] + + self.model.eval() + if self.ema: + self.ema.store() + self.ema.copy_to() + + predictions = defaultdict(list) + + for i, batch_list in tqdm( + enumerate(data_loader), + total=len(data_loader), + position=rank, + desc="device {}".format(rank), + disable=disable_tqdm, + ): + batch_size = batch_list[0].natoms.numel() + + ### Get unique system identifiers + sids = batch_list[0].sid.tolist() + ## Support naming structure for OC20 S2EF + if "fid" in batch_list[0]: + fids = batch_list[0].fid.tolist() + systemids = [f"{sid}_{fid}" for sid, fid in zip(sids, fids)] + else: + systemids = [f"{sid}" for sid in sids] + + predictions["ids"].extend(systemids) + + with torch.cuda.amp.autocast(enabled=self.scaler is not None): + out = self._forward(batch_list) + + for target_key in self.targets: + ### Target property is a direct output of the model + if target_key in self.train_targets: + pred = out[target_key] + ### Denormalize predictions if needed + if self.normalizers.get(target_key, False): + pred = self.normalizers[target_key].denorm(pred) + ## Target property is a derived output of the model + else: + _max_rank = 0 + for subtarget_key in self.targets[target_key]["decomp"]: + _max_rank = max( + _max_rank, + self.train_targets[subtarget_key]["irreps"], + ) + + pred_irreps = torch.zeros( + (batch_size, irreps_sum(_max_rank)), device=self.device + ) + + for subtarget_key in self.targets[target_key]["decomp"]: + irreps = self.train_targets[subtarget_key]["irreps"] + _pred = out[subtarget_key] + + ### Denormalize predictions if needed + if self.normalizers.get(subtarget_key, False): + _pred = self.normalizers[subtarget_key].denorm( + _pred + ) + + ## Fill in the corresponding irreps prediction + pred_irreps[ + :, + max(0, irreps_sum(irreps - 1)) : irreps_sum( + irreps + ), + ] = _pred + + pred = torch.einsum( + "ba, cb->ca", + cg_decomp_mat(_max_rank, self.device), + pred_irreps, + ) + + ### Save outputs in desired precision, default float16 + if ( + self.targets[target_key].get("prediction_dtype", "float16") + == "float32" + or self.config["task"].get("prediction_dtype", "float16") + == "float32" + or self.config["task"]["dataset"] == "oc22_lmdb" + ): + dtype = torch.float32 + else: + dtype = torch.float16 + + pred = pred.cpu().detach().to(dtype) + + ### Split predictions into per-image predictions + if self.targets[target_key].get("level", "system") == "atom": + batch_natoms = torch.cat( + [batch.natoms for batch in batch_list] + ) + batch_fixed = torch.cat( + [batch.fixed for batch in batch_list] + ) + per_image_pred = torch.split(pred, batch_natoms.tolist()) + + ### Save out only free atom, EvalAI does not need fixed atoms + _per_image_fixed = torch.split( + batch_fixed, batch_natoms.tolist() + ) + _per_image_free_preds = [ + _pred[(fixed == 0).tolist()].numpy() + for _pred, fixed in zip( + per_image_pred, _per_image_fixed + ) + ] + _chunk_idx = np.array( + [ + free_pred.shape[0] + for free_pred in _per_image_free_preds + ] + ) + per_image_pred = _per_image_free_preds + ### Assumes system level properties are of the same dimension + else: + per_image_pred = pred.numpy() + _chunk_idx = None + + predictions[f"{target_key}"].extend(per_image_pred) + ### Backwards compatibility, retain 'chunk_idx' for forces. + if _chunk_idx is not None: + if target_key == "forces": + predictions["chunk_idx"].extend(_chunk_idx) + else: + predictions[f"{target_key}_chunk_idx"].extend( + _chunk_idx + ) + + for key in predictions: + predictions[key] = np.array(predictions[key]) + + self.save_results(predictions, results_file) + # TODO relaxation support + + if self.ema: + self.ema.restore() + + return predictions + def save_results( self, predictions, results_file: Optional[str], keys ) -> None: + if results_file is None: return + if keys is None: + keys = predictions.keys() results_file_path = os.path.join( self.config["cmd"]["results_dir"], @@ -768,7 +1302,6 @@ def save_results( ) np.savez_compressed( results_file_path, - ids=predictions["id"], **{key: predictions[key] for key in keys}, ) @@ -794,18 +1327,18 @@ def save_results( # Because of how distributed sampler works, some system ids # might be repeated to make no. of samples even across GPUs. _, idx = np.unique(gather_results["ids"], return_index=True) - gather_results["ids"] = np.array(gather_results["ids"])[idx] for k in keys: - if k == "forces": - gather_results[k] = np.concatenate( - np.array(gather_results[k])[idx] - ) - elif k == "chunk_idx": + if "chunk_idx" in k: gather_results[k] = np.cumsum( np.array(gather_results[k])[idx] )[:-1] else: - gather_results[k] = np.array(gather_results[k])[idx] + if f"{k}_chunk_idx" in keys or k == "forces": + gather_results[k] = np.concatenate( + np.array(gather_results[k])[idx] + ) + else: + gather_results[k] = np.array(gather_results[k])[idx] logging.info(f"Writing results to {full_path}") np.savez_compressed(full_path, **gather_results) diff --git a/ocpmodels/trainers/ocp_trainer.py b/ocpmodels/trainers/ocp_trainer.py index 490a841e8..3a73e878f 100644 --- a/ocpmodels/trainers/ocp_trainer.py +++ b/ocpmodels/trainers/ocp_trainer.py @@ -19,7 +19,7 @@ from ocpmodels.common import distutils from ocpmodels.common.registry import registry from ocpmodels.common.relaxation.ml_relaxation import ml_relax -from ocpmodels.common.utils import change_mat, check_traj_files, irreps_sum +from ocpmodels.common.utils import cg_decomp_mat, check_traj_files, irreps_sum from ocpmodels.modules.evaluator import Evaluator from ocpmodels.modules.normalizer import Normalizer from ocpmodels.modules.scaling.util import ensure_fitted @@ -84,6 +84,7 @@ def __init__( cpu=False, slurm={}, noddp=False, + name="ocp", ): super().__init__( task=task, @@ -104,504 +105,9 @@ def __init__( cpu=cpu, slurm=slurm, noddp=noddp, + name=name, ) - def load_task(self): - self.targets = self.config["task"]["targets"] - self.num_targets = 1 - - self.train_targets = {} - for target in self.targets: - if "irreps" in self.targets[target]: - self.train_targets[target] = self.targets[target] - else: - for subtarget in self.targets[target]: - self.train_targets[subtarget] = self.targets[target][ - subtarget - ] - self.train_targets[subtarget]["parent"] = target - - # Normalizer for the dataset. - self.normalizers = {} - for target in self.train_targets: - self.normalizers[target] = Normalizer( - mean=self.train_targets.get("mean", 0), - std=self.train_targets.get("std", 1), - device=self.device, - ) - - self.eval_metrics = self.config["task"]["metrics"] - - # assert len(self.targets.keys() - self.eval_metrics.keys()) == 0 - - # Takes in a new data source and generates predictions on it. - @torch.no_grad() - def predict( - self, - data_loader, - per_image=True, - results_file=None, - disable_tqdm=False, - ): - ensure_fitted(self._unwrapped_model, warn=True) - - if distutils.is_master() and not disable_tqdm: - logging.info("Predicting on test.") - assert isinstance( - data_loader, - ( - torch.utils.data.dataloader.DataLoader, - torch_geometric.data.Batch, - ), - ) - rank = distutils.get_rank() - - if isinstance(data_loader, torch_geometric.data.Batch): - data_loader = [[data_loader]] - - self.model.eval() - if self.ema: - self.ema.store() - self.ema.copy_to() - - if self.normalizers is not None and "target" in self.normalizers: - self.normalizers["target"].to(self.device) - self.normalizers["grad_target"].to(self.device) - - predictions = {"id": [], "energy": [], "forces": [], "chunk_idx": []} - - for i, batch_list in tqdm( - enumerate(data_loader), - total=len(data_loader), - position=rank, - desc="device {}".format(rank), - disable=disable_tqdm, - ): - with torch.cuda.amp.autocast(enabled=self.scaler is not None): - out = self._forward(batch_list) - - if self.normalizers is not None and "target" in self.normalizers: - out["energy"] = self.normalizers["target"].denorm( - out["energy"] - ) - out["forces"] = self.normalizers["grad_target"].denorm( - out["forces"] - ) - if per_image: - systemids = [ - str(i) + "_" + str(j) - for i, j in zip( - batch_list[0].sid.tolist(), batch_list[0].fid.tolist() - ) - ] - predictions["id"].extend(systemids) - batch_natoms = torch.cat( - [batch.natoms for batch in batch_list] - ) - batch_fixed = torch.cat([batch.fixed for batch in batch_list]) - # total energy target requires predictions to be saved in float32 - # default is float16 - if ( - self.config["task"].get("prediction_dtype", "float16") - == "float32" - or self.config["task"]["dataset"] == "oc22_lmdb" - ): - predictions["energy"].extend( - out["energy"].cpu().detach().to(torch.float32).numpy() - ) - forces = out["forces"].cpu().detach().to(torch.float32) - else: - predictions["energy"].extend( - out["energy"].cpu().detach().to(torch.float16).numpy() - ) - forces = out["forces"].cpu().detach().to(torch.float16) - per_image_forces = torch.split(forces, batch_natoms.tolist()) - per_image_forces = [ - force.numpy() for force in per_image_forces - ] - # evalAI only requires forces on free atoms - if results_file is not None: - _per_image_fixed = torch.split( - batch_fixed, batch_natoms.tolist() - ) - _per_image_free_forces = [ - force[(fixed == 0).tolist()] - for force, fixed in zip( - per_image_forces, _per_image_fixed - ) - ] - _chunk_idx = np.array( - [ - free_force.shape[0] - for free_force in _per_image_free_forces - ] - ) - per_image_forces = _per_image_free_forces - predictions["chunk_idx"].extend(_chunk_idx) - predictions["forces"].extend(per_image_forces) - else: - predictions["energy"] = out["energy"].detach() - predictions["forces"] = out["forces"].detach() - if self.ema: - self.ema.restore() - return predictions - - predictions["forces"] = np.array(predictions["forces"]) - predictions["chunk_idx"] = np.array(predictions["chunk_idx"]) - predictions["energy"] = np.array(predictions["energy"]) - predictions["id"] = np.array(predictions["id"]) - self.save_results( - predictions, results_file, keys=["energy", "forces", "chunk_idx"] - ) - - if self.ema: - self.ema.restore() - - return predictions - - def update_best( - self, - primary_metric, - val_metrics, - disable_eval_tqdm=True, - ): - if ( - "mae" in primary_metric - and val_metrics[primary_metric]["metric"] < self.best_val_metric - ) or ( - "mae" not in primary_metric - and val_metrics[primary_metric]["metric"] > self.best_val_metric - ): - self.best_val_metric = val_metrics[primary_metric]["metric"] - self.save( - metrics=val_metrics, - checkpoint_file="best_checkpoint.pt", - training_state=False, - ) - if self.test_loader is not None: - self.predict( - self.test_loader, - results_file="predictions", - disable_tqdm=disable_eval_tqdm, - ) - - def train(self, disable_eval_tqdm=False): - ensure_fitted(self._unwrapped_model, warn=True) - - eval_every = self.config["optim"].get( - "eval_every", len(self.train_loader) - ) - checkpoint_every = self.config["optim"].get( - "checkpoint_every", eval_every - ) - primary_metric = self.config["task"]["primary_metric"] - # TODO: support for old naming conventions - is2re, s2ef, etc. - # primary_metric = self.config["task"].get( - # "primary_metric", self.evaluator.task_primary_metric[self.name] - # ) - if ( - not hasattr(self, "primary_metric") - or self.primary_metric != primary_metric - ): - self.best_val_metric = 1e9 if "mae" in primary_metric else -1.0 - else: - primary_metric = self.primary_metric - self.metrics = {} - - # Calculate start_epoch from step instead of loading the epoch number - # to prevent inconsistencies due to different batch size in checkpoint. - start_epoch = self.step // len(self.train_loader) - - for epoch_int in range( - start_epoch, self.config["optim"]["max_epochs"] - ): - self.train_sampler.set_epoch(epoch_int) - skip_steps = self.step % len(self.train_loader) - train_loader_iter = iter(self.train_loader) - - for i in range(skip_steps, len(self.train_loader)): - self.epoch = epoch_int + (i + 1) / len(self.train_loader) - self.step = epoch_int * len(self.train_loader) + i + 1 - self.model.train() - - # Get a batch. - batch = next(train_loader_iter) - - # Forward, loss, backward. - with torch.cuda.amp.autocast(enabled=self.scaler is not None): - out = self._forward(batch) - loss = self._compute_loss(out, batch) - loss = self.scaler.scale(loss) if self.scaler else loss - self._backward(loss) - scale = self.scaler.get_scale() if self.scaler else 1.0 - - # Compute metrics. - self.metrics = self._compute_metrics( - out, - batch, - self.evaluator, - self.metrics, - ) - self.metrics = self.evaluator.update( - "loss", loss.item() / scale, self.metrics - ) - - # Log metrics. - log_dict = {k: self.metrics[k]["metric"] for k in self.metrics} - log_dict.update( - { - "lr": self.scheduler.get_lr(), - "epoch": self.epoch, - "step": self.step, - } - ) - if ( - self.step % self.config["cmd"]["print_every"] == 0 - and distutils.is_master() - and not self.is_hpo - ): - log_str = [ - "{}: {:.2e}".format(k, v) for k, v in log_dict.items() - ] - logging.info(", ".join(log_str)) - self.metrics = {} - - if self.logger is not None: - self.logger.log( - log_dict, - step=self.step, - split="train", - ) - - if ( - checkpoint_every != -1 - and self.step % checkpoint_every == 0 - ): - self.save( - checkpoint_file="checkpoint.pt", training_state=True - ) - - # Evaluate on val set every `eval_every` iterations. - if self.step % eval_every == 0: - if self.val_loader is not None: - val_metrics = self.validate( - split="val", - disable_tqdm=disable_eval_tqdm, - ) - self.update_best( - primary_metric, - val_metrics, - disable_eval_tqdm=disable_eval_tqdm, - ) - if self.is_hpo: - self.hpo_update( - self.epoch, - self.step, - self.metrics, - val_metrics, - ) - - if self.config["task"].get("eval_relaxations", False): - if "relax_dataset" not in self.config["task"]: - logging.warning( - "Cannot evaluate relaxations, relax_dataset not specified" - ) - else: - self.run_relaxations() - - if self.scheduler.scheduler_type == "ReduceLROnPlateau": - if self.step % eval_every == 0: - self.scheduler.step( - metrics=val_metrics[primary_metric]["metric"], - ) - else: - self.scheduler.step() - - torch.cuda.empty_cache() - - if checkpoint_every == -1: - self.save(checkpoint_file="checkpoint.pt", training_state=True) - - self.train_dataset.close_db() - if self.config.get("val_dataset", False): - self.val_dataset.close_db() - if self.config.get("test_dataset", False): - self.test_dataset.close_db() - - def _forward(self, batch_list): - # forward pass. - return self.model(batch_list) - - def _compute_loss(self, out, batch_list): - natoms = torch.cat( - [batch.natoms.to(self.device) for batch in batch_list], dim=0 - ) - natoms = torch.repeat_interleave(natoms, natoms) - batch_size = natoms.numel() - - loss = [] - if self.config["task"].get("train_on_free_atoms", True): - fixed = torch.cat( - [batch.fixed.to(self.device) for batch in batch_list] - ) - mask = fixed == 0 - - for target_name in self.train_targets: - if "parent" not in self.train_targets[target_name]: - target = torch.cat( - [ - batch[target_name].to(self.device) - for batch in batch_list - ], - dim=0, - ) - # property is a decomposition of a higher order tensor - else: - irreps = self.train_targets[target_name]["irreps"] - if irreps > 2: - raise NotImplementedError - - target = [ - torch.einsum( - "ab, cb->ca", - change_mat.to(self.device), - batch[self.train_targets[target_name]["parent"]], - ) - for batch in batch_list - ] - - target = torch.cat( - [ - batch[ - :, - max(0, irreps_sum(irreps - 1)) : irreps_sum( - irreps - ), - ] - for batch in target - ], - dim=0, - ) - - pred = out[target_name] - - if ( - self.config["task"].get("train_on_free_atoms", True) - and self.train_targets[target_name].get("level", "system") - == "atom" - ): - target = target[mask] - pred = pred[mask] - natoms = natoms[mask] - - if self.normalizers.get(target_name, False): - target = self.normalizers[target_name].norm(target) - - mult = self.train_targets[target_name].get("coefficient", 1) - - loss.append( - mult - * self.loss_fn[target_name]( - pred, - target, - natoms=natoms, - batch_size=batch_size, - ) - ) - - # Sanity check to make sure the compute graph is correct. - for lc in loss: - assert hasattr(lc, "grad_fn") - - loss = sum(loss) - return loss - - def _compute_metrics(self, out, batch_list, evaluator, metrics={}): - natoms = torch.cat( - [batch.natoms.to(self.device) for batch in batch_list], dim=0 - ) - - if self.config["task"].get("eval_on_free_atoms", True): - fixed = torch.cat( - [batch.fixed.to(self.device) for batch in batch_list] - ) - mask = fixed == 0 - - s_idx = 0 - natoms_free = [] - for _natoms in natoms: - natoms_free.append( - torch.sum(mask[s_idx : s_idx + _natoms]).item() - ) - s_idx += _natoms - natoms = torch.LongTensor(natoms_free).to(self.device) - - targets = {} - for target_name in self.train_targets: - if "parent" not in self.train_targets[target_name]: - target = torch.cat( - [ - batch[target_name].to(self.device) - for batch in batch_list - ], - dim=0, - ) - else: - irreps = self.train_targets[target_name]["irreps"] - parent_target_name = self.train_targets[target_name]["parent"] - - if parent_target_name not in targets: - parent_target = torch.cat( - [ - batch[parent_target_name].to(self.device) - for batch in batch_list - ], - dim=0, - ) - targets[parent_target_name] = parent_target - - target = [ - torch.einsum( - "ab, cb->ca", - change_mat.to(self.device), - batch[parent_target_name], - ) - for batch in batch_list - ] - - target = torch.cat( - [ - batch[ - :, - max(0, irreps_sum(irreps - 1)) : irreps_sum( - irreps - ), - ] - for batch in target - ], - dim=0, - ) - - if ( - self.config["task"].get("eval_on_free_atoms", True) - and self.train_targets[target_name].get("level", "system") - == "atom" - ): - target = target[mask] - out[target_name] = out[target_name][mask] - - targets[target_name] = target - if self.normalizers.get(target_name, False): - out[target_name] = self.normalizers[target_name].denorm( - out[target_name] - ) - - targets["natoms"] = natoms - out["natoms"] = natoms - - metrics = evaluator.eval(out, targets, prev_metrics=metrics) - return metrics - def run_relaxations(self, split="val"): ensure_fitted(self._unwrapped_model) From ba97e97d2421e8abe29c058aa0dc9671b3e5d133 Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Wed, 12 Jul 2023 16:04:34 -0700 Subject: [PATCH 06/63] cleanup, remove hpo --- ocpmodels/trainers/base_trainer.py | 97 ++++-------------------------- 1 file changed, 13 insertions(+), 84 deletions(-) diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index e98dd1d4b..47aab32ca 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -36,6 +36,7 @@ from ocpmodels.common.utils import ( cg_decomp_mat, check_traj_files, + get_commit_hash, irreps_sum, load_state_dict, save_checkpoint, @@ -64,7 +65,6 @@ def __init__( timestamp_id: Optional[str] = None, run_dir=None, is_debug: bool = False, - is_hpo: bool = False, print_every: int = 100, seed=None, logger: str = "tensorboard", @@ -95,38 +95,22 @@ def __init__( ) # create directories from master rank only distutils.broadcast(timestamp, 0) - timestamp = datetime.datetime.fromtimestamp( - timestamp.float().item() + _timestamp_id = datetime.datetime.fromtimestamp( + timestamp.int() ).strftime("%Y-%m-%d-%H-%M-%S") if identifier: - self.timestamp_id = f"{timestamp}-{identifier}" + timestamp_id = f"{_timestamp_id}-{identifier}" else: - self.timestamp_id = timestamp - else: - self.timestamp_id = timestamp_id + timestamp_id = _timestamp_id - try: - commit_hash = ( - subprocess.check_output( - [ - "git", - "-C", - assert_is_instance(ocpmodels.__path__[0], str), - "describe", - "--always", - ] - ) - .strip() - .decode("ascii") - ) - # catch instances where code is not being run from a git repo - except Exception: - commit_hash = None + self.timestamp_id = timestamp_id + + commit_hash = get_commit_hash() logger_name = logger if isinstance(logger, str) else logger["name"] self.config = { "task": task, - "trainer": "ocp", + "trainer": name, "model": assert_is_instance(model.pop("name"), str), "model_attributes": model, "optim": optimizer, @@ -155,6 +139,7 @@ def __init__( # AMP Scaler self.scaler = torch.cuda.amp.GradScaler() if amp else None + # Fill in SLURM information in config, if applicable if "SLURM_JOB_ID" in os.environ and "folder" in self.config["slurm"]: if "SLURM_ARRAY_JOB_ID" in os.environ: self.config["slurm"]["job_id"] = "%s_%s" % ( @@ -166,6 +151,7 @@ def __init__( self.config["slurm"]["folder"] = self.config["slurm"][ "folder" ].replace("%j", self.config["slurm"]["job_id"]) + if isinstance(dataset, list): if len(dataset) > 0: self.config["dataset"] = dataset[0] @@ -180,22 +166,12 @@ def __init__( else: self.config["dataset"] = dataset - if not is_debug and distutils.is_master() and not is_hpo: + if not is_debug and distutils.is_master(): os.makedirs(self.config["cmd"]["checkpoint_dir"], exist_ok=True) os.makedirs(self.config["cmd"]["results_dir"], exist_ok=True) os.makedirs(self.config["cmd"]["logs_dir"], exist_ok=True) self.is_debug = is_debug - self.is_hpo = is_hpo - - if self.is_hpo: - # conditional import is necessary for checkpointing - - # sets the hpo checkpoint frequency - # default is no checkpointing - self.hpo_checkpoint_every = self.config["optim"].get( - "checkpoint_every", -1 - ) if distutils.is_master(): print(yaml.dump(self.config, default_flow_style=False)) @@ -232,7 +208,7 @@ def load_seed_from_config(self) -> None: def load_logger(self) -> None: self.logger = None - if not self.is_debug and distutils.is_master() and not self.is_hpo: + if not self.is_debug and distutils.is_master(): assert ( self.config["logger"] is not None ), "Specify logger in config" @@ -633,43 +609,6 @@ def save( return ckpt_path return None - def save_hpo(self, epoch, step: int, metrics, checkpoint_every: int): - # default is no checkpointing - # checkpointing frequency can be adjusted by setting checkpoint_every in steps - # to checkpoint every time results are communicated to Ray Tune set checkpoint_every=1 - if checkpoint_every != -1 and step % checkpoint_every == 0: - with tune.checkpoint_dir( # noqa: F821 - step=step - ) as checkpoint_dir: - path = os.path.join(checkpoint_dir, "checkpoint") - torch.save(self.save_state(epoch, step, metrics), path) - - def hpo_update( - self, epoch, step, train_metrics, val_metrics, test_metrics=None - ): - progress = { - "steps": step, - "epochs": epoch, - "act_lr": self.optimizer.param_groups[0]["lr"], - } - # checkpointing must occur before reporter - # default is no checkpointing - self.save_hpo( - epoch, - step, - val_metrics, - self.hpo_checkpoint_every, - ) - # report metrics to tune - tune_reporter( # noqa: F821 - iters=progress, - train_metrics={ - k: train_metrics[k]["metric"] for k in self.metrics - }, - val_metrics={k: val_metrics[k]["metric"] for k in val_metrics}, - test_metrics=test_metrics, - ) - def update_best( self, primary_metric, @@ -769,7 +708,6 @@ def train(self, disable_eval_tqdm=False): if ( self.step % self.config["cmd"]["print_every"] == 0 and distutils.is_master() - and not self.is_hpo ): log_str = [ "{}: {:.2e}".format(k, v) for k, v in log_dict.items() @@ -804,13 +742,6 @@ def train(self, disable_eval_tqdm=False): val_metrics, disable_eval_tqdm=disable_eval_tqdm, ) - if self.is_hpo: - self.hpo_update( - self.epoch, - self.step, - self.metrics, - val_metrics, - ) if self.config["task"].get("eval_relaxations", False): if "relax_dataset" not in self.config["task"]: @@ -1018,8 +949,6 @@ def validate(self, split: str = "val", disable_tqdm: bool = False): if distutils.is_master(): logging.info(f"Evaluating on {split}.") - if self.is_hpo: - disable_tqdm = True self.model.eval() if self.ema: From 8af0f9046a78f6c33a9c408ee1936481c26144fc Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Wed, 12 Jul 2023 17:20:30 -0700 Subject: [PATCH 07/63] loss bugfix, cleanup hpo --- ocpmodels/common/utils.py | 19 +++++++++++++++++++ ocpmodels/modules/loss.py | 4 +++- ocpmodels/trainers/base_trainer.py | 7 ++++--- ocpmodels/trainers/ocp_trainer.py | 4 ---- 4 files changed, 26 insertions(+), 8 deletions(-) diff --git a/ocpmodels/common/utils.py b/ocpmodels/common/utils.py index d11262ee8..5569f62ba 100644 --- a/ocpmodels/common/utils.py +++ b/ocpmodels/common/utils.py @@ -13,6 +13,7 @@ import json import logging import os +import subprocess import sys import time from argparse import Namespace @@ -35,6 +36,8 @@ from torch_geometric.utils import remove_self_loops from torch_scatter import scatter, segment_coo, segment_csr +import ocpmodels + if TYPE_CHECKING: from torch.nn.modules.module import _IncompatibleKeys @@ -1170,3 +1173,19 @@ def irreps_sum(l): total += 2 * i + 1 return total + + +def get_commit_hash(): + try: + commit_hash = ( + subprocess.check_output( + ["git", "-C", ocpmodels.__path__[0], "describe", "--always"] + ) + .strip() + .decode("ascii") + ) + # catch instances where code is not being run from a git repo + except Exception: + commit_hash = None + + return commit_hash diff --git a/ocpmodels/modules/loss.py b/ocpmodels/modules/loss.py index b7b8a50c4..fae9f6f24 100644 --- a/ocpmodels/modules/loss.py +++ b/ocpmodels/modules/loss.py @@ -74,7 +74,9 @@ def forward( if self.reduction == "mean": num_samples = ( - batch_size if batch_size is not None else input.shape[0] + batch_size + if self.loss_name.startswith("atomwise") + else input.shape[0] ) num_samples = distutils.all_reduce( num_samples, device=input.device diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index 47aab32ca..3aad66e89 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -354,9 +354,10 @@ def load_task(self): # Default - no normalization self.normalizers = {} for target in self.train_targets: + normalizer = self.train_targets[target].get("normalizer", {}) self.normalizers[target] = Normalizer( - mean=self.train_targets.get("mean", 0), - std=self.train_targets.get("std", 1), + mean=normalizer.get("mean", 0), + std=normalizer.get("stdev", 1), device=self.device, ) @@ -777,8 +778,8 @@ def _compute_loss(self, out, batch_list): natoms = torch.cat( [batch.natoms.to(self.device) for batch in batch_list], dim=0 ) - natoms = torch.repeat_interleave(natoms, natoms) batch_size = natoms.numel() + natoms = torch.repeat_interleave(natoms, natoms) loss = [] if self.config["task"].get("train_on_free_atoms", True): diff --git a/ocpmodels/trainers/ocp_trainer.py b/ocpmodels/trainers/ocp_trainer.py index 3a73e878f..998b0a786 100644 --- a/ocpmodels/trainers/ocp_trainer.py +++ b/ocpmodels/trainers/ocp_trainer.py @@ -48,8 +48,6 @@ class OCPTrainer(BaseTrainer): (default: :obj:`None`) is_debug (bool, optional): Run in debug mode. (default: :obj:`False`) - is_hpo (bool, optional): Run hyperparameter optimization with Ray Tune. - (default: :obj:`False`) print_every (int, optional): Frequency of printing logs. (default: :obj:`100`) seed (int, optional): Random number seed. @@ -75,7 +73,6 @@ def __init__( timestamp_id=None, run_dir=None, is_debug=False, - is_hpo=False, print_every=100, seed=None, logger="tensorboard", @@ -96,7 +93,6 @@ def __init__( timestamp_id=timestamp_id, run_dir=run_dir, is_debug=is_debug, - is_hpo=is_hpo, print_every=print_every, seed=seed, logger=logger, From d4526759723b5ac07889857a10e9fc9f8dc0aeda Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Thu, 13 Jul 2023 12:58:31 -0700 Subject: [PATCH 08/63] backwards compatability for old configs --- ocpmodels/common/utils.py | 43 ++++++++++++++++++++++ ocpmodels/modules/evaluator.py | 59 ++++++++---------------------- ocpmodels/trainers/base_trainer.py | 32 ++++++++-------- ocpmodels/trainers/ocp_trainer.py | 4 +- 4 files changed, 78 insertions(+), 60 deletions(-) diff --git a/ocpmodels/common/utils.py b/ocpmodels/common/utils.py index 5569f62ba..d6bddb86b 100644 --- a/ocpmodels/common/utils.py +++ b/ocpmodels/common/utils.py @@ -1189,3 +1189,46 @@ def get_commit_hash(): commit_hash = None return commit_hash + + +def load_old_targets(name, config): + normalizer = config.get("dataset", {}) + + if name == "is2re": + targets = { + "energy": { + "irreps": 0, + "loss": config["optim"].get("loss_energy", "mae"), + "level": "system", + "coefficient": config["optim"].get("energy_coefficient", 1), + "normalizer": { + "mean": normalizer.get("target_mean", 0), + "stdev": normalizer.get("target_std", 1), + }, + } + } + elif name == "s2ef": + targets = { + "energy": { + "irreps": 0, + "loss": config["optim"].get("loss_energy", "mae"), + "level": "system", + "coefficient": config["optim"].get("energy_coefficient", 1), + "normalizer": { + "mean": normalizer.get("target_mean", 0), + "stdev": normalizer.get("target_std", 1), + }, + }, + "forces": { + "irreps": 1, + "loss": config["optim"].get("loss_force", "mae"), + "level": "atom", + "coefficient": config["optim"].get("force_coefficient", 1), + "normalizer": { + "mean": normalizer.get("grad_target_mean", 0), + "stdev": normalizer.get("grad_target_std", 1), + }, + }, + } + + return targets diff --git a/ocpmodels/modules/evaluator.py b/ocpmodels/modules/evaluator.py index bdfeb0866..c78127d6c 100644 --- a/ocpmodels/modules/evaluator.py +++ b/ocpmodels/modules/evaluator.py @@ -34,16 +34,16 @@ class Evaluator: task_metrics = { "s2ef": { - "energy": {"metrics": ["energy_mae"]}, + "energy": {"metrics": ["mae"]}, "forces": { "metrics": [ "forcesx_mae", "forcesy_mae", "forcesz_mae", - "forces_mae", - "forces_cos", - "forces_magnitude", - "energy_force_within_threshold", + "mae", + "cosine_similarity", + "magnitude_error", + "energy_forces_within_threshold", ] }, }, @@ -51,15 +51,15 @@ class Evaluator: "positions": { "metrics": [ "average_distance_within_threshold", - "positions_mae", - "positions_mse", + "mae", + "mse", ] } }, "is2re": { "metrics": [ - "energy_mae", - "energy_mse", + "mae", + "mse", "energy_within_threshold", ] }, @@ -77,15 +77,13 @@ def __init__(self, task: str = None, eval_metrics: str = None) -> None: def eval(self, prediction, target, prev_metrics={}): - # TODO: arbitrary type check - # for metric in self.metric_fns: - # assert attr in prediction - # assert attr in target - # assert prediction[attr].shape == target[attr].shape - metrics = prev_metrics for target_property in self.target_metrics: + assert ( + prediction[target_property].shape + == target[target_property].shape + ) for fn in self.target_metrics[target_property]["metrics"]: metric_name = ( f"{target_property}_{fn}" @@ -149,33 +147,8 @@ def forcesz_mse(prediction, target, key=None): return mse(prediction["forces"][:, 2], target["forces"][:, 2]) -<<<<<<< HEAD -def forces_mae(prediction, target): - return mae(prediction["forces"], target["forces"]) - - -def forces_mse(prediction, target): - return mse(prediction["forces"], target["forces"]) - - -def forces_cos(prediction, target): - return cosine_similarity(prediction["forces"], target["forces"]) - - -def forces_magnitude(prediction, target): - return magnitude_error(prediction["forces"], target["forces"], p=2) - - -def positions_mae(prediction, target): - return mae(prediction["positions"], target["positions"]) - - -def positions_mse(prediction, target): - return mse(prediction["positions"], target["positions"]) - - -def energy_force_within_threshold( - prediction, target, key=None +def energy_forces_within_threshold( + prediction: dict, target: dict, key=None ) -> Dict[str, Union[float, int]]: # Note that this natoms should be the count of free atoms we evaluate over. assert target["natoms"].sum() == prediction["forces"].size(0) @@ -335,7 +308,7 @@ def mse( def magnitude_error( prediction: dict, target: dict, key=slice(None), p: int = 2 ) -> Dict[str, Union[float, int]]: - assert prediction.shape[1] > 1 + assert prediction[key].shape[1] > 1 error = torch.abs( torch.norm(prediction[key], p=p, dim=-1) - torch.norm(target[key], p=p, dim=-1) diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index 3aad66e89..cb7ba19bc 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -38,6 +38,7 @@ check_traj_files, get_commit_hash, irreps_sum, + load_old_targets, load_state_dict, save_checkpoint, ) @@ -61,7 +62,6 @@ def __init__( dataset, optimizer, identifier, - normalizer=None, timestamp_id: Optional[str] = None, run_dir=None, is_debug: bool = False, @@ -180,7 +180,9 @@ def __init__( # TODO: asserts for targets+evaluation config definitions self.evaluator = Evaluator( task=name, - eval_metrics=self.config["task"].get("evaluation_metrics", None), + eval_metrics=self.config["task"].get( + "evaluation_metrics", Evaluator.task_metrics[name] + ), ) def load(self) -> None: @@ -333,8 +335,9 @@ def load_datasets(self) -> None: ) def load_task(self): - self.targets = self.config["task"]["targets"] - self.num_targets = 1 + self.targets = self.config["task"].get( + "targets", load_old_targets(self.name, self.config) + ) self.train_targets = {} for target in self.targets: @@ -384,7 +387,7 @@ def load_model(self) -> None: and loader.dataset[0].x is not None else None, bond_feat_dim, - self.num_targets, + 1, **self.config["model_attributes"], ).to(self.device) @@ -577,10 +580,9 @@ def save( if self.scaler else None, "best_val_metric": self.best_val_metric, - "primary_metric": self.config["task"].get( - "primary_metric", - self.evaluator.task_primary_metric[self.name], - ), + "primary_metric": self.config["task"][ + "primary_metric" + ], }, checkpoint_dir=self.config["cmd"]["checkpoint_dir"], checkpoint_file=checkpoint_file, @@ -645,11 +647,9 @@ def train(self, disable_eval_tqdm=False): checkpoint_every = self.config["optim"].get( "checkpoint_every", eval_every ) - primary_metric = self.config["task"]["primary_metric"] - # TODO: support for old naming conventions - is2re, s2ef, etc. - # primary_metric = self.config["task"].get( - # "primary_metric", self.evaluator.task_primary_metric[self.name] - # ) + primary_metric = self.config["task"].get( + "primary_metric", self.evaluator.task_primary_metric[self.name] + ) if ( not hasattr(self, "primary_metric") or self.primary_metric != primary_metric @@ -959,7 +959,9 @@ def validate(self, split: str = "val", disable_tqdm: bool = False): metrics = {} evaluator = Evaluator( task=self.name, - eval_metrics=self.config["task"].get("evaluation_metrics", None), + eval_metrics=self.config["task"].get( + "evaluation_metrics", Evaluator.task_metrics[self.name] + ), ) rank = distutils.get_rank() diff --git a/ocpmodels/trainers/ocp_trainer.py b/ocpmodels/trainers/ocp_trainer.py index 998b0a786..b90cdb7b5 100644 --- a/ocpmodels/trainers/ocp_trainer.py +++ b/ocpmodels/trainers/ocp_trainer.py @@ -27,6 +27,8 @@ @registry.register_trainer("ocp") +@registry.register_trainer("energy") +@registry.register_trainer("forces") class OCPTrainer(BaseTrainer): """ Trainer class for the Structure to Energy & Force (S2EF) and Initial State to @@ -69,7 +71,6 @@ def __init__( dataset, optimizer, identifier, - normalizer=None, timestamp_id=None, run_dir=None, is_debug=False, @@ -89,7 +90,6 @@ def __init__( dataset=dataset, optimizer=optimizer, identifier=identifier, - normalizer=normalizer, timestamp_id=timestamp_id, run_dir=run_dir, is_debug=is_debug, From adba02cfbc54784e3821d58ec13e26806d5ca6bc Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Fri, 14 Jul 2023 16:20:29 -0700 Subject: [PATCH 09/63] backwards breaking fix --- ocpmodels/common/utils.py | 2 ++ ocpmodels/modules/evaluator.py | 2 ++ 2 files changed, 4 insertions(+) diff --git a/ocpmodels/common/utils.py b/ocpmodels/common/utils.py index d6bddb86b..7d1703484 100644 --- a/ocpmodels/common/utils.py +++ b/ocpmodels/common/utils.py @@ -1230,5 +1230,7 @@ def load_old_targets(name, config): }, }, } + else: + targets = {} return targets diff --git a/ocpmodels/modules/evaluator.py b/ocpmodels/modules/evaluator.py index c78127d6c..1f013fe73 100644 --- a/ocpmodels/modules/evaluator.py +++ b/ocpmodels/modules/evaluator.py @@ -63,12 +63,14 @@ class Evaluator: "energy_within_threshold", ] }, + "ocp": {}, } task_primary_metric = { "s2ef": "energy_force_within_threshold", "is2rs": "average_distance_within_threshold", "is2re": "energy_mae", + "ocp": None, } def __init__(self, task: str = None, eval_metrics: str = None) -> None: From 8bac18404461aa247e2040cb0e73431373af3d78 Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Fri, 14 Jul 2023 16:50:30 -0700 Subject: [PATCH 10/63] eval fix --- ocpmodels/modules/evaluator.py | 1 - 1 file changed, 1 deletion(-) diff --git a/ocpmodels/modules/evaluator.py b/ocpmodels/modules/evaluator.py index 1f013fe73..0d98a9465 100644 --- a/ocpmodels/modules/evaluator.py +++ b/ocpmodels/modules/evaluator.py @@ -63,7 +63,6 @@ class Evaluator: "energy_within_threshold", ] }, - "ocp": {}, } task_primary_metric = { From 4961bb1f48ed6ae9be8e3e0916dfa1a80321e563 Mon Sep 17 00:00:00 2001 From: Janice Lan Date: Mon, 17 Jul 2023 14:28:13 -0700 Subject: [PATCH 11/63] remove old imports --- ocpmodels/tasks/task.py | 1 - ocpmodels/trainers/__init__.py | 6 ++---- 2 files changed, 2 insertions(+), 5 deletions(-) diff --git a/ocpmodels/tasks/task.py b/ocpmodels/tasks/task.py index 522251ffb..b3c9cdafd 100644 --- a/ocpmodels/tasks/task.py +++ b/ocpmodels/tasks/task.py @@ -9,7 +9,6 @@ import os from ocpmodels.common.registry import registry -from ocpmodels.trainers.forces_trainer import ForcesTrainer class BaseTask: diff --git a/ocpmodels/trainers/__init__.py b/ocpmodels/trainers/__init__.py index a93fc680b..20b44d540 100644 --- a/ocpmodels/trainers/__init__.py +++ b/ocpmodels/trainers/__init__.py @@ -5,10 +5,8 @@ __all__ = [ "BaseTrainer", - "ForcesTrainer", - "EnergyTrainer", + "OCPTrainer", ] from .base_trainer import BaseTrainer -from .energy_trainer import EnergyTrainer -from .forces_trainer import ForcesTrainer +from .ocp_trainer import OCPTrainer From 99eb4826e82466f9963f0200d3f4f4d4940b88c6 Mon Sep 17 00:00:00 2001 From: Janice Lan Date: Mon, 17 Jul 2023 17:14:54 -0700 Subject: [PATCH 12/63] default for get task metrics --- ocpmodels/trainers/base_trainer.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index cb7ba19bc..71b4fd893 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -181,7 +181,7 @@ def __init__( self.evaluator = Evaluator( task=name, eval_metrics=self.config["task"].get( - "evaluation_metrics", Evaluator.task_metrics[name] + "evaluation_metrics", Evaluator.task_metrics.get(name, {}) ), ) @@ -960,7 +960,7 @@ def validate(self, split: str = "val", disable_tqdm: bool = False): evaluator = Evaluator( task=self.name, eval_metrics=self.config["task"].get( - "evaluation_metrics", Evaluator.task_metrics[self.name] + "evaluation_metrics", Evaluator.task_metrics.get(self.name, {}) ), ) From a26954475d3abcfb7a0f2b96b2f48b2c86d43f9b Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Tue, 18 Jul 2023 11:49:52 -0700 Subject: [PATCH 13/63] rebase cleanup --- ocpmodels/common/utils.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ocpmodels/common/utils.py b/ocpmodels/common/utils.py index 7d1703484..9ca1b041f 100644 --- a/ocpmodels/common/utils.py +++ b/ocpmodels/common/utils.py @@ -1134,7 +1134,7 @@ def scatter_det(*args, **kwargs): return out -def cg_decomp_mat(l, device): +def cg_decomp_mat(l, device="cpu"): if l not in [2]: raise NotImplementedError From 448c567d7eb1d5023a24cc74edd2bb21e5c18283 Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Wed, 19 Jul 2023 11:55:03 -0700 Subject: [PATCH 14/63] config refactor support --- configs/goc_oc20_debug.yml | 131 +++ ..._single_debug.yml => goc_stress_debug.yml} | 121 +-- ocpmodels/common/utils.py | 35 +- ocpmodels/datasets/lmdb_dataset.py | 35 +- ocpmodels/modules/evaluator.py | 23 +- ocpmodels/modules/transforms.py | 42 + ocpmodels/trainers/base_trainer.py | 266 +++--- ocpmodels/trainers/energy_trainer.py | 340 ------- ocpmodels/trainers/forces_trainer.py | 827 ------------------ ocpmodels/trainers/ocp_trainer.py | 6 + 10 files changed, 420 insertions(+), 1406 deletions(-) create mode 100644 configs/goc_oc20_debug.yml rename configs/{goc_single_debug.yml => goc_stress_debug.yml} (61%) create mode 100644 ocpmodels/modules/transforms.py delete mode 100644 ocpmodels/trainers/energy_trainer.py delete mode 100644 ocpmodels/trainers/forces_trainer.py diff --git a/configs/goc_oc20_debug.yml b/configs/goc_oc20_debug.yml new file mode 100644 index 000000000..137bd2f50 --- /dev/null +++ b/configs/goc_oc20_debug.yml @@ -0,0 +1,131 @@ +trainer: ocp + +dataset: + train: + format: lmdb + src: /datasets01/open_catalyst/oc20/082422/struct_to_energy_forces/train/2M + key_mapping: + y: energy + force: forces + transforms: + normalizer: + energy: + mean: -0.7554450631141663 + stdev: 2.887317180633545 + forces: + mean: 0 + stdev: 2.887317180633545 + val: + src: /datasets01/open_catalyst/oc20/082422/struct_to_energy_forces/val/id_30k + test: + src: /datasets01/open_catalyst/oc20/082422/struct_to_energy_forces/val/id_30k + +logger: tensorboard + +loss_functions: + - energy: + fn: mae + coefficient: 1 + - forces: + fn: l2mae + coefficient: 100 + +evaluation_metrics: + metrics: + energy: + - mae + - mse + - energy_within_threshold + forces: + - mae + - cosine_similarity + misc: + - energy_forces_within_threshold + primary_metric: forces_mae + +outputs: + energy: + shape: 1 + level: system + forces: + shape: 3 + level: atom + +task: + train_on_free_atoms: True + eval_on_free_atoms: True + +model: + name: gemnet_oc + num_spherical: 7 + num_radial: 128 + num_blocks: 4 + emb_size_atom: 256 + emb_size_edge: 512 + emb_size_trip_in: 64 + emb_size_trip_out: 64 + emb_size_quad_in: 32 + emb_size_quad_out: 32 + emb_size_aint_in: 64 + emb_size_aint_out: 64 + emb_size_rbf: 16 + emb_size_cbf: 16 + emb_size_sbf: 32 + num_before_skip: 2 + num_after_skip: 2 + num_concat: 1 + num_atom: 3 + num_output_afteratom: 3 + cutoff: 12.0 + cutoff_qint: 12.0 + cutoff_aeaint: 12.0 + cutoff_aint: 12.0 + max_neighbors: 30 + max_neighbors_qint: 8 + max_neighbors_aeaint: 20 + max_neighbors_aint: 1000 + rbf: + name: gaussian + envelope: + name: polynomial + exponent: 5 + cbf: + name: spherical_harmonics + sbf: + name: legendre_outer + extensive: True + output_init: HeOrthogonal + activation: silu + scale_file: configs/s2ef/all/gemnet/scaling_factors/gemnet-oc.pt + + regress_forces: True + direct_forces: True + forces_coupled: False + + quad_interaction: True + atom_edge_interaction: True + edge_atom_interaction: True + atom_interaction: True + + num_atom_emb_layers: 2 + num_global_out_layers: 2 + qint_tags: [1, 2] + otf_graph: True + +optim: + batch_size: 4 + eval_batch_size: 4 + load_balancing: atoms + eval_every: 5000 + num_workers: 2 + lr_initial: 5.e-4 + optimizer: AdamW + optimizer_params: {"amsgrad": True} + scheduler: ReduceLROnPlateau + mode: min + factor: 0.8 + patience: 3 + max_epochs: 80 + ema_decay: 0.999 + clip_grad_norm: 10 + weight_decay: 0 diff --git a/configs/goc_single_debug.yml b/configs/goc_stress_debug.yml similarity index 61% rename from configs/goc_single_debug.yml rename to configs/goc_stress_debug.yml index cf12a638c..0534d5103 100644 --- a/configs/goc_single_debug.yml +++ b/configs/goc_stress_debug.yml @@ -2,71 +2,89 @@ trainer: ocp dataset: train: + format: lmdb src: /checkpoint/saro00/mpf_datasets/s2efs/0/train.lmdb - #src: /datasets01/open_catalyst/oc20/082422/struct_to_energy_forces/val/id_30k + key_mapping: + y: energy + force: forces + stress: stress + transforms: + decompose_tensor: + tensor: stress + rank: 2 + decomposition: + isotropic_stress: + irrep_dim: 0 + anisotropic_stress: + irrep_dim: 2 + normalizer: + energy: + mean: -5.9749126 + stdev: 1.866159 + forces: + mean: 0 + stdev: 1.866159 + isotropic_stress: + mean: 43.27065 + stdev: 674.1657344451734 + anisotropic_stress: + stdev: 143.72764771869745 val: - #src: /datasets01/open_catalyst/oc20/082422/struct_to_energy_forces/val/id_30k src: /checkpoint/saro00/mpf_datasets/s2efs/0/val.lmdb test: - #src: /datasets01/open_catalyst/oc20/082422/struct_to_energy_forces/val/id_30k src: /checkpoint/saro00/mpf_datasets/s2efs/0/val.lmdb logger: tensorboard -task: - dataset: lmdb - - train_on_free_atoms: True - eval_on_free_atoms: True +loss_functions: + - energy: + fn: mae + coefficient: 1 + - forces: + fn: l2mae + coefficient: 100 + - isotropic_stress: + fn: mae + - anisotropic_stress: + fn: mae - evaluation_metrics: +evaluation_metrics: + metrics: energy: - metrics: - - mae - - mse - - energy_within_threshold + - mae + - mse + - energy_within_threshold forces: - metrics: - - mae - - cosine_similarity + - mae + - cosine_similarity + isotropic_stress: + - mae + anisotropic_stress: + - mae stress: - metrics: - - stress_mae - + - stress_mae_from_decomposition + misc: + - energy_forces_within_threshold primary_metric: forces_mae - targets: - energy: - irreps: 0 - loss: mae - level: system - coefficient: 1 - normalizer: - mean: -5.9749126 - stdev: 1.866159 - forces: - irreps: 1 - loss: mae - level: atom - coefficient: 100 - normalizer: - stdev: 1.866159 - stress: - level: system - decomp: - isotropic_stress: - irreps: 0 - loss: mae - coefficient: 1 - normalizer: - mean: 43.27065 - stdev: 674.1657344451734 - anisotropic_stress: - irreps: 2 - loss: mae - coefficient: 1 - normalizer: - stdev: 143.72764771869745 +outputs: + energy: + shape: 1 + level: system + forces: + shape: 3 + level: atom + stress: + level: system + decomposition: + isotropic_stress: + irrep_dim: 0 + anisotropic_stress: + irrep_dim: 2 + +task: + train_on_free_atoms: True + eval_on_free_atoms: True model: name: gemnet_oc @@ -123,6 +141,7 @@ model: num_atom_emb_layers: 2 num_global_out_layers: 2 qint_tags: [1, 2] + otf_graph: True optim: batch_size: 4 diff --git a/ocpmodels/common/utils.py b/ocpmodels/common/utils.py index 9ca1b041f..82df7cfda 100644 --- a/ocpmodels/common/utils.py +++ b/ocpmodels/common/utils.py @@ -1011,8 +1011,11 @@ class _TrainingContext: trainer = trainer_cls( task=config["task"], model=config["model"], + outputs=config.get("outputs", None), dataset=config["dataset"], optimizer=config["optim"], + loss_fns=config.get("loss_functions", None), + eval_metrics=config.get("evaluation_metrics", None), identifier=config["identifier"], timestamp_id=config.get("timestamp_id", None), run_dir=config.get("run_dir", "./"), @@ -1134,6 +1137,22 @@ def scatter_det(*args, **kwargs): return out +def get_commit_hash(): + try: + commit_hash = ( + subprocess.check_output( + ["git", "-C", ocpmodels.__path__[0], "describe", "--always"] + ) + .strip() + .decode("ascii") + ) + # catch instances where code is not being run from a git repo + except Exception: + commit_hash = None + + return commit_hash + + def cg_decomp_mat(l, device="cpu"): if l not in [2]: raise NotImplementedError @@ -1175,22 +1194,6 @@ def irreps_sum(l): return total -def get_commit_hash(): - try: - commit_hash = ( - subprocess.check_output( - ["git", "-C", ocpmodels.__path__[0], "describe", "--always"] - ) - .strip() - .decode("ascii") - ) - # catch instances where code is not being run from a git repo - except Exception: - commit_hash = None - - return commit_hash - - def load_old_targets(name, config): normalizer = config.get("dataset", {}) diff --git a/ocpmodels/datasets/lmdb_dataset.py b/ocpmodels/datasets/lmdb_dataset.py index 72501eb63..03e7e88d7 100644 --- a/ocpmodels/datasets/lmdb_dataset.py +++ b/ocpmodels/datasets/lmdb_dataset.py @@ -25,6 +25,8 @@ from ocpmodels.common.typing import assert_is_instance from ocpmodels.common.utils import pyg2_data_transform from ocpmodels.datasets.target_metadata_guesser import guess_property_metadata +from ocpmodels.modules.normalizer import Normalizer +from ocpmodels.modules.transforms import DataTransforms T_co = TypeVar("T_co", covariant=True) @@ -116,7 +118,23 @@ def __init__(self, config, transform=None) -> None: self.available_indices = self.shards[self.config.get("shard", 0)] self.num_samples = len(self.available_indices) - self.transform = transform + self.key_mapping = self.config.get("key_mapping", None) + self.transforms = self.config.get("transforms", {}) + self._normalizers = self.transforms.get("normalizer", None) + + self.load() + + def load(self): + self.normalizers = {} + if self._normalizers: + for target in self._normalizers: + self.normalizers[target] = Normalizer( + mean=self._normalizers[target].get("mean", 0), + std=self._normalizers[target].get("stdev", 1), + ) + self.transforms.pop("normalizer") + + self.transform = DataTransforms(self.transforms) def __len__(self) -> int: return self.num_samples @@ -148,13 +166,16 @@ def __getitem__(self, idx: int): ) data_object = pyg2_data_transform(pickle.loads(datapoint_pickled)) - if self.transform is not None: - data_object = self.transform(data_object) + if self.key_mapping is not None: + for _property in self.key_mapping: + # catch for test data not containing labels + if _property in data_object: + new_property = self.key_mapping[_property] + if new_property not in data_object: + data_object[new_property] = data_object[_property] + del data_object[_property] - if "stress" in data_object: - data_object.stress = data_object.stress.reshape(1, -1) - data_object.energy = data_object.y - data_object.forces = data_object.force + self.transform(data_object) return data_object diff --git a/ocpmodels/modules/evaluator.py b/ocpmodels/modules/evaluator.py index 0d98a9465..1539bc5dc 100644 --- a/ocpmodels/modules/evaluator.py +++ b/ocpmodels/modules/evaluator.py @@ -5,9 +5,10 @@ LICENSE file in the root directory of this source tree. """ +from typing import Dict, Union + import numpy as np import torch -from typing import Dict, Union from ocpmodels.common.utils import cg_decomp_mat @@ -66,7 +67,7 @@ class Evaluator: } task_primary_metric = { - "s2ef": "energy_force_within_threshold", + "s2ef": "energy_forces_within_threshold", "is2rs": "average_distance_within_threshold", "is2re": "energy_mae", "ocp": None, @@ -81,14 +82,10 @@ def eval(self, prediction, target, prev_metrics={}): metrics = prev_metrics for target_property in self.target_metrics: - assert ( - prediction[target_property].shape - == target[target_property].shape - ) - for fn in self.target_metrics[target_property]["metrics"]: + for fn in self.target_metrics[target_property]: metric_name = ( f"{target_property}_{fn}" - if target_property not in fn + if target_property not in fn and target_property != "misc" else fn ) res = eval(fn)(prediction, target, target_property) @@ -149,7 +146,7 @@ def forcesz_mse(prediction, target, key=None): def energy_forces_within_threshold( - prediction: dict, target: dict, key=None + prediction: dict, target: dict, key=None ) -> Dict[str, Union[float, int]]: # Note that this natoms should be the count of free atoms we evaluate over. assert target["natoms"].sum() == prediction["forces"].size(0) @@ -235,9 +232,9 @@ def average_distance_within_threshold( return {"metric": success / total, "total": success, "numel": total} -def stress_mae(prediction, target, key=None): +def stress_mae_from_decomposition(prediction, target, key=None): device = prediction["isotropic_stress"].device - cg_decomp_mat = cg_decomp_mat(2, device) + cg_matrix = cg_decomp_mat(2, device) zero_vectors = torch.zeros( (prediction["isotropic_stress"].shape[0], 3), @@ -252,10 +249,10 @@ def stress_mae(prediction, target, key=None): dim=1, ) prediction_stress = torch.einsum( - "ba, cb->ca", cg_decomp_mat, prediction_irreps + "ba, cb->ca", cg_matrix, prediction_irreps ).reshape(-1) - target_stress = target["stress"] + target_stress = target["stress"].reshape(-1) return mae(prediction_stress, target_stress) diff --git a/ocpmodels/modules/transforms.py b/ocpmodels/modules/transforms.py new file mode 100644 index 000000000..95eb18f5b --- /dev/null +++ b/ocpmodels/modules/transforms.py @@ -0,0 +1,42 @@ +import torch + +from ocpmodels.common.utils import cg_decomp_mat, irreps_sum + + +class DataTransforms: + def __init__(self, config): + self.config = config + + def __call__(self, data_object): + if self.config is None: + return data_object + + for transform_fn in self.config: + data_object = eval(transform_fn)( + data_object, self.config[transform_fn] + ) + + return data_object + + +def decompose_tensor(data_object, config): + tensor_key = config["tensor"] + rank = config["rank"] + + if rank != 2: + raise NotImplementedError + + tensor_decomposition = torch.einsum( + "ab, cb->ca", + cg_decomp_mat(rank), + data_object[tensor_key].reshape(1, irreps_sum(rank)), + ) + + for decomposition_key in config["decomposition"]: + irrep_dim = config["decomposition"][decomposition_key]["irrep_dim"] + data_object[decomposition_key] = tensor_decomposition[ + :, + max(0, irreps_sum(irrep_dim - 1)) : irreps_sum(irrep_dim), + ] + + return data_object diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index 71b4fd893..6a9e287ac 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -12,7 +12,7 @@ import subprocess from abc import ABC, abstractmethod from collections import defaultdict -from typing import cast, Dict, Optional +from typing import Dict, Optional, cast import numpy as np import torch @@ -59,8 +59,11 @@ def __init__( self, task, model, + outputs, dataset, optimizer, + loss_fns, + eval_metrics, identifier, timestamp_id: Optional[str] = None, run_dir=None, @@ -113,7 +116,10 @@ def __init__( "trainer": name, "model": assert_is_instance(model.pop("name"), str), "model_attributes": model, + "outputs": outputs, "optim": optimizer, + "loss_fns": loss_fns, + "eval_metrics": eval_metrics, "logger": logger, "amp": amp, "gpus": distutils.get_world_size() if not self.cpu else 0, @@ -175,15 +181,8 @@ def __init__( if distutils.is_master(): print(yaml.dump(self.config, default_flow_style=False)) - self.load() - # TODO: asserts for targets+evaluation config definitions - self.evaluator = Evaluator( - task=name, - eval_metrics=self.config["task"].get( - "evaluation_metrics", Evaluator.task_metrics.get(name, {}) - ), - ) + self.load() def load(self) -> None: self.load_seed_from_config() @@ -260,7 +259,9 @@ def get_dataloader(self, dataset, sampler) -> DataLoader: return loader def load_datasets(self) -> None: - logging.info(f"Loading dataset: {self.config['task']['dataset']}") + logging.info( + f"Loading dataset: {self.config['dataset'].get('format', 'lmdb')}" + ) self.parallel_collater = ParallelCollater( 0 if self.cpu else 1, self.config["model_attributes"].get("otf_graph", False), @@ -273,7 +274,7 @@ def load_datasets(self) -> None: # load train, val, test datasets if self.config.get("dataset", None): self.train_dataset = registry.get_dataset_class( - self.config["task"]["dataset"] + self.config["dataset"].get("format", "lmdb") )(self.config["dataset"]) self.train_sampler = self.get_sampler( self.train_dataset, @@ -285,10 +286,15 @@ def load_datasets(self) -> None: self.train_sampler, ) + self.train_dataset[0] if self.config.get("val_dataset", None): + if self.config["val_dataset"].get("use_train_settings", True): + val_config = self.config["dataset"].copy() + val_config.update(self.config["val_dataset"]) + self.val_dataset = registry.get_dataset_class( - self.config["task"]["dataset"] - )(self.config["val_dataset"]) + self.config["val_dataset"].get("format", "lmdb") + )(val_config) self.val_sampler = self.get_sampler( self.val_dataset, self.config["optim"].get( @@ -302,9 +308,13 @@ def load_datasets(self) -> None: ) if self.config.get("test_dataset", None): + if self.config["test_dataset"].get("use_train_settings", True): + test_config = self.config["dataset"].copy() + test_config.update(self.config["test_dataset"]) + self.test_dataset = registry.get_dataset_class( - self.config["task"]["dataset"] - )(self.config["test_dataset"]) + self.config["test_dataset"].get("format", "lmdb") + )(test_config) self.test_sampler = self.get_sampler( self.test_dataset, self.config["optim"].get( @@ -335,38 +345,32 @@ def load_datasets(self) -> None: ) def load_task(self): - self.targets = self.config["task"].get( - "targets", load_old_targets(self.name, self.config) - ) - - self.train_targets = {} - for target in self.targets: - if "decomp" in self.targets[target]: - for subtarget in self.targets[target]["decomp"]: - self.train_targets[subtarget] = self.targets[target][ - "decomp" - ][subtarget] - self.train_targets[subtarget]["parent"] = target - self.train_targets[subtarget]["level"] = self.targets[ - target - ].get("level", "system") - else: - self.train_targets[target] = self.targets[target] - # Normalizer for the dataset. - # Default - no normalization - self.normalizers = {} - for target in self.train_targets: - normalizer = self.train_targets[target].get("normalizer", {}) - self.normalizers[target] = Normalizer( - mean=normalizer.get("mean", 0), - std=normalizer.get("stdev", 1), - device=self.device, - ) - - self.eval_metrics = self.config["task"].get("evaluation_metrics", {}) + self.normalizers = self.train_dataset.normalizers - assert len(self.eval_metrics.keys() - self.targets.keys()) == 0 + self.output_targets = {} + for target_name in self.config["outputs"]: + if "decomposition" not in self.config["outputs"][target_name]: + self.output_targets[target_name] = self.config["outputs"][ + target_name + ] + else: + for subtarget in self.config["outputs"][target_name][ + "decomposition" + ]: + self.output_targets[subtarget] = ( + self.config["outputs"][target_name]["decomposition"] + )[subtarget] + self.output_targets[subtarget]["parent"] = target_name + + ##TODO: Assert that all targets, loss fn, metrics defined and consistent + self.evaluation_metrics = self.config.get("eval_metrics", {}) + self.evaluator = Evaluator( + task=self.name, + eval_metrics=self.evaluation_metrics.get( + "metrics", Evaluator.task_metrics.get(self.name, {}) + ), + ) def load_model(self) -> None: # Build model @@ -482,26 +486,29 @@ def load_checkpoint(self, checkpoint_path: str) -> None: self.scaler.load_state_dict(checkpoint["amp"]) def load_loss(self) -> None: - self.loss_fn = {} - for target_name in self.train_targets: - self.loss_fn[target_name] = self.train_targets[target_name].get( - "loss", "mae" - ) + self.loss_fns = [] + for idx, loss in enumerate(self.config["loss_fns"]): + for target in loss: + loss_name = loss[target].get("fn", "mae") + coefficient = loss[target].get("coefficient", 1) + + if loss_name in ["l1", "mae"]: + loss_fn = nn.L1Loss() + elif loss_name == "mse": + loss_fn = nn.MSELoss() + elif loss_name == "l2mae": + loss_fn = L2MAELoss() + elif loss_name == "atomwisel2": + loss_fn = AtomwiseL2Loss() + else: + raise NotImplementedError( + f"Unknown loss function name: {loss_name}" + ) + loss_fn = DDPLoss(loss_fn, loss_name) - for target, loss_name in self.loss_fn.items(): - if loss_name in ["l1", "mae"]: - self.loss_fn[target] = nn.L1Loss() - elif loss_name == "mse": - self.loss_fn[target] = nn.MSELoss() - elif loss_name == "l2mae": - self.loss_fn[target] = L2MAELoss() - elif loss_name == "atomwisel2": - self.loss_fn[target] = AtomwiseL2Loss() - else: - raise NotImplementedError( - f"Unknown loss function name: {loss_name}" + self.loss_fns.append( + (target, {"fn": loss_fn, "coefficient": coefficient}) ) - self.loss_fn[target] = DDPLoss(self.loss_fn[target], loss_name) def load_optimizer(self) -> None: optimizer = self.config["optim"].get("optimizer", "AdamW") @@ -580,7 +587,7 @@ def save( if self.scaler else None, "best_val_metric": self.best_val_metric, - "primary_metric": self.config["task"][ + "primary_metric": self.config["metrics"][ "primary_metric" ], }, @@ -647,7 +654,7 @@ def train(self, disable_eval_tqdm=False): checkpoint_every = self.config["optim"].get( "checkpoint_every", eval_every ) - primary_metric = self.config["task"].get( + primary_metric = self.evaluation_metrics.get( "primary_metric", self.evaluator.task_primary_metric[self.name] ) if ( @@ -788,49 +795,18 @@ def _compute_loss(self, out, batch_list): ) mask = fixed == 0 - for target_name in self.train_targets: - if "parent" not in self.train_targets[target_name]: - target = torch.cat( - [ - batch[target_name].to(self.device) - for batch in batch_list - ], - dim=0, - ) - # property is a decomposition of a higher order tensor - else: - irreps = self.train_targets[target_name]["irreps"] - if irreps > 2: - raise NotImplementedError - - target = [ - torch.einsum( - "ab, cb->ca", - cg_decomp_mat(2).to(self.device), - batch[self.train_targets[target_name]["parent"]], - ) - for batch in batch_list - ] - - target = torch.cat( - [ - batch[ - :, - max(0, irreps_sum(irreps - 1)) : irreps_sum( - irreps - ), - ] - for batch in target - ], - dim=0, - ) + for loss_fn in self.loss_fns: + target_name, loss_info = loss_fn + target = torch.cat( + [batch[target_name].to(self.device) for batch in batch_list], + dim=0, + ) pred = out[target_name] if ( self.config["task"].get("train_on_free_atoms", True) - and self.train_targets[target_name].get("level", "system") - == "atom" + and self.config["outputs"].get("level", "system") == "atom" ): target = target[mask] pred = pred[mask] @@ -839,11 +815,11 @@ def _compute_loss(self, out, batch_list): if self.normalizers.get(target_name, False): target = self.normalizers[target_name].norm(target) - mult = self.train_targets[target_name].get("coefficient", 1) + mult = loss_info["coefficient"] loss.append( mult - * self.loss_fn[target_name]( + * loss_info["fn"]( pred, target, natoms=natoms, @@ -879,18 +855,14 @@ def _compute_metrics(self, out, batch_list, evaluator, metrics={}): natoms = torch.LongTensor(natoms_free).to(self.device) targets = {} - for target_name in self.train_targets: - if "parent" not in self.train_targets[target_name]: - target = torch.cat( - [ - batch[target_name].to(self.device) - for batch in batch_list - ], - dim=0, - ) - else: - irreps = self.train_targets[target_name]["irreps"] - parent_target_name = self.train_targets[target_name]["parent"] + for target_name in self.output_targets: + target = torch.cat( + [batch[target_name].to(self.device) for batch in batch_list], + dim=0, + ) + # Add parent target to targets + if "parent" in self.output_targets[target_name]: + parent_target_name = self.output_targets[target_name]["parent"] if parent_target_name not in targets: parent_target = torch.cat( @@ -902,31 +874,9 @@ def _compute_metrics(self, out, batch_list, evaluator, metrics={}): ) targets[parent_target_name] = parent_target - target = [ - torch.einsum( - "ab, cb->ca", - cg_decomp_mat(2).to(self.device), - batch[parent_target_name], - ) - for batch in batch_list - ] - - target = torch.cat( - [ - batch[ - :, - max(0, irreps_sum(irreps - 1)) : irreps_sum( - irreps - ), - ] - for batch in target - ], - dim=0, - ) - if ( self.config["task"].get("eval_on_free_atoms", True) - and self.train_targets[target_name].get("level", "system") + and self.output_targets[target_name].get("level", "system") == "atom" ): target = target[mask] @@ -959,8 +909,8 @@ def validate(self, split: str = "val", disable_tqdm: bool = False): metrics = {} evaluator = Evaluator( task=self.name, - eval_metrics=self.config["task"].get( - "evaluation_metrics", Evaluator.task_metrics.get(self.name, {}) + eval_metrics=self.evaluation_metrics.get( + "metrics", Evaluator.task_metrics.get(self.name, {}) ), ) @@ -1108,9 +1058,9 @@ def predict( with torch.cuda.amp.autocast(enabled=self.scaler is not None): out = self._forward(batch_list) - for target_key in self.targets: + for target_key in self.config["outputs"]: ### Target property is a direct output of the model - if target_key in self.train_targets: + if target_key in out: pred = out[target_key] ### Denormalize predictions if needed if self.normalizers.get(target_key, False): @@ -1118,18 +1068,24 @@ def predict( ## Target property is a derived output of the model else: _max_rank = 0 - for subtarget_key in self.targets[target_key]["decomp"]: + for subtarget_key in self.config["outputs"][target_key][ + "decomposition" + ]: _max_rank = max( _max_rank, - self.train_targets[subtarget_key]["irreps"], + self.output_targets[subtarget_key]["irrep_dim"], ) pred_irreps = torch.zeros( (batch_size, irreps_sum(_max_rank)), device=self.device ) - for subtarget_key in self.targets[target_key]["decomp"]: - irreps = self.train_targets[subtarget_key]["irreps"] + for subtarget_key in self.config["outputs"][target_key][ + "decomposition" + ]: + irreps = self.output_targets[subtarget_key][ + "irrep_dim" + ] _pred = out[subtarget_key] ### Denormalize predictions if needed @@ -1154,11 +1110,14 @@ def predict( ### Save outputs in desired precision, default float16 if ( - self.targets[target_key].get("prediction_dtype", "float16") + self.config["outputs"][target_key].get( + "prediction_dtype", "float16" + ) == "float32" or self.config["task"].get("prediction_dtype", "float16") == "float32" - or self.config["task"]["dataset"] == "oc22_lmdb" + or self.config["task"].get("dataset", "lmdb") + == "oc22_lmdb" ): dtype = torch.float32 else: @@ -1167,7 +1126,10 @@ def predict( pred = pred.cpu().detach().to(dtype) ### Split predictions into per-image predictions - if self.targets[target_key].get("level", "system") == "atom": + if ( + self.config["outputs"][target_key].get("level", "system") + == "atom" + ): batch_natoms = torch.cat( [batch.natoms for batch in batch_list] ) @@ -1220,7 +1182,7 @@ def predict( return predictions def save_results( - self, predictions, results_file: Optional[str], keys + self, predictions, results_file: Optional[str], keys=None ) -> None: if results_file is None: diff --git a/ocpmodels/trainers/energy_trainer.py b/ocpmodels/trainers/energy_trainer.py deleted file mode 100644 index 764fd7f51..000000000 --- a/ocpmodels/trainers/energy_trainer.py +++ /dev/null @@ -1,340 +0,0 @@ -""" -Copyright (c) Facebook, Inc. and its affiliates. - -This source code is licensed under the MIT license found in the -LICENSE file in the root directory of this source tree. -""" - -import logging -from typing import Optional - -import torch -import torch_geometric -from tqdm import tqdm - -from ocpmodels.common import distutils -from ocpmodels.common.registry import registry -from ocpmodels.modules.scaling.util import ensure_fitted -from ocpmodels.trainers.base_trainer import BaseTrainer - - -@registry.register_trainer("energy") -class EnergyTrainer(BaseTrainer): - """ - Trainer class for the Initial Structure to Relaxed Energy (IS2RE) task. - - .. note:: - - Examples of configurations for task, model, dataset and optimizer - can be found in `configs/ocp_is2re `_. - - - Args: - task (dict): Task configuration. - model (dict): Model configuration. - dataset (dict): Dataset configuration. The dataset needs to be a SinglePointLMDB dataset. - optimizer (dict): Optimizer configuration. - identifier (str): Experiment identifier that is appended to log directory. - run_dir (str, optional): Path to the run directory where logs are to be saved. - (default: :obj:`None`) - is_debug (bool, optional): Run in debug mode. - (default: :obj:`False`) - is_hpo (bool, optional): Run hyperparameter optimization with Ray Tune. - (default: :obj:`False`) - print_every (int, optional): Frequency of printing logs. - (default: :obj:`100`) - seed (int, optional): Random number seed. - (default: :obj:`None`) - logger (str, optional): Type of logger to be used. - (default: :obj:`tensorboard`) - local_rank (int, optional): Local rank of the process, only applicable for distributed training. - (default: :obj:`0`) - amp (bool, optional): Run using automatic mixed precision. - (default: :obj:`False`) - slurm (dict): Slurm configuration. Currently just for keeping track. - (default: :obj:`{}`) - """ - - def __init__( - self, - task, - model, - dataset, - optimizer, - identifier, - normalizer=None, - timestamp_id: Optional[str] = None, - run_dir=None, - is_debug: bool = False, - is_hpo: bool = False, - print_every: int = 100, - seed=None, - logger: str = "tensorboard", - local_rank: int = 0, - amp: bool = False, - cpu: bool = False, - slurm={}, - noddp: bool = False, - ) -> None: - super().__init__( - task=task, - model=model, - dataset=dataset, - optimizer=optimizer, - identifier=identifier, - normalizer=normalizer, - timestamp_id=timestamp_id, - run_dir=run_dir, - is_debug=is_debug, - is_hpo=is_hpo, - print_every=print_every, - seed=seed, - logger=logger, - local_rank=local_rank, - amp=amp, - cpu=cpu, - name="is2re", - slurm=slurm, - noddp=noddp, - ) - - def load_task(self) -> None: - logging.info(f"Loading dataset: {self.config['task']['dataset']}") - self.num_targets = 1 - - @torch.no_grad() - def predict( - self, - loader, - per_image: bool = True, - results_file=None, - disable_tqdm: bool = False, - ): - ensure_fitted(self._unwrapped_model) - - if distutils.is_master() and not disable_tqdm: - logging.info("Predicting on test.") - assert isinstance( - loader, - ( - torch.utils.data.dataloader.DataLoader, - torch_geometric.data.Batch, - ), - ) - rank = distutils.get_rank() - - if isinstance(loader, torch_geometric.data.Batch): - loader = [[loader]] - - self.model.eval() - if self.ema: - self.ema.store() - self.ema.copy_to() - - if self.normalizers is not None and "target" in self.normalizers: - self.normalizers["target"].to(self.device) - predictions = {"id": [], "energy": []} - - for _, batch in tqdm( - enumerate(loader), - total=len(loader), - position=rank, - desc="device {}".format(rank), - disable=disable_tqdm, - ): - with torch.cuda.amp.autocast(enabled=self.scaler is not None): - out = self._forward(batch) - - if self.normalizers is not None and "target" in self.normalizers: - out["energy"] = self.normalizers["target"].denorm( - out["energy"] - ) - - if per_image: - predictions["id"].extend( - [str(i) for i in batch[0].sid.tolist()] - ) - predictions["energy"].extend( - out["energy"].cpu().detach().numpy() - ) - else: - predictions["energy"] = out["energy"].detach() - return predictions - - self.save_results(predictions, results_file, keys=["energy"]) - - if self.ema: - self.ema.restore() - - return predictions - - def train(self, disable_eval_tqdm: bool = False) -> None: - ensure_fitted(self._unwrapped_model, warn=True) - - eval_every = self.config["optim"].get( - "eval_every", len(self.train_loader) - ) - primary_metric = self.config["task"].get( - "primary_metric", self.evaluator.task_primary_metric[self.name] - ) - self.best_val_metric = 1e9 - - # Calculate start_epoch from step instead of loading the epoch number - # to prevent inconsistencies due to different batch size in checkpoint. - start_epoch = self.step // len(self.train_loader) - - for epoch_int in range( - start_epoch, self.config["optim"]["max_epochs"] - ): - self.train_sampler.set_epoch(epoch_int) - skip_steps = self.step % len(self.train_loader) - train_loader_iter = iter(self.train_loader) - - for i in range(skip_steps, len(self.train_loader)): - self.epoch = epoch_int + (i + 1) / len(self.train_loader) - self.step = epoch_int * len(self.train_loader) + i + 1 - self.model.train() - - # Get a batch. - batch = next(train_loader_iter) - - # Forward, loss, backward. - with torch.cuda.amp.autocast(enabled=self.scaler is not None): - out = self._forward(batch) - loss = self._compute_loss(out, batch) - loss = self.scaler.scale(loss) if self.scaler else loss - self._backward(loss) - scale = self.scaler.get_scale() if self.scaler else 1.0 - - # Compute metrics. - self.metrics = self._compute_metrics( - out, - batch, - self.evaluator, - metrics={}, - ) - self.metrics = self.evaluator.update( - "loss", loss.item() / scale, self.metrics - ) - - # Log metrics. - log_dict = {k: self.metrics[k]["metric"] for k in self.metrics} - log_dict.update( - { - "lr": self.scheduler.get_lr(), - "epoch": self.epoch, - "step": self.step, - } - ) - if ( - self.step % self.config["cmd"]["print_every"] == 0 - and distutils.is_master() - and not self.is_hpo - ): - log_str = [ - "{}: {:.2e}".format(k, v) for k, v in log_dict.items() - ] - print(", ".join(log_str)) - self.metrics = {} - - if self.logger is not None: - self.logger.log( - log_dict, - step=self.step, - split="train", - ) - - # Evaluate on val set after every `eval_every` iterations. - if self.step % eval_every == 0: - self.save( - checkpoint_file="checkpoint.pt", training_state=True - ) - - if self.val_loader is not None: - val_metrics = self.validate( - split="val", - disable_tqdm=disable_eval_tqdm, - ) - if ( - val_metrics[ - self.evaluator.task_primary_metric[self.name] - ]["metric"] - < self.best_val_metric - ): - self.best_val_metric = val_metrics[ - self.evaluator.task_primary_metric[self.name] - ]["metric"] - self.save( - metrics=val_metrics, - checkpoint_file="best_checkpoint.pt", - training_state=False, - ) - if self.test_loader is not None: - self.predict( - self.test_loader, - results_file="predictions", - disable_tqdm=False, - ) - - if self.is_hpo: - self.hpo_update( - self.epoch, - self.step, - self.metrics, - val_metrics, - ) - - if self.scheduler.scheduler_type == "ReduceLROnPlateau": - if self.step % eval_every == 0: - self.scheduler.step( - metrics=val_metrics[primary_metric]["metric"], - ) - else: - self.scheduler.step() - - torch.cuda.empty_cache() - - self.train_dataset.close_db() - if self.config.get("val_dataset", False): - self.val_dataset.close_db() - if self.config.get("test_dataset", False): - self.test_dataset.close_db() - - def _forward(self, batch_list): - output = self.model(batch_list) - - if output.shape[-1] == 1: - output = output.view(-1) - - return { - "energy": output, - } - - def _compute_loss(self, out, batch_list): - energy_target = torch.cat( - [batch.y_relaxed.to(self.device) for batch in batch_list], dim=0 - ) - - if self.normalizer.get("normalize_labels", False): - target_normed = self.normalizers["target"].norm(energy_target) - else: - target_normed = energy_target - - loss = self.loss_fn["energy"](out["energy"], target_normed) - return loss - - def _compute_metrics(self, out, batch_list, evaluator, metrics={}): - energy_target = torch.cat( - [batch.y_relaxed.to(self.device) for batch in batch_list], dim=0 - ) - - if self.normalizer.get("normalize_labels", False): - out["energy"] = self.normalizers["target"].denorm(out["energy"]) - - metrics = evaluator.eval( - out, - {"energy": energy_target}, - prev_metrics=metrics, - ) - - return metrics diff --git a/ocpmodels/trainers/forces_trainer.py b/ocpmodels/trainers/forces_trainer.py deleted file mode 100644 index dc2ad5371..000000000 --- a/ocpmodels/trainers/forces_trainer.py +++ /dev/null @@ -1,827 +0,0 @@ -""" -Copyright (c) Facebook, Inc. and its affiliates. - -This source code is licensed under the MIT license found in the -LICENSE file in the root directory of this source tree. -""" - -import logging -import os -import pathlib -from collections import defaultdict -from pathlib import Path -from typing import Optional - -import numpy as np -import torch -import torch_geometric -from tqdm import tqdm - -from ocpmodels.common import distutils -from ocpmodels.common.registry import registry -from ocpmodels.common.relaxation.ml_relaxation import ml_relax -from ocpmodels.common.utils import check_traj_files -from ocpmodels.modules.evaluator import Evaluator -from ocpmodels.modules.normalizer import Normalizer -from ocpmodels.modules.scaling.util import ensure_fitted -from ocpmodels.trainers.base_trainer import BaseTrainer - - -@registry.register_trainer("forces") -class ForcesTrainer(BaseTrainer): - """ - Trainer class for the Structure to Energy & Force (S2EF) and Initial State to - Relaxed State (IS2RS) tasks. - - .. note:: - - Examples of configurations for task, model, dataset and optimizer - can be found in `configs/ocp_s2ef `_ - and `configs/ocp_is2rs `_. - - Args: - task (dict): Task configuration. - model (dict): Model configuration. - dataset (dict): Dataset configuration. The dataset needs to be a SinglePointLMDB dataset. - optimizer (dict): Optimizer configuration. - identifier (str): Experiment identifier that is appended to log directory. - run_dir (str, optional): Path to the run directory where logs are to be saved. - (default: :obj:`None`) - is_debug (bool, optional): Run in debug mode. - (default: :obj:`False`) - is_hpo (bool, optional): Run hyperparameter optimization with Ray Tune. - (default: :obj:`False`) - print_every (int, optional): Frequency of printing logs. - (default: :obj:`100`) - seed (int, optional): Random number seed. - (default: :obj:`None`) - logger (str, optional): Type of logger to be used. - (default: :obj:`tensorboard`) - local_rank (int, optional): Local rank of the process, only applicable for distributed training. - (default: :obj:`0`) - amp (bool, optional): Run using automatic mixed precision. - (default: :obj:`False`) - slurm (dict): Slurm configuration. Currently just for keeping track. - (default: :obj:`{}`) - """ - - def __init__( - self, - task, - model, - dataset, - optimizer, - identifier, - normalizer=None, - timestamp_id: Optional[str] = None, - run_dir: Optional[str] = None, - is_debug: bool = False, - is_hpo: bool = False, - print_every: int = 100, - seed: Optional[int] = None, - logger: str = "tensorboard", - local_rank: int = 0, - amp: bool = False, - cpu: bool = False, - slurm={}, - noddp: bool = False, - ) -> None: - super().__init__( - task=task, - model=model, - dataset=dataset, - optimizer=optimizer, - identifier=identifier, - normalizer=normalizer, - timestamp_id=timestamp_id, - run_dir=run_dir, - is_debug=is_debug, - is_hpo=is_hpo, - print_every=print_every, - seed=seed, - logger=logger, - local_rank=local_rank, - amp=amp, - cpu=cpu, - name="s2ef", - slurm=slurm, - noddp=noddp, - ) - - def load_task(self) -> None: - logging.info(f"Loading dataset: {self.config['task']['dataset']}") - - if "relax_dataset" in self.config["task"]: - self.relax_dataset = registry.get_dataset_class("lmdb")( - self.config["task"]["relax_dataset"] - ) - self.relax_sampler = self.get_sampler( - self.relax_dataset, - self.config["optim"].get( - "eval_batch_size", self.config["optim"]["batch_size"] - ), - shuffle=False, - ) - self.relax_loader = self.get_dataloader( - self.relax_dataset, - self.relax_sampler, - ) - - self.num_targets = 1 - - # If we're computing gradients wrt input, set mean of normalizer to 0 -- - # since it is lost when compute dy / dx -- and std to forward target std - if self.config["model_attributes"].get("regress_forces", True): - if self.normalizer.get("normalize_labels", False): - if "grad_target_mean" in self.normalizer: - self.normalizers["grad_target"] = Normalizer( - mean=self.normalizer["grad_target_mean"], - std=self.normalizer["grad_target_std"], - device=self.device, - ) - else: - self.normalizers["grad_target"] = Normalizer( - tensor=self.train_loader.dataset.data.y[ - self.train_loader.dataset.__indices__ - ], - device=self.device, - ) - self.normalizers["grad_target"].mean.fill_(0) - - # Takes in a new data source and generates predictions on it. - @torch.no_grad() - def predict( - self, - data_loader, - per_image: bool = True, - results_file=None, - disable_tqdm: bool = False, - ): - ensure_fitted(self._unwrapped_model, warn=True) - - if distutils.is_master() and not disable_tqdm: - logging.info("Predicting on test.") - assert isinstance( - data_loader, - ( - torch.utils.data.dataloader.DataLoader, - torch_geometric.data.Batch, - ), - ) - rank = distutils.get_rank() - - if isinstance(data_loader, torch_geometric.data.Batch): - data_loader = [[data_loader]] - - self.model.eval() - if self.ema: - self.ema.store() - self.ema.copy_to() - - if self.normalizers is not None and "target" in self.normalizers: - self.normalizers["target"].to(self.device) - self.normalizers["grad_target"].to(self.device) - - predictions = {"id": [], "energy": [], "forces": [], "chunk_idx": []} - - for i, batch_list in tqdm( - enumerate(data_loader), - total=len(data_loader), - position=rank, - desc="device {}".format(rank), - disable=disable_tqdm, - ): - with torch.cuda.amp.autocast(enabled=self.scaler is not None): - out = self._forward(batch_list) - - if self.normalizers is not None and "target" in self.normalizers: - out["energy"] = self.normalizers["target"].denorm( - out["energy"] - ) - out["forces"] = self.normalizers["grad_target"].denorm( - out["forces"] - ) - if per_image: - systemids = [ - str(i) + "_" + str(j) - for i, j in zip( - batch_list[0].sid.tolist(), batch_list[0].fid.tolist() - ) - ] - predictions["id"].extend(systemids) - batch_natoms = torch.cat( - [batch.natoms for batch in batch_list] - ) - batch_fixed = torch.cat([batch.fixed for batch in batch_list]) - # total energy target requires predictions to be saved in float32 - # default is float16 - if ( - self.config["task"].get("prediction_dtype", "float16") - == "float32" - or self.config["task"]["dataset"] == "oc22_lmdb" - ): - predictions["energy"].extend( - out["energy"].cpu().detach().to(torch.float32).numpy() - ) - forces = out["forces"].cpu().detach().to(torch.float32) - else: - predictions["energy"].extend( - out["energy"].cpu().detach().to(torch.float16).numpy() - ) - forces = out["forces"].cpu().detach().to(torch.float16) - per_image_forces = torch.split(forces, batch_natoms.tolist()) - per_image_forces = [ - force.numpy() for force in per_image_forces - ] - # evalAI only requires forces on free atoms - if results_file is not None: - _per_image_fixed = torch.split( - batch_fixed, batch_natoms.tolist() - ) - _per_image_free_forces = [ - force[(fixed == 0).tolist()] - for force, fixed in zip( - per_image_forces, _per_image_fixed - ) - ] - _chunk_idx = np.array( - [ - free_force.shape[0] - for free_force in _per_image_free_forces - ] - ) - per_image_forces = _per_image_free_forces - predictions["chunk_idx"].extend(_chunk_idx) - predictions["forces"].extend(per_image_forces) - else: - predictions["energy"] = out["energy"].detach() - predictions["forces"] = out["forces"].detach() - if self.ema: - self.ema.restore() - return predictions - - predictions["forces"] = np.array(predictions["forces"]) - predictions["chunk_idx"] = np.array(predictions["chunk_idx"]) - predictions["energy"] = np.array(predictions["energy"]) - predictions["id"] = np.array(predictions["id"]) - self.save_results( - predictions, results_file, keys=["energy", "forces", "chunk_idx"] - ) - - if self.ema: - self.ema.restore() - - return predictions - - def update_best( - self, - primary_metric, - val_metrics, - disable_eval_tqdm: bool = True, - ) -> None: - if ( - "mae" in primary_metric - and val_metrics[primary_metric]["metric"] < self.best_val_metric - ) or ( - "mae" not in primary_metric - and val_metrics[primary_metric]["metric"] > self.best_val_metric - ): - self.best_val_metric = val_metrics[primary_metric]["metric"] - self.save( - metrics=val_metrics, - checkpoint_file="best_checkpoint.pt", - training_state=False, - ) - if self.test_loader is not None: - self.predict( - self.test_loader, - results_file="predictions", - disable_tqdm=disable_eval_tqdm, - ) - - def train(self, disable_eval_tqdm: bool = False) -> None: - ensure_fitted(self._unwrapped_model, warn=True) - - eval_every = self.config["optim"].get( - "eval_every", len(self.train_loader) - ) - checkpoint_every = self.config["optim"].get( - "checkpoint_every", eval_every - ) - primary_metric = self.config["task"].get( - "primary_metric", self.evaluator.task_primary_metric[self.name] - ) - if ( - not hasattr(self, "primary_metric") - or self.primary_metric != primary_metric - ): - self.best_val_metric = 1e9 if "mae" in primary_metric else -1.0 - else: - primary_metric = self.primary_metric - self.metrics = {} - - # Calculate start_epoch from step instead of loading the epoch number - # to prevent inconsistencies due to different batch size in checkpoint. - start_epoch = self.step // len(self.train_loader) - - for epoch_int in range( - start_epoch, self.config["optim"]["max_epochs"] - ): - self.train_sampler.set_epoch(epoch_int) - skip_steps = self.step % len(self.train_loader) - train_loader_iter = iter(self.train_loader) - - for i in range(skip_steps, len(self.train_loader)): - self.epoch = epoch_int + (i + 1) / len(self.train_loader) - self.step = epoch_int * len(self.train_loader) + i + 1 - self.model.train() - - # Get a batch. - batch = next(train_loader_iter) - - # Forward, loss, backward. - with torch.cuda.amp.autocast(enabled=self.scaler is not None): - out = self._forward(batch) - loss = self._compute_loss(out, batch) - loss = self.scaler.scale(loss) if self.scaler else loss - self._backward(loss) - scale = self.scaler.get_scale() if self.scaler else 1.0 - - # Compute metrics. - self.metrics = self._compute_metrics( - out, - batch, - self.evaluator, - self.metrics, - ) - self.metrics = self.evaluator.update( - "loss", loss.item() / scale, self.metrics - ) - - # Log metrics. - log_dict = {k: self.metrics[k]["metric"] for k in self.metrics} - log_dict.update( - { - "lr": self.scheduler.get_lr(), - "epoch": self.epoch, - "step": self.step, - } - ) - if ( - self.step % self.config["cmd"]["print_every"] == 0 - and distutils.is_master() - and not self.is_hpo - ): - log_str = [ - "{}: {:.2e}".format(k, v) for k, v in log_dict.items() - ] - logging.info(", ".join(log_str)) - self.metrics = {} - - if self.logger is not None: - self.logger.log( - log_dict, - step=self.step, - split="train", - ) - - if ( - checkpoint_every != -1 - and self.step % checkpoint_every == 0 - ): - self.save( - checkpoint_file="checkpoint.pt", training_state=True - ) - - # Evaluate on val set every `eval_every` iterations. - if self.step % eval_every == 0: - if self.val_loader is not None: - val_metrics = self.validate( - split="val", - disable_tqdm=disable_eval_tqdm, - ) - self.update_best( - primary_metric, - val_metrics, - disable_eval_tqdm=disable_eval_tqdm, - ) - if self.is_hpo: - self.hpo_update( - self.epoch, - self.step, - self.metrics, - val_metrics, - ) - - if self.config["task"].get("eval_relaxations", False): - if "relax_dataset" not in self.config["task"]: - logging.warning( - "Cannot evaluate relaxations, relax_dataset not specified" - ) - else: - self.run_relaxations() - - if self.scheduler.scheduler_type == "ReduceLROnPlateau": - if self.step % eval_every == 0: - self.scheduler.step( - metrics=val_metrics[primary_metric]["metric"], - ) - else: - self.scheduler.step() - - torch.cuda.empty_cache() - - if checkpoint_every == -1: - self.save(checkpoint_file="checkpoint.pt", training_state=True) - - self.train_dataset.close_db() - if self.config.get("val_dataset", False): - self.val_dataset.close_db() - if self.config.get("test_dataset", False): - self.test_dataset.close_db() - - def _forward(self, batch_list): - # forward pass. - if self.config["model_attributes"].get("regress_forces", True): - out_energy, out_forces = self.model(batch_list) - else: - out_energy = self.model(batch_list) - - if out_energy.shape[-1] == 1: - out_energy = out_energy.view(-1) - - out = { - "energy": out_energy, - } - - if self.config["model_attributes"].get("regress_forces", True): - out["forces"] = out_forces - - return out - - def _compute_loss(self, out, batch_list) -> int: - loss = [] - - # Energy loss. - energy_target = torch.cat( - [batch.y.to(self.device) for batch in batch_list], dim=0 - ) - if self.normalizer.get("normalize_labels", False): - energy_target = self.normalizers["target"].norm(energy_target) - energy_mult = self.config["optim"].get("energy_coefficient", 1) - loss.append( - energy_mult * self.loss_fn["energy"](out["energy"], energy_target) - ) - - # Force loss. - if self.config["model_attributes"].get("regress_forces", True): - force_target = torch.cat( - [batch.force.to(self.device) for batch in batch_list], dim=0 - ) - if self.normalizer.get("normalize_labels", False): - force_target = self.normalizers["grad_target"].norm( - force_target - ) - - tag_specific_weights = self.config["task"].get( - "tag_specific_weights", [] - ) - if tag_specific_weights != []: - # handle tag specific weights as introduced in forcenet - assert len(tag_specific_weights) == 3 - - batch_tags = torch.cat( - [ - batch.tags.float().to(self.device) - for batch in batch_list - ], - dim=0, - ) - weight = torch.zeros_like(batch_tags) - weight[batch_tags == 0] = tag_specific_weights[0] - weight[batch_tags == 1] = tag_specific_weights[1] - weight[batch_tags == 2] = tag_specific_weights[2] - - if self.config["optim"].get("loss_force", "l2mae") == "l2mae": - # zero out nans, if any - found_nans_or_infs = not torch.all( - out["forces"].isfinite() - ) - if found_nans_or_infs is True: - logging.warning("Found nans while computing loss") - out["forces"] = torch.nan_to_num( - out["forces"], nan=0.0 - ) - - dists = torch.norm( - out["forces"] - force_target, p=2, dim=-1 - ) - weighted_dists_sum = (dists * weight).sum() - - num_samples = out["forces"].shape[0] - num_samples = distutils.all_reduce( - num_samples, device=self.device - ) - weighted_dists_sum = ( - weighted_dists_sum - * distutils.get_world_size() - / num_samples - ) - - force_mult = self.config["optim"].get( - "force_coefficient", 30 - ) - loss.append(force_mult * weighted_dists_sum) - else: - raise NotImplementedError - else: - # Force coefficient = 30 has been working well for us. - force_mult = self.config["optim"].get("force_coefficient", 30) - if self.config["task"].get("train_on_free_atoms", False): - fixed = torch.cat( - [batch.fixed.to(self.device) for batch in batch_list] - ) - mask = fixed == 0 - if ( - self.config["optim"] - .get("loss_force", "mae") - .startswith("atomwise") - ): - force_mult = self.config["optim"].get( - "force_coefficient", 1 - ) - natoms = torch.cat( - [ - batch.natoms.to(self.device) - for batch in batch_list - ] - ) - natoms = torch.repeat_interleave(natoms, natoms) - force_loss = force_mult * self.loss_fn["force"]( - out["forces"][mask], - force_target[mask], - natoms=natoms[mask], - batch_size=batch_list[0].natoms.shape[0], - ) - loss.append(force_loss) - else: - loss.append( - force_mult - * self.loss_fn["force"]( - out["forces"][mask], force_target[mask] - ) - ) - else: - loss.append( - force_mult - * self.loss_fn["force"](out["forces"], force_target) - ) - - # Sanity check to make sure the compute graph is correct. - for lc in loss: - assert hasattr(lc, "grad_fn") - - loss = sum(loss) - return loss - - def _compute_metrics(self, out, batch_list, evaluator, metrics={}): - natoms = torch.cat( - [batch.natoms.to(self.device) for batch in batch_list], dim=0 - ) - - target = { - "energy": torch.cat( - [batch.y.to(self.device) for batch in batch_list], dim=0 - ), - "forces": torch.cat( - [batch.force.to(self.device) for batch in batch_list], dim=0 - ), - "natoms": natoms, - } - - out["natoms"] = natoms - - if self.config["task"].get("eval_on_free_atoms", True): - fixed = torch.cat( - [batch.fixed.to(self.device) for batch in batch_list] - ) - mask = fixed == 0 - out["forces"] = out["forces"][mask] - target["forces"] = target["forces"][mask] - - s_idx = 0 - natoms_free = [] - for natoms in target["natoms"]: - natoms_free.append( - torch.sum(mask[s_idx : s_idx + natoms]).item() - ) - s_idx += natoms - target["natoms"] = torch.LongTensor(natoms_free).to(self.device) - out["natoms"] = torch.LongTensor(natoms_free).to(self.device) - - if self.normalizer.get("normalize_labels", False): - out["energy"] = self.normalizers["target"].denorm(out["energy"]) - out["forces"] = self.normalizers["grad_target"].denorm( - out["forces"] - ) - - metrics = evaluator.eval(out, target, prev_metrics=metrics) - return metrics - - def run_relaxations(self, split: str = "val") -> None: - ensure_fitted(self._unwrapped_model) - - # When set to true, uses deterministic CUDA scatter ops, if available. - # https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html#torch.use_deterministic_algorithms - # Only implemented for GemNet-OC currently. - registry.register( - "set_deterministic_scatter", - self.config["task"].get("set_deterministic_scatter", False), - ) - - logging.info("Running ML-relaxations") - self.model.eval() - if self.ema: - self.ema.store() - self.ema.copy_to() - - evaluator_is2rs, metrics_is2rs = Evaluator(task="is2rs"), {} - evaluator_is2re, metrics_is2re = Evaluator(task="is2re"), {} - - # Need both `pos_relaxed` and `y_relaxed` to compute val IS2R* metrics. - # Else just generate predictions. - if ( - hasattr(self.relax_dataset[0], "pos_relaxed") - and self.relax_dataset[0].pos_relaxed is not None - ) and ( - hasattr(self.relax_dataset[0], "y_relaxed") - and self.relax_dataset[0].y_relaxed is not None - ): - split = "val" - else: - split = "test" - - ids = [] - relaxed_positions = [] - chunk_idx = [] - for i, batch in tqdm( - enumerate(self.relax_loader), total=len(self.relax_loader) - ): - if i >= self.config["task"].get("num_relaxation_batches", 1e9): - break - - # If all traj files already exist, then skip this batch - if check_traj_files( - batch, self.config["task"]["relax_opt"].get("traj_dir", None) - ): - logging.info(f"Skipping batch: {batch[0].sid.tolist()}") - continue - - relaxed_batch = ml_relax( - batch=batch, - model=self, - steps=self.config["task"].get("relaxation_steps", 200), - fmax=self.config["task"].get("relaxation_fmax", 0.0), - relax_opt=self.config["task"]["relax_opt"], - save_full_traj=self.config["task"].get("save_full_traj", True), - device=self.device, - transform=None, - ) - - if self.config["task"].get("write_pos", False): - systemids = [str(i) for i in relaxed_batch.sid.tolist()] - natoms = relaxed_batch.natoms.tolist() - positions = torch.split(relaxed_batch.pos, natoms) - batch_relaxed_positions = [pos.tolist() for pos in positions] - - relaxed_positions += batch_relaxed_positions - chunk_idx += natoms - ids += systemids - - if split == "val": - mask = relaxed_batch.fixed == 0 - s_idx = 0 - natoms_free = [] - for natoms in relaxed_batch.natoms: - natoms_free.append( - torch.sum(mask[s_idx : s_idx + natoms]).item() - ) - s_idx += natoms - - target = { - "energy": relaxed_batch.y_relaxed, - "positions": relaxed_batch.pos_relaxed[mask], - "cell": relaxed_batch.cell, - "pbc": torch.tensor([True, True, True]), - "natoms": torch.LongTensor(natoms_free), - } - - prediction = { - "energy": relaxed_batch.y, - "positions": relaxed_batch.pos[mask], - "cell": relaxed_batch.cell, - "pbc": torch.tensor([True, True, True]), - "natoms": torch.LongTensor(natoms_free), - } - - metrics_is2rs = evaluator_is2rs.eval( - prediction, - target, - metrics_is2rs, - ) - metrics_is2re = evaluator_is2re.eval( - {"energy": prediction["energy"]}, - {"energy": target["energy"]}, - metrics_is2re, - ) - - if self.config["task"].get("write_pos", False): - rank = distutils.get_rank() - pos_filename = os.path.join( - self.config["cmd"]["results_dir"], f"relaxed_pos_{rank}.npz" - ) - np.savez_compressed( - pos_filename, - ids=ids, - pos=np.array(relaxed_positions, dtype=object), - chunk_idx=chunk_idx, - ) - - distutils.synchronize() - if distutils.is_master(): - gather_results = defaultdict(list) - full_path = os.path.join( - self.config["cmd"]["results_dir"], - "relaxed_positions.npz", - ) - - for i in range(distutils.get_world_size()): - rank_path = os.path.join( - self.config["cmd"]["results_dir"], - f"relaxed_pos_{i}.npz", - ) - rank_results = np.load(rank_path, allow_pickle=True) - gather_results["ids"].extend(rank_results["ids"]) - gather_results["pos"].extend(rank_results["pos"]) - gather_results["chunk_idx"].extend( - rank_results["chunk_idx"] - ) - os.remove(rank_path) - - # Because of how distributed sampler works, some system ids - # might be repeated to make no. of samples even across GPUs. - _, idx = np.unique(gather_results["ids"], return_index=True) - gather_results["ids"] = np.array(gather_results["ids"])[idx] - gather_results["pos"] = np.concatenate( - np.array(gather_results["pos"])[idx] - ) - gather_results["chunk_idx"] = np.cumsum( - np.array(gather_results["chunk_idx"])[idx] - )[ - :-1 - ] # np.split does not need last idx, assumes n-1:end - - logging.info(f"Writing results to {full_path}") - np.savez_compressed(full_path, **gather_results) - - if split == "val": - for task in ["is2rs", "is2re"]: - metrics = eval(f"metrics_{task}") - aggregated_metrics = {} - for k in metrics: - aggregated_metrics[k] = { - "total": distutils.all_reduce( - metrics[k]["total"], - average=False, - device=self.device, - ), - "numel": distutils.all_reduce( - metrics[k]["numel"], - average=False, - device=self.device, - ), - } - aggregated_metrics[k]["metric"] = ( - aggregated_metrics[k]["total"] - / aggregated_metrics[k]["numel"] - ) - metrics = aggregated_metrics - - # Make plots. - log_dict = { - f"{task}_{k}": metrics[k]["metric"] for k in metrics - } - if self.logger is not None: - self.logger.log( - log_dict, - step=self.step, - split=split, - ) - - if distutils.is_master(): - logging.info(metrics) - - if self.ema: - self.ema.restore() - - registry.unregister("set_deterministic_scatter") diff --git a/ocpmodels/trainers/ocp_trainer.py b/ocpmodels/trainers/ocp_trainer.py index b90cdb7b5..768ef9c1b 100644 --- a/ocpmodels/trainers/ocp_trainer.py +++ b/ocpmodels/trainers/ocp_trainer.py @@ -68,8 +68,11 @@ def __init__( self, task, model, + outputs, dataset, optimizer, + loss_fns, + eval_metrics, identifier, timestamp_id=None, run_dir=None, @@ -87,8 +90,11 @@ def __init__( super().__init__( task=task, model=model, + outputs=outputs, dataset=dataset, optimizer=optimizer, + loss_fns=loss_fns, + eval_metrics=eval_metrics, identifier=identifier, timestamp_id=timestamp_id, run_dir=run_dir, From 15fdc56be4598c413828bebfdf81c9ba22c3dc02 Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Wed, 19 Jul 2023 12:02:32 -0700 Subject: [PATCH 15/63] black --- ocpmodels/modules/loss.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/ocpmodels/modules/loss.py b/ocpmodels/modules/loss.py index fae9f6f24..2efcea832 100644 --- a/ocpmodels/modules/loss.py +++ b/ocpmodels/modules/loss.py @@ -46,7 +46,9 @@ def forward( class DDPLoss(nn.Module): - def __init__(self, loss_fn, loss_name: str = "mae", reduction: str = "mean") -> None: + def __init__( + self, loss_fn, loss_name: str = "mae", reduction: str = "mean" + ) -> None: super().__init__() self.loss_fn = loss_fn self.loss_name = loss_name From c47111fba3867adba5a1c2449b62b90bf3a283ae Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Wed, 19 Jul 2023 17:07:19 -0700 Subject: [PATCH 16/63] reorganize free_atoms --- configs/goc_oc20_debug.yml | 6 +- configs/goc_stress_debug.yml | 7 +- ocpmodels/common/utils.py | 2 +- .../equiformer_v2/trainers/forces_trainer.py | 4 +- ocpmodels/trainers/base_trainer.py | 74 ++++++++++++------- 5 files changed, 57 insertions(+), 36 deletions(-) diff --git a/configs/goc_oc20_debug.yml b/configs/goc_oc20_debug.yml index 137bd2f50..3065a22a0 100644 --- a/configs/goc_oc20_debug.yml +++ b/configs/goc_oc20_debug.yml @@ -50,10 +50,8 @@ outputs: forces: shape: 3 level: atom - -task: - train_on_free_atoms: True - eval_on_free_atoms: True + train_on_free_atoms: True + eval_on_free_atoms: True model: name: gemnet_oc diff --git a/configs/goc_stress_debug.yml b/configs/goc_stress_debug.yml index 0534d5103..b8d38dfc8 100644 --- a/configs/goc_stress_debug.yml +++ b/configs/goc_stress_debug.yml @@ -74,6 +74,9 @@ outputs: forces: shape: 3 level: atom + train_on_free_atoms: True + eval_on_free_atoms: True + stress: level: system decomposition: @@ -82,10 +85,6 @@ outputs: anisotropic_stress: irrep_dim: 2 -task: - train_on_free_atoms: True - eval_on_free_atoms: True - model: name: gemnet_oc num_spherical: 7 diff --git a/ocpmodels/common/utils.py b/ocpmodels/common/utils.py index 82df7cfda..957f311a0 100644 --- a/ocpmodels/common/utils.py +++ b/ocpmodels/common/utils.py @@ -1009,7 +1009,7 @@ class _TrainingContext: trainer_cls = registry.get_trainer_class(trainer_name) assert trainer_cls is not None, "Trainer not found" trainer = trainer_cls( - task=config["task"], + task=config.get("task", {}), model=config["model"], outputs=config.get("outputs", None), dataset=config["dataset"], diff --git a/ocpmodels/models/equiformer_v2/trainers/forces_trainer.py b/ocpmodels/models/equiformer_v2/trainers/forces_trainer.py index c346d8cc7..691c7e065 100755 --- a/ocpmodels/models/equiformer_v2/trainers/forces_trainer.py +++ b/ocpmodels/models/equiformer_v2/trainers/forces_trainer.py @@ -16,7 +16,7 @@ from ocpmodels.modules.exponential_moving_average import ( ExponentialMovingAverage, ) -from ocpmodels.trainers import ForcesTrainer +from ocpmodels.trainers import OCPTrainer from .lr_scheduler import LRScheduler @@ -49,7 +49,7 @@ def add_weight_decay(model, weight_decay, skip_list=()): @registry.register_trainer("equiformerv2_forces") -class EquiformerV2ForcesTrainer(ForcesTrainer): +class EquiformerV2ForcesTrainer(OCPTrainer): # This trainer does a few things differently from the parent forces trainer: # - Different way of setting up model parameters with no weight decay. # - Support for cosine LR scheduler. diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index 6a9e287ac..f69c3c6cd 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -362,6 +362,31 @@ def load_task(self): self.config["outputs"][target_name]["decomposition"] )[subtarget] self.output_targets[subtarget]["parent"] = target_name + # inherent properties if not available + if "level" not in self.output_targets[subtarget]: + self.output_targets[subtarget][ + "level" + ] = self.output_targets[target_name].get( + "level", "system" + ) + if ( + "train_on_free_atoms" + not in self.output_targets[subtarget] + ): + self.output_targets[subtarget][ + "train_on_free_atoms" + ] = self.output_targets[target_name].get( + "train_on_free_atoms", True + ) + if ( + "eval_on_free_atoms" + not in self.output_targets[subtarget] + ): + self.output_targets[subtarget][ + "eval_on_free_atoms" + ] = self.output_targets[target_name].get( + "eval_on_free_atoms", True + ) ##TODO: Assert that all targets, loss fn, metrics defined and consistent self.evaluation_metrics = self.config.get("eval_metrics", {}) @@ -788,12 +813,12 @@ def _compute_loss(self, out, batch_list): batch_size = natoms.numel() natoms = torch.repeat_interleave(natoms, natoms) + fixed = torch.cat( + [batch.fixed.to(self.device) for batch in batch_list] + ) + mask = fixed == 0 + loss = [] - if self.config["task"].get("train_on_free_atoms", True): - fixed = torch.cat( - [batch.fixed.to(self.device) for batch in batch_list] - ) - mask = fixed == 0 for loss_fn in self.loss_fns: target_name, loss_info = loss_fn @@ -804,9 +829,10 @@ def _compute_loss(self, out, batch_list): ) pred = out[target_name] - if ( - self.config["task"].get("train_on_free_atoms", True) - and self.config["outputs"].get("level", "system") == "atom" + if self.output_targets[target_name].get( + "level", "system" + ) == "atom" and self.output_targets[target_name].get( + "train_on_free_atoms", True ): target = target[mask] pred = pred[mask] @@ -839,20 +865,18 @@ def _compute_metrics(self, out, batch_list, evaluator, metrics={}): [batch.natoms.to(self.device) for batch in batch_list], dim=0 ) - if self.config["task"].get("eval_on_free_atoms", True): - fixed = torch.cat( - [batch.fixed.to(self.device) for batch in batch_list] - ) - mask = fixed == 0 + ### Retrieve free atoms + fixed = torch.cat( + [batch.fixed.to(self.device) for batch in batch_list] + ) + mask = fixed == 0 - s_idx = 0 - natoms_free = [] - for _natoms in natoms: - natoms_free.append( - torch.sum(mask[s_idx : s_idx + _natoms]).item() - ) - s_idx += _natoms - natoms = torch.LongTensor(natoms_free).to(self.device) + s_idx = 0 + natoms_free = [] + for _natoms in natoms: + natoms_free.append(torch.sum(mask[s_idx : s_idx + _natoms]).item()) + s_idx += _natoms + natoms = torch.LongTensor(natoms_free).to(self.device) targets = {} for target_name in self.output_targets: @@ -874,10 +898,10 @@ def _compute_metrics(self, out, batch_list, evaluator, metrics={}): ) targets[parent_target_name] = parent_target - if ( - self.config["task"].get("eval_on_free_atoms", True) - and self.output_targets[target_name].get("level", "system") - == "atom" + if self.output_targets[target_name].get( + "level", "system" + ) == "atom" and self.output_targets[target_name].get( + "eval_on_free_atoms", True ): target = target[mask] out[target_name] = out[target_name][mask] From eacd66b15cdb53b707cd68e599f1c0c7bed08bc1 Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Thu, 20 Jul 2023 09:07:07 -0700 Subject: [PATCH 17/63] output config fix --- ocpmodels/trainers/base_trainer.py | 12 +++++------- 1 file changed, 5 insertions(+), 7 deletions(-) diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index f69c3c6cd..bd20f7f5c 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -364,18 +364,16 @@ def load_task(self): self.output_targets[subtarget]["parent"] = target_name # inherent properties if not available if "level" not in self.output_targets[subtarget]: - self.output_targets[subtarget][ - "level" - ] = self.output_targets[target_name].get( - "level", "system" - ) + self.output_targets[subtarget]["level"] = self.config[ + "outputs" + ][target_name].get("level", "system") if ( "train_on_free_atoms" not in self.output_targets[subtarget] ): self.output_targets[subtarget][ "train_on_free_atoms" - ] = self.output_targets[target_name].get( + ] = self.config["outputs"][target_name].get( "train_on_free_atoms", True ) if ( @@ -384,7 +382,7 @@ def load_task(self): ): self.output_targets[subtarget][ "eval_on_free_atoms" - ] = self.output_targets[target_name].get( + ] = self.config["outputs"][target_name].get( "eval_on_free_atoms", True ) From 024bc86f3eb72a04cd185f3678b45747919efb1f Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Thu, 20 Jul 2023 10:26:20 -0700 Subject: [PATCH 18/63] config naming --- ocpmodels/trainers/base_trainer.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index bd20f7f5c..4de265c1f 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -610,7 +610,7 @@ def save( if self.scaler else None, "best_val_metric": self.best_val_metric, - "primary_metric": self.config["metrics"][ + "primary_metric": self.config["eval_metrics"][ "primary_metric" ], }, From 5f47f8af3e3178587d1d51bf4428d6928804270b Mon Sep 17 00:00:00 2001 From: Janice Lan Date: Fri, 21 Jul 2023 16:04:31 -0700 Subject: [PATCH 19/63] support loss mean over all dimensions --- ocpmodels/modules/loss.py | 14 ++++++++++++-- ocpmodels/trainers/base_trainer.py | 3 ++- 2 files changed, 14 insertions(+), 3 deletions(-) diff --git a/ocpmodels/modules/loss.py b/ocpmodels/modules/loss.py index 2efcea832..114840cca 100644 --- a/ocpmodels/modules/loss.py +++ b/ocpmodels/modules/loss.py @@ -52,9 +52,15 @@ def __init__( super().__init__() self.loss_fn = loss_fn self.loss_name = loss_name - self.loss_fn.reduction = "sum" self.reduction = reduction - assert reduction in ["mean", "sum"] + assert reduction in ["mean", "mean_all", "sum"] + + # for forces, we want to sum over xyz errors and average over batches/atoms (mean) + # for other metrics, we want to average over all axes (mean_all) or leave as a sum (sum) + if reduction == "mean_all": + self.loss_fn.reduction = "mean" + else: + self.loss_fn.reduction = "sum" def forward( self, @@ -63,6 +69,9 @@ def forward( natoms: Optional[torch.Tensor] = None, batch_size: Optional[int] = None, ): + # ensure torch doesn't do any unwanted broadcasting + assert input.shape == target.shape + # zero out nans, if any found_nans_or_infs = not torch.all(input.isfinite()) if found_nans_or_infs is True: @@ -87,4 +96,5 @@ def forward( # across DDP replicas return loss * distutils.get_world_size() / num_samples else: + # if reduction is sum or mean over all axes, no other operations are needed return loss diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index 4de265c1f..67aa6adc4 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -514,6 +514,7 @@ def load_loss(self) -> None: for target in loss: loss_name = loss[target].get("fn", "mae") coefficient = loss[target].get("coefficient", 1) + loss_reduction = loss[target].get("reduction", "mean") if loss_name in ["l1", "mae"]: loss_fn = nn.L1Loss() @@ -527,7 +528,7 @@ def load_loss(self) -> None: raise NotImplementedError( f"Unknown loss function name: {loss_name}" ) - loss_fn = DDPLoss(loss_fn, loss_name) + loss_fn = DDPLoss(loss_fn, loss_name, loss_reduction) self.loss_fns.append( (target, {"fn": loss_fn, "coefficient": coefficient}) From 0a7d8155ba0822c8810ba32c9e659e89ce9c1d4c Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Fri, 21 Jul 2023 16:21:05 -0700 Subject: [PATCH 20/63] config backwards support --- ocpmodels/common/utils.py | 117 ++++++++++++++++++++--------- ocpmodels/datasets/lmdb_dataset.py | 19 +---- ocpmodels/modules/evaluator.py | 32 ++++---- ocpmodels/modules/transforms.py | 5 +- ocpmodels/trainers/base_trainer.py | 16 +++- 5 files changed, 119 insertions(+), 70 deletions(-) diff --git a/ocpmodels/common/utils.py b/ocpmodels/common/utils.py index 957f311a0..7c96d9f6f 100644 --- a/ocpmodels/common/utils.py +++ b/ocpmodels/common/utils.py @@ -1011,11 +1011,11 @@ class _TrainingContext: trainer = trainer_cls( task=config.get("task", {}), model=config["model"], - outputs=config.get("outputs", None), + outputs=config.get("outputs", {}), dataset=config["dataset"], optimizer=config["optim"], - loss_fns=config.get("loss_functions", None), - eval_metrics=config.get("evaluation_metrics", None), + loss_fns=config.get("loss_functions", {}), + eval_metrics=config.get("evaluation_metrics", {}), identifier=config["identifier"], timestamp_id=config.get("timestamp_id", None), run_dir=config.get("run_dir", "./"), @@ -1194,46 +1194,93 @@ def irreps_sum(l): return total -def load_old_targets(name, config): - normalizer = config.get("dataset", {}) - +def load_old_config(name, config): if name == "is2re": - targets = { - "energy": { - "irreps": 0, - "loss": config["optim"].get("loss_energy", "mae"), - "level": "system", - "coefficient": config["optim"].get("energy_coefficient", 1), - "normalizer": { - "mean": normalizer.get("target_mean", 0), - "stdev": normalizer.get("target_std", 1), + ### Define loss functions + _loss_fns = [ + { + "energy": { + "fn": config["optim"].get("loss_energy", "mae"), + "coefficient": config["optim"].get( + "energy_coefficient", 1 + ), }, } + ] + ### Define evaluation metrics + _eval_metrics = { + "metrics": {"energy": ["mae", "mse", "energy_within_threshold"]}, } - elif name == "s2ef": - targets = { - "energy": { - "irreps": 0, - "loss": config["optim"].get("loss_energy", "mae"), - "level": "system", - "coefficient": config["optim"].get("energy_coefficient", 1), - "normalizer": { - "mean": normalizer.get("target_mean", 0), - "stdev": normalizer.get("target_std", 1), + if "primary_metric" in config["task"]: + _eval_metrics["primary_metric"] = config["task"]["primary_metric"] + ### Define outputs + _outputs = {"energy": {"shape": 1, "level": "system"}} + if name == "s2ef": + ### Define loss functions + _loss_fns = [ + { + "energy": { + "fn": config["optim"].get("loss_energy", "mae"), + "coefficient": config["optim"].get( + "energy_coefficient", 1 + ), + }, + "forces": { + "fn": config["optim"].get("loss_forces", "l2mae"), + "coefficient": config["optim"].get( + "force_coefficient", 30 + ), }, + } + ] + ### Define evaluation metrics + _eval_metrics = { + "metrics": { + "misc": ["energy_forces_within_threshold"], + "energy": ["mae"], + "forces": [ + "forcesx_mae", + "forcesy_mae", + "forcesz_mae", + "mae", + "cosine_similarity", + "magnitude_error", + ], }, + } + if "primary_metric" in config["task"]: + _eval_metrics["primary_metric"] = config["task"]["primary_metric"] + ### Define outputs + _outputs = { + "energy": {"shape": 1, "level": "system"}, "forces": { - "irreps": 1, - "loss": config["optim"].get("loss_force", "mae"), + "shape": 3, "level": "atom", - "coefficient": config["optim"].get("force_coefficient", 1), - "normalizer": { - "mean": normalizer.get("grad_target_mean", 0), - "stdev": normalizer.get("grad_target_std", 1), - }, + "train_on_free_atoms": ( + config["task"].get("train_on_free_atoms", False) + ), + "eval_on_free_atoms": ( + config["task"].get("eval_on_free_atoms", True) + ), }, } - else: - targets = {} - return targets + if config["dataset"].get("normalize_labels", False): + normalizer = { + "energy": { + "mean": config["dataset"]["target_mean"], + "stdev": config["dataset"]["target_std"], + }, + "forces": { + "mean": config["dataset"]["grad_target_mean"], + "stdev": config["dataset"]["grad_target_std"], + }, + } + config["dataset"]["normalizer"] = normalizer + + config["dataset"]["key_mapping"] = {"y": "energy", "force": "forces"} + ### Update config + config.update({"loss_fns": _loss_fns}) + config.update({"eval_metrics": _eval_metrics}) + config.update({"outputs": _outputs}) + return config diff --git a/ocpmodels/datasets/lmdb_dataset.py b/ocpmodels/datasets/lmdb_dataset.py index 03e7e88d7..2db5b1583 100644 --- a/ocpmodels/datasets/lmdb_dataset.py +++ b/ocpmodels/datasets/lmdb_dataset.py @@ -119,22 +119,7 @@ def __init__(self, config, transform=None) -> None: self.num_samples = len(self.available_indices) self.key_mapping = self.config.get("key_mapping", None) - self.transforms = self.config.get("transforms", {}) - self._normalizers = self.transforms.get("normalizer", None) - - self.load() - - def load(self): - self.normalizers = {} - if self._normalizers: - for target in self._normalizers: - self.normalizers[target] = Normalizer( - mean=self._normalizers[target].get("mean", 0), - std=self._normalizers[target].get("stdev", 1), - ) - self.transforms.pop("normalizer") - - self.transform = DataTransforms(self.transforms) + self.transforms = DataTransforms(self.config.get("transforms", {})) def __len__(self) -> int: return self.num_samples @@ -175,7 +160,7 @@ def __getitem__(self, idx: int): data_object[new_property] = data_object[_property] del data_object[_property] - self.transform(data_object) + self.transforms(data_object) return data_object diff --git a/ocpmodels/modules/evaluator.py b/ocpmodels/modules/evaluator.py index 1539bc5dc..253f366d0 100644 --- a/ocpmodels/modules/evaluator.py +++ b/ocpmodels/modules/evaluator.py @@ -35,9 +35,9 @@ class Evaluator: task_metrics = { "s2ef": { - "energy": {"metrics": ["mae"]}, - "forces": { - "metrics": [ + "metrics": { + "energy": ["mae"], + "forces": [ "forcesx_mae", "forcesy_mae", "forcesz_mae", @@ -45,12 +45,12 @@ class Evaluator: "cosine_similarity", "magnitude_error", "energy_forces_within_threshold", - ] - }, + ], + } }, "is2rs": { - "positions": { - "metrics": [ + "metrics": { + "positions": [ "average_distance_within_threshold", "mae", "mse", @@ -58,11 +58,13 @@ class Evaluator: } }, "is2re": { - "metrics": [ - "mae", - "mse", - "energy_within_threshold", - ] + "metrics": { + "energy": [ + "mae", + "mse", + "energy_within_threshold", + ] + }, }, } @@ -73,9 +75,11 @@ class Evaluator: "ocp": None, } - def __init__(self, task: str = None, eval_metrics: str = None) -> None: + def __init__(self, task: str = None, eval_metrics: dict = {}) -> None: self.task = task - self.target_metrics = self.task_metrics.get(task, eval_metrics) + self.target_metrics = ( + eval_metrics if eval_metrics else self.task_metrics.get(task, {}) + ) def eval(self, prediction, target, prev_metrics={}): diff --git a/ocpmodels/modules/transforms.py b/ocpmodels/modules/transforms.py index 95eb18f5b..0f37c1556 100644 --- a/ocpmodels/modules/transforms.py +++ b/ocpmodels/modules/transforms.py @@ -8,10 +8,13 @@ def __init__(self, config): self.config = config def __call__(self, data_object): - if self.config is None: + if not self.config: return data_object for transform_fn in self.config: + # TODO move normalizer into dataset + if transform_fn == "normalizer": + continue data_object = eval(transform_fn)( data_object, self.config[transform_fn] ) diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index 67aa6adc4..b1a0ac689 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -38,7 +38,7 @@ check_traj_files, get_commit_hash, irreps_sum, - load_old_targets, + load_old_config, load_state_dict, save_checkpoint, ) @@ -182,6 +182,10 @@ def __init__( if distutils.is_master(): print(yaml.dump(self.config, default_flow_style=False)) + ### backwards compatability with OCP v<2.0 + if self.name in ["is2re", "s2ef"]: + self.config = load_old_config(self.name, self.config) + self.load() def load(self) -> None: @@ -286,7 +290,6 @@ def load_datasets(self) -> None: self.train_sampler, ) - self.train_dataset[0] if self.config.get("val_dataset", None): if self.config["val_dataset"].get("use_train_settings", True): val_config = self.config["dataset"].copy() @@ -346,7 +349,14 @@ def load_datasets(self) -> None: def load_task(self): # Normalizer for the dataset. - self.normalizers = self.train_dataset.normalizers + self.normalizers = {} + if "normalizer" in self.config["dataset"]: + normalizer = self.config["dataset"]["normalizer"] + for target in normalizer: + self.normalizers[target] = Normalizer( + mean=normalizer[target].get("mean", 0), + std=normalizer[target].get("stdev", 1), + ) self.output_targets = {} for target_name in self.config["outputs"]: From 73fba567e7a66cff8d8da504e7b920565cfd65c1 Mon Sep 17 00:00:00 2001 From: Janice Lan Date: Tue, 25 Jul 2023 11:27:21 -0700 Subject: [PATCH 21/63] equiformer can now run --- ocpmodels/models/equiformer_v2/equiformer_v2_oc20.py | 7 +++++-- ocpmodels/models/equiformer_v2/trainers/forces_trainer.py | 8 ++++---- 2 files changed, 9 insertions(+), 6 deletions(-) diff --git a/ocpmodels/models/equiformer_v2/equiformer_v2_oc20.py b/ocpmodels/models/equiformer_v2/equiformer_v2_oc20.py index df1e17350..8d2e451ea 100644 --- a/ocpmodels/models/equiformer_v2/equiformer_v2_oc20.py +++ b/ocpmodels/models/equiformer_v2/equiformer_v2_oc20.py @@ -494,9 +494,12 @@ def forward(self, data): forces = forces.view(-1, 3) if not self.regress_forces: - return energy + return {"energy": energy} else: - return energy, forces + return { + "energy": energy, + "forces": forces, + } # Initialize the edge rotation matrics def _init_edge_rot_mat(self, data, edge_index, edge_distance_vec): diff --git a/ocpmodels/models/equiformer_v2/trainers/forces_trainer.py b/ocpmodels/models/equiformer_v2/trainers/forces_trainer.py index 691c7e065..790c35ac5 100755 --- a/ocpmodels/models/equiformer_v2/trainers/forces_trainer.py +++ b/ocpmodels/models/equiformer_v2/trainers/forces_trainer.py @@ -56,7 +56,7 @@ class EquiformerV2ForcesTrainer(OCPTrainer): # - When using the LR scheduler, it first converts the epochs into number of # steps and then passes it to the scheduler. That way in the config # everything can be specified in terms of epochs. - def load_model(self): + def load_model(self) -> None: # Build model if distutils.is_master(): logging.info(f"Loading model: {self.config['model']}") @@ -75,7 +75,7 @@ def load_model(self): and loader.dataset[0].x is not None else None, bond_feat_dim, - self.num_targets, + 1, **self.config["model_attributes"], ).to(self.device) @@ -103,7 +103,7 @@ def load_model(self): self.model, device_ids=[self.device] ) - def load_optimizer(self): + def load_optimizer(self) -> None: optimizer = self.config["optim"].get("optimizer", "AdamW") optimizer = getattr(optim, optimizer) optimizer_params = self.config["optim"]["optimizer_params"] @@ -121,7 +121,7 @@ def load_optimizer(self): **optimizer_params, ) - def load_extras(self): + def load_extras(self) -> None: def multiply(obj, num): if isinstance(obj, list): for i in range(len(obj)): From efd956d4659ce1a69b7a1349a0e8c5a4f2e8d84c Mon Sep 17 00:00:00 2001 From: Janice Lan Date: Tue, 25 Jul 2023 18:06:18 -0700 Subject: [PATCH 22/63] add example equiformer config --- .../2M/equiformer_v2/equiformer_refactor.yml | 131 ++++++++++++++++++ 1 file changed, 131 insertions(+) create mode 100755 configs/s2ef/2M/equiformer_v2/equiformer_refactor.yml diff --git a/configs/s2ef/2M/equiformer_v2/equiformer_refactor.yml b/configs/s2ef/2M/equiformer_v2/equiformer_refactor.yml new file mode 100755 index 000000000..5ad262728 --- /dev/null +++ b/configs/s2ef/2M/equiformer_v2/equiformer_refactor.yml @@ -0,0 +1,131 @@ +trainer: equiformerv2_forces + +dataset: + train: + format: lmdb + src: /datasets01/open_catalyst/oc20/082422/struct_to_energy_forces/train/2M + key_mapping: + y: energy + force: forces + transforms: + normalizer: + energy: + mean: -0.7554450631141663 + stdev: 2.887317180633545 + forces: + mean: 0 + stdev: 2.887317180633545 + val: + src: /datasets01/open_catalyst/oc20/082422/struct_to_energy_forces/val/id_30k + # test: + # src: /datasets01/open_catalyst/oc20/082422/struct_to_energy_forces/val/id_30k + +logger: + name: wandb + project: is2dt_v4 + +loss_functions: + - energy: + fn: mae + coefficient: 1 + - forces: + fn: l2mae + coefficient: 100 + +evaluation_metrics: + metrics: + energy: + - mae + - mse + - energy_within_threshold + forces: + - mae + - cosine_similarity + misc: + - energy_forces_within_threshold + primary_metric: forces_mae + +outputs: + energy: + shape: 1 + level: system + forces: + shape: 3 + level: atom + train_on_free_atoms: True + eval_on_free_atoms: True + +slurm: + constraint: "volta32gb" + +model: + name: equiformer_v2 + + use_pbc: True + regress_forces: True + otf_graph: True + max_neighbors: 20 + max_radius: 12.0 + max_num_elements: 90 + + num_layers: 12 + sphere_channels: 128 + attn_hidden_channels: 64 # [64, 96] This determines the hidden size of message passing. Do not necessarily use 96. + num_heads: 8 + attn_alpha_channels: 64 # Not used when `use_s2_act_attn` is True. + attn_value_channels: 16 + ffn_hidden_channels: 128 + norm_type: 'layer_norm_sh' # ['rms_norm_sh', 'layer_norm', 'layer_norm_sh'] + + lmax_list: [6] + mmax_list: [2] + grid_resolution: 18 # [18, 16, 14, None] For `None`, simply comment this line. + + num_sphere_samples: 128 + + edge_channels: 128 + use_atom_edge_embedding: True + share_atom_edge_embedding: False # If `True`, `use_atom_edge_embedding` must be `True` and the atom edge embedding will be shared across all blocks. + distance_function: 'gaussian' + num_distance_basis: 512 # not used + + attn_activation: 'silu' + use_s2_act_attn: False # [False, True] Switch between attention after S2 activation or the original EquiformerV1 attention. + use_attn_renorm: True # Attention re-normalization. Used for ablation study. + ffn_activation: 'silu' # ['silu', 'swiglu'] + use_gate_act: False # [True, False] Switch between gate activation and S2 activation + use_grid_mlp: True # [False, True] If `True`, use projecting to grids and performing MLPs for FFNs. + use_sep_s2_act: True # Separable S2 activation. Used for ablation study. + + alpha_drop: 0.1 # [0.0, 0.1] + drop_path_rate: 0.05 # [0.0, 0.05] + proj_drop: 0.0 + + weight_init: 'uniform' # ['uniform', 'normal'] + +optim: + batch_size: 4 # 6 + eval_batch_size: 4 # 6 + load_balancing: atoms + num_workers: 8 + lr_initial: 0.0004 # [0.0002, 0.0004], eSCN uses 0.0008 for batch size 96 + + optimizer: AdamW + optimizer_params: + weight_decay: 0.001 + scheduler: LambdaLR + scheduler_params: + lambda_type: cosine + warmup_factor: 0.2 + warmup_epochs: 0.1 + lr_min_factor: 0.01 # + + max_epochs: 30 + force_coefficient: 100 + energy_coefficient: 2 + clip_grad_norm: 100 + ema_decay: 0.999 + loss_energy: mae + loss_force: l2mae + + eval_every: 5000 From 4477f90cf1026170e0d7d49963ecf4561af6c19f Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Thu, 27 Jul 2023 14:26:34 -0700 Subject: [PATCH 23/63] handle arbitrary torch loss fns --- ocpmodels/common/utils.py | 16 ++++++++++++++++ ocpmodels/trainers/base_trainer.py | 20 ++++++++------------ 2 files changed, 24 insertions(+), 12 deletions(-) diff --git a/ocpmodels/common/utils.py b/ocpmodels/common/utils.py index 7c96d9f6f..fc0a99c4d 100644 --- a/ocpmodels/common/utils.py +++ b/ocpmodels/common/utils.py @@ -37,6 +37,7 @@ from torch_scatter import scatter, segment_coo, segment_csr import ocpmodels +from ocpmodels.modules.loss import AtomwiseL2Loss, L2MAELoss if TYPE_CHECKING: from torch.nn.modules.module import _IncompatibleKeys @@ -1284,3 +1285,18 @@ def load_old_config(name, config): config.update({"eval_metrics": _eval_metrics}) config.update({"outputs": _outputs}) return config + + +def get_loss_module(loss_name): + if loss_name in ["l1", "mae"]: + loss_fn = nn.L1Loss() + elif loss_name == "mse": + loss_fn = nn.MSELoss() + elif loss_name == "l2mae": + loss_fn = L2MAELoss() + elif loss_name == "atomwisel2": + loss_fn = AtomwiseL2Loss() + else: + raise NotImplementedError(f"Unknown loss function name: {loss_name}") + + return loss_fn diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index b1a0ac689..bb71d160b 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -37,6 +37,7 @@ cg_decomp_mat, check_traj_files, get_commit_hash, + get_loss_module, irreps_sum, load_old_config, load_state_dict, @@ -46,7 +47,7 @@ from ocpmodels.modules.exponential_moving_average import ( ExponentialMovingAverage, ) -from ocpmodels.modules.loss import AtomwiseL2Loss, DDPLoss, L2MAELoss +from ocpmodels.modules.loss import DDPLoss from ocpmodels.modules.normalizer import Normalizer from ocpmodels.modules.scaling.compat import load_scales_compat from ocpmodels.modules.scaling.util import ensure_fitted @@ -526,18 +527,13 @@ def load_loss(self) -> None: coefficient = loss[target].get("coefficient", 1) loss_reduction = loss[target].get("reduction", "mean") - if loss_name in ["l1", "mae"]: - loss_fn = nn.L1Loss() - elif loss_name == "mse": - loss_fn = nn.MSELoss() - elif loss_name == "l2mae": - loss_fn = L2MAELoss() - elif loss_name == "atomwisel2": - loss_fn = AtomwiseL2Loss() + ### if torch module name provided, use that directly + if hasattr(nn, loss_name): + loss_fn = getattr(nn, loss_name)() + ### otherwise, retrieve the correct module based off old naming else: - raise NotImplementedError( - f"Unknown loss function name: {loss_name}" - ) + loss_fn = get_loss_module(loss_name) + loss_fn = DDPLoss(loss_fn, loss_name, loss_reduction) self.loss_fns.append( From 0bd89359b08e859b35f2c15a75b3bbf2b0cdd51d Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Tue, 1 Aug 2023 09:58:53 -0700 Subject: [PATCH 24/63] correct primary metric def --- ocpmodels/trainers/base_trainer.py | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index bb71d160b..298124305 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -617,9 +617,10 @@ def save( if self.scaler else None, "best_val_metric": self.best_val_metric, - "primary_metric": self.config["eval_metrics"][ - "primary_metric" - ], + "primary_metric": self.evaluation_metrics.get( + "primary_metric", + self.evaluator.task_primary_metric[self.name], + ), }, checkpoint_dir=self.config["cmd"]["checkpoint_dir"], checkpoint_file=checkpoint_file, From ac13093e84b020c638ea8ac639a07ffffc365e93 Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Tue, 1 Aug 2023 13:27:57 -0700 Subject: [PATCH 25/63] update s2ef portion of OCP tutorial --- tutorials/OCP_Tutorial.ipynb | 8602 +++++++++++++++------------------- 1 file changed, 3687 insertions(+), 4915 deletions(-) diff --git a/tutorials/OCP_Tutorial.ipynb b/tutorials/OCP_Tutorial.ipynb index 9930cfa89..fcb84a8a9 100644 --- a/tutorials/OCP_Tutorial.ipynb +++ b/tutorials/OCP_Tutorial.ipynb @@ -1,4927 +1,3699 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "view-in-github" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dzeHYa5GCxN7" + }, + "outputs": [], + "source": [ + "# MIT License\n", + "#\n", + "#@title Copyright (c) 2021 CCAI Community Authors { display-mode: \"form\" }\n", + "#\n", + "# Permission is hereby granted, free of charge, to any person obtaining a\n", + "# copy of this software and associated documentation files (the \"Software\"),\n", + "# to deal in the Software without restriction, including without limitation\n", + "# the rights to use, copy, modify, merge, publish, distribute, sublicense,\n", + "# and/or sell copies of the Software, and to permit persons to whom the\n", + "# Software is furnished to do so, subject to the following conditions:\n", + "#\n", + "# The above copyright notice and this permission notice shall be included in\n", + "# all copies or substantial portions of the Software.\n", + "#\n", + "# THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n", + "# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n", + "# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL\n", + "# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n", + "# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING\n", + "# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER\n", + "# DEALINGS IN THE SOFTWARE." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "13i7KQ9t-CV8" + }, + "source": [ + "# Open Catalyst Project Tutorial Notebook\n", + "Author(s):\n", + "* [Muhammed Shuaibi](https://mshuaibii.github.io/), CMU, mshuaibi@andrew.cmu.edu\n", + "* [Abhishek Das](https://abhishekdas.com/), FAIR, abhshkdz@fb.com \n", + "* [Adeesh Kolluru](https://adeeshkolluru.github.io/), CMU, akolluru@andrew.cmu.edu\n", + "* [Brandon Wood](https://wood-b.github.io/), NERSC, bwood@lbl.gov \n", + "* [Janice Lan](https://www.linkedin.com/in/janice-lan), FAIR, janlan@fb.com\n", + "* [Anuroop Sriram](https://www.linkedin.com/in/anuroopsriram), FAIR, anuroops@fb.com\n", + "* [Zachary Ulissi](https://ulissigroup.cheme.cmu.edu/), CMU, zulissi@andrew.cmu.edu\n", + "* [Larry Zitnick](http://larryzitnick.org/), FAIR, zitnick@fb.com\n", + "\n", + "FAIR - Facebook AI Research\n", + "\n", + "CMU - Carnegie Mellon University\n", + "\n", + "NERSC - National Energy Research Scientific Computing Center\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "E_qIKf8erkfC" + }, + "source": [ + "## Table of Contents\n", + "\n", + "* [Background](#background)\n", + "* [Objective](#objective)\n", + "* [Climate Impact](#climate-impact)\n", + "* [Target Audience](#target-audience)\n", + "* [Background & Prerequisites](#background-and-prereqs)\n", + "* [Software Requirements](#software-requirements)\n", + "* [Dataset Overview & Visualization](#data-description)\n", + " * [Download](#download)\n", + " * [Visualization](#visual)\n", + " * [Data contents](#contents)\n", + "* [Tasks](#tasks)\n", + " * [S2EF](#s2ef)\n", + " * [IS2RE](#is2re)\n", + " * [IS2RS](#is2rs)\n", + "* [OCP Calculator](#calc)\n", + "* [Model development](#model-dev)\n", + "* [Running on command line](#cmd)\n", + "* [Limitations](#limit)\n", + "* [Next steps](#steps)\n", + "* [References](#references)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JkjKcVJ47hSN" + }, + "source": [ + "## Background \n", + "The discovery of efficient and economic catalysts (materials) are needed to enable the widespread use of renewable energy technologies. A common approach in discovering high performance catalysts is using molecular simulations. Specifically, each simulation models the interaction of a catalyst surface with molecules that are commonly seen in electrochemical reactions. By predicting these interactions accurately, the catalyst's impact on the overall rate of a chemical reaction may be estimated.\n", + "\n", + "An important quantity in screening catalysts is their adsorption energy for the molecules, referred to as `adsorbates', involved in the reaction of interest. The adsorption energy may be found by simulating the interaction of the adsorbate molecule on the surface of the catalyst to find their resting or relaxed energy, i.e., how tightly the adsorbate binds to the catalyst's surface (visualized below). The rate of the chemical reaction, a value of high practical importance, is then commonly approximated using simple functions of the adsorption energy. The goal of this tutorial specifically and the project overall is to encourage research and benchmark progress towards training ML models to approximate this relaxation.\n", + "\n", + "Specifically, during the course of a relaxation, given an initial set of atoms and their positions, the task is to iteratively estimate atomic forces and update atomic positions until a relaxed state is reached. The energy corresponding to the relaxed state is the structure's 'relaxed energy'.\n", + "\n", + "As part of the [Open Catalyst Project](https://github.com/Open-Catalyst-Project/ocp) (OCP), we identify three key tasks ML models need to perform well on in\n", + "order to effectively approximate DFT --\n", + "\n", + " 1) Given an **I**nitial **S**tructure, predict the **R**elaxed **E**nergy of the relaxed strucutre (**IS2RE**),\n", + "\n", + " 2) Given an **I**nitial **S**tructure, predict the **R**elaxed **S**tructure (**IS2RS**),\n", + "\n", + " 3) Given any **S**tructure, predict the structure **E**nergy and per-atom **F**orces (**S2EF**)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FPeCifZbtiKJ" + }, + "source": [ + "![Capture2.PNG]()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PvjO99jp7xnh" + }, + "source": [ + "## Objective \n", + "This notebook serves as a tutorial for interacting with the Open Catalyst Project.\n", + "\n", + "By the end of this tutorial, users will have gained:\n", + "* Intuition to the dataset and it's properties\n", + "* Knowledge of the various OCP tasks: IS2RE, IS2RS, S2EF\n", + "* Steps to train, validate, and predict a model on the various tasks\n", + "* A walkthrough on creating your own model\n", + "* (Optional) Creating your own dataset for other molecular/catalyst applications \n", + "* (Optional) Using pretrained models directly with an [ASE](https://wiki.fysik.dtu.dk/ase/#:~:text=The%20Atomic%20Simulation%20Environment%20(ASE,under%20the%20GNU%20LGPL%20license.)-style calculator." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "99jkSa_KmrDH" + }, + "source": [ + "\n", + "# Climate Impact\n", + "\n", + "Scalable and cost-effective solutions to renewable energy storage are essential to addressing the world’s rising energy needs while reducing climate change. As illustrated in the figure below, as we increase our reliance on renewable energy sources such as wind and solar, which produce intermittent power, storage is needed to transfer power from times of peak generation to peak demand. This may require the storage of power for hours, days, or months. One solution that offers the potential of scaling to nation-sized grids is the conversion of renewable energy to other fuels, such as hydrogen. To be widely adopted, this process requires cost-effective solutions to running chemical reactions.\n", + "\n", + "An open challenge is finding low-cost catalysts to drive these reactions at high rates. Through the use of quantum mechanical simulations (Density Functional Theory, DFT), new catalyst structures can be tested and evaluated. Unfortunately, the high computational cost of these simulations limits the number of structures that may be tested. The use of AI or machine learning may provide a method to efficiently approximate these calculations; reducing the time required from 24} hours to a second. This capability would transform the search for new catalysts from the present day practice of evaluating O(1,000) of handpicked candidates to the brute force search over millions or even billions of candidates.\n", + "\n", + "As part of OCP, we publicly released the world's largest quantum mechanical simulation dataset -- [OC20](https://github.com/Open-Catalyst-Project/ocp/blob/master/DATASET.md) -- in the Fall of 2020 along with a suite of baselines and evaluation metrics. The creation of the dataset required over 70 million hours of compute. This dataset enables the exploration of techniques that will generalize across different catalyst materials and adsorbates. If successful, models trained on the dataset could enable the computational testing of millions of catalyst materials for a wide variety of chemical reactions. However, techniques that achieve the accuracies required** for practical impact are still beyond reach and remain an open area for research, thus encouraging research in this important area to help in meeting the world's energy needs in the decades ahead.\n", + "\n", + "** The computational catalysis community often aims for an adsorption energy MAE of 0.1-0.2 eV for practical relevance." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jcpOlBcTsYVa" + }, + "source": [ + "![Capture.PNG]()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "o5sbM_JPpdMR" + }, + "source": [ + "\n", + "# Target Audience\n", + "\n", + "This tutorial is designed for those interested in application of ML towards climate change. More specifically, those interested in material/catalyst discovery and Graph Nueral Networks (GNNs) will find lots of benefit here. Little to no domain chemistry knowledge is necessary as it will be covered in the tutorial. Experience with GNNs is a plus but not required. \n", + "\n", + "We have designed this notebook in a manner to get the ML communnity up to speed as far as background knowledge is concerned, and the catalysis community to better understand how to use the OCP's state-of-the-art models in their everyday workflows.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gQgijl46pYzn" + }, + "source": [ + "\n", + "# Background & Prerequisites\n", + "\n", + "Basic experience training ML models. Familiarity with PyTorch. Familiarity with Pytorch-Geometric could be helpful for development, but not required.\n", + "No background in chemistry is assumed.\n", + "\n", + "For those looking to apply our pretrained models on their datasets, familiarity with the [Atomic Simulation Environment](https://wiki.fysik.dtu.dk/ase/#:~:text=The%20Atomic%20Simulation%20Environment%20(ASE,under%20the%20GNU%20LGPL%20license.) is useful." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7BpQklEEIFDD" + }, + "source": [ + "\n", + "## Background References\n", + "\n", + "To gain an even better understanding of the Open Catalyst Project and the problems it seeks to address, we strongly recommend the following resources:\n", + "\n", + "* To learn more about electrocatalysis, see our [white paper](https://arxiv.org/pdf/2010.09435.pdf).\n", + "* To learn about the OC20 dataset and the associated tasks, please see the [OC20 dataset paper](https://arxiv.org/pdf/2010.09990.pdf).\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rSRCNgYzUwaf" + }, + "source": [ + "\n", + "# Software Requirements\n", + "\n", + "All required dependencies can be found here - https://github.com/Open-Catalyst-Project/ocp#installation.\n", + "\n", + "For the following Colab Notebook, we manually install the dependencies below.\n", + "\n", + "For the purpose of the demo, we hihgly recommend you use a GPU. Google Colab provides access to 1 GPU (Runtime -> Change runtime type -> select GPU). The tutorial will function without a GPU, but will be slower for training times." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "58AKzWydvkVu" + }, + "outputs": [], + "source": [ + "# %%bash\n", + "pip install torch==1.7.1+cu110 -f https://download.pytorch.org/whl/torch_stable.html \n", + "pip install demjson==2.2.4 lmdb==1.1.1 ase==3.21 pymatgen==2020.12.31 pyyaml==5.4 tensorboard==2.4 wandb==0.11.2\n", + "pip install torch-scatter==2.0.6 torch-sparse==0.6.9 torch-cluster==1.5.9 torch-spline-conv==1.2.1 torch-geometric==1.6.3 -f https://data.pyg.org/whl/torch-1.7.1+cu110.html\n", + "git clone https://github.com/Open-Catalyst-Project/ocp.git" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { "colab": { - "name": "CCAI - OCP Tutorial", - "provenance": [], - "collapsed_sections": [ - "PoF-BxSM5Jkc", - "bSt6h_Q-oqjK", - "pto2SpJPwlz1", - "gaauxWdNw_-4", - "TcUvAI81xoSt", - "TUH5BaaXo-ca" - ], - "toc_visible": true, - "include_colab_link": true - }, - "kernelspec": { - "display_name": "Python 3", - "name": "python3" - }, - "language_info": { - "name": "python" - }, - "accelerator": "GPU" + "base_uri": "https://localhost:8080/" + }, + "id": "0NDOYuyAvmtO", + "outputId": "e3508b8f-8ade-4000-cdd8-7c5f75865a96" + }, + "outputs": [], + "source": [ + "%cd ocp\n", + "!pip install -e ." + ] }, - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "view-in-github", - "colab_type": "text" - }, - "source": [ - "\"Open" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "dzeHYa5GCxN7" - }, - "source": [ - "# MIT License\n", - "#\n", - "#@title Copyright (c) 2021 CCAI Community Authors { display-mode: \"form\" }\n", - "#\n", - "# Permission is hereby granted, free of charge, to any person obtaining a\n", - "# copy of this software and associated documentation files (the \"Software\"),\n", - "# to deal in the Software without restriction, including without limitation\n", - "# the rights to use, copy, modify, merge, publish, distribute, sublicense,\n", - "# and/or sell copies of the Software, and to permit persons to whom the\n", - "# Software is furnished to do so, subject to the following conditions:\n", - "#\n", - "# The above copyright notice and this permission notice shall be included in\n", - "# all copies or substantial portions of the Software.\n", - "#\n", - "# THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n", - "# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n", - "# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL\n", - "# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n", - "# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING\n", - "# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER\n", - "# DEALINGS IN THE SOFTWARE." - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "13i7KQ9t-CV8" - }, - "source": [ - "# Open Catalyst Project Tutorial Notebook\n", - "Author(s):\n", - "* [Muhammed Shuaibi](https://mshuaibii.github.io/), CMU, mshuaibi@andrew.cmu.edu\n", - "* [Abhishek Das](https://abhishekdas.com/), FAIR, abhshkdz@fb.com \n", - "* [Adeesh Kolluru](https://adeeshkolluru.github.io/), CMU, akolluru@andrew.cmu.edu\n", - "* [Brandon Wood](https://wood-b.github.io/), NERSC, bwood@lbl.gov \n", - "* [Janice Lan](https://www.linkedin.com/in/janice-lan), FAIR, janlan@fb.com\n", - "* [Anuroop Sriram](https://www.linkedin.com/in/anuroopsriram), FAIR, anuroops@fb.com\n", - "* [Zachary Ulissi](https://ulissigroup.cheme.cmu.edu/), CMU, zulissi@andrew.cmu.edu\n", - "* [Larry Zitnick](http://larryzitnick.org/), FAIR, zitnick@fb.com\n", - "\n", - "FAIR - Facebook AI Research\n", - "\n", - "CMU - Carnegie Mellon University\n", - "\n", - "NERSC - National Energy Research Scientific Computing Center\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "E_qIKf8erkfC" - }, - "source": [ - "## Table of Contents\n", - "\n", - "* [Background](#background)\n", - "* [Objective](#objective)\n", - "* [Climate Impact](#climate-impact)\n", - "* [Target Audience](#target-audience)\n", - "* [Background & Prerequisites](#background-and-prereqs)\n", - "* [Software Requirements](#software-requirements)\n", - "* [Dataset Overview & Visualization](#data-description)\n", - " * [Download](#download)\n", - " * [Visualization](#visual)\n", - " * [Data contents](#contents)\n", - "* [Tasks](#tasks)\n", - " * [S2EF](#s2ef)\n", - " * [IS2RE](#is2re)\n", - " * [IS2RS](#is2rs)\n", - "* [OCP Calculator](#calc)\n", - "* [Model development](#model-dev)\n", - "* [Running on command line](#cmd)\n", - "* [Limitations](#limit)\n", - "* [Next steps](#steps)\n", - "* [References](#references)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "JkjKcVJ47hSN" - }, - "source": [ - "## Background \n", - "The discovery of efficient and economic catalysts (materials) are needed to enable the widespread use of renewable energy technologies. A common approach in discovering high performance catalysts is using molecular simulations. Specifically, each simulation models the interaction of a catalyst surface with molecules that are commonly seen in electrochemical reactions. By predicting these interactions accurately, the catalyst's impact on the overall rate of a chemical reaction may be estimated.\n", - "\n", - "An important quantity in screening catalysts is their adsorption energy for the molecules, referred to as `adsorbates', involved in the reaction of interest. The adsorption energy may be found by simulating the interaction of the adsorbate molecule on the surface of the catalyst to find their resting or relaxed energy, i.e., how tightly the adsorbate binds to the catalyst's surface (visualized below). The rate of the chemical reaction, a value of high practical importance, is then commonly approximated using simple functions of the adsorption energy. The goal of this tutorial specifically and the project overall is to encourage research and benchmark progress towards training ML models to approximate this relaxation.\n", - "\n", - "Specifically, during the course of a relaxation, given an initial set of atoms and their positions, the task is to iteratively estimate atomic forces and update atomic positions until a relaxed state is reached. The energy corresponding to the relaxed state is the structure's 'relaxed energy'.\n", - "\n", - "As part of the [Open Catalyst Project](https://github.com/Open-Catalyst-Project/ocp) (OCP), we identify three key tasks ML models need to perform well on in\n", - "order to effectively approximate DFT --\n", - "\n", - " 1) Given an **I**nitial **S**tructure, predict the **R**elaxed **E**nergy of the relaxed strucutre (**IS2RE**),\n", - "\n", - " 2) Given an **I**nitial **S**tructure, predict the **R**elaxed **S**tructure (**IS2RS**),\n", - "\n", - " 3) Given any **S**tructure, predict the structure **E**nergy and per-atom **F**orces (**S2EF**)." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "FPeCifZbtiKJ" - }, - "source": [ - "![Capture2.PNG]()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "PvjO99jp7xnh" - }, - "source": [ - "## Objective \n", - "This notebook serves as a tutorial for interacting with the Open Catalyst Project.\n", - "\n", - "By the end of this tutorial, users will have gained:\n", - "* Intuition to the dataset and it's properties\n", - "* Knowledge of the various OCP tasks: IS2RE, IS2RS, S2EF\n", - "* Steps to train, validate, and predict a model on the various tasks\n", - "* A walkthrough on creating your own model\n", - "* (Optional) Creating your own dataset for other molecular/catalyst applications \n", - "* (Optional) Using pretrained models directly with an [ASE](https://wiki.fysik.dtu.dk/ase/#:~:text=The%20Atomic%20Simulation%20Environment%20(ASE,under%20the%20GNU%20LGPL%20license.)-style calculator." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "99jkSa_KmrDH" - }, - "source": [ - "\n", - "# Climate Impact\n", - "\n", - "Scalable and cost-effective solutions to renewable energy storage are essential to addressing the world’s rising energy needs while reducing climate change. As illustrated in the figure below, as we increase our reliance on renewable energy sources such as wind and solar, which produce intermittent power, storage is needed to transfer power from times of peak generation to peak demand. This may require the storage of power for hours, days, or months. One solution that offers the potential of scaling to nation-sized grids is the conversion of renewable energy to other fuels, such as hydrogen. To be widely adopted, this process requires cost-effective solutions to running chemical reactions.\n", - "\n", - "An open challenge is finding low-cost catalysts to drive these reactions at high rates. Through the use of quantum mechanical simulations (Density Functional Theory, DFT), new catalyst structures can be tested and evaluated. Unfortunately, the high computational cost of these simulations limits the number of structures that may be tested. The use of AI or machine learning may provide a method to efficiently approximate these calculations; reducing the time required from 24} hours to a second. This capability would transform the search for new catalysts from the present day practice of evaluating O(1,000) of handpicked candidates to the brute force search over millions or even billions of candidates.\n", - "\n", - "As part of OCP, we publicly released the world's largest quantum mechanical simulation dataset -- [OC20](https://github.com/Open-Catalyst-Project/ocp/blob/master/DATASET.md) -- in the Fall of 2020 along with a suite of baselines and evaluation metrics. The creation of the dataset required over 70 million hours of compute. This dataset enables the exploration of techniques that will generalize across different catalyst materials and adsorbates. If successful, models trained on the dataset could enable the computational testing of millions of catalyst materials for a wide variety of chemical reactions. However, techniques that achieve the accuracies required** for practical impact are still beyond reach and remain an open area for research, thus encouraging research in this important area to help in meeting the world's energy needs in the decades ahead.\n", - "\n", - "** The computational catalysis community often aims for an adsorption energy MAE of 0.1-0.2 eV for practical relevance." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "jcpOlBcTsYVa" - }, - "source": [ - "![Capture.PNG]()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "o5sbM_JPpdMR" - }, - "source": [ - "\n", - "# Target Audience\n", - "\n", - "This tutorial is designed for those interested in application of ML towards climate change. More specifically, those interested in material/catalyst discovery and Graph Nueral Networks (GNNs) will find lots of benefit here. Little to no domain chemistry knowledge is necessary as it will be covered in the tutorial. Experience with GNNs is a plus but not required. \n", - "\n", - "We have designed this notebook in a manner to get the ML communnity up to speed as far as background knowledge is concerned, and the catalysis community to better understand how to use the OCP's state-of-the-art models in their everyday workflows.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "gQgijl46pYzn" - }, - "source": [ - "\n", - "# Background & Prerequisites\n", - "\n", - "Basic experience training ML models. Familiarity with PyTorch. Familiarity with Pytorch-Geometric could be helpful for development, but not required.\n", - "No background in chemistry is assumed.\n", - "\n", - "For those looking to apply our pretrained models on their datasets, familiarity with the [Atomic Simulation Environment](https://wiki.fysik.dtu.dk/ase/#:~:text=The%20Atomic%20Simulation%20Environment%20(ASE,under%20the%20GNU%20LGPL%20license.) is useful." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "7BpQklEEIFDD" - }, - "source": [ - "\n", - "## Background References\n", - "\n", - "To gain an even better understanding of the Open Catalyst Project and the problems it seeks to address, we strongly recommend the following resources:\n", - "\n", - "* To learn more about electrocatalysis, see our [white paper](https://arxiv.org/pdf/2010.09435.pdf).\n", - "* To learn about the OC20 dataset and the associated tasks, please see the [OC20 dataset paper](https://arxiv.org/pdf/2010.09990.pdf).\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "rSRCNgYzUwaf" - }, - "source": [ - "\n", - "# Software Requirements\n", - "\n", - "All required dependencies can be found here - https://github.com/Open-Catalyst-Project/ocp#installation.\n", - "\n", - "For the following Colab Notebook, we manually install the dependencies below.\n", - "\n", - "For the purpose of the demo, we hihgly recommend you use a GPU. Google Colab provides access to 1 GPU (Runtime -> Change runtime type -> select GPU). The tutorial will function without a GPU, but will be slower for training times." - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "58AKzWydvkVu" - }, - "source": [ - "# %%bash\n", - "pip install torch==1.7.1+cu110 -f https://download.pytorch.org/whl/torch_stable.html \n", - "pip install demjson==2.2.4 lmdb==1.1.1 ase==3.21 pymatgen==2020.12.31 pyyaml==5.4 tensorboard==2.4 wandb==0.11.2\n", - "pip install torch-scatter==2.0.6 torch-sparse==0.6.9 torch-cluster==1.5.9 torch-spline-conv==1.2.1 torch-geometric==1.6.3 -f https://data.pyg.org/whl/torch-1.7.1+cu110.html\n", - "git clone https://github.com/Open-Catalyst-Project/ocp.git" - ], - "execution_count": 1, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "0NDOYuyAvmtO", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "e3508b8f-8ade-4000-cdd8-7c5f75865a96" - }, - "source": [ - "%cd ocp\n", - "!pip install -e ." - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "/content/ocp\n", - "Obtaining file:///content/ocp\n", - " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", - " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", - " Preparing wheel metadata ... \u001b[?25l\u001b[?25hdone\n", - "Installing collected packages: ocp-models\n", - " Running setup.py develop for ocp-models\n", - "Successfully installed ocp-models-0.0.3\n" - ] - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "LS0Tllp95tSu", - "outputId": "c2821fbe-093a-4a8d-ad43-6f2e61a9499a" - }, - "source": [ - "import torch\n", - "torch.cuda.is_available()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "True" - ] - }, - "metadata": {}, - "execution_count": 3 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "jXoiLncsU3pe" - }, - "source": [ - "\n", - "# Dataset Overview\n", - "\n", - "The Open Catalyst 2020 Dataset (OC20) will be used throughout this tutorial. More details can be found [here](https://github.com/Open-Catalyst-Project/ocp/blob/master/DATASET.md) and the corresponding [paper](https://arxiv.org/abs/2010.09990). Data is stored in PyTorch Geometric [Data](https://pytorch-geometric.readthedocs.io/en/latest/modules/data.html) objects and stored in LMDB files. For each task we include several sized training splits. Validation/Test splits are broken into several subsplits: In Domain (ID), Out of Domain Adsorbate (OOD-Ads), Out of Domain Catalyast (OOD-Cat) and Out of Domain Adsorbate and Catalyst (OOD-Both). Split sizes are summarized below:\n", - "\n", - "Train\n", - "* S2EF - 200k, 2M, 20M, 134M(All)\n", - "* IS2RE/IS2RS - 10k, 100k, 460k(All)\n", - "\n", - "Val/Test\n", - "* S2EF - ~1M across all subsplits\n", - "* IS2RE/IS2RS - ~25k across all splits\n", - "\n", - "#### **Tutorial Use**\n", - "\n", - "For the sake of this tutorial we provide much smaller splits (100 train, 20 val for all tasks) to allow users to easily store, train, and predict across the various tasks. Please refer [here](https://github.com/Open-Catalyst-Project/ocp#download-data) for details on how to download the full datasets for general use.\n", - "\n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "FIiwpALzBKaH" - }, - "source": [ - "![oc20.png]()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "PoF-BxSM5Jkc" - }, - "source": [ - "## Data Download [~1min] \n", - "FOR TUTORIAL USE ONLY" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "LEITxr5no8kh" - }, - "source": [ - "%%bash\n", - "mkdir data\n", - "cd data\n", - "wget -q http://dl.fbaipublicfiles.com/opencatalystproject/data/tutorial_data.tar.gz -O tutorial_data.tar.gz\n", - "tar -xzvf tutorial_data.tar.gz\n", - "rm tutorial_data.tar.gz" - ], - "execution_count": 2, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "bSt6h_Q-oqjK" - }, - "source": [ - "## Data Visualization " - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "HodnfJpE8D0u" - }, - "source": [ - "import matplotlib\n", - "matplotlib.use('Agg')\n", - "\n", - "import os\n", - "import numpy as np\n", - "\n", - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "\n", - "params = {\n", - " 'axes.labelsize': 14,\n", - " 'font.size': 14,\n", - " 'font.family': ' DejaVu Sans',\n", - " 'legend.fontsize': 20,\n", - " 'xtick.labelsize': 20,\n", - " 'ytick.labelsize': 20,\n", - " 'axes.labelsize': 25,\n", - " 'axes.titlesize': 25,\n", - " 'text.usetex': False,\n", - " 'figure.figsize': [12, 12]\n", - "}\n", - "matplotlib.rcParams.update(params)\n", - "\n", - "\n", - "import ase.io\n", - "from ase.io.trajectory import Trajectory\n", - "from ase.io import extxyz\n", - "from ase.calculators.emt import EMT\n", - "from ase.build import fcc100, add_adsorbate, molecule\n", - "from ase.constraints import FixAtoms\n", - "from ase.optimize import LBFGS\n", - "from ase.visualize.plot import plot_atoms\n", - "from ase import Atoms\n", - "from IPython.display import Image" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "VRR5C88U8mH1" - }, - "source": [ - "### Understanding the data\n", - "We use the Atomic Simulation Environment (ASE) library to interact with our data. This notebook will provide you with some intuition on how atomic data is generated, how the data is structured, how to visualize the data, and the specific properties that are passed on to our models." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "hEDcCSGD86Hg" - }, - "source": [ - "### Generating sample data\n", - "\n", - "The OC20 dataset was generated using density functional theory (DFT), a quantum chemistry method for modeling atomistic environments. For more details, please see our dataset paper. In this notebook, we generate sample data in the same format as the OC20 dataset; however, we use a faster method that is less accurate called effective-medium theory (EMT) because our DFT calculations are too computationally expensive to run here. EMT is great for demonstration purposes but not accurate enough for our actual catalysis applications. Below is a structural relaxation of a catalyst system, a propane (C3H8) adsorbate on a copper (Cu) surface. Throughout this tutorial a surface may be referred to as a slab and the combination of an adsorbate and a surface as an adslab." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "y6Hx8JtXEbW-" - }, - "source": [ - "### Structural relaxations\n", - "\n", - "A structural relaxation or structure optimization is the process of iteratively updating atom positions to find the atom positions that minimize the energy of the structure. Standard optimization methods are used in structural relaxations — below we use the Limited-Memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm. The step number, time, energy, and force max are printed at each optimization step. Each step is considered one example because it provides all the information we need to train models for the S2EF task and the entire set of steps is referred to as a trajectory. Visualizing intermediate structures or viewing the entire trajectory can be illuminating to understand what is physically happening and to look for problems in the simulation, especially when we run ML-driven relaxations. Common problems one may look out for - atoms excessively overlapping/colliding with each other and atoms flying off into random directions." - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "GEpQz9In9GrX", - "outputId": "96cd7bc8-2877-4b35-e133-80a10ad81b61" - }, - "source": [ - "###DATA GENERATION - FEEL FREE TO SKIP###\n", - "\n", - "# This cell sets up and runs a structural relaxation \n", - "# of a propane (C3H8) adsorbate on a copper (Cu) surface\n", - "\n", - "adslab = fcc100(\"Cu\", size=(3, 3, 3))\n", - "adsorbate = molecule(\"C3H8\")\n", - "add_adsorbate(adslab, adsorbate, 3, offset=(1, 1)) # adslab = adsorbate + slab\n", - "\n", - "# tag all slab atoms below surface as 0, surface as 1, adsorbate as 2\n", - "tags = np.zeros(len(adslab))\n", - "tags[18:27] = 1\n", - "tags[27:] = 2\n", - "\n", - "adslab.set_tags(tags)\n", - "\n", - "# Fixed atoms are prevented from moving during a structure relaxation. \n", - "# We fix all slab atoms beneath the surface. \n", - "cons= FixAtoms(indices=[atom.index for atom in adslab if (atom.tag == 0)])\n", - "adslab.set_constraint(cons)\n", - "adslab.center(vacuum=13.0, axis=2)\n", - "adslab.set_pbc(True)\n", - "adslab.set_calculator(EMT())\n", - "\n", - "os.makedirs('data', exist_ok=True)\n", - "\n", - "# Define structure optimizer - LBFGS. Run for 100 steps, \n", - "# or if the max force on all atoms (fmax) is below 0 ev/A.\n", - "# fmax is typically set to 0.01-0.05 eV/A, \n", - "# for this demo however we run for the full 100 steps.\n", - "\n", - "dyn = LBFGS(adslab, trajectory=\"data/toy_c3h8_relax.traj\")\n", - "dyn.run(fmax=0, steps=100)\n", - "\n", - "traj = ase.io.read(\"data/toy_c3h8_relax.traj\", \":\")\n", - "\n", - "# convert traj format to extxyz format (used by OC20 dataset)\n", - "columns = (['symbols','positions', 'move_mask', 'tags'])\n", - "with open('data/toy_c3h8_relax.extxyz','w') as f:\n", - " extxyz.write_xyz(f, traj, columns=columns)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - " Step Time Energy fmax\n", - "*Force-consistent energies used in optimization.\n", - "LBFGS: 0 01:59:21 15.804700* 6.7764\n", - "LBFGS: 1 01:59:21 12.190607* 4.3232\n", - "LBFGS: 2 01:59:21 10.240169* 2.2655\n", - "LBFGS: 3 01:59:22 9.779223* 0.9372\n", - "LBFGS: 4 01:59:22 9.671525* 0.7702\n", - "LBFGS: 5 01:59:22 9.574461* 0.6635\n", - "LBFGS: 6 01:59:22 9.537502* 0.5718\n", - "LBFGS: 7 01:59:22 9.516673* 0.4466\n", - "LBFGS: 8 01:59:22 9.481330* 0.4611\n", - "LBFGS: 9 01:59:22 9.462255* 0.2931\n", - "LBFGS: 10 01:59:22 9.448937* 0.2490\n", - "LBFGS: 11 01:59:22 9.433813* 0.2371\n", - "LBFGS: 12 01:59:22 9.418884* 0.2602\n", - "LBFGS: 13 01:59:23 9.409649* 0.2532\n", - "LBFGS: 14 01:59:23 9.404838* 0.1624\n", - "LBFGS: 15 01:59:23 9.401753* 0.1823\n", - "LBFGS: 16 01:59:23 9.397314* 0.2592\n", - "LBFGS: 17 01:59:23 9.387947* 0.3450\n", - "LBFGS: 18 01:59:23 9.370825* 0.4070\n", - "LBFGS: 19 01:59:23 9.342222* 0.4333\n", - "LBFGS: 20 01:59:23 9.286822* 0.5002\n", - "LBFGS: 21 01:59:23 9.249910* 0.5241\n", - "LBFGS: 22 01:59:23 9.187179* 0.5120\n", - "LBFGS: 23 01:59:24 9.124811* 0.5718\n", - "LBFGS: 24 01:59:24 9.066185* 0.5409\n", - "LBFGS: 25 01:59:24 9.000116* 1.0798\n", - "LBFGS: 26 01:59:24 8.893632* 0.7528\n", - "LBFGS: 27 01:59:24 8.845939* 0.3321\n", - "LBFGS: 28 01:59:24 8.815173* 0.2512\n", - "LBFGS: 29 01:59:24 8.808721* 0.2143\n", - "LBFGS: 30 01:59:24 8.794643* 0.1546\n", - "LBFGS: 31 01:59:24 8.789162* 0.2014\n", - "LBFGS: 32 01:59:24 8.782320* 0.1755\n", - "LBFGS: 33 01:59:25 8.780394* 0.1037\n", - "LBFGS: 34 01:59:25 8.778410* 0.1076\n", - "LBFGS: 35 01:59:25 8.775079* 0.1797\n", - "LBFGS: 36 01:59:25 8.766987* 0.3334\n", - "LBFGS: 37 01:59:25 8.750249* 0.5307\n", - "LBFGS: 38 01:59:25 8.725928* 0.6851\n", - "LBFGS: 39 01:59:25 8.702312* 0.5823\n", - "LBFGS: 40 01:59:25 8.661515* 0.3996\n", - "LBFGS: 41 01:59:25 8.643432* 0.5585\n", - "LBFGS: 42 01:59:25 8.621201* 0.3673\n", - "LBFGS: 43 01:59:26 8.614414* 0.1394\n", - "LBFGS: 44 01:59:26 8.610785* 0.1372\n", - "LBFGS: 45 01:59:26 8.608134* 0.1464\n", - "LBFGS: 46 01:59:26 8.604928* 0.1196\n", - "LBFGS: 47 01:59:26 8.599151* 0.1354\n", - "LBFGS: 48 01:59:26 8.594063* 0.1479\n", - "LBFGS: 49 01:59:26 8.589493* 0.1538\n", - "LBFGS: 50 01:59:26 8.587274* 0.0885\n", - "LBFGS: 51 01:59:26 8.584633* 0.0938\n", - "LBFGS: 52 01:59:26 8.580239* 0.1409\n", - "LBFGS: 53 01:59:27 8.572938* 0.2543\n", - "LBFGS: 54 01:59:27 8.563343* 0.2919\n", - "LBFGS: 55 01:59:27 8.554117* 0.1966\n", - "LBFGS: 56 01:59:27 8.547597* 0.1291\n", - "LBFGS: 57 01:59:27 8.542086* 0.1280\n", - "LBFGS: 58 01:59:27 8.535432* 0.0982\n", - "LBFGS: 59 01:59:27 8.533622* 0.1277\n", - "LBFGS: 60 01:59:27 8.527487* 0.1167\n", - "LBFGS: 61 01:59:27 8.523863* 0.1218\n", - "LBFGS: 62 01:59:28 8.519229* 0.1305\n", - "LBFGS: 63 01:59:28 8.515424* 0.1019\n", - "LBFGS: 64 01:59:28 8.511240* 0.2122\n", - "LBFGS: 65 01:59:28 8.507967* 0.2666\n", - "LBFGS: 66 01:59:28 8.503903* 0.2377\n", - "LBFGS: 67 01:59:28 8.497575* 0.1623\n", - "LBFGS: 68 01:59:28 8.485434* 0.2022\n", - "LBFGS: 69 01:59:28 8.466738* 0.2159\n", - "LBFGS: 70 01:59:28 8.467607* 0.3348\n", - "LBFGS: 71 01:59:29 8.454037* 0.1063\n", - "LBFGS: 72 01:59:29 8.448980* 0.1197\n", - "LBFGS: 73 01:59:29 8.446550* 0.0992\n", - "LBFGS: 74 01:59:29 8.444705* 0.0562\n", - "LBFGS: 75 01:59:29 8.443403* 0.0388\n", - "LBFGS: 76 01:59:29 8.442646* 0.0548\n", - "LBFGS: 77 01:59:29 8.442114* 0.0614\n", - "LBFGS: 78 01:59:29 8.440960* 0.0588\n", - "LBFGS: 79 01:59:29 8.439820* 0.0482\n", - "LBFGS: 80 01:59:29 8.438600* 0.0513\n", - "LBFGS: 81 01:59:30 8.437429* 0.0541\n", - "LBFGS: 82 01:59:30 8.435695* 0.0672\n", - "LBFGS: 83 01:59:30 8.431957* 0.0857\n", - "LBFGS: 84 01:59:30 8.423485* 0.1332\n", - "LBFGS: 85 01:59:30 8.413846* 0.2078\n", - "LBFGS: 86 01:59:30 8.404849* 0.1787\n", - "LBFGS: 87 01:59:30 8.385339* 0.1690\n", - "LBFGS: 88 01:59:30 8.386849* 0.1876\n", - "LBFGS: 89 01:59:30 8.371078* 0.1181\n", - "LBFGS: 90 01:59:31 8.368801* 0.0942\n", - "LBFGS: 91 01:59:31 8.366226* 0.0670\n", - "LBFGS: 92 01:59:31 8.361680* 0.0550\n", - "LBFGS: 93 01:59:31 8.360631* 0.0473\n", - "LBFGS: 94 01:59:31 8.359692* 0.0242\n", - "LBFGS: 95 01:59:31 8.359361* 0.0155\n", - "LBFGS: 96 01:59:31 8.359163* 0.0143\n", - "LBFGS: 97 01:59:31 8.359102* 0.0156\n", - "LBFGS: 98 01:59:31 8.359048* 0.0155\n", - "LBFGS: 99 01:59:31 8.358986* 0.0142\n", - "LBFGS: 100 01:59:32 8.358921* 0.0132\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "/usr/local/lib/python3.7/dist-packages/ase/io/extxyz.py:302: UserWarning: Skipping unhashable information adsorbate_info\n", - " '{0}'.format(key))\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Kb77jRtz9fws" - }, - "source": [ - "### Reading a trajectory" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "mUbvcij59d6I" - }, - "source": [ - "identifier = \"toy_c3h8_relax.extxyz\"\n", - "\n", - "# the `index` argument corresponds to what frame of the trajectory to read in, specifiying \":\" reads in the full trajectory.\n", - "traj = ase.io.read(f\"data/{identifier}\", index=\":\")" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "b_e6zDVx9pTC" - }, - "source": [ - "### Viewing a trajectory\n", - "\n", - "Below we visualize the initial, middle, and final steps in the structural relaxation trajectory from above. Copper atoms in the surface are colored orange, the propane adsorbate on the surface has grey colored carbon atoms and white colored hydrogen atoms. The adsorbate’s structure changes during the simulation and you can see how it relaxes on the surface. In this case, the relaxation looks normal; however, there can be instances where the adsorbate flies away (desorbs) from the surface or the adsorbate can break apart (dissociation), which are hard to detect without visualization. Additionally, visualizations can be used as a quick sanity check to ensure the initial system is set up correctly and there are no major issues with the simulation.\n" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 680 - }, - "id": "CV5qe6IP9vZg", - "outputId": "256f97d6-daa7-40fa-ef50-7ba0ca005f9d" - }, - "source": [ - "fig, ax = plt.subplots(1, 3)\n", - "labels = ['initial', 'middle', 'final']\n", - "for i in range(3):\n", - " ax[i].axis('off')\n", - " ax[i].set_title(labels[i])\n", - "ase.visualize.plot.plot_atoms(traj[0], \n", - " ax[0], \n", - " radii=0.8, \n", - " rotation=(\"-75x, 45y, 10z\"))\n", - "ase.visualize.plot.plot_atoms(traj[50], \n", - " ax[1], \n", - " radii=0.8, \n", - " rotation=(\"-75x, 45y, 10z\"))\n", - "ase.visualize.plot.plot_atoms(traj[-1], \n", - " ax[2], \n", - " radii=0.8, \n", - " rotation=(\"-75x, 45y, 10z\"))" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": {}, - "execution_count": 7 - }, - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqwAAAKGCAYAAACP9clgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd5wdVfnH8c83CSUk9NB7r4IgXRGQKqICIk1BpIvAT0FFBGygiEhRiqIUQZEiCoggKAgoCIJ0pPfeIZDQQvj+/jjnJgtukr2bmT33zj7v1yuv3dm9M/tkk7lz5szzPEe2CSGEEEIIoVMNKR1ACCGEEEIIkxMD1hBCCCGE0NFiwBpCCCGEEDpaDFhDCCGEEEJHiwFrCCGEEELoaDFgDSGEEEIIHS0GrH0k6deSLOnXFR/3qnzc707FMZz/rFtdZNXEFkK3kbRu65wqtP9Oef9Hevned/P3rurPsUPoVpKGStpP0i2Sxva47m3eqdequsYNg9Ww0gGESZP0FWAW4ALbt5aOJ4QQQijkWGDv/PnbwLP58zfLhBMGWgxY++5p4N78sUqP5eO+0Mv3vgIsBDwCTG7Aem/++HqlkYUwOL3OxHMqhFCYpBmBPfLmN4CfuMeqR5K2Z9LX0dAQMWDtI9sHAgfWcNwdKzjG0lXEEkIA2zcAcU6F0DmWBqbJn//c71uis4rraOh8kcMaQgghhE42Q+sT22NKBhLKiQFrH00qebpnsreS3ST9W9Krkl6TdJ2kz0/muP+TLN4qrCClAwCc1iPB/H+KOSZXdCVp+Xy8v0t6UNIbObZbJB0madRU/FpCKOJ9590wSV/N/6fHSHpO0gWSVuzx+hkkHSzpzlyw8aKkcyQt1suxp1g0JWlpSWdKekbSm5IeknScpLn6GP8aOcYX8jl5r6QfSBrZv9/Ie449Rz63b5E0ukd8p0habmqPH8JAaRUgAlf1+FrPa+FV+WuTLLqS9Ej+3k6SppX0dUm35feB0fnauMlkYlhE0gGSLpV0X95vjKS7JB0racHq/+ahN5ESUJ2hwPnAp4F3SHlwMwJrAGtIWsL2d/p4rDGkhPI5SDcVrwJv9DOuPzNx4PtmjmtW4IP5z06S1rcdOXuhG00DXAqsTyrEGEc6bz4NrC9pPeBh4G/ASqRzwMBswNbAupJWtf1YX39gvrhdAEyXvzQGmIdUEPIZ4KAp7L8z8CsmThiMBhYGvgVsCfyyr7H0cuwNgN+TijUh/T7eBhbJfz4vaTfbZ/T3Z4QwgN4gXQunJV23YGKxFcBLbRxrJPAPYHXSefEWMBOwHul9YFfbp/ay32nAOvnzt4HXcizL5D87SdrM9jVtxBL6IWZYq/NlYF1gJ2Am2zMDCwAX5e8fLGmJvhzI9k9szw08nr/0f7bn7vmnjbiuzjEtZHu47dmB6YENgBuA+YDftXG8EDrJXqQbr8+SLkgzAqsBD+Xtn5IGh7MCGwMj8tc3AJ4H5gR+2NcfJml+4BzSYPV2YHXbM+bjfhwYDxw9mf1XBk4ivfdeBSxje5Yc03bA3MC3+xrP+479AeBPpMHqr4BlgeG2R5JuWk8kXfhPkbRKf35GCAPJ9jn5erdlj6/1vBZuOZnd3+/7wPzA5sCIfN4uDVwPCPippJl72e9W0vV9SdL5NIp0/q9OulmeGThH0vD2/4ahHTFgrc6swBa2T7f9BoDtJ0gX0qdIv+utBzoo21/IMT3W42tv276CNCv1LLCypI8MdGwhVGAWYHPb59ke5+RGYLf8/bWATYANbf/V9rv5zxXAN/NrtpQ0TS/H7s23SLMyL+Zj3gCQj3kpadA6YjL7H0Z6snUfsKnte/L+42yfDWzLxNnRdh0LDAcOt7277bttj8/Hf8z2l4Gf5Z9/cD9/RgjdagZgA9sX2h4HkJ8sfor05GUksNn7d7L9Fdsn2r7f9rv5a+/kc38z0o3rvKSnK6FGMWCtzrW2r3z/F22/BVyWN1cY2JAmLyevX503Y8AautE1k3gUdzXpkR/AebYf6OU1rfNyODDFpx+SBGyTN39h+7n3v8b2ncB5k9h/FtIsL8CRrRvb9+1/GXDdlGLp5dgLAx8jpSP9ZDIvbaUCbCBpaLs/J4Qudl7rBrEn288z8Zxr6xqdbwgvzZtxDa1Z5LBW59+T+d5T+eNsAxHI+0naDNgBWBWYix4Vlz3MP6BBhVCNG3r7ou3xkl4gpbzcOIl9e+bCzTqJ1/S0CBPP4b9P5nV/Jz3ef7+VmThJMKX91+xDPD19OH8cAtyVxta9ag1SRwCzA/8z6A6hofp9jZa0NrALqSZlfnp/ihLX0JrFgLU6r03me+/kj3197FgJSUOA3/Lei+c7wMuk5HFI+TfTM/nHmCF0qr6cd72+xvY7PQZ2fTk35+zx+ZOTed0TNe0/OfPmj0NIN6V90duNawhN1a9rtKQjSIsVtIznvdfQkaTrZ1xDaxYpAc22C2mwOp6UcL4EMJ3t2XoUb7UeX05ySiaE0PFaM6fP2lYf/zxSMuAQOp2kDZk4WD0R+AD/ew09pvXyEjEOJjHD2mzb5o8nT6alVjsdB0IYzHo+Pp+PSS/fOl8f93+ozf0n55n8cZSkEbbH9uMYIYT3al1DL8tFi72Ja+gAiRnWzvZu/tjfO7cF8sdbevtmblK+ej+PHcJg8zAT+z6uN5nXfWwSX7+Zied0f/afnGvzx6GkTgUhhKk3pWuo6N/5GvohBqyd7dX8sb9tbkbnjytO4vuHkPpWhhCmIK9ffm7e3LO3VeIkLQtsNYn9XwH+mje/Jmn6XvbfgNSKq93Y7mfiakA/mEQ/yZ4/p0gBaAhdZkrX0D2BRQcolkEvBqyd7c78cStJfalifr9Wu43dJO0uaVoASXNLOoaUm/NiBXGGMFgcTireGAX8rdWAX8lGwF9Iq8lNyiGknPKlgYslLZX3HyZpa9KA+JV+xrYPadWtJYHrJX2656BY0nySdpB0BXBEP39GCINJ6xr6cUmHSBoBqUWdpG8BxxHX0AETA9bO9kvSMpJrAc9Leiqvi/xIH/c/CriHlKt8EvCGpJdJLTy+kr/258qjDqGh8gIc25F6vH4QuFHSq8BYUl/XaYD9JrP/f0irc5n0KPEeSa+QBprnkFptfb+fsd1JWiThGdKA+AJgjKQXJL1O6j5wBvEIM4S+OgP4Z/78+8Brkl4iDVJ/QBrQ/rxQbINODFg7mO1/AJ8ALifNusxFWmJxoT7u/wppsHss8AhpZucd0qPD7WzvWXnQITSc7YtJPVXPJhVSTUsaaB4PrETKdZ3c/r8k9U29iJQTOx3wKGn2djVSy5z+xnYtaYb1a6R1018hpRSNB+4mtbn7HOmGNYQwGXlFrI2A75FWpxtHqim5AfgSaZWs8cUCHGSU0rJCCCGEEELoTDHDGkIIIYQQOloMWEMIIYQQQkeLAWsIIYQQQuhoMWANIYQQQggdLQasIYQQQgiho8WANYQQQgghdLQYsIYQQgghhI4WA9YQQgghhNDRYsAaQgghhBA6WgxYQwghhBBCR4sBawghhBBC6GgxYA0hhBBCCB0tBqwhhBBCCKGjxYA1hBBCCCF0tBiwhhBCCCGEjhYD1hBCCCGE0NFiwBpCCCGEEDpaDFhDCCGEEEJHG1Y6gDBpkkYCbwDTAT8CFgHeBc61faakYbbfKRljCCGRNAyYzvZYSbsDnwHeAe4EDs6fD7E9vmCYIQRAkoCZbI+WtDrwZWBW4CngONt3xjW2s8QMa4eQNErS1pLWzNu/Ap4DFgXeBB4G5gPuBl7Pu31d0tOSPpP3WUXS4pLi3zWEGkkaImljSdvn7U8CrwJ75pc8DzwCTAO8YHscsAQwWtIv8z4L5HN2+gH/C4QwyEhaXtJukmaTNB3p+npJ/vZY4D/AOqQbzLfz1/8t6S5Js+RzfgNJowY++gAxYB1QSuaTNCJ/foqki/K3lwC2A+bM2wcAM9q+3/a7to8BXgH+Zvv8/JofAasD/8jb2wKXA4vk4x8paccB+cuF0ECSZpQ0d/58Z0lXSVoBMLA3sGx+6RXAHLaPAsjn6G3Ag7aPzF+7D5gf+HHeZ0XgZNLMDpK+KGk/SXMNzN8uhGaRNEzSIvnzD0i6UNJ++dufAj4MjLT9Func/QiA7TuBs4G3bB+Xz1WANUnX1dGk2deD8+uQtJKk7+fZ2TAAZLt0DI0laXbSY8EXbP9R0pHAF4DNbf9L0meBR23f0MfjLQU8bfvVPrx2GmAfYE7b35T0YeAE4FTbP5M0B/C27dH9/OuF0DiStgCWsv2j/LTjcuAo29+WtBYwArjO9pg+HGtOYLjtR/v4szcDNgaOAh4Fbsgftyalb80FPOF40w4BAEkfBDYELrB9v6RHgJeBlYG5SQPUG2w/1odjTQMsZ/vWPv7spYDPA3fYPlfS4cAawNds3yRpIeCp/HQlVCAGrFMp560tSRqUPifpJNJjhQ8A8wLfBS7KA9Zpbb896aPVGud0wAqAbf9H0leAw4DdbJ8laStSvuzfbb9RIsYQ6pbz1uYl5a7dnR/pfx34tu2LJB1NerT/fUAAJXJOc5yLA0vYvkTSMsCVwD9tf1bSSqQZoqttPzHQ8YUwUCTNCCxj+wZJCwOnA/+1vVc+f1cFfmH73sLX2FHASsDttp+VdGWObU7SE5mdgX/b/k+J+JogBqx9lC8gACNJeWpv5ZnKrwJ7Af+XLywfIeXGPGD73YpjWBu40/bLFR1vKDDM9luSvgZsREpLeA24EPiX7UPzoNxRLBK6iSTZtqStgbWBrwHzkGYuf2N7f0lLAjOTzqtKb9QkLU4qwvpvhcccbvsNSR8jvQ+dl2d3DgPmAA61/YSk6fJjzxC6Qo/zdUXgs8Cltq+RdDXpycZH80vXIg0Kn6v4588ArGX78gqP2TpfRwE/JI0b9pG0MWkA+2vbf4nztW8ih7UXOcd0zXwxQ9LPgBdIMzPvkIqfnswvP9b2ErYvAbB9je37qh6sZkeTcl0rYXt86ySx/RPbG9l+kXQ3eALQmrlZn1Qs8h0ASctJWjWKRUInyMUQy+YbOiR9StLDwL75JXMDD5Eeqz9qe07b+0PKK7V9Y01PFbYkpQBVphWn7b/b3tr2uflb55OKRd5QKrp8StJ/ci77LJI2jGKR0CkkzSNpE0nTS5pZ0q2k9BuAWUjX2dbEzLq2V7H9ev5zedWD1Wxu4JdVHrDH+fqC7d1t75O/dQfwZ9LkEMCJSgXUqwFI+phSAbX+96iD16CeYW3NHObN7wEz2N5P0qeBQ4AjbZ+Tc1Vesf1sqVgBJN0M7Gr75gI/exZghO0nJe1CGgx82/aFkg4E3gJ+2ZfcvhD6I795T5ufCGwNbAYcBDxLKnD6u+0v59zRWUgFT8WeCkj6Fqlw8sACP3taYKGc17cM8AvgHtt7SPo4qZjk3FxsEkItWjOHkpYDvkRKaTlHqVPGoqQbuqeADwF32x5bMNYlgYttVzYp1MbPFrAgKbVwrKQzSekEy5Ley74NXGX7jwMdWycZNDOskmaS9PFcOIGkH5Jy1VbOF7XXgKsAbF+Y7+jOydv3lh6sZtsB95T4wbZfsf1k/vwU2yvavjB/+xHSm887+W75YUm/AMjbC8adYmhXfsqxdf78o8CLpJxwSDMwVwFjbL9texnbXwaw/VyeOS2dwnIKcFyJH5x/J/fnz++2vY7tPfK3nyO9988KIOlcpe4HC+TtpXMBSgh9JmkRSdtKmjPP7N9NmkkEGA88CPwXIM82bmD7SSf/KTlYzR4jdRIYcPl38Gjrd2D7c7aXdOoB+26ObX4ASTtJukXSNnl7IUkzlYh7oDVuhjX/w71j+3VJPwKWI/0n/CDwE+AM26crtY4Z0wEnSaPkx5GLA3PZ/qekDYHfkn7vX8/bc5Lac9XxWCd0kTwwmsn2i0r9hHcCDrP9b0l/JlXF7ylpBKkdTSfcODZKnpH+IKk93njSbPV0theTND/wadLM2O0FwwwdIE88zOlUVLQoqTjxDttHSPoGqc3iwU4FjQuRzt/SN46NImk4qaj75fwE5WhgD1LqxI2SvkTqLnJpTamJxXT1gFVpJajNSInM50v6JulR/lY5kXk70mzClU34h8uJ2v+y/doUX9xhlKs3JW1J6mt3tO3rJZ1O6k6wP2lBhOG2X5/csUL3ysVCK5HysZcGbiYVHnxJqY3UPKTK9xcLhlkJScuTbp6LPBWZGj3O1yVIXRQesP1jSbsBGwDH5PN3hjhfmyv/+69POifvlnQTqb3awqRH1Z8Errd9d7koq5HT3lZxhUVXA6VHeuO7pOKuJYGtSE8+TwQutH1irjt5u1vHQx0/YM13dPORBqXP50f5m5Ia/s4A/By4xPYpeRbmzabe0Ul6APh461FfE+RBykqkf8e5SY+NLrO9haQFSSfezbZfKhhmaEN+yjGH7QclfYK0CMZxtn+fZwMAvgWMI83kNXLAo9SX8TXbPywdS1WU2gp9BPiP7XskXQEsA6wCPE2ajb3d9kPFggxtyU85liStojg7cCqp3/fuOSVnY+AE2zdLmrEbJ0z6QtKHgF/ZXrl0LFXJk3rrAtj+s6S9gCOAfW2fllMk3yLNkhdpB9aOjhuwKvUL3YlUXHGcpF2BHwBftf07SeuR8k1v9SBb41ep8nn9Jl8McrHInE6tedYhPXK6OM/u7AwsBJxm+5GScYaJ8sz/OqQ3wiGk7hJ/sL1jnqFZELjJ9isFwxxwkn4MvGj7iNKx1KVHscjjwPTAWaTi1Q0lfQDYFfiz7b8VDDP0kM/JLUk9Qa+SdCmwCOlGZDTpqeUtth8uGOaAU6rQP8H2qqVjqVOeSR5i+yVJB5EWJtnO9l2SjgMeAH7mThscUqjoStI0Sq2Rlsjb35H0SK5mfYdUMdjKLT3V9ly2fwdg+8qcoD2oBqvZxkxsNdVIuVjkifz51blYpLWU5QOk/7PTAEi6SdKVkqbL/6dWiGKR6uUCivmVlyCUtI6k23IKDsBSpLv0oU49gme0vSOA09LCVwy2wWp2NGm2qrF6FIu869Ry6NO2N8zffoVULNIq7josF4usm7eXHizFIgNNqch4LUkj83vj1Ur9TCH1652LlIoFsKntpWw/n99//zjYBqvZnaR0tUZzKqB+KX/+A6cC6rty/cmtwGy2rdS68mFNbGc5r6QF8k1qEbXOsOa/mGy/q9SYfh6nZt0bAceTljw8Ked6vQU81NTH+aF6uVhkOdtXKlU4/w14PM/urERqMH257XuLBtpFJA21PT7Pmn4KOIbUw/ReUmrGNvn3viBwV1Mf54fq9SgWecz2M5LOIc3mLUQa3H4DuDFmY/uux/m6CLAbaQGM30k6HlgN2MFpBai1gXsdha6hjzSxgHq47dvyE87DSe0sT5L0ufzSi9yH5eKrUNkMq6Thkj4qaY28/TXgJVKCPsB0wO0Atv/q1LLhpLx9Z56JicHqZEjaXNGsfwKn9kVX5s8ft700sEn+9jBgRdKa0q3ZnXM0cTGImUvE3EkkrShpix6fP0pK0IeUH34/MDbPni1hexuY8Hv/TwxWJ0/SKkqrXQVSE3XbN9h+Jm9vQ+oQ8QIwnFTEsxmApPUkXSZp27w9Y76ADlr5KccnJM2bt68CnsgTQ0PIkz4Atve2vVrrZt32P2OwOnmS5lIqCg1Aft+/z/ZteftUUp3Jyfklw4HNgRFKi7dcJekYSKl9SiuHVaqyGVZJJ5AaA//L9keUimlmJVUXRuuoCkh6gbSm8vOlY+k2Of1kDVJB13OSHiQNahclDc42JuVZDopHYTlf62pSCs68gEhVpZc599sNU0epF/Fttn9eOpZuI2lWUk7li7b/JekI0hLYW9i+XNKmpA4wtwyGiQ6lKvCHSAOGb9o+WqkLzt2kgpnG/w7qJml94CDbMWhtk9Iy72sB89s+S9KHSSuXnWT7K0rL7c5BeoIyur8/p8o71vmB7YHWNPGcpIKZHQAk7SXpgPw4MfTPUFKfxNCmPIP/mx6zDIsDa+Y3+tlI/08PhAlLe56r1Be0qZYE/khq4/Ia6W55e/IMq6Q1JB3eemIS+iXO136y/bLti2z/K28fQEpDuS6/ZGPSwgzT5XzNCyX9oFC4A2EY6Zq6MHBa/trqwHnAKElDJZ0gqdKlgAeZOF/7yWmZ93/aPitvXwvMTCqYh3S9+TapRRqSfizpt+2OB6scsL5Muht+FN6zWtQv8vcfIyV6D8vTx3dL+mMu6BguabGSybxdYlVSFWeYSrkC8rl8Z/g0aUWW1trViwAfZuLj8SZ6C3i+xyPDZ51Wnvl0/v4rpKKMOQEk/UzStZI+mLeXUOroESbtYODc0kE0yCukJwKQBq63ATOR0s1WB3ZRWhGtiYaQ8vOfyoWN2P6K7cWdFtOYlpRnviCApI0k/VfSl/P2vJJmKxV8l7gW+GLpIJrCqU1WK7f1HtL52rISsBHwvXaOWaStVR6YLgQsZvsKSSsAFwPX2N4uz+osDVxh+/EBDzA0jlI18lrAS7ZvkHQksDdpTfXbSGvS32b7ovz6WUlFgLOWirmT5N/HB0m/o5eUKo5XAkaR2hntTGogfn3BMEND5GvEGsC8tv+QcwvPA463/W2l/qAzktqnvZL3uQL4oe0rigXeIZTaAy5HWrjiDqVVqA4GdrR9gaQdSYOJS22/WTLW0Ay58G814ArS5M/dwDjby+XC+o1IKWf/za//ErCC7S/19WcUSWJ38kjrjcX27bYXAFqPM0YAG5IuiEg6WtKpkubJ25Un83YDSdvnGcEwCbk4Y3j+/EhJf8jfWpq0Ys+SeftoYJTtW/P/x8Nag9VsHPCbAQu8w+VHtFd6YjuUdUi/v7dJ6QRLAK0Crk/npyeb5O0ZBuPTE0kfyW/iYRIkDWvN/EnaWtKfJK2cn4B8F2jlE94ALAt8B8D2ubZP8XvbpV0GRP41E9oD3mL7jrz9Y1JR28X5JXMDuwNDlFpfXaHUk7NVMDOsSOAFSVpQqfd3mIT8RLz11G0JSb+R9NX87e1JPV1ny6l2GwMrwITC+qNbg9XsXtKsdt9/foVFVwcAf3INS7QptShaHfgdafnOF0gtOlaXNDtpVH+zG77OuKR3SC0mxpWOpRNImpG06tnrti+SdDApD3Vz23+TtAPpcf8VLvEooYPlGav5bZ9Rw7HnIS0k8KDT2tank/6dNrJ9Sy6YeRi4p8n/LpLOJi2JeFbpWDpF/n/3Ads/zU/WrgdOtr2vUuulOUlLacfKdj3kJ0SH2d63hmNPB6wHzGz7HEmfJi0AcajtwyWtTEq7uNX2G5M7VjfLNQufs71l6Vg6hVJXnfVI5+R9km4n3fgsTDpXNyUV2g/I8tNVzrB+gpzvVrV8p/gL2686LRgwijSSh1ThvB9p+UckbZGLRZarI5bCBl1SeL6jm0/SqLx9hKSbldp7zQhsQ/r/AHAsqU3O3wBykdXlTR4UTYXlSDd6lbP9tO2zbd+Yv7QTqcXY3XmmdXvSBVE5t+7nkpp4kRh05ytMeMqxSP78U0pN6zfP394SWFhpgY+7SEv47gsTWi/9IQarvRrBxGtepWy/ZftS2+fk7QtJ9San5JesChxHSqlqtQj8RutJVoMMZWKO9KChtLDEsvlaO3d+ynF8/vaqpMnC1lPttW0v6NTy6hnbpw7UYBWqHbA+S5r9rJ3td3oUd91he0Pb++VvP0oqFhkBIOliSdf0SCdYsYuLRRaz/W7pIOokaXpJu+f8FoA9gVuY+Gjwb8AepNysp2xvafs0ANtjXFF7F6WehzdO+ZVdawwwIO3RcsrFU7bfzJ9/3vYH8//lt5i4hnmrm8idkrbK24ure4tF9gYuKR1E3SRtIukHkkbkx4XPkCqCAe4DDgWuggn9Qb9qe1x+H6+s5WF+r1+pquN1GAOPDNgPs19z7qhi+ySnAupWbvCdpMmpt/MN5xOtAY6k2SUt2qUpQJcA+5QOom6Slsw3HB/JX7oUuIA0c/oKcDpwFIDtM23vbPvWvF1Z0Xd+rz+4rX2aPvmkicUi15Bag9xAWkJyWUmLklbzuar1DxLql2dXlgTesP2QpFb7sw1I3SR+QSrAO015JZcCMS5KSiWIHMQBlG8mlwVetv2IpJ+SKnfXdlptZT/gQVL6UbPfvDpEHnzMR1qp8EalfpVHAafbPib/m8xEesIxmrROeYlz9iZgd9s3DfTPHqzy/42FSDPlN0r6BOn9+zSn4rhPktoGXuLoHz5gcgrJ8qTJHpPyu9+yvVHO090cOMupALnUNfZA0hPRA/u8z2B8z9fE5eyWAvYF7rZ9vKR9gXWBH+V/yJmBVzvhwqiUBL99HTmHdclvZiKdMF8jFekckN/UjgWOsH1yzmV7k5Tz2BGPUPNM0b6227oDDNXTe1c4+j6woO0dJS1LWuL5PNsnShpBelPuiMd6kjYkvbc8UTqWvpI0xGkp7U1JaV5HAo+TbhL+ZXt7SXMDCwD/dQetdpZna86w/VjpWAa7HtfYrUhpID+yfbuk80kV5HuS0mVmcOoDXZzS4jJz2b6mdCx91eN8XQzYhZRnfK6kX5Em6ra1/aCkdUnvRR1T55PfY6a1fUGf96lqLCbpMFLy/COVHLAASQuS8nRuzP/IV5Nme5YFXiTlEN3iAmvTSxoJPGt7xED/7L7IOaUrk9pY3Cjpm6S84i1sXyXpO8DD3TTgbjKlwoppbf++dCz9lc+JjwDjnYrs9gV+BOxh+zeS1iPdCN1s+60C8V0K/NT2Xwb6Z/dFHvAvbvtPkj4E/IG0Lvg+kj5LmlU9q5MucoNVTmnbz/bXS8cyNSStDixn+9T8FOsO4GLbWystY7wE6fr7QoHYdiUtJrPLQP/svpA0F/Ah0oqMz0q6hnTzvqBScdR2pDZl/y4aaI2qHLDeDuzgvO5sE+QZwnmBp0gFPqcCw2xvLmkV0h3NH/PFUnXOxObZ3sdtz1TXz+hjHNOQUirezIPSD5EG8suRfj9n5Nnq+YG3HetXdyRJ3wamsX1I6ViqpNQ5Yojt0XnGbQvSkrOPkIpI7siPsWs9X3MsfwOOtP3XOn/OFGIQMML2GEkbk1JvTnRa7vQyUs7atqSiinlJvYc74ilHmEjSMsD5tpcuHUuV8pPD2fMAbH3gWzEAfaMAACAASURBVKTeuidK2geYB/i57ccH4Bq7B/Ah27vX9TP6GMfIfL7OR/p9PGz7J0q9dDcEDrB9c/4/8Ygb3Lnh/aosunqcVOzUGLlA5Mn88VXbW9luVbs+R1q9oVUpeVQuFlkbQNIKFReLvEaa6R0wSgVQH5e0Wd7ei9Rs+lP5Jc+Sqr2HOvVZW8328QC2n+jmwaqk5SRdVTqOGr3MABVdDSSnYpHR+fPDbH/I9sOkCuCrSe15ANbOxSKHwIQejFUXi3wO+GeFx5siSatI2kNpNcGFgZeAX+VvjyU19X4EwPbGtrfJ729jnZYv7trBqqTr8qPRJnoHeKh0EFVzKrx7Nn9+he31bbdWGLyNVJTZcr9Sx4mh+dq0sqotoD4T+GaFx5sipeLe7fLgs3WT+3R+YvkGcD/pfQvbP3YqML85b9/dzYNVSQdJ+kpb+3RAemYjaGKxyOO2X5B0Lqlx7gLA26QT4TrblxUMs1c5QXuY0wpG3wA2IyVlvwv8npQwf0ye5R3XSXlrdVHqPXiy7ZVLxxKqlwemCwPT275b0m6kpvQH2/61pJ1JOXZ/7JQcu5b8lGNO20/m3LT9gd869dA8jjRb+hVS15bZu/nGsR2SHiT1+n2wdCyhenkCaCnb1+V80/OBB/ITzzVJbfouLZGyNzn5vWZ+0pPakcAJpNqYvXLqzTbAsbavybUTL7jh3YAgtagkrTx5RF/3KbLSVRM59bK7pZV7Y3trYFbbr5JmdaYhNVNH0ieUVhbZJm/PqimsLKLUMuZzUxun0soy2+XHH+QYnmJij7/bSOv7jrX9Sr6jOyb/nUYPhsFq9iJwTukgQj3yrOLDzgud2P6V7fmBVo61SEsJTqO08s+/JR0DE548zDiln6HUg3SuqY1V0lqSDpA0m1Lvy1eAk/K3nwZOY+IszD62d8kzzeMHy2A1O5P0uwkNZPsl29flz++3vTypoAvS5MqSwFIAko6V9AdN7Ac8akpPTyR9QGlZ+KmSZ033lPTR/KXfAzeScsLHAJeTOilg+/f5ye01efu5wTBYza4H2uroUWUO63GklTEG0xtkv0iahdSM9wXbN0k6ilQ1uantqyVtQboQ3dh6RCdpAdIM7fx9OH7rjm6oU2ugr5BaA+0I3E5acvQW20cprTk9vpsfBYb2Sfo8MNrvXY429EJpOeRVSG2dLsizmheTcuu+ppTPPgq43j2WCpV0PfDV1kV2Cj9jZmBhp9Zdq5KWDr7Y9o+Ulj5cgJQP+7Sk6R3rvw8qSgVJX7R9UOlYukFODVmV1GN0NCkN5l1gUWBW0s3ojT1n4yV9jXSO79+H409LGhw/THqScT4w0vb6edC7G3Cm7b/H+VqdKgesj5F6JT5ayQEHmTxjM86pmOlYYA1gbVJ/w+OAW4Evky5q7rGfbFvSLqSFBb6l1GftbOBo20cqNdMeSio4GfBq6dB5JB0NPGn7qNKxdKP8RGRG2y/npxS7Az+x/RdJPyJdHDch3Yje2Dpne5yvHyG1jfq17XslPUwqeFo/PxZcHrjN9osl/n6hs+RH3sfYnuoZwMEoT+LMntP1FgOOAB61vX+eINqQlAL0Bqmo6f3n6zzAF0hFTmfnCboNSW2jbpW0CSk94YESf7/BYrKPodv0IO9NkA5t6JknZ3tCIrKkt0l3idOQ7hh3knQoqSHwCqQ+sheSmjc/k0/Mf9iep8fxbhmQv0SD5AHFgbY/UTqWmjwPDHjrmKZw6vX6cv78HN6bPnIl6YZzM9J74iuSbgbmIC1csjNp6cs3mPieuWjrIpmfUv19AP4ajSLpAWANF2iJNADeIl1jQz/kc6uVrvcgqXNIy13AgqRJoVuAi5Rabj0PLJGfbk5HOn//k/fZt+fEke1La/9LNEx+sny37ZP7vE8UXXWXPCBdjNShYClSy4vBkvMyYJRarBxk+2NTfHEIk5GLRf4IXERqKdW1lb2dTNLLpKdML5WOJXSvXED9deDDpFadTbwBKk7SL0k9ZU+a4ouzKLrqErngYrt8V/cEKe/0wRis1uZx4LzSQYTulYsbZ8sDqNeA+2KwWqtf0LDWimHgSFpN0qo5be5x4LkYrNbqClJNTZ9VmcN6OvBl22MqOWB4D0kfIK06s3wuAtnE9sWl4wrdSdKXgPttX146lqaSdA+wue17JK1GypmLVaNC2yR9EPik7UNLx9JUSqt1vmX70JwGMCrS6TpLlTOsW5AKe0I9hpKSwsntamKwGqbGqqS851CfYUw8Z2+IwWqYCvOSlg0P9el5jX08Bqudp8oB613AuAqPF97rTmBdmNBLNRra10jSZpLOLh1HjZ4kiq7qthp5dSJJSyst0BFqIullpUUVmmgMUXRVt8OAYwEkzaW0UlyoiaRTJW095VdOVNmA1fYaHjxN5Qec0xJ2L+fNWYFi65MPEtMB05YOoi62D7F9Yek4miw3Om/1N/4F8KGS8QwCs5BnyJrG9j9s7106jiZzWp64NYb5LKnwKtRnZLs7RNFVl5A0b4+7kaGktaVDfe4HLigdROheknaV1HpTjnO2Rrl7yk+iCDX0l6R1cq4wxPk6EC4idTvqs0qKrvKbxQWkAoPok1UDSWsDh9v+iKTpgbVsR6/G0C+SDgCusX1t6ViaStKzwIq2n8mr39zb4ylJCH2W3//XsH1k6ViaStLxpHP0uJwOMNx56ebQGapaOGAIqYIxBqv16ZkQ/ibRWDxMndWBWJWlXj3P2esLxxK62wJA1C3Uq+f5+kjZUEJvqkoJEBNXgAj1uIa0lCOShkuKfLgaSdpBUp9X4OhCDwPRYL1eiwIvQmpLJGlE4XgaS9IISU1exvYVouiqbvsBpwBIWkBSdFGpkaQ/Sdq4nX0qGbDmgqDVqjhW6F3+Hbd63M7Pe5eCDNWblgbneNve3/aVpeNoMtuv9sipPB1YomQ8DTeMtHx1I9m+xPbBpeNoMttv5EUDAL4A7F4ynkFgONDWU/nGXpCbRtKikrbMm5EQXr/bgeh1G/pN0v/1aLMU52y93gZ+UjqI0L0kbSpp2bwZ52v9zia3/eurqoquRgKn2f7sVB8s9ErSJ4E9bG+WHy2uYPu60nGF7iTpB8AfbN9cOpamkvQWMLPtNyWtCdwRKwGG/pC0KbCY7eNKx9JUks4E/mL7t5IWBbDd1oAq1KuqoqvpgPUrOlboXc+E8LFADFbD1FiTtJZzqE/PczbO1zA1FgaWndKLwlTpeb7GQLUDVZUS8C5wY0XHCr37M7ANgKQZo+iqXvlx7tGl46jRvaRCjlCfmcmPFSWtLml44XgaS9J8kh4rHUeNnqfNx6ehbV8AzgOQtJikBQrH02iSrs3t/vqskhnW3FuwrWqv0B7b7zAxp2Zp4OfAKuUiarxpaDMhvJvY/lLpGJouPwlpORdYB3ikTDSNV9XTwo5k+/elY2i6HgVXAF8CniHyous0LWmys8+i6KpLSFpO0qfy5jAiIbxu1xHL34Z+kjRUUs+lHeOcrder5HXgQ+gPSVtJanXyiPO1fqcAT7azQ1VFV3OTlsX7/FQfLPRK0g7ARrZ3kDQTKQH/ltJxhe4k6QTgp7bvKx1LE+XH/y/bnj5vrwnc/L5ZnBD6RNI2wIy2m9wbuihJFwM/t/1nSYsDb9p+onRcYaKqZlhHAGtVdKzQu2FMTAh/NQar9VJWOo4arQWMnOKrQn9NKOCAVHQVg9X6DILzdbH8J9SnZ9HVAzFYrVd/zteqBqxvAzdUdKzQuzOA3QAkzSYplumr13eB75QOoka3Aa+VDqLBxgKztTYkrdujJ2uo3nLAnaWDqNGTpNXpQn0+SU4Dk7SspPkKx9N0d0tapp0dqlrp6nHb21ZxrNA72+Ntj8ubHwKOKBnPIPCeGbKmsb2T7ftLx9FUTnrOqF4IzFAqnkGg0Y3ebZ9u+5el42gy2+Nst97z9wc2KRnPIND2NTaKrrqEpFUltU6gCekBoTZXAFeVDiJ0p7y2/X49vhTnbL2eBY4vHUToXpK+IGnBvBnna/1+CrzQzg5VFV0tDnzT9q5TfbDQK0n7AkvY3kfSrMA8tu8qHVfoTpJ+SzpnI0+rBpLmAW6xPXfeXgO4sccMTgh9Jml3YIzt35WOpakkXQscYPua3C1gtO3nSscVJqqqd93MQORU1qtnQvjLwMtlw2k2ScNIT3abOsD4MKkPXqjH+4uuri8YS+NJGgIM7ZE21TRLkBYPCPXpeY2NdKmaSZoWGOc2Zk2rSgkYSxRd1e1YYD9IbcQkrVQ4nqY7CtindBA1+jfweukgmirPXE9YKUfSJg2vYi/tw8CVpYOo0UPAo6WDaLg1gesBJK2U23WG+jwGtPU7rqro6h7be1ZxrNC7XMTRWhXio8CBJeMZBJpedLWt7WdKx9FkrfM1z/79pXA4Tdf08/Xnts8pHUeT5Wtsa7bvYNJNUKhPFF01laR1JK2fNyMhvH5/Av5VOojQnSSNktSaoR8KjG/n0Vdo28PASaWDCN1L0l6S5sqbcY2t32HAmHZ2qKroaiVgF9t7T/XBQq8kfRuYxvYhkmYHZrH9YOm4QnfKq7p8zvYrpWNpIknLAn+wvUyeYf2Q7RtLxxW6U17m937bF5SOpakk/RfYxvaduejqhVwvEjpEVUVXswFtNYANbRO5z6DtF4EXy4bTbJKmI82KNbW341rEE5Y6DQHGwYTUgBis1igXSQ5t8GpiSwKjSwcxCETR1QCRNAPwRomiq1eIN+Ra2f6e7e8BSFpI0oqlY2q4XwKfLx1Eja4GmnpxL872nbZXAJA0jaSPl46p4T4O/KF0EDW6G3i8dBBNZns523cDSFpT0hylY2q4l4Hp2tmhqqKrm2x/s4pjhT7ZGPhy6SAarulFHJvbHls6jkFiRiD6Z9ar6efr0bajcG/gHAasUDqIhouiq6aStKmktfNmJITX7yzgptJBhO4kaUFJX8qbjV42tEP8Fzi1dBChe0k6QNIseTOusfX7Bm3+jqsquloX+LjtA6b6YKFXko4GnrR9VH5UMdz2Y6XjCt0pr+qyToNzdIuStBZwlO01JU0DLGP79tJxhe4k6TDgatt/Kx1LU0l6EljN9pOSlgSetv1a6bjCRFXNsI4CFq/oWKF37wJvA9h+Pgar9cprwU9TOo4arUX6PxXqIeANANvjYrBaL0nT5iKOploKmLV0EA03nomFzffFYLU+SmZud7+qBqzPEo9Pa2X7a7aPA5C0pKQPlI6p4X4HfKJ0EHXIKy79pcdCFKFitq+1/TGYcPOzSemYGm4bUqFkU90KPFU6iCazvaDtZwEkrScpbhDqMz1p3NiWqoqu/mn7h1UcK/TJFsAOpYNouMbmHeYFXTYtHccgMjdwYukgGq7pRVc/sH1N6TgGkaOARUsH0WD9Ol+j6KpLSNpK0up5s9Fvzh3iZFIhRwhtk7SUpF3zZpyv9bsROLN0EKF7STo099+GOGfr9jbw9XZ3qqro6lPAyra/O9UHC72SdCpwre1TctHV0FgLPvRHzvW7zPbaU3xx6BdJmwL72P54vgguZPu+0nGF7iTpOOAs27FcdE0kvQ7MYXtsXunqCdtvlI4rTFTVSldzAgtUdKzQu3HkRu+2ny8cS+PlhPDXbY8rHUsNpiF6DNbNwFiAvPpSDFZrJGk4MKTBvYWXBkaWDqLh3iBWuhoQebnqWWy/1M5+VaUEPA7cUtGxQi9s72H7twCSPpDXKg/1uYhUSd9E7wIXlw6iyWz/xfZWAJJmlbRR6ZgablfgiNJB1Oh6+lGkEvrO9uy234QJfc/jBqE+cwF3tbtTVUVXl9k+vopjhT7ZHti8dBAN19gcJtuv2d6+dByDyKLAj0oH0XCNPV8BbB9i+7bScQwiJ5CeHId6RNFVk0n6oqQV82aj35w7xNHAg6WDCN1J0kqSdsybcb7W70rg96WDCN1J0hBJR/X4Upyz9RoNfKvdnaoqutoBmNv2kVN9sNArSecDv7H9R0lzAuNtv1g6rtB9JM0NnGE7HlPXRNL2wCdtb5fzK+ey/UjhsEKXkvRb4MexAEU9JE0LjLU9Td5eHHi0oTUMXauqoqu5SL0GQ33ezH+w/VzhWBpP0ihgdEPfsKYnrZwT6jMeeA0gVxo/UjSahmvlG9oeUzqWmiwFTDfFV4X+GgpMmACy/UDBWBpP0jBS0dUL7exXVUrAA0Dk19TI9na2LwGQtGpe6zjU5+9AUwvb3iCKrmpl+xzbuwNImkvSBqVjarj9gANKB1GjK+kxoArVsv2G7QmTbrnvedwg1GcJoO2FMCqZYbV9QRXHCX22M3AH0SqnTo3NYcrLD+5VOo5BZHlSvtblpQNpsMaerwC2v1E6hkHmV8Bi5FaSoXJRdNVkkvaR1HqM29hlQzvI94AnSwcRupOktSVtmzcbPZjqEBflPyG0TdJIST3bosU5W6+ngO+0u1NVRVd7k5YoP2GqDxZ6JelK4Pu2r8xFV2/ZHl06rtB9cjrJkbY/XTqWppL0ZWA523vllcVmsf1U6bhCd5J0MbC37YdLx9JE+Zp6p+058/aiwCO23y0bWeipqqKruYmp87q9xsSVrqLoqmaS5gWes93EmewZgIVLB9Fwb5Fat2D7deD1suE0m6RZgXdsv1Y6lposRXXX6/C/BEy4rtp+qGAsjZfzg2fJ6Wl9VlVKwJ35T6iJ7U+11pGW9NF8Bxjqcz0wX+kgajIa+EvpIJrM9sm2DwSQtJCk9UrH1HCHALuXDqJGlwCvlg6iqWw/a3v51rakL+TlQ0M9VgYubHenqla6Otv2+VUcK/TJXsDqpYNouMbmMNl+2PY3S8cxiKwC7FM6iIZr7PkKYHvfdmejwlT5dekAGm4Y/ajDiTuILiHpW5IWypuNfnPuEPsDL5UOInQnSZtI2iJvxvlav7OAv5YOInQnSXNIOjR/PgQg8ldrdT/ww3Z3qqro6hDgMdunT/XBQq8k3QLsbPsWSXMAr9seWzqu0H0krQLsb3u70rE0laSDgBlsHyRpRP78+dJxhe4k6TrSymltNVoPfZMLUf9se0lJAha0/WjpuMJ7VTXDOjcwY0XHCr17iYlFV8/HYLVekhaWNLR0HDUZCcxbOoiGe52JRVdjY7BarzxD1uRr0BKkwqBQDwPPQGp3FIPVekmaIS8R3paqBqw3AvdUdKzQC9vr274LQNLGkhYoHVPD3U4a2DXRc8BlpYNoMtvH2P4xgKSlJH20dEwNdwSwdekganQeaYW6UAPb99v+KICkaSR9oXRMDbcucFq7O1VVdPVr27GKy8D5Kmn1nFCfxuYd2r7Ldtv5Q6Hf1gbiAlivxp6vALb3tD2mdByDxAzAcaWDaLhY6arJJB2emxtDw9+cO8SuwJulgwjdKa9FvmnejPO1fr8E/lE6iNCdJC2Sa3EgzteBcAtwVLs7VVV0dTRwje0/TvXBQq8kPQx8zPbDkkYBY2zHgCq0TdIGwLa2dy0dS1NJOpK08MSRuehqWtsvl44rdCdJ9wIr2I4FemogaXXgZ7ZXz10C5rL9dOm4wntVNcM6F2kaPdTnGeBtANsvxGC1PkqWLB1HjUYCo0oH0XCvAq/AhKKrGKzWSNK8DS+6WgyINkv1eYe0vj22343Bar0kzSRpnnb3q2rA+k/ggYqOFXphe03bTwJI2qI/FXahz4bQ7CLCx4HIOa+R7UNt/wpA0oqSPlw6poY7HtiodBA1OoN4TF0b2zfZ3gJA0khJO5aOqeE2A45ud6eqiq5+Yfv6Ko4V+uQAYJHSQTRYo3OY8pvz8aXjGEQ2BLYsHUTDNf2c3Tka2Q+Y2YFDSwfRcFF01WSSTuzxyKvRb84dYDzwudJBhO4l6YuSPpY343yt31HAf0oHEbqTpOUlfSNvDiPO17pdA5zQ7k5VFV2dBpxlO5bGq4mkV4BFbL8saVZS0dW40nGF7iNpK2Bt2/9XOpamknQy8G/bv5I0AzAk2hKF/pA0PXCn7cVLx9JUkjYBvmp747xgzCy2XywdV3ivqmZY5wSmqehYoXePAuMAbL8cg9X6SBoqaenScdRoRmCm0kE03AtMLLp6PQar9cor0zV1oY9hpNUkQ33eBJ4AsD0+Bqv1kjSbpLZXW6xqwPpX4LGKjhV6YXvF1kVP0uckzV46pgabBfhX6SBqdD9wVekgmsz2N23/HkDSGpJWKx1Tw50KNPV3PJ709ws1sX2V7V0AJI2StH3pmBpuW+CQKb7qfaoquvqp7TuqOFbok0NIs9qhHo3OObR9je3TS8cxiGwGbFw6iIZrbN6h7Tds71s6jkFkflJhc6hPFF01maQzc0NjaPiAqgO8CnyxdBChe0naV9KaeTPO1/p9G/hv6SBCd8pPQVo5/XG+1u8vwMnt7lRV0dUFwBG2r5vqg4X/IUmkptFDbFvSzKSiqzipQtsk7Uoq4DuodCxNJek84Bzbv5c0HNJMWeGwQheSNBfwV9srlo6lqSRtC2xhextJw4AZbL9aOq7wXlXNsM5R4bHC/xoC3O18d2F7dAxW6yNpOknLlI6jRjMSK9PV7WlgNEx4pBuD1RpJWjJ3Y2iiaYHZSgfRcGOYWHT1TgxW6yVprpIrXV1AeoMONchVi8u2tiXt3uCK2E4wP3Bx6SBqdDupD16oie19Wm3+JK0naaXSMTXcOUBTO3uMBSLnvEa2/2x7fwBJ80vapnRMDbcL0HZedlVFV0fafqiKY4U++T5pPfhQj0bnMNm+wvYfSscxiHwG+EjpIBqusees7ZdsH1w6jkFkcWCv0kE0XBRdNZWkGSSd0eNLja2I7RBPA3uWDiJ0L0kHS2rlHDZ2MNVBvgI8XDqI0J0kbSBpj7wZ52v9zgXObHenqoqu/gF8yXZUadYgr2z1sO1Z8vZI4PVYWzr0h6SvA8NsH146lqaSdAVwuO3LJU0H2PbbpeMK3UfSUsCvba85xReHfpG0J7CS7T3ySlfT2X69dFzhvaqaYY0m9vUycOeEDXtMDFbrI2mEpGWn/MquNZJUyBHq8yipPRq234rBar0kfSAvYdpE0xIpYHV7hfeudBWD1RrlPOG2V2+rasB6JhBLmdXE9iu2J+TASdpPUiyFW5+lgd+WDqJG/85/Qk1s72z7BgBJn5C0fOmYGu5PQNtLPXaJl2j2+1Fxts+2fSiApMUlfaZ0TA33f8CO7e5UVdHVD20/U8WxQp8cTsqzCfUYCrxTOoi62L7E9qWl4xhEtgM+WDqIhmvsOWv7SdtHlI5jEFmefgymQlv6db5G0VUXkDSHpF/1+FIkhdfrPuCrpYMI3UvSjyUtkTfjfK3fTsDzpYMI3UnS5pK+kDfjfK3fycD57e5UyYBV0t2S5q/iWKFXI4ENe2yPoKGzCZ0gp2BcWzqOukg6XNLepeNouPWBmfPnO5KqYkNNbP+9qYsz5GVD/1Y6joZbGmgtFnM+sG3BWBrP9l222+7qUdUM6yykpUNDPd4B7mht5CKOqW/vEHolaeaGF12NIFJK6nYfafUcbI+LlenqJWnVBuf1Tws0taCsUzzPxKKrd6NIsl6SFs1LDrelqgHrScBrFR0rvI/tx21/EkDSUEnfLB1Tw60CHFc6iBpdCdxUOogms72d7XsAJG0tacnSMTXcX0lLDjfRk8BZpYNoMtun2D4eJnSc+FTpmBruQODT7e5UVdHVd23HgHVgTAt8t3QQDdfohRlsn287lmYdOF8AYsBaryYXXT1o+8TScQwiHyKtThfqE0VXTSVpEUnH581ICK/fTUDMYod+k3SSpPnyZpyz9dsciN6ZoV8kfUHS1nkzztf6HQVc1u5OVRVdPSepqY9jOsEsTFyLfCwwU8FYGs/2C7ZvLh1HXfJgKtq21GsDYHj+fFP68eYc+i4XXTVyhlXSJpLarqgObVkWWDR/fiqwW8FYGs/2f20/2e5+Vc2wzkjckdTpTXLRlZP4XddI0qiGF10Nn/JLwlS6A3gDJhRxRFFqjSStLUml46jJtKQ0pVCfJ/OfuMYOAEnLSJqj3f2qGrAeBURVXU1s3217BwBJI/Na8KE+6wKHlg6iRhfTo+tEqJ7tzVszCJJ2lrRQ6Zga7h9AUwesDwC/Lx1Ek9n+me3fAEhaXdLHS8fUcN8H1mt3p6qKrg5u6uOYDjQjsH/pIBqusQUcALbPsX1L6TgGkV2ABUoH0VSShpAmxho5i517Vp5ROo5BZE1g49JBNFwUXTVVbrPxk7zZ6MFUh7iKdAcYQr9IOkfSrK1NImWqTgY+VjqI0L0k7SPpk3kzrrH1+zbwz3Z3muq8GElDgbG2o7FxfUaRWm1g+wkgVhWrke1ngWdLx1EXSecBv7F9YelYGmwD8uIMttcqHEuj5UVUriodR10kbQds2koLC7VYHhgHYPuowrE0nu07+7NfFTOswyo6Tpi0MUTO4YCRNK+kZab8yq41HWlWKtTnRiKvf0BIGiZpndJx1KipK3h1koeAp0sHMVhI+qCk2dvdr4qB5rvADyo4TpgE2zfa3hcmVLB/tXRMDbcpzc4TPge4t3QQTWZ7E9uvwoTHjXOXjqnBRgJNflpwB3BB6SCazPYRrSdOkj4maf3SMTXckcDK7e401QPWvE7296b2OKHP5gB2Lx1EwzV9pavf2o4B68DZk5TWE+rR9PP1Ftt/KB3HILIOsHbpIBquX+fsVA9YlU3tccKkSfqwpFabpSGkvqyhPheS7gAbKc7X+km6TFLrUe54ooijTqOBT5QOoi5xvtZP0kE9ZlVNpPPUbV+g7cV5lPLV+0/SKOBe223nI4S+kbQlsIPtLUrHErqfpKuA79m+snQsTSVpPDBtNCAPU0vS3sAytr9cOpamknQOcL7ts0vHEiatihzWWHe3fi8C/aqqC+2TtLCkpUrHUaM4Z+t3DSm/P9RM0nBJHy0dR43ifK3fPTS4M0ynkbSGpJnb3a+KAetY4IgKjhMmwfbVtg8BkLRgvuMO9dmKZq8lfSrwSOkgmsz2OrndEpIOvkhlyAAAIABJREFUlDRL6ZgabC6gyY31/w1cUjqIJrP9ndYTJ0mflBQ5rPU6Hliy3Z2qKLoaE33LBtT8wOdKB9FwTS/iOM32Y6XjGET2JlWyh3o0/Xy93valpeMYRDYg9z0PtSmz0lWuuZrqBQjCpEnaRNK3enxpbLFgBoczgBNKB1GX3LcyCjlqIml6SX/t8aW3iKKrOj0BfKZ0EHWRNDQvPxtqIunHktbMm++QztlQnx2B+9rdqYqiq8WBy2wvNlUHCpMkaWdgbdtfLB1L6H6SbgW+aPuW0rE0kaSZgCdtz1g6ltD9JB0MDLd9UOlYmkrSZcAxMZPd2aoquorZg3o9A/y3dBCDhaSlJC1ROo4aRRFHvd4F/l46iMFC0kxRdBWm0m3AC6WDGCwkrSup7TSpKgasLwKRw1oj+//Zu+8wqar7f+Dv98zs1J1dFgSkNwugUoIKFqqJGoygqIgVY6yBROxfNVYsscQYJUYUSwJ20Z9gRVETBBXRICooqFhABOmwZbbM+/fHXMgqu+wyM3fP7p3zeh6fh9m59+57kDtz5t7zOR+9JOkOACDZnaRtHOCu0wCcaDqEi+6GbUPoGmde/8htj0neQjJsMpPHdUXq37RXvQHgNdMhvEzSZZIWAADJMSQPNJ3J46YA2OXuf9koulor6f5Mj2PVW1cAdj1Wd3m9iOMBST+azpFDLkDqKpnlDq+fr3MkzTGdI4f8GkBP0yE8zlinKx/JUKbHsWpHcjTJCc7DJIDNJvPkgEkAHjEdwi1OUZAt4nAJyZYkZ1T70RZ4eEDVCCwBcKrpEG4hGbSFze4iOZnkfs7DBGw3SbcdDeD7Xd0pGx9a/QDMzcJxrNq1B9AJACS9IsnLt6uNk7RCkpdvmX8G59+T5YoIgL7bHkhqLcl+ALpEUrGkJaZzuOhmABeaDuFxfQBEAUDSObbjlbskfSxpl1disJ2umoZvACw2HSJXkOxFsqvpHC6y56y7ErBFVw2G5G4eX+jdnq/uew/ABtMhcgXJX6dzZz4bA9bvANyTheNYtZA0XdIDAEDyFyTPMBzJ685Dah6TV90M++bsGkmrJY0Ftk+Zust0Jo/bD8BE0yFcNBPAf0yH8DJJf5S0FABInkWyt+lMHjcNwC4v+5eNoquVkqZlehyr3roDONx0CI/z9BUNSf+QtMV0jhwRAPB70yE8zuvn6xvbKtitBnE0gM6mQ3hcWudsNoquAiSjmR7Hqh3Js0me6zysBLDJZJ4cMBHA06ZDuIVk3Ha6cg/JriSfdB76AawxmScHvAfgbNMh3EIyQjLPdA4vI/k0yS7Ow2IApSbz5IBDkUbxeDamBAwFMKPOraxMdICzZpmkpySdbziPpzlFV+tM53DRCgCFpkN4WD6cZXEklUpqbziPp0naIukr0zlcdA+AM0yH8LjeAIIAIOlkSbPq2N7KgKRPJDX8FVZ4/HZMI7EMwOemQ+QKkgeS9HIVvT1n3bUVwJumQ+QKkm1JHmI6h4vs+eq+t5Bafs5qACSPS2dpRUrK9Bd3BtBX0nMZHciqF6catoOkx0xn8SqSjwF4UdKjprO4geR4AJMlVZjO4nVO+8HrJF1iOotXkTwWwFhJx5jO4gaShwNYKcm2524AJC9E6v1/qeksXkWyCkBIUuWu7JeNoquv7WC1Qe2H1PwPyz2evqIhaZIdrDaYKIDTTYfwOD9Sc/s9SdIsO1htUMcijbahVv049RM+GCq6CjlXESyXkLyU5CnOwwSAjSbz5ICLAbxsOoRbSDa3RVfuIdmH5CPbHgLwchOKxmAWPLywvlMkGTSdw8tIvkaypfNwI2ynK7ftozRu72ej3dsIACcCOD4Lx7Jq1hGpgSokPWg4i+dJWmE6g1ucgeo6ZGf+ulWzAgDdgNSarEgVdFgukbQZ3m5X/TCAJ+HhlUsagd5w3hMljTCcxdOcgWpajZBs0VXTsAjAF6ZD5AqSg0m2M53DJX4AyXS+3Vr1th6pIg6rATjLiA0wncNFnp7y0Ei8DLuUVYNwlkIdnc6+2RiwfgjgoSwcx6qFpAckvQQAJIeTPM50Jo+7HKne0l4kAH8wHcLLnCVbrgYAkq1I3mw6k8cNAXBuXRs1YVMAfGQ6hJdJGutcqQfJa0h2NJ3JwyJIc8yYjaKrpZJezfQ4Vr31BdDPdAiP8+xdA0lVku41nSOHNIOdLuU2z56vACDpRY+vM9vYHI/UeWu5I+3zNRtFV1GSBZkex6odyZtIbluyZStStxwt95wJYI7pEG5wetu3Mp3Dy5wpJdu+FAjASpN5csBTAK4yHcItJIts0ZW7SH5AMuw8/BFOzYjlii1I86JbNqYEnALgziwcx6pdR6QKOSDpb5LuMJzH0yStlFRsOodLCgHY9QXd1QxAewCQtEzSUMN5PE3SJqe4zaueATDIdAiP2w+pL5eQdJgk26jHJc5dvrRqcmzRVdMwH8By0yFyBckjPXwV0p6v7lsFj16hb4xI9iB5gOkcLrLnrPumwxa2NQiSMZJpTZPKxoB1DgBPdgRqLCTdI2kOAJAcTfIo05k87hoAe5oO4ZJiABeZDuFlkuZLuh0ASHYheZ3hSF73awAnmw7hojthW3O7StJJ23rbk7yj2pqsVva1APDXdHbMRtHVp5L+k+lxrHo7EEBP0yE8zrNXNCSVSvqn6Rw5pBWA4aZDeJxnz1cAkDRD0vemc+SQE5GqZLfcYbToKk6yMNPjWLUj+XeSv3QebnD+s9xzLICFpkO4wVkDz7YddBHJESRvdx6WA/jOZJ4ccD8Azy4d5iyNZouuXEIySPKTaj9agdR5a7ljBYCB6eyYjU5X5wNoCeDSLBzLqllHpHqSQ9JNhrN4nsevZnQA8CaAzoZzeFkRgNYAIOm/AOy6yS6StMl0Bpe9jNQ6swtMB/GoAJzOdAAg6SCDWTxPUgXS/BJvi66ahv/AXqVpMCSPJVlkOodL7Pnqvq8BzDMdIleQ7Euyr+kcLrLnrLuSAB43HSJXOMu0jUpr30w7NJLsDSBPkv321wBI/g7A15Jmm87iVSQXAzhB0qems2SbM33ncEm2L3kDILkfgN9IusV0Fq8ieQOAKknXm87iBpLHAviPpHWms+QCkg8AmODhpQ2NItkLwKOS9tvVfbNRdPWRHaw2qIMAdDUdwuM827vbWbPSDlYbTjukWoda7vH0FUhJz9nBaoMag9S/KcsdRouuikjaNmYuIvk4yQHOwzWwRVduGwzAk60QnQKDtqZzeBnJ06stZVUK4FuDcXLBbQDuNh3CLSTbk8wzncOrSLYk+V61H30Jj16waCQ+BXBEOjtmYw7rpQDGZeE4Vu3aAwgCgKQrJT1jOI+nSfrBmRjuRfsAeNF0CI8rAtAcACT9W9LZhvN4mnPXYLPpHC76N4BOpkN4WBCpYlQAgKQ+kkoM5vE0SeXpdqazRVdNw6sAfjAdIleQPJVkvukcLgnAnq9u+wzAu6ZD5AqSBzvz4rzKfsa6qwzAk6ZD5AqSu5Mcmda+WSi66gcgIemTOje2MkZyAoD5kmwVsktIrgLQz4vLW5HcDUB/SfYqawMgeRCAAZLS6uxi1Y3k3QC+lPQ301ncQPI4AK9K2mo6i9eRJIAnAIxRpoMjq0YkBwG4SdIur8WajaKrD+xgtUEdilQhh+Uez17RkLTWDlYbVCcAA+rcysqEZ89XAJA03Q5WG4wPqRVi7GDVPUaLrlrZoit3kXyF5D7Ow5UANprMkwP2BbDWdAg3kIySbG86h5eR/CPJbY1UtsAWXbntCgAPmQ7hFpJdSdqqdZeQ3IPkm85DH4BFJvPkgLkA0lqHNRtzWK8DcEoWjmPVrj2c/1eSLpD0muE8niZpjSSvXrEZAGCq6RAeVwQgHwAkvSjJdgF0kaTNHi+SeR+pf1OWO0IAWgGpLkyS+hjO42lO0dX6dPa1RVdNw3MA7Dp8DYTkOR5eRsaer+5bCOAD0yFyBcnDSHY3ncNF9px11yYAduWdBkKyM8nfpLVvFoquDgSwXtIXGR3IqheS1wCY6fQot1xAshRACy9etSHZBkB3SW/WubGVMZK/ArCnpHtNZ/Eqkv8C8Lqkf5nO4gaSxwOYIancdBavc1aH+Yek00xn8SqSIwCcLenoXd03kOkvlzQ/02NYu2QQgHdMh/A4z17RkLQKwCrTOXJINwC9TYfwOE8v1WbX3W5QYQDDTYfwOKNFV+2c/uSWS0i+T3LbwsbLAXh5kezGoA0AT17NIFlgi67cRfJakuc7D9fDFl257Rx4+JYuyR7OckuWC0j2I7lt5ZQkbNGV214EcHo6O2Z8hRXA7U6AR7NwLKtmbQAIAGzXHPd5vG/3LwGcBuBY00E8rBmcL5WSnjKcxfNyYMmnTwHkwcNXkQ0LI3XOwikGGmo2jrc5U1vSuiBki66ahmkAvP6m3CiQ9JH8o+kcLrLnq/veAfCR6RC5guQIkt1M53CDc2WVSF35s9yxBqnCZqsBkOxO8si09s1C0dUAACslfZfRgax6IfkXAJMlLTWdxYtIhgBskRQ0ncUNztSS9pLsPOgGQHIUgEJJD5vO4lUkZwJ4QNIM01myzRmwHi/padNZcgHJ1kh1YTrLdBavInk6gF9K2uVpAdkourI9sxvWEACPmw7hYZ6+Aul8sbRfLhvOXrBraLrNs+es03HJDlYbThx2SoDbjBZddSFZkOlxrNqR/LJaYdtnsNMD3FQKoLXpEG4h2bxaAZ/lApJ3kdzWTGU1bNGV204AMMt0CDeQ9JPc13QOLyM5jOS2ueblsNN53PYogHHp7JiNoqu/A5gE4KUsHMuqWWs430gk2a5iLnKuaHh5FYZjAAwE8FvTQTysGVJFMrBTAdwnqdh0BhfFkJoTHTcdxMMiSP09Q9K3SLNtqFU/pouuPL0GXiNxPzy6zFJjQzJKMq1vf02EZ2+fNiKzASwxHSJXkBzj4bsG9nx137cAPDf/ubEi+QuSh6W1bxaKrg4BsEzSmowOZNULySkArpO0wnQWL3Im3X8sqZXpLG4g2RlAke2U1jBIjgWQkPSE6SxeRXIOgKsk/cd0lmwjGQTwK0kv1rmxlTFntYkLJY03ncWrSF4AoJukXV6NJ+MrrJLm2sFqgxqK1Lpxljs8fUVD0td2sNqgegDobDqEx3n2nJVUbgerDaoIwEGmQ3ic0aKrvZ3+u5YLnHVBN1brdLIQgOd63DciqwB0NR3CLSRb205X7iI51emXDQArnP8s9wwF4MnVakgGSe5nOoeXkTyO5IPOwxLYoiu33Q3g8nR2zMYc1kcA9MrCcaya+QHkO8VAkHScpO8NZ/IspZSazuGiUwBcbDqExxXAeW+VNEnSNMN5PE1SQpInr7AC2B22oNltETh3LSUtlnSm4TyeJqnSKbzaZdnqdFWZheNYNROAv5oOkSucZZ/OM53DRfZ8dd9MAF+YDpErSP7OmXvuRfZ8dd/nsF8KGgzJQ0gOSmvfLBRdHQrgE0kbMzqQVS8knwFwtqQNprN4Ecm9AcyQtLfpLG5wigqCkmwVewNwCgyWe7ELU2NB8mMAp0haZDpLtpGMAegv6Q3TWXIByT4ATpNk70K5hOS1APySrtnVfbPR6ertTI9h7ZKhSH3rttzh6WXaJH1pOkOO6QkgYTqEx3m56KoYgB2sNpzdAPQxHcLjjBZd9SIZzfQ4Vs1IFpGsXrTxHuwHoJsWA+htOoRbSLYn2c50Di8j+SLJIc7DLwGsNBgnF/SCR9e9ddaFtjUiLiJ5Nsm7nIebYIuu3HY9gBvT2TEbna6eBHAcUh/0VvYFUG0ZK0nDDWbxPKe4rcJ0Dhedi9Tru8F0EA/bvmqKpNtMBskFkrw8x3MPpFpZ2pUC3BOGMxaS9D6A983G8bZMCiRt0VXjV4rUMhBWAyDZjuRZpnO4yJ6v7nsCqe45VgMgeQHJZqZzuMSer+77EMBrpkPkCpKHk0xrrdtsFF0NBPChx/s5NxokXwfwa0levgpoDMkBAP4mqb/pLG4guReASklfmc6SC0heDeAdSa+bzuJVJL8DcIjTB95TSBYA2EfSO6az5AKnev1Xkq42ncWrSP4VwHeS7tzVfbNRdDUn02NYu2QoUktdWe7wbAEHAEhaajpDjtkXwDLTITzOs+espM0A7GC14bRGqjud5R6jRVcHkgxlehyrZiS7kvys2o/egkffnBsDSXMBHGI6h1tIdiPZ1nQOLyP5LslfOA8XA/jBZJ4c0A6AJ5upkCy0RVfuInkZyYnOw7UAPLc8WmMi6Y9Ic5pjNuawPg+gRRaOY9UsgGrLWEk6TJnO47B2yuN/vxMAHG86hMdFACQBQNL1kt4yG8fbnO50Xj1newOYZDqEx4UAEAAkvSnJFqS6LN3z1RZdNX4bANxrOkSuILkHybGmc7jInq/umwJ7VbXBkLyKZLjuLZukAOz56ra3kbpzaTUAkseQ7JfWvlkqunov3d6wVv05b8ovSRpmOotXkTwSwIWSjjCdxQ1OJ69iSSvq3NjKGMk7AEy3RTPuIbkVQBtJW0xnyTaSzQF0kvRf01lyAcnfAOgl6WbTWbyK5MMA5kh6aFf3tUVXTUsegANMh/A4AvDsly9Jn5vOkGP2A2BXCHBXEh6d1y9pPYD1pnPkkDYAupoOkQPSumuQjaKrQSRtq1CXkPwFyQXOQ8GuF+cqSS9LOtp0DreQ7EFyd9M5vIzkFyS7OQ//C+BHk3m8TlKBpBLTOdxAcjeStmmAi0jeSvIy5+H3AD4xmcfrJP1W0r/S2Tcbna5eRaroypNvGI1AAM4yVpK2AhhlNo7VxF2J1JeetN4wrHrJg3MFQdL/Gc5iNW2HAPgdgBGmg3hYAP8rknzRcBZrJ7JRdGUnhbvrewD3mw6RK0j2Inmy6Rwusuer+/4GYKPpELmAKV6eb2jPV/fNAjDPdIhcQfIUkvumtW+Wiq7e9vCyIo0GyVYAHpZ0lOksXkVyDIBjJZ1oOosbSHYHsF7SGtNZcgHJKQDulmTXdnQByQCAhCRPTksjuRuAVpIWm86SC5yLFa0k3WU6i1eRfA7AvyQ9t6v72qKrRo4kkfpikQQQBmAXkXZfmekAbpH0Wd1bWZkg6YOzPChSRVdRw5G8zA/As23BJa1FajF7yyU/O1/bIdXtynJPEkBareUzmhJA0kfyl5kcw6rTMPyvyjgBW3TlKklPSPLsOqwk+5BsaTqHx60DUOT8eR5slbdrJCUkFZjO4RaSbdO9fWrV230AznH+vBzApwazeJ6k4yS9kM6+mc5hDQJI6xdb9ba9766k1ZLONJzHatomAhhgOoTHVT9nL5S01HAeq+n6FYBLTYfwuOrn6zOSHjacx6pFpgPWADy6/l0j8iUAewI1EJIDSJ5gOoeL7Dnrvonw8LSSxoRktFofeC+y56v7ngOwoM6trKwgeR7JPdPaN5NaKWf91f0lvZf2Qax6c9Z2vFWS7QXvEpLnAegr6VzTWdxAsgeAHyRtMJ0lF5CcDuBSSV+ZzuJFTlHS55JamM7iBpKtAcQlfWE6Sy4geT6AKkl2ZR6XkHwLwPWS3tzVfTMqupJUBcAOVl3kfCnwSaoAEAOwt+FIXlcFbxdxLDGdwetIhgCUVyu6yjMcyct8ADaZDuEWSasBrDadw8tI5gFIOuOZ9gBKDUfyujKk2U0y06KrEMnDMjmGVadjADzp/HkLgNkGs3iepAckXWQ6h1ucKQ/NTefwuDKkWvwCqfN1s8EsniZpjSTPttIk2ZlkT9M5PO4xAMc5f/7M+c9yiaQjJc1NZ99M57AWAXg0w2NYO1d9QvhySRMM57GatjsA7GM6hFc5S+TAWYYOks6XtMpsKqsJGwnAk9OTGpHqn7FTJT1jOI9VC1t01fh9DGCa6RC5guRhJL3cBtEP2znHbZebDpArSLYgeY3pHC6yn7Hum4bU56zVAEheQrJDWvtmWHQVBNBD0kdpH8SqN5J9AVwk6TTTWbyK5BUACr3aA94puvpO0lbTWXIByTcAnCjpR9NZvIjkHgBeldTNdBY3kNwdQJ6k70xnyQXO+/+3kuydY5eQXAjgt5L+u6v7Zlp0VQ7ADlZd5EwI90lKAIgD6Gw2keeVA/DsYM4WXbnL6UwXlbStcG9fZH4ny9o5zzZmkPSD6QxeRzKCVJHktqIrO+fcXVthqOgq3xZdue50AP9w/rwOwBsGs3iepL9IutF0DreQHELSs52BGoECANXnrL4AW3XsGklfSDrAdA63kNybZHfTOTxuBoBt45iPACwzmMXzJB0qKa1uYpl+828P4O8ZHsPaue1zDiV9Kulaw3mspm0SgI6mQ3jY9gIOAJB0piR7xcZK1xgAJ5kO4XHVi67ulzTLcB6rFrboqvF7D8DTpkPkCpIjSR5hOoeL7DnrrlIAV5kOkStIdiTpyfnmDnu+uu8+2KuqDYbk9SRbprVvhkVXEQCdJNl1yxoAySEATvJqF6bGgOStANZLutV0Fjc4RVfLJdnWoQ3AKTAYYP++3UHyAAD/kLS/6SxuINkGgOxc1oZB8jYAcyU9bzqLV5H8GsAQSV/v6r6ZFl2Vwi6y6yqSYaS+WJQiNT+ureFIXlcKW3RlpclZhzW/2jSAngDSvypg1SUJwLMrMNg1fN1HMg6gVFIlUtMc8w1H8roNACrS2THToqvmJIdlcgyrTuMBbCsC+h7AW+aieJ+k6yR5dl42yeEko6ZzeFgHAJ9Ue/wU7Lq3rpH0gaRfm87hFpK9Se5pOofHvQHgF86f3wGw3GAWz5PUV9LKdPbNdA7r3gBuzvAY1s5VnxC+QNJfDOexmrYHANjWrO75edHVqc5yOZaVjjMBHGU6hMdV/4y9R9I8w3msWmQ6YP3Jm7PlitkA7HyaBkLyFJKDTedwkT1n3bUOwHWmQ+QKkt1JXmQ6h4vs+eq+2wHYxgwNhORfSaY17SLToqsYgNaSvkr7IFa9kRwJYJCki01n8SqSkwF8KGmy6SxucNZ0/MKZr2W5yOkEuFBST9NZvIrkrwBcJulXprO4wSm6Kpe0znSWXEDyfgBPSpptOotXkdwIoLOkjbu6b6ZFV8UA7GDVRc6XAkkqAdAMQFrLQVj1thnAFtMh3GJX9HAXyQCAuKQNSL2/djEcyesqAKwxHcIttujKfSSbA9hcregqbDiS161GmvP6My26auPx26eNwRUAtl1R/QrAHINZPE/SpZIeM53DLSSPc9r9Wu7YF/8rjEwCmGYuivdJekvSKaZzuIVkf5L2S4+73gPQ1fnzG7DTA1wlaW9Jaa3Ek+kc1j5IDags91SfED5H0gOG81hN278AhEyH8LDq52uZpLMN57Gatt8DsBeF3FX9nL1D0iLDeaxaZKPoys6Fc9fzAF4xHSJXkDyX5ADTOVxkizjc9R3syikNhmQ/kuNN53CRPV/ddw08vJZvY0PyQWe96l3fN8Oiq3wAhemuqWXtGpJjAXSTdI3pLF5F8kkAz0p60nQWNzhrOn4pKWk6i9c57QdfkdTPdBavInkCgNGSTjCdxQ1O0VVxtUYUlotIPg3gdknzTWfxImegWgXApzQGn5kWXW2Fh7sCNQYkCwFUOgVuzQAUGo7kdevg7aIr2zPbRSRDSHW6WgcgCKCN4UheV4ZUEYcn2aIr95HcHcCPznrJ7ZDhuMjaKR+Ar9IZrG7bOW0kO5McmMkxrDrdhNTi0QCwBKlOHJZLJP1e0kumc7iBKZ4tUGkkDgLwrPPnUgCeLeBrDCTNlOTZKQEkB5PsYDqHx30MoIXz5xfh4S9ApkmqlNQt3f0zncN6MFKTwi33VJ8QPkvSE4bzWE1XAMA/TYfwuOrn63pJlxjOYzVtFwGwU0rctb0WR9JNkr40nMeqhe101fg9CuBN0yFyBclLSfY2ncMl9nx132cA7jAdIlc4VyDPMp3DRfacdd8EAMWmQ+QCklGnOUN6+2dYdBUHEJVkL6E3AJIXAAhLutV0Fq8iOQvAXyS9ajpLtjkT3jvbznQNg+QeAB6SNMh0Fq8ieQ6AA7y6fJhTdLXZqWGwXEZyNoDxkpaYzuJFTpOGLyUVpbN/pkVXW+DhApXGgORuAEqrFV3VelXcabt5JFLfyv8j6f2GSekpP8CjhYTOygB2sOoiklEAMUk/IrXebYs6drEyswWpc9aTbNGV+0h2BPCdUwjUBgANR/K6L9LdMaMBqzNAai5pXibHsXbqLgCvApgK4EMAO1wSJ1lQWFj4TGFh4aEnnHCCLxQK8ZlnnqkoLCxctnnz5qMkfd/QoZsqSaebzuAWkmEAo7zcyasROBzAbwGMBLARgCeXR2ssJD1uOoObSB4J4CM7cHXVVwAiSLX5fRrAerNxvEvSegAHpLt/pnNYhwE4LcNjWDtXvYhjpqQXfr5BQUHBCyNHjhy0Zs2ayAMPPBCaNGlS8Pvvv49deOGF++bn588hGWzw1FZjVADgb6ZDeFz183WlpBsM57GatisA7G06hMdVP2evleTZK/ZNnS26avzuA/BubU+SPCASifzioYceCgWD/xuX+nw+XHvttYGePXu2BHBMA+T0BJITncX1vcier+77AMA9pkPkCpJHkTzVdA4X2XPWRSQJ4EzbSKVhkGxJMu33x0wHrI8g1dbM2gXOepi/KSoq+ndBQcGaoqKiL4LB4BUkd5iILOnf24pkSF5Hclz15/Py8kadddZZEb/fX9PvwXnnnRcvKiqyV8Hr70gAaU0IbwLWwC6R4ypJX0t6E9jeNvRl05k8bh8AXl3VAwCOA2BrEVyilIe3PSa5kGRbk5k8Lg7gN+nunNGAVdIWZ06CVU8kmZ+f/0Dnzp2fuOuuuwb997//bTlz5sxuxxxzzNWxWOxTku1/tn0bkjHnYSFS3XO28/v90cLCwlr/P8bjcfh8vmj2X4lnfQOPLnEiqcq2UXYXyTjJVs7DMFLTMCz3bIC3i65WSyozncOrSPpIdq32o9aooU7EyppKAEvT3TnTTld9SB5qEWhJAAAgAElEQVSYyTFy0PGtW7ces2jRotjYsWPRrVs3HHrooXjqqacil112WcvCwsKfF8RMATDU+fNcAAurP1lWVjbv2WefrXWlhhkzZpRu3rx5dnZfgndJOl7Sp6ZzuIFkAckTTefwuOMA3O78eTWAZwxm8TxJD0j6i+kcbiE5ylkpxnJHFKlOV9s8Ao9esGgMJH0r6Yh09890HdYrAcQlXZH2QXJMUVHRgvvvv7/fCSecsMNzZWVlaNWqVdmWLVv2Rer27UmhUGgiSV9VVVWQZGUgEPi6vLz835WVlY9K+oBkMBqNfj9t2rQWxx577E+O995772Ho0KHFpaWlXSWtaZhXaDVWJPcC8KIkr87RNY7k7wAcIunMOje2rDqQ/AjA6ZI+Mp3Fi0gWIrWklb0T0gRktKwV7ITwXVZWVtZjyJAhNT4XDodxwAEHlL/11lu3+3y+I/faa69k7969Y+3bt0d+fj4qKyuxZs2a5suXL+8zb968cyORyHIAZ5SUlBxx6qmnzj7uuOOCp59+eiQYDOKZZ55JPPjgg1WlpaWj7WC1/kj+DcBtHr11bs9X9/0bgCev0DdGJE8CUCHJq1eyA7DnrJtKAXi5U1qjQrIzgD9Iujit/TO8wprvHMM2D6ineDy+dv78+S169OhR4/P77LNPcuvWreVnnnlmuFmzZj95bvr06ejYsSMOOOAAJJNJfPDBB3rmmWfKksnk7RUVFZPy8vLOjsfjJwLwl5aWvlJaWnqPpG8a4GV5BsllAI6SlPY8m8aKZABAkbOoveUykr8EcJ6k401n8SqStwDYIulm01ncQLIlgI2SKkxnyQUkVwDoLsmTzWNMI/kLAA9K6pvO/pkWXW21g9VdI+mx+++/v8Y3n08//RQrVqzw/eEPf9hhsAqkpgwkk6nVN3w+Hw444ABeeeWVkebNm18cDAb/VFFRccu6det6r1u3bt+SkpJL7GA1LcuQ+tbtOZIq7WDVXSSLflZ0FTGZJwesQWqusCdJ+tEOVt1DMkCyW7Uf7QZ7RdtNCQCfp7tzpkVXBzkj5pxEMo9kB6c/br0UFxfffv/995c89NBD2jb4BIBly5bh6KOPxhFHHIG8vLwa9917773Rpk2bn/yssLAQf/zjH2PRaPR3AGxBTYYkDZf0nekcbiDZiuSOk6etbBoL4Ernz8sB/D+DWTxP0l8lPWg6h1tInkbSzq90z+4A/lPt8SSkOl5ZLpD0qaQx6e6f6ZSA2wCsk3Rr2gdpgkiGI5HItQB+Hw6HAyUlJYFIJPLRxo0bL5X073rsv288Hp8ej8fbHXLIIfr222+DH3/8cfDXv/41Bg4cmFamb775BpMmTdpSUVHRVdLatA5ieZqzosffJaXdGs/aOZKXAGizszlazgDkcAAxAP+VtKih8llNC8lvAQy0d8vcQbITgDmSOprOYtXNdrraRSTz4vH460OHDr3gww8/LFi/fn108+bNwUmTJh0Qj8dfJlnnoriSPtmyZUv377//ftjTTz99yYIFCzRhwoS0B6sA0KlTJ/Tu3Tvg9/vPTfsgFkg+UlMDB4/IufPVgBcATK3pCWcN5hvD4fAPgwcPfvD444+f1KJFi3cKCws/dIoRrF1E8hySR5nO4SJ7zrprLYDfmw6RK0juSzLt+eaZDlivAXBvhsdoak7ae++9+8yYMSPSvXt3AEAwGMQpp5yCF198MRKNRh9xilt2yumwMR9A1V577VXZqlWrunbB1KlT8fHHH9f6/ODBgyN+v/8Cp92clZ6jANQ8J6PpW4BUJy/LJZI+k7QQAEgeT3J7F51YLHZTly5dJixbtizy1ltvFTz99NP5P/zwQ/RPf/pTr1gs9q6Hvyi5qS+ATqZDuGg/AKtMh/AqScWSXgC2z2fdYDqTx7UCMCDdnTMtuiqWVJLJMZqaoqKiCX/6059iNbVCHThwILp27RoE8Mv6Hi8Sify6d+/esbq3BBKJBHY2haN9+/bw+Xz5ADrU9/dbO/gYQLnpEG6QVCFpo+kcTZnTVnkYyT+RvJzkfj97vtXPiq6Czs+bVVVVXThr1qxY+/b/a2YXCARw6aWX+o866qiCQCBwToO9EO9YAW8XXa2XZK+wuoRkmOS2dakDSDUSsNxTDINFV8N+/obtdVVVVW179uxZ6/O9evXyAWhf6wY/I2n/du3a1Wvb/fbbDy1btqz1eZJo165dOVJXHaw0SBrm1UEdyY4kj617S6smJLvm5+cv69Kly/OXX3759ePHj7+xqKjovcLCwjeqFcaMw/9uMS5BaooAABw1ePDgip8XTW5z/vnnR+Lx+G/dfQXeI+kmSdNN53ALyfNIhk3n8LA98L/CyCQAz3ZNawwkvSfp/HT3z3RKwBgAB2V4jCbF7/evWrJkSa3Pf/zxx1UA6r3ofDKZjOfn59dr2/79+++wSsDPFRQUBADUe9UCK6d0h52vlRaSsVgsNvfGG2/s8uWXX+b/+c9/9t1zzz2B1atXR4455piDCwoKZjibbp9zKOkDSY87P89v3br1jrdlHC1btkQymazXnRYrp9wGIGQ6hIdVP1/LJV1Zx/aWQZkOWHOuC8eGDRvuuummm4qrqnZ82XPnzsWXX35ZCeA1ACDZxefzXRWLxd6IRCKrQqHQukgk8m00Gp1BcjzJ5iSrajpWuioqKpKwy3KkjeRzJIOmc7jEFnCk76QBAwbkX3DBBb7qU8Tz8vLw4IMPhoLB4AEk+wJ4HMDTNez/0ezZs5PVl7Kr7o033hCAhW4E9zKSl5AcZjqHi+w5665vAFxoOkSucJZCvTrd/TMdsI4HMC3DYzQ1jy9ZsmTRscceW7Z0aaoZUnl5OZ544gkMHz68pKSk5EwA7SKRyKxgMLj44IMPvuaEE04YOmHChN0vv/zy5uPHj+9wzDHHHN27d+9bA4HASr/fr9Wr6zcF67777sOyZct2us2qVasEwHNdmhpQnas8NGGvA7Bdl9LQvHnzk88+++wab4UEAgGMHTs2RPJoZ53Bz4DtFex3O5u9t3nz5u+nTJmywyT0NWvWYOLEiaWbNm263cWX4FX9kFpL06vaIjXvz3KBpI2SZgMAyd1IerEld2PSFhlMWayzmn1ncq3gCkjdNiB52OzZs2/o06fPudFo1FdSUpIXCoU+2bx58yU+n6+N3+//dNiwYaEhQ4YEgsEdL9a1b98e/fv3j27duhX33ntv4KuvvsI+++xT5++uqNj5hdOysjJs2LAhAsCu65i+BfDoFQ2nY469+p4GkqFYrPY79vF43E8yRLI9gITTUSwE56KAJJEceeGFF86dP39+9Jxzzgm3aNECr732mq677rqSkpKSv0n6T62/wKrNVwA8271N0ibTGbzMaS/f1mnFHUCGYyKrThuRQdFVpo0DfgPgi21XFHKNc+u4DYASST/6/f7fRSKRe8aNGxdp27ZtvY6xcuVKTJ48Gddeey1qWnmgunnz5mHvvfdGixYtanx+zpw5evHFF18uLS1Na11Ckl2QmoS+FsBCZfKPw2p0SO6FVJ/sGXVubP1EKBS64bTTTrt0ypQpNRbA9OzZc8uSJUtOQqohwHJJd5E8GEALSTO3bUeydSgUGh8Oh09LJpNRv9//4caNG2+T9EYDvRSrCSF5MYA77XuxO0gOBHCLpEOdwsnxktJeJ9RyV6ZTAsYC6JWNIE2RM0n7G0k/ktw/Ly/vngsuuKDeg1UAaNeuHXbbbTe8//77dW578MEH1zpYLS8vx6xZs0rKyspuq/cvd5Dco1mzZvMKCgo+PfDAA59u06bNf+Lx+Nck7Zqd3tIHwKmmQ7iN5O7RaPQv+fn5a4PBYKJZs2ZLfT7fOfVZH7k25eXl9z322GPJd999d4fnHn74YX377bebAbyC1JzDSgCQNK/6YNX52eqysrKrN27c2Hnz5s2tNmzYcKQdrFo1IekDcIcdrLqq+vm62Q5WGzfb6SoLSOaFQqGnTjjhhHB9GgD83KhRo/DCCy9g48b0V1OaMWNGory8/LWft4YlWUCyE8m2zhvgz7N3iEaj86+77rr+a9asibz33nuFK1euzH/66ac7FhQUTM+lQatzS/eFurdssjx/vpLsEo1GPx47duz4+fPnt1i7dm3wqaee2rNfv353xuPxl9IdtEr6vrS0dPSwYcNKzjvvvMSsWbPw/PPPY+TIkcXjx49fX1xc/CtnvczJAF7M7quyakNyIsm0FyJv5Dx/vjYCnwCwKwM0EJKHO+2r09s/wykBIQBVkirTPogHkDyuXbt2D19yySXxdJtMzZ49GwsWLMC4ceNQ2zJXf/nLXzB69Gh06PDTvgBz5sxJzpw588fy8vJ9AKwH0D8cDk+QNLSysrIoFAqVJ5NJX0VFhS8UCi0pKSm5H8A0SVvy8/PvO++888684447duju9NJLL+Gkk076avPmzXvkwrd8Zz7TakmeXF7IGawFJJWZzuKWZs2avX3FFVcMuPzyy38yv6aiogIDBw4smT9//sXJZPK+dI9Psn04HB4Xi8V+BaB8w4YNTySTyX/WNNeQ5P8BiEu6Kt3fZ+0cyZcB3CPpJdNZss3pWBiV5JmiK2eh/rHNmjX7Y0VFReu8vLzvN2zYcBdSn0dGG7aQ3APAi5L2NpnDy0j+DsAhks5Ma/8cGIe4LhqNvnP88ccP6NevX9rHkISXXnoJ77//PsaOHYsuXbrssM1tt92Gk08+Gds65ZSXl2PGjBmJ+fPnbywvLz8YAMLh8OPBYHCfIUOGRHr27Olr1aoVfL7UhdXi4mJ8/fXXmDt3bvHSpUtRVVV1UTAYvPPzzz+Pdeq0Y3fDZDKJtm3bFq9evfogSbX3hPUIkjEAz0k63HQWa9eR7BqPxz9Zs2ZNJBzecarp7Nmzcdxxx325cePGPVz43YUkTw+HwydWVVX1qKysjEui3+8vDgQCL5eVlT0G4CXbtSi7SN4J4ElJ75nOYu0cyVg8Hp/Tp0+fva+88spo9+7d8emnn2LixInFixcvXrRly5ZhDfll2imQHBMKhYb4/f52yWQymkgk2gO4VdLrAN7JhQs1DYnkCAA9Jf05rf0zvMJ6IoD3JX2V9kGaOJIBv99ffOONNwYjkUjGx3vllVcwe/bs5L777psYPHhwpFOnTth21XbOnDno3bs3AoEAFixYoNdee62koqLi1bKysnMAHJKXl/f4kUceGRo6dKh/2yC1NqtWrcLDDz9cvGbNmlhlZWWtBV99+/bduHDhwmN+PtXAanpI9gHQRtLLprO4geSRBx100BPz5s0rrOn54uJiNGvWrLKiomKHuwkZ/M5QXl7e9ZL+2KNHj2Tfvn1jHTp0QEFBAb744gts2LABkjB37twt69evLy0vLz9H0vPZ+v2Wdzkdrs6X9FfTWbIhPz//7uHDh5/9xBNPhKt/PlVVVWHkyJGls2fPvqu0tNT12/Mk9wyHw/dUVVUN3m+//ditW7dQy5YtkUgksGjRIsRisYr//ve/iUQi8WNZWdmlXu6k1tRkOmB9DcDtkmZlL1LTQrJnQUHBezfccEP92lXVobS0FFdeeWU5yavz8vIulLR727ZtNxcUFPgqKyv1ww8/aNOmTZG8vLxXy8rKbpM0h+TwUCj0zLhx4yIdO3as9++qqqrCxIkT9fLLL3PAgB2ngZWUlKBVq1ZlxcXFe0pakY3XZ5lD8lwA/SR5smc9yf6dOnV6bfny5TVOzVm2bBn69Omzsbi4uChLv69LKBR6vUuXLruPGTMm2qxZs51uv2zZMkydOrUkkUjMTCQSp5u+BWo1biSbA/hSUlb+vZpEMhwOh9cuWbIk1rlz5x2eX7JkCfbff/9NJSUlu7k5xTAQCIzz+Xy3H3nkkcFDDz3UHwrV3ERMEj7//HM88cQTxaWlpW8mEomTJW3Z2bGd/18nAGiF1HJrz0oqzfqLyGG26CpzzWOxWNb+DiKRCEj6k8nkPWVlZW3Ky8tP/vrrr09ZtGjR7xcvXnzu+vXrh1VVVcVLS0uPdgaru+fl5T1x7rnn7tJgFQD8fj8GDRrEK664AjV127rrrruqAoHAvFwZrJJsQfIZ0zlc5PXz9f1169YVz5kzp8YnJ02aVAHgX9n4RSQ7B4PB+cOHD+907rnn1jhYlYTqFwT23HNPXHXVVdEuXbocHQqFZmayaoGVQvJukvuZzuESL52v7QsKClTTYBUAevTogUAgEATQ0q0AwWDwxoKCgtsuu+yyyGGHHbbDYLX6+UoS3bt3x5VXXhnr1avXr0Kh0DyS8dqOHY1G/y8cDq8cNWrUX6644orrhgwZ8o9wOLzG7/ePcuv1NEUkjyc5Lt39Mx2wHgHgzQyP0dRVZLO1ajKZhCQf/rfUxuOSXpA0FcBNADZKSmzbPhwO3zdw4MBQ165d0/p9gwYNwqpVqzBs2DC8/fbbSCQSWLp0KcaNG1d+0003rd+0aVNak6ObqAiAg0yHcNFkAH80HcItkpIlJSXjjz322JI5c+Zs//BJJBK46667klOmTNlSUlJS67JvJNuT/F04HH4wFou9lZ+f/1Y4HH6Y5NkkO1bbzh8KhWYeccQRRYMHD/bXVmg5c+ZMzJ49+yc/C4VCOOuss6K77777oYFAwFYnZ+4AAFm5u9UIrUWqM5AXbN26dWtebc1vysrKkEgk/ADq1YyIpJ/kiGg0Oj0SiXzn8/kqSSaDweDmWCw2LxAIXEGyVbXtR0cikQsvuuiiaMuWNY+Jv/32W9x5550/+VkwGMTJJ58c6t27956hUOgp1nCyh0Khs1u1anX10qVLw9OnT4/dfPPNvjfffDP+9ttv5+fn508leUh9XlOO6ASgW7o7Z9rpynbNAb5Yv359JJlMoq55o/Xx448/IhgMri0rK6twTo4Bkt5xnv7JN26S7YPB4BFHHHHEju206ikQCODss8/G5MmTq4YPH15aXFwcCYVCWwE8XFpaequkHzJ7RU1KBYC5pkO4xSn48coVmxpVVVVN9/v9HD58+KSWLVtG27dvn1y0aFEQwMclJSWnSNqh9SLJfSORyJ3BYHBgjx49qrp06RJr3rw5AGDDhg2Dly9ffsLixYv90Wh0Xmlp6UWBQODwNm3adBk6dOhOO33U9p4QCARwxhlnRG+55Zb/I/m0pCVZevm5aCFS3XM8xyn48cS0EUk/FBUVLXn22Wf7nHjiiTs8//jjjyMSicwvKyurs7MXyZHBYPCB3XbbLXzIIYfEO3fujG3FxVu2bImvWLHioIULF/b56KOPrgmHw1MTicTNeXl5D5x55pnReLzWi6S1nq8kccIJJ4S++OKLgYlEYjSAJ6s958/Pz7/xySefjP589Z5+/frhzjvvjF5yySUTAQyr63XliJWo55eSmmQ6h/VMAK/W9CGQS8Lh8JoJEya0bNOmTcbHmj9/Pp577rlXS0pKjnQ6aRVLygMAkhcAeGTbEjo+n+/K/v37XzNmzJiaJ+LsgnXr1uGWW24prqysLJCUzPR4VuND8iAAMacC1tOcNYf7AygCsEzSshq2YSAQuMrn81151FFHhQcMGMDa5rQlEgnMnz9fM2fOLJPECy+8MFxXg5DPPvsM4XAYtd0GfeWVVyrffPPNx8rKysbu4suzcgDJZgBOk3SP6SzZQHJoQUHBCzNnzowOGjQIQOo2/Ouvv45Ro0aVbN269ZfVLs7UtH9eKBR6JBQKHXP66adH99hj54t9FBcXY/r06aWLFi2q+sUvfhE8+eSTd3phZ8OGDVi6dCn69+9f4/PLli3DlClTViQSiY7bVg8guV/btm3nrVy5ssar/CUlJYjH41XJZDKc68t/ZkOmc6jOR2rh3ZwesCaTyWnvvPPOuFGjRqV9pXObOXPmlJSWls52KkQJZ2oAAEj6W/VtI5HIL7t3757xYBUAWrRogVAohMrKyj0ALM3GMa1GZxCAFgA8P2B1vnTt7MOPoVBoSvPmzU8855xzIkVFO69rCYVCGDhwIPPy8iJvv/026tPNrnv37jt9/uCDDw68/vrro0n+3ktrbVpZ0xzAhQA8MWCV9CbJE4cPH/5wx44dQz179uSiRYu0atWqkq1bt55Wx2DVHwqFnuvYsePQs846K1rbF8vqYrEYTjnllMjnn3+OoUOH1rl9UVFRrYNVANhjjz2Qn5/fLJFIDMH/pkKGotForRd4wuHwtvV0A6j2WW6lxxZdZUFFRcU97777btXmzZszOs7y5cuxevXqaMeOHa+ORCI/RqPR6wCM2PY8yWD1OTRVVVX7ZOOq7jbt2rWrAuDVAoY6kexMcprpHC6y56sjEAhcWlRUdOIFF1wQq2uwWt3q1avRq1f9ulFXVVUhmaz9ZkVBQQGaN29ejlTL3IyRDJD8JcmTSR5c03w7ryH5L5I7LlrtDQF47HyV9EJxcfHuS5YsGTV9+vRxy5YtG7l169a2kl7b2X5+v/+SVq1aDT333HN/MlhNJBIoL6991sTq1asRjUZRn8/JZDJZY/HxNiTRr1+/qN/vr75O95IVK1YEVqyouS559uzZyM/PX+7lZi27guSZzp35tGQ6YO0H4MMMj9HkSVou6e+PPfZYSbpTLMrLy/Hkk0/isccewzfffBNftGhR/oABA8bH4/ELqn3wrEbqFicAIJlMhmtaID1d4XDYB8CTXZ7qKR9AX9MhXHQLgJzvukSyu8/nu+6ss86K7er5s3Llyu2NO+ryzDPP4J13ar1oBADo3LlzHrIwYPX7/aNisdgPPXv2nD5ixIj7OnTo8Go8Hl9O8uBMj93IHQgge2+CjYikpQA813VJUpWk1yX9S9KbdU1BI9nN7/dfc8YZZ0QDgQAkYcGCBbj77rtx9dVX46qrrsLkyZOxePHiHfb97rvvdugMWZulS5di8uTJO92mQ4cOvlAoNKjaaykOBAIPjxs3rrSy8qcXUDdv3owLLrigePPmzTfVK0A1JH0e/cLZBUD93kBrkNGAVY5MjuEVFRUVf1q+fPk3M2fOLN/Vv5LKykpMmzYNhx12GI477jgAqdsPL730UrSwsHAYgMHOpj+5Qubz+RKJRGLHA6YpkUgkAeTyrckSeLvoSl6dn0yyjXNVsc4P+HA4fNPhhx8e2m233Xb595SWliIajdZr2/oUYsbj8RCAQufuyW8CgcBNsVhsdn5+/nuxWOz1QCBwI8nhJGttdkByeEFBwbRZs2a1+PTTTwuef/75+DfffJP/z3/+s1M0Gv13PB7/rqioaFk0Gv2z093HS94FsNP1MZsyr52vJKN+v/+PRUVFS2Ox2MaioqLFPp/vHKfNe42CweAlAwcOzGvRogUA4NVXX8X8+fMxadIklJaWori4GNdddx1eeOEFzJs37yf7bt26FYWFNfYR2UF9ztfCwkJIak0yQnJsLBabWVFRcdyLL74YjkQiaNOmDQ477DCcdtpp2muvvYq/++67xyQ9Up/fT9Ln8/nObtas2ZckKwOBQFlhYeHTJPep1wtoGr4C8GW6O2c0h5XkHwA8LmltJsdpikju7vf7x0YikT0TicR3AP6ZSCQGz5079+1169Z1GD16dCQWq/ti5Y8//oipU6eib9++ePjhh3/yXCgUwoUXXhi54YYbzgXwFoDrAWxfiNjv9y/+/vvvB7dq1QrZsHLlSj9Sc5JzktOxzZOL6gMAycMAVHqpaxnJjoWFhVOi0ejALl26JH744Ye8Zs2ardi0adP5kt6oYfvd8vLyhh900EFpfVkPBAI7vW1YXe/evev8sCwrK6vy+/2DfT7fpa1bt/b16NEj1q5dO38oFEIikcDKlSuHLF68uPjHH39M5uXl/aWysvK26g0HSLKwsPDuadOmRQ4++H8XU0ni2GOPxcSJEwOzZs1qf80112DatGkTHnnkkXEkj5A0r8ZATYykM0xncAvJNgCOkfQP01mygWRBPB6f279//65XXHFFdK+99sInn3xSOHHixL9+/PHHvyU59Oe3zkkGA4HA6YceemgekOrQuGDBAixZsgTbvnD6fD6MHj0a/fr1Q9++fdGrVy/k5+dv23+n03Kqa9Wq1U7nsAKpaT5VVVUFeXl5azp16oQDDzwwv0OHDtg2rWjdunX49ttvMWfOnKr169ejsrJyfj3/bhiPxx/v2rXrUXfccUds6NCh2LBhQ/Chhx4adf311/+a5JGS3q7XC2nEJD1c91a1y3SVgGUAjnJuXeSMcDg8geQtJ554Ivr16xf+7LPPyv/5z38mAfy9uLj42mAw+Fe/33/KYYcdFhowYIB/28lT3dq1azFnzpzyefPm+Q4//PDA888/X2N71JkzZ+KMM874aP369WMBfCdp/bbn/H7/1QMGDLhq9OjRGRderV+/HjfffHOJ0wPdU9/qrRSStwDYIulm01mygeTu0Wh00eWXX978oosu8ufn5yOZTGLGjBk4/fTTS7Zs2TLy5ysikDxujz32eGj8+PEF6fzOxx9/HB06dMChhx6acf5Vq1bhnnvuSXbo0KHimGOOCe1snt2qVavw3HPPlXzzzTerEonECEmLAYDkHs2bN//oxx9/jNZ0dWjjxo1o06YNtmzZgkAggFdeeQWjRo3aWFpa2sbOq2vcSPYD8ICkX5jOkg3xeHzyyJEjx06dOjVU/W53tdasfy0tLf3JlCWSfYuKiv597bXXxgFgxowZOOigg3DjjTfW+DtOOeUUlJSUYMiQIQCAhQsX4v3338fZZ5+dcf6tW7di0qRJ8Pv9Vaeffrq/devWO91+xYoVmDp1avGmTZveLysrG7GzTlkkR3br1u3Rjz/+OLZu3Tp88MEHyMvLw6BBg/DWW29hzJgxq4qLi9vn+mdzNjqteGpSeF1Ijtx9991vevfdd8OdOnXa9uPgDTfcgEMOOeS85cuXf51IJM4hOfm111677OWXXz6moKAg0a5dO4RCIV9xcXHVihUr/GVlZSI5paKiYl1eXt4Vfr+/xvuMHyxYAFaV9WjTLPiftVvKw9Ggb1NewPfhliscyw4AACAASURBVLKqWRJmLliw4MqRI0eiPlWTOzN37twKki8DGEZyqaRvMzpgE+R0zLlA0lmms7jkJ6tONHXRaPT/zjjjjMJrrrlm+zc9n8+HY445Bo8++mj01FNPnUxyj+rTlvx+/wHdunVLe6H5jh07Yvny5fUasFZWVoJkjV9Ev/vuO0yePBkjRozw9e/f/ycf4DVp06YNzj///Oi7777b9dlnn32H5GBJCwEUFBUVVdZ2K7NZs2YgibKyMuTn5+PII4/E/vvvH5gzZ87xAJp8gSHJmQB+J2mN6Swu8CG1NnSTRzIaDodP+/Of/7zDv3W/349bb701cuCBB44jeY2zXvQ2vTt27Lh9h02bNqFv39rLDPbff3/MnDlz++MOHTpg+vTp9brdX1VVBUkIBHYcFpWUlODvf/87unfvjhEjRvjrs+Z6+/btcdlll8WeeuqpAQsXLnyb5CGStta0bVFR0UWXXHJJ7IwzzsBrr72GQw45BMXFxTj11FMxfvx4tGnTJv+LL74YCmB2Tfs3FSQvArBS0pN1blyDTOew7ikp7fkITVGzZs0m3nvvvdFqg1UAqWWhpk6dGgsGg9eQ9Ev6oKys7MSqqqr4hg0bhnzyySe//+CDDyZ89tln52zdunX/ysrKwvLy8gsBPPryyy8HP/vssx1+1/r16zH5H5Nw55hOwecm7FdQUYXgQ+f0aHnxrzsecfi+zW8MBfiOn9j4+uuvZzQI2bhxI95+++3AbrvtduSBBx74TCwW+7xZs2ZvkKzfbHXvKATQw3QIt0j6P0m1dnpqaiT9dsKECTUuJXfUUUchEom0BrBv9Z8Hg8EuRUVFab/v9erVC59++ilKSupe+3ratGn46KOPdvj51q1bMWXKFIwePRoDBgxAfWsrSOKggw7iKaecEs/Ly5tNp9f8ypUrg2vW1Dxee//999G6dWtUn540YsSI/EgksvN7n03HAUjN7fccSe9L8sr/pw5FRUVVtRUs7rPPPnDmsbb42VOF+fn52+dvx2IxLFu2w5LK233++ec/mWPevHlzxOPxne6zzaJFizB16tQan3vyySfRrVs3jBw5cpcaBPn9fowZMybco0ePvUKh0N9r266qqmqPf/zjH2jVqhW+/fZbzJw5E2+88QYWLlyIN954A5FIJAJg5wvPNg1dAaQ9hzHz1kw5hGR+cXFxj6OPPrrG5w844ABEo9EIgD23/UxSuaQPJU2TNEXSk5I+k5QkOTqU51u4R8tAcsigQ/Hoo48ikUggmUzi5ZdfxqCD++PwHjHs3SaKZDJ1kahLywiO6NUc1x/XJTLjol7hk/q3aPXvt94KfPPNN2m9pmQyialTp+Kkk07iypUrY++9917hmjVrwhdffPHAWCz2Psldr0xpujYC8MTcvlxQVlYWr21Rfp/Phw4dOlRix97kyUymQcXjcey777548826O1Ink8kar65Onz59+1y7dPTp04cHHnhgLBQK3S9pU15e3vSrr756h2LPyspKXH311Tj//PN/Mihev359srKyssYrPU3Qm6g2r99qtLZs3ry51tasxcXFKC8v92PHot9EeXn59iuuffv2xb333lvjF8a1a9fiiSeewP7777/9ZyRx6KGHYvbs2ajrvK/tKuxHH32EH374ASNHjqz3l8vqSGLMmDHhvLy840nW2PGqsrKyMh6P4+6770b1KYQdO3bEzJkz8dVXXwUAeGE6wBIAy9PdOaMBK8krSXq1j3NNfCR3+g0rEAgIdfy9kmyZH/a/sHth8KG/j92r4MGzugevOrI5Jt14MeL5MUTCIVxy/uk4vmclzh/6v8/bPxz+02+nhdEAzhnW1nf1yPa4f/J9qG0tuNpUVVXhX//6FwoLC3H//fdvPxmj0SiuvvrqwPHHH98sFApN2KWDNmGSPpF0qekcbiE5guQA0zmyJT8//4cPP6x5Vb1EIoHPP/88iJ+9OSYSiaVr/z975xkeVbX18f8+02fSK2mQhEASepeiFBWRjigqogiIVAui16tXvV4Vr71RBASUjoIURXoH6UVqKiWk9zp9zjnr/TAJUhKS6cB7f8/jB8nZZ++ZOfvstfda67+Kix3ySAwaNAiHDx9GZubfUTOiKKKiogI63d/rbefOnW8pMJCXl4dLly5hwIABjgwBQ4YMUVSrB8RXVVW9vHLlyoyBAwfq9+7di6ysLGzcuBF9+vSBVCrFtGl/T2GLxYKFCxcaLRbLGocGcIdARCOJ6J4szcoYi2WM3RPhSUSUK5PJUtavX1/r35cuXUoajeZALQU0UrKzs69ZudHR0YiIiMCjjz6K672SJ0+eRO/evdG1a1fcrKvcpUsXaLVaHDt2Y/6TxWLBmTNnsG/fPpw+fRqhoaE3GLs17Nq1C0OGDIFMVqdQR70olUoMGTJErVKpPqzt7zKZzDBlypRaDWJ/f38MGTIEsHoA72qIaA4R/WFve0djWKcDWADgXtmt10eVSqXK2LlzZ9wjjzxyyx/Pnz+P8vJyAUCd/gfGWBOljDs0qF1Q0JSHI+QKmdW27dLUB12a+sDCh0MgQCm70eblOIZR3a1B3uU6Hn+cLsXFEhFKKdC7uQpvDWiET+fMQt9+/dGzZ8963RYFBQVYsmSJUavVynJzcyW1TcZp06Yp1q1bNx7Au/V9Mf/jrqA/gHOwSgHd9RgMhm/fe++9/2zdulV18/M+b948keO400R0g8EqiuLxixcv6gHYlXQFWKVtRowYgUWLFmHSpElISUnB4cOHwfM8zGYzIiIi0KtXL7RufWsNjoMHD6Jr166Qyx0riqdQKNCjRw/pgQMHXjWZTFMYYx23b98+/vDhw1MtFkuQVCpVde3aVbp69WpJTV96vR5jx441mkymw0T0/14/+y4gBsAzABZ6eiDOoLy8/LXx48dvCg4OVvXu3RuMMRARNm3ahDfeeMOg1+v/WUuzvwoLC1UmkwkKhQKMMYwYMQK7d+9Gt27dEBAQAJ7nYTQa0bNnT/To0eOWG0ilUowaNQrff/89goODERsbi7/++gu//fYbWrdujVatWuHChQvYsGFDjWF4jZycHFRVVSEx0fFIsfbt22Pt2rUdGWPRRJRx/d8kEonpdkmX0dHRBKBhenr3MI4arDzuwaSras3DBzmG+7yUkl4WgdqaedGHAdKqygpx4sSJOHbsGIKD/z791Gq1eOGFF3SiKH5JRLX6PRhjUUoZd2zig+GBI7uF1hp3JZNyqG0fR0TQm0SczKjCx3/kYciQwRg1ehBKSkqwcP4cyMxVmP1sDD7dvBv79u1F7959qGXLliwwMPDars1oNOLq1as4dOiQPikpCTzPr+zTp88IjUZT684tMjISZrPZnzE2EsAFAEn3cj1kxlgPAE8R0SueHouLEAHUXRbmLoPn+ZlHjhwZMXDgwJYzZsxQdejQAbm5uZg5c6Ywa9Ysg8FgWMQY6wurmzGp+iRuX05Ojqy8vBx+fn529922bVuUlZVh9uzZaNOmDTZv3oyOHTuC53n8/vvvmDp1KsrLy3HfffddCwswm804c+YMJk+e7JTP365dO9nBgwcHVv8vLwjCkvLy8sWw6gn7HjlyZH1ERESHIUOGwGw208aNGzmpVLqtsrJylFMGcAfAGDsAoB8R1R9UfPfBANwzSg7VpVlHDBky5MewsDBVfHw8zp07x5WUlJj0ev1GuZQ9q5Rxz1sEqhIJGQBOADgvl8v3nzx58qHu3bszwBoX2rdvX/Tp0weFhYXgOA4hISG3PaSJiIjAU089hXnz5uH+Hj1w7vx57Ny5Ex07drx2zdGjRzFo0CCoVKprBurp06fRtGlTm+JW60ImkyE2NtaSnJzcnTGWCUAFQA7A5OXldXLfvn0t+vTpU6tNtnPnTi2AWysj3GUwxj4AcNzeU1aHZK3uNRhjkTIJmyTh2NTIAAXXJdZb1SJCI4sPUyPYWw6phMEiiJi3pxA7krUY/+JEdOjYEampqZg1axZvMBg263S6x2qTnmCMqVVyLumFXmERz/ZoZPNGQWsUMPirs1Cp1di2c88NrgtRFDFl0gSkH92Ejx8Lx84LZfjkjxyBF2EgIplKpTLzPM8ZjUa5QqFIN5lMC0RRXAIgPCAg4FhBQYG6tszIzZs3Y/yYURTrT9q0fD3KtLxSJefSDRbxF16g+URUYOvnuJNhjA0CMImIBnl6LP+jYTDGVFKp9AOFQjFVr9erpVIp5DIJH6wmvbdKSqII6EwCcspMapmElUo4dsIocN49evToNmzYMPt9fACWLl2MstIyXEhKhjUn4m8uXLiAtm3bYsyYMYiNjcXxY8dwYP9uVFTp8dlnn9ca22orPM/jn/98k6SMKiwC+cgkjCcAvEBSpYwrkUrYqUqDkAyr0XMFwPabT3budhhjRgD+RPS/ONa7gOrqTT2VUu4TiyB2VMo4oWWkxtIyUuOtUUgYA2DiCVeKDLrz2TqhsNKskku4TJnKK/Ldd99VOOKZ2LZ1MwrTjiGjjDB3/gKMGDHihr//8MMPWL16NbKzs/HUU0/h0J8HcOjwIQwYONgpMnYAsH37dtq1Y1u5hRe8OcbAcRAFkSQABC9vX1lSUhK7OYxo586dGDJkSJnBYGh0vQbz3Qizlj7fRkS1Z7fVgzNkre56GGMqpYz7VCFlEx5tG8ieui9EERuiqvVaqUSC1/qFYVgHAzYdWYlTO1dCyQR0Chdpf4qhr1rOrWCMTb45rkol477qFucbYo+xCgCCSOBFwuSpL98SZ8NxHL6dORsRYauRXWpC31YBCPWRS15eli6YLWIni8VCsMqjZOn1er76M8s5hgd5i1m2YMGCW059zGYzPnr/XbzQ3ZcNah/kDQA6o4CUPH2LTaeL39p1oextL6Vku84kfnAPuReLcI+4y/8/wBh7yEspeYsXxAceSVSha9NQtIjQINhHLsVNLn9BJFwtNoYm5+oHrjteqDt48KCsU6dODS6zejO5ubm4dPESPvnk01uMVcCa9ezj7Y2VK5aBRBH3x/vjtYeC8N3uEqcYq4DV1emtUbFPH4/wa9vYC4wxOQCIIiGzxBSckqfrl5Sj77PjfKnFIlCW1iiYGWO/3GPG3WbcQ1Jt9yrMaqmO1ii4D7yV0sBR3UM1D7b0Z4FWAYDaFlsNABjMAo5frmr6+eYcfsOG9Xjyyafs6j87OxsHD+zD98/FYvKyDAwbNuyWawRBQGxsLA4fPowvP/8EA9sGonWUFxpSAKihaDQa1rmpn/9Hw6Ogkv/9HqjQ85Lvd+ejc8f2+HDGfzFw4EBotVosXbpU+Oqrr4wGg+Gxu91YreYvAHZLZjpaOOATAO/dzW5ixlg3lZz7pXOMd+DbQ5qo/TX2H7roTQJmbs82bj1bqjdaxOeIaHN1Hw94KyVbf32lldpXbd8ewWgRMWJOGrbtPlCnDt2op0cg2nAcQzpYE/u/3pJl+uOv4m06kzD0+usYY+3Ucm5NfJg6bHD7QM3cvSV4/oUJmDxlKsLCwnDo0CH85923Iddn4aNh4ZBwtwaCVxl4/HG6RFywJ9ckEuYYLeK7ROS8OrH/w+lUh3ak3u0bDMZYsEbBLVLLJQ+O6xWm7tc6gKkVthmBKw8XYNmRSrz62nSbQwMqKysxZ+Y38FZJ8OOKdXjggQdqvW7YsKEQMv7E20OjIeEYckpNmLjsKt59/yOb+rsdH/z7Hfw0LhaN/Oo+eRJEwtGLlVhxqEB7IUdnMlrE0TXvpv9x58IYawWgIxEt8fRYHIEx1lij4FYEe8vbvzEgStMxxtvmbPsKPY/RC9Jx3wMP4cEHH7KpbWFhIebNmYnX+gajTZQXJizLRn5R6S3XnT17FsXFxRj19JP49qlGiA5S4t11WQht3RedO3e2qc+62LdvH1jOIbw5oPaN8rFLlVj7VxXOZlaBwGDhed5iNv1h5ul5Iqp0yiDuYhwNzPgHrHE2dyUyCTdRo+B2vTc0OurzkXEOGasAoFZI8NbgJsqvnokLCNBI1yhl3MeMMU4l51a8M7SJ3cYqYE3C8vdR3bbMnCgKuN62nPJwhEKjkDzEGHsEsNYqVsq4/6jk3KHp/aOafj+muWZAuyAsGBODrMO/oHOHNvDz9cZL455C98ACfDi0dmMVALxVUozsFsqtebmVqn0TrylqOZfCGLNPp+d/uIshAOI9PQhHYIw9ppRx6YPbB/Vb80orzWOdgm02VgHgmW6heKaLD2Z/9/UN2f71kZWVhTkzv8bQNhrEBMpRm35yDaLFiHbR3tfmUKC3DBVVetQl7WMrJpMJOoMRgV63f69IOIbuzX0xZ0xzr6+eiQsM8JKu0Sgkqxhj9gfx/g93EA9gaL1X3cFIOPa0QsqSRnVv1HX55BaaTrE+dklD+aqlmP98U5w8tBurViyDwVC/k4CIcOrUKcye+Q0m9QpC31YBCPSSgQQLzp+/tQJ5mzZt0KhRIwi8CZH+1kI80QFS5Ofl2jzeuijMy0ZMYN2byy5NffDZExHYMj0BW6fH47dXEqQPtwx4VCnjLlXH4/+/xtET1ioAvq4sF1adANUSQEeVnOsul7CWAJQACIDOaBFPmXg6AuAkgPSGjkUu5V71Vkr+O39cvDoqUOn0cZdqLZj0U6quoMK8I8hb9vCvr7TysnWi8gKhoMIMg0WEIIhYebQEbfo+h8+/+OqWa3U6HaLCG+HHcdEI8/u76tXvp4oxc3v2Xq1ReFgt55ZF+CuGfDUqThPi41iW8vUQEbacKaXPN2VqjRaxPxEddNrN3QhjbACAnkT0lqfH4goYY0sBbCCidW7qLwRW4X4vWMOPjAByYE2Astlqk0u51zUKyYdfjGyqbh3lHDW9HedL8eWWXLRp3wm9+zyIwMCbdcutlJSU4M8D+3Dq+FG81i8cj7YJwKH0Ciw8QTh15sItlebS0tLQuUNb/PpSPHxUfxuUI+elY+jT41CXfqwtXLp0CVvXLsWyCbbpietNAr7blm3afq60yGARe9ytVe0YY1IAR4moY70X34Uwxh4DMJyInnNTfyoArWHVLlbAmqBZBuDs7cqK1oVcyk1Vy7nPZ41urm4e5pwEd51JwMwdediXWoWu3R/AfbXIWJnNZiQnJ+PQ/j0wVBbj/aGRaBn5t1t/0f4CZHLNsHHzthukqioqKjBi+DA0oYsY38uqyHMovQJzD5kw9dXXHR47EeGLT2fgw0FBaGXj++vIxQr8e+0VvcEs/tvMi7caAHcJjLHvYF2D6heyrq39nZp0xRhrqpRxLxPRC35qKbWM1HBtorw0jQOVqJGC0pkEXC4y0NlMrTYpR8+ZLKLeItC3vEgLiKiorntLODbKRyX94ccXE9Th/o6VNL0dFXoe4xYki80bqdgnT8XVa60KIuFwegWOXqpESp4eF/MN8FFJoFFIwIuE7FITlEoVtm7bdoMbkud5jB39LIpT9uM/Q28M2DaaRfT7/LSRY2xbXCNV35nPNVNfHzvjTI5crMBbv1zWGS1iHyI63tB2jDEOQHMAHWUS1kEuZYGMMbkokt5oETNEwkkAJ11dfpEx9hysGcfPurKfexXGmBrAUz4qySiLQO1FkbyaBCkNPiopOA7MZCHKKzdxpdbkvcsWgXYbLeI8Ijpb373lUm66n1r60YIXEtS3c3/bQ4nWguUHC/H7X6Xw8vVHbEwMQqrrhJeXFiMnMwMFRcXo38Yfo3uEIMjbusiJIuHfv+WC/Jvh21nfo1WrVhBFEVu3bsXYMWNQXlaMNlFe6BLrg/hwNRLC1Pj5SBEuidEY/sSTDo97zS+rkKjIwvjedcvh3I6VhwqEH/bklhotYid7jVbGWBiAUFgNHAuACgBX3FHznDGmBFBBRK57id/D1CRAaRTci4yxHkazGBnqK9cH+8hILmHMIhCV6Xhkl5rUChlXyBiOaY3CTwA231Q+9RakEvaCt1I6c9H4BHVEgPN/nvR8PVYfK8G282WQSCSIaBQMuUyKysoqFJaUIT7CByM6+qFPoh9k0hsdyZcL9JixKR/MKxRvvf0OWrRogeTkZEyf/hoqysvRJUaNxHANEsLVaBGuxlPfp2LKK9MRWv1OsJeMjAz8vHQB1r0UD64Oz+XtyCs3YeKPqfoKPf+x0SL+154xVG/yImCNGyZYi27k1Pd7OgvG2B8A5hPRxnovrq39nWawMsZivBSSRSJRt6EdgyRPdA6RNfSBT87R4ecjhYa9yWVMKmG/6kziK0RUdtP9myhk3IWFL8RrmjVyvaxZYaUZz89PxtfPxCExovbg7TKdBRtPlWDdiSIEaKR4sKU/EsOtFa68lFbjMqfUhJeWpuGNAVH4aGMeetx/PwYMGoqioiIs/GE+QtU8vhgRgdrcoxMWJfM6E9GCF+Jl9rhPbeFAajneXXO5wsRT/O1UBKpfll01Cu51E0+DvJUSS4twDbWK0nj5qKRMwgCLQMgrN1nOZGr1FwsMSo5jFbxA8ywCzSOiPGePnTHWB0BrIprp7Hvfy1RrC78hEo1tHeVFQzsEeSWGqxEZoKjV/aczCUjP1+PYpSphzbFCM4C0KqPwKYDVdShsPOanli5fPCHR6cbq9RgtIn7al0urjhSy/m2DIZdyCPGRIDFMjVaRXlDK/174LLyIfSnl+PVYIdIKzOCkMmjUapjMJgR6yfBIghJ//FWC/m0DUGUUkJKrR1q+HonhGiTlmfD2O+/B29vb7rFWVlbis09m4JcpCdcMaHtYeahAWLAnN89gEVsRUUV91zPGYqQcG61WcA+ZeWrDGBQBGqlZKuFIEAlVRkGqMwlStZxLMVnEAyaeVgE4TC5YaKpLeS4mopHOvve9DGNMxTG8oJJz//BWSgOe6hqiadvYizUNUV07DLoeXiBcKTLgfLYOvx4rrMotM5uqD4bm1Fa0gTHWWS3n9i2ekKhqHOR87+X1GM0Cxi9MQXyYGn1bB8BPLUVsiArym4xUCy9iT3I51h4vQk6pCe2baCCVcsjXSaE1iQj0kkJBBviopOjS1AcpuXok5ehwqcCAiEAVNKFN8ezosXaPk4iwcP73eKiJAc90s9/wLaw0Y+wPyfpyPf8yL9CP9V1fnYg5WCXjHpVKWA+DWYxTKzizXMqJAGC2iBK9WZSqFVy6mac/jRZxC4BNrspLYoy9A2ArEZ20q72975HqL2IGEb1p1w1uvR8n5dhUiQSfju8VrhhxX4jkZvH8hlKh5zF3V05N8tNoItpU3QfTKLg/n+3RqMvYnmFuU0jYerYESw/kY/HExBsmEhFh85lSzN6ejR7NffF45+A6jVqtUcCB1HL0bxsInUnA9nOluFgsWMXKLRYcTqvAkI7BGN877IY+LhUYMHlxKpZObHHbxAxnMmt7tnn9yaLdepM4oLaFijH2mEbBfa6SS8JGdgtV9W8TwAV43X7RJSKk5Rvw67FC4/ZzpUwm4XZoTcKrRHTZZR/kHoMxNgHAn0TkFD2/6+fs8E7BshFdQmS2eix4gXAgtRwL9+Zq8yvMKTqT+DQRXbquj2CljEufNbqZr7PCAOrj6y1ZKNdZ8OETsbf8TRQJG04WY9G+XDQJUuLxziHolWANBS2oMEMmZagJt9l5vhQdY7xRExtvNIvYcb4U8/fmIySyKSZMmGDX+IgIixfOR9uASkx5yL7T1euZsSHDuDupbK3OJNTqWajeXA7wUkreFATqMqBdINcpxlueEK5GI1/5LZuSCj2PlDw9LmTrxHUnigwGs5CvN4mfE7D8HtVLdQmMsS4AmhLRKifes6tKzq1uFakJGPNAmKZDtJfNMaUpuTqsOFRgOJBaYbh+fa2+v0It51LfGtyk8SOtA9yS31JQYT0Umv18c8SF3io4sOtCGb7ZkoXoYCWGdw5Gz3g/SCW3Di0lVwdeoBvc9QUVZqw5VoA1x8vx3OjRaNWqlV1jPHb0KI7s+QNLxsfdcuJrK1eKDBgzP1lv4qnVzYVRamCMRcqlbArH2OSYYKWkb6sA78RwNZqHqaG56dCqysAjLd+A5FwdbTtbqs0qNVl4kWZWS1fmOzRYJ+OIweoFoICIHNZ8YIx5axTc5nA/RfuPnojVRAc7Z1d28koV/r32st5gFlfpzeJEjuG56GDl7KUTW2hqe2BdBRHhnz9fQvMwNcb3trrsiyrN+HRjJgorzXhvWDQcjfEp0Vrw+R+ZyCwx4t/DopEYoQEvEF5clIIhHYLwWKebS6q7DpNFxNNzLujyy80viES/1Px7dXb3Qo1C8vBbg5uouzb1scs1ojUK+PV4obB4f76JF+htXqTZ7nBB3u0wxrYC+I6ItjjhXo01Cu7XcD9FC2fMWUEkrDpcICzYm2cSBHqr+jclL6Xk98Htg/pNezTKPbstWA3LZ+cl4aW+Eeid+Hd8XG6ZCf/9/Sr0ZgFvD24Cez00JouIkXPT0K5rL9RWMa8+dmzfiuRTB7F4fNwtJ0n2oDMJeGLmeX2Zjh9ORNuu/1v177zSTy1rO7ZnI6+HWwXcUoXvdogi4fiVKiw/mK87n6WrNFjEp4lov8OD/n8AY+wFAD2IaJwT7iVTyrjPJRwm/mtItOqhlv71N6qH69bXP/RmcTwRVankki86RHtN+eqZOLU9yVX28tvJYqw7UYRF4xOuGaOlWgu+3JyJS4VGvDu0CRzZ8J68Uol//JKJFydOQkxMjE1tU1NTsWLpj5jzXKzd74ybWfZnvvDT/ryTerPY7fq1jzEmkUrYa1KOfdC/bQD3ZJcQZUwdEp11kZanx+qjhcYdF8oEXhDfFETMu1PWV0cMVh8A54mosUMDYMxPLef+fLClf9O3BzdR1pWVbi86k4BXl6XrLhcadgDU/ouRzZp0jLHfFWcvWSVGTFiUig2vtUZeuRmvLkvDwHZBGNuzUYN2XLxA0BoF+GnqPhgmIuw8X4avt2Th7SFNUKHnseVsCeY839yuzExHOJ+tw9TFqeUmnkKIyMIYe0gh49YO6xikmvxQhNze0/PruVpsxHu/EWAxVQAAIABJREFUXtbllJmSdNbT3GJH7lct+xRHRM7THbqDYIytBzCLiHY7eJ9EpYw78PwDjfxG399I4sw5e7XYiNdXXtQVV1kWGy3i+mBv2W9rXmmlccbzYgunr2rx3q+Xse7VVpBJOexPKcd/f7+KUd1DMbJbaK0nNDdTprPAWymt9drCCjMmLbmMZq06YNDghtUpN5vN2LTxN1xOOY25o5s6FApwM8cuVeLNny8VGy1iJBGZGGNMwmG8VMJ9M+aBRornejSSOrrJ359Sjo82ZOh5gZYaLOJ0R/VgGWOBAH4jIueout9hMMbGAGhPRK86eB+VWs79kRih6TrjiRiH1XCuR28S8NkfmaYDqeWX9GbxcYWU/bVuWmtlYD0eM2dDRJiyOA1DOgShf9tApOXp8frKi+jXJgAv9g6vNdThZnQmAQyoNawOAA6nV+C9dVno++gAPPDAA/VWvxIEAXv37Mb+PTvx2ZPRaNfEeR4iQSSMmZ+su1hgeEUka2gAY6y5Ws6tjg5Sxn34RKwm0sHY4StFBry75oour9x0Xm8Wn3ZG0RHG2BIAs23JcbmhvSdjWKsn0p/92gS0fHNgY4WrjCqTRcTLS9OMGcVG6dZ/tJE2pMyahRdx6qoWyTk6pOTpkZ6vR6VBgEUgyCUMvmopmodZEylaRGjQtrFXvYvYtGXp6BTjjZ+PFGLSQ+EY1D6owZ8hPV+P/6zLwIopLeq9NilHhzdWXoRKzuH1AY3RvVmtlVfrpMZFUFxlgZkXIZUwaBQSxIWqEOZ3qwuwLsb+kFyVnKsfD8CkknOrvhwZp3L2ZkEQCXN2ZJvXnyzONZjF7o7EtjLGXgYQT0QvOXGI9xSMsWZKGXf0zYGN/Qa0C3TJhK008Ji8OE2fW2YqfblvRMTwziEN7qekyoKUPD1ScnXILjXBxItgYFDIODQJUiAhzJpM0RCJuSmLU62eCQK+2ZqFL5+JQ4s6QnZq44mZ5/H1M3GoK46vTGfBp5tykFxIeHTAILRp0wa1VZzjeR5nzpzBjq1/oEWoBP8cENGg8dvKhEUpVWezdJMBrFLKuFmBXrLnP3+6qaZpLW5We6nQ85jxW4bh5JWqJL1ZfKghcbN1UZ3w9RcRNXLaAO8xGGNytZzb3qWpT5cZT8SqXOFZJCLM3J5t3nCyuKpnvK/mg8djG+xusfAiLhUakZKnQ0aREQazCJEICimHMH8FEsLUN+Ry3I79KeVY9mc+pvePwvSVF/GPgY3xYIuGnyR/vzMHajmHMT3rDrPJKDLiPxuyUCGo8NDDfdGmTRvcXH3LaDTi9OnT+HPvLgSreLw3JAKuSO4+cbkS//zl0lWdSYwB0E0hZdumPByhHtElhLPHc1kbvEBYfjCf/+lAvs5kTab+y5H7Mcb+BPA2ER2wq70nDVa1XDK3c6z3858+1VTlrC+4LvQmAS8sTMGo7qG3NRQLKszYcLIIv58qRrifAq2iNNcSoPzUUsgkDBaBUKK1IDVPj5RcPc5kalGms2BYp2AMaR+EwDpOPraeKcEXmzMxrV8UBndouLEKACm5evz39wwsnVS/wQpYE9CmLknDd882Q+vGt9/ZERFOXKnCptMlOJ+tQ6nWgrhQFRr5yiGVcBCJUGngkZ5vgJkXkRCuQa8EP/RrE3BLPMz17LpQho82ZKQzhsi5Y5qrEsKdVzHkZhbuzbWsOFSQZTCLnYnoVlXoBsAY6w8glIgWO3d09waMMR+ljEud1i8yeFinYJdm71UaeIxbkILhnYLwTPfb2yOVBh6bT5dg/clilGkt1zLymwQpoZRx1lRYs4grRYZryU/hfgoM7xyMfq0D6jxR2XWhDIv25qJcz2PW6Oaw1XAb/u05zBzdHPWddBxILccP+4qRWWJEXGwTREZFQ6FUwmQ0ID/nKq5kZCIuVI1RXQPQo/mNm0+tUUBqnh7JuTpklphgtIgAERQyDpEBthno+5LL8eGGK+dEwpFIf8Uzc8Y011wvyeUsRJHw+aZM0/Zzpel66ybTZskkAGCMBQD4mIgm13vx/1M0CsnSNo29Hv9yZJzalWFwRIRPN17FpUIjfhh3+yx4QSQcTKvAuuNF+OtqFSL8FUgIV6NpiApqhQQ15VmzSo1IzdXjYoEBEQEKDOsYhP5tAqGpw3jlBcKQr89CJOBfQ5qgZ4JtMsOztmfDVy3F6Ptv/74RRMLe5DJ8tS0fFToTwoIDEBjgD5GA0tISFJVWoGOMH0Z09ke3uL91Zy28iLNZOiTn6pCSq0d6gQFaIw9eIMilHPzUUsSHqZEQrkbLCOu8vd3hEBFh6DfntIWVljeVMu7LT56MVXez8XCqoexJKqMP1mdojRaxlyNGK2PsQwAriCjVrvYOhAT4AniTiN6xs31Pb6VkiyPVn2wlPV+Pl5emY+nERIT43rgr0psEfL8zB9vPlaJfmwAM7xQMW2I/UvP0WHe8CLuTyjCsYxDG1+KG+Pevl2uKC9g89jKdBaevatHHhh3jrgtl+GFPLpZOTKzVJWKyiNhwsgjrjhdBKuHwWKcgdIz2RuMgZZ0FA4qrLEjK0WHzmRKculKFR1oHYGS3UNSm5JBbZsLI7y/gu2eboV0T14ZhEBG+2pJl3nKm5IDOJPZ1RVby3Q5jbDqsGnh2JaqpFZIlvRP9nnz/sRjXpv5Wk1lixIsLU7BgfAIa16KVXGngMXdXDnaeL0O3ZtakxTZRmno9AKJo3aCtrV4wB7cPwvjeYbhZ7i2vzISR3ydh9vPN0SrS9s3W9nOl6NHMt84F9mbWnyjE/N15GNQ+CIIIqOQMcSEqtIjQ3JAwWZO8te5EEa4WGxEXqkJCuAYxwUqoqpUMjBYRmcUmpOTpkJqnRyNfOYZ1DMaAtrdf8Pt9dtoS5CPjF41PVDXkVMteiAgfbbhq3JdSdkxnEnv/b77eCmPsQQB+9uomM8b6B2ikv655pZX6dgcLzkIQCRMWpWJAu0A83vnWnAlBJPx6rBCrDhciyFuG4Z2C0TvRr84NYw28QDiTqcXa44U4frkK/VoH4MU+4bdswniB8MTM8xjVPRQj7guxefzns7RQyLgGx5kazALGzE9GvzaBiAtVgTEgxEeO2GDlDWF+1x+ChfrK0SrSCwlh1gQoP7UUEs6qiFNU+bd36PRVLaQShuGdgtG/bWCdJ8zzd+XQqiOFwidPxkpdZazWsDupjD5cn1FhtIitiSjbpZ3VgSMGaySAI0RkczFuxphKJeMuffB4TJituyBHWbQ3F+ezdfjm2WbX/u3klSp8/FsG2jXxwrRHo+DIqUKJ1oIvNmVa4yuHRV9zIe5PKcfMbdlYNjnxloXRlfxr9SWE+Snw8iM3/kwXsnX4aEMGIgMUeO7+Rg1a6G+msMKM9SeLsP5EMcb1CsMTnYOv7ayJCK+tuIgW4WpMeDDCaZ/ndlh4ESO/T9LllJomi0TL3NLpXQRj7AiAaUR0xI62D/uppb/9+kortSsNmZv5+XAB9iSXY+6Y5jec2hxILcfnf2SiV6IfxvUMQ30qE3VRUGHGvF05OJulxTtDo9Eh2rqxIiK8vvIi4sPUmOim5xcAZmzIgFzK4c1Bt6YGGM0iftqfhw0ni9AqyguPdw7GfU196txc1iCKhL+uarHuRBGOX6pEvzYBmNAnHN43vecuFhgw8ccUrJzSEqG+rs9x4wXC6PlJuqvFxjd4gea5vMO7DMbYGwAaEdEbdrT1Vcq4S1+MbBrYOdbHBaOrnStFBkz+KQ0/vphwgxs8o8iIGb9lQC5leOWRSNjrbSuqNGPJgXzsSynHm4Ma44H4v+2HJQfycOxSJWa7MWcjOUeH6SsvYvmkFrd4VnUmAbN3ZGPX+TI80iYAj9twCEZEOJWhxbrjRTh2uRJjHmiEp7uF3jDXRdGaVP1gS3+MqscL5SwW7Mm1/Hyk4LCnNpmOZDIwAHWK89fDMy0iNd7uNlYB4PkHwpBRbERSjg4AsOJQAf6z7gqm94/Cvx+LcchYBYBALxk+eTIW43qG4fWVF/H7qWKYeRFfbMrEO0Ob2G2smiwiSrW2l3R8Y0BjbDlTgsuF1vwGQSTM3ZmDf6y6iBd6h+GLkU3RtrHt0iYAEOIrx8QHI/DDuHjsOF+KqUvSkF9uBgD88VcJSrUWjOsVXs9dnIdMymHGE7EauZR9zxizuWPG2CTGmOMlTe5cKgGYbG1UXV548b+HRbvVWAWAJ+8LgUiEbeesUR68QPjv71fx7dYsfPB4DN4Y0NhuYxUAQn3leH94DKY9GoX3117BnB3ZEEXCljOlKK6y4AUHnt/CSjME0bZ3+qv9IvFnWjlOXrnRS34mU4vn5iUht9yEnyYk4qtn4tC9mW+9xioAcBxDxxhvfDwiFiuntgQvEkbNTcKh9L/DR3mB8NGGDLzySKRbjFUAkEoYPn4iViOTcF8yxqJtbc8Yi2GMbXf+yO4YTLDOWZtRyrgPH2rp7+VOYxUAYoJVGNktBLO2/30At+FEESb+mIJH2wRg9ujmdhurABDsI8cbAxvjg8dj8N3WbMzYkAELL+JqsRGrDhfi3WHRdhurFXoeepNt+vmJERoMaR+Er7bcWHfj2KVKjPo+CbxAWPtqK7wxoLFNHlvGqufsk7H4aUIi/kyrwKQfU3G12HjtmtVHCyGVMIzs6lhBA1sY2zNMFuQt78gx2KVcwRj7nTGWYG//bo9htWqhStI+HhET1zXOtUfYdbH0z3xkFhsR7q/AtnOlmPlcM5e8pDOLjXhlWTo6RHuhuMqCmaOb23wPQbTGy566UoVfjhbis6eaItBb1qCFqoaFe3NRorVg+qNReH/dFVQaBHzweAycmckpiITlB/Ox/kQxvnomDtOWp+OLkU0dejnZy7dbsywbThYvMJiFqba0Y4y9B0BBRO+6aGh3JYyxfo0DFWt+eamlt7vVJgDgz9Ry/LQ/H/PGNse/1lyGIBJmPBFbryvRVir0PN5YeRFNgpT4K6MK7z0W41Bm76Ofn8HKKS1sNqi3nS3F76eKMWdMcxARftiTi42nSvDGwKgbZLYc4fjlSvz396voFueL6f2jsPZ4EQ6lV+DbZ+Pcrijy0/48fsXBgj1VRt4mjS/GWCKA9URk9wJ4L8IYU8ulrPDnqS01rqzkWBc6k4DHvjmH5ZNbYMvZEmw8VYJvno2Ds0ugG8wC3l97BRaBEOwjQ4iP/JpspD189sdVNA1R4YkutoUTmCwihn1zDj+8EI/IAAUWH8jH+hNFeHtwEzjLTS+KhLXHi7BoXx7eGdoEieEajPr+AhaOT3D691of6fl6jF+YojPxFHVzYab6YIxdAPAUEZ23p29PGKxdA71kOzdOb61xdaJVXZTpLBj+7XkEesswf2x8nUlSziC3zIQXFqSgX5sATHs0qt7rBZFwKL0CJ69UXUsQUck5MDBUGXl4K6XQm4VrcWsdor1wf/PahZBrKKo0Y+ScC9fcnTNGxDpFv7E2/virGHN25KCRnxw/TUh0SR/1kVduwlOzL+jNVkktXUPbVdfulhDRry4c3l2Ht0q66+W+EX2Gdgz2yIQVRMLwb8+hSZASKrkEM56IcVh8uy4MZgGvLktHbpkJv09vXa90DWB13xVVWZCSa03CvFRogN4s4FRGFdo38UKEvxKJ4epriSX1jd3Cixj6zTnMer4Z1hwtQlq+Hl89EwdnyhEBVsPiX6svQyXjkF6gx3+GxzikVWkvRrOI/l+cMRosYqIt0jnVYWkvE9E/XTe6uw/G2NiOMd4z5zzf3P0/ZjVfbspEVqkRuWVmzB0b71QJtuvhBcL76y7jSHollk9ugbAGGug11btScvVIydOjuMqC5FwdfFQSxIWqretrtULBzaEztTF7RzZEEZBJGP5Mq8DM55q5xK6oUQDqEO0Nb5UE/xxkez6MM3j7l0u6fSnl7wkifWNLO8bY57BqgefY068jMaxhACYQ0Qe2tFPIuK+f69Ho1Rf7hLtXWPE6LhUYMOHHFCyb1MIlchM3c7HAgJeWpOGnCQkI86u9v1KtBb+fKsaGk8UI8pahZ4LftQnjq5aiqNKMiwUGdGvmiyoDb1UoyNNjf0o58srNGNoxCEM7BCHYp/aT4pFzLsBfLcW3zzVzmbFaw6/HCrH0z3ysfqnVDeUs3cnLS9O0xy9XTSOiRR4ZwB0IY+x9AAuIKNeGNo0UMu7K1n+0Uboz9vpmXluehgqDgLlj4hukqegIOqOAcQuT8fz9YRjQLrDO6/TVFefWnShCYaUFCdXqBHGhKngrpTiZUYkW4RoUVhuzqXk6FFRY8EjrADzeOfi2qgNzd2bjyKVKyKUcvn222W3VOBzBzIv458+XkJqnx+/TW0Mq8cx8/Wpzpun3U8WzjRbR5njNexXG2GAA4vWVpBqCj0p69v3HolvfH+/+kLsaNv1VjG+3ZWPZJNdXWLTwIl5Zlo52TbzqjTe/WGDAuuNF2H6uFIHeMiRUZ+WH+sqRU2qESi6BUsYhLd+AlFwdLhYYkBiuweOdg9Ezoe6DoZxSE0bPT0KIjxzzxsa7RHauhvR8PSb+mIqX+kZgeGfbk8ucwZlMLV5bnp6rN4tR7iwq4IjB2hrAKiKyqVaZr1p64oPhMR1dndFWFzXVnwZ3CMJwN1Z/WnIgDyeuVGHmc81ucLkRWUs9zt+di54JfhjeKRgJ4bZVw0jP12PdiSLsvlCGcb3CMaJL8A0JKmcztXjz50v4eWrL2xYecCb/XnsZARpZg06VXcH+lHLM+C3jRIWe7+yRAdyBMMZSAAwjohQb2gxt19hrybxx8Z6ZsLAmckxclIrFExPdssEErNVeXl2WjqWTEm/ZBJp5EYv35+PX44Vo38QbwzsHo3OMd4OqthVWmvH7qWL8drIYkQEKTO8fVWtW8vKD+Vh7rAhLJyU26ITHEYwWEVMWp+KhlgEY1d198XDXk1lsxHPzkqpMPPkTkW2BhPcojLEZAIxENMOGNnIJB+2ut9rLPHVYYDALeHZuEqY9GnVDUpQrKa6y4Lm5Sfjm2Wa1rp/JOTp8ty0bOWUmDO0YhCEdgq6VUL4dFl7E3pRyrDtehOxSE567v9ENycU1JOXo8MrSdKyc2qJB93WUk1eq8P7aK1gxpYVLjeO6ICI8MfNCVU6ZaZijhWhswZEnWgRgU51ZxhgzmMUWthpkzuSXIwXwVkrwWEfbdFAdZVT3RtAZBWw6XXLt3/LKTXh5aTo2nirG3DHN8a8hTWw2VgGgWSM1/jmoCRaMT8CuC6WYsjgN2aXW3BqjRcSM3zLw5qDGbjNWAeD1/o2x83wZTl+1S2LRYVpHaWAwiy2ZDQF5jLG3GWMTXTkuD1MCwGxLAwmHzm0be3nMtSiI1mSgiQ+Gu81YBYDmYWoM7xyMTzdm4vpNfVKODs/PT8alQgOWTmyBz55uivtsKDFcE2e3flpr9G8biFeWpmPR3lzwwt99FFdZsOJgAT55KtblxioAKGUcPno8FksP5N2Q1OFOGgcp4aWUMgANjkdljLVljP3mwmF5Gh1sT7pqFewtN3rKWAWAOTtz0CbKy23GKgAEecvwSr9IfFSdhFWDmRcxd1cOpq+8iEHtA7F+WmuM7x3eYKNSJuXQt1UA5o6Nx9ej4rDzvHV9zSr5e56YeREfbcjAPwZGucVYBYCOMd54sKU/vt6S5Zb+boYxhoda+qslHPrY2O4gY8xu2RW7n2oiukBED9vYrIlKxpGzY7EaCi8QVh0uxCv9otyeWCCVMLz0SCSWHSwAESE1T48XF6aic6w3fnghwaYMwrpoHKjE3LHx6JXohxcXpeB8tg6rjxaiaYjKpoofzsBXLcX0AVH4eksWPKB+AX+NDGqFRATQ1IZmQQDcX7fXTRBRD1s1WDUKSa/ECLXHYgEOplUABGvFKTcz5oFGyCg2IClHD8CqKPL6yosY2zMMnz4V65CrUyphGNIhCEsmJuJ8tg7jF6agpMqqAvL5H1cxtGOQWxMWIwIUGN87HDM2ZNisbOAsWkSoAaCjDU3UADxzJOwGiOgTIpppY7OOrSI1HrNW88vN2H621COetUfbBMBfI8X282XXxjJuQQquFBqwfFILDGof1KCSynXRrJH62vo6fmEKtlcrlyw5kI/GgUo80jrAKZ+joUx+KBwXsnXWd6QHSAxXSzQKSS8bm0XDqjBlF+5+sH01Sgnv5j6vsT+lHFGBCsQ5sdSgLbRv4gUJA347VYxpy9MxfUAUnn8gzKFJdDMSjmFkt1C8OzQab6y8iJ8PF+D5BzxTubB3gh8MZhHnsxuc9+RUEsLUAoAONjQ5AeCci4ZzVyISoiI8kGlcw9rjRRhxX0iDTzCdiUzKYXinYKw9XoR5u3Kw8VQxlkxIxCOtA5y24Q3xlePrUXHomeCHiT+l4s/UcqQXGDCuV93lIV3F452DYRYIh9M9swC2beylUcq4bjY0KQaw0VXjuRthQOPoYKX7pVmq2XCyCP3aBHjETc0Yw9NdQ7D2eCGyS02Y9FMq+rcNxGdPN3VaAlTN+vr9mHjM2p6N1UcLsOZYIV7tF+n2QzCVXIIpD0dg2Z82ObqdRkK4Gmae2tjYbA0Arb192m2wMsbiGGP/srGZTMoxj1U0WXu8CMNrqcDhLhhj6NvKH7O2Z+MfA2yrc2wrPZr74t2hTWCwiPBWuv/lAVj1H4d3ti74niDYWyYD0OBtLxGtIqJtLhySR2GMfcUYs+mhIyKFq5P06iKzxIi0PL3bvQPXM6h9EPYklWFvcjnmjY2/pUKeM2CMYVyvMDzWMQgzfruK/m0CXJ4YWRscx/DkfSEem6+NA5VMIWUNlhYhonQi+tiVY/IkjLFnGGM2eTFlUual8NB8tfAifj9V7NE1tlszXxRVWjBlcSpG398Io7qHusSQbBqqwtyx8VhyIB9hvnK3hitdT88EP+SUmXCxwOD2vhv5ymERRA1jrMEbJCKaRkTl9vbpyJMdBqC/jW2MFoE8Io1jNIs4n61FTw9mThIRTmZo8eR9IXiwpesX4fvjrVWAZvyWAdFDbr6B7QJxILUcOhsFmZ2BXMpxADx3PHjnMQo2fh8MTPDUs7P7Qhn6tg5wuSrA7bhUaIBcxjBrdDOXx4CP6tEIfVv5IzlX75EwGgB4qKW1/5oYeHdSbWh5LsHhzqM7bIjpBQCRwIseenZOZlQhIkCBmGDPeDABq69ZKeMwuH2gyw3nyAAFZo1ujrxyM64Uud9gBP4OLVrngU0mYwwyCccDcNsP7shKYAGQZ2ObgjKdRemJl3F6gR7RwSqPLn5//FWCSgPvUPUcW3mme6i12oaHTk18VFLEBKuQlqd3e99mXhRhQ2UnxtjnjLFnXDgkT5MH67xtMIxBp/XAZgMAknP1aB3pMe8mDGYB//3tKt4ZEl2nXJyzefmRSBRWmq9V9nI3ShmHvq38sfuCTXrgTkEkAhhrsEQOY6wnY2ylK8fkYSqq/2swvEDlVUbBIxM2KUePNh7Q8b2edSeK4K2SuK3CYmyIChMeDMeMDVc9Fvv9SOuAG6rWuRkGawJ+wy5mLJkxZneeiCNJV0eI6Ekb2xRxjGk9sXtPztUj0YPqBJUGHnN25uC9YdFOjVmtDwnH8O6w6GvVrjxBQpgaybnuN1iLqiwWALas/EEA3Fs2xI0QUXsiKqn/yuvaAKc94W4CgNQ8PeI9OGfn7spFqygN3FlCWi7l8N6waHy3LftaEpa7aR3lheRc98edG8wiYEOhDwAaAJ6LF3ExRPQOES2zsdmFC9k6jyQNpObp7VK5cRa5ZSYs2JOL9x+LsakSpKMM7xQMpYzDqsMFbuvzeqICFKgy8qjQuzc9iIhgEUQpAFsWiMawwcC9GbcfN8qk7FSKB07brhQZEOuETHx72XS6BF2a+tSquehqmgQp0SvRHxtPFbu9b8AanO2J3zwlTy8BcMqGJgcANFij9P8DWqNw4Hy2zu0Wa6WBR6WBR6SHYsNKtBZsPl2C1zyQ7ZwQrsFDLfyx5lih2/sGrBtMT8zXi4UGUW8WT9jQJAfAZleN5y7lZFq+XuYJL2Zqnh7xYZ4zWJcdzMfjnUPQJMi9Zw4cx/DPwY2x/GABjBa3aejf0H/zRmqkuPlQKLvUBLmEqyAiW9aHxbDRy3c9jiRdtWOMvW5rO61R2HX8cqXbj1iNZtFl1WLqQxQJ644X4XEPBqMP7xSM9SeKPOK2CPNToLjKJvlPhynTWaA3CRyASw1tQ0Q/EdEhFw7LozDGFjLGbLUAT57JdP/RfJVBgJ9a6hF1AADYeKoYD7b090i2MwA80SUEv58qvkFT0l1EBihQobduGNzJmUyt1iLQsYZeT0RniWiWK8fkSRhjExhj99vYLJsXiC+ocP/pfKWBR6CHJCt1RgE7z5fhsU7u1VevoXGgEi0i1Nh53jOhPHGhKlx2cxxtSp4eMin7y5Y2RDSViOw2Bhw5YW0MoLetjUTC8u3nykjv5rg4gQAPrX04lVEFhYxDmyjPxeMlhKsR7CP3iGSNXMpgsrjXUD6XpYNKzl0gT2Wv3JmMtqPNyeIqC7k7qcAikFtDZ65HEAnrTxS5tRLezUQHKxEbosLeZLsTau2G4xh81VJUGdz3jq7WppYCOOm2Tu98esGqW9lgiIikErZp+/lSt8exenLObjlbgi6xPm6LNa+NxzuHeCT5CQA0Cok1pMaNJGXrLFqjsNedfTpisBpgdcnYBBFlSyVs/7ZzpW41JBRSBpMHjusB4FSGFvc393W7TtvN3N/cF6cy7JZAsxtBdP+LbM2xQm2lQZhnSxvG2ALG2BBXjekO4AoAmxYyIjKLRHPXHC1yq1dELmWwCJ7ZayTn6OCllHo0Hg8ABrQNxO4k9yc/AYBM4t7v/2yWDqJI5QCuNrQNY2woY+wHFw7L0xTBxqQrANCZxK9WHS4wutubJpOwGyq2uZNdF8owsF2gR/quoWucD/IrzMgtc3+ODseYW72nokjYfr7MLBJ2NLQNY4xjjNmaqH9eAPPKAAAgAElEQVQDjiRd7SCiSfa01RqFLxYfyNe5090V5qdAlgeSvQAgOVfn8cUPqIkldX88fpVRgMqNpQJzy0w4k6nlAKyysWkgAM/4gN0AEcUTkc1+XjNP328+U0LulCbzVUlRruM9EsKSnKtHSw+qE9TQKlLjkVhSADDzBLnUfZvMnw8X6IwW8UsbPSIa3NuV6aYRkc2FEYjohEWgLHd703xUUpTo3B+KIIrWypGenrMSjiExwjNz1sSLblVAOna5EiaLmAegwSE8ACSwJjbbjac0nnZVGfjjP+7Pc9vT7anEHyJCSp4eiW4ss1gXCWEapObp3a7Jmp5vcGt1sdVHCy0cY4uJyNYffDsAm0qX/n+AiLIkHDbO3Znjth2fRilBoLfMI7XtrfPV8xvMyAAFKg3uz/4VREKFnoevyj17t1KtBQfTKyQiYbGNTS/COmf/x01ojcI7X27O0rnTqxgfpkaqB9bYrFITfNVSj8WbX09CmBqpHlDEySkzoZELiprUxcrDBVqdSfjcjpA7m7yeN+NI0lUPxthUe9oSEenN4rMrDxWY3PWAJ4SpkZKrc7sgt8EsQm8SEOLjmWD06/HTSCHlGMrdvACm5OqQ4Kbs0ZRcPdafKDIZLaLNFXCIaB4RnXbFuDwNY0zGGFtqb3udSZz8x+kSw+mrVc4c1m3xlBzaxQKDR9Q8bobjGJqFqpGe797v4GqxEYHeMmiU7klSnbUj2yjl2DIisin+gYiOEdFPrhqXp2GMvcEY62hPWyJaV2Xk987fneO2bNf4MDWSctzvwUvP16P5HTBfAet3kObm+QpY1z13rbGnr1bhTKaOJ8AmDWQishDRy4707cgJa1MAXe1tTES5Jp6mvrnqIl+uc70BVarjQQRccHNdexMvQinjPB6/WoNSxsHkxlAMIkJyrh4JbjhhtvAi3v31ss7M0xQiynV5h3cXMgAj7G1MRCVGizjm3TVXTFqje0IDBJFw4nKlW/q6Hq2Rh6/KM4oiN+OjksDdhRtS3KhZfTi9AnuSyqv0ZtFmxZn/B/SBtaKkXehM4ri1J4pMZzLdk7cQ7C3D0UuemK9WRZE7AV+1FO56P9ZQruNRZeQRGeB6CUCjWcR7v17RmyziGLJNM9kpOGKwVsGOpKsaGGNMKeO6CAR6dXmaS91eGUVGTFmcis6x3lh3wr1ZfAx3hqFaA8G9YzqVoYVCyiHC37XuCiLCd9uzzWU6yxEClttzD8bYWsZYbycP7U6BwXGN2UqdSZBMX5EOo4szUvenlOPY5UocSKuAzs0LAC+QW4XHb4fUA4kspzO1btlgVhp4fLA+Q2+0iM8Qkc1H94yxMYyxr10xtjuEXACOWIA8EbT/WHURl1xc/KOo0ox5u3JQXGXBlUL3KorwHkjqrQt3JysC1njS1pFebpEAnLUj26QzCVuJ6Ddb2zLG/BljFx3p35Gkq/VE9JYDfT/pq5aOWTE5UdYpxgeTf0pFjguSos5kajF1SSr8VBJEBSixP6XCrTFhChmD0SJ6rDb4zRjNIhQy903u5QfzUVRldrmo8YI9edh0uiRfZxKfdEDKyh+ei+t2KUSkI6L29rZnjIUqZGzD5yObSiMDFHhtRbrLDMndF8rw0YYM+Gtk6BTtjS1nbSrO5TByKeexbOebsSY/ue+R1JkEbD9X6vITVoNZwEtL0kwmXvyRiHbaeRs17u3KdC8S0X572jLGmEbBrRzUPijw9f5ReGVZmsvewbllJkz8MRUGs4g+iX5Y6+ZDIZmEg9kDesW1YeZFyNyYrAhY19jIANfHr/5ytJA2nS4p1ZvFF+28hRSAryNj8MjibF38uB/+OyJW46uW4aW+ERjaMRjjFiRjzdFCpyQFGS0iZm7Lxtu/XMLbg5tg9ph4bDpdgo4xXlh+MN8Jn6JhqOQS+KikyC1zr3B+bRRXWQAGt7lPCivNOJOpxTtDozF9xUWcvOL8+EdBJMzekY2NfxWjWpDYkU42AMhy0tDuGRhjTK3gFj/eOUTZOdYH7w6NRtNQFcb8kIyzTnQ3Gi0iZm3PxjdbszD7+WaIClBAreCw5mihWw3IAC8ZCis9P18B6xwK0LjP3bn1bAlig5V4f+0Vl53KaY0CXl2WjqwSk9RgFh2RpToPYI+zxnUvwYCnfVTS+6f1i5T3axOINwc2wbTl6fj1mHPW1xp2XSjD+IUpGNktFNP6R+Jslhbbzpa69VDIXyO1rm13AEVVFgS4sXjCxQIDCist2J1Uhk2nXbexX3O0EPN35cAiiKuIyN7qCCYADsnQOZJ09Shj7AV72moU3E+Pdw5W1shQMMbwVNcQzB+XgO3nSjF1SRpOXqmy61SSFwi7LpTh+XlJKKg0Y8WUFrg/3g8hPnJM7RuBzGITNp0ucWtwuKcUCm4mJVeH+DC1W+JpiQifbryKJ7oE45HWAfjoiRj8e+1lfLcty2nl664WGzHpx1Qk5eiwbFIiEsI1YXIp+5cDY55JROlOGdwdBmPMjzG20K62wJO+KukDE/uEywFrMtAbAxpjysMReHv1JXy3LQsGs2OnrWcytRg9Lwn5FWYsnZSI+DAN3h7cBAfTKhDgJcPiAw7J99lEvIdKk96MmRdxtdiIODcllPACYfXRIkx+OAIvPxKJl5akYcuZEqd6h5JydBi/MAXNG6nx8iMRTC3nVjPG7LLIiWg/Ea1x2uDuMBhjHzLGEu1oFyqXsvkfj4jV1JzO90r0w/xx8dh6thQvLU1DtoPezFKtBf9afQk/7MnF5083xYj7QjC4fRBCfRWICVbi6y3u2/fXzNc7wYuZkuve8rSL9ubiyftC8P2YBPywOwezd2Q7VW/eYBbw5eZM/HKkEF+PimNyCTeZMdbSnnsRUSURvePIeBw5YW0OoJ2tjRhj7aQc61Wz+F1PdLAS88bFo1/rAHy5ORNPz0nCL0cKkV1quu3DyAuEiwUGLNiTi2HfnMOvxwoxtW8kPh4RC//rdjsD2wXCVy3FQy398dGGDLcVEogNVuF8tvsF+2/GmkzhHnmtnRfKkF1qwgu9wgEAnWJ9sGJySxRXWTB6XhIOpVXYvdPXGv+PveuOjqra3t+502fSk0lIJaGE0GtQ0aeiCCogSNGHiL2BhWfXh12eFXtBsCsgSu92EQWk1/Tey6RPv23//pjAo6RNjY/1+9ZyuRa555x779xzzj57f/vbEr76oxp3f5aDCUMi8P5NqQgzqPDctSkGBWOPM8YG+/JZzhHoAUx0txFjjNOpuTefmpJsOFPnb+yAcCyfOxANFhHXvn0c7/5QjrL6rstQCaKMn443YO7nOXhqVSHuuSz+tDkbHarGbZfEQafisGavKWDZ8mmx+oAnZ7aFgho7EiO10AZIX/HLP6oQG6rGqJRgjB8cgbdu7INlO6vx2MoCrz1YvChj8c8VeHhFPm67JBYPX52Ia0cZudQe+kRvDpnnOMYBiHC3kVrJHrl6aKR6QPzpa33PKC2W3NYPF/YNxa1Ls/DktwXYX9jilqGXVWHFwvXFuP79DMSGafDl3f0xKDEIgMvx9MSkniiqteNYuQU7sgNTpS06RAUiwNTS/V7WnCpbwDTXt2c1Ir/GjhsuiEGyUYvP7+qPykYnbl6SheM+WL8OFptx4+JM2JwSPr0zDcN6BuOBCQkavZpb5ekh01swT08ljLE5AOKJ6BV32hk0ii9nj4m54fZL4zp8YCLC4RIL1h2ow+ESM+y8jH6xeiRFaqFRMRABNl5GUa0d+TV2RAWrMLp3CKaNMqJ3B5qfv2Y04rs9NVBwDEFaJV66rpdfEywEUcbtn2Sj2S5h3fxB3VYbnYgw64NMPHRVIkb3DvHrWLXNPOZ8lIk3Z/dtU8x5e1YjPvu9CjanjGvTjbhqSAQigjoOoxARcqvtWLffhF8yGjG6dwjmXR6P+DMyI1ftqaUlv1X+ZraLl7t734yx7QAeJqJzrjwkYywGwAoicuu9MMauSAjXrF31wMCgjjzzFQ1OrDtgwpZD9YiP0KB/nB5pcQb0jdEhSKuAkmNwiDKqmnjkVNqQXWXF4RILUow6TE834uK0sDYTJ6wOCVPfPoZZF0Rj86F6fHF3f4T4WR/0YLEZT3xbgG2PDu3W5KvlO6tRUu/Ev6/p6fex8mvsuO/LXHx5d3/EnKLnyIsyPt9RhdV7Tbh8YDimpxvdkvyqMwvYeLAO6/abMCDegMcmJiEy+L9zvbqJx3XvH7fzIsW7K2vFGHsQQBgRPetOu/8VMMaWA3iNiI640UajUTLTV/cMCO4Z1T691+qU8P3RBqzZWwteJAxJMiAtzoC0WD2iglUnk/2abCJyqmzIrrTheLkFNl7GtaOMmDw88jRn0Kn493cFMAar8P2xBnx+Z3/Ehfs3e10QZUx75zjuuyIBE4a4bd/7DA5BxuQ3juK7+we2+258hSariNmLM/DSdb0xNCnotL/9ktGIN7eVYlBCEKalG5GeEtxlu0OSCX/lt2DNvlrkVdvx2KQk/KNf2Mm/ExFuXZptya6y3UNEy925Z8ZYLwDriGioO+1O6yOQbnTGWKhayarWzR+sO3XR6goaLAKyq2yoaHCCF2UwxqBRcUiO0qJfrB5BXdQMFCXCpDeOQJIJceEa9I3R48lrevplY+JFGY9/W4C8KhtC9UrMn+B/Y7E9HC214F/L8vDC9BRcdMoH6Gs0WgXcsjQb00ZF4eZ/tK/IQkTIKLdizT4Tfs9uQqheibRYPVJj9QjWKqBUMPAioabZlbCVU2VDiE6BScOjcM2IKES18/04eBlXvX7EYRfkNCLqcplHAGCMHQJwOxEddOuhz2EE65Q/3jsufty1o4xdmiBOQcbxciuyq2zIqbQiv8YOGy9DkgkaJQdjiAppcXqkxRowKMFw1oGjLby0oQR7CpphDFYDDHj7xr5dnu/uot4i4I5PssEx4F9XJp62WAcSRIRr3jyGRycm4eI0/96D2S7irs9y8M/zYzBlZNuFaOrNAjYcrMP6AyYYg9UY1jOo9XfUIzpEDbXSZeC02CWXgVNlQ0a5FUfLLBg3KBzTRrVv6D75bYH19+ympyWZ3nLnvhljCwAYiOj/PbStYIzdMDjR8NHHt6d1qQIYESGv2o7MSuvJdbbJJkIQXZn3IToF+vZw/c5pcXoMiDd0ulceKDLjmTWFUCkYlAoOi29JhTHEP0lBokR4fGU+SuudMIao8OEt/fwyTlew+VAdvvqzGt/eN9CvtDunIOO+r3IxJDEI949PaPMam1PCj8cbsGavCQ5BxoWpoSfX3aRIzUkDVpIJJXUOZFe65uwfOU0I1ysxLd2IcYMi2ozubM9qxMINJcfMdnGIO/fNGOsHYBMRpbr/1K19BNhgnZXeK3jJezeldls5PZtTwrR3juPJyT2R3isYj39bAK2Kw4JrkhHmw+SG2hYeL6wrhkrBkFlhxZQRUSipd+LVf/b22Rju4ImVBQjSKrAztxmPT07Cpf3DfT5GbTOPe7/MRb1FwKoHBiGyE6/pCcgyoazBiexKG/JqbLA6JYiSy8CJDFadXCy7emp9Y2upc8PBunedgvyYO/fPGHsYwEoi8liu7VwCY0yv5FjTj48PVek13adL+u/vCkAELJyZgre2leNYuRWLZvX2+SZYVu/AQ8vzwZgrfCpIhLdv7OvTMbqKfYUteG5tEUJ1CnxwSz+/eWysTglzP89BVJAKb8zu0+lGK0qEA8VmZFa4DJzsSisarSJ4iaDkGAwazmXgtBqz5/cJ7fRwcaTUggeX5VXaeDmRiLrM02KMjQOgIqJtXW1zriNEp/z1kauTxnanp3FfYQueWlWIlfcNxOZD9Vh/wIS3ZvdFUgceX09gc0p4Zk0RTC08eElGi13C+zelIiU6cFUVT8UNH2bAzssYPygC91we5xej1SHIeGRFPsrqHVj7r8GdHh6ICBkVNhwsNiO79VBS3cxDreRARBAkl+PuxB47KiW4U0k7USJMXHTE1myXLnSn0A5jLBrArUT0alfbnAmPLTTG2EwAanfcwholu2BUSnBQ51f6Dx/+XIHz+4Tgkv4ur8UbN/TBR79UYvbiDDx8dRIuG+CdIUdE2HqkAe//WI5p6UbcenEsfs5owJc7qtDikHC01IIhSYF9BTlVNhwsMWPV/YMwY3Q0Hv0mH0dKLbh7bDy0at/w437NbMQbW0sx64IYNNtEvL6lFC9f16tLk5bjGHpGadEzSosJ7lO2zsK0UUbNpkP1twNwy2Aloje8HvxvCsZYPIB/E5E71emGxoWr7XqNotvKtO0vbMHxciuWzx0ABcfh4asT8cUf1bjpoyw8MCEBVw6J8HpjkGXC6n0mfLq9EndfFo+L08Jw44cZkOGqohPoqldEhC92VOG2S2JRbxZxz2c5eHN23y55o91BvUXAoyvyERumwdFSMxqtYqfUHKWC4bzeITjvjEgREXn8OwxJNCBEpwy28fxoAH91tZ0Xclj/E2CMvQ3gLXciRYJEwwcndl8ZcKtTwksbS/DstBSEG1SYc1EPhOiUuOuzHNx2SSxmpBt9Qos7UGTGfzYUY2RKMF6+rhee/K4QYXoJK3bXYMGUZO8fxE0cLjHD5pTxyR398PCKAjRYBTx4ZSJ8edCvaebx7JoiRAWrUNvCsD2rCZcP7NheYYxhUIIrmnUCokStUWqXhJ+70WWlgmFaulHzze7aWwHM72o7IqoF4LGxCniXdDUAgFv+d42KuzgtztBtpLDDJWb8nt2Eh65KPPlvaiWHByYk4KXreruSApbnY29Bi9sJQZJM+DOnCfd/lYdvdtfgnTl9cefYOCgVDBMGRyAxUouhSUFYuKHYZ1nyXYEgynhmTSEevDLRFXaP0+PrewagzixgzkeZ8LbUZr1FwFOrCvHRLxV4+breuPHCHrjj0jiU1Dnw83G3KGk+Q7JRCwAGxpjHVWLOQYQCuMzNNiMHJ3bRTe4HOAQZ/9lYgicm9URwK2+VMYZbL47FWzf2xfJdNXjkmwLkepjRT0Q4WmrBvV/m4qfjDfj49jRMSzciKliF+VcmQqNkWLihOOCarFuP1KPRJuKa4VG467I4zBgdjds/ycaafSafSBIREX481oA5izMxJjUUr1zfCxOHR+H1LaUeZ1p7c2hgjGFUSrAKwGiPOzk3MR5Al70bjLEeALSxYYGrKX8mFv9SgZHJwRjT979ym1NGRmHpbf3w03GXApA3Cj21zTxe21yK59YW4eGrk7BgSjJUSg6PT0pCYa0du/KaA14dzyHI+M+GEjwwIQFRwWp8eHMqJBmY81GmT6QciQgbD9bh5iVZGN07BC9MT8EzU1PwxtZSNFjcTzRTKhj0GgV0aoXHVMjhPYMVamXgi+x4k3R1D+Cqv97VNmolZ9/88BBtaDeVUXtoeR7G9g/H5BFt87Qcgozvj9Rj9T4TeFHGpGFRGJRoQL8e+jbrapvtLkL6kVILNh2qR0SQEtNGGTFhcARUZ4h9VzY6ccvSLIxMDkaPUDXmX5l4Vn/+wAc/laOg1o43bjg73PdbZiPe+aEcUcEqTE834rIB4TgzE7wtEBGOt/JP/8xpxpSRUbhzbNxpfJeMcise/SYf6/41uEt9+hp3fZrdfLTMeiMRbe5qG8bYMQDXEpFX1Tj+jmCM9QHwChHN6GqbYK1yxbxx8bOmpRv9eGftY/OhOvyS0Yi32gnLC6KMlX/VYtXeWsSEqDEt3YgLU0M7TcpqsorYntWINftMsAsy/nl+NK4dZTxt8SYi3PFJNmQCLu4Xiltb1S78jTqzgNkfZuCdOamnZRsXmex4cX0x9GoF5o2Lx5kZ4F1FQY0dS3+rRGm9A89MTUb/1n6cgow5H2Xi4auScF6fwPPs1x8w4f2fKtaY7WKXv0/G2AsAWohokR9vrdvAGFsH4CEiKuri9VcOjDes/PTONK/E2T1Fk1XEzPeOY/UDg9DWHi/JhLX7TFi+qwYRBhdPcuyAcBg68UKKEuFgsRlr9plwqNiMK4dG4o5LY8+a58t31WBXbhMqm3gsmzug0359hbe2laHeImDhzF6n/fufOU14dXMpRqYE47rzot2esycSoFbsqoHZIeLpqcmnRXve/aEcVqeEJwOQlHkmmm0iJr1x1ClIpO8qjYcxNgLAe0R0oafjemw5umOoAgBjTAFAG9JNNborGpzIrLDhpeva55BqVRymjjJiysgoHC2z4qfjDfjw5ybk19gRHaJCmF4JlYKDIMlosIhosAro20OP/nF6vHxdr5OLf1uIC9dgaFIQUmN1WLazBomRWvjbENhyuA6bDtVj2dwBbXpAxg4Ix8VpYdiZ24y1+0x46/syDIw3nCRnx4S6kikk2ZVMkVvtyhbNaD0hTxtlPOm5PRMDEwxI7aHHr5mNuGpopF+fsy0MTQoyZJRb0wF02WCFy5sR2DqgAUKrEd5lYwAAFByifcnrdhdr9plw56XtG4oqJYc5F/XArAtisCuvGWv3m/D6llJEGFToF6dHcpTWdVgiwC5IKKx1IKfKBrNDxKiUENx3RQLSe7WdQcsYw4zR0Vh/wIRlu2owJCkYI1P8S713CjKe+LYA09Ojz5LGSTHqsPS2NKzZV4sFqwoRpldieroRl6SFnfQ+twerU3K9n30mlDc4MS3diBdnpJxWQUuj4jB7TA+s3lfbLQZrWqwBANLdbKYD0P16gX4CEV3rZpPwyKAAlkU7AxsP1eGStLA29wMAUHAMM8+LxrR048lM9EVbyxATqkb/OD16ReugV7tC1E5BRlmDE1mVVhTWOpAUqcHUkUY8c21yu4bopGGR+GJHFdLi9Hh+XRFeua6331V5/sxpwk/HG7B83oCz/nZRvzAMTQrC+gN1J+fsxGGRGJRgQO9o3VlOLcA1V3OrbDhcasHGg3UIN7icYFcOiTxLRWX2hTH45/sZuPeKeL8rp5yJUL0SQVqF0GgV+wLI6WIzVet/HiOQT6niGKRWwzXgWLvfhKuHRnZJ05AxhqFJQSflIkTJlUlndogQJIJKwSFUr0BSpNYtl/rUkVF4YV0xLu4Xhs93VIEx4NpR/jFatxyuw2ubS/HoxKR2M+oB1yJycVoYLk4Lg6mFR2aFS3Jo/QET6i0C+NZsUYNGgT4xOoxKCcaNF8agd7Su08VgWroRX/1Z3S0GqzFErdSouHg3my0BEBjxwP8NaJTdJOuUWWFFs03skvGkVPz3G5ZkQmmdA9lVNpQ3ONFsE8Exl0E2bmA47r0iHgnhmi5tZJcNCMcbW0sRrFVgwapCvPbP3n7jn/OijEdX5qPRKuD2S9tmsigVDNefH4MZo6OxJ78Fa/ab8Oa2spMGei+jFlq1AgyuaFFJ63uoaeYxKMGAmaOj25UPA4Dxg8Pxwc/lqGpyIjbMv1JEZyIqWAVRInflELbDu8p25xrUym7SYZNkwrr9Jrx0hpexLSg4hgtTQ3FhaihEiVBksiO70oZCkx1VTTJk2TVfEyM0uGJQOPr20HfJWxqqV2J4zyAcKDYjPlyD17e49j9/Ga37Clvw1OoivD27T7tJkcE6JeZc1AM3jInBnvwW/JLZiHX761De4EDPKC1C9UooOQZBIphaeNS0COgdrcOAeD1emtmxEywySIUL+oRg6+F6/POCGL88Y0eIDFJJjVYxGl03WKsAfOnNmN4kXd0OoJGI1naxCS8TFN6Q873BztxmPDctxaO2SgXrUNu1q8iutCHFqMPTU5NR0ejE/K/zXNWaLvNd8pNTkPHJ9kr8eKwBd10Wh6931uCKQRFdCssbQ9S4JER9MiHNW1yYGoo3tpaioMbuk/fnDtQKBo4xtwZ1V1P4fwmtkiJ3E9FDbjRzBJq/eQJ/5jTjikERbnOsFBxDSrTOJ5nCpfUOAAxLbktDkcmOx1cW4MlrevpcZqrJKuLpNYXQKDnYnBKyKm2nJUmcCQXHMCY1FGNSQ10Ger1LlqakzgGLmQeRa8NP7+U6XKYYde0aqadCp1bgyiGR2HyoHneODQwF4gRUCgZJJre8L0S0xV/383cAY+wLAI8SkamLTZyCJAcuQeIUFJkcUHKsQwOrLSgVDH176H2S2Ogyfh2YPyERlw8Ix8Mr8vHcumL8e3JPn+2vJ/Dz8Qa8sbUMqbE67MpvwbDkjqMvp85ZwCW/WFBrh6VVEUetZAjTK7s8V09gWroRr20u7RaDVa1kANDlky0RlQL4wJsxvfGwDoIbddeJSNaoOGu9RTR05PHzB2xOCdXNPPoE2Gg6FXnVNqzaa8JXd/cHxzEkRroqU7yxtRRzPsrEU1OTzxIAdhcZ5VYs3FCMnlFafHZXf0QGqZBRbsXH2ytx3xVt67X5EwqOYVSvEBwrswTcYBVlgkzU9bJL5z4iAZzvTgNBonJTN9Xozq6y4pp2uOaBgCgRXlxfjPkTEhATqkZMqBqvzeqNZ9YU4ffsJvxrQkKnofiuYHtWIxZtKcP4wRG494p4/JrZiIXri/Hl3f27dMhUcAwpRh1SjL6ZX+f1DsHKv2p80pc7EGUCxxC4AvT/GxgPwJ1SlqaaZr5bTpjZlVa3jVVf44s/qpAQocHk4ZFgjOHtG/vi5U0lmPNRJhZMScawnt5HR5ptIt7cVoaMCiveurEvjCEq3Lg4E5ekhbVZJKc9aNWcW9e3h8GJQahu5mG2iz5Zj9yB4HJm8IEc05tjRzlcLt4uQ6viMrIrA1/yMLfajl5GrVsnF1+CiPDyxhLcOy4e0adUkQnVK/HCjF6494p4LPiuEI+syMfuPPdKlsoyYW9BCx5fWYBHv3GVPXz5ul4nNVAfnZiEbUfqA1bW8kykdVNd9karKPMi1brThjFWxRjrPivJv7AByHCrAS/vPlZmCfiEJSJkV9pO8Bq7BSv/qkFkkAqThv+XzjI4MQjL5g6ARslh9uJMbD5U57HiR161DQtWFeKDnyqwcGYvPDAhAQqOYdzAcKQYtfjqz2pfPYpbSIvVI6cy8HXZm20ilArmFh+VMfYBYx+YtIEAACAASURBVOxuf93T3wBHATjduP5wscmh84WShLtwzdfAyr+dipI6B1bvNeHJa3qejOBq1Ryen56C+65IwFOrCrFoSykqG915nf+FQ5Cx+VAdblyciTC9EsvuGYC0OD0ig1R46MpEvLSx2CcKHu5CwTH0idEhpxv22GabyAHoshQQY+wyxtgP3ozpTdKV25qVdl7+PavSNuqifmEBJYYX1NrRJ8BaiqfiSKkVVqd02uZ3Ki7tH47zeofgp+ONWPxLBRZtLcU/+oW1WZlClgnljc5W0W4b/sxtgkrBYcbotgnp4QYVrj8/Bt/tqe0Wfbq0OD02H64P+LhHyywWUXa7YpUO527S1WEAd7rZbP/xcmvAQ4zNNgmCRIgJ7R5FLVEifPtXLd5sQ0jfoFHgsUlJGFccjq//rMb7P1Vg4rBIjB8cgd7RHYfz6s0C9ha2YO1+E2qaeVw7yoinpySfFq5kjGHuuHjc/WkObrqoR8AVNiKDVdCoOFQ18X4vqXkqcqpsUHDskJvN1AC6h7MSABDRlW5eX2/QKJpL653GVmm/gKGg1u4zKpknWLW3FtNGGRHdRjGRS/qHYVjPIHy+owq3Ls3CoMQgXDsyCsOTgzvkxkoyobDWju+PNmDL4XoMiNfjxRm9zvLUjhsUjq93VmNfobl7EhbjDMiusmFUr8CNbeclNFhELYBsN5qpAHjlNQyoD1mQaPfeghbLnWPjAvqr2pwSgrqxUs/afbWYlm7skLurUytwzYgoTB4eicwKGw4UmbEjuwlLfq1EbQsPBcegYAy8JMMYrD5ZSeapKckYnGjosO/JwyNx3XsZuH+8GPBswvhwDWqaAxo1AADkVNmUAPa72WwRALsfbud/FcfrzIKmySr6tApcZ7DxEgwaRbdw3QHgz9wmV9nmDg65I5KDMSI5GOUNTqzbb8Iza4pQ08yjV7QWfWP00LVmO4sSoaLRiZwqG5yCjMGJQbhxTA9cmBrarnGbFKlFamz3KWzEh2tQ3RxYgzWjwsq32KXf3Wy2Ba5I3/+jFQqO7TlSapkUaIPVxsvdtsfanBJ+PNqAZXPPztQ/gVC9Ev+6MhH3XBaPn4434OudNXhqdRFiQlRIizMgJlQFtZKDJBPMrYo4edV2RAarcElaGD65Iw0J7RTuYIxhWroRa7pJYSM+XIOy+sCy33Kr7dCpucIWu+gOZ6wQQJcLTbUFb5KuHgSQRUTfu9Hs+9xqG1fe4Gz3x/cHZCIouknso9EqYHd+Cx6dmNSl6xljGJhgOI3fIogysiqtiAxSIzpE1aYcRkcIN6hwYWpot2QTapQcnAEslAC4xKUdgkwAit1pR0QL/XNH3Q/G2Ci4NGa7zIkjIj5Iq9iw6VDd9DkX9QjYDJLk7puvALB2nwnTuyg5lxChwf3jE3D/+ARYnRLyqm0oqHWgzszDxsuIDVNjaFIQHroqEbFh6i4b4dPTjfh6Z/cobKiVLOBz9mCR2QHggDttiGi9n27nb4FWHdbZRNTleK/ZIS359q+aS6aMjApo+XNZJr9LSLWHH481YHhy8Gl0u/agVXOYPCIKk0dEnVQoyKmyobZFQHmDAwkRWiRGKjF2QDhSe+i6zAudMDgCH/5cgZpmHjFduA9fQqNicIqBna/Hyy0kybTbnTZElAcgz5txvXGbDAHQ7E4DIrLr1IpP1+yrnTt/QmLAflW1kgMvdg+f/3CJBUMSg7wiRKuUHIYkebf+XJIWhs3dYLC6DguBXcg2HqoTlRxb7aRuIBX9fREDYLi7jaxO+Y1vdtdcPXtMjCFQG5JGyYEXu+enE0QZR8useOX69vWa24NBo8CwnsEY1tN7W+GCPiF4enUh7LwEnTqwniuZENA5W1RrR0UTTwD+CNig/xuYAPdDqNuqmnhHVoU1OJBJUK49tlsECrCvyIxLPaAj+FKhQKdWID0lBAeLzQE/ZMpyYOcrEWH1XpPVxstfBWzQVnjjxygA4HZmgEOQ31t/oE422wNnQEaHqFHZ5BnZ2ltkV9nOEgH3qJ9KG1q8eGdpcXp0R8Kb1SlD52NJkY4gSoTv9tTyNl5+0922jDGRMdZ9Svn+RRPcTLpqxV6nKFf8nh04edowgxItdhEOPvAbYKHJgdgwtdc1wGubeZTWeR6mUyk59IrWIbc68AwVm1MK6Jz9bm+tg4g+JCK3uEOMsW8YY//01339DbAHcE85gYgkQaK3v/ozsB9OdIgKVU2Bp34BQI4PEr4EUcbhEu9qUPSL03dL8pM1wPP1UIkFLXaxES4d5C6DMTadMbbam7E9fkoiWkhEWz1oVwBgxaKtZQGbUGmxemRXdk+WfE6lDf18kD35zg9lyK/x/JX1CFVDbBUnDiTya2zo5QNNzK7i9+wmyIQ8IjrqTjvmitUqcO4mXe0kokc9aEdWpzz3lU0ltkAdMtVKDj2jtMirCfyc9VW28/bsJny31y2RirPQHeuWJLu0LH0lk9UZzHYRW480gBfpQw+aK3GOzlcAIKKxROS2p0WU6b3d+S2WXXluBUC9QlqcHlkVgXeItNhdFSeTorzj7DbbJSxYVeBVH91lZ+TX2NErQPMVAJbtrLHZefl1cl9KRAnAKy9EtzDF7Lw8f0d2U8vO3MBMqLhwNeyCjPpu0JQsqXcgxQcEeJdOoeduf8Zceo2l9YH1NGdXBU7uxOKQ8NqWUpvFIT3sYRfPeTAJz3kQ0a+8RCsXbQvcIbNfNy3+pfW+MdYkmaDwMmksJVrXWrwgcCipcyAyWIUgbWBoCIu2ldk5hhVE5Eny1Cp4FjU4p0FEZocgz3p+bVHADplpsQYcLQ+8wVpW70SimxUn24Lk5f4KAL2idSjxIqriKXwVxe0KduY241Cx2SwTPvegeQaA77wZ32ODlTH2LGPsEk/aEpHFLsiznltbZKsKQKje5pSh4pi8t7DF72OdCacgQ+8DDtpjE5PQ10vxfa068AlQWRU29AvQZFq0tdTBi/K3RPSLu23Jhef9cV9/BzDGxjLGnvK0vZ2X5/+e1dTyw9H6gBj0phZB3JHTFHDvmVPwDYXl8oHhuO68aK/60KkCP18zK6wBO2Duym3G71lNZjsv/8uT9kT0HRFl+vq+/g5gjCkYYz962p6IfuElWvn8umK7FAAqv0SEvGobLI7ATlmHIEPvg/kablB6xFs/FToVF/DkJ6tDQk0zH5CIiNku4oV1RTa7IM8iIrf5E0R0nIi6hxIAYBhc1XM8AhH95hTkp+7+LMdW68cwtdUp4f6vc60Wp/TbN7trAl532ldLRd8eehi89HowBFa0sMkq4nCpGSM7KVvnC/yW2Yjtrs1vviftmQvnKn8VAOIAtK/70gmIyOIQ5HEvbyo1/57lXz7r5zuqxMOl5sojpRa+NsCSaL6aH9EhasR7qYTCWOBFRrccrscFff0vzWNq4fH8uiKbw7X5ebQutxp13ZOa7n8oAVzqTQd2Xr73YLH5yH82FDv8abRmVVjx1KpCm0rB9mw7EpgDra+hVvqg8hQDAh2f+zmjEUOTDH4viiTLhP9sKHHwEn1DRL950gdjjGOMeXW68KZxFoCu1jhuE05RfqvZJi68ZUmWrcjk+2hjvUXA3Z/lWItMjrWCRFeV1jvFQFd80ig5j6vhnIpjZRZYnd6dXh2CDI0ycOv7xoMmWSaIuX5+53sLWvD8umKLQ5Cv8nTzAxAEV2LSuQoTAK+8UUR03CHIlz+ztqhl06E6n7MnJJnw3o/l/Fd/VFc6BBqj4NiytftNAZX38NV8rWhweq2N6JqvgWNtldU7kFlhlTPKrU5/MmOarCLu/jzHZhfkV4joVy+62gpXJv25Cnd1aU8DETlsvDx+e1bT0QWrCu3+SGLcW9CCeV/m2my8PMvqlB9fvqvGGkhWlUbJfDJf7bzkddKVQ5ADWuiDiLBsZzVfUGN3NNv8t0wSEV7fWurcW9iSaeflB7zo6jYAH3tzL94kXf2biLyWIXEI8svNdvG+W5dm25btrJZ8cRIkIvx4rIFmvnvcXt7gfNfOyzcTkSDJ9M4n26sCmj2ZEKFBiQ94aK9s8rysHOB6JyV1Lp25QECSCSv/qrXbefneR78psO7wU5b571lNeGxlgdUhyBOJyC0dxzNwziZcAQAR/egLnVki2u8U5Ave3FZW+sg3BbYGi2944UUmO25ekmVdt990yC7Io4iows7Lb6/aWyv4czE+EwkRGp/wRn841oCtR7yr8FZc5wioXvWqvSYewJLvjzYUvrypxClKvjc8app53Ppxlq3BIr7Pi15/j+fsnCUiJxFd4YN+zDZevnRvYcvWme8ft3prlJ2AnZfw6uYS52MrCxrtvDyRiDYC2NFiF007sgOX7JUQoUVpvcPrsqjVzTxe3lTiVR8ldQ4kBnC+Hi+3os4iNFoc0uLbPs7yS6RalAgLN5Q4fjjakGfj5cvd0QRuAwq4qXpxJrpRnvu/ECX63CHIgz/fUXXoliVZ1kPFZo9rWedV2/DQ8nzby5tKSm28fImdl/59whUkSPT63sKWRn8ZT23BV9mTLjF1z72jJrMAmRCwcpcr/6qRnKKcSURLHYI89pk1RQ0vbypx2rz0Ep+AzSnhpY0ljmfXFtU7BHksEe3wsksngBd8cW/nOogo087LaQeKzEtmvnfcvv6AyWMJqmabiE+2V0qtUZbHbLw8hohMJ8aRZXz56ubSwCmKxOmR5YNkL18kcWRXBi6ZotjkwIaDJtEp0is2Xj7/l4zGvTcvybIW1frm1RMRth6up1kfZNjrLcJzdl563Acu+s8B5Pvi/s5lEJHd6pBmmFqEG/+1LK/p1c0lzmoPJahEifBrZiNmvJth++FowwaHIPcmou2t45CNl29duKHYHqhDZphBiWCtEuUN3uXCSDLgbVQ9qzJw+RqSTHhtc6mVF+XnHCI9XG8RF/7z/Qz790frfRb5KqixY85HmdbtWY1/ta7L3hpO+wB4VeyDefpwjLG3ACwnInfLX3bUJ8cx3K5Vcc+E6pVhs8fEGC4bEM4igjo2siwOCbvymrF8V425pM4hSjK9JUj0WluSIIyxfwRrFT+sfmCQLlTvf8riT8cbsPFgHd67KdWrfvKqbUiM0J5Wd9wd7Mhuwtr9Jrx9Y1+v7qMrKKlz4KYlWTanIA9plTEDYyxcr+Y+0qm5SQuuSdZf0DfEo9Kbskz4K78FCzcW2xy8vNHGy3N9MJHOeTDGpgDoQ0Rv+Ljf0UFaxWuSROdNHhHFTRkRpU4xajuseiNKhMwKK1bvrbVvz27iVAq2yeqUHyOiojb6N+hUXN7z01NiL07zf61yXpQx7uXD+PGJYdB6Ed6rbeZBgMdVb0SJMO6Vw9jy8BCvueudQZIJtyzNshbVOv4tSPK7gIvTreBwj5Jji275R6z6+vOjlZ5q05bVO/DallJbRrm12sbLM4jokE8f4BwEYywUwDIimuzjfiN1Km6hRHTT8J7B9M/zow3Dk4M7/NaJCFVNPLYeqRdX7anlJUK+xSE92Z6spV6jWHJh39A5C2f2CojW0kPL83DlkEiMHxzhcR8OXkZZg8OrIgLPrC7E6N4hmDQ8yuM+uoqv/6yWvvij6qDVKZ9PRDLgqmaoV3OrhiYFRT9ydZLeUw691Slh5e4a8audNU5Rkh+UZHzyd1HP8cZg/Q3AC54ScDvpmwG4NEireNTBS5dqVBxiQtQI0ip0Co6ByDWJLE7JaTILktUpKfRqxUGzQ1oEYBMRdRin1KkVX6T20N30/s2pTO1njtjb35dh/YE6bH1kiNdi5N7gxfVF6Bmpw03/6OHXcQRRxu2fZFsLax0LBEl+58y/M8YmGjTcu3qNIvqGC2L0E4dFciFdqALWYhex5XC9vGJ3jc3mlGqtTvl+T3SA20PrN6f2RPfwfwGMsXsBDCSieX7qP0Wj4u5TMNwoiHJYdKhGCDcotUoFU7gyhwgOgcRGq+CsMwtqnVpRaRekxZKMT4morpO+LzFouF8+uSNN4e9s2KwKKx74Og//vqYnxg4I9+tYHeGv/GYs/qUCX97tcZ5cl/HlH1XSV39WH7I65fNObH4nwBhLDtIoFosyXXr10Eg28zyjpiu/gSTTCSeCpTXC9LZTpBfdLQ7QERhjGgDCmfd8LoAxFgPgGBF5JzXRfv9BDJgVpFU8aHVKfSIMSj4qRKXSKDk1x1x7rCiT3GwTHbVmXgGCQ8GxDTZefpOIjnTSt0Gr4krvHRcfMdNLpYzOYHNKuP79DAxKMOBlL7P8vYFTkHHNW8fw2R1pXidbdobCWjtuXZplc4o06MxDPmNMo1VxzxDRAwMTDLjhgpigC/qGdik6W1Bjx3d7a53fH20gFcd+tTiluURU6qv7PpHUTEQeu9+9cTEeBuAdSatjSCBIjDEoOYaoYBUGJBgoWKNgYAy8KKOw1s5svCxbnZIKrqSZYLieqV2DlTFm1CrZ5Q5BxlOrCvHijF5+I0p/vbMaGw/WYURyEH441oBrR3WtPnlb2F/YgkEJQR55WM12ET8fb8S8cf4NV0gyYcHqQmd5g3OXKNN7bV1DRFsYY1utTnnMp9urHvngp4qrjcFKR98eelWEQaU7KWXAXP01WgR7Qa1dMJlFrUbFbbE6pUUAdvvhxJcAYHfr/89FVMC/FCCJiEQwBsYxBGsVGBCnR1SIGioFgyARapt5drTMQo1WkWQirYJjoZJMHZKqGWNMp+ZuC9crpflf5ynenZOKZB/oGreF7Eob7vsqF2P7h2HtfpNXBmuRyQ61gvN481q2swaS7PK0+jMD+Puj9fT5jupmhyDPbMvwI6JiAFcxxhI3H66bu/VI/Vy1kqn7xujE2DB1kErBcYRWNQMiWJ2yUFxnt5XWOXVqFZdvcUivAFhFRP4QqNwBYD6Av/zQd3dDhJdJV51AJhf/V2YMTKPikBSpRS+jDmolByKC2SmxjHIrmu2i7OBlFWMIARDEGGOdrL+XAKT/4o8qaFUcJo/wj8fR5pTwwNd5CNEpsK/QjHqLgMhOorHtocUuosjkwNCkII/a/5rZCFkm+FuzorLRiXlf5NoFie5pKyLV6nBZwBhbeLDYcl1utf1xXpR7J0dp7SlGnUGn5k6z+ZyCLFc389aCWruCF8kpy/QhL9FiB1GFH27/QbhKhD/iaQcee1j9AeZyc83Ra7gXgrTKyNljYgyXDwxnnX2EDl7GvqIWfLO7xpJRbgVj7GOHID9HRKcJrzLGmF7N/XDNiKhL7x0Xr3p2bRGabRJemJ6CyGDfcTsFUcZHv1bi9+wmOAUZU0dG4besJnx9T3+PwuAAMOXNo1hyWxp6hLkfYvxmdw1+zWhEVROPuy+L88sCIogynllbhL/yW2Q7Lw/vrNIUY0wNYGqwVjGPF+VRHMfUfWJ0iAlRc2olY4JEVG8R5PwaO9l5mXRq7pjZLi0lYAUR+VyhmjGWDOB3Iurp677PZTDGhgdpFYskicZMGh7Jpow0anp1QgmQZUJBrR1r95uc2440kJJjOyxO6REiOnbmtRxjs2PD1Uu+vmeA4bfMRiz+pQIvTO+FkSm+lUrbmduMheuLkWLUwhiiwt5CM5bc2s/jCjpvf18GY4gas8fEuN22uonHrA8zMDDegGCtAs9PT4E/IkFbDtdh0ZYy8JL8uijRY51dzxgbqVdzDzCG8U6BjAkRGinZqFXo1BwjAlkcEhXU2qXaFl6pVytKeYnWOQX5/bY2Vl+AMbYfwFwi2ueP/s9FMMbCdCruBZnotiFJQTTr/JigESkdUwIAoN4s4MfjDfKKXTV2Gy/V2Jzy0wR8c6bhyhiL1ShZ7ns3pQaF6pWY/3UerhkRhZv/0cOn9e6rmpxYsKoQoTol8qptGNUrBMlRWtxycaxH/R0rs+CdH8rxyR1pHrWf/WEGUnvocajEgnfn9PW68lZbKK1zYN4XuTA7xFKnSL2IqMOEEMZYjErB7tKquNl2Xu4dZlBKfWJ0ilCdkik4MIcgU3mDUyw2ORRKBWtmjO2wOqX3AGz3BwWAMfYEgHAietzjPv4uBitjLNGg4ZYbg9UjHrk60TAyJdgj4668wYlPtlc6tmc1mR2CfAMR/XzibxxjN8SGq5euvHegQa3kIEqET7ZXYsPBOsyfkIAJgyM8NihPILvShhfXF6NHqBoLpvREcZ0Dz6wuRJBWiTvHxuHygZ55bSYtOorP7kpDdIh7BqvFIeH694/j1et7I0SnxPxleRjTNxT3jov3GUWh2OTAi+uLERWswvCeQfLS3yozbbw8rK0JxRgLVyvZo4yxeb2jtdz158UED+sZhOgQVbvvvsEi4Hi5FWv2mSyHSsycgrGv7IL8EhGV+eQBXPcVBuB6Ilriqz7PZTDG1Bole1bBsQfnjYvXThwWyXQeFMiwOSVsOlRHH/1S6ZCIXuVFeukEpYcxFqtRcTlLbk0NTotzaSTuymvGyxtLcEn/MNw7Lh6ejHkqzHYRb/9QjoPFZjwzNRn9YvWY81EmBsQbIBPwn5m9POr3zW1liA9X4/rz3TdYn1lTiEiDCnPHxePZNUWoaebx9NRkpPioxLGdl/DhzxX4I6cZT07uice/LbA7BHkEEWWfeW0rVeaGIK1igUrBel5/XrTmwtRQRYpR167n18HLyKux4afjjfymg3WyQsH2WBzS876mjzHGbgbwAxFV+7LfcxWMsau0Km7ZuEHh+tsujtXGhbvv/Zdlwr4iM17fUmpttAp7rE55DhFVtvbP9Brup5np0RfPHRevAlyqEM+vK4JTIDw9Ndnr6AgRYf2BOiz5tRI3XBCDORfFYNHWMtQ088iqtGL53IEIM7gfOD5cYsaHP1dg6e3uG6y7cpvx2pZSrH5gELYdqceHP1dg/pW+sSeAE6pHjXj7hzLcPTYOGw/VWfOq7S/wovxaW9czxoYbNIpnRUmecPnAcJo4LEqXFtu+jrssE8oanNhb0EIrdtdYm21ik0OQX5UJSzqjV7oDxtj5ADRE5HHkwBsO6+cAXm1rkXMXSo5dr1SwT2/+R6zmpot6KH0RAtud14zn1xXbeFH+xsbL9wCI0Ki4/I9uSQ3uH3+6QHBWhRUvri9GTKjLI+KJsVxa58CqvbX4+Xgj7h+fgKuG/vdjXbS1FBUNTuRW27Bs7gCEG9z35uZV25AcpYXKTU/Ls2uKoFNzeGKyy3F4YoM+VGzGv6/piVG9PBcJFyXCyr9qsGxnDe4cG4drR7o8t3d9lmPNrbL9xynKL596PWNsolbFfTW2f5h+zkU9tL082ICrm3h8t7dWWLO3lhck+pdM+PTvQgj/O4MxNgdAMJFHNdvP7Ku3Xs19PzDeEPfMtcl6o5uHqLZQ3cTjuXVF1twqW5mNl68kopIgreKH6enRY+e1bn4n0GwT8fb3ZThaZsFNF8Vi/OBwtw1Xi0PCtiP1+HpnNS5KDcO9V8TD0HqAO1BkxrNrCqFVKzBvXDwu84AaUNPMQ6lgbocod+U245XNJVh570DoNYqzNugbxsR4RRE4WGzGfzYUY2hSEOZPSESoXolVe2rlxb9UZNhckZGTh0zGWLJew33TI1Q9eO7l8YYxXeTCnQoHL+On4w348JcKm1OQ19l4+V4iCpzu0f8oGGMJAN4iopk+6EutV3OfaFXc9Bemp+i9WfNPQBBlfLajSlixq8bJSzRHlmk9x9js+AjNkm/mDTCcuk/JMmHtfhM+/q0Sk0dEYdooI9w1lmWZ8FdBC5btrIadl/H01GSc2D9sTgk3Ls5EaqweKgXDizPcP2RanRJMLYLbBrXZLuL6DzLw4ilRn6wKKxZuKEZcuAaPT+qJKC+it3VmAa9tLkF5gxNPT01G/3gDKhqcmL040+4Q5OFElHPi2lb+6oscw313jI3TTB4WyQV3IT/kVBARDpdYsPS3SmtOla3SxsszO+MsBxLeGKyHAdzqbcanSsHN02u4Re/flKpL9XFJQItDwqPf5Ntyqmx/8KJ86KqhkQ8umJLc5kzhRRkbD9Zh7T4TJAKmjozC8J7B6B3dtpFIRChvcOJ4uRVbj9Qjv8aOycOjcN150Wd9oDanhGvfPoZL+4fD7BDxn5m9fHLy6gy78prxyqYSfHPvwJOb8cm/tZ4Ko0NUmJ4ejbEDwrocdqw3C9hwsA7rD5iQHKXFE5N7nrYAVTY6MeuDDLtTpL5EVMEY0+vV3Oc6tWLSC9NT9L4I5+bX2PHUqkKrycwfsjrlGURU401/jDEFAK0/6AZ/BzDGFgAwENG/vexnoFbF7Zg3Lj5s5mgj58vvmIiwYneN9PFvVY0OQb4tWKtYueWRIfr2vsv9hS34dk8tjpRacNWQSFzULxT9YvVoL4mvySoiu8qK37Oa8HNGI0b3CsH150djSBu8tWfWFCFUp8CvmY0eHzLdxYnN74VpKWcdJKuanHh1UykKau24dpQR14yI6vJGKIgyfstqwpp9JlQ3OfHIxCT8o99/FRdkmXDHp9nWrArbw3JrhEGpYHeoFNzbt17cQzN7jPdOBKtDwlvflzl+zmi0tvJlvfa2MsYMAOznaNJVP7gSiL2Sl2GM6fRqbuvgxKDRL13XS3/mPuAtMiusmP91nt3qlO7TqrjnX5/VJ6G99b2qyYlv/6rFtiP1GJQYhKuGRGBAvAGxYeo290OnICO/xo4DxWZsOGBCkFaJGelGXDU08qxD2/asRnz1ZzUsDgn3XO7ZIdMTPL26EMFaBR6bdDqTjBdlfPZ7FVbvNeHitDBMTzdiQLy+S/s+ESGzwoY1+0zYkd2E6aONuP2S2NP252//qpU//q1yr9khXgAAjLHBejW3cWhSUPRTU5L13lIciQhbDtfTG9vKHLJMrzlFet5bx1BrkiR5k3jpjcG6GMDrRFTo6eBKBbs1WKt8/9M70jyWYOgMgijjsZUF9sOlFuXSW/up+nZiFJ84YWw8VIcjJRbUtvAIN6igVLCTZdeICE02EVoVh/5xBkwYEo7LB0Z0aPC9/X0ZQISfMhoxnKmLzAAAIABJREFUdaQRd46Nc+s5duY247zeIV32ruTX2DH38xy8cn3vdvl+okT4M9e1keXX2DGiZzD6xenRO1p7ktNEYCCZ0GQXkVdtR1alFdmVNlw2IBzT0o3o1877fHljiWPbkfo3eIkW6dXcrxf0De2/4JqeWl8qJYgSYcmvFcLqvaZauyCP8SajkTE2GC5O1iCf3eDfCIyxGwCoiOhLL/roo1Vxe5+YnBR25ZBIv524Nh6sk9/cViZMHhGpePiqpE5dBNVNPNYfMGF3fguKau3QaTjoVIrW/D3XpLXxMhyCjN7RWlzYNwxTRxk7NPiOlVnw/LpipPbQoazeiaW393PLi5tTZUOIToHYsK6taw5BxrwvcjAw3oCHr05q97q8ahvW7jPh54xG9IvVo3+cHv1i9Qg3KMEYg9y6SNl5GcUmB7KrbDhYbEbvaB2mpRtxcb+wNteQA0VmPPpNfqmNl5M1SvZiqF754Ds39tX7ioZwAnvyW/DEdwV2hyDPkWVa401fjLEcAFN8EeX7u4ExlgTgaSK604s+VHo1ty29V8iY/8zspfNX8l5pnQN3fJrt5Bho26NDtZ0ZZSe87j8db0B2lQ28KCNMr3KVIiZXSWJRIjRYBcSGqjGsZxCuHRXdocEnSoTp7xzDrAtisPS3SnxwcyrOjKR2hHqLgMpGJwYndj3p6qs/q7B2Xx1WzBvQLr2uySpi06E6rNtvgk7NYXBiENLi9EgI14Bjrsw3BkCQgaomB3Kr7DhaZoWNlzBtlBGThke2eVgWRBlXLTpqtzikUQDCtCru+8cmJgVdNTTCp9WKa1t4PLwi31be4Nxg5+U5nfFmOwJj7D9wHTA9LhjSbRzWVs2wHZ/f1V/X0w8E5VPBizLmfZGL8/uE4I5L2zcUTz3ZbM9qRFKk9uSm0CNMDZWCg0wEs11CbrUN2VU2ZFfaEBOqxvR0I8YPimg3i7+0zoHbPs5CQqQGZruEa0ZE4aaLenTZ03rZS4ew6aGuaTLmVdsw94tcXNwvFM9cm9Lp9Q5Bxpq9tdiV34yyeicarCJCtAqoWsu4OgWC1SkhOkSFFKMOVwxyGegdLYAFNXbc9nFWk4JjpeMHR/R7bGKSpqNEHG+wfFe19PFvVbUOQR5JRFWe9MEYGwbgCyIa5uPbOyfAGNPq1FzWvePik2aMjvZ7wZFlO6ux9Ug9vrp7QIffWZ1ZwMaDrg1BrWToF6tHWqweKdE66FsNTIcgo6TOgaxKK3KqbDA7JFwzPApTR0W1a1ASEWa+dxzNNhHDk4NhtktYNKtPlzVRX1xfjGFJQV1KcLTzEh5ano/Segc2PjSk07A7EWF3Xgs2HapDYa0d1c081EoOOjUHjjEIkowWu4QQnQKJEVqMTAnGdedFoyPdaSLC1LePWxoswqroENX1S29P03uacd0ZcqpsmPdFjt3qlK8nok2e9sMYywdwFRHl+fD2zhno1IpF/eP0c9+7KVXv71rzBTV23PN5Dj68JbVDLVNelPFbZhNW76tFicmBfnGu+Zoaq0eoTgkFxyBKhNoWvnW+2lFksuOCvqGYnm7E8J5B7e6ZS36twIYDdRjdOxh7CsxYNKsPBiZ0zWjdlduM7/bWdlmnfMWuGiz9rRJLb01FalznY1Q0OrHsz2pkVdpQ2eSEU5ARrFNCxTFIRLA4JDAGxIVpkBqrxz/Pj+5UE3bxLxXiN7trNnOMXfHK9b0M5/cJ7dK9uws7L+GBr/Ns+TX2da1Gq0dGI2PsFQDNRPRypxe3A/8r57cBxphGr+ZWPT4pSetvYxUA1EoOL13XCzd/lIVL0sLa/BCOllrw1vdlaLaJmJZuxAPjB3dI3r6sNXnqBLdmzT4T3v+pHP88PwY3XdTjrE22upmHSsHh3TmpcAoy5n+dh8pGHg9MSDgrXN8WJJnAdcFM+CWjEYu2lmLW+TFYu78WTVax3ecoq3dg7X4Tth6ux8AEA8b2D0danAF9YnRnZY1aHRJyqm3IqrRh9V4TPvy5AlNGGjFlZFSbPL3eMToEaRVBI5KD+z82MUnlL2MVAGaP6aFw8HLU8l01PzPGhnlIFK8CsMjX93auQKviXhyWFBQ9Pd0YkOp4s8fE4ECRGV/9WY3bLjk787fRKuC9H8vxR04zxg0Mx5uz+3S4wF+Y+t/FvNjkwLr9Jty8JAsjk4Px4JWJiD5D4N/mlGFxyHh+ei+c1zsEi7aW4p7Pc/D89BR0hXsty9ShUsIJlNY58NzaIiRGalDbwuOPnCZc2r/tcKbV6eLdrt1ngiQTJgyJxDUjopAWpz/LCyNKhCKTHTlVNuwtNGPGu8dxcVoYZqQb2/Q8McYwKiXY8Fd+801LbktT+MtYBYB+sXq8d1Oqbt4XuSsZY+cR0XEPu3oJgMmX93augDE22qDh5i30o2f1VPSO0eG+K+Lx4vpifHZn/7P2P0kmrNpTiy//rEafGB1mj4nBRalte/tP4MRhz+KQsPVIPV7dXAoFA+ZPSMR5fc7m4VY0OpHeKxjPTeuFP3Ka8MiKfDwwIQFXDuk8+UkigqILziMHL+ODn8uxp6AFY/uHYdnuWrwwvW2nEBFhT6ttcKTUgnEDIzB7TAz6nfCwnrI+EBFqWwRkV9pwrNyCh5bnIyFCg2mjjBg7ILzN93RZ/zDlyt01U1+ckQJ/GasAoFMr8M6NffV3fZYztbTO8SRc884TbAHglbydN5SAdQDuJ6Jyd9vq1IpXh/cMuu/N2X30geBynsDmQ3X4bk/taRPKIchY8msFfjzWgH9dmYjLB4R3aaNpCxUNTizaWop6i4CnpiTjBCfX6pQw+8NMPDE56eSHZXFIePv7MhwoNmNBF5Kf8mvs6EguqNEqYNGWMuTX2PD01GQMSgzCOz+Uoc4snEVCF0QZX/xRjTX7TJg8PBLXekCCz61yeaJ/z27CPZfHYcqIqNMWhV8yGvHhzxVYMW+A33RuTwURYe4XudbMCuvrTkF+3u8D/o+BMXY/gBZPKAGMsXS9mvt91f2DdL6Uf+sMtc08bl6ShXdv6nuaMfprRiPe2FaKK4dE4taLYxHkYSUoOy9hxa4arNprwr3j4jFpeOTJb/iVTSUQZcJTU5IBuL6vDQfq8NGvlZh1QTRmjzn7UHoqapp5aFVcu15NSSZ8+1ctvvyjCrdfGocZ6UYcK7diwXeFWD5vwFntTvDRB8QbMHN0NEYkt+9paguNVgGbDtVj9d5anNc7BA+MT8CpCRkNFgGzP8zEohu67pXyFusPmOR3fyjPsfHyEG/ExM9FMMYGAHiCiG7yoK1Wr+ayn5jcM2n84IiAbbBEhAeX52NIYtBph8zSOgcWbigGxxgen5TksdoFEWFnbjMWbS07+Q2fiHjsyW/By5tKsHzugJP/dkKxJy5c3Wnyk9UhodkudrgPHi6xYOGGYgyIN+DhqxKhUXK48aNM3H9FAi7pf3oVvuomHi9tLEadWcD158e4nRgqSoQd2U34bk8trE4JT0/9rz1x4l08+V0h4sLUeGBCYpf79QZVTU7c8EGm3S7I6USUEZBBz4A3BmsxgLHuauwxxqLVSlaybv5gbSA3P8D1I9/3ZR6uHhaJicMiUdnoxIPL89E3RodHrk7ySA6jrTG2HK7H+z9V4I5LYzFjdDTe2FoKhyBjQevmdypOZAX3jzNgeroRo1KC3TKYq5qcWL+/DhsP1eHqoZG4c2zcSe+oQ5Bx00eZuH98wskki9wq1ySODlHj8clJbstknYmCGjteXF+MEJ0CC6YkIyZUjQaLgBsXZ+K1WX0wKECbH9CqX/lBht0uyKPd9dowxlQAdGdq954rYIwtAlBDRK+72zZYp9w9f3zCeZNHRAXudNmK1XtrsTu/BW/c0AeiRHh5UwmOlVnw9NRkt/hmHSGv2jUnYsM0eH56CjIrrHhhXfFpm98JVDU58dLGEtSbBcw8LxoTBke4JQ/n4GX8eLwBq/bUIkjrmjMJp/D33/6+DC128SSVx+KQ8M4PZdhXaMaCKT3xf+ydd5gUVdbG37c6zfQEchhyZgAVFTCAYlxFcc05B9TVFXX3M6y7hjWHVTGtWcy6oAgmzAooOQgSZsgMYWBy7Nxd5/uje1xWCdPdU3WHmvo9j89jjV11X2Ru17n3nvOeEWlWePtCMTz39VbMXhu3tDq8fyuICP4+eQO6tfXgz38wr2+GiOBPr6/xFRT7Hg1F9PuTvT9hRVdr0aKrQwE8KyKHJHuvRl5zcK+cJ5+7rH+WmRtCQHyhdvELq/DhjfuhldeJr5dX4onpm3HlUV1wziEdUt4M2pn6YAzPfL0VC9bHvxe6tfXgvOdW4o4/9vzdzms4quP1WdsxdVE5xh4Y35zplkS9jIhgyaZ6fJTYJb11bI//CU6XFtXjzg82YNL4eGGziODjJeV48btinH9YR1w8as8L28aMP31ZJZ77eivOHNEBV4zOg9NBfLO8EhNnbccb1wwyZUOogamLyvRnv05tkZkokoxKGt0k07W1ul1ESpO5z+3U7jx+vzZ/v+eM3qb0Gf4tP66uxhuzduCeM3rhhrfW4JJRnWFE+7htlSHc+PYajDmgHSbPL8WkG4ag7W6O2fyhGL5eXokPF5bFe5kPaYv8LvHc2Q65bogIflhVjWMGt0YoIr/mz85fX4vlW+px8tD4RNxVesX3K6vwwYJSvHDFQMxbV4N/frQJ40/ohpOHNo1HHBBfDb710w5MXVSGpy7uj6mLyuB0EDePMWfltzNTFpbKC98Wz60LRkclcx/J0QAeFJEjDZKmFJLjAFSIyNQk7xuY5dF+/uLWoZlGtzHeFcGwjtMm/IKXrxqI577ZBl2Pe6Om0vFtT0SiOu7/uAhltfGd0WMGt8Gpu8k/FREs3FCHjxaVYcnGOhw7pA0OSBRT9GyfAYdGLN9Sj065brTLcWFzRTB+1LfFh+9WVmL/7tk4a0QHHNo393cvcF8w7ijy7vWDoWnETW+vxaAuXtw8pnujUocay4L1tbh/2iZcPjoPvdpn/Lo7ZebLD4gvAM57bmUwHJUeIpLU8T7JEgBDrejDSjIfwDgRSaorEElmebR1D5/bt88hfdO3r0qFe6ZsRH4XL7xuB16dUYwJF/dHv05N/7r/8pcKPP3V1vjpxBYfnrpk9/mnWytDmLqoDJ8vrUB+Fy8O75eLgXlZGNA5E16PAzuqwyivj2C/blmoqIugcLsfBcU+fLuiCiRw1ogOOOmAdrvMYb9j0noM75OLM4a1x4Qvt2DJpnrcd1Zv9G3CP3NpbRj3T9sEt1PDvWf0wvn/XoVHzu9r6oYQEP/uG/fqat/Kbb7xIvJ6MveS/DeAAhF5LtXxTS26IunIdGk7XrhiYPv8Lsa2Cd0dMV1w+oTlEADXHNNlty+lpqCsNoyrX1uNtllOTLxm0F4/35Dz8vGScqzd4UdtIIZITBCN6YjEAI+TcDoIr9uBLq3dOKRvLi44vCO8nt3vDEdjgjOeWo4rR+fh5R+K8cj5fVNuP7c3vl5eiae+3IJQRMf7NwxJe/c2FUIRHSf9a1kwsQJsdDEGyWMA3CMiRxunbt8j0+3499mHdLj6hj90M/c4ZCcmfLEZizfWoUsbDx46t69hrUp1XfDAx5sws7Aa027eH43xMNxRHcI7s0vwy5Z6lNdFEIrqiMYE4ajAocXz5z0uDW2ynBjSNQsXjeyEXh32/CJ77LPNyHQTP62pxfFD2mDc0XmG2OBtqwxh/FtrkJPhwB8Pbo+zDzG27/vuuGfKxsB3K6seiMT0pHLjSJYDGJRsoGtlSI7skOv66uOb9882sm5gT/yyuR53TFoPTSOev3wAurczrk5lRkEV7pu6CX/+Q1ecNWLvv7/BiI6pC8vw45oabK0MIhDWEYnpiEQFOgCPU4PbSWRnONC3YyZOHtoORw9qvcf5t2hDLZ6YvhkH9szB+tIAnriwX6O+O5IlGhPcN3UjNpUH4fVoePGK1LpypcuctTW4+8ONa+pDsfxkCrBIvghgmYi8kOrYZhddHdE+1+VRFawCcQsJj0vDyUPbGRqsAkCHXDeev3wArnylEIXFPuTvoZpw7Q4/PlpUhu9WVGFw1yz8Yb+2yM/LQv/OmfC4iFOfXI5pf9kf26vDKCyO77B+sawSMwqq4w4FuzmadDqIUQNa4blvt2LCRf136TnZVJywf1vouuDx6VvgVPRl6XFpOGN4B23KwrIbAYxP4ta1AJ42SNY+CUl6nLzkjGEdlAWrQPwlAsYNwY0sINE04u+n9kJZ7Vq8N7cE1x7bdbefrfH/164mw+XAQT3jO6wD87zokOPGvVM34oT922JI1yys3hF3E1m51YfrXl+DsQe126N5+qkHt8ef31yNcw7pmLT9XTJ0bevBc5cNwBUvFyC7if05k+H8wzpmziqsvpnko0na5twBoM4oXfsiXrc27txDOnpVBasA0NrrgC+s49Vx+YYGqwBw9KA2qPJF8eGCUpx6UPvdNtaJxgQ/ro5bOK4vDWBEn1wcMaBV/FSkXQZmFVZj8aY63HhiN2wsDaJwe9y+8eFPivD18kqcNaLDbhsKDeudg9pADKu2+fD8FQOb9CRkZ5wO4u4zeuO2/6xDMKwuC+awvrlwO9kVIYwAsCCJWychzSLJdFICZgA4XUSqk7jnljOHd3jwtlN6mL/1lmDSvFJ8s6ISL105sEl7G++JLxMddV6/ZtDvvFpLa8N47LPNWL3dj9OHtcepB7fHbzsH6bqgqCKI3r/ZmWlokzdlQdw8/brju/6u+CkS1XHxiwW4ZFQnnHKQsQF6A89+vRXFVSE8dK45DRJ+S3FVCOc/t9IXjkmuFfPbUoHknQAKReTDJO7plZ3hWPnt3w5UtsLcXBHE1a8W4pVx+ehh8MuvgfK6CC55YRUmXNzvd4vMhvSX9+eW4MiBrXDmiI4Ysgt/yJKaMLIzHL97eW2uiDsUTF9agdH5rX9X/AQAr/xQjGWb6/Hspf1NmT8rtvpw2/vr8M51g3ebtmQ05z23sq6oPHiGiHynREAzI5HDeqWIXJvMfbmZztVPXNhvgJEbE3tC1wXXvbEGR+W3xoUjk29LnAoiglveX4+Bnb245tjfL/Dmr6vFI58VoUPO7pvk1AWiCET0350K7uzM4XTwf4qpGygs9mP8W2vw3vWDf/fuNoJgRMdlL63CNcd0TbnVe7q89eMO/Y0ft7/lC8WuMHPcdBKWDkR8w7LR5GQ4jhrSLUtZsLqtMoSJM4tx9+m9TAtWAeDEA9qiaxsPXp/1X4tQEcFnP5fjshcLkN/Fi49u2g9XHd1ll7/wmsbfBasNPz+0by4eu6Afnr98IKYtKsdNb6/Fjur/NpJ448cd6NrGjbEHtjPmD7cLrjmmCzaWBfHtyirTxtyZLm08DblGjTPVQ9xqLVHEYVV6AUj2223YwDyvsuptEcFDHxfhitF5pgWrANA+x4UbT+yG+6dtQjT23wX92h1+XPVqIX7ZUo93rhuMu8/ojf26Ze0yqOzUyr3LnZYe7TJw04nd8dHN+8PpIC56YRXmrP1vp9LV2+ONAe45o5dpi739umXh5APb4fHpKffdSJuR/XMzNOLwZO4h2bFJXdKbF60Rn7ONhqTbH471HrAX/04j+WBBfAPt/MPMSy8hib+d0gNTF5Vh9Xb/rz/3BWN4+JMiPPxpEW4/pQdeviofJx6w6wY/OZnOXaawZXkcOPuQjnj3+sE477BOuOnttXjlh2JEovF9kEhUx/3TNuEvY7qZEqwCQIZLw12n9cIT0zejsj4VB8f0GdY7R3NoHJ3MPSRbkUzrizydgPVzAElVe+kiw/KbuP1qMrw7pwRnjuiAHiZ4v+4MSdwytgemLCiDLxhDNCa4f1oRJs0rxdOX9Me4o7vs9iijsfTtlIlXx+VjWO8cXPFyAZYW1WFLRRBTFpbhjj/2NHWn0+PScNfpvTDhiy0IhFNujJEW+V28OoBhSdxyIoC3DZLTHFgKIKmudE6Nw4b2yFazVQNgyaZ61AaihhRF7o0xB7RFToYTMwrii65vV1Ri/FtrcfaIDphwUT90apXeyynL48Dtp/TEXaf3wmOfbcYrPxRD13U8+mkRxp9g3suvgauP7oL1pUHMWVOz9w8bwOAuWa7sDMdRSd62FYCyDRCDKQfwU5L3DO6Q4w40dUFiY4lEdbz103bcNrZHk7gBJEOHXDcuH52Ht36M198VV4Vw2csFEADvXDc4bZ9Skhh7YDu8+adBKCz24/o316AuEMV/5pWic2s3Thpq3oYQgHhr26Ht8Py320wdt4F+nTLhD+vdkwxAnwdwdjrjppzDKiIXJXtPJCqtGtv/uqnxBWP4dkUl3r1+sJLxO+a6MaJvLj5fWo6lm+vhD+t45ar8Jq12djqIy47MQ36XLPxt0gYc3Ct7lykGZjCkWxaGdMvC18urcNowc1IRdmZoj+zsJRvrDgPwXiNvcQBQE12bQCqVmR6X1q1Djsll4zsxZWEpzjqko6mnIQ2QxDmHdsSHC0oRiQme/3Ybnv2NH2xTMKJPLiZenY+b31mLrZVB1ASiGHNA2yYdozF4XBouP7IzJs8vxcgBxpmQ746BXbyIxOSgJG+z7JwVkcUAFid5W4f2OS5lKVAzCqvRq31mk1bHJ8MpB7bDqzOKsXxzPe78cAMuNsABqGOuG/+6oC+e/morrn9jDar9ETxxoTmpO7/l0iM64+xnVuCGPTQHMgqPS0PnVu7AtqrQAWh8Hmva89XUl1FM4HSZ0HVjV3zxSwWG98lRErw1cNaIDnj9xx3whWJ47Py+TW7N08ChfXPx4Dl9MGdtLfbvbq7txc6cNaIDpiwshYr2v51buelxaXvvS/tflgFIuXrRimhEpqr5WlobxqINdUqCtwaOym+N9SUBPPv11t81L2hK2ma78NxlA1BQ7Eev9rtvDmI0xw5ug9Xb/dhSkVYzmpTo3MqNYERPNmXlelg0YE0Rj6sx7ZoMYsqCMpw1ooOq4ZGV4cCRA1vhtknrcemReYadzGgacfOYbji4Vw4iMezSTtIMWnmdOCq/NT79uVzJ+Hmt3QLg920Id89rABamM2bKERPJX0gmVQ6nEbFIzPzgBQBmFFSbvm3/WyrqI/A4NTxyXt9d5tE0JcN65+Dvp/bEc99sQyiiZtF9SJ9c+EM6Cor9e/9wE+N2aiDQ6KW+iGwQka+M1KQSko+TPCmZe0QQVDVff1pdgyMGtjKs4rYx1Aai0AV49Py+u8whb0pyM514/vKBKCj2Y8VWn6Fj7Q6PS8PYg9ph2mLzX4AuByECLZl3ioi8lGpf8+YOyRNJPpnkbWFV87XaF8XaEj9G56srAxARlNSEccJ+bQwPnMl40DqkWxZem7l97zcYxJkjOmDqojIlm0Iel0YAjY7WReQbEVmXzpgpRU2JRPf9ASQVCbkcrKvymV/DISJYvd2PIbvooW0WlfURTPhiCx44p09SLdrS4YT926Jvxwy8MqPYlPF+i6YRh/fPxc+bzHeeiekCAcJ7/2Qckl6SakouzaEXgKTyUUNRvbTKF1XyBiwo9mGwwvkqIvjX55tx2rD2TdZRa2+0z3HhLyd1xwPTNilbZI7q3wpLi+pNH1eP/5YJGvlOYRzjPL/U0wbA7n3Vdk1llS+qZIe1cLsPA/O8htrO7Y1vV1Sh0hfF9ceb062NJP5+ak989nM5Vm1Ts8gc1MWLQFhHWa35xVfRmAiARg9Msp2qoisCmJzs6tbp4NKdq/jMYltVGJluTZllCxBvuXjyge1M70xxy8k9MH1pBQqL1Uyo/C5ZKFTwd14XiCGmIxmbgrMBPGOUnmbAXABJlYFHYrLwly315kcviFfL78m32GhmFFRjY1kQ1xjog7orjh/SBr07ZOCNH9Xs2gzI82J9aeB/3BHMoC4Qg8vBYBLvlEwA643UpJitAOYkec/KkpqwV8Vip7DYj/w8dfO1xh/Fk19uwZ2n9TK1W1u7bBf+MqY77p+2CTHd/LU9SQzs4lVyilkbiALJ+SC/BeD4dMZM6W9WRHQROS/Z++qCsZmrtvlMXwqs3eGHSquP4qoQ5q2vxVVHJZPu0TS0zXbhkiM64725SXXQbTLy87woVDCZVhX7gr5QbH4St1i2gAMAROQJEUnm/wcALC4o9ptedBXTBZvKgoa0c2ws78wuwfXHdzW9VSlJjD+hG6YsLFPisJHlcaBTrgsbywKmjrtmhx+Zbq3Rnelg/fn6k4gk1chERAIZbm3L+lJz/+4AYG1JAAPy1M3Xz34ux6F9czHE5A0hADh+vzbwuh3/Y09nJvl5XhRuN3dDSkSwsSyYAeCXJG5zAkjriN3Ub2MRLFy8qc702eQLxZBrQKu0xvLx4nKcPLSdaakAv2Xsge0wd22NEs+2nu0zsK0qZHqOzfItvhCSq7KdDWCiQXL2Vdb7QzGttLbRmRVNQjCiw6ERGYoMCgqLfaioj2CUgmp5IO4jvH/3bHyzQo2PcY/2GdhamZRjYdoUbvdLOCrJ2DiFEC+6stkJEZm7fEu96Vt99UF171hdF0xdVI6zFRV8kUwUGKvpENyzfQa2mTxfi6vCIOATkZIkbnsKwIp0xk01hzWb5JIUbp25pSJo+uo9GhNluTWRqI5Pfi7HmcPVVU/mZjpx9CA11YROB0HC1CPGYETHtspQFuLeo41CRNaIyCwDZSmF5Gskj0zmHhHRXQ5+8OmSclMTz1XOVwCYsrAMZwxvr8ROq4GzFb4AM1waQlFzj5V/3lTnC0b0uY39vIiEReQtIzWphOS5JB9I9j5fSH/jg/llPrM3CKIxUdaOe8GGWmRlOJTsrjZw3JA2WF3sN32hB8SLJUMmlxqs2uaDy8lGv18BQES+EJGt6Yyb6haGC0CfZG8SkbAAL3wwv8zUv1W3U/u1M4XZrN7uR4ccl+nNCn7L8UPaYt66WjWDC0z1qft+ZRUy3Np8EWn0OQnJXJLqPJSMpyeSqOhswB/WJ0yeXxq/RgucAAAgAElEQVQ2c8HhcWoIK5qvADBvXS2OG6L2V+HQvrnYVhlClfkZVBABNBPna40/isWb6lwAGu3SQdJJsruBslTTFkAquxzfVfoitcu3mHtE7HYSqhwK5q6txXFD2ijxQm3A49JwxMBWmL9ewTtWALP/6NMWl9fXBmLvJHMPyTySnnTGTTVgjQKYnMqN4ag8P31ZhdQFzNu0aZftQonJx5oNFBT7MUhh8UgD+V28WL3dD93kxPBQRAdJU3fM3p2zo64+GHs0ydsuB3CvAXKaCz8ASNouQkSWxgTrZxZWGyBp13hc8d+XGr/5jiIV9RGEIjq6tlHbQEnTiIGK8r8DYd3UdIxPfy7XXQ5+KiLJbCl3ROMNy/dF1gNINuccIqIHI/oT78zeYeovTrtsF0pq1LxjC7f7MaiLuhqVBvK7ZCkpbvaHY6bO122VIazYWg8A/0ny1ikAhqczdqpFV3Uick2K927WiHcfn77FtLyAgXlqgjUgPpnym8FkauV1orXXiS0mH1lsLAugZ/u0FlVJUbDNh+KqcAjA9CRvtXoRx4MisjKVe+uDsZsf+6zIb9YikyQGdFYTrK0u9mNAnlfpbk0D+V28Shw2NpQFTDNDj8YE788tCfhC+hNJ3mr1+fqNiKSUU68LXlm4oa5+rolFQKp+V2O6YO0OPwYqbPnegKoC441lQVObF3ywoDRCcqKIJBvD7Vudrhrwh/WbZxVW15rVt7p1lhNZHge2VpmfX7KxLIC+HdVVT+5M306Z2GByBWlhsR8DTbI7icYED3xc5AvH9LtFJNmJ8RWAd43Qta8jIt+HYzLp8S/MW2QO6pKFAgW7FRvKAkrdCXamX6dMbDR5vtb4o6jxR9G9rTmLzHfn7IgGI/pyJL+bWAXgZgMk7fOISF0gol9479RN/vqgOTF9fp4XK7ea74BXUhNGdoZDaVF1A307ZWJDWcD0AuO4pZg5AfuG0gCmLi4PByNJLzAB4D4AShoHdCGZTEXn/yAi9YGIfuE/p270m1GBHNMFDo2xJQoM7INhXWm3np3xuh0ImuzRF0+JMGcyvTtnR3RHTWhlTMdLyd4rIqtEJK22cc0Zkh+RPDDV+wNh/aaZBdV1362sNOXbOBTVZfaaGtOPRAItfL7GF5heU9rDbiwN4PVZO0K+kH5Bsp7eIlIvIh8apU01JK8m+bdU7xeR78JR/YMHpm0KmnGymJ3pwOaKkOlpPMFI85mvGS4NECBm4pTVdUl4Vhv/jo3GBHd+sMEXjem3iEhSnt4AICKfi0hald+p7rB6AKTVTkJEvg9G9Puvnbjab6Tdkq4LHvy4KFhRF1n7n7mlpi8BYwoSoneHxl87yphCJKpjVmE1RvTJNXysNdv9mDhze9gX0s8XkaS/Mki2bQFFVylvQ4hIXTCij7lvWpFv3jpjT0ZmFVbj0yVl9Wt2+ANm27XoIs1mvpLx7w8z+XpFJUb0yTF8nGBExz8+2OCLxPRbRWRTsveTdJPsaYC05kI7xLtdpYw/rF+/YEPtqn9N3xwyctevvC6C8W+u9bsc/OXTn8tNXWHFdEEzma4A4rnnZjYQWLSxDh1zXWiTZXxTpImztkdLasO/pLIhBAAke5BMqzgg1YDVD+CDdAYGgFBEf6TKF51wxcsF/mIDjuvDUR13TdkYmFFQtTIck8NKasMBs1uoeZxUWvG8M+GowO00b3rPKKxGOCZ6tcGr7s0VQfz5zTX+cFQuF5GNKT5mPKx9xPg5gLR8kkTk51BEH3P7pA313680xiP0q18q5K4pG+vCMRxP8rUpC8tMreTwODVlbVF/Sziqw21isWJ9MIZvV1RKeX0kbGSAE4nquO39df4dNeFvYjpeTPEx/QB82ZS6mhkrASxK5wEi4veH9eO++qVyzX3TNgWNcPrYUhHE5S8V+GsC0Yf9Yf3a9+eWBMysFfG4NITVdI/+HTFdEI2Z+459d05JpCYQDRmd+jFtcZn+3pySSl9IPyfZ05Cd+BJA/3R0pFp0VSIit6YzcAOBcOzOKl/0Hxc9vyrwyZLyNP5f/C+FxT5c8O9Vvnnramb4w/poEamJRGXC67PMzQzPa+0xvdBpd2ypDCKvtXkFUO/OKanzhWIP3fzOWr9Rdh/rSgIY90phIBDRb9JF0llEWb2I424RKWqC58wORfTR903bVHbf1E3BpvqirA1EcdeHGwIPf7q5NBTRR4nIgmBEf2bq4jLdzGPGvNYeJV6Ku2JLZQhd2pg3X6cvqxCng998saxy61NfbTUkaA2Gddz87jr/im2+n/xh/dw0vvCtPl8/lfS+zxqeU+0P6yNnFVbPvvD5lb61TWQeoOuCKQtL9UtfLAjUBKK3hCL6AwDmByN68QwTHUU65rhRVhduFptC2ypD6NTKbVrBZmlNGD8X1UV9odi7414t9BllgTdpXknsqS+3VgUj+hEisi2NR+2bRVe/JRTVnwpE9EOf+nLLmuvfWONLp9CgNhDFv7/ZGrn29TV1xVWha30hfayI+AEgqsszizbU1cwycULFrWnMLx75LaGIjqJy89pd/ri6GpvKgj4A9wUj+pjb3l9X9+9vtkaa6otF1wWT55fq414tDNQFY1dGovqraT7yQwAfNYU2qyMiPwcjer8fCqomn/3MCv+MgqqUj8GiMcF3K6tw9jMr/D+tqXknGNH7icjyxDjrRPDmY59vNq3ySFW1864ws5iixh/FKz8UB3wh/Z5AWB/x6ZLyVddOXO3bXt10wfuKrT6c/++VvoJtvs/8If0UEUnnDbsVwO1Npc3KiEi9L6T/YWtl6MZxr62uf/n7bdF0HD/WlwRw7eurff/+ZltBIKIPC0f1FxLjiC+kX/3wJ0UBsxaZGW4N3dp6TC8m3hVmOwI9/fXWgEPjK8GIjNtRE37u/OdW+puykL3GH8Udk9YHXvyuuDgY0YeLSDKtk3fFLUjBWnFnmMoCl+QgAE+LyAnpDL6L57rcTt5G8tZ+HTO1C0d2yhk9sBVczj3H1SKCgmI/Js0rDfxQUKW5HPzUF9JvFJHtuxjjyJwMx1cf3rhfZiuv8ZWFc9fWYOLM7XhlXL7hY+2JVdt8eOiTIrxz3WDDx6oNRHH2Myv8tYHYWBGZAcRNg7M82lutva7D7z2rd9Z+aXQl2VwexD+nbvQVlQfX+0L6uSKyuqm0WxWSMwFcISIbmvi5f8jyOJ52O9nj/MM6ZvzxoPaOttl7z6eqqIvg4yXlsUnzS0OxmGyoD8XGN/yu/Ob5WZkube29Z/XOG53fuiml7xJdFxz38FJM+8v+MOP7YU+cPmE5nrm0P3q0M96y5s4PNgRmr6152x+KXQvEjfndDt7u0PiPG07o5jnt4PZaql7K/lAMr84oDk9ZVB4MRfRrAExusqM0i0LyNgABEXm2iZ/bLcujPRuNyZjj92sr5x7aMXNA58y97gqGozpmFlTjnTkldUXlwWhMl4cjMZkgIr+LTL0ex0uj+re65IFz+piyO3LPlI04qGc2TlfYTRIAnvlqK1p5HbjsyDzDx5pVWI17pmzcHojo/Rsa5JA8NsOlvX9Ufuucv4zpntk6K7XvLxHBDwXVePiTokBUlzcCYf2Whk0/1aQasB4EYKKIHNT0kuIJ9QDOyM5w3B4M6/t1a+sJHNAj2z0wz5vhdWvQGM8LLaoIRpdtrvet3RHIIFEdicozUV1eFZHSPT3f63E8P6Rr1mVPXdzfa7Sh/RdLK/DwZ0X4/P8OQI5C641XZxSjyhfFrWN7GDqOiOCuDzcGZq+teccfiv2PVy9JErjQ49Ke6dHO47poZOecYwa3hnsvCxIgnh80b10t3p2zo37FVh9FcF8kJk+kYF+1S0h2AhARkcqmeF5zg+R6ACeIyHqDnj88y6P9NRSRM1tnOcODu3p5QPfsrDZZLroc8S44lfURWba5vr6g2MeaQMzldnCyP6xPEJGf9/Ls0dkexxcTr8n3Gh28ldWGcdELq/T/O6mHduIB6mrwNpYF8Oc31uCz/zvA8Ir9xMtvRyC+u/0/x0Ekh2R5HG86NAw655CO7jOGd3C2z2lcgcfG0gAmLygNfbGsEg6NX/pCsWv29t3cWEh6AXRMpWBrX4DkIwCqReQRg57f2engNS6NN5DI6d/ZGxraIzu7e1uPw+3UoIvAF4qhcLs/uHyLL7StMpSV4dZ+TjRk+WRPu+MkszJc2tq/ntS906kHtzf0FFfXBVe+Uhhu5XU4nr5kgDK7ABHBhc+vwm1je+CgXsYWLdb4ozj7mRWBumBszG/biZPM9rq1J6K6XHZUfuvY+Yd18g7u2jhf6bpAFJ8trdDfn1virw/GSvxh/XIRSdkN6reQ7AegKJ2TlVQD1l4ALhWR+1IdOImxsgEcCGBYlkcb7tCYA8CpC3yBUKwwJlgIYPGudlP38EyX1619NaJP7mEPntMn06igde7aGtwxeUO9pmHJtcd0OfK8wzopKWiMxgQnP74Ml4zqJJcckWeohtdmFEfemVOyORDWDxSRXboykHQC+GN2huO2aEwOGtA5MzS0R3bWoK5ZjvbZLridRDQmqPZHUbjdry8tqq8vKPa7CBTVh2KPApiUgmnxHiE5AcAWEXmyKZ/bXCD5KIB/pWsr0ohxnADyAQzLcGmHup3sBCBDBIFwVN8Risp8AIsBrE5mseF08JpWmc4Jr47L9xqV11lRF8HVrxX6S2rDH/fr5D3lzWsHGV8uvxse+bRIX7a5Xn/3usFOIwPWVdt8+POba/yBsH6CiMze3edIDvW6tb9EdTm3S2tP5IAeWe4hXbMzerb3wOPUoAsQCMewvjSI5VvqfSu2+vQqX0QEeD4cledFZEtT6iY5EsDjIjKyKZ/bXCB5DoB6EfnC4HEIoAuAYQ4NI7xux0ASWQAiMV1qfSF9EeLzdWmSra4HZLi0+X8/tWerE/Zva8gvsK4LHvlsc+ib5RUFMcHAD8fvl9mxlZoOdUuL6vB/762T964bzE4G1on4QzFcM3G1b1tV6EV/KHbL7j5Hsr1Dw1Vup/ZXr1vzDu6ahaE9srP6d/Yyy+OAUwNCUUFxVQgrt/nCyzbXB4rKghkup/alLxR7HMDspj4FIVkMYEQ6ebApBaxWgGSm1619vl+3rEMfPKePtyl3P0UEX/xSKY99trk+GNFPBODs1Mo9fdrN+2Wr6KAzs6Aa90/btC4S0zv947Re2UZ8gYgIJs7cHnl7dklZIt+lUQsIknkAhjs0jMj2OEYL0FEEHhJhAtWBsD47HJP5ABal4QDQGB3PAFgvIk8bNYZNerid2g1et/bY05f0z8xv4nbHm8qCGP/WGn9tIPp4KCoPZLi00lfH5bdW0UTAH4rh5Md/CQFSMGpA64H3ntnbkEX18i31uOnttQF/WD9PRD5tzD0kswAcBGBYToZjNIkBIsgkoRPwR2Ky1B/WZyMe5CxPM091TzpGA3hQRI404vk26UNy/wyXNvO647q2OvfQDlpTvvsC4Rge+LgoOHdtzSp/WD820609cf5hHS+79tiuSo4xb//Pet9Pa6q/b5vlOu6lKwcasqiuC0Qx/u21vs3lwan+sH5pYwJKkhqAQYhvIIz0ODlCgGwROEkEABTVBmIzEZ+vi0XEsAIfkiUAhorIjpSf0VIDViC+05rp1p53O3jhPWf09o4c0CrtZ1bUR/DQx0X+JUV15YGw/kcR+YUkvW5tzd9P7dnv+P3MPWaMxgSXvrSqfkNp8FoAyzNc2oxzDumQc/UxXVyNOYpvDLWBKB77bHNg9tqa4kBYPzKZ3e7mQiLNpb4JEsttDEQjz3E7OfGCwzt5rjoqz7W3/Pa9EdMF780pib06szgU0/GXSFR/GQA8Lu2fh/bNve1fF/QzPWJ9fdb26LuzS76vD8XO8Lq16X06Zg6/76zeWU31EtR1wdTFZfqzX28LBiP62Ubv4hkByQ4A9hORH1Rrsdk9JPt53dqnAzp7e/zzzN7ezq3T3wFdsqkOd3240R+IxL7wh/RLRcQfT13RFk65cf+UczdTZWNpAJe/XOALRaWby8HLMlzaQ/88s7d3VBPEEw0UbPPh7x9s8FX5ou8EI/r1qXiNq4bkqQC+FpFgys9IMSXgMAC3i8gZqQ7cnGhIVh41oFXuFaPzMlLZVfGFYvhiWYW88N22YEzHC8GI/o+d/2JIHp7tcXz3wY1DMs0w+W3gzR+3R9/6acdiX0gfKSI6yc6J4qeRD57TOyvdnarZa2pw79SN/khM3guE9b/sLg3ARi0klwM4VkTS8mJtDpDskuXR3m6T5Tr0xhO6ZY3s3wrJ7kDqumDhhjo8981WX3F1aFWi4cSvBWkkMzPd2pq7Tu/V7djBafm3J8XG0gCueKXQF4zo+4nIpkTx020OjXfecEI3z5nD26e1U1VcFcI9H230rS8JbErYSq1qQvk2TQTJhxFPm3lDtZZ0Iel0O/l3B/m3K4/K85x6cHstlYLGzeVBvD17R+ibFVX+YES/XEQ+2fm/e92OZw/pm3vVo+f3NW2RGY0JLn1xla+oInhLNCYvAgDJYzJd2vtHDmyVe+vYHpnpnN6Gozpe+aE4MnlBWTAc0f8kwPstuWAx1YD1GAB3i8gxTS9JDSSz3Q7ermm8oVf7DMcFh3fKGdY7B3sqMAhFdKzd4cenSytCX/5SKS4HZ9QHY3eJyC4NnzPdjqcP6ZMz7rEL+pniffHbl1/DzxPFTxe4nXzx4F45vODwTtnDe+c0urgjEtUxs7Aa784pqdtUFvQFIvqF+/pOB8luAPwWLrqqADBARCpUa2kKErl3Z2dnOO52aOxz3qEdPccMbu3o0S4Djt38Huu6YGtVCD+trtHfm1sSCIT1Hf5Q7AEB3trVjgXJkdkex7dmLTITpyG+ovLgrdGYvPAbLYO9bm1ymyxnz4tGds468YC2TKYlZWGxD/+ZVxr4YVUVRPBAOCaP7arCe1+BZC6AthYuunoJwBIRSamrUHMksQt6XzQmJx89qI2cPqx95qAuWchw7/6UpNoXxZKiOkyaV1JfWOwXkK+EIvqDu/qeJunNdGlr7jqjV1ezFplvzNoefXv2joW+kD5q50CSZHamW3sKwEWnD2uvnTWio7tb28afkFTUR/DJkvLYpHmloUhM/8kX0i9L5yi9OUByCIDCdAqlUw1Y8wGMEZGnUh24uULSBeDUnAzHTaGofrDbqXFgnjfava3HnenWHJGoSE0gGlm1zR/bURP2Zrq1LaGI/l4kJi/sLZk4sWuz4srReT0uOaKzoecWVb4ILn+50F9eF745GpNXdqMnm8CFXo92u9ft6HjUoNbuIV2z3Pl5XnRvl/HrrlU4qmNDaRCF231YsdUXnFlQLQBW1cUrRqcZladmJiRfB/CjiExUrcUISD4J4M7mYk/SlJA8yOvRbobgxEhM2vbqkOEf0NnrzvI4nATgD8ei60oC4Q2lgUxNY61GzPCF9CcBzNvbboXX7Xiyd8eMa56/fGBWhsu4gmcRwUOfFAW/W1W10B/Sj9qVrkSQfmy2x3FbRJfRo/q30of2yPbmd/Gif6dMZLo1kISuC7ZXh1G43Y9V23zR2WtqAiU14VAkJhMa46KyL0ByLIA/i8jJqrUYAcmLAWxqyirt5gLJjk6N4zLd2uX+cKxXhxx3cHBXr9Ymy+VyO8lgRNeLq8LhwmKf5g/rWqZbW14biD0L4MO9HSeTHOl1a9+8dOVAb//Oxu4LzVlTgzsmr68LRWV/2U1TFpJ9M1zaDSIybkBnr35I39zsQV28Wn6XLLTLdoIkRAS1gRhWb/ejcLtfFm+s8/1cVOd0OTjFF9KfFJElhv5BTIKkH0CHZIr3fveMFry7vFcSL4ieAIYB6AogA0AEQB2AXwD8kmw+BsluGS5t8bXHdml3weGdDLHhqKyP4E+vr/aV1EaeC4Zjf2uEJgI4BMDonAzH0TFdhvnDekeNEAAQAbI8jq0gFtQHY7MAfCsiBUZoVwXJtwB8JyJvqtZikzok2yBeFJQPIBMAAQQArEO8qCAplwSSmtetTR6Y5z1pwkX9vXvaDUoVXRc8+cWW8PRlFev8Yf0wEalrhK5uAE7yurVRDo2H+0KxPiJwaBr0mA5Hhkurdju5zBeKzYjpmA3g+6aygGsOJPLhrhaRP6rWYpM6CQvL/QAMBdAKgBtAEEAJ4oVAG5LN19TIc7IzHG8+f/mATKOC1nnravC3SRv8wYh+nIjM29vnSWYCOMnl4GGZbu2oYEQfEo5KlkNDLKbD4dQY8nq01eGo/BSM6HMBfGZkAZQKSIYAtDI9h9UmPUj2zHBpc04f1r7D9cd3bbLiJwBYs92PW95f568NxJ5O5NGm9BecCGI9AHTE/Ukt/YtCcjiAUhHZrFqLTfOCpNPr1t7t1tYz9pHz+jZZ8RMQr/x96NOi4Px1tav9Yf0YEalKRycAF4DQvliUkQwJd5FeIjJXtRab5odGnpfp1ibed1Zv7xEDm67hiIhg6uJyeearrfXBiD5GROak+iySDsQD9Mi+nJ7TWEieBuDTdL6bUk0JGAPgYhG5ONWBWzokO2Z5tLdbZTpHPXBOn6zBXdMrfopEdUyctT3y3tySUCQqN8R0e6fQ5r8kPPB6iUhYtZZ9EZJaIsf9rvEndPWcMayDlq4/6py1Nbj3o43+cEwmBcL6+HSOymysRSKH9WsRmaJay74KydGZLm3yEYnip9w0rSt3VIfxz482+tbs8G/xh/Wz7IJF80k1YD0TwCVWcQlQRaL46Xy3S3vpuMFtXBcc3jEj2SOMYETHtysqMXHm9vqaQHShL6Rfko4xb0uFZB8AlVY7hmmAZAyA20rHwipoKH7q3i6j5+VHds4+cmDrpBwKRARLi+rxzpwS/+KNdb5gRL9ARL4zULIlIdkW8eNFw7yZVUJyEoCPRGSSai37MonipwlOjRdeekTnjD8e1F5L1vZqR3UYUxaVRj6cXxaNiTwSjspDLWFHtClJnNgeKHvparjX56QYsB4IYLiIvJrO4DZxSHZwOXi9Q+ON3dt6XKcNa58zpGsW+nbK3GXb0vK6CAqLfZi/vjb82c8VusPBBYmWeV9Y/ejeKEhOBfC2iHykWosRkHwWwI3270f6JI7ez83JcNxGov+Zwzt4DuqV48jP82JXdj2BcAxrdgSwYmu9fLigzFfjj9YEI/q/dMHExuSr2vwekhcBGCsiF6rWYgQkrwTwc7oveJs4jLeOvi0Sk1OPym8dOyq/tTe/Sxa6tnH/rm1pTBdsLg+ioNiPL5dX1C8tqtcc5FuBiP6k7dOdGiQ9AOpEJC0jXjuHtRnxa8tSj+N8EIcGw3rXjrkuf5bH4XZoZCSmB0tqI65wVJcMl7YiENa/jcRk4s7+kTapQfITAK/+1tvPxmZPkBzqcfIKj0s72h/W83MyHNG2WU7d6WCWLqir9Ue18vpIhtft2BjTZa4/rL8F4Ad74ZAeJC8FcLyIXKpai82+A8n2GnFZdoZjbCQqQ3UgK6+1O+h2MJtEIBDWY9urw16Xg5VOBxfVBmLTEPc+tdN10oCkF0C5iKRVBWcHrM0UktcB2AxgO4BrALQG8AyAYgBF9guvaSF5CIDN+7rXnY0aEqdOpwF4H3GXggkAzgNQg7j3oJ073ISQ7A6gvb0DaZMqJN8GcDeAzgDeAvAYgGUA1lg1NUwVic24P6TbVS/VlIALARwpItelM7jN7iH5GoC5IvJqwhuW9kvPJhUSq9v1IpKnWotVIXkSgJtEZEyif7dHRAKqddnsm5D8AMArIvK1ai1WhWQ9gM4iUk8yA0DY6u4a+zqp+illIm55ZGMc2wCUA4CIROxg1VhIDkp0z7EiTgDZqkVYnHoA6wFARHQ7WDUWkp1I9lKtw0BaIe4hbGMcqwBEAUBEgnawahwkXSQPTvc5qQasKwF8le7gNrtHRO4WkWlA3J6D5BGqNVmc5xFvEGFFIgCeVS3CyojIjyLyZyBuWUfyKtWaLM7ZAG5TLcJApgLYpFqElRGRQxpM7EleS7Kdak0Wpi2AL9N9SEoBq4jMs+02TOVEAEerFmFxnAAsafkkIgER+btqHS2IrgDGqxZhcRxI7I5ZERF5QURWq9bRgrgV8aDKxhiaZL4a1xzbJi1I3r7TrqoDFg2mmhG3AFiuWoTNvgnJI0jenri056vxfAzgBdUibPZNSGokP97pR/acNZZKAGlb0KVadPVnAD1FxMpHMkohOQVxO40PEy3cYJu+26QCyS4AZopIf9VarArJCwCcJiLnJ0yyHba5uE2qkPwewB0iMl+1FiuSKGQOiIgzce0EELPdd5o3qe6wZiB+hGpjHBsRX5VARGJ2sGosJA8kadXCJBfsIkmjqcZ/i67EDlaNhWR3kj1V6zAQq34XNRcIYGHDhYhE7WDVOEhmkky7RiTVgHURgO/THdxm94jILSLyPRC3zEn4hNoYxxsArLoDWQf7+NRQROQLEfkHAJDsSfJyxZKszqUArlUtwkDeRtxz28YARCQsIoc3XJO8hWSWSk0WpwfiHtVpkWrR1UwR+SzdwW0azSkA7IDVWCxbxCEilSLysGodLYg+AC5XLcLiWHa+AoCIPCsiW1TraEHcgbhdp40x2EVXVobkQzv5ltkJ4cZzNeJpGDY2SZM4BbkxcWnPV+N5G/FTERubpCGZQ3LyTj+y56yxbAZwZboPSbXo6s7EvfenK8Bm1ySS7h8Uke8S17RzbGxSgeRgAO+KyEGqtViVRCvloSLyp8S1PV9tUobkMgDni0iBai1WhGQHAAUi0j5xTSCef65UmM0eSXWH1QO7C4fRFCJeyAHAnkhGQ/IwklY9EnIhvoNgYxylSBRdAfZ8NRqSfUn2UK3DQDJh7/gZSQzAgoaLRKGkPWcNgmSuyqKrWQB+THdwm90jIteLyGIAIHkWyQNVa7I4/wHQWbUIgygD8IpqEVZGRKaIyL8AgGQ+yYtUa7I41wE4T7UIA3kJQIVqEVYlkdd/cnGE8wMAACAASURBVMM1yXsS1lY2xjAITVD4m2rR1Tci8kO6g9s0mjMBDFEtwuI4YdEiDhEpFhG7Nat5DAJwjmoRFsey8xUAROQJEbEDVvO4W7UAi9Mk89UuumqmkHyO5MCdfmTZL+dmwtmIH+va2CQNyfNIXt1wCSCsUk8L4FkAH6gWYbNvQjKP5NuJfycAHXYKhpGsAHB9ug9JKWAlOYHkzekObrNHRiJhHi0iF4nIJMV6LI2IzBORkGodRkByFMmfVOuwOH0S/0BEPhKRcxXrsTQisl5EtqrWYRQki0nmqdZhYbIBHA78mr/qsnNYjUNEakRkabrPSXWH1Yn4isTGOJYBqFUtoqVA8uhEuz4rYs9X4ymGbYtmGiQHk+yqWoeBuGDv+BlJCDsVXdkYC8l2O9l0pkyqAesXAOwexwYiIleIyFoAIHkZyUGqNVmcaQCs2umkCMDrqkVYGRF5U0ReBgCSB5O0c1iN5a8ATlItwkAeB1CvWoRVEZHNInIhAJB0k7xPtSaLMxxA2s1rUi26mi4idsBqHuchcdxoYxhOWHRHQ0Q2iYgdsJrHUABjVYuwOJadrwAgIo+KiF+1jhaCB/EFkI1xqCu6Iqk1GO3aGAPJd0h2S1zGAERU6mkBHAfAki8IxrELLA2E5DU7WVkJgKBKPS2ABwB8rlqEUdjvWGMhOYBkg9WfBsCnUk8LYA6AW9J9SKovsYkALkt3cJs9MhLxlR9E5I8i8rViPZZGROaLiFV3bMYC+FS1CIvTD0A3ABCRNxo6XtkYg4isExEru3r4AWSoFmFhWgE4CPi1IKiTYj2WRkSqmqJrW6oBq91313jmw171mUaiF7xVdzTs+Wo8GwBsUi2ipUDyIItX0dtz1ljqYRddmUbCRizt1uCpBqxTAKRtUWCze0TkAhHZAQAk/0yyt2pNViURqE5XrcNACgG8o1qElRGRFxus50geSfI01Zoszj8AjFItwkDuge29bRgiUiAi1wMAyVYk71KtyeIcBeD2dB+SatHVNBFZnu7gNo3mIgBdVIuwMA4AulV9+ERktYhMVq2jBTECwNGqRVgcqxddPSQithWdOeQCuFa1CIvTJPM11aIrl13EYSwkPyPZJnEZhN05x0h0AIepFmEUJB12n2xjIXkLyTMSl1FYtICvGXErgBmqRRhBokjSo1qHlSE5nOTTDZcAalTqaQF8iSZof5vqS+xDxH0dp6UrwGa3jERiQSEixyrWYmkSOxkLVeswkAsQ96y8aG8ftEmZAQDqAEBEnlGsxfI0eFRbFA/iAZQdtBpHWwCDgbgnK4AhauVYGxEpB1Ce7nPsoqvmywzEu3HYGEzixMDKJuQO2PlwRlMAYItqES0FkoeT7KBah0HY71fjqQSwSLWIlgLJXiSHpvucVAPWNxH/grYxCBE5U0TqAYDk7STtHFbjyAbwnmoRBrIEgJ3DaiAiMkFEpgMAyTEWXwA1B+5HvEGDFYkAuFO1CCsjIotE5A7g1wr2v6nWZHHGALgu3YekWnT1gYisS3dwm0ZzGYA2e/2UTapYvYBjuYhY1mS9GTISwCGqRVgcy85ZEQmLyJOqdbQgOsBOlzIapUVXmSQd6Q5us3tIzibpSlzWwy66MpJqAMeoFmEUiV7Zdj6cgZB8gOQJicswbA9lo7kaFj3STXS5ylKtw8qQPJbkI4lLQTxFwMY4JgF4ZK+f2gtMxcmH5EwA94jIjHQF2OwakjoAp21tYpMuJMcDGCgiN6jWYlVITgYwpcGL1cYmVUh2BrDM7r5kHCTPBXCOiJyjWotN47GLrpohCSP7L+xg1RxIZpEco1qHgdjz1XiWAtimWkRLgeQxO9n+WQ17vhpPCYDFqkW0FEgOJLlfus9JNWB9DvFWhDYGIHHGNlyTfNDCX87NgU4AXlAtwkB+hG1BZygJo/efAIDk2SRtKzpjeRxAX9UiDKIWwD9Vi7AyIjJTRB4BAJJ9Sf6fak0W50wAF6f7kFSLrv4jIvZugnlcASBTtQgLY+kdDRFZLCI/qNbRghgNIO3dBJs9YlmrNhGpE5GXVetoQXQFYLdSNpYmecemWnSVYxddGQdJL8mfdvpRFSz65dxM2AzgZNUijIJkBskM1TqsDMlnSTb0tvcjXihpYxxnA1itWoQRJDrT5arWYWVInk6yofNSDECFSj0tgJcApN1QJdVOVz8hbrW0NF0BNrvEBeCAhgsRsbtwGIiIhACsUa3DQG5FvGuO7e1oHAMR9/OFiNiejgZjcVvF/oin8OSrFmJhOgLoDgAiMhvAbLVyrI2IlDXFc+yiq+ZJDMCnqkW0FEi2IXmiah0GYs9X45mHeCGHjQmQHEsyR7UOg7Dnq/FsBvCzahEtBZIHkByU9nNStLW6GPEqdnsb3QRIPgvgVhEJqtZiRUgeDOA1ETlItRYjIHkY4rV881VraQmQvBzAGhGZo1qLVSG5AcAfRGS9ai1NDcn2AE4UkXdVa2kJkDwAwGgReU61FqtC8lEAVQ2FbqmSatHVO3awairjAFC1CAtj6R0NEZlnB6umciyAfqpFWBzLzlkRKbeDVVPpBeCEvX3IJi2UFl21s4uujINkJ5Lf7vSjHbDol3MzYQXiRRyWhGQ2Sa9qHVaG5DskG3rb18AuujKaY2FR31uSLtvG0FhIXkbylsRlGECT5Fja7JbHALyW7kNSzWFdgkTCso0hZAAY0HAhIr1FxG7NahAiEhCRTap1GMi9AK5XLcLiDES8sA0iMl5EPlKsx9KIyHoRiajWYRDDAXyhWoTF6ZT4ByLypYhcpViPpRGRUhFJu/2tXXTVPAkA+Ey1iJZCYkf7D6p1GIg9X43nB9jWOKaRaM5gVas2e74azxoAy1SLaCmQPJRk/7Sfk2LR1WWI9822j70MJpF68ZKIjFOtxaokuhLdJSLHqNZiBCSPAFArIr+o1tISIDkewGwRWaJai1UhWQmgvxVrKUjmAThMRKaq1tISIHk4gP3tZg3GQfJlAItF5KV0npNq0dWbdrBqGk4Al6gWYXEsvaMhIj/ZwaqpnACgm2oRFseyc1ZEttvBqqn0B3CEahEWR2nRVWeSqaYT2OwFkv1JNviwagA2qtTTApgN4FLVIoyCZGu76MpYSH5Osk/ishx20ZXRHAigVrUII0h0pmurWoeVIXkTyesSlwEApSr1tAD+BmByug9JNehcA8Cqps3NAS+AnsCvBUF2xxMDERG/iBSr1mEgTwC4ULUIizMAic6BInKFiHyvWI+lEZGNIqKr1mEQxwB4T7UIi9MZQBsAEJEPROSWvXzeJg1EpExE0l5g2kVXzZMaANNVi2gpkOxB8jjVOgzEnq/GMx0W3fFrjiRsiax6ymfPV+NZDmClahEtBZJH7XQClfpzUiy6ugLA2yISTVeAzZ4hmQvgERGxbYkMguSZAC4RkTNUazECkkcB2C4ia1RraQmQ/AeAj0SkQLUWq0JSB+ASEcsFdiR7ABgkIl+p1tISSDjE5InIW6q1WBWSkxEv1J+UznNSLbp63Q5WTcML4CzVIiyOA4Blf59FZKYdrJrKSQDaqxZhVUgS8c5/lkwJEJHNdrBqKoMR9761MQ6lRVc9El8aNgZAcjjJ/yQuBYDl+mU3M6bDwsb6JDvYRVfGQnIuyQ6Jy2IAPpV6WgC9JJXjwX0Aklkk7QWPgZC8h2SD+04tgBKVeloAf0ITNMNwJntDIm+oSETsgNU4sgB0AQARKQEwUq0cayMiPlg7wHgR8SKOKaqFWJh+iO/6QUTOVazF0iQC1SLVOgzkVACnAThftRAL0xmJdqwi8rpiLZZHRJqk9W0qO6x2QrjxlAL4UrWIlgLJgYk8T6vihD1njeYDxO1xbAyGpCtRR2FV7Hes8SwAUKhaREuB5Ekku6f9nGRPVRKdly4WkTfTHdxm75DsDOB2EfmLai1WheRVAEaJyJWqtRhBwgFhrYhsVq2lJUDyUQDPi4iVdwGVkShE3SYilrRWJNkXQFcRmaVaS0sgUXTrFJG0fUJtdg3JrwE8kW5udtI7rCISs4NVU2kN4GTVIiyOpXc0ROQ7O1g1lbEAclWLsDBWn6/r7WDVVA4AMES1CIujpuiKpINkr3QHttk9JI8j+VriMgJgrUo9LYB3ANyqWoRRkOxCMlO1DitDcjXJjMTlJtjpAUZSA8CyzVRIttqpgM/GAEg+RbLBxrACdqcrozkXwI/pPiSVHNZWAH5Od2CbPZKDhC1OYrV9imI9libR6apatQ4DeQd24Z7R9EHCZklEThGRdYr1WBYR0UVkh2odBnIhgPtVi7A4nQBkAoCIPCsi/1asx9KISIWIhNJ9jl101TzZAuAb1SJaCiSHkhylWoeB2HPWeN6Chb18mxMks0leqlqHgdjz1XhmwbaLNA2SZybqcdJ7TgpFVxkAThGRD9Md3GbvkOwH4GoRuV21FqtC8v8QL3L4q2otRkDyBADLEhZpNgZD8gUAdzeVlYvN/0KyJ4AfRaSHai1GQHIggFwRWahaS0uA5GUAqkTkE9VarArJBQDGi8j8dJ6TStFV0A5WTaU9ACtbLjUHLL2jISJf28GqqfwRQMZeP2WTKlafr6vtYNVUDgLQV7UIi6Os6MpFsk+6A9vsHpJnkXwmcRkEYLfVNJbnANyrWoRRkOy1U0GQTRND0kNy5+PF1QDSztey2S1FsHArTZLt7KIrYyH5JsnjE5c7YBddGc3xAJal+5BUcli7A/gu3YFt9kgOErY4IrJURKycr6WcRNFVvWodBvIRbNsWI3Ei3jkHACAix4mI/QI0iIS1YoVqHQZyLQBLpic1IzoCcAGAiDwiIu8q1mNpRKRKRCLpPscuumqerAXwg2oRLQWSh5E8VLUOA7HnrLHoAF7b66dsmgSS7UlepFqHgdjz1Xi+BGB7U5sEyUtItk37OSkUXeUAOFJEpqc7uM3eIXkQgNNE5J+qtVgVkvcDiIjIfaq1GAHJMQDmWdy6q9lA8j3ECyV9qrVYEZJDAbwtIgeo1mIEJIcA0ERkuWotLQGS4wEUiojtzGMQJNcgXqyfVnpjKkVXdXawaiqdARymWoTFsfSOhoh8aQerpnIqUju9smkcVp+vK+1g1VSGAeimWoTFcUJR0VVmwmrJxiBIXkXyocRlHeyiK6O5H8CTqkUYBckBJD2qdVgVkp1I7hxgLIPtyWoky2Bh5xSSne2iK2Mh+clOaWCbAdgWdMZyIOIdANMilV2AQQAmpzuwzR7JAeAFABH5SURuVKzH0ohIQESs3ErzS9g7CEbiAtCm4UJERln890kpiaKrWtU6DOSvAK5ULcLidEAi/hGRu0XkM8V6LI2I1IqI+TusaKKtXZs98guaoO+uTeMgeQzJg1XrMBBLH6E2A/wA3lAtoqVAshvJ81XrMBB7vhrPR4jbWdmYAMk/kcxK+zkpFF21BTBUROwqdhMgeSSAI0TkYdVarArJZwGsFZFn9vrhfRCSJwGYKSJ+1VqsDkkC+FRETlGtxaqQ/9/emcf7NpZt/Hsd5xzDOWbHPE8h81yGMhSRpEJSEkqoFN5CSRmSDJV4DUUSkqIolMxDRObMM5nn2cFxvX88z3Y275n23uvZz2+v3/39fHystffaa11n79+z1rPu577uWx8C9re9dm0tJZC0LPCa7btra+kGJO1Nuj9eWVtLW5H0FPD+gZb7G97XH7D9LFFyaTCZF1iutoiW0+qIhu3zamvoIqYCNqwtouW0fbzeXFtDl7EqcHttES2nWqer6cN0VRZJe+S3PoBnCdNVab4FHFdbRCkkLSOpzy+nwZSRTW1X591hwNWTOj4YMJcCG9UWUQpJ80marbaONiPpn5KWzLv3AG1uRNEJzEeaywyI/uSwrkqLH+4dwmhgJIDtv9v+fmU9rcb22Ca6cHQwlwIz1hbRYkaSxiy237C9ZmU9rSabrtpsatsH+HRtES1nFsAAtvewfVllPa3G9ivua/7pBOhvp6so2VKWa4gozaAh6eOSlq6toyAxZsvyLPDb2iK6BUmLSvpMbR0FifFant/SQMQvmDLyqvGAV/n6Y7qaHVjYdkyoBgFJGwGL2/5ZbS1tRdLJwN9tt3LSkT9D59uOh2BhcifAE21HhKwQkjYFtrf9idpaSiBpeeBZ29E6dBCQdDBwmu0bamtpK5LeBEbZfmMg5+mP6epJYEBOr6BPLAAsUVtEy2m7iSM60w0e09DiovYdQtvH6421NXQZqwFhTC1LNdPVzGG6KoukH+X+xgBPAFHepCxfAH5fW0QpJK2Syy0FBZC0mqQL8+444KqaerqAPwNb1hZRipzyMEttHW1G0p2S5s67twLRuros0wJvD/Qk/ckpWBfYGvjUQC8eTJRRjO/CcWZlLa2nC5bKryG94Q446T2YICOBqeGdsn+b1JXTbmy/DQxoabHD+RFwBi1+ie4AZiJPoGzvUllL67E9tonzhOmqM7kYuK62iG5B0haSFq+towSShgHOD/mgDI8Ap9YW0S3kMm2b1tZRkHjGludo4OXaIroBScMl7dnIufphupoLmDMSlAeH3IJwRtvH1tbSViT9FTjW9l9qa2maPGH9qO2/1dbSDeT746G2t66tpa1I+iKwru0v1tZSgtwm+lHb0Tp0EJB0LHCY7ah3XoDckvUp29MN9Fz9MV09Bjw20AsHU8xCRA3N0rTWxJEjqzFZHTxGk0wcQTmG09LxCmD7+toauozVgQFPpoKJ0tjztT+mqznCdFUWScfmKALAw6ROHEE5NqalLlFJU0mKCVRBJG0g6ay8+zphuirNCcAOtUWUQtJSkmauraPNSHomR/4gpd+9WFNPy3mJlDM8YPqTw/pxYO/JHhUMhGl7NmyfbPtXNcW0HdtvN9GFo0MZDfyjtoiWM5IURcD2w7a/UFlPq3GizTnZPwNWqS2i5YwmR/1sb2f7vsp6Wkser3UirERC+GDwV+CW2iK6BUlfkrRgbR2FiPFannuA02uL6BZyGbGP1dZRkOHEmC3NIUCb23F3DJKml7RHI+fqh+lqXmB627c3ISCYNJK+ArzW1i5MnYCkK4C9bF9eW0vTSBoJfND2JbW1dAO52sR3bG9fW0tbkfRNYCHbu9bWUgJJKwH35xJpQWEk/R7YzfYjtbW0EUnzANfannuyB0+G/piu/jvQiwZ9YhGi53FpREtNHLkV3iW1dXQRMwLL1RbRckSLI5C2o6Th4LI6MKK2iBYzFQ1Fs/tjuppX0iJNXDyYMJL+KGmzvHsvcH9NPW3H9hq2/1lbRwkkTROmq7JI+qyknhWQl4Cra+ppO7Z/anv32jpKIWkFSTPU1tFWJI2Q9FqvL10JvFpLT9ux/ZDtBZo4V39yWLcEojNEWUYyvgvHcbYjPy7oL3MAf6gtouW8E52xfYftr9UUEwx5jgOWqC2ixQwnRekBsP05209W1BNMIf2ZsEZCeHlOB+6sLaJbkPT1XPC9jcR4Lc9/SP3tg0FA0rqS1q+toyAxZssyjtT+NhgEJM2e884Hfq5+mK7mB0bYvrcJAcGkkfRt4B7bZ9bW0lYk/QfYynbrKjNImhZY1va/amvpBiStDGwbUdZySPoB6dm1b20tJcifoTttv1RbSzcg6Xxgc9sv1NbSRiQtDfze9vsHeq7+mK4eGuhFg0kjSb3qgi4KxEAqyzhaGtGw/RoQk9WCvGe8zkws55bGtLgkke1/19bQZiQJUn3Q/KXV6JUiEDTOMFJDlUZO1CckLSJpoSYuHkyUiyStm7dvBR6sKabt2F6urWXaJI0O01Vxdpb0v3n7WcJ0VRTbP7R9YG0dpZD0gV5dmILmGQP0zlm9AHijkpbWY/tm2ys1ca7+5LB+Cdi6iYsHE+Wd3ru2f247esEH/WURkokjKEfv8Xqd7e9V1hMMbU4CBlyzMpgo72qmYvvTtqNKwBCgv6arVtas7CBOAB6oLaJbkLRXi3t3x3gtz7+Ac2qL6BYkbSJp7do6ChJjtiwvAz+pLaJbkLSApEYqS/XHdLUg8FY0EBgcJP0IuNT232traSuS/gus3sbPtKTRwKK2b6ytpRuQtB6wge1v19bSViT9DHjQ9k9raylBNl39x3YjeX/BpJF0LbCa7bdra2kjktYEDra9xkDP1R/T1QMDvWgwaSQNB8blpPBFgZsqS2o7r9Ne09XLQExWCyJpKgDb44BZgcjxL8tbNGTi6ETCdFWWbLqayvZbeXtlkpEvKMfLTZykP6arJSU10rUgmCjXAivk7euA1kX+Ognbi9p+vLaOEkiaJUxXxdkT2D9vP0Yav0EhbO9h++jaOkohaR1JU9fW0WIWB27L28OAs9zXpeZgirF9he0NmjhXf3JYdwE2aeLiwUTpbeI42PaVlfUEQ5dliXyt0vQer5fbjt93MBBOB6I1azl6j9dxtj9ZWU8whYTpqjM5ghSpCQYBSQdJmqa2jkK8yxEbFOFi4B+1RXQLkj7b8lWDeMaW5Sng8NoiuoW8Kv+VRs7VT9PVa7afaEJAMGkkHQX8zvYVtbW0FUmvAHPkfM9WIWlGYC7bd9TW0g1I2gxYzvYPamtpK5JOJBlRf11bSwkkrQTcZDteNAuTTann2/5gbS1tRdLHgZ1sbzzQc4XpqgPJ7TTHZtfiYkAUkS7Ly7Q0opHbDUantIJIGgm8nScYY4B5KktqO2Npt+nqutoa2kw2SY7IVRhGAEtWltR23gZebOJE/TFdrSBp3iYuHkyU24AF8/Y/gVYagjoF23PkFqatQ9KcklapraPlHAjslrcfJBklg0LY3tH272rrKIWkjXoqTwRFWBm4LG+PA86qqKX12D7X9lZNnKs/Oay7Ax9u4uLBRHkn79D2D2xHWaugv6wOfLe2iJbT28Txd9vHVNYTDG3Oon/P5mDK6D1eX7S9bV05wZQSpqvO5EfAc7VFdAOShkk6oraOgsR4Lc9fgEtri+gWJO0gabnaOgoSY7YsDwK/qC2iW5C0sqRtGzlXP0xXCwEv2H62CQHBpJF0KvCT6FRUBkkjgFdtj6itpQS55ezMtu+rraUbyDfm2aO0VTkknQWcYLuVS7mSVrR9fW0d3YCkuYGTbK9fW0tbkfR5YEPbnx/oufpjurp/oBcNJo2k6YGXe3W6iiLS5ZgKeLK2iFLYfo6I1hclmyTH2X4DmJ1kvArK8TLtNl3FZLUgOUgxwvarwDTAIpUltZ23aMj42x/T1QckzdXExYOJ8jAwU96+AHi6opZWY/t12611dUuaP5fJCcpxBLBt3r4TuKGelPZje2vbf6+towSShkv6RG0dLWdd4M95+1Xg7IpaWo/t02zv0sS5+pPD+j0gHoBl6Z0UvrfteyvrCYYu6wFfry2i5fQer2fZPrWynmDoMi0Qn5+y9B6vj9vetbKeYArpz4T1nT92UIw9afGSVychaZSkw2rrKEiM1/KcBlxdW0S3IOlbkt5XW0chYryW53bg2NoiugVJH5LUSFmr/pqunrb9UhMCgkkj6W/ALhFlLYOkMcBttluZdyhpFmA62/+traUbkPRN4E3bR9XW0lYkXQp833brKjPk+qtL2L61tpZuQNISwCG2N6mtpa1I+hrpM/21gZ4rTFcdiKRZgWez6WoR0lt3UAYBj9YWUYpczSMqehQkmyTfsD2WZLp6pbKktvM8LV2Bsj0OiMlqQSRNDYzMQbfpgGiEVJbXacj42x/T1To5KhUUQJJ4t8nqL0RrzWLYftJ2a2s6Slpc0gq1dbScXwM9RpmbgFsqamk9tje1/a/aOkogaVpJEe0ryyeB4/P2c8BfK2ppPbZ/ZXufJs7VnxzWA4C25g91AsMA5+gqtnez/URlTcHQZWPgi7VFtJzeJo7f2w7XcdBfZgOOri2i5fQer/c3NZkKytNf09VbTQsJ3sHAgHM9gilD0hhJB9XWUZAwcZTnl0A09hgkJH1f0gK1dRQixmt5riOtigSDgKSNJX2qkXP1w3S1IPCE7deaEBBMGknXAB+33dri9jWRtBhwru3FamspQc6HHh5R+sFB0g+B+2z/praWtiLpJmAb2zfV1tI0kkYC89u+p7aWbkDSasButresraWtSNqHlDM84Eh2f0xXDwz0osHEkTQMmK3XBHWhmnq6AAOP1BZRCtvP1NbQdnIlhld6ma7i5aAsTwFja4soQe6WFpPVgkiajvQS/yIwijRmg3K8TDI3D5j+mK42ljTT5I8M+skMwN299n9P6sYRFMD2PbY/XFtHKSQtI2nZ2jpazunA2nn7alKdx6AQtte3fUdtHSWQNKOkjWvraDlfAA7N208A51XU0nps/9T24U2cq88RVuAQYHNSaZGged6Vw9RE7bKgq/kMKYp8c20hLaa3iSNSAYKBMD9wMHBObSEt5h0fTq53G2XEhgjR6arzeBX4Vm0R3YKkBXPeYVuJ8Vqew4FWRvw6EUmHSmrrMm6M1/JcRrS/HTQkfVbSRo2cqx+mqwWAx3KuTVAYSfcAS9tuZaHs2khaFTjS9qq1tZQgm66cGwgEhZF0BHCJ7TNra2krkh4C1rL9YG0tTZOL2s9h+6HaWroBSR8FPmt7u9pa2oqkw4FHbA+4BXqfI6y2H4zJajkkDZc0V68vLUC8cZfkTeDh2iJKYfuZmKyWRdIc2d0NMAaYuqaeLuBhoJXPINtjY7JaFkkzSJox744GwpNTlueo2Olqc0mjmrh4MEHmJRk3ejiBmLAWw/YNtj9dW0cpJK0qaanaOlrOOUBPt7SLCZd3UWyvYfux2jpKIGn2ppZPg4myM7B33n4Q+EdFLa3H9v62T2jiXP3JYf058UZSkvearna0/XZFPcHQ5vPAR2qLaDm9TVfH2b62sp5g6PI+xk+mgjL0Hq/X2Y7OYkOEMF11Hk8B36ktoluQtLSkNj8gYryW54ekSE0wCEg6TtLo2joKEeO1POcAZ9QW0S1I2kHSuo2cqx+mq/mAR23HoCpMTsC/y3Zb2xBWR9IGwO62P1pbSwly8EVpjgAAIABJREFUUfu3cpHsoDCSfgucZDuWGQsh6UVgPtsv1NbSNJKmAWay/XhtLd2ApC2BD9retbaWtiLpBOBK28cP9Fz9MV09HJPVckiaWtI8eXc4MFtNPV3Aa0BrTQ62n43JalkkzSdpRN6djf7Vtw6mnHtJZsnWYfv1mKyWRdIsvZofjc7/BeV4koqmq2163ZyD5lmK8UWjxwHHVdTSemxfZnuH2jpKIWltSYvX1tFyLgYWzNvnEukBRbG9gu1Wdv/LLz8b1NbRcr4N7JS37ySN36AQtvdsqsxff3JYjwFGTvaooL/0Tgh/3XY0EQgGwg7AB2qLaDm9x+wvbN9WWU8wdFke+HptES2n93i9wvbJlfUEU0iYrjqPB4B9aovoFiStLmn32joKEuO1PLuTlr2CwihxuiTV1lKI4eS2oUExTiNa3w4aknaT1EjQpD+mq7lJna769oNBn5E0B3Cx7aijWYicdP9p21vU1lICSTMDY9u6hNppSDoH2N/21ZM9OOgzkqYC3rTdn2BLxyNpWmA628/U1tINSPoqycD33dpa2oqkM4FTbA+4MkN/TFePxmS1HJKmkzRv3h0BzDip44MB8xItzjm0/VxMVssiaWFJPUarWYC2Rv86gWHALbVFlML2azFZLUtuztDzXB0FTFNTTxfwX+D5Jk7UpwmrpGGSdmziwsFEWQ3oyal5BfhVRS2tx/a5tv+nto5SSNpQ0kK1dbScaxjfTOWPQCu7MHUCtt+0vdzkjxyaSFpc0nq1dbSc/YDP5e0bgcsqamk9tr9h+8ImztXXCOtw4MgmLhxMlN4J4c/Z3reynmBoszOwbG0RLWc448fsYbYfqCsnGMKsDmxbW0TL6f2MvdD2WZX1BFNIXyesYeAoz3+AA2uL6BYkfUTSLrV1FCTGbHl2IK2GBIWRNEpSm13dMV7L80ugkYhfMHkk/UBSI6sifTJdZWfmGNvhiB0EJL0PONn2KrW1tJWc4rKS7a/U1lKCXCD7Ndtja2vpBiRdDWwXpa3KIGlW4G7bs9TWUoJsuhrZxi5enYikvQBsH1RbS1uRdBFwgO2LBnquPkVYnYjJakEkzZDb30KqdzttTT1dwLO023T1fExWyyJpqV5llmYCwpRajreBm2qLKEU2XcVktSCS5n2P6So605XlfqCRbot9NV1NK6m1XYE6hPWAX+TtZ4AT60lpP7b/YLu1KRiSPtWr6kRQhltIS7mQxmu4vAuR8/rXqa2jFJKWlfSh2jpazqHARnn7n8BVFbW0Htvb2/53E+fqaw7rDMCPmrhwMFF6J4Q/avvQynqCoc03gUVqi2grObI6jPFj9sexChUMgA8Dn6ktouX0fsaea/uCynqCKSRMV53H1aQ3wGAQkLSZpO1q6yhIjNnybBG1qQcHSXNIOr62joLEeC3P4aTIajAISPqppMUaOVcfTVfDgBlsN1IENpg0klYDftzmJbDaSPoOMKvtb9fWUgJJM5BMV2/W1tINSLoXWMv2o7W1tBFJiwD/sL1wbS0lkDQNMCyafQwOkg4BHrQd5ToLIekGYHvb1w/0XH01Xb0dk9WySJrlPaarETX1dAFPAA/VFlEK2y/GZLUcuZnKMr2+NJpkDArK8Cap2Hsrsf16TFbLkjvTTZ93pyU605XmduDlJk7UV9PVzJK+1MSFg4myKbB/3v4v47teBQWwfWKb364lfV7S7LV1tJhRvNu0cSQN3ZyD/4/th2x/qraOUkhaTdIatXW0nKOBnt/xBUAjhqBgwtj+nO27mjhXX3NYZwf2auLCwUTpnRB+v+1jKusJhjbfBuasLaLFvCvn0Pb+tmPCGvSXDYANa4toOb2fsX+2HVUChghhuuo8LiDa3w4akraVtFVtHQV5p21oUIRXGd+XPCiMpEUk/W9tHQWJZ2x59qXFaSWdhqQTJM3TxLn6WjD3DmDlJi4cTJjch/wBAEkbArvY3qSmppazBNDmQt2rAK/XFtFWbL8BnNOzL+l5YB7b0aq1DDMBq9cWUZAoG1kY21f2bOeKE5faPqmipLazDjB1Eyfqj+kqbsQFyWVbekxXI4iE8NI8nP9rJbZfsR0Rm0JIGilp2V5fmpaIkJXkVVocHbM9NjrTlUXSEpJG592pCZNkaW4EXmviRH01Xc0laZsmLhxMlM8Bu+Xtu4HTKmppPbaPst1aY5ukr/ZqQxg0zxzAub32f0xysgcFsH277dbWTZa0jqRVa+toOb8Bls7bZ5E61QWFsL2Z7ceaOFdfc1jnB77WxIWDifJOzqHtO9o8mQoGhe8CMWEtx1TAWz07tveNiHYwADYB1qotouW8M2Zza+6bKusJppAwXXUeZwJt7uTSUUj6hqRNa+soSIzZsjwJtDbi12lIWl7S4bV1FCTGa3m+SVq9DAYBSWc2tcrXV9PV1aRex0EhbN/bs53d65vYDhdyOZai3Uu4CwORE1eIXOT9IgBJI4BXbI+sq6rVzAosV1tEQfYAos1vQWxf0bMt6SzgBNtnVZTUdtYhvYgNmP6YruLhVxBJ80maN+8OJxLCS3MP8EhtEaXInXPiAVgISdNJ6plAxXgtz4u023T1pu23Jn9k0F8kLSdp2rwbZf/KcxXwRhMn6qvpaiFJEe0ry5eB7fP2zcAZFbW0HtuH2j67to5SSNo99ycPyrAIcEreHsf4LnVBAWxfa3v32jpKIWljScvX1tFyTgcWyNunAndW1NJ6bG/UVDOVvuawLg5s28SFg4nSOyH8Jtt/qqwnGNr8AIgl6nL0Hq9v2D6wsp5gaPMZYMXaIlpO7zF7iu3IZx0ihOmq8zgR+B2ApGGS+vo3CvqApH0kfaS2joLEmC3LfcBOAEo0kqsVTBhJa0s6oLaOgsR4Lc+XgEcBJE0lKWqdF0TSRZL66peaIH2dDJ0HfLyJCwcTxvbdtu/LuzsRbVpL835gttoiCjI9qdh6UADbL/bqRT4GeLymni5gdmDJ2iIKsi3w29oi2ozty7NZEuBiYO2aerqAdWgot7+vpitHjcGySFpY0tx5N962y3Mb0EhR407E9rgwXZVD0oy9Ol3FeC3P06Tc/laSjc1h3CuIpNUk9aRJxZgtSI5eX9TUZ7qvpqulJG3exIWDifJNoOd3fBXwl4paWo/t/WxfUltHCfIS9b6x5FWU5YCj8vbLRC/4oti+xPYPa+sohaQtJC1VW0fLORuYJW8fBzxQT0q7yUHO9Zo6X19TApYhJYUH5eidEH6t7fMr6wmGLsOAfSPCWpTe4/Ul20dU1hMMbbYClqgtouX0HrO/sf3fynqCKSRMV53HEaT+xkga0VSycjBhJB0q6YO1dRTiXW1DgyLcCOwG75gkp66sp9Xksk/fra2jIMOIZ2xpNgNeAJA0dRiby5HrVF/Q1Pn6msN6KrB1UxcP/j+27+z1xvdtYL+aerqApYFG2sZ1GrbfAGICVRDbz9m+Ie8uCvynpp4uYC5S97ZWYntT0pJ1UIhsuurpbngtaeU4KMNIYJWmTtbnN4tYXiyLpCUlzZV3I6JdnutJ/eBbSYzXskia7T2mq4hol+VR4JbaIkoSY7Yskj7Uq/xcPGPLMg74R1MnU1/GhqRVgHls/7kpAcG7kXQScKHt30hag/Q3umJyPxcE7yW3H9wtitmXQ9IngC/b3kTSbMAnbJ9QW1cwNJH0JeAy2/fW1tJWJI0FZrA9VtL2wFm2n66tK5g8fY2wrgR8rISQACSNAmYFxkgaZvvKmKwGA2A6oLVtLGuTozTzA9NKms720zFZDQbINoxvGxo0SK6aMhcwHJgZwPbxMVkdOvQn2fiNxlV0KZLWkrSfpPnyw+9hUvHxrwN/kTSNpFUk7SCptXlbNZH0K0nL1dZRiGHA67VFtAVJ80raXVJP85Rfk14IpgeeljRTrsu6h6S16iltL5K2kvSt2joK8jaRVtIIeYK6g6Tv5C9tSkonuQS4XdI2kkZL+pykT+eAUdAgkuaQ9NemztdX09Uxtr/e1MW7AUlzSlozby8r6TpJh+ZvLwKIlLY0DpjN9qq2FyA5GfcndT5Zm5y4LOkASb+RtFDej0E2MJYGpq0togS2n7I99+SPDHqQNErSqpJmzftnS+oxUs1Iin71dMnZ1vZCtlcDZgLeB1xEirpunn/+I/kcm+X96aIu7oCYB5i3tohS2F7P9mW1dQwVcmvVJXpq10raVdI9ktbMucDLMn68ng2MyXVBZyG1QL+NZJb8ImmlZISkCyUdmM83sleTgaDvTEuDprYomdQQeQn/7Tw53Rz4re1/k0pUvShpA+BBYBfgVgDbJ/Y+R+9uELbfyFHX+2wf1uuw04DVgZfyg+9uSS8AS5EiPR8CrrP9aKF/atu4Cni2tohgcOk1XucgjclHbR8D/A/wCWBn4BngINK4xfatwDd6zjGR8fqG7W+MvxI3Aicx3th3MLC1pE1tX57vC48At0WHoynifmK8dh35WTfM9jhJXyU17NgZWB44HTiWNPn8G/B34B6A3mPxPePVwJt5zJ5ge798neGkMT9nPnRN4K+SfmZ772ywnAG4wfYrJf/NLeF1oLGyVn01XX0IGGX73KYEDEUkLUoaKGeS3vgvBm62/SlJHyENpjNs3z/A63wYeMn2dZM4ZipgXtsPZl1HAQ/Y3lHSx0h9fE+zff1AtARDD0mzkAxBB9fWUpP8e1gZuMf2fZL+AGxI6ks/mjQJvdj2RQO8zjzAWrZPm8xxcwAv235F0nHAGsAKwCjShPaSXEIw6DIkfR34UzcXs5c0AlgRmNr2ZdkY9WNgV9unStoNeAn4te0BpU9I+gpwqu2XJ3HMdCST1uOSvgB8DfiR7bMk7UNywh9p+8WBaAkmT18nrHsCM9v+zmQPHuLkN7rpbb8oaXVgJ+DM/CH9DWl58IvAK8BiwN0DHTxNI2kZUrTo8jzwTyctV25t+978tni37deqCg2KkF9g/m57kdpaBgNJo0nLf6OAA4HXbH8nP2S2Aw60fYGkxYDHbb9UUe7/Q9KMwOdJ9+UjJW0D7A0clKuGLEx6gX2qqtCgGJJuALbvhgBDjmZOnV/cdgI2IJnOpiZFSf9se7/8gjeMNGY7quRXTvVZA9gHGAHcAZxve1tJM5E8KffG6kkz9NV0NY6WmjgkLSPpy9k4MQ1pCe+c/O1XgSvI9f9sf9H2J22/YPst27eXmKzmfLp+F363fYvtA3vlRO1AWvJ8LEdmjycNMCTNkw0ljRX5HQpIOkNSWyd0Ir1QtQ5Jsyv1XV81759IGrPzk8brg+Txa/u3ttexfUHev7vEZDXnv03f35/P95OjbB+Zv/Q7UnpRT6WQ7YC7euXEfz2bRaaawOlaiaSdJO1YW0dB3gDenOxRQ4yca7qBpC3z/qeBF4Ht8yFPA6cAb+Xc+xV7lultP2H7sRKTVUkzDySn3PafbO+Rgz4vAasBR+dvL0+qQXpYvtYGkrbX+DrrrUfSYnlFqxH6aro6xPa+TV18sJE0XNICeXs5SX+W1JPj8knSm9Jo268D7yeZnbB9s+1f2r5vkCX/jBTFbQTbLzp1+XjV9jjbqzC+a8wI0sP+wwBK7sqzJK2d92dsqVlkadK/vXXkidmykz+yM1FibknT5u1fSzojf3tJUt/12fP+7qQVkQfyZ/uwCuaVdYEzJnvUFGL7zfzSeW/e/x7JLPLPfMiMwBbA25Lml3SppN3hHXNXGz/X8zD+b946bK9me8g2RlBy3c+et78i6WJJSwAGvknyWkDKNR1j+wgA23/I/706wROX4yGS92PAOPGw7X/l/UtsLwjskQ8ZQfKY9MxBTpF0oqTp8/2tjR0XRwGLN3WyVpuuJC0PrE/KCbqXlLD/JKmebM8bXc+Ha//eP2u7E7ofFe/C4VSdANsPALv2+ta5wPOMN4v8FlhD0kq2H5C0BXCrkxFlKHMh6U0/qIxS4f3NgCdsn016YfscsJHtayWdz3gzxaXApT0/a/uZCpLfy2CMV5Me/tg+oOfrkp4iVRXpcTRvCRwlaXfbRyuV2TLJkDmUU4DuoKWrfEMRSZ8CFrJ9WA5u/I2Ub7ofyQT1I+DhvCT+Tg33DjIsDeYz9q9A7xJPh5LmIq8AswH3S7rC9oY5sLYMcK3tJ0rqK8yLpGdsI/Q1h3Ujkgu2MdfXQMl5a0vY/nfO8ToeuMX2N3Lu2srAUbbvkjS17bFVBfcBSesBj9m+rbYWeMcs8jRpkP+WlM/8UUnvJ709n237L5LUablG3YikeYEtbB9eW0sPOW9tMeAp209LOh5YlWRUXBj4HqnzzJ9yOswbQ+WzJGlBYBnbf6ksBXjHLDLS9vNKRpUtgR1s3yLpGFLaxMHk4FBNrUFC0t7Ace6QYvZ5VW0u0srjXTmv+lvAd2yfL+lI4CnSBHUqxpdoHBLk3Nlflkjp64eWqUhR58clfRDYF7jA9iGSvky6bx7r5D/pymdsXyesPwZesH1QOUkTvbZsO0dNPw2ca/sqSVcC05CW84cDHwRuGuJvJUOKnJPzKeBJ23+Q9EPSw3FX239XMn897jCLDCqSVibd4FaqcO2e8Toj8GXglRzp25OUS71zfuB9CHgcuKsbb8A1yJOQrYBFbO+f76l/A060vadStYNRpKoKYRYZRCQ9AKzjAVaY6ee1e8bslsAHSEvZC5FSUE5wMjAuQSrrdMsQj9QPKZSM3+sDv7d9t6SbSLn665JynlekC/4mfTVdvQkU/4VImkvShpKmzknR15NuqJByuMz4Zdw1ba9k+3XbL9s+vy2T1Zw3Ok1tHZMjJ8QfZbsnufoAUm7djXn/W6R6sXNLGibph5I2qSL2PUi6qCfnqqUUT3dQMgd+QNm8Jul/SZ2fZid17pmPNCkFONj2orbPh7S0b/vONkxWlTrTdXweWs61O7VXGtRNpCj3yXl/beB8UvkeJH1eySwy8+CrfTeS9pK0dW0dBXmVwqarfA9eKkfxkPQpSfcBPWa2eUm5nSNIKTizO1cGsn2H7WvaMDHKeaND4t5v+2rbB9i+O39pbaDH7DU7cBw53UDSCkoG6qUryX0HSStJOqmx89V8TvQs0edf7I7Apbb/KOkEYEFSiZfHSF2ebu2gvJdBQcld9wfbp9fWMlByVAdS54s9SQaZb+UI236kmnonKpUCecX2oDhlJT0BLGf78cke3OXk5XyTlv6+D4zIUZfNSX/TH9k+Q6nrzLOkXNQhPxGdUnJk6tO2t6itpQl6Rdy2JtWt3YvU5OByUn7ijqRJzbS2XxgkTUcBt3t8JYVgIuR77ginphZbARuRqsS8SAomnGd7V0lzkgx89wyl5fyBkpfg37Tdnxb1Hcd7VqG3B66w/XtJPyKZ3fa2fZukMcDTg3FvVqol/0PbH2rifIP2h5K0kKQtJY3Jb3h3MD4C9zbJEHUHgO3tbK9r+9EcDbim2yarmaloSV9pj+dV29+33dMP/AZSRPbOvP9N4AXlfu2SPiFpTZVzPP+VQVg1GGpImiGvcvSUjTqU9KBbmvErLZfDOw7flWyfkfdvs91xNRMHgeIGjsGk5+9n+xTbX3AqZi/Sisk/8veXBR5RaoCApOUlfVy5tW0BbgDunuxRXUaOFn5AqVwUktYldWr7bj7kLVKDm9fyPXhx27sC5LF6ZzdNVjNtHa832v667d/nbx1HMpj35EVfDDyuVDVpdF5BeV8hWU+T2lU3Ql9zWDcn5SJePpHvi5Q0/KRS0fLvk/JJD5O0FylSupftO5UMCg934SCZYiRtCNxZI5+pJkpmEdt+Tamn8/r5v7eAE4HLbB+l3F6zotSORtLiwEcnFY1Sqhv6Vv5dHwIsbPvTeaJ6ECnyfXKOwrzUpS+OU4RSQ4IF3EGm1MEgR6pmsP2cpE+QWt3+Mq+W7QtMBxxq+6kYs5NG0kHAARMbZ3mVYwbbzypVavk8sK/tG5SqaNxtexclM/KotqTHlSB/brez/cvaWgYbSbPafkYpX/1w4BnbO+c5x2bAyU6toztqvPZ1wnoMcKNTz+2eG/Q6pKX8OyXdSCrPsED+/8bAVbZvb1x50HVImpZk7hpt+9gcTTiSlBf5s/yW+DbRWQQASesDe9peP+/PQCot86pTNYd9SEv5mzp1gPoCKQXnwi6MjgYFkLQOyQh7JCkq/zhwte2NcvrPYiSzSJSqAiQ9Dyxo+/m8vy6p8sTPlToTXk16GdhVqVTZ7KS2ws/WUx20hexD2JDUav5ySb8jNUDY3PZ/lMxf97hSFYu+TliPJ/1jrrX9yZwX81HgiPyGN4Ojn25jKNWlfDlu5hMmR/TnBaZyqg27G6kv/M62z1Uqov4cqVf0BH+H+SXrA26BieC95IfdKaSJwkqkSNcRwF+c8oVHk5YIY5WjASSNIuUMPl9bS6eiZEpb0PZNklYilSH8l+0dc3RnKVJLzgk2aZF0MCkI8ufBUz14SHqWlP99sO1fKpWNehP4Nil/fOpY5WgGScOAOWw/VltLp5JT8ZYE7iUZAs8jjdEFSW1ndyEFLCdYazU/gza3vVMTevqaw/o94N+kKAzAy8AcpA5JPQJbkcDcIZwGrFVbRKeSc2Ifdmp6gO3DnTqLnJcPeZXkpnxLqZXnTXnJDaXuIjORBmMro4m2LwL+CDyQv/QMabz2dB55i5Z2+arE54Gf1BbRyTi1n70pb19ne3ngq/nbr5IehHMDSDpNqdvemLw/L+kFdfSgCx88diXl6PYEft4iRVHncKoV2upmP4PMzMBQb3xTFKduezfbfiU/bzckpT29zfj543IAkrZT6ra3Ud6fk1TVqbFWtAOqEpAjgGsAjzgV7j8a2JqUN3d1zmd6mJTH2vVLtH1F0sXA/nniEQyA/Ka4IilH83c5+now6eVrIXdA4ejS5N/BB0l55n+UtAHwJ+Aw2/so1W2dHvi37Zdqah2KSNqZtHzbSDSh21FqBLMe6cUd4AnSy+VHbV9ZTdggolRxYxXSOH2FlFLxuO1l8vN3LdKK538ryhySKJW0utX2mNpa2oBS2bs1SU1hrpZ0Falc3i9tf3XSPz2F12g6VU3SLKQcudezc3RFYDVSTuuPSZ0bTpG6s1NDX5C0MXB9LFn0D0krkAor/5FUV/Ax4EHbq0man1Qc+ybbd1SUWRWlblKjcwL+NsBXgP2civofREonONz2yzFmJ02eXMzcLZOppsmR1E2BR3NKz1GkBiQfySlnnwf+a/uSmjprktOg5rT9mKQlgUOAO2zvodQmdU3gJNs3xnidND2eCNun1NYyVMk+knlzjvX6wNmkINtBSiWtpielDDSSKjpodVjz8usWwDjbx0vakVQT7gdOLuT3kVIMHo1BFkwpOQ9zsfxAWxw4htQv/X8kbUdKGD/C9j2Spol84ClH0qakl819SXUa7yDlv34pR3fmIFWxaH10OmiG7HJflNQV71lJvyYtKa4EvI9U6/VM22cpNU0ZG8+DKUOpo+DHSCasayWdR8oz/KTt/ypV/rjN9stVhQZDhp4XJFLFiXskfQn4OrC77YslHUuas/0wr+C55POgWuOAXFJiMVI09iGl4rZfBja2fY2kb5OiYqd3azqBUsvTZ22Pra2lNj3RAkkrAp8kTZyulfTvfMgHSE0JVida8xYh5yTNlV8O1geOJk0uvpMnt3MBZ9t+tKrQSmRD0TDbz9XWUpte43VmUhHzF7KJ6PvAF4Ev274omzIeJb34xMS0QbIJcFmS72QYqW7yaNtL5XSLLYCLbF9TUWY18gRrdtuP1NbSCfQas1uR0lD2IBmsLgGOs723pPeTcshvdgWjcjWDlO1xTm3eHsr7e5OSy6/Ns/oRwAa235b0Pkn/zHmHPUXNO75laQP8hXTD6SokzSlpA6XCxmOUWvOenb89G6l4eU+UYBXbK+fk8Bfdota8nYZTgfEb8vYFthcjlcWCVIB7FVLUlWyWOVXStEqNQmaro3pQ2Ynxv4+uQak17+pKtbXJqWBP5VU1SKbcp/L2/rYX6cnLt31Rfg7EZLVhslHmqnxvHGt7VeD9+dsiRV9XBpD0TUnnSloj78+m9huo5yc3P+kmJE0laUmlElVI2kKpNe92+ZAFSB3tRpBMaWPy/Azbt9r+V43JKlRuzTql5FyTVUnliy6S9BXg58A38lv7+qQH5tW1fpElkHQDsL3t62trKYGkkU5tA5cFdiDV/zxL0skkp/BnSc72lUnJ8bGUNUTIf9PlSP3p5ya18rzC9sZKTUWWIY3X1uRnS/ouaels79paSpCX898GRpI6KMn293Ju6bdIuc9n5aXpp0nmoM5/wAQ9q3mrkSJn90n6G8mguTjJ7LYNcIPtmyvKbJScQnZOfvFuHT2Bv/yM3RrYANiNVCbtOtJq2G6S5gZmINVX7ej0riExYZ0QOcI6wvZLOfL6KWBb4B7gN8BdwIE9xw/FG6ekTYAr3YKi0JIWIkXgLiCVbLmdlA6yXJ7cfAT4m+0oM9JCcrRm5mzuWosUiTzXqWPZN4CFgF/kh2VHdVeZUvLneKqeKPRQJqc3rE7qOX6dpJ+RDHkrk3KZv0fKFT+nosygIHlV5BlgFMkbMI3tzyhVE9kF+KPtc4bweJ0RWMctqOmbJ6erkcqfnaVUAeZU4Ke2D5D0OVLK3B+aMkDVYMhOWCdGfjB+Bpjf9qGSVgPOYXwOxoKkAurd2Du5KHnQzGr76fz2+l1SiaRfKLVoXB74n5y8vTDJsR9/gy4nj9EPA6fZflDSXcDzpJJ5w0iGnJsjwt482bT4llNVl8OAeWx/VtKawH6kkjS/y1GYFxxF67ue/FnYhFTO8q/5c7MpKS/5YqWGEI8Bjw3FQFEnk1c5Rtt+XtJnga1Iz9lbgYtIXeO+odTVcDrgiTb9DVo3YZ0Q2Swyg+278vLVvsBPcjrBl4GpSA/LjupQI2kB0qB/o7aWCZEnpR8iJe7fK+kW0tLCgiQDzsdIEeKuLRsV9J1sFlkiR/YWIJUle9z2Jjnv6sPAX20ZMgTSAAAGuElEQVT/p6bO95IjUuM61XSVI0obAC/ZPk/SD0mVWjayfYmSA/hh2xdUFRoMKZQM1IuTJkfPSjqJdO9fjFQW7wek7mRnT/wsg09epR1j++HaWiaGpPVI98Kj8ovA5cDRtndXans8KymVriPvOU3T9qRq4B2zyF15++Scs/Kr/O1XSUvVI7PJ5/psGiAbRmatoxqAC0kJ0NXIv5MllJhb0p/z8iCkJcM1GN95Zi1S20XbftT28TFZDfpKNotcl7cftL0K8In87bEks8giAJJ+Jumc/PJE/ozWuq/twfiuTVXoNU5nyfuHSLpGyRE9MykvvKdQ+qHA9M51TW3/OiarQV9xMlDf3pO6Znsbkvv+eVK+c88zFkkbSbpS0hfy/mxKtaBr8H6gejqAUtfFBfL2ZpIukfSx/O0tgUXzS8HNpAn27gC2L7b9x26ZrEKXRFinlPygWwaYLy91fAD4G3CK7Z0lrUJqDXiF7acmda6G9NwPrOeJ9NUudM33kSYHV9i+StKlwDykBhBvARuRmhkMmqYgmBhK7TpXBi4DngP+Q4o69BgJNiP1qr9tELQcQuryMmjtWSVNR2oJ67xitCspv3RH22fmXLbnSPmmkX4TVEXS9KQUnxecyuMdSDLsbWL7QklbAE+Snj9FDUA5FekXTtUTBg2l1qVrkFJuxgB3kuYYX1EqGzU3qXtZR634dgIxYZ0MeRI7Kpu7NiXVij0mT2h/Qir9cEA2kwxvcpDl613YdO5evmksDdxAirKfRzJAfSwvM2xKGkDXNv1vCoLSSJrB9os5anEgKZ1gD0mfJH22j7d9RYHxuiLwetOT45y3tjhpjD6gVLN6K2BtUrmoo4FLbP8mHzuuTXlrQbvJS/O2PVapu94awPqklbvjSd0xj8pRxreb+mznFJ6VbP+9ifP1Oq9Ik845c1rTBqQ24L/M/47vkPJLDwNeItVujpfJKSAmrANA0tqkgvW/yF96ktSGbOM8GBanollE2b0paRHgS6SyJGcodZdZBtgceABYh1Q2KuqXBq0lG/0+Atxo+1+S/kQaBx+3fYdSK8G7qGQWyQ865d09SHn331Nquflj4MA8KV2etMx6bzzograSc9k/Dkxt+6ScRvBTYN888VuGVM6ymoG61zN2Y1Le7o9J84D7SN6ObbJJbR7SM/bVGjrbQkxYG0TJcTuf7dvzcsORpKWNb+XozhKkzl1TtJwuaTHg/imJAkmanbRsfx2pBuKVpDe8hZV6Tm9JKiPUlV1NguC95GjkYsD9wBvAuaSc8aWA+YCdSdGdKcrrzObOsVOSU6ZUW3r5fPz1kr5HqpH4cdv/lHQAqUf8yf34pwVB68gvdHOSIpKPKHXD/AqpVvmlkvYhTRZPsP3mFJxvFKmqzUNTeP2lSB6Nc5XMn78jdfrbXak71JzAyYORLtitxIR1kMjR2E8Cv8tL7WeTqhN8gZRjthDwgHvVs5P0NLBk7wEgaZTtV3Lu3p6kKMtPJe0NrAvsYfvGnAvzgKMMTRD0mRwV2YFUh/R/JX2NtAy/v+2/5fH3tO3Xe/3MMaS2wEf3+toI0gN2rKS9SBHdrYEVgGNJD9ejc/rC67HKEQT9Q9JOpGYlO5FePM8hTSj3UWoRPMz2M72OXx/Yy/Z6vb4mYLr8jP0Y8Dng57b/Leli4PH8tdGkCep9scoxeMSEtRL5AbUiqeXo9CQH4BO2V8lL+GuTunl9k1Qa6k5JF5A6fo3JP/MFUgT32hr/hiDoFpRKQq0APOTU3OAkUkrNMk51hXci1aa8GzgvT2q/QVoi/JztPyuV0HsW+JOHYKH1IBgq5BfF95OqYFyuVLP0WNIL56F5MroasHH++vGkyiPXkErmbZNThBYmrUw+XuPfEbybmLB2EJKms/1qzlHbg5S4/TxwmO0r85LjU/FGFwT1yWaRN0grJT8lGRlHkNJ+fp6jOmMjby0I6pMN1COdmmRsT1oxGUbycXyNNJZnjVWOziUmrEEQBEEQBEFH0xWNA4IgCIIgCIKhS0xYgyAIgiAIgo4mJqxBEARBEARBRxMT1iAIgiAIgqCjiQlrEARBEARB0NHEhDUIgiAIgiDoaGLCGgRBEARBEHQ0MWENgiAIgiAIOpqYsAZBEARBEAQdTUxYgyAIgiAIgo4mJqxBEARBEARBRxMT1iAIgiAIgqCjiQlrEARBEARB0NHEhDUIgiAIgiDoaGLCGgRBEARBEHQ0MWENgiAIgiAIOpqYsAZBEARBEAQdTUxYgyAIgiAIgo4mJqxBEARBEARBRxMT1iAIgiAIgqCj+T9JLLHvpgNAcwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "SSR1vQZ1_Ojq" - }, - "source": [ - "### Data contents \n", - "\n", - "Here we take a closer look at what information is contained within these trajectories." - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "9x8w3o17_May", - "outputId": "a6ed3414-774f-4e9c-f211-73379999f6a0" - }, - "source": [ - "i_structure = traj[0]\n", - "i_structure" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "Atoms(symbols='Cu27C3H8', pbc=True, cell=[7.65796644025031, 7.65796644025031, 33.266996999999996], energies=..., forces=..., tags=..., constraint=FixAtoms(indices=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]), calculator=SinglePointCalculator(...))" - ] - }, - "metadata": {}, - "execution_count": 8 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "4CgeShkN_bdJ" - }, - "source": [ - "#### Atomic numbers" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "cMGTQRIz_f2c", - "outputId": "20442973-b999-4723-ec66-ac169203dfbe" - }, - "source": [ - "numbers = i_structure.get_atomic_numbers()\n", - "print(numbers)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "[29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29\n", - " 29 29 29 6 6 6 1 1 1 1 1 1 1 1]\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ol4Zi2Gh_qU_" - }, - "source": [ - "#### Atomic symbols" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "cwbxks-i_uVq", - "outputId": "4960d233-b6c8-42bb-979d-879b6a20cfd4" - }, - "source": [ - "symbols = np.array(i_structure.get_chemical_symbols())\n", - "print(symbols)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "['Cu' 'Cu' 'Cu' 'Cu' 'Cu' 'Cu' 'Cu' 'Cu' 'Cu' 'Cu' 'Cu' 'Cu' 'Cu' 'Cu'\n", - " 'Cu' 'Cu' 'Cu' 'Cu' 'Cu' 'Cu' 'Cu' 'Cu' 'Cu' 'Cu' 'Cu' 'Cu' 'Cu' 'C' 'C'\n", - " 'C' 'H' 'H' 'H' 'H' 'H' 'H' 'H' 'H']\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "x57XplOw_yNw" - }, - "source": [ - "#### Unit cell\n", - "\n", - "The unit cell is the volume containing our system of interest. Express as a 3x3 array representing the directional vectors that make up the volume. Illustrated as the dashed box in the above visuals." - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "VWMMzn_i_0vM", - "outputId": "9fd0343a-9599-4fcb-911d-87ac48974bc0" - }, - "source": [ - "cell = np.array(i_structure.cell)\n", - "print(cell)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "[[ 7.65796644 0. 0. ]\n", - " [ 0. 7.65796644 0. ]\n", - " [ 0. 0. 33.266997 ]]\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "XHRbOyaA_97r" - }, - "source": [ - "#### Periodic boundary conditions (PBC)\n", - "\n", - "x,y,z boolean representing whether a unit cell repeats in the corresponding directions. The OC20 dataset sets this to [True, True, True], with a large enough vacuum layer above the surface such that a unit cell does not see itself in the z direction. Although the original structure shown above is what get's passed into our models, the presence of PBC allows it to effectively repeat infinitely in the x and y directions. Below we visualize the same structure with a periodicity of 2 in all directions, what the model may effectively see." - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "htvwgCuFAOSB", - "outputId": "578202d3-f9c5-4857-c2c1-86ee6aaf5aa0" - }, - "source": [ - "pbc = i_structure.pbc\n", - "print(pbc)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "[ True True True]\n" - ] - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 400 - }, - "id": "Flzo7aO-RgyA", - "outputId": "36835a5f-cc91-48d1-ee8b-8fc5112c0cb6" - }, - "source": [ - "fig, ax = plt.subplots(1, 3)\n", - "labels = ['initial', 'middle', 'final']\n", - "for i in range(3):\n", - " ax[i].axis('off')\n", - " ax[i].set_title(labels[i])\n", - "\n", - "ase.visualize.plot.plot_atoms(traj[0].repeat((2,2,1)), \n", - " ax[0], \n", - " radii=0.8, \n", - " rotation=(\"-75x, 45y, 10z\"))\n", - "ase.visualize.plot.plot_atoms(traj[50].repeat((2,2,1)), \n", - " ax[1], \n", - " radii=0.8, \n", - " rotation=(\"-75x, 45y, 10z\"))\n", - "ase.visualize.plot.plot_atoms(traj[-1].repeat((2,2,1)), \n", - " ax[2], \n", - " radii=0.8, \n", - " rotation=(\"-75x, 45y, 10z\"))" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": {}, - "execution_count": 13 - }, - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqwAAAFuCAYAAABECkoSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd5ycVfX/358ku9lk00PooYXee5ciIFUQBAQpUqSpWFCwAF9RRKoUUfghUhWkSRFBimgQlCq9SSf0kpCQkJ6c3x/nrrNgyrRnntlnzvv12tfObOY+88nu3Oeee+4pMjOCIAiCIAiCoFnplbeAIAiCIAiCIJgXYbAGQRAEQRAETU0YrEEQBEEQBEFTEwZrEARBEARB0NSEwRoEQRAEQRA0NWGwBkEQBEEQBE1NGKxlIulSSSbp0jpfd3S67gk1XMPS1xb1U1YfbUHQ05C0Rdecymn8AWn8q3P4txPSv42u5tpB0FOR1FvSUZIelfRxt3XvC826VmVlN7QqffIWEMwdSd8GhgA3mtljeesJgiAIgpw4G/hGejwdeDc9npqPnKDRhMFaPm8D/0nf68mYdN0P5vBv3waWBF4F5mWw/id9n1xXZUHQmkymNKeCIMgZSQOBw9LTY4AzrFvXI0lfZu7raFAQwmAtEzP7IfDDDK67fx2usWI9tARBAGb2IBBzKgiahxWBtvT4fPtUi856rKNB8xMxrEEQBEEQNDP9ux6Y2aQ8hQT5EQZrmcwteLp7sLecQyQ9IOkjSRMl3Sdp33lc93+CxbsSK/BwAIBLugWY/08yx7ySriStmq73N0kvSZqStD0q6WeSFqjh1xIEufCpeddH0nfSZ3qSpPck3ShpjW6v7y/pOElPpYSNsZKuljRqDteeb9KUpBUlXSHpHUlTJb0s6VxJC5Wpf8Ok8YM0J/8j6SRJA6r7jXzi2iPS3H5U0oRu+i6StEqt1w+CRtGVgAiM7vaz7mvh6PSzuSZdSXo1/dsBktolHS3p8XQfmJDWxu3moWFpSd+XdJuk59O4SZKekXS2pCXq/z8P5kSEBNSP3sANwC7ATDwObiCwIbChpOXM7MdlXmsSHlA+At9UfARMqVLXnykZvlOTrqHAmunrAElbmVnE7AU9kTbgNmArPBFjBj5vdgG2krQl8ApwJ7AWPgcMGAbsCWwhaT0zG1PuG6bF7Uagb/rRJGARPCHki8Cx8xl/EHAhJYfBBGAp4EfAbsBvytUyh2tvDVyLJ2uC/z6mA0unr30lHWJml1f7HkHQQKbga2E7vm5BKdkKYFwF1xoA/APYAJ8X04BBwJb4feCrZnbxHMZdAmyeHk8HJiYtK6WvAyTtZGb3VqAlqILwsNaPrwNbAAcAg8xsMDASuDn9+3GSlivnQmZ2hpktDLyefvQtM1u4+1cFuu5OmpY0s35mNhzoALYGHgQWA66s4HpB0Ex8Dd947YEvSAOB9YGX0/NzcONwKLAt0Jl+vjXwPrAg8PNy30zS4sDVuLH6BLCBmQ1M190emAWcOY/xawMX4Pfe0cBKZjYkadobWBj4v3L1fOraqwF/wo3VC4GVgX5mNgDftJ6HL/wXSVq3mvcIgkZiZlen9W63bj/rvhbuNo/hn+anwOLAF4DONG9XBO4HBJwjafAcxj2Gr+/L4/NpAXz+b4BvlgcDV0vqV/n/MKiEMFjrx1BgVzO7zMymAJjZG/hC+hb+u96z0aLM7CtJ05huP5tuZnfhXql3gbUlbdpobUFQB4YAXzCz68xshjkPAYekf98Y2A7YxszuMLPZ6esu4AfpNbtJapvDtefEj3CvzNh0zQcB0jVvw43WznmM/xl+svU8sIOZPZfGzzCzq4C9KHlHK+VsoB9wspkdambPmtmsdP0xZvZ14Jfp/Y+r8j2CoKfSH9jazG4ysxkA6WRxZ/zkZQCw06cHmdm3zew8M3vBzGann81Mc38nfOO6KH66EmRIGKz1459m9vdP/9DMpgG3p6erN1bSvEnB63enp2GwBj2Re+dyFHc3fuQHcJ2ZvTiH13TNy37AfE8/JAn4Unr6/8zsvU+/xsyeAq6by/ghuJcX4PSuje2nxt8O3Dc/LXO49lLAZ/FwpDPm8dKuUICtJfWu9H2CoAdzXdcGsTtm9j6lOVfRGp02hLelp7GGZkzEsNaPB+bxb2+l78MaIeTTSNoJ2A9YD1iIbhmX3Vi8oaKCoD48OKcfmtksSR/gIS8PzWVs91i4oXN5TXeWpjSH/zaP1/0NP97/NGtTchLMb/xGZejpzibpey/gGbet50iXkdoJDAf+x+gOgoJS9Rot6TPAwXhOyuLM+RQl1tCMCYO1fkycx7/NTN/LPXasC5J6Ab/nk4vnTOBDPHgcPP6mg3kfYwZBs1LOvJvja8xsZjfDrpy5uWC3x2/O43VvZDR+XiyavvfCN6XlMKeNaxAUlarWaEmn4s0KupjFJ9fQAfj6GWtoxkRIQLE5GDdWZ+EB58sBfc1sWLfkra7jy7m6ZIIgaHq6PKfvmpnK/Ho1T8FB0OxI2oaSsXoesBr/u4ae1fXyPDS2EuFhLTZ7pe+/nUdJrUoqDgRBK9P9+Hwx5t6+dbEyx79c4fh58U76voCkTjP7uIprBEHwSbrW0NtT0uKciDW0QYSHtbmZnb5Xu3Mbmb4/Oqd/TEXKN6jy2kHQarxCqe7jlvN43Wfn8vNHKM3pasbPi3+m773xSgVBENTO/NZQUd18DaogDNbm5qP0vdoyNxPS9zXm8u/H43UrgyCYD6l/+TXp6eFz6hInaWVg97mMHw/ckZ5+T1LHHMZvjZfiqlTbC5S6AZ00l3qS3d8nlwTQIOhhzG8NPRxYpkFaWp4wWJubp9L33SWVk8X8abrKbRwi6VBJ7QCSFpZ0Fh6bM7YOOoOgVTgZT95YALizqwC/nM8Bf8G7yc2N4/GY8hWBWyStkMb3kbQnbhCPr1LbkXjXreWB+yXt0t0olrSYpP0k3QWcWuV7BEEr0bWGbi/peEmd4CXqJP0IOJdYQxtGGKzNzW/wNpIbA+9Leiv1RX61zPG/AJ7DY5UvAKZI+hAv4fHt9LM/1111EBSU1IBjb7zG65rAQ5I+Aj7G67q2AUfNY/zDeHcuw48Sn5M0Hjc0r8ZLbf20Sm1P4U0S3sEN4huBSZI+kDQZrz5wOXGEGQTlcjlwT3r8U2CipHG4kXoSbtCen5O2liMM1ibGzP4B7Aj8Ffe6LIS3WFyyzPHjcWP3bOBV3LMzEz863NvMDq+76CAoOGZ2C15T9So8kaodNzR/BayFx7rOa/xv8LqpN+MxsX2B13Dv7fp4yZxqtf0T97B+D++bPh4PKZoFPIuXudsH37AGQTAPUkeszwE/wbvTzcBzSh4EjsC7ZM3KTWCLIQ/LCoIgCIIgCILmJDysQRAEQRAEQVMTBmsQBEEQBEHQ1ITBGgRBEARBEDQ1YbAGQRAEQRAETU0YrEEQBEEQBEFTEwZrEARBEARB0NSEwRoEQRAEQRA0NWGwBkEQBEEQBE1NGKxBEARBEARBUxMGaxAEQRAEQdDUhMEaBEEQBEEQNDVhsPYAJPWT1JG3jiAI5o+k3pIGSVLeWoIgmD+SBkrqnbeOYN6EwdpESOolaYik1SWtKekHktYCngbelDRU0q8lDZe0saT4+wVBjkgalozTXdKc/CZwCvAksLOkkyQtKWk7SW0xZ4MgPyT1Tw6g3SUNkHSlpDXwNfZaSZ+XtKektSSNjPnaXPTJW0CrImkBYAqwN3ANcDHwC+BQ4PdAX+BW4C3g28BgYDpwA7AosBmwiqQlgGeAN4GPgFfNbHxD/zNBUHDSCcdgYBTwMbAvcAlwFbAFsBZwHj4H3wP6ATen134AfBn4N3C3pJ2ALwJXAAPN7D+N/L8EQdFJpxsj8TV2c3wejgKWBP4BLAMMAH4LPIGvuZek4W1pzFPAbyUdA+wHnACsa2ajG/X/CD6JzCxvDYUm7dCWxyfMpsAsYASwNHALsCY+UZY3swfnco3+AGY2+VM/F27YrgGMAw4ErkzX2wH4LvDjdO0n6/1/C4IiImkp4H3gCOBS4DfAr4DtgDvxRXAs8IaZTZzD+N64Ifo/G0dJ/YBBwOr4CddywALAK0Bv4F+4I+EFM5tW3/9ZEBQPSYOBgcCquIPnKOAnwNX4Orh3etzfzF6dyzWGAJPMbOanft6Or9l7ATfh94LTcOP1p/ja/k9gupm9W+f/WvApwmCtI5IWwj0r6wHPAicDhwOXA/sA2wB/AXqZ2XsVXPd4oK+ZHVfm64cDE4H9gbuA/wP+AHwOuBHfQT4PjDezj8vVEQRFQlIbvshNBtbFPS4GrIh7PzfGPTBLmdmzFVx3ReAmM1uhzNd34EbqZ4FHgDOBI/F7xRb4RvQiYJCZvVWujiAoGpJWA14Cvo+fSp4FXIhvAB/BN5oT8c1k2Rs+SU8Be5fj2ElOqCG442kx3Fs7FdgA+COwAn4SOgh42cxml6sjmDdhsFZB+sBuBDyK7+QuAU7CJ9CiwIvA67hX9d1P79qqeL+FcSO36sUqLYpD8MnVCzde7wP2xGPuNscN6yFm9k4teoOgmUjzdQncg7kVfiR4GbAz7jn9Dn6k/09gxpy8phW+XwewjJk9U8M1lDRPAr4APIfP1YfwhfB54G08/GCcmc2qRXMQNAtpvnbgJ4fTgJXx4/2308/OxzdylwIjzOzNOrznysArZjalhmuMwDe/++EnnXcAn8c3vV8HNgRuB2aHo6g6wmCdB5L64hNnLfxYYClgNTwWbT3gbGBL3HvZ38w+ykjHtsBMM7srg2svD4wBfojvVu/EPbOH4jF5i+D/36mxKAbNTDqKF7AtbpSeiMeYfid9b8cNvBfxzeSHlsENUNKiwJ5mdnYG1x6OhwFtiIcRHAOcjnucDgV2A34HtH86hCgImo20xi6LG6a74/kct+PhcyfgzpSlcOfQFDObkZGOY4BLzOz9Ol+3DY+dnYWf2MzAw4DG4fN3Jh5DO7HWjXIrEAYr/13o+uM7ubHAIbjn5R/4h+wbeOzKcDzBaVoWC9089B2Ix8hc0aD3G4jfJDrxWNul8WSSAbhBuwDunc3sBhIE8yLFrXXgG8i+eELUlsB1uBe169TgZvw+17DPqaRlge+Z2eENfM+NgceA4/EEkrNwg31tPCxoFvBizNcgD1IexkzcKL0NP5m8Bd9g3YGfJHyMh9JNMrOpDdZ3GfCjenhry3y/ZfBY+D2APwPX46ee5wIH4feuO3BvbIQUJFrOYJW0IDAeOACfMMfhRtj6wMPAO/guqGvi5P5hkaRGGshz0wCsA7yGe3NOxneGq+GL5M/wcIOH89YaFIe00HXghtfL+Hw9FjfCtscXvOtxo/XFZpmvAHnOg6RhYWBBfF7OBHbFY+zWx48plwfuBmbFnA3qQTrOXxjPk1gJd/LMxI/Gz8XDW07C4z3/jk+T3D97ea+xab72xkMdnsNPSx7ADfw/4r/Pl/AY3Xea4XeWB4U1WJMrfgn8Dz0qPf4A2AX3vuyevq9qZg/npbMcJP0CeNvMzshbS3fS77gDP755G8/IHIcHo/8HeAP3zI7JKlwiKA6SRuGfmSPwhKNvA/fgiQ2vAC/g8dfP1RJrljWSNgLOMrMN89bSnWRM9MJDJkbjiVzfxD05uwE7AdcC/czs5ZxkBj0EScPwZMHN8Njqc/HTyWtxL+GmwN/wDVFDPJfVIulNYAMzeyNvLd1Ja+xy+Lz9LB4acTwe5rQP7ihaw8zuy01kAymEwSppMWA2bjDdgceU7okf6/8QP+p/EI/DHJuXzmpJcabT51aSo5lIi2I/PO73PXyneCmeybkjboSchGdeR/3JFiR5TZfGPycL4Z+VJ/A5eyxehuZsYKSZvZCXzmpJJXLmWqau2UghQAPxTOveuEd2GL5B6IOH//TGM56n56UzyA9Ja+Oev6/jntGD8DW1NzABD0dpo4eGnUjaDHiw0aEI1ZDun9Px5K4/4mvrqXg8+6n4vfUBeqi9My96jMHarc3hZvjkOBK4F1/kHsZLWcxIj3sDrzfD8WA9kLQNMNbMHslbS7VIWoRSrdi/4qW2rsD/nrfiyTIvAhOa2XsWlE+as8vh8Wn74FUo7sI3LsfiRukieFeoj4uSOZuaeWxiZn/IW0u1SBpAqZrI/XgC5lfxmODP4Y0QLseTTeuaqBLkQ5qvg/H8haF4XkdXKcb9gG/h9UgvBgYXqZqMpCOBi3pqomLKwxmOhwAtjN93J+LJ4dfipbZuxPNQxvTUkIKmNFiTG3woPnEWolS49yLc4PkmfrR/LdBW9Ow6ST/EvRtX562lnkjqxEttLYvXv9wRj6nbDQ/X2Aw3ajvNbFxeOoN5k26Whp9wPAwcBjyOx2M9A7yKx5jeh29MPuipN8xykLQecKiZHZK3lnqSTk9G4R61XfGwn93xv2s/PMbubeBdvMZzYf/GPZlkmPbBPepv4+vpGXjTis/jVWKuxJNuX8Az2GsqzdjsSBoNfKFoXSLT6fME4GD8pHM03gDlXDysYB08bGNGT2hUkqvBmha6vvgu4Hm8jMWxeHb+HnhSRZf37RU8Kz1uggVH0qq4t/UEvKvIX3EP3QH48ccCuJe9odUaWp200A3AN5OL4cbL+/hpx7Hp+7dxQ/VOPHat0Atd8N+GKe3AJvh9/Hi8C9D38MYpO+NlxXpHSEFjSU6BafgG4xHcU/oafmz8Jr6xHIwbq1EftAVIpcSWx0+kN8YdgstQKvk3C29LO77ZQiQaZrCmm9p4/Aj/0fT9PTzu5WP82GlY+j4zFroSks4BHjKz3+etJS9SXODS+K5/Sdwr+x5uQN2BH4c8iG9qol5sjaSFritr9X7g17gxejVumK6NL3JT8K4yMV8TkrYCDjOzPfPWkieStsA97j/Ga8OejpfaWg339MzET45ivtZItyPh4fg6ujbwNL6R/CruTTsWL7x/P1EZ4hNIeg1Yxcwm5a0lL1KuzCQ83Od6PPxnc7zz3hF47efR+MYml89O3Q3WZL0vmL764wve3XjM4r748cMpuPHxREya+SNpA/wY9aW8tTQT6YhyA/zY6se4R/Zx/KjraPyYa3EzezwvjT2BVDf0XXwT+Qx+ZPQRXpO4DY87XQjPBI6Fbj6kxgHLm9novLU0E2m+LopXEVmOUh3KK/B5/Ft8I/rPMGLnTuqoNAP3XN+Me6+PxNfVk/GKOE/iR8HvxXydP5L2AG6IjXeJNF+7ugM+iydQP4iH7t2Ex7i/gn/Gym41X5OmWj7LklbAjwT3wwPwbwK+hgdnX4gfNbyItw6cULPaFiV5Kt4wsxfz1tLspLaYffH417fxsJIPSH2d8eOwiXhSXkvtpiUNpVSbcxYlY+Gk9PgQUoOMKGtUPZKWApY1s7/mLKXpkdQHD/naCe9wdAW+htyIV4v4HN6Xvd3MXs9LZx6kEJwN8Njg3fB71/r4Ef9zeGjUrfh8DudPDUg6CLi0KInaWZE+k33xDSe4c+N+vD72t3Dv7M9xb/W/6/7+1X7GJQ3CJ83FwKr4orc6fsOJI/06Iulc4C4zuzFvLT2RlMTXD1gXj9s6Eu9HfQGeZPA13Bu7qJm9kpfOrJF0PT5Hf40fG96LL4IvxnytH5K2B3Y1s0Pz1tITSYviUDz8Z3Xcy78k7gB5Fl8w/4Ubuq8V9bObqsP8Gc/w/h1+QrlW+lmcdNQRSa8Co8KzXx2p8+DHePjJ1XiC/En4ifrZwOL4Cd2UWpyXtRisg3FL+ht4sP0T+KJ/DB7cvTme0X8hHlfzdEywoJmQtCQeB/tVPA72eHxh2Ag/UjMzuz4/hfVF0nF469KpeLjOesAYPDb1ZNyLczKeOXoX5NutKQi6k+LYu6qJ/ANfFPfFa1F+CfiGmR2bn8L6ImlbPBTnWjx+8G28U9RbeBzww3jYzlh8Ho+L+Ro0C8lRtAB+ArAQsCLwIb7puhY/VTmnknCCPjXomQSckCbIvelnhyahK+KFqP+Fu47XAnaWNB6YjCddAbzQU+ueNZLkYf2zmd2et5aC8SbupRmDLwJj8QVxTTzr+WA8+LwonA981K2w9zMAkv6Rni+OG7MH4x2nfiXpKNyA/StuvzZVJ5hmRNJOwGfN7Ki8tRSMCbh39an0/R486XIpPC72YEm3m9k/5nqFnsU/cafSFLxYP3icKpLagVVwr9ZeeDjerZJ2Bb6LN8xZLYtj2aKRwlIeN7NV8tZSJMxshqQP8RCWofi8XZhSydLd8JO+I8q9Zi0e1iWBe8xsiTJf3we/yWyC1+87AU/EuiX97BvAL4ERPaGjUyORtAPwn0i6qo5uR4ztuGeiP6Wi2FfgrSp/TqmJAXiw+d5mdmmj9WaFpIeAr5fTgSn9zgbhpyNLU+oPvjpesmokPncH4hvPOEpLpNj+pWKDWT2pccF03HN6G55UeRsek3437qmZgm+6Pjazaek++URRNlWSjsHXw6PLfP0g3CG0P35idCLwe9ww6Kqr+gxeVzVyShKpwsJhZnZe3lp6Ksm+64+vr121fU/FN12b4Z3RfoevF//B5/aKwAJmdk/Z71ODwdoOLGNmz1V1Af67KC6Ke2v3wD2vB+E3pJHp+Xjc+zWuVWv4SdoQeMXM3s1bS7OTyjF14PGqLwA/wSsG3IFn1e6MeyP64L/TOQbZp+Stbc3spkbobgSpGsBbtZxqpGPZmXjB+JvxhJhdgWvwWrlbA38CehWtCHe5pE5Xw83s0fm+uMVJxsIi+GZoBfz4cCreGOYs3Ng6CZ/P9+Be/jkuWpI+CzxZlM5bqRpAHzN7u4ZrtOPNWZbE74ub4eFOX8DLFW2KGxLDWi2prYtkbG1rZrfkraUnkLpWfoCfxN2Gr6/3ACtRahQDXlZt8jzW2OWBAVZBB89aDNYRwCFm9vOqLjDvaw/Gd4Nr4lUIDsWTu76JZ6Ltkp53mtlH9X7/ZkPSDcD/C4/NJ0kf+NfwpKnb8WSqf+FxM2/gSYG9gecqLYCc6gb/w8xWqKvoHJH0PeBKM3urztftg3thpwNb4pvM9fC/wft4VYbn8CPdCUWPs5O0P96a9bC8tTQTkhagVNv3Pjzp8QDgD3iDgfXx2NSZ1XxGJd0K/MzM/lUnybki6XN4s4W/ZHDtpYB38PCBc/GQny/jzR5Ox49su/rRFzKprQtJA4GXzGzBvLU0E2mzswS+0VkCbzbwKh6C8n+4g+JkYEUze6yK6x8GLG1mPyh7TA0G6+J4DOtXq7pAde+5Lp7c9RM8meti4PvAZ3GvWRu+ME4v+qLYSiSv6VL4JmYEbgw9jJe9+T5+o/0lsFiETcwdSecDpzWqEoKkkbg3didKSTL74J6dffFWrjfhXrMIKSgQ6V79LPB1/MRsf+DfeDm1j/HE3DbcUCi0QVQtkvbBTyp+16D367rPduDGycJ4TH9ffP4OwUsYTbYe0MYzKJ90KjQd97zfhJ+cfRH4Bd61bhQ+Zyeb2Ye56azBYO2FT6bcbjYppGAB/EhpMXxibY1PrpXw+J1R+A1zRk+tsZaSri4tegB9+nuuiHvi9scNnNF4VvDRwHm4wfoMMCnLhL107PFbM9sxq/doNClrc2aem7l039gcPy46Eq9GcDje53o4flw5Hq873FPn6254uNQZeWvJkjRfh+BGzjD8/rsDXkP1APxE7Ev433Zg1sXFJV0OnGpmT2f5Po0ihUtYnvMg/Y27xyWei288Vsfj/o/F19r7evB8HYKfPO2Qt5YsSX9L8BOOJ4DDcMfPTnhC1Lt4M4D78c3k61muFZK+Agwxs3PKHlODwboG8DszW72qC2RE+qP0wv8oDwG/wsMIHsA7NuyD30AHm9l/8lFZGZIOAO4uSo3QdIQ8GzdEH8FjYZ7G+xo/j8ee9qdUa7Hh5VrSTezLRQrEl/QCsKOZPZ+3lu6khXlpvFbuhnih9O/gO/td8eD9NfEQjaY/OZG0Pp4sU4iYuHRPbcPber6BHyOfgidU7IKfdFyLG6wv4Uk9DfeYp/vk7bXEfDYTkk7Gf5d1D7urhTRf++Lxr2/hn4F38H70j+FhQONwgyc3b1y5pAS/I8zs9Ly11It0nD8MzwUaiZ9qHITHhX8NP/nYEd9c9jazj3PQuCHQz8z+Pt8Xd42pwWAdiMcuPFTVBRqMpP74kfI6eFu71fGjjw/wIP9H8OOPlyuNd8yatDl4pafF63bLNB+Ke8GXx29wR+GxUt9KjzcF/oYXw26Ko+H0eVnDzO7LW0u9kLf4fbInlJJLN9zZuIfuBuAyPFP8NFLJHtz7PqvZkhElLQb0tR7YLSzd16fiG4VH8Q3+m/jx8Pu4d20YbqzOSiWXmoL0+X7aCtLBTtIy+O/4tby1zI90r+/A5+UEvPvltXgpvV3xWs8/xlsWP5WXzjkhbye/RjnVU5qNdGrWTql2+CnAD/Ccjq/gp1l34aFZY5psvi6N26Bl3ydrMVgXAz5nZpdUdYEmIGWCt+GZk0/hAcRH4zEcW+DJXhfgbus3c5KJpPuA7zZzMkFa6EQpJOM3+E3qMtwjsxreh/hj4M1mMUznRqolfFPBkq6OBC7vqSVtUjjBUNxgWgoPAxJej/I2PBP6Vtw7P9cKEA3Q+V08nrpp67CmU47heEjVEDzh6VHcqPgKPmePw7sYPtjs8xVA0lN4Kbon89ZSD+Sdrj4yswfy1lItKdFuAt5E6Ha81NZluHfvOtzIfQ5Pxmy4ly9pXAK418os0ZkXkhbFy7ntjtsrOwMf4XVOZ+OhjwvhCY0zm33OSjoBt0F/XPaYGgzWVXEj6sCqLtCkpJ3iUngc3Z74EceBuAdwEeBx/LjjLeDDRnwokmE9o1k+gCk7/1184jyPh1pMwuOc+uN1OhcCHm4WzZXSFVrSU/XPCUl/Bg5uNo9kraSKJVPxo+nrcKN1R7xcz0F0q6/bCO9bMgZ7NUsZvlTxYhqeRPFH3PN1JF4L+0z8vvYsvhh+0BPCLuZE2tDMtexVT0PSd4B3zezKvLXUk7SedRWPb8eTpv+NG2C/wOuyX4nHPWd+r+ryDjeL91FSPzxXYxG8/OL2eM3rn+PlP7+J/54WB57pqZ/39HtXJY6Fqg3WVkPScNwYWwc3Vo/Ee7J/A/ck7oQvkH3rfeQq6SzgVwIZK4QAACAASURBVI3OgE/lxUbgnqupeDb+Jbgneg/cGLgI90A3/bFVJaTjuKPNrOwuHEHzkI7KlsM/t1vinoi18bIs7+IbrOfwTWddPTuS9sAXwIZkd3d7X+FdBd/Es33fTM9n4kkWC+EL34LAUz11oZsbki4Gjs/zNCyoHnnDjTF4yM8v8JCfPSk1FVoMTxKaWs/Tk3RafLyZHV6va1bw3svgG8Wv4pWPbsLtiYPwpjb98HvWB2Y2sdH6skTSQXjVgavKHVN1a1ZJmwI/KnpmXRdm1tWzuau48n7w3wD0ifjR2TLAb+UdSjbBvTq98S5VtVRTeBcvOZEJ3TJBX8djS8/CJ85RuKfqVrwczUnAWDPbJg09M33vkUfM82EanvxVGCS9BGxoBSmsPi/M288+k552xUhdm+Kmusq3vA7cIG9neTq+SHwWDy+YXYNB9xFuKGdCmq8j8CP9lfCTjaNwj+mJeNzpVDw0534z++BTlyiUh70bL+DzthBIOhP3oP02by2NoFsS9P+l72ulULOL8dCVkXis5tS0Ib0bD2d5EO92Vu0aOxPf3GVCt0TwjfCkxR3we8RI3D64G5+TBhyYYjqPzEpPE/Eu3q2ubGptHLCKmY2u6gIFJX04F8Ld+SPxTcG2+CK4Cl5qayk8A35GOYti2oW9WWvtuzTJe+FHpG/g8aazcc9xG/AXPDHqZrwDRaZlaJqZVJNwUTMrjNEqaWc8i7owi3qtdFtMtsKTFr6Jh/98BT8xGUTpuPytMufrCPxo+tOGYjXa+uCVE57AjwRPxgvt/wj3GN+Pb5jfBcYXKYSlUiStDLzYLKEYtSJpbTy2M2pLdyPNi7UpOVhOx+OvV8ON3Z8Cy+IhaeXM1w78Xl9zkmRaYxcDBuD1wp8CzsDvJ6cBR+BJxnfhm+KmT4DNiuTZnl6JA6UWg3UksHpRSrdkSYqt6oX3rv8nnpDUVVB7BzwW9ArcSPyfm5Ok54BdzezZMt9PeEWEkbghulV6r4vweJgT8QVvFbzc1/RWXujmhKSNgLPMbMO8tdSLdATz+6Is6FmSqhQsg5fv2QQPH/gOviDuhi8+q5jZ/XMYeyK+Gf1pBe83ID3cHM/GXx9PLnsb96Zei8/XW4C2Vl7o5oakN4CNrCAtRiVtCbxtNbQ/bxXSfG3HnTFv4qW23sZbvz+Nl936EC+19dGnxlZcojMZpr1xp89ovHzmafip42l4fOlzwHvA+3kllDUzks4GXjOzs8oeU4PBuhlwkJkdUNUFAiQNwr2b6+KltlbFJ93b+LHlI7gHdArwTjrmnNM1ZuKL6E24MXwWfkT4W3ynNwafxGNrDE1oGdINaUBPqCNYLpKexEMC4uZZBanU2Qw8HOhqfJN5HN557wS86cU9eNzZuDlVY0ifq0G4MTwd36xeBVyDL7bH4IveYsATMV/LJ+UZFMbLLOk0vELDdXlr6YmkcL1+eP3gsXic6O/w3JNd8djYk/BY97Fm9s4crtF1YjoDn58f4fN8SdzZswJe9WB1vAoCeVUn6WmkTXpFXuZIumoy0h+xN+4V/Te+eL2De1y2xI8sX8QXu0XxTl6345PyYmBlvERH/GFrIB0vftHMTsxbS9C8pIoAC+BZz0vipxprp5+dh/fgXgQvj3cBXpdyN+DP+CL4Ab6hnBBztjYkXYAnSvaoetVBY0nloT7Ay1beijt4PsTX2RuBDfCwoK/hx/nX4+vxgZTChF6I+Vob6cTvdTO7s+wxNXhYP4cv6IdVdYGgbCT9EvfmvIjHwt6Lx7K1RUZsNkhaCdjZzE7NW0u9kPQ8foz9P576oH7Ie8D3xhe/M/FN5DZ40fRH89RWZCT9CvhBI0qXNQJJ5wB3mdmf8tZSZCQti3tff4V7TK8BtsNjw8dE+E02yFuzjrEGdbpaGr8B317VBYKy6X7UJWkrfHc3Jm9dRSYF4g+oNXGmmZB0KPDbOLLKlpTZPNPMpkgahTcR+EfeuopOSuJ4uyifb0lbA6+a2Yt5aykyKf61v5mNTycmeze6JF0rImkYMK2SELVeNbzfTLy4fpA9T+O1E8FLX0RcW/ZsiVd0KAQpFmtsURbzJudk3GMD3okrktwaw/N4TkBRmEyFZX+CqtgIz/8At4miikpjOBOv5142tXhYdwd2MLODqrpAUDapq9h/zGyGpGuA8ytxoweVk2KJhxXFk52Sfd41s2F5ayk6khbHPQfvS9oPWMuauE1rUZC3U36+KJsySVcCV5rZn/PWUmTSvX4RM3tB0hDgITNbLm9dRSfFEk82s7Idn5F01QOQ9FPglIilaRySVgc2MLML89YS9CzSZv5168E94HsiqUzOd4tSJSBoDKnD1mZxr28skg4AnjSzf5c7puqQAEk7SfpxteODiliV9LeSdLGkdXPW0wp0UgrD6PFI6i/p7rx1tAgj8S5USPqypB/mrKdVWDpvAfVE0i8lbZy3jhZgIF5mDkkLSPpbznpahQXxdbZsqm7NineZUA3jg/LZHY9dBbgDL78RZMtDeFmxojALL6UUZM85lObrc8R8zZwUo71Xwbyr91HcNrrNxL/xmufgLY2vyVFLK3EOFebj1JJ09QEe5B5kzxS84w7Aa0AhyrY0OXviBaGLwmx8AQyy53Jg3/T4QzLsUx78lz54GaIi8RwwLm8RLcAuwA3p8Sy8FXOQPdcAn69kQC0G6854q8Ige7anlGl8Fl4rLsiWv+IdjIrCELwuaJA9J+OfH4AvAgfnqKVVmAVskbeIOnM23hAmyJZ/4i2XARbGG/AE2fNDvDNg2dQSEnABERLQKNYH/g5QpN72Tc6ieOeiovTx/gDvuBRkz/K4l+ZtMzsjbzEtQh/gM3hTlaKwFX4yEmTLAnj88+Nm9grePTLInrXw9rZjyx1Qi4d1F0q1BoOMSLFZe3S1gZP021SMPMiWxfFkt6IwnPAcNIqNgcUAJO2XWhAG2dKGG3hF4nTiNK0RLAFsCCBpSUmX5iunZVgP3yyUTS0e1g8pJRYEGZEM1XW6/egpoOzOEEF1pNqHRUpSmoW39g0yxsyO7vb0LWpzDARlkLrlbJ23jjrzGt48IMiQ1K2zq2PnVOCJHOW0DGb27UrH1HIjfQa4v4bxQRlI6pD0drcf3UV0GMscSYekXt5FYTJwVd4iWgFJf5C0bXr6H3yTGWSIpBGSXstbR525BXgvbxFFR9Leks5LTydRMl6DDJF0m6TPVDKmFoP1q8C3ahgflMdM4Mhuz6/HjzCCbPkrcEneIurIEhTLY9zMnAc8mR5/HTgwRy2twkTg8LxF1JnriJCARnA/pYowK1CgltxNzklUWJGhlpCAc4ijrkbQi08W112XKGvVCAbjBaWLwit4bGWQPQMpJaT+NE8hLUQfYKG8RdSZrYAJeYtoATrwGGiAx4HNc9TSSiwMvFDJgFoMzu2AbWoYH5RHf+C73Z6fAkQ/+OxZC9g0bxF1ZBEg+tk3hn0pdV3ak+LFVjYjgyieJ/sYYETeIlqAdfDSkeAVAr6fo5ZW4ktUuMmsxcNqRMmNzDGz8cDq3X70EZ5AE2SImRUpHADc4xfztQGY2Ze7PZ2avoIMMbO3KKZnLBKbM8bMuocAzMbX2CBjzGz3SscoVUuqGEmDgVlmFsfTGSJpQeBGM9s4PV8CeLNgLQibDknfADrN7NS8tdQDSe3AYDN7P28tRUfSVcAZZvawpAWA6WYWi2CGSFoauMzMNstbS72QtBAw1swqal8ZVIakA4DFzexnkvoBQ8zs7fkMC2pE0u3Ad8zsmXLH1BIScCyeUBBky8fAb7o9/zcREtAI7sUrMhSFNYFb8xbRIlxDqR3riZTatAbZMQ44N28RdeYhUj3fIFMeBUanxxsDV+QnpaW4AHinkgG1hAScSRxNN4ruu70NiP7SjWAWXqGhKDwF7JW3iBbhQ0phAD+m1FY5yA5RvGTUbfjkvT/IhimU7vX3AfvlqKWVmEaFa2wtHtaNgZVrGB+Ux4L45qCLI4H2nLS0EjtRCsQvAgsDO+YtokX4GbBUerwtsEp+UlqGxfHe5EViXzyDPciWnfEEIIBlgF1z1NJK/Bi3b8qmFg/rghTLA9WUpN7G3Re8opVuaUrM7OS8NdSZ/viiHmSMmW3S7elgwujIHDN7CihM/GpiFFE6MnPM7IxuT/sCQ/LS0kqY2fqVjqkl6aoNmB3JP9kiaSngFDPbKz0fBEy0av9wQVlI+jbwoZldNt8X9wAk9QZ6mdmMvLUUHUlXAseZ2cuS+gMz4veeLZJWBb5vZoU5zpXUF0/Yi3t9hkg6BLdlLkp2TR8zm5K3rqIj6Vbg4EoS3GrZvZ0HHFzD+KA8Pgb+0e35OGrzjAfl8TjwXN4i6sjWeKvHIHvuxTsvAVwMVFy+JaiYccAdeYuoM+/j9WWDbHkBeDE93plIumoUN+P2TdnUYvicTummHGTHFOCBbs83IUIxGsHbwOS8RdSRh4Dv5S2iRXiYUgLQccD4HLW0ClMo1gYTYAcqXNCDqhgDdJ2A/J1SW+UgW57BE6/KphYP60pUGDAbVMXywIUAknoBO8URUUP4BrBL3iLqyAJEkmSjuApYND1en7hPNoLVgV/kLaLOFC0mt1k5HOhq9jESWCNHLa3EdXiMf9nU4mFdC9+VPF7DNYL58xiwYXositUutGkxs29I0vxf2WNYGG9BeFXeQlqAlSh5bFYBXs9RS0tgZndLKlqnqx3wk8wgW37U7fFCwIp5CWkxKt7IV510FTQGSSvhgclxnNtAJB0FPGdmUWw/qAhJlwHfNbMP8tbSKkhaF9jdzH6Qt5agZyHpUOAdM/tT3lpaCUk3AV82s7LDXqoOCZB0uaTdqh0flM004A0ASZ2SPsxZT6vwOjA2bxH1QtJuki7PW0eL8N+YOEk3S9o2Zz2twERKiTM9Hkm9JEU738YwFpgAIOlASRfkrKdVeJIK83FqCQk4j2RIBZnyLnBjejwN2DtHLa3EQ0CRFoyHKLULDbLl95SSZX4GvJKjllbhXeBveYuoMwfkLaBFuA9P2gNvx/1IjlpaiT9SCp0qi1qSroYR5ZUawYZ4aRyANkoddIJs+RnF6gzVHxiQt4gW4X5K5YhG4sXIg2zZAjgrbxF1pBcwPG8RLcIJwJ7p8VDi994oHqRCG7IWg/ULeBuzIFvupdQ2rh/eri/IniOAa/MWUUdWAbbLW0SLsDKlUlY7AYvkqKVVuBXYP28RdaQd+GbeIlqEYyjVXl0FbzsfZM8iVOhhjaSrJkfSGsDWZla0ki1NjaTvAPeZ2f15awl6FpJ+AxxpZhXVGAyqR9LGwHpmdk7eWoKeRUq6esbM7s1bS6uQSnT+3sy+PN8Xd6OWpKvfS/pMteODshHp7yRpEUkRX9MYplGgBg2Svizp53nraBHaAAOQdIukdXLW0wrMosIi5M2MpCGSomRkY+jd9UDS4ZJOyFFLqyCqaIpRtYdV0o7A42YWiVcZIqkD6DCz8ZI6ge3N7Lq8dRUdSSOASUXpKS1pZWC4md2Tt5aiI2kh4D0zM0k7AA+Z2ft56yoykgYAfc2sEJU90n1/TzOLyh4ZI2kIMNXMpkpaBehnZg/nravIJA/rYmZWUY3qWmJYp1CgHW0TsyNwUXrciwJ5/ZqcS4Ct8hZRR2ZSahcaZMs7uAcBfM7OylFLq7A7cGbeIuqIgChh2BguBHZOj2ONbQz9qaKVci0G69HAsjWMD8rjr8B30+MRwPdz1NJKHA6MzltEHdmKUvJekC1rmtns9PgoIumqEdwAFKlpwDDg1LxFtAjfA+5Ij7chklMbwWS8W2pFRNJVkyNpbWAlM7tivi8O6oakI4E7zaziXWDQukjqA/zczI7JW0srIWlTYKSZ/SFvLUHPQtJBwINm9lTeWlqFFN7440rvk7V2ulq52vFB2QwBFgeQtJykG3LW0yqMoED1MyV9RVKUycmeXsBKXU8k/UlSlP/LngH4vbIQSFo8ta4MsmdJUo1qSUdKOixnPa1Ab2DRSgfVUvj/70SMTSMYTeloejx+9BVkz8+psEZck/M80JG3iBZgBl6juosbKNVkDbLjLkpxw0XgY+AveYtoEX4KdIXwPELEnDeCScChlQ6qJYb1Gbx/c5AtB+FB4eCL4Us5amkl7gI2yltEHXkXeC1vES3AYGBct+evAlPzkdJSfAM4LW8RdWQG8FjeIlqE2/DYVfC5+16OWlqFRXEnSkXUYrBeTLQJbQS3Amekx8t1exxky+HAE3mLqCNfoVidgJqVj4HPd3t+ER5eEmTL1UCRmgYsRak6TJAtRwNdZawO5JMnJEE2vE8Vv+daQgJWIxXHDjJlEWAB4Fkze4hief2amY3x3fZHeQupEydQrCPTZqUdWBv4B4CZRfxqYxiFh7y8kreQOvE0sHreIlqE1fB7/bhIlmwYncAmlDYKZVGLh/UiqgiaDSpmFLAGgKTVJZ2bs55WYX1gYN4i6shBwB55i2gBOoDtu55IukHSsBz1tApL4ffKorAs8Mu8RbQIm+NlxJD0LUm75qynFejEnUIVUYuH9QWicUDmmNk13Z5OpFjH1E2LmR2ct4Y68w7e7CPIkNRpadtuP3oImJ6TnJbBzH6Xt4Y6MxVfY4OMMbOvdnv6ChHDmjmpw1XFdcFr8bDeSHGOS5uWVGbjZ+npOCBaazYASY8UrGzbY8CTeYsoOpJGSur+e76dSLrKHEnHSToubx11ZBzw57xFtAKS/pbqnQM8RSQ2Z46kVST9u9JxtRisdwIL1jA+KI87gGvT4w2ACAloDN8DKupz3OQcA+yTt4gWYByf7Lj0d/z4K8iW6yjdJ4vA2sCleYtoEX6OV/MAOI5Sm9YgO17H19iKqCUkYA2iDmsj6MSL7AL8DfhXjlpaiZF4Tb6icBxRX7ARtJGKkCcWJ8r/NYLhFCtE7QHCcGoUQyglpH6dUk3WIDv6AQtVOqgWD+tJQP8axgflsQmwWXq8Fl5vMMiefSlW0tWeRIWJRjAcOKTb899Qm2MgKI+NqKI3eROzPF5aL8ieQ/BKPACH4SeZQbYsCOxe6aBabqQzibJWmWNm3UMAphNxww3BzLaZ/6t6FLMIz0HmmNlLwNbdfjSWuE9mjpkVsT51kTrtNS1m1j1JciIRc545ZvYkVRistXhYfw5MrmF8UAaSjpL09fT0JeD6PPW0CpIelrRI3jrqyJ+AB/MWUXQkrSype7LMmUQoRuZI+omkIlX2eAm4JG8RrUBKuloqPb0F7+IZZIik9SVV3Ga+FoP1BTwOIciWe4H70+Mdidp8jeIMYELeIurIWVSxow0q5j3gMgBJvYAXzCw8rNnzF+C+vEXUka2JpKtG8VtK+Tjn8cmydEE2jKHUcr5sagkJWJuo69gIplI6orgFGJ2flJZiBsXyjP2QOBFpBAZ80O3xsjlqaSVmU6wj9NF4Kboge8ZT+ux8DZiUo5ZWQVQRelGLh/VwotVjI9gL2C49XhXYIUctrcQpFCupcFsg2oRmzyi8IgN4xYCjctTSSuxFFZ1zmphRwOfyFtEinAUMTY93B5bOUUursAK+OaiIWjysyxDJBJljZj/q9rSDT5bMCTLCzJbLW0OdWZCoB5o5ZvYgsFV62ovU8jHIFjMr2sZgADAibxGtgJmt0O3pYHyjGWSImY2mitNiVRNeJUlAXzOLbLqMkXQ08IqZXSepL9DLzCIUI2Mk3Q9sWZTftaR2YJaZFSnMoemQtA7wVTM7IsWwDjSzIsVCNyWSTgQeMrM/5a2lHkjqg6/PRQpzaEok3Q58yczGSxoATDWzmXnrKjKSNge+aGbfrGRctSEBbUQx7EbxFKUuHAcA5+SmpLW4mmLFxF0H7JS3iBZgLKXmHkPx3uRB9twHvJy3iDryZeDivEW0CHfgJSMBbqZU9zzIjjepwsNabUjATGDLKscGlfEypdqrN+CTK8ieZyhW0tUPgHfzFtECTAQeT48/4pM1WYPseItSslsRuB3vdhVkz4OUDNav4cZUkC2TqGKDWYuHddMqxwaV8X1KiVbLAqvkqKWV+AvFSipcm1JiQZAdGwCnpsf9iBI5jeJHFMszthje7SrIntvw/BCAzYn7ZCP4DD5nK6IWg3Wr+b4qqAeHUKrHtyiRwdgQzKyXmRWpM9S6eNvQIFtuAz6fHvcF1slRS8tgZnua2TV566gjIwnnRKMYAnycHq9GJDZnjplda2Z7VjquqqSroHFIOgZPJvh73lpaBUltwJ8/1bIvCOaLpI2BrczsxLy1tBKSfgbcamb/mu+Lg6Abkm4Gdo1Eq8YhaRtgXTM7uZJxVXlYJS0o6dVqxgYV8zYphlXSMZIq+gMHVWHAw3mLqCeSbpcUYTzZM4kUAydpGUnP56ynVXgRLwBfCCQdIekXeetoEV7AG08g6SFJa+WspxUYRxUxrNWWteoAPmtmt1Y8OKgISUsAE8xsgqRRQJuZPZe3riIjqTewupk9mreWeiFpM+AZMytSYkrTIWkIXsrqdUmduBfh7rx1FR1JywHvmtlH831xDyDd6weY2ePzfXFQNalE58pm9nR6vinwRFE+R82KpBFAfzN7rZJxtcSwRlHjxnA2pXjhBYlC5I1gAMVrgbsQ0DtvES3ADsBp6XEHsFR+UlqK84AN8xZRRwYRjT4aQRufbIE7imgc0Ah2A46tdFC1Busg4KAqxwaV8VU8Yx1grfQVZMtEimdo7IUbrUG23ECp5eBQ4As5amkldqNYm8x1iUo8jWAGsES351/Eu10F2XIp8J1KB0XSVZMj6XvAX83ssfm+OKgL6Vj3dDM7JG8tQc8ihV6sYGYX5q2llZD0E+AqM3s2by1Bz0FSP+CXca9vLJK2BxY2s0sqGVdt0tUykiIuqzEITwJC0rGSKmplFlSFUWrWUAhS0tVKeetoAf5bu1fSGpLuzFNMCzEZb2hTCCR9W9J389bRAnyi1nZKuloyLzEtxAxgaqWDqk26GgJsY2bXVjw4qAhJw4FJZjYtZS/OMLOn8tZVZFIf74XN7I28tdQLSV8E/m5m4/LWUmRSolWflCQ5HNggklOzR9KiwFgzm5a3lnogaW18ff533lqKjKRewAgzezc93xW408wm5aus2EgaDPQysw8rGVdtDCt4nF+QPdcBm6THbaTyG0GmLA78M28RdWYqBfJANTEHAF2l5yLJrXH8CVg9bxF1ZCYwJW8RLcACQHcHUKyxjeFw4IeVDupT5ZuNTG92W5Xjg/I5CHg/Pd4JeB3vcx9kx5vAFnmLqDMn4IlXhQp1aEKuotTmcSngMCA8rNmzG/Be3iLqyC54Td+412fLOD7Z0vdYPHlvci5qWocLqWJDH0lXTY6kbwF/MrNX8tbSKkhaCDjCzE7IW0vQs5C0BTDEzG7MW0srIek44BIzezNvLUHPQdJQ4Jtm9pO8tbQSknbE7c8/VzKu2qSr1SRdXs3YoGKWJHlsJP1Y0pdy1tMKFK7OsKS/SFo4bx0twDDSZ0fSRpIuyllPqzCC6k8Mmw5J35W0b946WoA2YJmuJ5LuS/GVQbYMTF8VUe0EHwf8tcqxQWUcA8xKj++lFB4QZMfbwNF5i6gzfwY+zltEC3BTt8dvAbfkJaTF+BHFivl8jAjfaQTvAwd3e/47qsheDyrmBlL1o0qoNulqMhFb0ygeotQsYCxQUVZdUBWrAf/KW0SdeQooRAZ1k/MD4MT0eCoecx5kz+N4l6Ki8CbwTt4iWoDl+aQt8wqRnNoIfgJUXLat2rJWWwA/MbPNKx4cVISkdYH/mNnEdLx4t5lFOEaGpNJEo8zsiby11AtJHwArmVl46DMk1XDsbWYvpzitQ8wsul1lTCr596yZFcI7Jun/AY+b2fl5aykykvoDq5rZg+n5RLzMVSE+R82KpCWAWZXGnFcVEmBmoyVtWc3YoGLWBV4FJprZwfN5bVAfhgEbAYUxWClYTG4TsxReFudlM7uFCAloFFvh3rGiGBpH5C2gRRgArAk8CGBmFcdVBlWxCjABP0kom2qTrtYFfl7N2KBiPotPKiSdIGmrnPW0AoMohWEUhZuAfnmLaAFWxI8ZkbSFpBPn8/qgPmwEtOctoo58D/hc3iJagMHA5gBy/iFJ8xkT1M6yeL3ziqg26WoS8GKVY4MKMLM9uz19lmLVGmxKzOxpvLBxkXiCUvJekBFmdkG3px8AT+elpZUwsy/mraHOjMFzFoIMMbMXgH26/ehui1qfmWNm51Yzrtqkq3eAv1U5NqgASU9KWio9fYwKXehB5UjavIA94K/D+zcHGSLpZ6l2Mvh98uE89bQKkt6StEDeOurIg8BLeYsoOpLWkTS66yleTSXIGEm/knRopeOqNVi3BM6scmxQGcdQKmV1OvCZHLW0Ck8D/5e3iDrzMNEqtBFcA/wlPd4e7zAWZM+BFKsM1MnAdnmLaAFeAX6aHvcF7s5RSyvxG+D2SgdVGxJwK3BXlWODyuieLLMX4SVrBAOAhfIWUWcWJsq1NIJBlOoLXoV7toPsGQX8PW8RdeQQ4l7fCDooFbCfSiSnNoqq1qNqPazrAAdUOTaojK8D/dPj7wGr5qilVRgJ7JC3iHohqTdwTsRmNYStKSXsbYF7/oLsOZgCdbrCDdbV8hbRAozEHUHg62yUEWsMW5CSUyuh2gk+C5he5digAsxsg25PxwPTUuu4dfAmAo+FIVJfzOwe4J68ddQR4c0+gowxsxO6PZ2Cl24JMsbM1slbQ52ZQSRJZo6ZPQDs3e1H7+alpZUwsx9VM65aD+vTeKxWkDGSHuvW2/h6oFf//v1fXHPNNa8fMWLEPYMGDbo8ynDUF0nbS7o4bx11ZDbeWSTIGEknS+ry2DwF3JGnnlZB0hhJbXnrqCNX41VhggyRtJmky9LTacCv89TTKkg6X9IulY6r1mDdg0i6qiupBtznJX1b0sbd/ukcSj2yr+zs7LzsJz/5ybBHH3108CuvvNI5ZMiQL+BJcEH9TfQaSwAAIABJREFUeAbvKV0UOoHn8hbRItyGtwkF2J/iJe81K8dTrBjt35HqgwaZ8gol59uCwD9z1NJKXEUVjXmqDQm4Hr8xB3Vi4MCBv1lwwQX32mabbdquueaaWe3t7UdNnz79Ajzzteto6EttbW13b7LJJr0AOjs7WWuttWzMmDGL5ia8mIhiJTxMBtbOW0SLMJVS+MWlQJG8fk2JpF7AzIKFRn0VD/kKsmU2HmoHXuN8g3m8NqgvDUu6Wp3Y/dUNSSNnz5697yOPPDLg/PPP73vvvff279Wr15ltbW0nt7e3X9OnT59JHR0d70m6dsqUKY/+4Ac/mPziiy9yyy23cOedd/YG7sv7/1Aw1gb2zVtEHemHJ6UE2XMwsGF6vBHeqS7Ilt7AaXmLqDO7AeGIyJ418cRmgCHA13LU0kocTBUJ5NV6WAcCQ6scG/wvnZ2dnbMGDvTqGosuuiizZs3qv/76639nk0026TV06NCOCRMmdFx55ZXD3nnnnekPPPDAPWuttdY6vXv3njB58uRDzSwKTNcRM7seP0UoCr2Jxa8hmFn3Ytgd6SvIEDObASyWt446sxDFajXblJjZLcAt6WlvUhv0IFvMbP9qxqmaU5QU3C4zi0oBZSKpHY9pWxi4y8zu6/ZvfQYOHPj4Xnvttewuu+zSftpppzFhwgQOPPCTFXGmTp3Ke++9x69//evJ06ZN29LMHmzs/6I1kPQFYB0zOz5vLfUgHZn2NbMp831xUBOSTgXuMLO7JPVLP+6P3y8/yFFaYZHUid9TN5zvi3sIkjqA6WY2O28tRUbSNsBnzeyHqfxfp5kVqQFFUyLpfOAKM7u3knHVhgQcCZxa5diWQ1LvQYMG3bXpppueffTRR58wePDgv/bq1WuPrn83s5kTJ078zFVXXfX7/fbbb+z7779v++233/9c55xzzqFPnz7stNNO/To6Ok5o5P+hxXiJYgXfLwY8n7eIFuFBSu2Tj2lra/t3R0fHWx0dHW8OGjToj5KKVCu0WZgJXJG3iDpzN7B+3iJagLfwOQuwAvBAjlpaibuoos18tQbr1cC5VY5tKiSNkrStpCUzfJuNhw0btubo0aM7TzvttN433HBD/0GDBp3e/QVmNm7ixIlHTpw4ccA+++yjPn3+d13bf//9WWCBBVhvvfU0c+bMz0oanqHmVmYC8HreIurIe3hMXFBHJKmtre3AYcOG3djZ2Xm2pGHAC0CXJ3XaKqusstTYsWPbx40b177qqqtu16tXryNylFxUDK/sUSQOxctHBtkyjlIFlVfwCkhB9rxOFTWqqzVYl0lfPZq+ffse1NnZ+eQGG2xwdf/+/Z/t3bv3FzN6q/ZBgwbN7t3bW7kPHToUM2tPpazWkbSbpO2Apdvb22cOGDDnMJrnnnuO6dOn09HRwcCBA6fRA+MSJW0q6VBJG+WtZR7sQCkQvwgMADae76uCiujo6Pjhkksuee6ZZ565y957733EgAEDHsBPnjYEaG9v32zjjTfu179/f/r168dee+3Vv7Ozc615XzWogiEUz8O6ERFP2Qi2A76fHg8lkiQbxSlU0cmtWoN1aWDZKsdmjqTBySg6UtLIubymP3DeI4880u/+++8ffO+99/br06fP71K8X725/6WXXhp/5JFHzvjDH/7AHnvsMXny5Ml3d3R0vDRo0KDRK6ywwiUjR468unfv3g/NmDGj3+zZcw5bevPNN5k5cyZmxrRp0/rQw7oXdXZ2HjdixIjb99lnn7OGDx/+1379+h2Vt6Y5YWb/z8yKlC3aH18AgzrS1tb2zeuvv77zgAMO4MILL2wfOXLkQni2+q0A06dPf+/mm2+eNn78eCZMmMAll1wyedKkSffnq7p4mNl7ZrZw3jrqTBisjeFSShVUOoFV8pPSOpjZlmZ2d6Xjqkq6amYkDens7Hx8iy22WGD48OG9rr322ulTpkzZwMye+9TrFhs0aNALEyZM6AdgZrS3t8+aOXPmYDP7OANdCw4YMODE9vb2JSZOnPhxR0fH9vvuu2//5Zdfnq5GVR9++CFnnXWW7bXXXlp55ZXneq2XX36ZCy644M1p06aNnFPtQUnrAVsB7+CBzZnWFJW0eHt7+9d79erVb+rUqb8zs3/P4TWdbW1tH7722mttiyyyCGPGjGHUqFEzZs6c2Zm1vkqRtAcwwszOy1tL0FhS17hNca/dv8xs7NxeO3jw4Df+8pe/LLbxxhsza9YsRo0aNem11167ATjLzB6V1GvAgAHnT5069SBAHR0dl0yaNOmwSKSpL5IWBH5lZnvmrSXoWUjaERhlZr/MW0srIek8fM5WFMpTVQKApOOB2WZ2UjXjM2b/bbfddsE//vGPHQDLL798+ymnnPLLfv36TZk1a9aWs2fPbmtra3sDOGvWrFnvnXjiiYvvs88+vc8///yZ/fv3f2bChAl1N1bBvQDAYZJW7+jouP+oo47qN3ToJyuDDR06lP/P3nnHV1F0ffw322+/6SEhjZCEQAiQUBMCoSogvUhHBESxIKACPmJBUKRJRwigaPShiqCCNKnSQwuhhZ4EE9LL7ffuvH/cJAZI4AEp6uv3Lz7Z2Z3ZZe/smTPn/E7Hjh3Jzz//jNDQUNwZx/rRRx/h1VdfxY8//mi02WwzAAQQQprDKX9yAcABAN20Wm3isGHDhAMHDljOnTs3lBDSmlL6WOpSE0K8FQrFqREjRug8PDzYadOmjSCEtKeU/lbqxRbhjFVR8Twve3p6AnBKd5UaBxL+eiL9mfibea/vBSEkAsBXlNKGT3ssf2UIIYxWq92g1+tb+/n5ySdOnHAQQmIppZWWyDQYDO927tx58auvvqrYv3+/KS8v7zSAQwDK5pCZJSUl51HqKSsuLrY8mTv5f4cVwF2L5L8zhJDTAHpRSv9NlqyEUgWOaDgLdRz/E4vAfDgTr1BaYXIGpTT20YzyX+7BGQDFD3rSw2asroUz0P2viKp69erl9+Xj48NwHNe6Xbt2TL169YggCEhLS6u5a9eu6VeuXCmZMWPGic8++6wGx3EnioqKHrtYvCiKY+Pj4/k7jdUyGjdujDNnzmDBggXo168fvLy8yo916tQJq1evNqanp58WBKGbLMvTQkNDbTzPM1evXqUmkylPFEXx+++/V7Zp0wZ2u50LCQmJKioqigGw7zHdUt+ePXuq5s6dywKAm5ubcsKECfOUSiXPMExtlmUdlFIrIWQZwzAXhg8fHjZ48GAxISHBolAojlit1gd+aZ8Al/Hw4TJ/RdIAvP20B/E34BkvL6/WycnJalEU8fnnn8uTJ09eAOduxV3Y7favCSE3pk6d2laW5ZsA0iRJGkcIGaNSqUwMw+yWZXkfpfRfQ/XxYgaw5WkP4hEzBqWG1L/cTulu5WFfX1/XoqIi1mAw7COEPPegThlCiDvDMB0kSWqpUqlGsSx70uFw/Kt+9GTYA6DK3auqeFiD1Q3OSeKpQAjxB9AfzrJqiZTSij/sDQkJCf8JCwvj9Ho93nrrLXTp0oWNivqjMmVYWBjCwsJUu3fvVmzevNlmtVp9KaVP5H5kWe7asGHDKp87wzAYOnQopk6dapk5cyb18PAQ3d3dDQUFBXJ6erpICFnNMEz3du3aaePi4hhBECTAGdJw8eJF9bfffkvd3d0BABzHwcXFRb527Zqiqv4eAYRh/rDtWJYFx3H1evXqxdapUwcsy7LZ2dnCvn37Rh08eNCyevXq7Zs2bfK32WxHiouL/5IxrACGwhnP9O7THsgjQoKzTvbfmlKdRF8AeZTSksfQhWfdunUhiiIAIDo6mmEY5p6xkZTS3YSQs6Io7tRqtYGtW7dW+/j4wGw2Y+fOnaGXL19+iWGYl2VZ/uoxjPdfnPgDWAcg9GkP5BHiB+Do0x7EXxGNRjPthRde8J03bx5vtVrRrFmzuOPHj/fFAyTe8Tw/luO4qXXr1mUjIyN5hmFw+vTpmJMnT74miuIXVqv1zTKvbanu/DCO4wLtdvseSuk/bXH0NPgvgEEATj3ISQ9rsMbA6Up/4tswhJBghUKRNHjwYKXNZqOrVq0aTwipRylNBwBK6XlCSPx//vOfyZTS9m3btr3NWK1IfHw8c+rUKf3Vq1d7AUh8EuOXZVlSKpX3bMOyLHx9fa3Jycmjb968abp586YAp/zGeFEUozp27Kht2bLlbR5AQgjCwsLQsGFD0rt3b0ydOhUHDx60Xbx4sRjOUIGHhhDSQK1WvwaAlpSUzKOUnq5wePXatWsnubu7c56enuyUKVMwePBgNjT0j2+Hh4cHevToIdSsWVP45ptvmufl5QVSSh9Y0uIJMgsAedqDeIR4AegFpxzd3xJCSJBard7NcZy70WhkRVEcZbFYVjzibvb98ssvZO3atQgJCcG4ceOMZrN5fYUxhHAcN4zn+WBZlgstFss6ALtFUdwdExNTs0uXLnxZPDoAXL9+XQwPD8f27dsXMgyTJ8vypkc83scKIUQHZxnuTEpp6tMezz24DOCfFu4yBMA2AP+K2N+BIAhB8fHxfOm/ERcXJxw/fvyuSmeEkEhRFEezLNsYgMNms/1qs9kWsCzbSaPRfPzGG29Irq6u5e11Op1ICEFmZuawW7duMQBeKw0T2hIZGdmsffv2ykWLFr0uiuJEi8Xyb8zrn6M5HiLs7m+XdKVUKuePGTNm1NSpUxkAeP311x1ffPHFNJvN9l7FdoSQngEBAV+OGTNGc6/rnTp1CqtWrTpmNBobPc5xl6FQKK6PHDnSPygo6J7tpk6dWpydnT0YQDyl9E0AIITUVSgUh6ZMmaIsk8i6E0op5s+fb8vLy0t3OBx7iouL36WU/v6w4yWE1FMqlb9NmjRJKcsypkyZYjSZTE0ppWcqtAkQRXEcIeSV/v37c5GRkVVeb9myZYaUlJSJsiz/ZXV8CSHPwxmjvfZpj+X/C4QQrVKpfF+SpLCSkpLtVqt1QcW4NL1ef2jChAmNJkyYwFy4cAHR0dEmg8FQh1J69RGPI06v1y+ilOrtdvt/DQbDRAAKSZL+Sylt26xZM7ZatWq80WjEgQMHSvLy8my+vr7imDFjlBWN1YpcuHABX3755TWz2VyjsiTJvyKEkHoKhWJ3cHAwuXHjhiDL8ufFxcX/edrjqoxSDe03KKXjnvZY/uXxI0nS2NDQ0I/XrVunzM7ORqdOnYyFhYVtKKWHAGdVSVEUV7Is26VFixZCSEgIJ8syzpw5Yz1w4ICDUsqNHz+e9/DwqPT6RqMRH374odlqtYYD0Hh6eh5MT09X8TyPlJQUNG7cuMBgMPxbmv5PQAiZC2A6pfSBigc8VJweIWQyIeTFhzn3z8KyrKTX68vHrdfrGYZhREKIorQAQO/SRKQAPz8/8X7X8/HxgSzLlUpfPQ6sVuvCvXv33rNE5vXr11FUVKTSarUTAFQ0uPdERkZyLMvCbrfj+PHjOHjwIPLz88sbEELQoUMH3mq1moqKiob+GWMVABQKxYjx48crJ0yYQN59910ybtw4pSRJwyq2oZRet1gsv/n6+pruZawCQFxcnEqSpL+6ZJQZwD+mjCkhpAkhZP39Wz4dSksT7+3atetrc+fOfa5WrVqfqlSqWRXb2O320H79+jGAM6QnPDzciscgrUcp3Zefn1+3oKDAr6Sk5B0AjCiK22vXrt12ypQpUrdu3fgmTZqgVatWePfdd9VeXl4ubdq0qdRYXb9+PZKSkhAaGgpJktxxH2mxUl3mTqWSfFXLhDwCCCE+er3+Bzc3t7NarXZ+hTKyAAC9Xr9y/vz5uuTkZN2lS5cUHMe9WZq891dExkOIkP+VIYScIIRUblH9P8discy5fPny/KioqLwOHTrcLCoqGlZmrAKAKIor/P39u0yYMEEZEhLCKZVKhISEoHv37kKnTp0UwcHBlRqrFy5cwMqVK6FUKtGkSRPC8/woABzP87TMQaRUKkEprdxb9C8PQjGcFeoeiIcNCdiMp7RVUVJSsuyjjz7qr1QqlTabDbNmzTJSSr14nr/l5eUlq9VqZGdnk8LCQmow3D/h32QygWGYJxaPK8vy8jNnzkw8efKkon79+ncdLykpwbfffou3336bcXFxaTRp0qRgQoi6NGZvu1qt7mW327F06VK4u7sjICAAc+fOxYgRI+Dr69wVkSQJlFLpUYyXUmq3WCwUpVvkFouFyrJsJ4RUA/AcAB2cWfXVvLy8+Ptdz93dHbIsuz+KsT1G9gN4LKoKT4nrAB719vmjpLZarQ5OTEwUGYZBfHy8smbNmiPhTDwBAHAcd3LhwoVx06ZN444fP46zZ8/yACrN3n8YCCHuAGIBFADYV8G729Pd3b3uwIEDpYqx2qXnoLi4GIGBgZVeMyoqChqNBoQQBAUFkRMnTjRhGCZOEIQQh8NRbLfbNwLYQymlhBCi1WpXe3l5dWjUqBGzceNGTqlUHpZleY/FYvmUUvrIVCsIIYJarf5t5MiR1Tt37sx9+umngfv37/dGhSo/DofDp2XLlgRwhvTUqlXLdujQoepwZvf+1cgGsPxpD+IRMwPA44jT/ttDKZUJIbtdXFzCHQ5HMaX0RNkxQkiYJEk9unXrpliwYAF8fX1x8+ZNhIeHo2vXrsjNzUVVkpFeXl6IiXHWVwkLCxOTkpJa2O327IKCAgQGBsoRERHMhQsXjISQhXeeSwgJ1el00ziOcy8uLv7GarUu+7vspjwlluIJJl3JcEqJPHEopYcJIe3ee++9sbIsU1mWw0JDQ3t1795dUZZsRClFcnIyEhMTYbFYypMoKuPo0aMWu92+rrJjpUUEnoezqtchSunOhx03x3GDeZ5fyLKsQhTFvYmJiQ1SUlKkFi1aSNWqVYPZbEZSUhLdsmULqV27NgghGDJkCLN48WK3S5cuDSWE7AFQcP36deOpU6fUHh4e2LdvHwghWLBgAb766isMGjQIAHDz5k0AuPKwY62I2Wxe+Pnnn79oMpmUsixjyZIlBoZh6vE8f7V27dp2nU4nZGVlWVJTU4WCgoL7xn0WFRWBYZi/+kQ8Ac6P4PSnPZBHBMFTkOkqjYFsAae3ejeltKoVtdVisTA2mw2iKJa9I7dJnRUWFg5YsmTJltmzZ0dwHGe22WwDy+LWH8E4aykUioMNGzZk0tLSmLy8vD2EkC6UUlmhUIxv37696k5jtQyGYWC3V35bZX+32+1IT08XeZ7/LCoqyuHr6yuZTCZ6+PDh4QaDIZcQ0hUAI0lSx1OnTqkUCgW2b9+O4cOHx0VFRTXauXNne0JIzCOUpgvT6/Vu06ZN4wghSExMVHh5eXW54752v/vuu53nzJkjHT58GKdOnWIBnKjiek+benCWCm/8tAfyCLHin7VofmQQQjrp9fo106dPV2ZlZclTp07tTAipSym9IQjCa7GxsdyOHTswbtw4vPPOOygpKUFkZCQuXboEQgiqsiMdDkf5sXPnzsFqtTaqV69e3Xr16ilZlsWlS5fk9PR0nhDiRQjhyuYzQoiXJEmHe/XqpdXpdMzq1asbZmdnCwDuMmz/pZzf4HQQ3HiQkx7WYO0L4CSASw95/p+CUnoAwAGe5z8OCQnpNGzYMEXFDwohBJGRkQgODsaOHTvQqVOnSq+TnZ2NQ4cOUZvNtpAQEgcgDE5N0H0Armq12v8GBAR0evbZZ6WVK1daRFGcYLFYHjj2khDSQKfTLd67d68yKCgI/fv3b7p79+7vjh8/fv306dOjrFarJ8MwVoZhklUqVaN+/frh4sWLaNasGbIyM0mwpzQ1z2Aj+QaH4sqVK46wsDAEBASUFxwICgqC1Wotezb49ddf7YSQui4uLj8WFBS89GfCAiilqYSQBvPmzXuhVMP2+UaNGrV87rnnBIVCUbYS4DMyMjBnzhwYDAaoVKoqr3fo0CGz1Wr9uornJPE8P0ahUNQ2GAx7HA7H8qe0Sp0G56Lsn0ItAKMA7HpSHRJC/JRK5dHIyEhFXl4e+f33388QQuIppZUtdC/Y7fZdzZs3j3/22WeVCQkJRofDcVtMeuk7XJ8QonA4HOZH+V7o9foF77//vnbMmDGM1WpFZGRky6Kiog4AfrZYLHVq1apV5bk1a9ZEcnIy4uPj7zp28uRJhIWFYePGjXBxceHGjh0LhUJRtgtB2rdvrz5+/Lhq1apV+2w22+uenp4OhcK5Mx8UFARKKdatWyf5+vrWKS4uroX71JYvVU/pAmdIyxpKaVW7YIX5+fl8YWEh9Ho9Ll++DI7jblvQFBYWDtu2bdvKmjVrtuV5PttkMg2mlGbdq/+nyCkAPZ72IB4xMwBsxRNwDBFCfADUBnCFUvpIHB2PE1dX19Fz585VDhw4EACY1NRUceXKlT0AzOF5PqpGjRr89evX0aJFCwCAWq1G/fr1UVhYCH9/fxw9erTS32tWVhaSk5ORn5+PM2fOYPz48YyHh0d5hnRkZCTTsWNHZunSpc9nZGSwcCbGAUBbb29v9cGDB5latWrBZDIpRFEcg38N1nsRh4eQbXuoGFZK6VhKaaVGx5OCEMITQl7r0qWLoirvR9++fXHo0CFs2rSJGo1/zMeyLOP8+fOYM2eO0W63rxRFcY+Li8vm6OjoOZGRkQtEUUwRRfEwgC6HDh1STZ8+nd2zZ4+SYZhPHnK4DTt16kQjIyOh0Wgwbtw4hSAITex2+8dms7maLMusw+EIUKuUEd988w3eeustLF26FB4eHnBTysg3QWNxsGqB51hJFIQ9e/bgp59+wqJFi7B582aMHj0atWvXBqUUP/30E5Vlmd21a5fX8OHDn1Gr1XtK5YAeGkrpZbvdPonjOKFu3brVevXqJZR9WMvw9fVF/fr18cMPP1S5gk1LS8Px48dlh8PxFSFkAMMwHxNCPiCExJduif7SunXrSdOmTRsYFhY25844xidIWwB3x2v8TaGU7qKU9r5/y0eHVqv9dPTo0e4HDx7Unj17VhMREREJpxRdZeOjRUVFXY8dO/b61KlTP87Kyhpos9mgUqmSlErlZZVKdYAQMpAQIlJKTY96EcMwjHdUVBQDOLOOIyIiAKAsyO2euwaxsbHYt28fzGYzcnNzkZ6eDpvN6Rzu3bs3OI7DrVu38NJLL+HO3wwhBNHR0aRz585qSZKGX7lyxfjhhx86du7cieHDh6N3795wOByw2+0E9/G2EULCFQpF8sCBA2c888wzc9Vq9UlCiLaytpTSG4SQpREREYY+ffqUtGnTxmg2m1++o01xQUFBD6PRqC0sLAymlP52r/6fMn5wOlH+MVBKgyilj12jmhDSUaFQpDZs2HCdSqU6I0nSy/c/q9Lr1Jckaalard6nUqm2EkJGEEKq9lz8CWRZNhcW/hGynJ+fLwOwAACl1Ga32xEYGIj3338f169fx9atW7Fr1y4EBASgXr16yMjIQHp6OmRZxtmzZ3Hs2DEUFBSgdu3a6NmzJzZt2oSXXnoJlcW5SpKEkSNHKhmG6V0hzjxQlmUuKSkJ69evx9y5c8GybJVyeISQ+oSQYYSQlo/2yfyteBXOkuEPxMNWupoC4DCl9MeHOf8REaXT6Zhq1apV2UCn0+GNN97A9OnTsXfvXktQUJBFFEWSlpZGLBZLttVq3aJUKocOGTJEERISUu6xtFqt2LJlS3RKSgojSc5QUDc3NzgcDuF/HRwhREeAAQqBiVYITNju3bvE/Px86PV6bNy40eZwOM5VaFtd4pkjWgV3R9wphaD1xvAXesHb2xufffYZevXqha2//IK09HRMnz4dCoUCderUgVKpxNy5c0tu3rypvnz5MqpXr45GjRrxy5YtCwAwkBCyi1L6QO73O+5H4nl+RIcOHcSqsqF79uyJ2bNnY8WKFfS5554jZUUPrFYrkpKSsGHDBpMsy6t4nj/t5+dHQ0ND1Xa7nSYlJRlLSkqKWJZ1+/HHH0We59G9e3eVn5/fq4SQcU/By6rBQ1Th+KtCCIkH0J1SOvpJ9cnzvE9UVBQLOGXaoqOjhYMHD1aZRFK63f0lIaQ1z/M/hIWFMTExMSqNRoPc3Nwae/bsicjIyJhJnFXbHqic3/0wm81rx44dG5SQkKC8fPkyNm/ezAGwl36EL6SmptYpNWLvIigoCKGhoZgxYwYcDgc8PDxgMBgwYsQI7NixA+fPn0f79u3vqlpXkaZNm5Kff/65odFoHPT555+/Om/evNqEEJc2bdrwrVu3Ntpstn1wVrKrEp1O9+GECRPUEyZMYACga9eu3ps2bRqEKrw8xcXFowkhP6xduzYIwE2e59tLkjTP4XCoOY7Lt9vtCXa7fQmlNPN/e4pPFQHOWPp/DISQowBiq9iReFR9EEmSvtu2bZuyefPmuHz5MurUqTOHELKKUlrwP15DLUnS90qlMrZFixZi9erVWYvFgiNHjsRcvnz5c0JIf0rppgrt/RiGGUYIYR0ORyKl9J7vdWUUFBRMfvvtt1unpqaKN2/epDt27DADUBFCBjIMc/zUqVON+/fvr/jxxx8RFRUFtVqNvn37lhug3bt3x6JFixAQEACWZREcHIw5c+YgPj4eKSkp8HB3L88HqQxRFBEbG8vv3bt3AiHkUwAlgYGBsiRJDIAy51GlYW+CIAzW6XSLO3ToQPfs2QONRrOouLj4nQe5/1IHVEeFQvEmnImnFrvdvsFmsy2ilF5/kGs9RdzxENKRDxsScBDAtYc891GhkiTpvoaMh4cHHA6HQ5bl8NTU1Gg4J7fLANJ4nr88evRoqaxcaBmCIKBz587MhQsXMHDgQNqtWzcya9YsoyiK9xUmJoREKAXmbYEjvZsEa+XGNbQqlchi5/kS+FX3BcvxIASsyWRWlsb4yUqB2T24ubeHv7tERrw4BG+NfxfJycm4cOEi3n77bUiSBFmWERsbi5CQEAQHB2PVqv8i+fRp6pCp8fLlyzLHcZdNJtMXPM8vKCoq4gBnLKvJZBRq+yrnXb1lFjQK7lCJ2TEdwNaHKGVXT6+2FkZ/AAAgAElEQVTXy2VxwpUhSRLefPNNTJo0CefPny/SaDQQRZHm5uaKLMselmX5ok6n6z9y5EhVhQpepFOnTurffvtNvX37dsiyc1h2ux2EkKcVtP4t/lnxYxlwVhZ5YhQVFa2eMGFCEz8/P2V2dja++uorG4DtQHlseHtRFPuwLOtis9mu2Gy25QAEQRB+HDFihDIkJKT8Wn5+fqhfv77m8OHD6nXr1u0jhNR5lIaU0Wj85tzZlA6tWrVqzDKgnirZrnRRLsgtsTH5Bgu2bdtmrV27tlDZTg4hBKIoguc5pKamwsXFBR988AFWrFiOgrwcmC121K5dGzk5OcjPz0e1atWgVqtvu4YgCAgMDJRuXLmYqCBmi8Uis0VmO6ZOmXzBYrX/AGDS/RZtLMtqfXx8ygfo5+fHwVn8okoopbtYlvVmWfb7mJgYtmnTpoJGo0FeXp5y//79E06cOPEWIaQzpXT3AzzOp8FFAJ8+7UE8Ylbh8c9BrNVq1TZt2hQAEBwcDK1Wa8/OzvaAM/kQgFPFA0AXhUIxihBSHUChyWT6mlL6rSiKP9epUyeqf//+UkWpxejoaPX169exaNGiVaXv0E5CiJ9CoTj94osvqhUKBbNw4cI3CSFNKaX3DHWphDy71bR24fx5/VzVHG0coBK0CuXkQqPdfuxqEZd8+rRU0LEjunfvju7du991souLCxx2C+x2O06fPg2O45CQkIB3J05AQX4B2j/77H0HEBYWxh34bf9ArYbvJjsoOXr0KLNkyRI0aNAAr7/+utnhcHxz5zmEECKK4qJ9+/Yp69ati9zcXPj5+b1BCJn9v85nhBBPURR/dXFxCWjdurW6evXqsFgsSEpKGn348OE3OI57x263z6/Qvp5Wqx3PMIxQUFAwj1K693/p5wkwGk+wNGs6HiLD6xGTnpubKzgcDlSlSQoAubm5YBjGKsvytYqajRzHfRQdHY07jdUyGIbBqFGj8Mknn9h/+eWXJJPJ9IPZbJ55rwFxLBmqEJiFA2K8+G7RHpyb5o+k+Y713bD410wczpTw1jsTmZ07d3b6cdOmGwaDYUZ0kMZnSJw3RwiBRmKxbsU0JN+0Ytzb41Hm4aWUosxYZBgGvXr1RkryaeJwWKnNAU+H3fa8wJHFNT0FR1xsM65lXCwOHT6Cka2qoX9Td63ZKmP7mbz4xN8yo28V27IJIe0eMF5J4Hn+vgZkaVEEu81mq5GXlxcIZ5Wla3AaI2dHjx4t6XS3O0MIIYiNjcWpU6fQunVr2q1bN7JkyRIDx3GfW63Wp2G0zgdwGEDCU+j7cVAM5yLtiWGz2ZZmZGTonn322VEAjCUlJW9RSk8SQuoJgvCTTqfTx8TEqFUqFbKysuwHDhx4hVJq7NChg6KisVqRJk2akGvXrqmPHj06GsDEPztGQoigFJkEBc/06VxPx/Rq7EH83SQCoNyiPJNegvFrbshr1qxG79597pprzp49i0MH96NThw4oK7fcsWNHfLV0Aca088bMXzJw5MgR7Nu3DyEhIUhNTcXAgQNRs+btilxqicOEzoHiM5GuIgAUGu348UROyH8PZr1mtsldCSHd7uWNysvL+2Ls2LEtRFFU5uTk0BUrVlgBbCy9TxWA/kqlcjAALaU0zWQyLQJQIknSstGjRysq7lSp1Wr0799fatiwIRISEn4ihDT4ixcOaAOnosQzT3sgjwLi3MJKfoRJdpVCKbXrdLpjb731Vv2xY8fy33//vWw0GovgVBUpG0sNQRB2eXh4uMTHx2vc3d1hMBhw8ODBOufOnZuh0+lwp7FaRkBAAAYMGKD47rvvFhFCajEMM2zYsGHq+fPncwCg1WpV06dPHwNg+P8yXkIIETnygYJnxneJdmd6NfIQ/Nxu35S0Oyim/5yG+fPmYeTLL8PHx+e246mpqUhcuQK9GrrD4BpcvvMRHh4OiZXRNkJfZUjbHc8ONb2VZOmQIA0AnL9pwKzPJiGzyEZLDEbGZrWmVXYLNptNqlGjBgDA1dUVGo3GbjKZypR2yu5TzzDMUFEUR9ntdk+GYYyyLK+22WyLRVHcEBsbW7Nz5863FSkJCgoSW7VqhTlz5kxjWTbX4XB8V5pM+tt7772nVKvV5J133ulICHmGUvq4yrQ/CBlwVi18ILWphyocQAhZC2dQ/1MVVlcqlaf79etX917anz/88AM9fPiwgef5NUVFRa9RSk0AoFKpUoYOHVq7qo9jGWvXrqWHDv5mpxQMxxCLwDE3jVbHPJni64rVmniWGalRsLMXvRCqDPKovBJqjwWXsH3PgfJ409CaNZF246ptwZBQvq7fH16XietuwLNOazRr9odso9lsxscff4ypU6eW/239ujVITT5myS2x/aCR2M4LS/u+esuE1CwT/N0k1PK5PUyEUoq1R7IdC3dkFFtscgyl9C5poNIg/CYAXODUSssBcFEQhOQpU6ZIglB1ZERWVhZmzpxZZLPZXCp6cQVBmNWsWbPXevToUeXJdrsdkyZNssiyvNlisayG8x174gYrIaQGgBJK6a0n3ffjgBDSB0AvSmmfpzyOUJ7nj/bt21cTFRVFKk64+fn5+PTTTzF58uTyRVplZGZmYtasWXe9X6XXd2UIhmoktoODUk+7g6plikKrnc6Hs4SztUJbUSUyOyKqq6M+7VNDqRSrXvQWm+wYv/YGLmRZEBvbnPr4+BCj0YiTxw4hN+cWOtXV4aezFgQEBmH48OHYsvlnZF08DIPRhCIzUGBhkJKSAn9/f2zevBnDhw/H+PHjy6/vcDgwZfL7mN8/ADW9bp87ZJli4/Ecee7W9BKzTW5HKT1SxbP1ANDP1dV1sMPhKCosLJxYqqjSmuf5H4KDg0nTpk3VKpUKOTk52L17d3FhYSHXrVs3RZmHrTJ++uknx759+740m80jqmz0lCGE6AF4U0rPP+2xPApKt3ytT0LvkxDiqdfrv7XZbA05jrtcWFjYr2xxQghxFQTh7HPPPecRERHB5OTkwNPTE3q9HgAwd+5cNGvWDI0bVy3OIMsyPvjgA0NxcXErlmW7jBkz5t0ZM2YwADBr1ix88MEHu4jDXMgS+ADgAeQbLPJOu0yXVZx/CSFEITCLvLTCoAVDQlXumnsrKP54Ihdzt92Eq4c36tSpA1mWcSHlFEyGIozv6INgTwkvLL+KT6fPQu3atfHaq6/AlH0NSoGghOjw+pi373n9jT+sh4/tEl5v53PXses5ZryZmGosMNoTTFZ5TMVvmE6n+7FVq1Ztx44dK23YsMG2bNmymyUlJa0A/E4pNRNCGvA8v7NWrVpiixYtlJ6enjAYDDhy5Ih13759qFatGh03blyVYXlXrlzBkiVLMi0Wiy/DMO+PGTNm0syZMxkAmD9/PiZNmrSqoKCg3z1v7glACGkE4PiDLsoeysNKKe1NqnpiT4jSbcWJq1evXuPr66t0c3O7q01qaiqOHTtG1q9fr164cGH//fv3SwAGAAClVLrXh7EMpVJJ+jfz4ofH+8Bsk5WXskw1Vx3K+vTw5aLPVCK7ymiV3wRQTyUyny95MUzh71b1NVmWoCz5S5ZlgNrgreP5jUnZOJNugNUuI7vIhuPXSjCgxe33I0nSbcYqALi6eUCvFkSzTe7z1UvhxFPntAWDPBUI8qzcaCaEoE8TT1YlMroZP6ftLpUDuVX6/xmvFtm3RI60ifBTW1xVHOuQKc0stMqXskwcw5C8pKQkn4qG9J3s3r0blFK1TqfbRQjpSSnNAQCe55+JjIy8Zwwwx3Fo1qwZ/+uvvx6nlD7NMqLRcCpg/CMMVkrpmtJF5hOBOAXmawFIqbggkiTp83bt2qmjo6PvmjsKCgrg7e19T2MVALy9vcs0htvwPP8sy7JuNpvNyLPUT+BI2+ahOrlxDa3yywP5aNwsFjIFdu/ZuxzAFzzH/GJ30KEA8pQCs7pBgCb6s77BCpa591SmUXBYNLgGktNKMGHNHpIs8IisrsQL0WpIfHV89FMmEpatgFarxeDBg8HZDWgSpMAVC4O8IiM8ff3g7+8PAIiLi0NeXt5t1z916hR8dPxdxioAMAxB94YejLuG105ad3UbIaQhpfRS6XMWAHRTS+x4kSN1tArOyssltMTqYCWe2cKxZL0gCANGjBhxm9c6JCQE4eHhmmnTpqGqstVlNG/enN29e/cAQsgoSqmtqnaEkECGYV4AQGRZ/ppS+iQ9+tXg/M3+IwxWSqmjdBv+SZBvNpv3qFQqh8lkOo0Kmdssy75cp04drVKpZObNm4ewsDCcP38evXr1Qt26dZGXl4f7OXwYhkFoaCiSkpI6MgxTc9GiRXTz5s0ICwvDL7/8AjeF3HhgjK/KSyeAZwmKzA6sOZTV/Foh+7Fep8spLCoaSyn9VuDIODc1P2jZ8FoqtXR/O75zAzc8W9cFc7am0593bCXdoj3wRgsNIvy8sC05Dwu2pUNiZEyf/C4clMBHQ1HDV8KuswWwUSuuXLmCMk/onZSUlODYkaNYOaLyuiUB7hJWjgxXDks4PzyryJoJp+oMAKCoqOijnTu2B+/ZvbuW7LAzIrW4MQo22WSVWYXA/MzzfPsBAwZo9Ho9MjMzIYoi/P390a1bN6FM+eBepldQUBC0Wq0qOzu7FaXUUlBQ4EBpcn1BQYEsy/IT05y/D53xEDJ5fybp6mc4Y1mfKIQQQaPRfM2ybC+WZa1Wq/XnGTNmdGzVqpXQuHFjrrRwAPbv329NSkoStmzZglatWqFOnTpSeHh4N0JIGwCpCoXiUkZGRg0/v3sXucrMuI5moQqIPAORZxAdpEF0kEaVU2zDwh3p/XefK2hOgJzRz/hVaazKMoVMgYFN9OjepRNGvPwqDuzbDVEugZ0TseeyDUVqf1DCIPXGRThkoLj49vAOo9GIxMREvPTSS+V/KyoqxI1sI+YPDi03Vv9XOtV3J8lpBv2WU7njCSGfKAXmF62CqzUg1kvVMdKNqCS2XLyWUoqzGQZ8eyBT+OGHDfD19S3/AFckKSkJ586dQ0pKCjNv3rxmiYmJq+DMuAcA7l6hG2XwPE8IIfctQPCYCcU/qHIOIaQ9gChUmDgfF5IkvaLVamc1bdrUdvDgQV4UxdctFstyQkg1nufbxMbGVirpUVa97X7cunULLMsKSqVyQ7NmzRQajYbJzMzE8aSjqO+vxn+6+iHxwC306N0Pi75YAgB4+eWXkZGRwaecSe78+82MK2ar/TWNxLad0rvGfY3VitT1U+O7V2rh+QUpGN4iAFdumTFx7RWMfnMcevd2ijBMmzYN6xZOwvjO3pi5+Qaeq+eGOTuzkZCQgI4dO2LKlCmoKJN19epVbPx+Lab1uvc8FBemx4j4apov92UuB9CSYUgPkSMrgr0UTKMgjUYtsQjxVopNazrDbVIzjap31tx4sXmbjkxlRkVhYSE8PDxwr90SANDr9WVb1EOUSmU3hmFcHQ5HmtlsXgJgF6WUEkKCFArFieHDh6tZlsWSJUve1ev1qTabbZ3RaJx8D/3dR4UbgPDH3McTgxAiAfgeQMfH3ZdGo/myXr163V999VXlmjVrWu7YsSOWENKcUkpZlh3dvHlzxYoVK3D06FGEh4fj6NGjaNOmDSIiIkAIKc85qAqr1Ypr165JCoXi3bi4OMbf35+1Wq04duwYINsxsnV1VbsI1/L2u87m45ZFIbw4bDAMBoPnypUrEwkh1QWOfDB3YIjifzFWy+A5Bm938icOmULiCaq5CHhhyTmEVlNibAc/RAdpbjP+dp3Nh4+LhNxiGxISlmLkyJfvKgpSWFiIFQlfoHu0K3xcqtZ31yo4LBwSquqzIOUDQsh/AdhVIvO9WmTqBnlIop2yJMBNxb7Wyl3truGRW2LD++uv9eA8w0lBQQG2bt2K+Ph4JCYmomXLloiNjUVBQUGl392KEEIQGBjIZWdndxdFse53333Hbty4EdWrV5fPnTtntFgs0+9oTyRJekuSpNcAWAoKCt6mlG78nx/yw9P8YU562FXcJVQIyn6SqFSqDxo2bNhl48aNbGZmpiImJqZjTk7Oq7/++mur7du393A4HAqe5/MdDscmlUo1sEGDBgLg1ERUCJwUoFeuv5ZjFmW7+fKvv/5qatKkiaKqFUtubi4uXLqKVcU6ZBQ6MLS5BzjW2dZdw+P9boGit+5mjVWHbtWMDbk9LvNchgHrj2Zj34UClJidXm+RZxDoIWHv2nnwULM4kG1Ej959Ua9ePVRM6Ni8eTP279+H6Ojo8r+xLHvbis/hcODwocNwUXGoU/323IoCgx2JBzLx2yUjbDLgIskIdJfQto4rGtXQgCn9SPeP8RI2n8x5ScEzvbtGu3u93q66wNzxATdaHJj4/U2kZplgsdi4JsFazJ83D3UjIx2xsbGsWq1GTk4O9u7da7p+/bp06NAhEhoaivfee49fvnx5HHGW8E2VJCn52rVrIUFBQfeUUrt48WLJo84Cf1AopVPv3+pvRS4eUSGJe0EIUfA8P+fEiRNCjRo1FBcvXkRERMQiQshKAJG+vr5mSZIqneWrVauGwsJC5OTkoKrEvoKCAsyfPx8dO3ZEXFzcbWL+Xbt2xYb1azH62wsI91GhVo3g8mPBwcEQRRGTJ09Gx/attAWFxcu7RrtzEv/H+Q6Z4kBqITYdz0FGngUFRqeN5akT8EJzbzQP04NjCXRKDp3qu2H2ljSkZprQs6E7Ui+cBaUUhBBcPH8OqlIbMMxbieggDWZ7iJg4/m28+eab8PDwQMuWLXH8+HGcTDqMa1ev4cPufqjtq8KxK0UoMNrhkAGNgkVtHxX0qj+m6J6NPJllu39vLHDMhxqJfWf2gBDFkasG7LxE0alLV8zftBEpNy0Y1sITWgWHErODadSoUaXPkud5mM33d7Zcu3YNACQ/P7/PY2Nj1RqNBjk5OU337NnT0WAwpBFC2guCMPKVV15Rz5o1iwWccewXL14MT0tLG5eSkuIC4PX7dvQnoJTuh7M63T8FCiDpcXdCCOFYlu27efNmVqPRoFevXpK7u3sDAH6EkFuEEHdXV1coFAqEhzvXAw0bNoTFYoHNZkNAQADOnTuH5s0rtz0opVi5ciWqVavGvvDCC2xFpYyoqChkZGRg9pJFkHgGcWHOMIPNKUZQhse5c+dgMBjg5uaG7MyMqQFuks3X9fap48otE74/lo1zGUaUmO3gOQauKg5tI1zRPsIVkuD8fT/f1BMvr7iATcdzMKqtL55rUPn84qEVIHAMBjf3RqR/PqYsXgRPL29ERUeDZVlcv5KKs2fPoV8zDwyK8cCvZ/Pxe4EVJqsDSoFFdVcRMSG6chvBUyfgufpuzA9J2e9xLNNtQIy3PjVH5jxrxeDNsW/j+/XrMHbVCqwYGgQ3NY9ruTYyuFsMvvjiC6SmpsLX1xdXr15FeHg4mjZtCpZlyyXzqsJgMODixYuip6fn8NatW4v+/v6wWq04efIkpZTyPM/3AFD+feM47kUPD48Pu3fvrrRYLEhMTPwvIaQlpfToPTv6k1BKWz/MeQ9rsP4G4KmISEuSFD9mzBiFRqOBRqNBnz59uEWLFrmazeYhKBXyJYS0EjmyQc3LqBMehsiI2jhy9CimdPdlogI1OrNNxo4zeXU+35Ypb9y4EV27dr3LzW40GrF8+XJ06vQcJk6ciDFvjMJXv93C8BZ/KPMQQvBSKx82q9CKZbtvYnznAJy4Voz529KRZ7CjR0MPfPNybbhpeBAAxWYH9p4vwNojt/BbqgMDBw1GZXI57dq1w8GDB3HmzJny4yzLIjQ0tLzNrzt3wM9VQHpOMRZtT4cMAqvdgcwCK45dLQbLi3h99Jtwc3PHlMkfolY1BvO3p8Nsk9GjoQd6NPSAt06AUuSUz9V3k15rX73Sd+HL33IQVC8Ov323GkVFRYht0hDvdFRi+d4z8rJzZ0sohZFhmFtGo/EnpVI5Xq/XcwCwZcsWuKhFPqKmYl5ymoHmGy3GXbt22Vu0aCFU5WnNzMxEenq6WhCEL3U63fNFRUWDKKX3r6/7iCGErAKwjlJaaQW0vyE34IxDftxoeJ6nQUFBAJyi+qXeORXuI2HC8zwaN26M7du3o0+fPvj999/BcRy8vLzKf5ubN29Go0aN0LLl3fKFPM+jV5++WLp4AQSmBDM/+wT+/v4ghGDWrFlYs2YNjEYjVCKLHi29+e3J+RjaohocMvDfg1lYfzQbbmoe3Ru6Iy3fhh0XbejZqw+2bduKuTszMfuXNPRs5IEBMd6o5aPEhmPZWDa8Frx1Al799iDi45pBo9HgxLHDWDwoEAAQ7quCTsnBx0XET2+osed8ASb/kIbDOzfBXcuhU00V6rasgS2n8vDxhmvwdRXhoeHBMgRFJjvO3TSieagOPRt5oE51FSSBQf0ANXc2w/CfL18K51zVPF775jKuXU+Dl5cX/vPe+wjwr44BzdxxLceM6r7eVXpQvby8YLPZkJaWhqp2mbKysrB06VIMGjQIkZGRFaUNSIsWLdTbt28P2bFjxwEAGxUKRbn1r1KpUK1aNXzyySfKqKiofnjMBmtpjHY3SmmlOr9/QxwA1j+BfmRCiFxYWMhqNBqYTCZYrVYGzmIFdgBErVZDEAR89tln6N+/PxYtWgR/f38IgoDY2FisW7cOjRs3htVqxfnz58HzPGrXrg2e55GamoqsrCxMnDix0sRoX19f9Bs4BHPWrETzUB0IIcgssKBv3xcwe/ZsUErRtWsXZJ4pYi9kGtmr2SYEeShwILUQ3+zPxI0cMxoEahAVqEaDQDXc1QJ+L7DixxM5WLg9HR3queGFuGpwV/NwyMDr7as2VgHAS8vDtXSB2KaOC+LCtHj5y4s4umcrompo0NxTwBuNg7H9TD66zTmDYE8FanopoBAY3CqyYs/5Asz4+Qa6Rruja5Q7PLQC2kW4CD+dzBk25tnqeK6BO4n/5BQKDydCoVCgSZMmWPXtN7hZYIGPXkR+iRkuLi4QBAFlSZBlv0273V5epMTbu3KJV1mWkZCQgIiICKZnz55ixQV9YGAgGx8fz86dO/ddnufzbDbbYgBQKpVDDAaD0mKxwGQyQZIkhcFg6A7gsRmspTHaBvoQ5eMf1mBdDOAzlMrUPG4IIbV4lgwWeSaIcILvunXr5E6dOjElJSXYunWrDRUqbjEM6a4UmMTpfYOVDWtocTbDgOyiNIx6sQY8dQJMVgc+2ZyFvSnZ0Kok5tSxg7h86RLatmuHgIAA2O12JJ8+hb17dsPV1RXr1693fvTmLEDfHp1Q11dERHUVVKVJGoQQvNq2OvouTEG4jxKLd97E25380TJcjzu3G3VKDp2j3OGh5TFjRyHq1KlT6f3yPI/hw4dj0aJFaNe2LZrFxMBqtWL58uUYPXo0dv26AxfOnEBYNSWu53C4YPOHu4cn8vJycerGCbhpRXTo1h9TpzrrHCiVSvy4bAq+eTkcyWkGfL0/EztT8tGhnisC3CXm1Xa+VXo9b+RTjH5zAFiWhYuLC57p2An5Kd/jm5HhfJfZyaLZJjcgQBOBIytquLE0MqI2qvt4IzcnGzP7VCch3kqVLMvYe75APfOX3x0rV67EkCFD7prACgoKsGTJErzyyivkvffeU4wYMaLDrl27FgAY+lAvzZ9jBh6iCsdfmJ4AGgAY+Zj7yWZZ9vK4ceNCXnjhBX7p0qV2URTTrFZrAwBFGRkZotlsrjJOtV27dpgxYwamTZsGtVoNo9GIgIAA9O3bF3l5eTh58iQmTZpUZecMwyC+TXts3fAthsW6YMb7b+L3Qhv8fP2wa9cuLF28AMObadGhniu2ns7HbxcL8f2xbFjtFNOer4FaPipQStFuRgqOn0xGSEgIioqKEODngw+7BGDVwVtIupoKm4Pi7U7+qFEaJ754UAAOpGbDas9CXBsPzNr6O05dL0ax0YoATxUGx7ijTR0XxIe7gGcZLPk1A9N7B2HxzptYtCMdHeu7YcmwMNwZUlRotOOnk7n48HunMftetwCkZBi4eYNC4eMiothkB8MwcHV1bqm6uLg4vTB2GSxx7sJUBcuyiI2NxZYtWzBgwABcuXKlfFFc5gkrC6eqLKmVEIL27dtzGRkZ7qdPn7bNnj3bqFKplCzLks8//xzbtm3D9evXn1QZ5v0A/soqBg+KDsBOOEMdHhuUUlmpVH7UtGnTiQMHDlRs3LjRRgg5AaA7gFxRFM+fP38+/MUXX8TXX3+N6dOnw8/Pr7wEeEhICLy8vLBw4UIUFxcjJiYGubm52Lt3L1566SVs3boVLVu2vKeKT0hICAinwLYzeajhoYC7Rij/LhJCULduJPT5x1DXT4W1h2/BWydi/dFbeK19dey6YEI21cPLry6m/LQFU7r7oGW4Hi3D9biZb8G3B7IwfPl5tKntgkbBmkqN1SKT8ze2/WwJbuYZwbMEw1p44Zm6rlCKLL4YGoYec87g+UZuSMkw4LWVF9GhnhuWDA2Dv/vd89ilLBO+P5qNAYvPYkLnABxMLUS3aA/SNdoDlFKoFAJSU1MRGRmJnJwcFBQVQy16g2WcK3pBEODl5YVXXnkFgwYNwtKlS1GzZk2IoojmzZsjISEBMTExMBqNOHnyJDiOQ6NGjaBWq3Hu3DlYLBb07NkTlUnw6fV6DB8+XDl37txPCCHLKKU2h8PhMXr0aEyePBkA8OKLL+LLL7+surTfo4HiISvTPaxKgBaA+TGLGjMAuqsldjyliOga5cYFuCt4mcpYfawYBjsLg9EEhtDUEoOpO6U0hRDSTMEzOxcPDVPcmR1fxqytWSC+jbBsxUqcO3cOHZ9pi2aBPHaeN0LknHEvUQEqeGkY/JahQMq58xBFEQkJCfjovXfgqbDjcpYJ7eu6okcjj/KP1itfXsCVWyYseiEMwZUkT1RkwfYM5Gob4Jln7q3Csm/fPvz000+QZQd0Oj2oLMNQUoy4Wlqk5drgWj0MXXv0gij+sVVitT/gdkEAACAASURBVFqRsHQJGjdpisTERADAvHnzsO2b6Zj0nHNlRinFF7/exIZj2RjXwQ/PRP4xL8oyxdGrxdh6Ohe3imy4WehA7ahm2LTpR+Tl5SEupjHebKlCk2AtZm9Js244dmuvSuRiFgwJVdb0UiC32IacEhv83UQoBBaFRjvGr8vAtRwTLBYb3LQCiswELePj5aCgIMbhcODUqVOWw4cPM4GBgY6LFy9KgDOEIz4+vqCwsPAdADsqSpI9bggh3QCcfkDZr78spTFxXFVi1o+wHwKgh1ajXgxC3EUWdg+lw+SQKc3ItwoOcI5nnu2gio+Pr9TbSinFp59MQYeOz+HLL7+ExWJBTEwMCvNzcfPmTbh7eOCtt8dXdmo5sixj3Lhx8NXzEDgGRSY7TFYZId4q9GzkjnZ1ncbdusO38M2BTDQI0OC9roHl23iyTBH/6Slk5+RBq9VClmX4+3pjTm9PVNOLmPbjdew+n49NY+pCKf6x3k/PM2PCmuvItXBo06Yt6tatC1mWcePGDRzYtwuyMQ/zBgRCp+DQe/4Z+LtJMFplTO8bDJ3y3n4Dh0wx55c07LtQCD83EfMH/7HT8s7adHiGNcXgF4bhqxXLkJK0D72jtFCLLD7elI4J/5kEjUZT6XXtdjtmzJgBk8mE+vXro6ioCEajEcOHD0dGRgYWL16EDz/8qEyqrlKuX7+OhQsX5lmt1v+oVKqeDMNE6PV6XYsWLejGjRtRUlLSh1L68z1v8E9CnBWH/CilWx9nP0+K0m+fjlKa/5j7IQDaiDyZZnegXrCHZAutpgAIwa0iqz3parHkXc2HGTt2HFuV0fn9urU4l3IaI18djY8//hiUUjz77LM4duQgzBYb3hj9ZpUewTJWr16N5OOH4akVUGC0g1e7ITExESUlJRjx4hBM6+kDTw2P5xemwEsnYN6gEKTnWTB3vxWnUy5AEASsX78eU8aPwheDbt8tWH/0FhZuz8AHPYLQspa+/O82u4zle37Hfw/nolatWoiJbQ6VSoW8vDwcPXwAGTeuYXa/INTyUSJh100cu1KItDwb6gS5w1vDYEiMG+6lVHDhdyPe+u4Sis12fD+6LlzVzra/nM7Dgl25iI+Px28HDsJbaUMdHxE6BYd9lwyo06wDIiIisHnzZmRnZ8Pb2xsdOnQor5K3Zs0anD9/Hg6HA4MHD0Z+fj62b9+OUaNGISEhAXFxcWjSpMk9n/fMmTNL0tPTPwFwRq1Wvz116tS4N954AwAwfvx4zJo1a5rdbv/TsoFVUZqj8jKl9IHL3D+sh3UcnMLGd0kiPQoIIaJSYFa7a/i2I+J9VPHhevDcHyuGLlEeuJlvgdEqY9+FgqBvD1iOsAx5SS2yE995zr9KYxUAUn634Ku5E6HRaNC4cWPEt2yBSPYsqulFpOVZ8G6XAHy66Tp+PpEPD1cNIuvUQmhIMA4ePITZff0RVk2JW4VW/JCUg9e/vogmwVq80b46LmWZMKt/zfsaqwBgc+C+yQ4A4OnpiXAfFT7r7YfktBKsPZKNmrVcseFYNqoHBqPX8/3uWkkJgoCBgwZj5swZeHnkSLh7uGPxgnmY2ad6xeeLl1v7oMBgw46UfDwT6QabXcb6o9lYfzQbIs+gW7Q7nomUwBDg64OnoNVqABD4uYqg1Pl8gz0lQeTZtsuG10L10vgiNw2Pivqz83/NRkz7nkhauAgZGRlo2igKvepz+G7bVkoY9iohpMRqtW6x2+3G/Pz89/Py8uDq6opt27bCTcXoGvu5zNl/oZDRKLgjpUUPfnnc+oQA2gPIxxOI+3xCtAbgCeCrx9UBISRIKTDbdErOe0CMi6qDM3GPh1OqBnYHxfdHs7Fw889wdXW9y2vncDjw48YNIFRGx44dQQiBJElo3boVjvy0HCO7+2P5kfuvjwkhYBmCb0fVgVgao3rlltPrMePnGzh0uQhvd/JHdokN3jrxNmMVcGblP1PfC717dMWo19/Exg3r4a6k8HERwTIEQ+K8ceKGEYMSrsBVzcNDRZBfYsGFTAuq+VbHxLGvlP+2N2zYgLi4OLz86mhs2rQRbyQex9cv1YSPi4gCox2Lh4ahYhxtVbAMwdgOfgABTlwtgc0ug+cYmG0yYoJEfLV7O3bv3gO96EC4t4Ckq8W4nmMGIcCuXb+iS5euVT4rh92GYcNexOzZnzu9y+3aYsZnn8JkNMDLw/2exirg1Np0OBz/x917B0ZR7u3fn9ndbE1PNj0hPfQSCL0IIkiRKqCCFEEQFRR74ajYFY9KUY8iSBMpUqUjRelNOiGQkAAhbdPb9pn3j01iQjaknPd5fuc8159zz94zuztz39e3XV/v5oHaT7UqgaJyK7fu3lGsX/vzJaudL4Cd9X7Bfx+xQGfg/wRhBTyBj4EmtUltCARB8NQqZbs9dYpWE7oH6Aa29RZ0KnkNPpBfauXZlTdZuvRHJkx4ssazYLPZOLD/d65fOUerUM+qQkJBEGjRvDkuOWe5eJcGaZrKBYmn+wYzrqtDE33j6VymT37MEUGwG5ELkFlkQaWQsWBCDH7uSpIyywkJDqp61yIjIyk1194W4pu5Ee6vY96WdFzk6fi6q9Br4crdUiySgukzniEqypHvfu7cOex2O1OffoYLFy7w/Ko1rJ4RS4CnkuQcC0HBwcx44yP+OnuGZ1ct46enItHVUQQWF6hl4cQYnl6aRFquCW9XF0xWEZtdxE1hYd+eHSREuhMboAMJDCVW0rJLSN+zm3bt2lUVcVaHJEnYLEbUMjuzX3uzShrviSee4NOPP0KukNdblAUQERHuWl6Y9U4zH7U5r9Qqnzv3bbRaLUajkcWLF5fb7fZ6GyT9m3ABJuLQO28UmkpYjThyXBoEQRAiVC7CLJkgTLDYJA9RlBQuCsGoUsj+KjHZ5wM7K0mIIAgKrVK2q0O4W9ePxkRqnC3ocplApWBwXKBW0beFl+LZFdd/tNhEWb+WXjXOrchX5dytUkpNdkrKJbZt3UpCQgK5ubmcOn2GQYM86RrtzqivLzG70IKXTsHGF9ugUgicTS2h2JjKM9OiqiwqPw8l0/sFMbFnAO9uSuXZFddpF6qjbVjNDjaSJHEto5zbeWbKLXbULjICPVWEertw8NZNoO99f7fbt9Jo5uOCh1ZBy2AdrUPKmfZAIIeSSnn44UFO3f7gaEk7adJkli75nqHtvXl3WAARenVVYUjF78zLg8MY8dUlrqSX8c3v6SjlMv4xIpw2oboaOb0Jke5YbKHY7BJ/XCvk099u80gHHw5cLeD9URFVZNUZbuXbeGviJGQyGaGhofTq1ZNg23leeChA/s3vd2+VGu0jtUrZrkAfVesIP0EWGx1BUIAf+bk5fP1YqBDqo9ZW/Ie9Vx/Njs8ptlyrED/Or/Oi/yYkSXr2f2ru/0ewUtFru6EQBKG1Ril7XikX2krgJkCZVZSSys3idzjaMkvVzm2lcpEdmdEvyG1sFz+5syJGhVxgbFc/2oTqeHntGnbt2kmPHj3RarUYcrI5deIokb5KRrTT8eX8T+nevTv5+fmsXrmSPpGOYoi7mTkYjcYqb4MzpKWl4eepqSKrAJF+Gl4ZEsbM/sF8tv02z6+4Tnq+ie+mxNUgq+DwZk7o4sm6U0l8+PozBLsLfDEmGJkA3+3PZNPZfDp17kyLlo4q6aSkJG4cO4pdgslTnqphiLq6uqJQKBAEgWHDhvPhhYssOZDJtYxyfp3dukFktdpvzJyBoTy7/DoHEwsJ81Hz2tpkovw0vDIwkG4xHrVSkE4mF/H2xmNotTr69u1bIzRrNBrZsG4NagV06BBfdY34DvEoDecZFh/O/P31N6KRJAmZAP+aEudRWeRSVG5j+7nc9muO5ywxWe0vC4Iw+H9S01iSpC3Alv+p+f8foVHREEEQfGQCT7mp5YMAb8AmSmSXmOyrgU2SJJmrneulUcrODG7nEzxnUKiqLqUMb1cXVjwdwxe7M3jvvXdp0aKlFBwcLJSVFHP+3Fli/DUsmRLFqZslvPXGa+j1evLy8vjpp6WMiXfHIspIvHKF+7VPF0WR69cSmTzq73NGJ/gyOsEXSZI4cLWQOT8nE+6r5qk+AfhXqOG0DXXliz2X+GL+fOI7duSNV1+ifYiSnGILPq6OPPBfTuTw05FcunXvwfAJCWi1WjIzM/nzj0OIwk0GPTywiqyCo+VqpepBu3btSElJ4c0Nf2G22NB7u7Ni9S9069aN8ePHc/bUcc7dyqVnnCd1IUKv4bUhYSw9lEnwSBUv/XwDvZuS5x8KoWu0e633ddZDwby8No3FixYy4cmJNTzTpaWl7NrxG/l3k2kd6lbVpATA28uTR9p7cuaWqd6iLMePbmNSzwD1uK7+aoBTKcUs+eJt7uabbRZzOUAUcLn+iZoGSZLKAefVoPWgqSkBgUB+9ZegjvOau6rl39vtUudH4n1lw+N9lYGef+utnUguZs2xrJKMAovZJkrzrHbpG61StiAuUDt10cRY7b2byf2QajAyY1kSX42PoVWIjqxCC+tP5rDzQh6tgnX0au6Bh0ZBfpmNlccLUKjdKCgspG2Imo9GhaFVyRi3+AqRfho+HhPJvdXydcEuSry2NgWzVWTRxBgEQcBosbP3UgEbT+dQbhZpHqRFq5JjsthJyTFhstjJK5d48+253Nv1qWpeu5133nkHyW5lbBc/pvT0Ja/UhtpFxthvk/jgo0/vq8cG8O6772AzlaJxkVNishHgqWJUJz1D2vtQKQ+yaG86v1/Jp1ecJ3MeDq31EjlDXomV2auuk19qY8crbWv8VrklVraeNXDuVinFRhvFFgUDho5g2bKfuHXrFt27dOLz0QE081Hz8OfnTYIgZA9q5xPw8mDHwnk330yR0UakXlNV5VkJUZRYsCfdvO1cbobRIna8N2RWoUs5BIiTCXiIEqU4urZsaUw4XBCE9cDi/6A2dv8WBEcLYFl9IcbKkL6rWj5XgNgxnf2UrUJ0Cq1ShtEqkpxtFNedyDGarGJmmdn+CQ6Prb/aRXbx9aFhPoPa+TTopbHZJTaeNvDdwWyaB+mI8VcxpK0XkiTx66kc/rhRjiiBi0JOq0AX/N0UnEwpxmiX0avvAPr1q7vAdOVPP9LTv5Anuvs7HRdFic+23+bI9UK2zmlbRVjzSq389lcuW87mYhclPLUK7KJEbqmVEC8Vfp5qbhYpmT7z+VqtVQ8dOkRKSgpTp06tcTwvLw8PD4+qnNAjR46wY/tvdI/U8NHYvzdKuyhxMrmYrX/lcjvPREGZFUGQ46YSmNQ7gAGtvasiTAevFvDjoQzySm288UgYD7SoaaDfi8xCM29suE16gY2Ezgm4ubmTm5PJxQsXeaClF+1C1ay7ILJ81RoKCwuZMP4JujVzISHKnS93Z/Dam2/XuUYBXL9+nZ0bV/HLMzG11iNRlPjhYIZ17YmcXJNV7CxJUvq9n69IL4vH4VW04ygOPHM/zVcnc0wCWkmS1Kie7P+pqAiZ+kmSdLcB57bSqWT/sNql4b3jPMV+Lb20HhXPrqHEyuYzhpIbWeWSBP+y2KT5QKFWKTsxtINPm5cGhTVYCzGvxMLsVTcko0USRnTypXecJzIZbDptYNeFPPw8VFhlGlxkEOsjYbSKnEwuRqHS8ubbc+vMWz9//jxH925i5dPRde5nF26X8sKqG3w5Ppr4cEd6i80usfWsgTWniym3gsxuwlUJpWY7cplAm1BXzmfYmfncbNLT0zGbzcTFxeHp6UlZWRnvv/8+7733Xg3jt7S0FEEQ0Okcqjt5eXl89umn6FxEgv29+fybFQwaNAhRFOnQthWe9iyyCs2UmOzIBQF3rZzecZ48Eu+LT0UKgNUm8siXF3GRy3ismz9PdPO7774tihKrjmaz4qgBLx89gQH+WE1l3Ei5Sd+WXswZEMTx5CK+/D2PTz79nIKCAj768AMGtNBitAnYfNswZOiwOuevbFKy8PEwYgJqR0+upJfx4uobRqNVnGW1iUvvHa/YI1oD/oAKh1rUFUmSGqwaJQiCF3BMkqRGS9E1lbCeBWZIknTmPuf0UrnIdjz7YJDr8I564X7ehGsZZbyzMbXMUGzdahPFUVvmtFVX/uH3wmITUcgEp4Ryw8kczt0qYWwXP95af5NB7XwYnaCvpZdmtYncyjORVWhh18V8UnOMPN03iEV70/nluVY1vDMNgckqMv7bK8wbFYFNhLfWp9A6RMfoBL8aMlIAZqudozeKWPpHNkaZB8/PmlUr7Ga321m1ciU+vr6sWLGCIQ/3p7NvEQeuFvDVhBgmLknhvQ8+rve+vvj0Qz4ZoScmQIskSVy4XcrG0wZOJBczLN6XmQ8G8/7mVCx2iU/GRtZLgKsjr8TK5CWJvPlIM7rHeJCUWc7Kw1mcullM/9Ze9GnuiadWQYnRzrd/5JOSVYwkSbQJ1vLuyGbo3VwYs+iylBDpLr4+NMypV64ufLnrjnn7udxL5RaxiyRJYoVO37MyQZgZoVfL48PdNDqVXGG02O3XMsuNF26XyuQyYbXRIn7trLPXvRAE4SHgsiRJmQ2+qf9gCILwBuAlSVKdCaCCIMg1Stm3nlrF+FkDQnS9K2Sc7oUoSpy6WczifXfLMgrMB0VJMgyL1z/50qDQRkdr/rxWyPcHMlg+ozlf7Urn2I0iRiXoeaSDD166mu+/KEps+SuXhfuynKprSJLEvr27uXzmKD9Nja4zVAeOze65FdcZ1M6boe19WbQ3nZ0X8ujV3BN/dxdc1Qp6xHgQrldjFyX2X8nnw23pvPX23KouP9Xx22+/oVareeihh2oc/+ijj5g2bRr+/g7ynJKSwuZffiK/xEirMMc8os3GndxyvF1dGJ2gx1BiY0eihWdnvciRw39y7NhxZAJ0DJExd0QE2YUWJv2QyKfjIqnUXG0ITqUU8dram8SHu9MpwpUHW3mRmFHGr6dyuJZpwt3dDZVCRnywDH93JSdTirmWZaJz1x4MHzHC6ZyiKLL0h28ZHGVhdILe6TkAKw5n2lYczrpVbhE7SJJUAiAIQlutUjbHJkrjwnzUFi+tArskYSi2CoYSqyiK0jcWu/RdA0lbHI7n+0SDf5D/YAiCEA3skSQpqp7zHlG7yNZO6R2gHh6vl1WXQKuONIOJ1ceyzL9fLigwWcUPIvTqz36e2dK1oU6ZSpitIuMWX+HjsZGkGkws2pvOsHhfRnT0dapJmlti5dV1qZTJvJgxY0YVEaxEYmIiv6xewfxxzWh3T3TyXuy+mMe6Ezn8NL0Fx64X8dn2W7hpFCjVOhAEukeomVwhO5mUUcaLv9xizONP8scff+Dp6UlISAj79+9nxowZ2Gw21q1bxyuvvFLjGjt27MDFxYUBAwZUHZv71usIog2dVkOR0Y6Pjw9qtYrsrExGtnPjgZZeeGgcz+7tXBPf/pGHocSGh0bB6wP1tG/myuiFl3k0wY+Jve6fy1sdVpvIm+tvkpxt5JkHg+gW7cHNHCPrT+ZwJrWEtmE6jKIKpRzaBbtQarLz21+5WFHw5ltv4+7u7nTe48eOcvnEPpY+VfejdTvXxJQlicYyszhakqRd4HB6yAQmaZSyV1QuMq8AD6XdRe6oEbhbYFa5yIXNZWbxn5Ik1SvHVlFTMbwpzYGaSlibAdmSJDkV8hMEoa3aRXb0s8eiXLtEOf/h7kWZ2c7zK65bys122bpZravePKtN5FBiIZvOGLh6twybKIHkEOZ9sJVXjcKnMpO9wpoReP/RSBp67V+OZ7Psj0zGdfVj2gM1W61dzyxn+/k8MgvNGC0iWqWMUB81w+J9aVatSvDnY9kcv1FISraJ90ZF0CW69rUT75bx+q/puKjUlJaWEeHjwvUcKz179aJt27bI5XJSkpP549BBfPR+nDlzBp1Ox3fffcf38+fSN1ZLlyh3ZixPYdacV9Dr694kSktL+eTD99n6YkvuFVvOK7Hy4dY0rHaJaxllbHqxDe6amoudKEoUltsoNdlRyAU8tQrubV+591I+2/7KZVSCnvnbbzOlTyBD2vk4JQvlZjtFRhubz+Sy60Iek3oFsPG0gdUzWzbIq3vvvT32zZXS23nmsYBGpRBWDW7vIxvb2U/trMNXdpGFTWcMtg0nc6xWu/SO1S79834tXwVBeBg4J0nS/xPptv+/IQiCNyCXJMlQx7igUcp+jNRrHvt6QrTWTVM/9zRbRd7ecNN4Nq1EtWZmS1lgtQ2r2Ghjx/k8DlwpoKDMhk2UcFXLaRWsY3SCnthAh4EmihLjFl/G30OFTIBPxkbdl2iCwwMwZ00qHj56evbshaurK7kGAyePH8ZNYeWLcc0AR9FDScWz661zoW2orkYe/InkIhbvS8fPXYkowVuPNOOtzRkER7clKjqWtb/8zKejg2kb5sr6kzn8meXFhElPOb2n3bt3Y7FYGDaspmejqKgIV1fXqlD82rVr+evsWdq2a0vbtu2Qy+Uk37jB6VMneLClB68OCmbi0jRW/7qdbt26IYoibdq04bHHHuOrL/+Jp4uZ2AANId5qnu5buyUkOIi7JOHUoL90p5R//JrKz8+2ZN6mVLKLrTzRzZ++LT1RKmob6WdTi3l9w20efOhh+vTpUyMFyWq1snXzRvLvJPLtxMj7pjdIksTra1OMR28UvWcX+Uankm+Qy+gztoufckRHveLe4pWUbCPrT+WYd1/MlwRYYLKKb9bzvrYAXP+ntSP/t1ARKQq+X6GpIAiDdCrZrwufjNXeq8NdF7aeNYhf7U4XZ/QLUjze7e8IhM3u0CDefi6XrCIL5dX2ueHxvnSK+NvpsvJwFoeTCskttfLl+GjqakNeCbso8fmOu+y8mE/r1q2JjIzEarVy6dxpykoKeW9EKKHeKo5eL6Kg3IbNLuGukdM21JUWwboa84xZeJmBbb3Z9lcurw0J44u9Obz3wad0iI/ntZdfIEaVxYwH/LiSXsbbW7J5aNBQbt68yeHDhxEEgQULFrB69Wr69evH8uXLeeutt2rca2UXykoHUnJyMt9//z2tWsTRtXtPPD09KSgo4NjRI9xOS+bzseE1iParG+7iGtqW6Jg4srIy2bljB2M6enDhdinfTo5tlEMIHOvjk/9KZPaAYK5mlLPljIGJvQJ5uK13lUpRdZitIu9tucXFTJj29NM1UjHsdjunTp1k9/atfDsxqt5am1Mpxby+LiXTaBFD5DKeksuEhV2j3cXHu/rr2jdzrfFd8kut/HYu1772RI7ZYhMvlJnFofdL2RMEQQsMbopsZFMJ61xgmSRJtaR/BEGQaZSy1DeGhoUObNuwEGElio02pvyQyCuDw+ga7c6aY9msOZ5NhF7DqAQ9XaPc0ShliJKDhOw4n8fWs7mE+qh4aVAoPq4ujFl0mQ8fjaRbTMO9DwA/HMzg2I0ifnrakTy+73IBG07lkFNkYVi8L9H+WtRKGeVmO9cyyvntXC6RfhrGdvGjd3NPzt8q4cXVySx8MqZWLmslxn6bzBeLlzBmzBiOHz/O4IH9eWWgPx9uS8fLTYWLXCDKT41MsmLxasXv+w8gk8kY9shQUi8ewWYTySu1olW7ENWqI6NGP1rn99mzZw9/HDqIVqVgcg8fHk2oKelhs0v841eHBbfu+VZVC1JhmY3t53PZfMZAicmOu1qB1S5SZLTTMdyN0Ql6ulTk31hsIoPnX0CpkPHVhBjiAu9foFGJg1cL+GBLGo939ePpfsFVxyvF27efyyOjoMJAUMkI8VYxPF5fw1v921+5fLHrdqJSLgtfNDH2voV2lcgqtPDsiqTy/FLb10aL/e26zhMEYRvwYV192//bIAjCEIC6qrXlMmFqsJdqwfLpLXT1EcbqsNpEnltxnc5R7kx7IIicIgtLDmVwKLGQ7jEeDGnvQ4CHEoVcoMRk5/iNIjafMeDnrmRirwB6xXkye+V1yi0i306OdUqa6rrugr3p7LpUTGygjkAPBYPbeCDhCFGeSS2hdYgON40Cm10kq8hCdsV7PKKjHn8PJXa7yOAvLtI2zJVPxkZxMLGAfZl+HDp8HEEQWL58Ocu+eIv5Y4L4dMdd5GE96NWrl9P7uX37NsuXL2fu3Lk1SN22bdvo168frq6uHDlyhAP79zNr9uwa+WcAJpOJ5Ut/IM6jjAt3LWzc/jvx8fFIkkTnzp2ZP38+p06dYsWij0jLKWX1zJY1PFq3c01sOmNgf4WBIEoSGqWMFkEOA6FXNW/55B+uYhchyk/D28Oa1SDxzpBRYGbOL2nkG6Fbt+64u7uTl5vD2dOnad9Mx7vDQriTb+JyehnFRjsucgEvnYIesR41vORX0st4bkVSjiAIht5xnlFzhzdT13ftgjIrs1feKLtbYP6t3CKOlyTJaVslQRCmAyGSJL1z3wn/S1CRcjdNkqQP6hgPVSmExEUTY3V17TV1YfXRLHZfzGfljBbYRYk1x7PZdNrxTo7opCfKz6ErWm62k5hRzsbTBiw2kbFd/Bid4BDL/3T7bVZMb8G9Qv73Q2qOkaeXJtE8xI0IXzUJEVrULnK2nDVw+mYJPWI98HdXVmkQH7lehLdOwagEPf1be6N2kfHBllQOJxXx49TmpOWa+D0niD37HVlb586dY9ywh1g1LZzfL+ez6bqGqLhWqFQqVq1aBTg8qG+++SaTJ09m3rx5zJw5swapO3fuHGq1mhYtWpCdnc2CBQuYOHFijc50lXB4h5fz45Rownwd9SG9PrxAYFAQ48eP5/DhwyRevUpZSQHT+wYzvke1fFSTnZ0X8hwGQqGFMosdncrReGBYvC8D23ijUTrW4c1nDKw/mYOLXODL8TH3VSaoxJpjOfzwRzZ6Pz9ioqKwWi1cuXyJQA8Fbw0JwmoXOZhYSGGFM8FNLadNqCt9mv+9TkiSxJhFV0pziiyb3bWK0d9MitU2cyLjVR12UWLxvnTLljO52UZHClCWs/MEQQgCtkuSdP++0E7Q1KIri6+M0QAAIABJREFUv/t89kEfVxevAW28G2dO4PCaTukdyIaTOey9lM/tPDOLJ8XWsuLkAgR5qXi6bxBTegey80Ies1feoHusOw+08KqTrJqsImariE4lrxXufPqBQA5dLeBUSgl7LuWRnG1k2gNBNTpXVKJvSy9H8VNiIYv3pfNXWgkZBWZmPhhUJ1m12SXSc4sZPXo0AN26dcPD3Y3YQC0fjA5jycEMfpwWx+fb73D6ZhkeRVdpFhqEXCYjzFPgH8ObsfdyPk/28GfdiWxWHjtJcEioUwmLy5cvc/DAAXbv2YNer2fwwP6EeBXVCCEq5ALzRkcwfVkS+y4X8GArLxbuTWfXhTx6N/fkg0cjaVnNwq0sXltyKIMvdt7m1SFhRPlpkIDPH49uMFmt/P3KzHaW/ZnJlD4OT9G94u0xAdqKhVPkWqajKKzcLDKmi55HO/sR6KlELggtfngqDmdeVWcI8FTy49Tm2on/SnzRRS5LtNrF1c7OkySp7iSg/0441zXC4V3VqWTvvjmsWaPIKjgk4OaOCGfG0iS6RbvzZkUazrrnW1XJuFRHXKCWCT0COHajiH/uvMPl9DKu3C1j4+w2DSarldd9ZXAYFmsa/h6OjfaNtSmUme2M7uzH3BHhtTwQqRVdcZ787irjuvrRPEiLu1bBB49GopALmK0ifn5/55f5+/tjsjmM+fo0TcPCwnB1deXEiRNER0eTnp6Or68vFotD1cBisbBjxw5efPHFWmQVQK1WM3nqdD7+cB6j4r14bMxIXn7tLY4cOYLdbqdbt26sXbOaLlGuBLrL+PlYNq8OCSM528iCPXdIzjYyrIMv30xyVDQrZA4D4URyMb8cz+ar3XcY3z2AsV306FRyVApHcWVDIhtBXirWzoxl02kDi/btp1dzbyK8XZg6MZykTCOzKnLZu0W7465RUGaWuJZZzte70+lR0fSgTaiO2EANKoXMp1ecp+fbw5spG+Jt8tK5sGRqc930ZdceuZ1n/gRwmtIiSdIP9U723wUXoM7wmVIhPD+0g6+isWQVYHx3f3ZfzOfPpEJ+PWVAIRf47LFonBn8LYJ1jOzky8U7ZSzel875W6XklFh485FmjSKrABF+Gr54IpqPtqYxf1w4H265RXKOkTGd9bw9LLxWZGXOIInjN4r49bSBlUey+GxcFMduFPPF4w6CmFdqJTXtFmazGZVKxbVr13CrmEOpkGEymWjevDkLFy5k6dKlhIaGMmfOHDp06IBcLqdbt27s3buXiRMnkpiYSFpaGsXFxVUasPv376dPnz5OySpAixYt6N6zD6uOX+DtR0IQBAGVWsX27dtp27YtZrOZoKAgJvYKZP0pA2O7+GGxSXzz+132Xc6nc5Q7LwwMrWo8UG4WScwoY9MZA9/+fpch7X2Y0S8YjYsj7L7qmZZO11RneKK7H4908ObJfyViultMQqQ7T40N4abBxEfb0sgvtTGwrTfNg7RVBsKvp3L4atcdhnf0ZWQnPb5uLrQN1elOWuxPrJjeQu7TAKIslwm8MDBUqVHKA9Yezz4gCEKnigKrGqhwdDaarELTPaw6wOjM4nXTKPY+1z+4/8hO+kYTVgCj2c7Qf16kZYiO+Y9F1yq8qQvnb5UwZ3Uyrw0NY1C7v3VF0wwO78PuC3mYrCIqF4f1GOKtYkRFAVJlOHzDyWzWnsghXK/ho0cjG3TtYqONV9Ykk5xt5LeX2qBT/83jy8x2dl/M5/iNIoqNNu4UC7z3/kfMmjWL3377jWmTxrPhuRiUcoExCy/j6+6Cm1rBB49GoHaRcSfPjChBmI8KUXKEMT/ekYnCRYndZsVktuCjD6DPAw/g5eVFcXExZ04eJSX1Fq++9gbz5s0D4J1//IM9axYwuL0PvWI9aywOfyQWsupIJlqVHBeFjHdGhNerC3nmZjHvbEylVbAOfw8lrwypLaVRYrSRV2rDZBVxVcvxdXOpFTacsSyJUZ182XnBET2Y+WAQzYOch7ckSeJKehmL993FQ6vAaLYzoK33fTuX1IWLt0t5YfWNbKNFDHL2DAuCsA54X5KkK42e/D8QgiCoAMmZbrIgCH0DPZXbNr3Q2rWxIatKzFiWRJrByCtDwqjeF/x+MBRbeHb5dTy0Cn6c9vemIEkS526VsuWMgVSDiTKzQ13Dz0PJkHY+VJe4u5FVzgurbqBWyhjU1odpDwTWG3bLK7Hy8ppkysx2JvTwZ3hHBy/ILbEyZelN5rz6BlHRMbz68hxaeJvpGuVGbomV31NdmDnrxTrnzc7O5osvvkCj0dCnTx/OnDlD69atGThwIFu3biUzM5Pnn3/+vve2Y/s2xMwL+LvLSc4VScoqp0vnBFxcXLh07jTfT2yGKMJj31zhnRHhfLztFk/3DWJoB5/7Ev4bWeV8uPUWzXxUHLtRxNaX2joNKdaHb/alY7VLjErQ89LPyYR4q3g0Qe9UoaCo3JEWsvF0Du3C3OgW7c7Ko1n89HQLp7nR90NBmZWRX182maxinCRJt+8dFwRhGuAmSdJXjf5S/4Go6ASkcrbZC4KgUimEnBUzWrqH6xvdKAhw1HqsPJJFj1gPXh0S1iDDxWwV+cevNzl3q5Qdr7St8bzllVrZ9lcuJ5KLKTY6xIPcNQo6R7oxvKO+yisoSRITvruKQu6Imr0zIrxB9SIbTxv44eBdQr3VVWuFJEm8vy2TtDINMbFxHDr0BwlhKkK8Vbhp5Cw7bODNt/9BQUEBBw4cwGw207p1a7p3744gCJjNZj7//DPc3d2x20UmTZrEzp07EQSBgQMH8vnnn/POO+/UqWEMUFxczKcff8B7I8KQJPhgewZXE5MIDQ1FkiQiw8OYN8iNr3ffYUBrLzadyaV5kJYZ/YLv6ynNLDSzeN9dcootGC0izz4YTPfYxkWMwSHnN3vlDVY+04K3NzgUGp/o7k93J+8rOFJxNp428Me1At4fHclb61P415SGO4QqIUkSL65OLj99s/hNuygtvHdcEIQw4HtJkgY19js11cN6ERhItQ5TFTeiVymE3gOb4F2txJm0Ejx1Cj4dG9VgsgrQvpkb744KZ/Heuwxs483dAjOfbb/NzRwjw+J9WfFMCwI9HVahJElcvFPGptMGlv2RycA23swaEEKR0Y6rWs7HYyIbXHjlrlHw5fgYpixJ5GBiIUM7+JJZaGb10Wz2XcqnY4Qbg9r54K1TkFNsYf5H7/DSnDmoVCo6hSnJLbES4q3C180FpVzGp+Oiqhb06p00zqYU88b6VHbt3kP//v3ZsmULM6c+SbRbCVs3bSDQS42HRs6gGC1/WHVcu5aIKIpYrVb27XPIE+6/UsCXO+/Qv7U3oxP0RPlr6Brtzodb0+gS5c57oyIatJl0inTnuylxTF1yjZn9/86lq2w6sOm0gdM3i/FxdZDUMrOdUrOdgRXNFio95sM7OgpeusV48PrQZve9tiAItA51ZeHEGN7dlMrVjDI+fey+NQl1ok2oDj83F+2tPPMAYLeTU37jf6eV6f8W3sehK/vpvQOuKvnLT3T31zWVrEqSRF6plWl9gxpMVsHRt3vRxFim/pjI5fQyWgVr2fZXHmtPONKGR3XS80T3AHQqh97orVwTW87m8tVuhxdgUs9AQrxV2EWJYR18mdy7bumc6vBxc+GbybFM+SGR3JK/C9HtokSvaDWff/YJGpUL/lobOqWG48nFnE8rpsgskJqaSmXb2Xshl8tRKBTs2bOHrl27YjAY8PPz4/SJo8gEkZ4PDHD6ueqIio5l3amTtPRXoEDCVyNy7MhhOoS78cmo4KoQe4sgLfO2pPHZuCg6RtS9oVYiJkDLd5NjeXH1DUK8VTXIqtkqcuBqAZvPGEgzmCitMBD07koGt/PmkQ6+VZ6dUQl6Jnx3lb2X85n+QBAjOtWdQ++hVfBEd39GdvLlH7+msnBvOs/2D240WQWHp3VIex9h+7ncZ4E3nJxyEWhwxft/AToA/wI6ORkbEROgFZpKVgHu5JuI8tc0mKwCqFxkfPBoJM8uT+LXUwae6O7PzRwjP/2ZyYnkYvq19GJqn0C8XR1tyAvKrOy/WsDj31yhc6Q7k3sHEBOgxVWtQKeS8f7oiAZfe3SCHgFYfjiTUpNjj84ptqLXiRxJTMNUkMGgVu74eygx20RSso1IksTuXTsZM3YckydPrjWnzWZDtJnJyszk0uUrREVFkZOTw8qVK7l04TxuOu19ySqAu7s7coWKVUez8NAo8NTIGDrU0cp9z+5d6IRyovz8GNLeh0V703m0s1+DjOpATxUfjI7gq9132H0xnw7hNT3pN7LKq4qni8ptSIC7Rk5CpDujE/RVkdFIPw1BXkqmL02iZ5wHsweE3Ff9KMpfw2tDw+gZ68Eb61KI0KsbTVbBsVdP6R2gvXSn9FVBEBY5yT8vAdY3emKa7mGNB67eW3QlCEJ8iLfqwK+zWzfeHKjAi6tuMLCtdw0vaWMw5YdEBrb1ZtWRLCb2DGBUJ/1987TyS618uesO2UUW0gtMfDe5Oc4WA5NFpNhkQyYIuGvktTwa59JK+Gz7bd4e3ow31qUwtL0vozvr8XOvvY6arSIlRhubz+ay6YyBFwaG8PXudDa90LpWYVMl0nKNzFx9h/yC4qpjGrWK7XNa8I9fU+nb0otIPw2vr02mdYgrmaUCVpkGs9lCC38F84YHoZAL5BRb2Ho2ly1nDQyL9yVCr2blkWyWPd28UWFZcHgqX1+XwtY5bbiRZWTe5lSUChmPJugZUNHarhLZRRa2nDWw7a9cYgK0vDcyglVHs7ieVc7XE2IaVXhVmTvZM86TiT0bXnlZHdv+ymXh3vRDJUZbLTFcQRB64yi6ql+I8r8AFUWSNmcV125qRfqSqXHBTVmYAM6mljB/x21+ea5lo4sKANYcyyYxowyVQsaNbCOzB4QQH+5a51xpBhNLDmWQWWimT5wn52+X8uX4uiVx6kJOsYXx317l19mt2X0xj6UVhmt1g6oSNrvEkoMZbDhbyNRpT9fQbgTIyMhg2ZJ/UVhSRkFBYZXsVXCAP8/00HEty0iRV8daKgL34urVq5w9sJFvJoRXHUs1OJoe7LmUzyMdfJn5YBCjF15m9oBQHmx1f0mre1FitDFlyTVeHhRKQqQ7P/2ZyabTBuICtYxK0NMuzBWdSl7NQDBU5SPPHhiCi1xg9ILLzBoQwrD4hkc2bHaJWSuvE65X8/rQZo2650qkGUxM+v5qsdkm6e+NFAiCEAMgSdL/ifasgiC4ApGSJF28d0wuEz6e9kDQm0/1aZiBdi/KzXZGfH2JlTNaEuDZeI6feLeMN9ff5LWhYXywOY0JPQMY1sGHugo1S012tp/LZfnhLJ7pF8S/DmSw5cU2jXJGVeKt9Sm0C3Ml0FPFx9tuMbCNNyM76Z3u13fyTDyz4ibN23Rg8OAhNRQK0tPTWfvzSvpEyth8Np/UW3fw8/MjNTWVrl0SmNPXnc935/DOvA/vu65IksS8d95m+dQoAjyViKLEmhMG/kw2kZlXhrtKZP7j0aw4nInZJvHuyPBGrVOiKFUQRw0z+wfzV1oJ3+2/S1ahhZGd9PRv7YVPlYFgY3+F4empVTCjXxBdoz2Y+uM1wn0dDVIac+1j14uYtyWVn2e2alDerLPfZvSCy6UZhZZhkiQdrD4mCIIb0KEpspFNJayvAEskSSq653jvmADNtlXPtGwSYb2TZ2L60iS2zGnTaGmpSqw8nMnyw1m8NyqC3s3rFvWtDlGUmL/zNn9eK2TLi22qCG5l3ubG0wZSso24V8hXlJrsxFcUIFXmuEqSxKMLL1NisvPuyAh6NNCFf/pmMW+sS6FnrAfzRkdWHa8MgW85m8utPBOFpRZyyuCXtesYOXIkq1at4u1Xnmf9zGhOJBfzz123KTWJzB3ejJ5xntjsEqkGIwq5QLivutbDml9q5dVfUsgrtTDroRAevMc7lldq5Y/EQvJKrVjtEq4qOXGB2loyXc+vuE7zQC3bz+fx2tAw+rbwvO+LYbWJLDmUyYGrBRSVWVnxTEunkij14UZWOS/9nMzmF9s0yWtTYrQxaP5Fi9Uu1rq4IAgXgMclSbra6In/AyEIwiCgUJKk4/eOaZTywvWzWnk4M6wagrfX36RdMx1juzjXPa0PhWVWRi24TOsQHZ+Oi6rTYKsOSZL49ve7bDmby7zREXSvlrNeYrSx80I+v1/OJ7/MisXmUChoXkHKWof83RRj3qZU8sts5BRb+HJ8dFUEpi4cTirko9/uonb1oH37DshkMm5ev0pWVhbPPRjA8VQT+uY9ee31N9m2dSuff/YJwzt44aVTsO+mnOdfePm+82/csI4YxS2m961NRorKbbyxLgWZ4CABy2e0qPWe3c03cyffRJlZROMiw99DWasaePu5XH6/XIAgOBp6vzwotKoJizMUG22sOpLF/isF9G3pSXaRlQ/HRNZ5fl0oM9kZuaDpRAngscVXitNyTcMkSfqj+nFBEN4BkCTp/SZN/B+GCgPzIUmSfrx3TKeS//jMg8FTx3bxa9LcW84YOHajiM8fj27y/Y1bdJmCchufPxZF+2b1e/gBLt8p5cWfk+kW5c4H1Z4fuyhxIrmYLWcNjgY7FR7+AE8lQ9r70K+lV5Uj5fytEuZuuIkEzH88ukaNhTMUldv4bGcGh5MKiIiIwNPNFUNOFqXFhUzs4cfoTt68tzWDfHkQs1+cwzfffEPKtctM6OrJL6cKeHzSdMLDw+ucPzU1lQ2rf+TX5+JqeS4lSWL9SQOrjmRRbrGzYXZr7pXqNFrs3MgyUmKyIwjgoVEQF6itsZ/dzjMxY2kSz/YP5tv9d3lpUCh9W3jVuefZRYmjFbJfj3TwZcf5vCbvkZ/9dgsfN5daykkNxeqjWdLSPzKXlZvt06ofFwShNbBakqT2jZ2zqSkBPYAVTo6XlJvtTU4H2Hkhj8HtfZpMVgGO3ihmRr+gBpNVcEjAvDI4jIwCM+tO5jC+uz9rjmWz8kgWrUJ0THsgqEZnisow2sojWfxz521mDwylR4wHZWaR14aGNZisgqOL1AejI/lgaxqlJjs6lYxdF/JZeyKbcrPIyE6+DO3gS3aRmV0X85g25UnGjbOgUrowpLUrNrtEiLeK3BIbnz0WVSXlpZALToWBK+Ht6sLCJ2OY/EMiGYUOh4VDq7WMTadzOJ5cTI9YD4I8VWiVMoqMtqrCp5EJeoa298FDq6BLlDvL/sxkwYS61RGqw0Uh49n+wbiqZPx8PLsqUb6xiAnQEuip5Mj1wnrF053BVS1HlCSFIAiqextgSJLUrkk39Z+LWKCWogeATMBitjotvq4XBWVWTt0s5s1hTfOaARxOKsLfQ9lgsgqOkNOz/YMxFFvZf6WA7jEe5JVY+eFgBgeuFtClQrUgyMvRIavYaOP0zRLmbU5Dq5TxZI8AHmrjjZ+7C2fTSlg5oyV1aVhWR684T3bEeLDkYAZrft/LIx18GN/elfhmMey8kM/VW3lI6bs5cmg/nhoZfm4yFHLYetZAXjn3TSkoKirir7/+4tWZsU7HPbQKFjwZw7PLr+Olc6kiqza7xOGkQodRnWMkxl9T0aREJC3XhJdOwegEPf1beaNWyujbwouvdt+hR6wH74yoPwXIXaPguYdCCPZSsXBvOh8+2niyCqBTy3m4rQ9bzhp45sHg+j/gBP4eStJyTbVcu/9XiGo1eOJIC6gFmyiVWmxNe18BtpzN5ZkHm0ZAwGF4FJTb+GB0ZIPJKkDrUFc+GxfFWxtSKCq34aqWs/5kDutP5uCldagBtArWoVXJMVpEbhqMbDljYMEeh9brlN6BqF1klFtE/jUlrkoa737w0Cr4+NEwMgr8mb4siRCFjvF99LQN82fPxXwmfX+NcoudCD8LCz54haKSUnrHaLmcXk5RqYndu3YyfcYzTjtKiqLI73t28mhHL6dhdkEQGNfVD61KxqI9NftlVNXVXMwjxEuFh1aBKDny6IuNNkZ09GVYvC96dyVhPmp83V34dv9dvp0UW2+IXi4T6N3ck0g/DTOWXaNNqGuTyCrA6M5+zFl9g8m9Aps0h7+7UnCRC7UeNkmSLgONJqvQRMIqSdLIOoZu55ZYlZV5Jo1FVqGlQTlZdSE520hGgZnRCY23PuUygel9g5m7IYXbeSaSMo38OK25U++DykXGoHY+DGrnw6U7pczdcJNDiQW0CNLSv1XtPD6zVaSw3Ea52Y5WJcdLp6gRfu8e60F8uBs7zuWSYjCReLeM5x4KpnOke9XLIEk6Brb1QZIkyi0iaQYjSw5mMufnZAI9lIzr4tdg3dlK6NRyvpoQw1NLEhnZyZfF++5y+mYxYzr78cqQsFrarJIkcTm9jI2nDTzxraNy8/crBbw+NKxBZLU6nuwZwE2DidVHs5nZv2kb2KgEPVvO5DaJsEoOOV8BR3edGhAEYQ3wakNEy/8bIEnSgrrG5DIh+26BWX8/L1tdyCiwEOylatK7XnFfrD2Rw5yHQxtMVishCAJzBoUyesFlhnUo4b3NaTzQwpO1z7Xi3opWfw8lMQFaHuvqx6mbxXy56w5XM8rYfSGPRZPi6iSrdlFCoKamqVwm8MyDwdjsEmabSJSfhqk/JtG+mSsfjYmiZbC2ikxWtkJ+9sEQfjyUwZIfvmf6jGdqeW3y8vJYtuRfjO/mPIWoEkqFjK/GRzN28RVu55ow20ReX5uCr5sLoxP8aumpVnbQ2njawDf77vLeqAjSck1E+mkaRFarY0QnPZmFFjadMTSpAAQcecnPLk9iap/AeuW0nKHifmv9WYIgzABKJEla06Qb+w+DJEkXgOecjVls0p20XJMZR5ehRuNWrok2IY1XF6jErot5xIe7OdUZrw8dI9zoEuXBtr9yuXK3jKJyGx+NiXTqKQ3Xq+nX0ovbuSa+P5DB8yuu46VV8MyDQQ0iq9UR5KXi28mxzFiaxEuDQnl5TTIyQeD5h0JqRAyrty7PLDDz3OpUVq5cyZgxY2qkFJSWlrJ1868oTAZGJzg3QCvxSAdfEjPK+floNtP7BfHxtlucuelo3OMs2nAjq5xNZww88e1VHu2sZ1wXPzILLCycGNOofNIQbxWLJsYyY1kS2UWWqpa2jUG0v4ZgLxV/XiukXyPTjwDkcgHByXMqCEJz4CVJkqY3ds4mEVZBEDKB1pIk5VU/LklSnptasX/XhbzBY7r4NZqSG61ilf5YU7DptIHhHX2bbFG0DNZiF+FmjonvJsc2aBNtE+rKkqnNmbIkkQH3hNWvZzqSo3+/ko9WKUerdFiIJqvIQ9UKnwBGdfJl7oZUogM0/OupuFpVvIeTivjtXC7zH49Gp5LTKsSVf46PZv6O2+y7nM+qGTW7nFWKtx9KLKSwzFqht6agTaiuRp5eiLeK1iE6XliVjJtazspnWtZZQSwIjpZ3bUJdOZJUyEtrknGRC40qtqk+15TegTzzUxJTHwhsdP4sQJsQV74/4NRxWC8Ky20oZILZYhNtTobPAsYmTfwfCEEQFgMXJElacu9Yqcn+3a+nDJ93jfZomPp4NZSZ7U2qNq/EhdtlWO0inZpopDo8/G68tjaF5x8K4ZF68iplMoGu0R4smapj1srr6NRyoquFzEVR4kSKg+Cdv1WCyeLwZLlpFPSK82B0gl+V/M+YLn488c0Vfr9SwOwBIU5z7nt/eI79b7ZHqZAxvV+wQ8Lu+2/x8vEjPj4euVxOanISycnJTO7lz9jOPhxKLOBuvrlKvD3IS0XPWI8qguemUTCsgy8/HMzgbGoJLw0K5aE2zt8/uUyge6wH3WM9OH+rhLfW30QAPqlW2NkYTOkdyPCvLpJRYG5SGk+4Xo2XzoWUHGOdaiD3Q0GZVcJRPHgvbgG1Kur/WyEIwoPAy5IkDXYyvP73ywUfvtQEI08UJUxWh7Z1UyBJjpbKrwyurQrTUIzs6Msb61KIj3BjwZMx9a77Yb5qPhwTwaK96Ww5m8vrQ2te+1auiU2nDRxKLKCw3Fa1z7ULc2VUgp6EiqYHYT5qogM0zPzpOl2i3Z22IX93YyrdYz14uK0PgV4qfp4Rw7ub7/Deu+8SGxeHv58vRQV5JF67zoOtvJg9rhl/JhVy6U4ZpSYbcpmjwU7fll41SPgT3fx56oerXEovJcBDyeYX6055jAnQ8vrQZkzvG8Srv6RwKqWYHrHu9aY/OEOkn4aBbbzZejaX6f2a5lXvHuvB5fSyJhHWYqMNu4SzZjWlwLmm3E9TUwIm46j0qn0nZvv8n49l93m0s77RMjk6lZxyc916h/eDXZTYcymPtc+1atLnARIzyrFL8M8nohu1GPh5KFk8KZbpS5OY3DuQMrOdeZvTyCw0M6KjnvXPt67h9aksfHph1Q2a+ap5d2Q46flm3LVyPqsjNNo6REfAPVaSXCbw2pAwckusrDtpYM6gUDILzSw9lMmhxEJ6xHrwVO9A/DxcKvTW7BxJKuS55deJ0GuY1CuAzlHuaJUyCsttfP54VIOJY884T94fHcE/fk0lp9hSb/6fMzTzVRPlp+Hg1UIGtm086XVVyykzNe152X0pX1QpZM4UAgAO4Hip/q/gB6DI2YAEq0/dLP7CUGxB38g8Vq1ShtHStN8fHKHykZ30961crQ/pBWYe6+ZfL1mtDg+tgq8nOJQ9TqYU0yXKnR3n81j2RwY6lZxHO/vxzohw3NRyRMmRz737Yh5vrEvBx9WFWQNCiPHXIJMJzHoouM4C0X8+EY2i2nd7oIUXPWM9eW1tMif+2EOvOC8GNFPyeu9o9l7KZ+TXl2nmqyY2QItOJcdQYuXYjWLm77hd1fQgwFNJl2g3Xvo5h4/HRDbY29m+mYMgzFiWhF1sfN0CgFopY3B7HzafMfDcQyFNmsNLp6DI2PhnpqjcRnK2UQ385WT4GuC06+J/KS7iUPaoBUmS7ripFYf3XMpvtHSkTCagVAiYrRJqZePfuYt3yhAliA9vuocpa5WCAAAgAElEQVQ2MaOMIC8V80ZFNHivEQSBWQNCyCm2suzPLF4bGkZSZjmL9qZzM8fII/G+LJwYi597tX3ueiGL96ZjsopM6R3I4PY+iKJE8yAtLw8KdVpnMbFXIJ7VJB01SjmfjwvnzM1iXl5zlTZuerqEanipWzT7rxTw2DdXCPfV0D3Wg9gADTZRwlBsZe6Gm3hoHak4A9p4E+SpRK2UE+Sl4t0R4Q1a77x0LiyeGMv0ZddqrCGNxagEPbNWXmdK74AmRTXcNXLu5DXt1TpwtaC0zGTf72SoGPjDyfF60VTCGgUcrGPsz2KjLXvL2VxdY18oXzcXzt0qbdTmU4lSkx0BodGbbnX8esrAY1396tUhdYYIvYZecR4s/zOTfZcLGN/DnzGd/Zx6MvzclVVND9Ycy2ba0mu4yAXeGhZei6xKkkROsZXEu2VkFllw08jxd1dWPfQymcDrQ8N44turPNDCk3c2pjK0gw/rZzkXb28domNqn0AOJhby/uY0xnX140RyCetntWq0l7NrtAfD431ZdyKHFx8ObdRnKzEs3pc9l/KbRFiNFrFJ1aaiKPHLsWxjqdn+RR2n7AASgP8TKQFAAODMk4wkScValfyXZX9mPvn60GaNKgf181ByO8+MuULfuLG4lWe6bw/6+nAto4yicnuTlCK8XV2Y1ieIdSey+Su1hP1XC3hvVESNoiwAGY6Ugkm9ApnQI4CDVwt4c10KPeI86NDMlcHtna9VkiSRlFlG53vSdBRygS8ej+aJb6/Sv6U72cUWZixLYmAbb6dNUsCR87b5jIFJ31/lxYdDOZFczMSe/o0OzccEaJk7PJxFe9NZNr1F/R9wgpGd9FVFIE1RhZAq8nAai9/O5YoucmGb2So6k5t7CUgB6kx9+S+DK1BnFWOp2T7/pz8zuw9s461rrJfV29WFVIOxRtvThiLNYKLNPe9HY2AXJX49ZeDDMZGN3msqU4AeW3yFjuGufLHzDjP7B/NwW+9ac/m6yRjRUc/weEfTg4+2pnHpTik3ssrZ9lK7Ou//br4ZF7lQqyq+U6Q7k3sHklloIUKvZtbK6/Rr6cXiic5zSp/qE8jJ5GLWHM/mt3N5PJqgx1UlZ+6wZo0yztVKGQufjGXc4stNjmpE+mkI81FzPLm4UXU9lbDZpSZFY7IKLZy/VSqTwFmaTnvgI8B568D7oKmEdRrwk7MBSZIkQRC+WrAnfbGXTtHg/MKichsHrhSQW2rl5UGh9fYUvxdmq3jfftYNuf7hpEJmD2jd5Dn6tPDivY2pvDksjAFt6pflUsgFJvYKwEun4Kvddwjz+fuBrGw6sOl0DvllNtQuMkwWkTXHslEpZDUKn/TuSloF63h9bQpvDGtGv5b3/81dFDIGtPGmdYiOmT8lEaFXN7iLxr0YlaBnyg+JPNMvuEnkMchLRUGptf4TnSDVYMS/CQbK8eRiyi32bOBYHafEAWVNuqn/TPQDjgNOVQ+MFvHLXRfyJ0fqNYxpRPXx1btlSEgcuFrQJBm6MtO/l1Kw8bSBER19GyWJVh0Ptfbmq913yCm28uPU5vUWXsllAv1be9PMV83Mn64zqVdNopxTZGHrX7nsuZhPTrEZix1WHskmyk/DyE76qhxTmUxgVIKehXvTKSiz8d3kuPv29g7Xq5kzKJThHX156edkisqtbH2pbZO+c58Wnizal87Vu2VNCjOG+agpt9gxNTF9K7/MWis3vj7YRYlfjmcby8ziP+s45TUcogf/VxCOQ+d8ax3j+0tM9rxX1ybrvhpff1i9EjlFForKbWw8bWBuE/77fzcF6GRyMR5aRZOeOwAfVxdaBGn5dPttvhwfTZvQ+3t6BUGgXZgjZW/m8iQi/DQ19qjKgsVNZwzcyDJSVG5DqRDw91AyoI03wysKn8DhWBmz8P/j7r3DoyrT///XOVMzk95JSAihhd67ggoKIiJNROwFC/a67q5r+6y7uvbesaAIShUEEQREQHoLNQmENJLMTHoyfc7z/eMkWSB1jr/rd7G+r4t/OGdmziQ557mf+36Xw/x6vIJnp53rTHI+Gqg4I7qG896GIl5bW8Cdl2jjbUda9UwaEMOKvQ7madR6dE0I4UyFp+0Tm4Gt2ntO17m9WLrH5tNJ0ldCKM2to9uBiVquR1OFJ4QYJIRoluMnSVIPs0F++anJqby2poD5vxZT42q2udPwXuzNreGuz45jNeuICNGx9lBZi+e3BKtJR51GOgHAxqMVjOwa3i61cEtYd6iM60fGt6tYPRtX14/7PvilCCEE3/5eyrQ3Mtl9qpqHJ6aw5vF+LH+4L2uf7M8Pj/bl2elpZJc4mfHWYT78pQh/QCGvzM19lye3WayejaQolZhdUO7hZKk2ymZSlIk+KaH8fLhc0+tNegmPX9tas/D3UvqmBPfwyy9z8+zSXFedR5nXjKFxA95B7XL8KSCEeEoI0eziJ0mSZDHKi6YMigl8+3spn2w6Q1sqZLVTYuOlVfkEAiqvTQtCjDpcGh0KnJ4Am45WaprGNCC/zI1BL/HGDV2Duu+7JVp4dU5XvtleissboKTSy1OLT3LjB0epcvr516x0fnpyANueGcSSB/swe2Q8q/Y7uOaNTOb/WkxAESSEGymoj55urVg9G+nxIbx3S3eMepkjhdr2UzpZYtqQOJZp/J0BWIw6nJ7gf2/ZJU4q6vzn8IbbghCCV37M97p9ygFgVwun3QqMDfqCLlAIITYJIea1dNykl55MjjTGhJr0PLQg+5wAjJZwtKiOOz87jlEnsfFoRatrcksIMcq4fH+AArTPwfRWwibags+vkFPq4vkZndssVs9GhEXPOzd1p6jCy+HCOhRF8M32Uqa9mcniHTamDIzlm3m9+PXpgfz4eH9emJFORZ2fG94/yt++O0lxpUdV6Eq0WayeDVmWuP/yZC7uEcG2rGYZWe3CtCFxrNrvaPO53BIsJh1Ob/Cv9QcEq/aXMTbIzuyBvBq+32n3uHxKSxPM3sDjQV8Q2kVX+ajGxk3+6kOM8uOzR8SbJvaPoV9qKB/+UsT0tw5zaa8oJg+IITHSiFEnU+32syOnmmW77cgS3DqmA5f3iWbyqwf54rcSxmREtqqYPR8Wk4xRL5Fd4mzVzqklOGp8rfoRtgV7tZfdp2r425Q0Ta+/+aJEZryViVGfT2ZBHZ/f1bPZvOazhU9lNT7++t1JHlpQS5hZDsrMuwGpsWZmDo1jyW6bZlPvS3tGsvtUjabPr3EHNFlblVZ5OZRfS1axkyGdw9s1Hj1RrEZ5+gJKAdAct6YB5TTjHvC/CkmSPgTWCCF+aObw2PAQfdojE1MMt1zcgf9bcZpr3shkysBYpg6JPYebXFbrY9U+Byv2OogLM/DJHT34ZnsJm45W8tuJSi7uEdyDLSZUT67dranjYq/xEWXVN/E2DAZLdtuZPTxBE41oQKdQ+qZYWbC1lFX7HUwbEsc/pqY16UBFWNQp0yU9o8hzuHl5dR4nip3Ya7w8PbUTHYPMZE+ONvH3a9L4ZNMZRrZz4TwfV/aLZs77R3la06vB6dXWaVv0eykev8KGI+VM7Nf2pl5RBO+sL2TdoXK9y6fc38oGs5Y/l0hyMjClORW1JEkGs0H+ywsz062dYs18vOkM1793hOFd1JSjAZ3+G7rh8ytsPqZanhWWe3hoYkeirQb+seQUX/5Wwv1XBMdDjgszsLJY+485v8xNr2Ttllqbj1eSFmdud8F4NmLCDFw/MoHvd5YikCiu8PD6DV2b1ApGPWQkWchISmXe+GQW77CpSVHdI7i8T3TQny1JEn+Z3Inpb2Vqrk1SY8x0jDZxIK+2CcWoPXB6AkRraMRty6oioAi+32Xnr1db2kUN2H+6hscW5uDxK58IIU62cJoPqAz6gtBOCXiG5u2Awox66YZpg+P0oHbfXpiZ3rjQvfJjPhV1frwBhTCzjp5JVv4yOfWcm2zqkDiW77HzwJdZvH9rjyYWNS1hXWY5Lp/C0t12nro6+MLL7VM0cVcb8MM+B+N7R2m2+Im06ukYbeJQQS0f357RrveJCTPwzs3deeCrLCIsBs3comsGxzLn/aPcP75j0FQMgEiLnhp38Dt2gB05VUHblDQYx4/rHcW0IXH8dfEpenSwMGNoHMPP8sttODezQLXi+j27iicnp/L5lpLkkzbXDGBxCx/xLn+iBRBYhKqkboJQk+6JG+qjWWNCDbx5YzfyHA2cyWPoZQlrvTeiyxdgXO9oXrquS6NafuawBH7OrOCZpbm8fVO3dnc+XN4A+WUeFu0o5aoBGugE9RZxWlHj8rPpaAWL7tcu0rykZySvringr1e3jwLUKdbMmzd24x9LTlFY5gnKr/lsjO4eoVpzaRzrx4QaqPMECCgiaDpFrs1FqFmHyRDc66qcfjYdq+SV2V3458o8fs+uZuawuCacYVA7O9uyqli0oxRFwOwR8Xy/y/4icFULb7+eP5FLAHCElilJUzvHmXXp9dzJe8clc+OoBNYcLOelVXmU1/mJCNHjVwRVTj+9O1qZNTyeMRmRjQE3ep3E0t12OkQZ220BKYTgQH4tpx1ucm0uTZGd6j2rnba3bLeda4dpC0wAuKp/NPM3n6Fvaijv3NK9TQqh1aTj9rEdSI0x8c+Vefx7ljYPYr1OYupgdarxFw21Cai6lyqntjX2RLGToenBFboBRfDFb8XcOy6ZrVlV3DX/ODeMSmRs/d/R+ch3qN6y6w6V88jEFF5Zk3+3JEnPtpAWmYfGaNagKzRJkmTA29xuV4I5QzqHKfHnqdljQg3cOqZDu/K+HTU+eiVZ6NUxlLmfHefRK1MY2S2ixQdrWa2PxTtsrD1YhsUgs/5wOQ9cHnzhZTXpqNVYdAH8nFnOc9Nb92RrDWcqPJyp9LJwXq+gil6TQeb1G7pxwwdHOVxYR5+OwS9gceFGhqaH8fPhcqZpGNkoAmQNxbLPr24wghHeCCH4dHMxu05Ws+TBPljNOpY81IcNh8v5ZPMZXl2TT88kKxaTjMurkGt34/UrTB8ax2OTUhr4c9aXVuc/ScsF6xEghj/XItjkj1uSpESTXhp3Zf+Yc355nWLNPDwxhfvGJ1Pp9FPnUS2WIiz6JuKqKqcfg17i4QkpPPHtSR64oiMT+ka3uhvPtbl4YcVpBIKSSi8nip30CHLTEvIHHQp+OVLBsC7hf6hDu2pfGbeP7RAUBciol3lhRjp3zT/OTwfLNVEadLLE9CFxLN1t11SwSpL6T9FQsC7aUUrXhJCgNscen8JDC7K5ZlAsQ9LD+eqenqzeX9YY5DAmI5KIED2KENhrfKzPLCc+wsiMoXGM6xWF1y/khb+XjpMkKUkI0ZyP3SvABuCroL7MhQsJaJZ0GGbWPXnDqIRzfODCQvRcNyKeWcPjqHT6qXEF0OskwkP0TdYSj1/g9QvmXtqBb7aVYqv2cctFia1u/qpdfj7YUMSuU9XIUr211VXBW1uF1OswtKCgzE1+mVuTcKgBu07VEBtu5N+z0oPSu4zvE429xsf8LcWapxrXDIpl9ntHuO/yjpqaWnpZwhcInjqXU+oiu8QVVF1QT8PBHxBMHhDDlEGxbDpawdLdNt5YW8CEftF0iFRDWWpcfnacrCan1MWUgbF8fldPEiONbDpWIX7Prr4R+KCZjxgHzAWuDvb7aNnu6FEfEE1gMckXje4eqY1Rjbr4/Xq8kmemd2bupUk8OKEj87cUM+Otw3z1WwlZxU6KKz3kO9zsPFnNM0tOMfvdI1TU+fhsbgZPTu5EqEnHW+sKCDZyNinSyI6caq2XjqPWF/R472ws32Nn0oAYTePJULOOmUP/GC+td8dQ8hza7CscNcELKQA2H6skIkTPxiOVvLu+sE0Oco3Lz2trCli134FBL6GrL4rMBpnJ9TfLv6/rwiW9Iund0crFPSJ54qpUFt/fm+tHJjReYz0np6ckSS2113rx57LJuQOVN3Q++naJD3G39AA16GXiwo2kxZmJjzA26wSwcHsp949XfUjfvLErq/Y5mPZmJp9uPkNxpYeAItSwC0+AX45UMO+LEzzwVTZX9I3mi7k98QUEH20sQgnSaikuzIit2ketRluz4kovXTR0iRqQXeKkqMLD9SOCj6Q1GWTuHZfM97tsQT+nGnBZ7yj2nNL2vHJ6FAw6OWgRiNMTYF1mBTmlLr7eVtKua69x+Xn462wKytyM7akWG+EheuaMSuC7+3szb3wyvoAg1+6msNyD2SDzyvVd+eSODCb2i8Ggl7GadVzRN1oYdNLdLXzM48DyoL7MhY0hwA3NHXD7lD4tdcskSSLKaiA11kxSC4EevxypoEcHC3NGJfLJnRmctruZ+kYmr67J55TN1fg7VRTBsSJVYT/9zcN4/IKv7u5F/9Qw1h4qI1+D1VF0qOrBqwWqQj9Es8c6wPc7bcwbl6xJLDhreDz2ah/Hz2jrYcSEGegUa9b8/atdfsJCtNFwOkYbuf/LLJWL2wZ8foV//5DHpqMVDOgUikEvN4pN37+1B2/f3A2zQeakzcWh/FrsNT4mD4hl5SN9uXd8cmMQwvUjE6wWk/yk1PzO9hfUgjVoBF1lCCG8QLNyNZ0sxYRrHIkD/HigjNHdI4iyql2PBu7XsaI6td28vJxatx+DXibKomd8nyieuCqVsPpCZEyGgZdWnWbDkQqirAbuGZfUrk5AjcvPwt9LKSz3aOaZeP1Ck/k9qB2I1fvL+Oj2HppeD2qixsy3D1Pl9GuiNoSadJzWKFpbuc/OTaODsxayVXt5bW0Bz0ztRM9kK6/+WMC0NzK5vG8004bEkR5nRpYlFEWQVaIGMGw+VslF3SP45t5ePL0kl1+OVDQZJ/foYGmzW2fQy1w9MMbw3Q7bLODZZk55Crg3qC90AUMIcVMLhyLCLXrNK8CZCg+HC2t5sT4bPCPJyoe39yCn1MWy3XZu+/g41S4/siShk6FXspWZw+LPGStdkhHJ1qxKXl2Tz+OTUttt+7I1qxKdDGsOOpg1PPii0eVT/pDActke1aFA6wI6LD2cVz0FHCmso08QApIGRFn0VGvwMwXYcqJS0yTmw41FDOwUyl+v7sSjC3PYfKySGUPjuKxXVJPNjK3Ky4q9DlbuszO+dzQT+kWzYFvpOXGeDUEOI7q23bWaOjjOvOlo5a00f79ORfVn3RP0l7oAIYT4jmZGpvXTTZPWOGuApbtt3F4/6YwJNfDy7C6UVnlZsdfOQwuyKa/1YTaqndCECKPqI36WReKckfFkFtRy/5dZfHZnRrsbLGU1Pk7ZXHy308Z4DUEzLq9CiAYXmgacKHZSWu3VTMPRyRJTB8eydLeNv1+Tpuk9wsw6TWK3WneAzII6ng7yc7NLnGw6VsHCeb3YeLSSmz88xujuEcwY2pSK0+BwsnKvg94drcyfm8EtHx3nzkuSzqkn0uNDSG/HRn9I5zAMOjkOlB6oPslnIwPVNvLDoL4Q2igBocB6IcTI848JgcvzB3KOl++x88y0tCb/3zPZyt/bMfqqUpMVeG56Gp9vKaGowsMdYzu0yLdpSLZ59+dC4sONlFR5NfNMQk06aj0BTX6Ue3Nr6BRrJjVWu+gr0qpneNdwthzXppx2eQOadp7ZJU7yHB42HatgbEZku7o2tiov93x+grRYE6O6q12XF2elNwYqPPpNNmU1PkwGGbdPITHCyDWDY1l0f+/GEe7MYXF8vqVYE/8RICnSpDcZ5JZUB9H8iWxy6kVXC4QQ28475PH4NLrIAyv3Oriyf0wTO7OuCSE8OTmVJyenElAEAaXlzVxptZfL+0STXeri2WW5PDwxpdUxvdursGhHKd/vsiOE6p187bD4oPnbFqOs2VXE51dYn1nBt/f10vR6UIu1qUNiWbW/TFPBKlDH+lrw9bYSjHo5KP/cBVuL+fFAGcse6kuERc8Xd/Vke3YVS3bZeHtdIUPSwwgzq9xJW5WXo0V1XNE3mndu7k56fAhur8IHG4o0+0kmRhjxBZSWLFDCAO0G3BcYJEmagZok+fx5h4QsoXgDQmfWYOV2/IyT8lp/k7F2QoSRuy9L5u7L1MjhhrWguc1YSZWPKKuBif2imfvZCZ6f0Zl+Ka17sx4urOMfS04REaLjlM1Nrt3VrN9wa7CYtN+vAKv3O7hmkPYNJqhuPrPeOcxjk1I1WWj6FYFBF/zrVh9QrYcrnP52a3ryHW7u/zKLuZckkRBh4vqRCUzqH8OPB1QqjoTKi9XrJKpdforKPVzRN5q3b+7WWJCO7h7BjwfKmDMq+IaAJEnEhhn8lU5/PE0LVhOgaRKvpcXgo3kzWLx+Jb+owhMAgq583D6F0iqvpp1/A37Y52Bc7yjGZEQxND2cBVtLuf+rLDrFmpk6OI7UGBMmg0ydO8CB/FqW77ETatZzy8UdmNAvmrs+Pc76IxVM7B9D/9TgFpHYMAP7cmtajElsDeV1Pk0P8fPRIdJIeZ02T9NTdhedNLgkLNhWwoS+0VTU+Zj3RRa3junAiPOETw1QR4rlfL6lmNHdIth4tOIcb7+GQIW5lya1+eAc1S2C19YUcPxMnaaYR4NeQpalJk/N+hHG3FYUyf+L2EDzIQglZyq98tkZ2sEgp9TF1CGtb450stQiTzLX7iK/zM3bN3UjIODdnwuZ/e4RRnYNZ/rQOPp0DEWvU7vsBeUeVuy1s+aAWuDNn5vBluMVzN9SwtqDZS0a+LeExEgj6zO1WbFVuQIY9X8spATUwn7XSW1j/bJabTSc42ecOGp9DOoUxkMLsnnkypRWJxL2ai+fbylhT241YWY9B/NrGwU8YzIiGZMRSX6Zm6NFddS4Ahh0EiO7hvPirPRznATMRpkr+2v3kzToJRTR4nr1ES1wPv9HkU0zSZJCCGEx6iqLKzwxWkRPOaVOBqWFtspb1uukxollM5/Poh2l/GVyKkPSw0mNNfP8slzCQ9RUp/F9ohqbHm6v6gaxbLed8jo/94xLYlBaGNe9c5gPfinipVldgjLRT44ykV3iwutXNE0yz1R6gxYenY+YUANWk46KOl/QyY5CqBu5YKc6iiJY9LuNmcPieODLLB6c0JHxvaNabAz5A4Itx9WJVee4EE4U/5fCEGFRqTizR8Rz0uai0unHFxCEm3V0jg9p4vwxY2gcL6w4zewR8ZrSCI3q8K65h+Qe4EDQb4i2glWgilKawOMXC5bvcdx15yVJlmDJ/HXuAFazTrPS3R8QrNhj55XruwKqx+NdlyVx25hEfj1eydpD5dirvXh8ClazjvS4EF6YkU6vZEvjZ147PJ7//JjH4wtzePPGbvRuZ/H8y5Fych0uvttl01SwevwCwx/Y+TXApJfxavA0rXPXF5J3Bpd+s3yPnV0nq1l8fx9CzTrWHizjk01neG2NGiWZGmvGXL9BOFhQy8+HyhmYFsZz0zszKC2M8jq/GknZjNCrtQcnqIXQ6O4RHMyv1VSwVrsCeP1KaTOHjICNP1HHBihAjcM7H3trXP66I4V1YVq6fDVuvyZLsgYs3+Pg6oGxGPQyBuDxq1K5+7Ik1hws5+XV+eQ73Bj1Ml6/Or6/aoDKU27Y3E3qH8u76wv5z48FxIQaGd61fQuSx6fw08Eyjhe7NHX8nN7AHxpPNiDEqM0fEWDtwTIGBLmprnb5+et3J7nr0mSmDY7l2x02nvw2h7hwVeDULyWUULPqCJFX5mblXjt7TtUwvk80n96Zwe/Z1Xy/y9ZE+JIaYya1HZvdi3tE8vGm5jRTbaNeSNSScv5b4BOgOdu2/0VU0UIynQJfrtjnuP+RiSlBP5/+qPH/wfxa/AHB4M4qrePyPtGM6xXFjpPVLN1t56XVeRh1MpIEHr/CsPRwbh/b4RzRdJ+OVvacquGtdYU8PLFju9f7bVlVCITmGG+nJ4Dl/4N7VqsH8ZHCOpxehW5BeBADvP1zIREWPXdflsTIbhF8tLGId9cXMmVQLJf3iSbaakCSoKLOz8ajFazYaychwsjzMzqrzjlvHaas1nfO1EqWpXbRHvumWKlx+dXOrgZxao1KWWrOvup6VOHVzcG+p5aCNQq1w9qEtCiE2BcWos/dnl3VO1hPRqNe0myMC/B7ThXx4cYmFkkGvcz4PtHt4s3k2t2kx1u4fkQ8jy3M4aaLErl6YEyLnYzSKi/f7bTxc2Y5nWPN5Dnc5JS6gjLGBpXbUqWB23I+atwBkiKDr7N+PFimRsctPcUbN3QjIaLt91i8o5QPfjnDVf2jGzkukwfGMnlgLEeL6lhzsIxjZ5y4fQqhJh1pcWYW3NvrnPeeUZ/2M3VwrKaNSkSIdh7fpqMVNV6/aC7pygeM0vSmFy7+A/wD2HL2fwohFL1Oen3RDttz/0wJDZq4bTLIeHzaGtFun8JPh8r46u5zx+oNiufrRsSjKAKXVx1bN9dlP1PpwajX8cRVKTy3PJfbx3RgyqDYVsfceQ43L648jS8gsJpkVuy1M298cH6U1j9QaJ4Np8YCwl8f1mDUS5y2u0mLa7tYLKv18dCCbDy+ANcMikWWJW6o77Zsy6pixV47H286Q51bpTXFhRuY1D+Gv09Ja3RcubRXJG+tKyDP4aaTBvpShEWvicMHsD2nSugkaWcLhx8DtCtOLzxMAboBD55/wONT3v1hn2PeveOSgx5LG/Uyf4Syt2yPg+lD486NLpYlRnWLYFS3iHpxpfr+FpPc5JmuKIKiSi+3j01k09Eqnl12mgev6NgkCvVs1LoDfPFbMRsOV+D3C77fZdNUsFo1muefD60exN9sL6XG7efnw+3zIBZC8PGmM6zY6+Ddm7s2pna9f2sPcm0ulu6x8+S3J6l2+RGoNcSwLuG8en3Xc2qgS3tFsWqfo10OTedDkqT6ezYQdMFqq/JSWu010pQOAGr0+W9BXxDaRFelNFOsNqDWHXj5083FH4zsGmENhi9iNekIKFBe69MUE3rK5mJAJ+3hRF6/woq9dj64rQedYs0kR2AxZSwAACAASURBVJv4elspM7YUc0nPSMZmRBJpNaAoAketj3WHytl/uoYr+kXz2Z0Z1HoC3DX/OP/+IY/3bm3b4+1spMaY2HOqBp9f0RTfBuof+I6cqqA9aKucfr78rZhnp6aRXeripg+OcnnfaKYPiWuSwOPxKfxypIKlu+24vAFev6ErT357krvHJZ9T1PdKtrbLbmdI5zA8PoWjRc52d7PPRkARmuJgT9lc5NrdAWBFM4eNqH6PfwoBB4AQosUUoIDC/C0nKl8oKHMHHZwRZdVTUO5mOMGP2mzVXsLMukZVaXOQZalVe7rvd9mZMzKBK/rG0C3Rwutr1WS9yQNjuHpQLEmRJnQyOL0Ku+q7QCdtLmaPiOfG0Qlc984Rlu9xMKl/bLuKvgZEWPT4/EIzH7MBR4vqNDmLbDxaQUqMielD4rj38xNcM1hNymvuZ1nl9LN6v4PFO21c1T+G3bnV/HKkonHR18n/He23BaNe5uqBsfywz8EDQZrOg1poa4nRFULwzbbSulpPoFl3GmA0sBWoCPrNL0AIId5p5VhuWIh+57I99ovnjEwI6uEXE2og16bd/CTX5uKGVviMktT6/brrVDVWk44bRiUyc2gC724o5Pr3jjCsPvSgV7IVs0GdqJyyuVmx184vRyoY0TWc+XMz+G5nKcv3ONh4pJzLegdXtEZZ9RwurPtDtlj2ai9Oj0JUkGP94koPO09W89ZN3Xh26Wl25FQzc1g8vc+a7jagQVez6PdSat0B5oyMZ8E2Gy/P/q9YsXN8CI9Pap+t2PQhcfz1u5OaClZouGeDf93yvXa/Tpa+EUKpbeZwOqpw/1Sw76tFdJUAvCWEmN3CKd8WlLnv/NcPecOevqaTub3ch5IqL3oZ/8p9Dvm2MR2C/hHV/sFc8k1HK0mPD2nsHHRLtPD8jM6U1/pYtd/B97vs1Lj8yLJERIiei3pE8Oy0tEb/unggMdzIaYeLpxad5N/XpbdLxFTnDvD62gJ0smrzpIVSALDvdC2OGh+hQRgz13kCPLggi15JFoZ1jWBY1wgu7xvNyr0OHlqQTXyEgeQoU6Pf2qGCOjKSLNw6JpFR9WOeUd3CWXOgjNkjgydmy7JEjw4Wiio8mgpWW42XfhpG2Yt32jyKEB8IIZoj/OpRFYx/GkiS9D7wjhDi2PnHhBBlBp38yLwvsl774u6elvbupP0BQUGZx3O0yKmbMTROH2yHvO4P3q/nG/93jgvhnZu7NxpYz/s8i4p6PrdRL9O9g4XpQ+K4tFdkIwdu2pA45m8p5oGvsvjwth7NJss1hwN5NfgVheV77Nx3efCFG6g/v+922ngiSD/Lk6UuXl6dx2tzujGgUyh9OoaydLeNmz88yoBOofRKthJqVrtJuTYXv52o4uIeEfxrVhf6dLTS45iFhdtLNXWpAHokWVh3SBv311Hj1eRgsu90LTVufznnTQjOQi8gU9NFXYCQJGk2ECGE+Ki547XuwNyPNp7ZkxZjDm9Pwl8DKp0+kVXipKDMLWlJdaz9g5SCBs9tSZIwGyUen5TKPZcls/ZgGa+tKaCgzE2gXjqQGGHkqgGxLLqvd6PQaPqQeBb9buOfK/MIC9G3m5Nqr/bye04VvoDgrkuTNAuvlu2xkxBhaOBmtgvVLj/zvsjitjGJ9E8N48u7e7Jqv4NnlpwiLETP2IxIoqx6AorAUePj58xy1aZyWDwT+kYTUART38iktMrbrsnn+eieGIKtyqspJMTnV6jU4DrkDwiW7LL7XF7lzRZOSUAtWoOGFkqAF9jf0kEhhF+SpMmbj1X86vQGMp6ZmhbSViLNkcI6Hvkm2+nyKe8u3mG7/+aLEoPmwJrrFeVasWKvnWuHN03RiA41cMvFHbjl4tZf7/IGsNf4eH56ZzYereTu+Se485IkRndvPvTAHxD8dqKSTzefoVOsmawSJ99r5MACfL29hEFpYTy0IIfHr0rlkp6Rrf6BnrKpquwaV+AcoVuD8Om2MR3Yn1dDea0fr18h1KzjwQkpTTpC04fG8+LK08waro2YrQY2BD/Wr/ME2HysknsvC07AsTOnmp8Olnm9fvFuc8eFELXA5KAv6MLGEZoRcTTAF1A+DDHqOtzy4bHH3765m6Ut25Iqp5+/fnfSedru2o0kZRwprEsIlgP7R+/Xnw6VM6JrU+P/1PrQg4cnpiCEIKDQ4gKVVexkbEYUvZMt3D3/BA9P7MglPaNaPL/OHWDFPgdfbysh0qJn5T4Hcy9N0iQC2Z5dhVEv88ZPBSREGNuVEHa4oJbHvz2JXpbIqB/7pcWZeWxSKveOS+aXIxXkl7mxVfsIMcr0TLby0ISUc4QeF3WP5PW1BZrt+6xGnWa19vI9Dka0k2fcgCqnnxeW5zpdXuXploSQQognNF3QhYtiVB5rsxBCZEuSNPFv359a99iklNDJA2JasLtUEVAE3/5eGvh0c3GVgNVLdttna+HAmg2qs4QW2Kq9HMyv5YUZ54brhJp1XDs8vnHt9fkV9DqpWYpYVomTcIueJ69K5Zmludx8USLXDIptMfSgoVv5n9X5pMWGcNrhZsvxSi7r3ZLZRMtooOFEWfW8uDKPJyentnnfn6nw8Og3OVQ7/fTpqN7fERY9N45OZM7IBHbkVLMvr4bSKi+yrFLcXpiZ3qTzekW/aFbstXN3kGsdqE0hk0HG6Qm0qglpDr8eryQlxhSUuFMIwX9+zHMrQmwTQjSrdRJCrArqQs6CloLVBaxp7QQhRI0kSaN2n6r5/MpXD02d1D9amjUs3nS2stEfEPx6vJJvtpfUnCx1Kd6AuENRxNJQs+6qNQccva4eFBdU9RMbZmBrVov3eJs47XBr6tY14OfMCvp0DOWiHpGM7h7BusxyvvythNfXFjBlUCzdEkNUwrY3wIliJyv3OugQaeTWMR0Y3zuKV1bns/l4JUt22ZgZZPzcxqPlHC6oY/nDfckpdfHmTwW8t76QaUPimNQ/huhQPZIk4fYpbD2hZkvnl7m5+aJEJvSNZubbR7hjbNI5VAy9TmrXDrZ/qhUBnLS5NC2AWjlBPx0sE7KEe8luu/7ecUmG9nT4dp2s5i+LTzo9fnFVC4k5DROE/UII7aHXFx42A622xVzewLN6nZR328fH3urd0SrmjEwIOz9h7vgZJ4t3lro2HqmQdLL0tcsn7tPJ4tGPNp157q0bu4UEs2GJDjVgr/FptlM77XC3WeRJkoS+hbcur/WxPaeapQ/1ITxET8cYM19sKebNnwq5ZnBsk/Slnw6VseFwBcPSw3n/1u5U1Pn523cn+XxLcdALSZ0nwNs/F/LAFcmEmvU8vjCnfiwaT//Ucy2ChBAcqo8W3plTxTPTOrNsj42fD5cz5Sz7OotJ1y47O71OYmK/GH45UvH/6/1qr/ayO7c6UFLlcU8eEGttj1q6rNbHA19m1VW5Ap8EFLGgpfMkSdoM/EMIoYkXdwEip60ThBC/S5I04o21BSs/2XQmcc6oBMtV/WPks4uS8lofP+xzBBbvsHm8ASXL7VOuAXQr9zpm3TAygfMTKdtCpEVPfpm7CVWsPSgo89AlPqTNe701StzinTbmjU/moh6RfHCrmQ83FvH5lmKu6BPNlf1jiA831Ns0Bdh6opJl9S5AD0/syEXdI7nylYN8uLGIYV3Cg06b+npbCSnRJt69pTv/XJHHtDczmTJIpeKc3fk8+379PbuKOy/pQKhZz5dbSxiYdq4H8ajuEbSnQz55QAzPLs3VVLAqisDjUzQ9Y7/ZXuo6ZXPr9p+uMZ597a191ls/F3o3HK4odHqVGS2dJ0nSA0AXIcTDwV6TloK1E7AEaNXlXgjhBq6XJKnjqv2Ov605UHa7ySAbUGPnhCKE5POLAo9fPA0srg8koM6jPPDa2sJfkqLMjWrEtiCEIM/uZtfJas0cWFUAoZ0/unS3jXvHqX9QkqQuChP7xXD8jJPV+x0s31OL06NgNelIijLy+g1dz1kwpg+L46fMcj74pagxuak9+O1EJS8sz+MfUzsRatYxoFMon9+VwdEiJ8v22Ln2ncN4/Ap6WSKgqMq/GUPjzvFMvbRXJKv2O7jlYm3E7MQIIxV1wYsphBBkl7iCLtC9foUF20qddR7lliW7bM8dLqxNv21MB8uQzmHN7szzy9ws2WX3rtzn8Hh8yuQ2FrZK4MbgvskFj0WoyTmHWjvJHxDzJUn6dt/p2hsPF9Y9b9LLiZKEQCAhITw+xeNXxAcBhZeFUGwAkiS9faSw7q+v/1QQ8tiVKe0WzxWUe5AlWH+44pzCq734o4rnVfsdXNIzsrF7MLxLOMO7hHOy1MXS3XZeWJ5LtSuATlaFBxf3iGDhvF6NVlZpsQKdJLFoh43YUAMz2vk37PQEePjrbCwGmcv7RCNJEkse7MOag+X8+4fT6HWqgrdhc5td4sIXUJgxNI7H66OFZQk++KWIqwfGaBIrJkQYyS7RltiTXeKkgwZh5+KdNr9Olr4uqvBWzPngyF1zL0myTOgbLTXXHatzB1h7qEx8trnY5fQG3qpfI1rDU0BW0Bd14eJOVGvIZ1o7SQhxVJKk7k6vMvqDDUUvfbzxzEiDTkJRXeqEPyDwB8Qmb0A8JYTY2/A6g15eOu/LrBvmz81od/eszh2gsNzDdzttXNor+A5lnSfQavxrW2gQNF9W/9lpcWZeuq5Lo+H9iytPU+n041cE4WY9/VKtTVyAruwXzeoDZTzxbQ6vzena7utZvd/Bl1tL+HZeL0KMOl6clU6u3cXyPQ5u+vAoHSJNhIfo8AcE9mofksQ596vHp/DOz4UUlns0cdYTIoxUOLWJFXPtbqJDDUHTII4V1XHK5vL6AmL2I9/kfD9tSKxp5tB4Q3O0KUUR7DpVzedbSuqyS5wnnF7lCiFEa359q4Dgd8toK1hzaCfHT5Kki8PMun/6FTHs6oEx0tiMKDk8REdAEVJJlZflexwx+/NqPtLJ0kWSJD0LlFuM8ntje0YG/v79Kf1DE9Rc8tY6N26vwnsbCtlwuIIIi54fNCriGkaUWnYiJ4qd1HkCDO/StCOZkWQhI6ltntrBfFWA8fdr0nhq8UkOFdRx3fD4FnezheUeluyysf5wOaO7R7DxSCXj6onokiTRu6OV3h2t/GNqGj6/gl8RmA1NlZug3lxPLT7FjaMTNYki9DptOccH82spr/PRs0P7d+yKInhmaa632uXfAixzepU1+0/X3nKi+ORfLEY5dnjXCKtJJ0tI6igsq9hZd9LmEkh84vGJN4UQ+W18hAnoCmwM+gtduBgNtFmhSJKUGGKUnw8o4qZBaWGBqYNjpcQIo6STJapdAWnL8QrdD/vL5ulkaYgkSU8LIX4zG+S/xUcYjYfya3lxZR6PXJnSaiEphGDTsUr+/UMevnrVr5bCK+QPUgpW7nXwr1lNaVRd6kMP2oK92ofHL/i/mem8+VMB+WUebr4osUVjbyEEmQV1vL62gJgwA5mO+g2sWXdOFvzB/DqKKjyqDY9Jx9TBsfRPDT3n5zO8SzivrsnnSJFTk2+1QeP96g8Iluy2848gE3c2HClnyS57tdunPCOEKJAk6cf3NhQ99da6wotHdQ2XIq0GI5JACCir9Xl3ZFcJo0G3qdYdeFkIsbkdH9EFOB30F7pw8TJqY6dVSJKk08nMM+nlv0RZ9RHXj0yQenSwSPWbHen4GadY+HvpiCqXf4VOll5WBO8DA0x6aVrfjlbu+uwEL13XpU3BYWG5h78sysHl9ZNdqqBFoGk2qOlZWvHDPgeTB8Q0GcPHR/zXu7stHDvj5KbRCRRX+bj3iyyemJRC744thx5UOf18s72UdZllRIboOHbGSWK9/2rnuBAevTKFe8clccrmpsbtx6CTibDoG1MaG2AyyFw1IIble+yaxIoGnYxfw/0KsHhnadCuRbYqL498k+P2+sU9QoifJEnqt3yP45Glu+23ZyRa6JIQYpVlCUUIPD5F2ZlT7XL7RYnTE3hZwFdCiLY8keMATbnYWgrWFOB+1Pzmlt9YJ821muS3HprQMWR8n+gmqvmMJCuX9IyyllR6Wfh76W0/7HNMc/uUlzvFmlOemZqmzyl18cLy08z/tZjpQ+O4asC59lIN4oo1B8sYnBbGwvt6cctHx/h+l41rBsc2xru2F9GhBk7b3UG/DtRxR0aSVROHE9TF7LudNp6anEqPDhbmz81gyS41Ki8lxsTlfaKJCVX91iqdqt/a8TNOrhoQw+dze2I165j2Ria2Km+zY54Gn8uWkJFkbdwdtqbabgnVLm1+nF9vK8VqlHl04Un+PSu9TY6N26fw3LJcdp2s1ju9yvv1nDaXJEmrvX6R6g8EHjxcUOdLjDTKRp0kVbn8ykmby6jXyRvrPIFVqH6kbSEMmAF8HPQXunDxT+AloEUTTEmSepkN8ubJA2IibxydaGiO4D+4c5jx3vEdWZ9ZPubNdQXr9LL0lE4nPfH2jd3MoWYd//kxn2lvZHJF32imD407J8Kvzh1gzcEylu5W3YfeuKErG46Us+5QBVuzqgjWBi8m1ECOxi6hPyAorfK2GeHbGlbsdTCxfzQXdY+gd7KFjzaeYfZ7RxjeJZwpg2JJiTFh0svUegLsy61RnTV8CtePTGD6kFieXpLL2kNl50wXJEliQKfQNt1OZFlidPdIDuXXaipYazTer7+dqEQnS7y8Op/oUEO7hJIr99p5a10hihC/CiEa7r/tte7A16EmXdq+vNpOXRNCfFaTTq7zBJRTNhcGvXym1h1YCuxu56VdjWpEXhL0l7owMR1wA8taOkGSpBCLUV7WKdY85qEJKZbzqSQAfVNCpZnD4kIP5NWGvrWu8OX8MveVkoTp3nHJITOHxbNkl417Pj9BRpKFGUPjGoW08F/+59LddjILarn14g70TbHy+MIcPvu1mGenpQW1yUyIMHLK7tIk/gEoKHMzSWOqIaiTgdJqLzdd1AGdrPKpn1t2GqtZx4yhcQxOCyPUrMPrVyiq8PLDPge/najk4h4RfHpHBocK6vh+V9PucohR16774OIeEby3vrnslrahdX2t8wT4ObOCEKPMgq0l3Dg6oc3fWa7NxYMLsnF5A24B6+r/+7Tbp3xvNcmdT5Q4JwgJX2SIXvYrQpRWe5VaT0ASsEKoCajtCfDoC0TQsoiyRWgpWAM0b0LeCJ0s3Rph0b/50e09QtoylE6MNPLolSmGjCRL7H9W57181YAYnSSpY7Gv7unJ/tO1fLixiM9+LUYCFCGQ63/oI7qG8/ncDJKj1c+YPSKBxTtKeeCrbD66rUerFhtnw1btxVbtZcluO+3hapyPuj9oSrzvdC06icaFKspqaBQ+bTleybbsKvIcbnQyJEWqBexL13U5ZxNwRd/oRhGIFkRYdNS4/SQG6ZdfVuMj3+FpV77w2ThcWMe+0zUse7gP838tYebbh7myfwzTh8Q1iagtqVSzrn/Y52BYl3CenZ4mP7/s9PuSJP1oMsjPmw3yE5P6x0jXDosznZcAo6sfL17xzfbS0VVO/ylJki4XQthaui4hRBEwIagvc+GjhhaMyAEkSepsMsjbnrwqNWLSgJhWn2hmg8zVg2LpnxoacvfnJ16NDzOIhk3Sc9M7Y6vy8unmM9wz/wQC9X6VJAkJNa3mgSs6MqpbOJIkER1qYOVeB88syeXdW7q32ykioAiOFtVxIL+WhyakBG1tVudRebNaQ0p8foWV++y8e0t3QL1fn7q6E/df3pE1B8v4cGMR9mofTm+AKIuBLgkh3H95R4amhzVuamcMjeOVH/MbVdPBIiJEvV+1YMuJKmYObRrW0RqcngDvbSjioQkdsZp0PPpNNv1SQ5kxNI5h6eHnbNYbUo6W7rbj9AR4/9buPPBV9kRJknoDUSa9tKpPx1D9nFEJoeel4unqx4udF/5e+saBvNrXJUmaJoT4pbVra8Wx5n8VblStSLOQJElvMcqrhqaHj/6/mZ3NrYl/JEliYFoYH9/Rw/L3709dtie3xjihb7QEMHNYPJMHxvLDXjuv/VjAC97TCAECdY016SVmDY/nnzM7N04e48MNbMuq4tPNxdx5SYd2/+2eLFVTqrZnB785BajzKFg0TD8bsGy3namD4xpH49OHxjF1cCw7T1azfI+d+b8WU+n0YzHKxIYZmNA3mocm9GlUyI/NMPDG2gJyba4Wo95bQ0SInmoN4mJQBZo9NYTjfLr5DP1SrDx9TRpPLjrJ2oNlTB8ax5X9Ys6pjYQQHMirVXnyJ6t5ZGIKO09Wh2w6WvGoJElvWk3yGqtJ1+uGUQnWSf1jpPMbS/kOt/H7Xbb7V+8vuy/EqHvP7VOeFEK02E4XQswP+svUQ0vBagc+bemgJEm9Qozye+/f2t3SnvSTBkzqHyNVOf26lXsdzBgah8cn+HJrMSv3OkiPD+Gpyal0jgtRk5M8ATILa1m228Gj3+Qwa4TatYgLM+D0BhiYFsY9n5/gxWvTmxQ/5+NwQS1///4U1PuYauHAmo0yrj8w7li5z8G0IU0XLr1O4rLeUVzWO4qyGh8GvdQi52j60Dge/Cpbc8HqV0CvYee7bI8dWVYXtPYS2U/ZXDy8IJtHr+xIpMXAo1emMHtEPMv22Lnt42NYTLrG5K+AIqhy+pk0IIb3bu1O57gQhBCEmXVRimB1h0jj2Hdv7m5uaRRrVS1CpBlD40I/2nim56IdtgOSJA2tL0ybQJKkrqhjjT9TeMBHtCC6kiRJshjln+++LCmsrWL1bKTGmnn/lu6Gez4/wSmbi/T4EH45UsHX20qocvq56aJEhqaHE9bYtfCwan8Zzy/PZULfaO4Ym4TVpEMny1w9MIbHFubw+KQULusV1eqkorzWx79X5ZFd6iLSomf94fJ2iY3ORohRxuULoDWSdnt2Nakx5iZ56KFmHbOGxzNreDwub4AqZ6DFicXATqEIAZkFdfQLMrEK1FxyLZ2qXLuL48V16OT288bdPoXHF+YQadExoa/Ku13xSF/WZZbzxtoCKp1+lQYigRDqKLVnkoU7L0lqjGmeOSzO8PW20lf1OmnMS7O6WFpKJZNliRFdIxjRNSJ0/+kaHluYs0qWpRsVRbTWbdwMzBNCHA3253GB4lda2WCa9NLTXRNCRv5zZmdze327jXqZf12bbp73ZRbL9ti55eIO5NpdfLa5mJ0nqxnfO4rL+0YTG2oASf0dbjpawcLfbRzIr+X2MR3oU5+E1sNqYOPRCqpcfu4dl9wqBcjnV1iy284XW4oJKIKlu+yaCtYQo3YKkNunsOFIBYvu633O/8uyxMhuEYzspgqf8h1ukqNNzd5Xep3ElEGxrNzn4OGJKUFfg18RaLFYF0LwzfZSUqJNQXWnF+8o5Yd9Dr5/oA/RoQY+vyuDvbk1LNpRyrvrC4myGJBk9X51exWMBpk5I+N56mpVC9MtMcS0+VjF/SEG+eYpg2ITH7i8o7Gl53JqrJnHJqWa7hibxIMLsu4pLPd0lCTp+pZcPSRJehyQhRD/CfbnoaVgHQC8BQxv7mCIUX5szsgE4/kP8/Zg9oh4Vu1z8OvxShZsLSUxwsj7t/ZolmPT4Kt4ML+Od34u5FB+LXkOF89M68xF3SNYtMPGXfNPkNHBwvShcefYSzUY4C/bY8de7eX+K9Suwb9Wnmb+luJ2m/I2IDHCxPFip+YFsKjcw7XDWu94fLL5DN0T1e/SHDrHmaly+fH4lFaTfpqDPyAor/Vp9FuzMa5XFHd+dpy/T0ljWJfmhU8N5/96vJJXfszHqJdoCF2pcakRrRsOV5AWH8LEvtHEhBnQSRKVTj+bj1Ww8WglZoNaECRGGunewWLNc7gnfHpnhq494htJkrhnXLLBZJDjvtpaskmSpIFCiOaiHu2o4/M/E7YDI2meEnFphEWfOGt4fNDti87xIcwcFsf3O22EhejZeLSCRyemMKJreJOis3N8CBf1iKS0ysuCrSXM/ew4YzIiGdU9nIcmpjCudxQvrc7no41nmlCAzlbebs+qYtKAGJ6Zmsa0NzP5amsJl/WKavc0BdTFO9SkI7/MoymxqbDcTUZS63SCQwV1LNha0tiFPR+S9F8PYi0Fq63aR882rqE5LN5hY1CnMF5fW0BhhYeZQ+NaFZ/klLp4eVUetZ4AUVbVbUQIwfbsatYdKqfOozBtSBxd4kNU+xxvgMMFdfycWc4P+xyYDTKDO4fRPzVU/+3vtolv39StXRZeAAPTwvjgth4h93x+YoEkSWeEEDtaOPU1WqG7/A/iadR79fXzD0iSZDTppUf+OqWTJdiQGYNe5i+TO/Hwgmx6dLDw/LLT3HhRYmORcg5ioG9KKHddlszPmeU88e1Jbro4kVy7hxUP98UXUHh5dcsUIFuVlxV7HazcZ6dTrJn5c3vy0aYitmdVcyCvhgGdgptkxoTqySpxajL+L6/1YTXpWuSXN+D2T46z7OE+LTaFenSwsPqAI+jPB5XzrsWD+EBeLW6fQkAR/GXRSR69MqXVsJIqp58vfitm45EKEDRGteeUuvjpUDkH8+sYmxHFsC7/bSacqfCw+kAZP+wrw6CTmTwwhtQYM2aDHD5lUGzofZd3bNeFR1r1fHx7hvWu+ccn55d5/gX8tYVTf6YdHO3moKVgPQDMbO6AJEnhRr10/dTBsVreF0mSmDwwhld+zOfK/jHcNz651QKwgfP13q3d+dt3Jymu9DKyqzpuVLlicXy3s5RX1+Tz/PIAAUX9KckyRFn03DA6kasHxqLXSSiKQC9JrD1YRlKkiTmtJHqcj4P5qjuB1m6JSilofcGdNz651Q6oJElYjGr3OdiCdWtWJQnhxqA6y0IIXvkxj9QYM3+5uhObj1Xw9s8F+AOC6UPjuLRnFFazjCLUTOF1meWs2GMnLtzIv2alY9TLPLPkFIPTwnhsYQ69kq28dF2XZguBawbHUlTuYdkeO7d/coynp6ax/3SttHBer3YVq2fj1osT9QfywS4megAAIABJREFUapN3n6q+HWguUUb73OnCxcWo3o5NEGrWPXHDqASr1vH4NYPjmP3uEVJjzXx6RwZt2RUlRBh5/KpUluyy8f6GIl68VhU+9UkJZcE9PdmRU81HG8/w2eYzBIT6d6aOJ2Uu6RXJkgd7E1nPM58yKIb1hyt4dGE2b93Yvd3UgKxiJx6/wrLddh65MvhuidPb9nhyQGoo3c7znDwfFpOsydPU6Qmw6WgFcy8JTly6+1Q16w+X8+19vfH5BW+tK+DrrSVM6BfNlEGxJEQY0UkSHn+AvbnqiLCw3MP1I9Wo3JlvHyEzv5ble+1kl7i4bUwHxmRENlEgT+wXw7zxaqHzfytOM2VQLJkFNTxwRXK7i9UG9Ohg4cmrUi2vrS14DxjcwmkG4I/nbl44eBGVetccpndNsEhaGkIAXRNCiLLq+ceSXF6e3YVBbVDgzAaZKYNi6ZVs5b4vTzAgNRSzUcaMzD+vTae4wsP7vxRxz+cn8AcEAUUgyxI6GbonWHjl+q6NqYezRySwPauKxxbm8PHtGe22x3J5AxzKr6PKVcVtYzoEPVlQ79e2nw0L7+tFaCvridb7FWD5XrsmD+LnluVy3/hkJvSN5pPNxdz28TF6d7QyY6ialKXXyShCkO9ws3yvg1+PqbzbL+7uyZe/lbBsj50u8SG8+VMB149M4LsHejer07npokT25Nbw1dYSNhwp59KekaTHh8jzxicHVUyYjTJv3dTNOvWNzEckSXqnBftIA6qff9DQUlimopLcXzv/gATXD+0crjRYv2jByVI3g9LC2ixWz4bZIPOva7tw1/zjrNpfxrQhcRzIq+HTzcXk2l1MGRTLZb2iiLToEUB5rZ/1h8v5aOMZthyv5K5Lk8hIsmAyyQzpEs7yPXbKan3cPrZDq+OOOneATzafYcORCmQJlu62aSpYLSYZl7f1G2HzsUpSY8ytCjJcXkWTdciCraUUVKi2YMOacTo4H4oieHdDIesPV7DkQXXMcknPKC7uEcHiHTa+22njnZ+LUOonArIkkRxl5LYxHbhmcGxjl8ZslLl7/gluH9uhTWur5GiV/zg0PYynv8+lb4o1aB9BUAv7my9KtGQW1D4hSdK7zYwtklBFhT8E/eYXLuYBL3BeeIAkSQkmvXTplf3aTwU4H7k2NxaTjtfndG2zWD0bM4fFU1brY+HvpYzsFkF5rY+PNp5h49EKRnYN577Lk+kYraas1bkD7M6tZtluB3fPP8GcUYlMGRSDxajHqJeJCzNy35dZPDc9rVX1sqIINh+v5OXV+QhgzcEy7h2XHDQHNsQoU1bTXEjaf5Ff5mZvbk2rCXCudhS+zeGnzHJkGZbssjNvfHK7xJ67T1Xz5LcnueXiROLrn8//ub4r+0/X8P6GIlbtP4HHpyDXjwkjLWoKzyvXd2kUQ04bHMv/rTxNSoyZj+/o0aqjisWkY+qQOC7qEcnDX2dTXOnh39d1Dfq7AlzeJ5rX1xb0lCSpdwtm5I+hhtm0qq34H8IVQBEqNeAchJl1j88ZlRC80KIebq+CrdrLc9M7t1msno2uCSG8eUM3Hvo6G1u1l9hQA9/ttLF4p40oq54Hr+hIv9RQrCYdHp/CaYeblXsdPPx1NhP7xXDXpUmEmnUEBMwZmcD9X2bx1NWduLhHRKt/v3kON88uzaXOG8CglzRxYC1GGWc7KHvzfy3msStTWrwerfdrWY2PnSerKan0MnlAbLsaQ+W1Pu77Mguj/r8Wl/PGJzN7eDzvrC/k/1acptrlR5JAUdRnUq9kK+/e0o2Mer7r9CFx3PbxMaxmHe/c0r1VtwBJUn3XB6WF8da6Qj7dXMxTV3fSNDGOshq4om+0+OlQ+d3As82cMgH1Xg06nU5LwWoEmv2LMRvkAUPTw4JnB9ejyulny4lKvn+gT9A/KLNR5pGJKby0Oh+TXuKd9apAYFyvqCZmxPHhRjKSLMy9NImfDpXx6Dc5atKGgL9N6US1K8Ar9Yrny/tG14+8zI2FVk6pi2V77Gw4XMHwLuF8c28vnll6it9OVHH8jLPNceH5iLYayCpx0lpakC8gaIESAqg3ttWsa+LG0Bayip2cdrj4z+wuPLtM5RdOHxpHc/xjRRHsPlXDN9tLcHoVMpIsrNhbxu1jO7DxSAUf/FKEySBz0+hELusd1ahsrHYFWH+4nO922li0o978uXsEbq/C7JHxQfmwjugawXPT0/jnyjyqNMTGAQxKCyU8RB/l9HrHoprqN0IIcRh1wfgzIY7mRzDdU2LMbqtZF7w5YD0W7Sjl3nHJmryP7xibxLQ3M9l6opI3fipgTEYki+7v3SS9KibUQGqsuZEC9NqafI4W1bH1RCVv39yd9HgzC7aWMvez/1KARnWLaOz8Vdb5+fGAg+V7HFhMMi9fl86ZCi8fbSxiwbaSoHnfiRFGfj1e2eo5AUXlrbUE1YPYydTBwfFvfX6Fr7eW8OjEVJbvsfPw19nMGZXQRPjUgPwyN8t221mXWc70IbFsPFrBLRcnUlju4bU1BZwodnLVwBj+MS2N5CiVv+fxKezPU50NZrx9mGmD45h7aRJ1XtVq69/1E5L2IDbMwNs3dePWj4+xI6eKS3oG7+Gp16kc2EU7bA8Dc88/LoQYHfSbXtgIowXbH29AdOuvoSnSgPWHy+nd0croICJdG9Az2cr43tEsq++8l1Z7+de16fRMbrrkJ0WZGNUtgtIqL5/9Wszd84/TLTGE2SPimXtpEoPSwnjjpwLeXV/I9KFqwE3Ds9wfEGzNUgNuckpc3Dg6gUn9Y5j2ViafbS5maHp4UOtctNVAldNPRZ2vVRcgj09pte7IKna2Oo5vCf+PvfMOj6Ls2vh9ZmuSTW9AQui9SxMEEbFQRFFQQRRURGzYwO7rq+Krn70gqIhiAQTpRakigvTeCaGlQXrbXmbO98dsIEDaDAkLyf6uK9e1k93ZOZvsM/PMec657zlbM9GjaQgaxwTg0e+P4sEbYjGgQ2SpyTBvkzBmbsrEjS1kA6LkHAfqhunxzV/p+GNPLjo3CsakYY3QIcEEvVaAKDFSch3nLNXb1Tdh4sAEOD3ykvLnI5tVOputEQgv9I9HvtWNdYfzVWnuAsB93WOMaw7mjyei9y62QGfm91W9KQAqbxJU6g5EOgA6Zr5EUyYkQDvv2dvihyltgihm1qYMnMiS61DVwCz77nokxtejm1/SFFEWR89Y8cwvSejfLhwTBzU49/vUXAe+Wp2GfSkWON2St3BatjprFx+E8bfHo2GUfIwtSYV4Z9EpSAxMH9OywmavYnLNbjz4zWGEBmrx29OtyxwwFocIvZbKvFB8tDwFqbkOTC6jZq40sotcGPXdEYzrWw9DukQjs9CF+duzsHxPLhpGGVA/KgDF10CXR8K+FAsC9RoM7SZ3GqbkOvDirOMY1i0ai3bm4L93N0THBqYyPwMzY+cpM95ddBq9mofiYLoVv4xrpeou7p1Fp9A0JgAjb6ijeF8A+GnDWZ6x8ewUh0saX/L3RNQBwGs1qfOYiEIAmC/OJhPRHR0bmGZ++0gL5VcvyPqMj00/isUvtFN8o1TMFytT8ee+XDx1SxyGdK5c57rVIeLF2ceRWejCoufP39w6XCJ+2piBP/bmwuwQ4REZRLLuaL0wPR7tUxd9W4eDSJ6UDfpkH0QJeHFA/Uo3bkkSY9Li0/j7SAF+eaJVqTd2gHzx84hcZm3t/hQLJsw+jmUT2sGoq1zWRpIYb8w/iewiN6Y92gJukbFyfx4W7MiC1SGiQwP5AsYsZ0lT8hxIznbgjk6RGNYtBjEhOgz/+hBG9IzF93+fwYM31ME9XaLLLSE6W+CUM9IMJJ6x4vvHWirW4ASAfxMLMGNDBn4Y21LxvoA88R797ZE8m0u8RNuIiNYBeICZa4SsFREFABCLzXRKotWQe+2rHbVq9MKZGQ9PO4pxfetVymGpNI5l2PDUT8fQqYEJ7w1rXKnyM2bGL/9m4KeNGfjxsZbnuuyZGeuPFOCHf87iTL7Tm5SRb1CCjRr07xCBx/rUhcE7Pt5eeBLbTpjRqm4g/m94k0rfNG0+Vog355/Ew73rYFQ55jj5VjfCArWlXo88ImPgJ/vw+uAGuEnBJO6vQ3n4YGkyZj3VBrGheuw+bca8bVnYdcqMLo2DS9TpA4V2N3adNKNrkxDc2y1GruH+Kx1mmwencx0INmoxYWD9cyskpeFwSZi7LRPzt2ejZb1AtIsPKvczl/c+d32+HzMeb6Vqkg4AQ788UJSe77qNmbeV/D0RvQrgLDP/rPQ91VxlbkEZ+nCixObLEfNevCsH93RRJrdSklyLB1anhE8faFbpySog65B+PLwJ1hwqgMUhwumW8PWaNDw2/SgkCXhrSEMsfK4d1rzSEQufb4dJwxpDpxXw+PREfLYiFTaniACdALfIeKBHLJ6YkYiNiQWQKsiw7E224LEfjkKnAcwODw6mldYDJPPB0uQyszp2l6xxeSrHjh//OVtuJraY09kOPDb9KFxuCX1ayQnzmBAdbmgeik4NTUjMsCM114FCmwd5FjdOZTtgdojo0jgYnRsGw6AT0KxOIAxawpJdOfh+TAt0alh2wxVwftlh2pgW2JhYiBZ1AlVNVgFgaFdZVaC8v3F5RAXrSK8RShvJWQAWqXrTq5czAEpLy1gvR8x72e4cDOwQqXqyCgBHz9owrFtMpSergKz88OkDTaHXEtYfkcfE2oN5GDP9KP4+UoCHetXB7KdaY9XLHbB8QntMG9MS3ZuG4qM/UvHirOPnXJ50WgEjesbgh3/OYtq6MxXWp2UVufDm/JM4mGZFgJ6wyKspWxr/HivEe0tOl/n8rM2ZCDZq8MLM4yiyVyxP5XRLeHP+SWw7XoTh10ef8wjv3iQEPZuFwuqSkJRpR67ZjSKHB2cKnEjKkI0FujQOQXSwDkSEm1qFYfLqNLw6uAFG9IitcMJRN8yAT0Y0hcmogUEnqL549WgWilyLG0fPlH2OK48okw4ukctKLc4GYFH1xlcn30B2prsEjUAutdfYYxl2FNk9KEuhoTIcSrOiTqgekyo5WQXk8/7o3nUxsEMEftwgl9In5zjw8pwT+GBZMjrLzXVYPqE9Vr3SAXOeboNH+9TF5mNFGPXtEfy5NxeAPKmrH2mAVkN4fmYSUnMd5R7X6ZYwd2sm3l18GqLEWLgzB2IZ1wtmxoCPyzYC3HSsEBqB8NEfKdifUrmv2tLd2fjfkmQ0jQ08Z9/aup6c3Y4N02N/qhUZhS6Y7R5kFblw9IwdkcF6dGkUguZejeg7OkZi1cE8xIcb8P59jcudrALySvPo3nUx/rY47DhpRvcm6m5MjHoBAzpEYskudU1mABBp0jGAiFKe2oIKXBfLQk1JwBYAp0p7wuGWTpzKtrsAhWKekOWLzuQ7zxVoq2HJrmzc0jZc8ZI8IHekdmkUjEU7s7HpWCHCgrSl3l0EGjSINOnQvUkIsgpd+HZdOp786RhCAjR49rb6uKtzFFrFBWHKmjR8uSoN93SJxu3tIhAWKN8lWpwS/j6Sj4U7smFzSXiqXxzaxAfhgamHMHVtOiaPal6qjdrTt8aVKRv14z9n0TouEJOGNsarc09g1f5c3NM1BgM7RFwgxs/M2JciN1NsPV6E526Px4FUK+ZsycLIG2Lx+u8nkVXkwtCu0XhtcINLhPzT85xYtCsbj/+QiP4dIjC0azQKbCJmPN4SSuqW64YZMHl0Mzz+QyKeMLsRVUH3Zmm0iQuEyajFthNF52RJlKARCESlfv9dqJzBwLVEX5TudJWWnu/UqRXzTs514La2pZ2PKsepLDvScp34elTlVwWKMRk1eOLmOMzdmokTWXb8uTcXr93ZAKXZ84YGajH+tniM7VsPf+7NxbO/JGFgx0g0jQ3A433jcE+XGHy24nwJ0JDOUWgYZYQgAG4PcCBNHjO7T5kxsGMk/nt3Qzw2PRHL9+ZiSJfoUpUGujUOLrOL/3C6FTtOFmHBc20xc1Mmhn11EP3byxrEFyuiXKxBPGlYI3yxMg19W4Xj538zMWdLJm5vH4FvHrl0RcnmFLH6QB4mr06DXkP4eERTbD9pxpP94hTVAWo1hLfvbognfjqGZbtzMERFUkEjEO7pEo0FO7Lxxl3Kz/GCQGDmstKKKQDKLyq+tpiEMupx9RohMznH2UiNwU1KjgOt44JUjXXgvMHNxIEJqm5Sn+oXj7u/OID1R/Lx4fIUjOpVB+8ObXRJLXSQQYO7u8g6qftSLPhgabK3BKgQ85+Tu/h/3piBx39IRAtvCVCXRsEw6AiSBJwtkO1a/9ybixb1AjHt0RbYkFiA37dlYcGOLNzXvfS68p/LWO2zu0R8vSYNz94Wj9BALV6ecwJt4mSL8+4X6gjD4ZKw5mDeOaOQqQ83x0u/nUBShg1Wp4Q35p1Ai7qBeOLmOFykQXxuBXLBjmx8ty4d7wxthBNZDjSvE4iX72ig6P92W7tIZBS4MWVtGr5ScX4F5BrYcTMS8dhNdS8pq6wM3nhLu8bm4aJ+isqiZsJaD0AnAEcvfkJizFyxL+/N8bfFK7Y4tbtkOSa1blEekbF4Vw4+G6musB8A7uwUif8sOIVb20aUW3xdTEyoHv8Z0hDf/JWO+duz8c49cilD9yYh6Na4FVbszcUvmzIw7e90uDzycodOQ4gM1mFI5yiM7BkLrUb+IrRPMOHoGRv+u/AU3rmn0SWT1t2nzWgdF3SJ5Mb87VlYsCMb855ti0iTDtPGtMC+FCvmbsnAN3+lISxQB4EAhldvTUt4oGcsXrlDljJpV9+Ex388in+OFuD6piH48qFmZQ6MuAgDnrk1HqN61cErc07g1bknMaBDhKolwkbRAejXJhxLd+fg0T7KlyyICN2bhCDxrE3VhLXA5oFbLNVAoC1kWZlbFb/p1ctgyE0pF8DMScEB2lObjhW2USMXI/uDq8+uLtiZjbs6Ryn2uS7mxpZh+GBZMgrtIr5/rOUlta8XY9QJ5+R3XpiVhDHe711UsA7v39cESRk2fLU6DU/OOAa7W1YV0QoEk1FA18YhmPVU63M3ZiN6xGLK2jQ8/fMxfD+mBeqGXXhjm57vQkqu45Ib3mInmRf6xyM8SIfxt8Xjvu4xWLgzC2N/OAKj7iINYrsHgzpEnZP3Y2ZMXZuO138/iYwiN357uk2Zcj3FjU93dY7CjA0ZeOT7I2AG7lYx4dRpBTzetx4mr0471ziplG5NQrD2UKlywBVSZPNApxXKSs/+DNk9pzIuO9cCnQEkQpbYuwCbS5w6f3vWOx0bmBRnZS7X4GZPsgXMcg+AGoKMGnRpHIJJi0/j/XubVJjplVWAgjFtTEuM/+UY4iIM52pQH+1TF/d3j8E369Lx4fJkFNlFuEWGQPI4bxRtxKRhjdClsXyMwYFR+H79GUxdewZRJj1ubnPhsr4oAX8dyr/E/c7hljBh1nGEBGjQv/15DeK1B/MweU0a3l7kvqAWtdDmRqs4Ex6/uR6ubyLXld/dJRrfrE3HkTM2/Peehri+aenXq+IVyK6NQ7AvxYLX5p4Ag/HxiGaqzpHDe8RgztZMJOc4VMn3JUQZEaATkFnkRnyE8pWVApsHAPJLeeoJAPugwk1SzYQ1EkDr0p5g5uTgAO3mNQfzb75TYR2rUSfA6ZZUa5luOV6IOmF6NKuj3m6xeFJYmclqMUSEJ/vFIbPQjR/+OYuXBiVgX4oFk1enIavIhbu9GdaoYB0EIhTaPdh4tADzd2Rj+Z5cPHZTPdzePgIut4TuTUJgcYiYOPs4XhxY/4L6uDP5rgu2C20e/PJvBtYczAMB54wLTmQ5sHxPDnacsuDGlmG4vkkoggM0cIuMs169tYU7c0AkCyHXC5OlbHo2C8Wzt1fO5zgkQIsvHmyGJ2YkXpaf+9Cu0Xhx1nGM6lVH1YA0GTUotKlz+1m1P89sd0lrLv49M/+DUrpzr3F6Q75nuQSLQ/xw9pbMqTe2DFN8FQrQqRfzdnkkrN6fh5lPlnoqqRTHM+3QCIQvH2xW4WS1JB0bmDBpaCN8uDwF93ePgc0l4YuVqdiYWIibWoVh3M1xaBxthFEnG4IcTLdi4Y5sjJx6GAM7RuLJfnEAZPWLoV2j8fgPiXjtzgbnLlAAUGj3IKPwfAmiR2SsP5KPT1ekwqglOL36iEV2D/7cl4uV+/LQICoA/duXOFfYPPjnaAHWHMqDVkO4//oY1As3oH6kEaezHfjhsZaV0p8lIjzapy60GsL87VlwuKVy1U/KomujYLg8EvanWqGm8SfYqIFZpdvP+qMFrBVKt3JkZuV3vFc3rQDklvaExJixIbFgUoHVo0iVA5CXeS/nfL1kV+kGN5VFkhhHzljx0qAERWUJoYHy9ebhaUew57QZHRuY8NuWLMzenIn6kQY8378+ujUOgcnovc4VOLF8Ty7enH8KLesF4vnb6yPYqIFWkK/Vn69MRXKuA/d1jzk3DiRmnMi80FysWIPY6hLPNRAzMzYmFmD5nlxYHCKGem+AA3SyEsGhNCtW7pctqLUCoVuTELSND8Iv/2bgq4eaVVpFqEOCCV8+1AzjfkyER1T3P9NrZVfCRTuzVZkdAPI11uLwAFA2Yc0sdCE936mDLIN6Acz8tKpgoGLCyswbAWws63mLQ/zoh/VnuvdrHR6kRMxbqyGEBGqRnOMs1SigItLynKrsy4pxuiUs3Z2L7x5toTjLS0R45tY4PDD1sCwtsToNLw6oj76twy+ZiEWadOeyHvtSLJi0+DT2p5iRnOPAV6OaQyDCjA1nMe7HRDSvI3s8t40PxL3do8AsO3Mt2pWDDUcL0Kt5KH56vBV+25KJ+duz0CY+CJ/9mYrhPWLw+/g2pXZuP9AzFnuTLecmu/3bRSA+woBnbo1T9JkNOgFfPNgM904+iEdudKqqbWtWR67t2XFS3bK+2yNnjJVyPNOO0zkOEcDii58jou4A7mXmiYrf+CqFmfuW8/S8I+nWr/cmWyr0sL+YSJMOxzPtqjq/860eGHSCKmmyYhbsyMLwHjGq3qNXizDM3pKJxbuyMW97Nno2C8WC59peojoRZNSge5MQdG8SgsxCF75alYbxvxxDkV3Ef4Y0RLcmIWgaG4Bv/0rHZytScU+XaNzcOhwt6gSgRR0j0vKcWH0gD4t3ZSM2VI//3dsYgXoNXp17At2ahGCiV4P4w+FNSy1lGnxdFM7kO7FoZzbGTD+KN+5qgJ2nzJj1ZGtFZgkA8NANsTiUZsWy3Tnlym2VhSAQ7uocjeV7clRNWF2iBL2KG1Ov24/V6pQ+Lu15IloNYEhpjcDXIsz8TjnP5QYZNEt+3HD27hcH1Ff0xY8N0SPxMgxu0vKcGFaBwU15bD1RhJAA2S1NKREmHR66oQ5+35aFpbtzkJzrwJcPXdr9rhEIjaIDzpUALdmVgyd/SkSv5qHo1yYcw7rF4IbmofhqVdq5EqA7r4tCbIgObwxJQI7Zhd2n5RKgM/lODO8Ri/u7R2P414exL8WKpbu9GsR96uLGFpdqEN/WLgJP9ovDmoN5+GBZMgZ2iMSRM1Y8fWucYsnLZnUC8drgBpi6Nh3TxqhrVry7czQe+vYwnrs9XtX/3C0ydBrlWfmFO7PdAtGvzNIlBb9E9DqAPcy8Qun7Kp6wEtH9AAYz84NlvGR1kUOcN/G34/d9/mCzwMrWupzMssPuEj3zt2fxxEEJigt0bJe53LHucD6a1QmodHf/xUSH6NEkJgBfrkrFlNHNK8z0Fi93fD+mJZ6YkYimdQLPdT2O7VsPw7pFY/LqNLy/NBmFdg/AcoosQCegVVwgvniwKdrEywPg7i7RGPnNYaw9lI+vRjUr99jF3tIdEkyYsjYd3/19BhMGJKgqxQgN1GJAe7kw+8lblE14i2kUbURmkSoNYZwpcKJFXeU3KXO3ZjokiadcLLfhJR8qC8KvRohIC6CImUv9UjCzg4junzA7aeH3Y1oGNK6kT7bDLeFQmtWRZXZrH7mxrlaxmPdljtciuwfrjxRg7jNtKn5xGfRvH4nJq9Mwpk/dSk3gYkP1mDSsET5dkYo1B/PQIUH+7vVqEYYezUIwb1s25u/IwpS1aZAkebxqBCAu3ICHe9fBkM7R58ZZSIAGT1RSg7heuAFP3xqPro1D8Pq8k2hd73wThxKKDVX+t+Q07useo2rMN442YtvxQsX7AcDZfJcq+bOdp8ywODy5KDtR8i/KsTK91iCieQBmMvOS0p63uaTxy3bn9K4fYahzb/eYSg+ixLNWKdvsxqE0q1CehGJZVMbgpjwW7MjG0K4xqjO0A9pH4Ju/0tEmPghTR7eoUD/ZqBNw//UxaBBlwKtzT+Ktu2UFoLphBnxwfxPsSTbjm7XpGPfj+ZVCIq8GcYswfDy8CUK8N7BDOkfif0tOIyGqYg1io17ObPZsHooXZyUhNdeJ9+9touoz920djslr0pCUYVO1elwnTA9RYtickuIbXLdHQo7ZjXCFmXyXR8KC7dkeh1v6soyXJAJQpeih5oqxEaWYBhTDzGx3SWMTz9pWPf7DUeuZ/PLLipgZ/yYW4LHpR+1ON09YvjdXrEhEvzQC9Jpzy+JqWLYnR1VtVzE2p4gTWbKeqZIvVoRJh8mjmuN4ph1JGTa4PRK+WpWG+ycfgt0l4b1hjbDxzevw07hWWDGxPX5+opVctjD7BJ7/NQlpeU443BIEAj4f2bTSxxYEOSt8Y4sw/KWyrgwA7ukajaV7cuDyqPvbB+g1UNOpbnWI+OtQAW5sqSwzu/5IPtYczLe7RP66jJfkAthWxnPXIhLKcKYrhplX2l3S2MemH7X/m1hQocpEep4Tj/9w1JqW7/zTI3LS5iTlE5gAvQb2y1ieXH0gDz2ahqiaABWz42QR+rePUJRtFATChAH1vct8mQDk2rf7vz6MP/bm4sEb6mDVyx2x+IW2+O2pVlj5UgeM6BGLhTtzcP/Xh7CeWsirAAAgAElEQVTucD4kiWF1SrJ7lAIN4m5NQjBpaCMcy7Aj36qux6hDQhD0WgE7T6nqebis/9u87Vno1liZ5n2O2Y23Fpyy2VzShLK8ySFbPdaYCSuAD1HOOYiZs+1u6cYpa9Ozvl6T5q7oemlzivhqVZrru3VnM1we6aM5W7NUZaID9RUb3JRFjtmNAymWy2rS3HnajAiTDv93fxNFZh/XNw3FS4PqY/rfsoJOaq4Dz/2ahNfnnkSHBNlhb8MbnTBldHNseKMT3rmnEfJtHgz76iAmr06DR2RYnHIZzfv3Nq50f06kSYcvH2yOkAAt/j1Wvm5zWWg1hCGdo7GwHEWSijDqBFVjdv2RAsSGKnfAfHvhKTuDVzPzkTJedgAqG5vV1LCGAyj3LMvMHiIalpLrfGv4lEMT29U38QM9Yk0lu+IsDhF/7svlWZszrWa7J9fmkh5l5nXBRu2dMzdl9hnbt56i2GJDdVh3uLT63spxJt91ScG1ElYfyEPHBibFHsmAnLkZ1jUav2/NwtlCFwL0AmY+2fqCpc7i2MJNOjxzazzG3lQP83dkY9yPR9E23oQHesQqvgMjIrx8RwLu+vwAUnIcqrLLDaKMqBOqx+F0q6rPbnWKqurp/tyXwxoBhV+sTDO8O7RRQGU0+dYdyud3Fp+2Ot3SreVoNvYB8BCAuxUHdXWiAdC4oheJEs8iorNvLTj1Y3CANnJkz9iggR0iqViZQpQY244XYdbmTMuBNAsJRJ843NK7AEZ+81f6N90ahwQpsQQOD9LCbBeRZ3GrmnSm5zvPSb+oIdfsxtbjRVj4XFvF+8o3e/EY/8sx6LVUqgZxSUWP4o7n3acteGfRKWw/XoQAvYBRvZRrCPdoFopezUOxbHcuRvVWvj8RoX/7CPx7rLBSrnYXo3a8ZhW5sOu02Z2YYXP3axMRWJlzzZl8J5766ZjV5hQ/kiReUM5LN0Eusqsp9qz1AZSrJ8TMJ4iow6KdOTPnb8/ufUfHSLq3e4yhZHPNqWw75m3Ldv65Lxdagdbb3dJDAKQNiQXPqcnYRXhLgNRkZ88WOBEfaVDsKleS+duzMa5vPVXfv4EdIjFzUyYW7czBD//IGsQfDW9ygTRX50by9atbkxB086oAffhHCp6fmYTjmTZMG9NSse15WJAWr9yRgG/XnUG/NuGqssu3t4vAuB8T8cpgxbsCKB6zyv/uMzdnWE9n24UV+3KNAzpU7IboERnvLTnt2Hq8KNHmkkaU89JJkKUj5yiNSc2EtTmALgBWlfciZpYAvE1EH+06Zb4/8YztFatLbG7QCk6JWfCIrAnQa/60OsVPAGwsvnu2OMXRszZn7q0Xro8c1DGqUv9drxyEKynDpk3JcQhqJl42l/rlDmbGwp3ZePqWyjUtlcagjpEYOfUwbmodhtfvbFihhIVBJ2Bkz1jEhevx9sLTeLCn8po0wFuY3SkKCy+jMDvSpEOhTfmdNzPjUJoVgzspa9Czu0T8uinTZnVKI7afKHpm+JRDfR7uXdd0W9uIS06IzIz9qVbM2ZJp23K8yOF0S7cw8yUd8yVYCkBxbc1VjB7AKABlZZTPwczriKiRzeXq/d26MxO/WJk6UKshUSCSnB7JEKTXHLM4xQ8BzGWWbABARLMyClzDXp938tb/u69xQGXlT/alWACCZ+nuHOHhG+sqPpuqtUksZumeHNzcOvwS6bbK0jgmAEEGDRbvysG0MS0q1EckInRuFIzpY1pizPSjpcpvVZZh3aLx6tyTGHlDrCqJoqhgeeKhhgOpljLNEspj5qZMt0agXwttnq2jvzvy5dBu0dqhXaN1F6srAEBWoQsLd2Z7ft+W5XaL/IbLU+bSYjGhANSl/q5OBkBWCDhd3ouYOQvAbUTUYOmenKeW7cl5wiNxkF4ruF0eSacVyMLAty4PT2XmlOL9BKJHnvn52IwfxrYKqGz3d57FjSNnrI7kHAfd1TnKoPS7a7vM8Xo624GTWXbc1Eq5mgkgj7++rcIwZW0a/nt3I1RGFSUmVI8P72+CSYtPIyVXQL1SvquVoXuTEHzyZwoOp9vQJl55CVtksA6Fdo+q2uPjmXaEBGgVy5DtS7EgOcfp8kjo++HylNXrDucHjegRG9SpFGMgh1vCX4fy8fPGs5Ycs3uHzSXdyczlnWBGQ+V4VdN0tQgKhNW9hfAzAMwgIp3DLYVB1ro0WxyXriMzczoR9fn4j9R/0vNdYQ/dEFuuq0euxY1P/0yxbz1elMTAxnnbsx6bMDBB8TcrUK+BzSUq7rwEZEFmq1NEV4XLXSX552ghGscG4LXBFU9WS3JTq3A8cbMLU9am49tHW6g69pDOUXh42hE80S9Olb6eRiCICh3TAFkmJcfs5kbRhkp/YI/IeHXuSZvZIS4HsMrmklbbXK5bJ69Oe/nzFak9+7UNR70wg1GnIRTZPdLfRwqseRa32eGWPpEYPzFzRWn4HgC6AvhM8Qe6CmFmK4BuCl7PADYA2EBEgsvDwQDrARSYHZ5L1qGZWSKi+/ecNi996udjN7xzT6PA8hrw3B4Jy/bk8ler0ywOt/TC3K1ZXz3Uq06g0olXgF6ATeXyJAAs35OD/91bYeK5TM4WOJFn8WDG4y0rnKyWJCZUj69HN8dj048iq9ClqmGsZb0gRJi02JJUiF4KfdUBWd1AUjFePSJj/o5sPF9JNZFiluzOkZbuzsl1uKXXmDmLiP6Zvz372Xnbsh5uV9/E7RNMQUF6gWwuCYfSrZbdp80ajUAz7S7pC2Y+XN57e2u0f2LmcsteriWY+XGFr08G8IrXQSjA7pKCARSJEjtKK6OQmOfqNEL4w9OOfDZpaKOA65uGlDsROphmxatzT9gsDvFLm0t69FC6LbatwolXoF6ArQJjjvL4Y28O7ugUpUoPtJhtJ8x44ua4Sk1Wi9FqCP8Z0hBP/5yIxbuyFZXwFCOU0CBWM2HVEFSNVwCYszWT64TpJcgrbZUiJdeBCbOP2xxuaRQz7yOiZpuOFY7edcr8UkiANvyWtuEBoQFajUdinC1wOdcczGOtQDvMDvEjACuYuaJ/9PMA/oaK0js1TVejAbRm5leU7uttcqmwGIOZDxNRx9+3Zs2YvTmz96COkTSsa7QhIcoIjUDwiIyDaRbM2Zpl25xUKGgFmm2TLTZjlu3JffTebjGKl7cjTFokqvQKPlvgRJOYANUassyMBTuy8PqdDVTJOw3rFoNZmzNxPNOOppX0DC5JvXADwgO1OFvgVOQQVkyBzYMQhQXdADB7c6bV4RF3PDztaLfJo5oHVnS3X2jz4OU5J2xJGbbNdpc0ynsyZsjZ/lVE1GD5ntx7NAJiNQIZXR7Ohjwo1nkz/pXBAUBdwdFVCBFFQF7BUNyd5P2bVVig6m3cGpCUYZ80fMqhZ9vVN/HIHrGmLo2DodcKkCRGRqELS3bneBZsz3YDOOhwS48w8yGTUfPcwh3ZbZQ0jwByx/OeZHXmRsxyPE1j1ZcULN6Vo1qDuEGUEbe1i8CS3TkY27eequN3ayxrEKuZsBbY3Ag2Kr8xX38kH2AkffJnaj2jTgjs1yacypvoiBJj5qYMz4wNGQUOt3STNyMIZj4G4BkiennnKfPQnafMTQxainR5OI9lU5r5pXUXl8NZxR/mKoaIFgD4lJk3K9nPez60oXSTkAtwi9K3RJT85vyT35iMcgnQ7e0iKCRAPo/bXBL+PpyPmZsyzZlFLofbwxPdovSLVkN5X61OfWfq6BaBSq5VdcMMOJ3jgN0lKtZoB2QzADVa0cUknrUhx+xS1aei1RAe7xuHT/5MwdCu6mS9ujUJwZ/71PWKFNg8CDaWbhlbHlaHiDUH8lwgpP1vSXLcS4MSjBWVNOxPseDFWcftDo/0HDMvBwBmLgIwmYi+trlcfWZuyrxBr6VoUWKnKCELwGJmPqEgtELI11nFqFkP2wq5y6taYeZ0yMsd9ZfvyXnqj725jzs9UpiGSBIlFgINQprdJX0mMX52slQ8wUjWaujZJ3869uWPY1sGVraTNiXHgZNZdtfsLZli39bhimdsdpcE42Usd+w8ZYZOQ6qkYgB5QN3VOQoLdmThlTsaqHoPk1ELiwqNxOwiF45n2tBSoaTYzpNF2HGySPKIGJJrdj/8wNRDH3RuGCyO6BFr6tIo+ILJ/9EzNszdlmlfdyifNAL9ZHNJz5Z2F+fNNHyu+ENcSCJk55yagg3Au9V9EO//43UimrTrlPn+xLO2V6xOsblAkCSGRqchq4Zopt0tfVWyGN/qlO6esjZ9V1SwLrRvJT26XR4J/x4rtO9PtRjyLG5BaQ2sy8MgkGrDApdHwrLdOZj6sLoVDUDWIH72lyQ8cmNdVXEEB2iRrVJdY/XBfIy4XlmmqMjuweQ1aVaLU3wFQPL/liYv/uavM2EP3hBrur1dBAWWqCvMs7ixdHeOOGdrltMtSokOt3QnM6dd/J7e1bdfVX2I80gAvrjM97ja+B7Ayeo+CDOvIKJGVqer97R1ZyZ+tSrtdolZC4CJwAF6zWaLQ/wQwKri860o4YsTmfZB7y4+ff1bQxoaK/vd3ZxUyETwrDmYr1Oq0Q54r7GXYQG9cEc2hnSJVj3mi80S9iRbcF1D5Sup5/VMlbP+SIHiuQEzY/KaNKdOI6ywOMVRfx8p+G3d4fyb7+ocpRnWNUYfVyI55PZI+OdoAWZtzjSfzLKLTg+PYuZlpbwnA1jv/bkclkJlUkjNhFXAFezIZOZUAK8BeI2INB5mIwCbxSGWmiP3iDzdoBPCRn17+J13hzYO7Nak7FoxUWJsOlaIdxadsrs8/MKxs7aP1TQfBRk0sKr8MgLAH3tzMaSzekFmALjruigMn3IIEwYkqBqULo+kSm9t0a4cUWLmtDyntrKWuAfTrHhpzgm708N3MnMhgC+J6Ietx4tG7k+1vAxQ3bBAjVsg4iKHqHW5JbtH4i/dIk9jlkpzp6pKhkEW2n+kmo9zpbjS49UO4CcAPxERiYxAAE6nWyo1Bm/zyM1vLzr9V0quI/i+7jGa8jIwp7MdmLT4lPVUtuMfrUDmZXtyho3uXVfR3aJeS2AwXB4JlWnWu5itx4vQIMqoSi+6mMYxAYiLMGDbiSLc0Fy5BrHLI8GgIvaTWXYcz7DxmQJnpZcJzXYPnv01yVpkE2d4S8JARA3SXc6bp6xJf/nzlal9woN0TqNOYJtTFArtHp1WoAU2l/Q5M+9SHKQyTJDFydXXY119EK5QTW7JEiAAICIDAIGl0msQvQ3Vg/9NLFj5wqykTq8NblBuCZDZ7sGvmzI8v2/LznO4pTdmbsr4fHCnSJPSa12gQX0JkNsjYe2hPPw+XnmDZTFEcrf+8j25qiasLg+rKmfwahB7ggyCx+YUjYGVaDhjZkxff9az6kDeGbtLepiZzQDuIKImi3bmjF+4I3uMyahlk0GQXCJTvtVj0GnogFm+OVlShtxjVfIj5JK7cvugSkPNhLUPZHvWnSr2vSy8d3ll2fOdw+mWPhEESnp93okvggyaqJE9Y4Nubh1O4UE6MDPyrB6sOpAnzdmSaXd5ON3qlJ5m5rVGndDki1Wpz3wyommAkuX9+Ag9DqXb4BFZ1WQxs9CluPHoYqJD9NAIBItDeR2uR2RkFbkQYVK2n9sjYf72LKfdxW8+MSPxvedujw8c0D6yzE5Qm1PEH3tzecradLvDLd3HzOuLn2NmC4DviGgagASrU4yEfEHNB3CqEnUxVcXvkO8AawrhAN4AUF6XdbXgvRhWOF6ZeTcRXffrv5nTZmzI6DWoYyTd3SXaEB9ugF5LsDhF7DxlxuzNmeakDBsD+NTp4fcAdPz138zB/dtHVno1BZAvPjEhehw5Y1O1qpFZ6EJl9WrLo1G0EZmFKjWI852qyn/mbs1ySozpMzZk3JGa66z7aJ+6+tIanwDZmWjnKTP+b3myNc/imelwS88VP+f93/4F4C8iisgsdNUDEASgCECakyV1ulnKsUC2U65JPAvZHlq9lpFKmLlCe1tmthBR3wOp1veHTzn0ZHEJULv6QQgyaOBwS0jJdWDe9mzH2oN50GmE1Q63NA5AVnaR++3VB/KCbm9fcdd5SSJNOhxItaJ/+0jFn6nILkKvFRS54ZVGo2gjNiaqqxY7W+BEhIr+mN2nLSiye84W2HjDo98fHfLyHQmlNj4Vk5bnxLR16c5/jxUm211SX29CCICcHADwPBG96rS4E3ItCINsZ5xpd5WpmlMdjIJ8nlCMmqarb9Uc6EojSbyEiJZandIN3/99duKUtem3uD0cAAL0GrJqNfSn1Sl9ysw7ivdxevg/e5MtfT/6I6Xdy4MSDJWZtDIzVuzLc3tESdp0rNDQR0UX4+UudxQToBNgd4sIU/hv3ZBYgHCTTlHzCDPjncWnHaLE/zDz50S0ccra9I++WpXWY1DHSOG2dhH68CAtGECexYOV+3OdK/bnsU6gDQ639AozX2LZ5n1fBpDs/fEFXQDEA5jpo+NXKd7Smut8HUdFMPMpALcSUcLyPTlPrtiX+6jTI0WIEjQ6DTmMOuGot6h/ITMXz/J2G3TCO0/+lPjf7x9tGRgZXLkL0t5kM3LMbtecLZlShwST4jSp3V1F41WlrqXVKWLtwXw8cqMyR9L1R/Kx6kCezS3ye26R/7PmYP57qw7kPdwhwSTd2y3GVD/CAINOgNkhYtdps/Tb5ky7zSVm2pzS2xJzmUv3zJwHQL2Y8+URBLmJ4wUfHb/KYeYBvo6hIrxZuJeI6C1vCdBLTrfU2C2yQSPAY9AKOS6Rv/WIPM3h9pybDBHRwA+WpWwKDdSarm9auZWFQpsHm44V2HLMHv34W+O1SqWx7G4JAVU2XtUpp/2+LQvdGiuTkcsxu/Hm/JM2u0uawMD8lFzHYy/9dvw/IQHa8Ad6xAZ1SDCRySjfICTnODB3W5blSLoVAKY7PfyWN7N6CczsAHBM1QepGkYDWAIVpaVqmq7GAghi5qu+bsg7+fnX+wMiIjDgcEullhMws5OIbl19IG9tttnd+sX+9QPiymkEyix04es1aY5NxwpP2VzS17M2Z/xfn1ZhitcLTEYNrJfRQVmM1anOI3zWpkxrWp6TluzKNt7VObrCke0RGe8vTXZsPlaYZHNJwwCAmXcCuJmIGi7bk/P0qgN5d4kShwKARqACp0da4PLwVEcptWxXGQYoNU6+iiGiBgCmMvMgX8dSGbzyO695fyArFUhlXiVcHv441+wOfujbwy++M7RRYHlyUQ63hD/25vDk1ek2t8gPbUoqnK1GBzbIoEF6nqqegQuwOEQ0UCHBt3JfLgsCCj5bkWp8797GAZWZPK87lM/vLj5tdVyoQfw0Eb2846R5eOJZ21OixHUkhkErkFli7LE6xU8BbC5HsP9qQIBcFlBjIKL5AN5k5qO+jqUiSpYAAfJ49YhlN7gy834iGvDK3JN/jutbL2hI5yihrGVuZsa+FAv+u/C0rdDmma7VUPs1B/NuGqywBjbIIFTR9VWdnml2kQs7T5ndh9Ot7n5twwMr09js1SC22ZzihxLzPO+vvyei6Vanq893f5+ZAKCdKLFJQ+QgwhmzQ/wawO/eCenVTBAUqBaUhJSei4ioGwA9M/+r5oDXAkRkNOqE95l5bJv4IIzoEWtqWTcQQQYNbC4JxzNtmLM1q1h+5Re7S5oIwGPQ0pn/3ds4XGnn7n/mn0RCpFF1xzAg1/Y99VMilk9or0it4GCaFU//lFjk9HCPAJ2wtn2CKeSBnrFBXS9qfAIu0VvbZXNJd3iX8msMRBQAeVzUCF9yIgqH7LM+w9exVCcC0b2BBuGjIIMm6oGesUG9m4dRaKAWoiSXuyzfm+taujtH0gq03ewQxzPz/iCj5ufezcPue/uehkYlNXVbkwrx6YpU/D6+jeq6c2bGA1MP46VBCYpq4uwuEcO/PmTNLHLfG6gXxoUEaG8Z1atOYP/2FzY+FR9jX4oVv23JtG07UeRwVKxBfM1BRBoAwcxck5Q9HgKwkpmveEnAlYKIWpiMmq89Ivca2CGS7rwuylAnVA+dhlBo92DL8UKetSnTWmDzFDrc0huixD8T0a0RJu2iWU+2DgoPqvxNpigx+n+0Dz+MbalKQ7iY7/8+g0K7BxMHJija7/OVqZ5lu3NmOdzSer1WmDKkc5RuWLcYXWmqOJleDeJ5sgbxa5XQIL7mIKJQAFZmVtxboWbC2hxy8jJJ6cGuNbyTl/uCjZoJLpEbeEQpQCuQQ68V0i0O8XMGZpecsBFRd6NOWPfZyKaBlb0Ipec58ci0Iw4iCH9M7KBX28X44bJkPnLGJs14vKWmshfRNPnYNrNDHMnMi4nIRMDIQIPwSqBeE9OvTbghPEirFSXgbIHTufZQvlK9tWsOIpoAII6ZX/R1LFUBEQUD6MTMG3wdS3Xj1Vi6wWTQvCQy93J7OIgIkk5DhSLzb043f83MJ0u83hSoF3be0zW68dO3xOkqM27cHglvzj9p33HSrPnyoWb6dipcfwC5LGHi7BM8b3wbCq9khtcjMibMPm47kGpZbnNJw72/vsVk1Ez0iHzjTa3CUD/CYNRpBRTaPOL6I/n2fKunSIEG8TUHESUA2MTM6lxPrkKIqA+AXTUtGVAaRJRg0NJTWg095PZwmMTQ6jRk1Whom8Uhfgzg75IZ/gC95sO4cMPTUx9uHhQaWLkF4lX7c/n9pcnOuzpHCS8OSFAufAx57A38ZB+e6heHIQqksZbuzpE+W5Ga7XBLHZg5k4iaGHXCeGYe0zouiDskmExBBg3ZXCIfSrda9yZbNBqBfvVqEJdlbXpNQ0TbAYxnZsU6rGomrP8FIDHzJKUHqw0QUT+jTlj8RL96QXd2irok61GMR2RsOFqAD5Yl2x1u6WWDThj31pCGbdVozdldIgZ8vN8J8OleLcIavHFnA2NFWncHUr16a27pRZdHuqAu2Xvh7wmgt05DUaLETomRA2CpQr21aw4iioW8gqDK6/hqg4jaAfiFmTv5OparESKKCdQLf3dvGtL4mVvijeWVAB07a8PHf6bYTmTaNzvc0l99W4f/53/3NlYl5vrKnBPWTccKtkaYdD0mj2oeWFFpQEkNYptLGlSijrf4c9QHMEQgxGoECnSLnA1gO2QN4qt5Sf+y8Ha1t2Dm/b6OpaogosOQV0V8WWd4VUJEZNQJX4QGah97864G5ZYA5VvdmL050zNve3aBwy09GKATFq94qYNRjT3s34fz8b8lycc9Etd5dXBC0O3tIiqrQVzocEu9Li7v8CbD7gbQRO/VIIbct7Ggpt+oEFErACksm9oo27cGn8t8BhG1NRk1n3pEvnFAhwga1DHKEB2sg0CyCPD6IwWeeduzXMxIMjvEl5l5NRHdVzdM/+Mv41oFKbWL/OSPFNfK/XlrLU7x3iCDZqYo8YDBnSJpWLcLvaUv0luTnB4ezcxLqvrzX8sQUV8ABmZe6etY/FwZiCjIqBPeY+bH2sQHYfj1sabGMQEI0Mu1b4fSrJi1OdOclud0SxJ/6hL5QwChBi0lf/FgM1MnhTI3u06Z8eKsJLPTwwlagR4QBHzcIcEkPdAj1tS9SchFGsRW/LYly/73kXxBK9APNpf0nJqltJoKEUUBeJiZP/F1LH6uHALRyECD8F5xCVD3JiEUYtTC6ZFwtsCFhTuzbRsTCwSdhpZandKLzJwebNSuHNQpsu8L/esryrIW2T0Y9e0Ra0ahazSApAC9sDQ0QBs58obYoIHtIymohGlOrsWNJbtyxN+3ZTndonTU6pTuKk2DuDZDRM8BmMfMZxTvqyLD+gSAQmb+TenBahtEVF+vpSf1WmGEKHIoA4Lc0MB/2VzSZyWzAkREAXrh20bRxge/eqh5oKkSzlHMjBkbMjy/bspIt7ukTsVLfkTU0KClpwGMCzRoBJNB43GJTAVWt0GvFQ569dYWXwG9tWsOIhoJwMjMP/g6lqqAiFoCeIGZx/k6lqudEiVAz4kSx4sSB2hkw4Mks0P8FMDykpNFIrolUC8s/Xp084DWcZUzzjiYZsWzvxyzeeu///a+TxCA4UEGzavMHB8aqHVpBOIiu0fn9rDVLfIXHomns9cpys95vJnl95h5tK9jqSqIaC6A50o0x/kphRIlQBMZ6OoRpWBBIJdWoFybS5wuSviRmXNLvD4iQC/sHd2rTt3RvetoK1MCZLZ7MP7XJFtyjuNnm1N8qsRxbzIZNC+5PNLNoYFaV4BekGxOSSiye3Q6LS2wOqXPmHl3tX34axgimg7gAzWrtWomrAMAWJh5o9KD+SkfItIE6IVvI4J0I16+I6HUxqdi0vKc+P7vM84NiQWpdpd0k1e+6OL30wOoD1mL0wkgi5kzq/VD+Lmq8F7QBzPzVF/HUhMhosFGnTDnmVvjAgZ2iCyzBMjq1SCeel6D+I9S3osAxAEoqUGcUhNrxf2UDRG9DGBaTWoku1ogovgAvfBPn5ZhcWNvqmcoqwRIkhg7Tprx4R/nNIifLm0cElEYgLqQlSqKAKTX9CV9X6JmwtoQgMN/91c9kHzVGhVoECYF6DXxI3vGcqcGJsFk1MLhlpCae4ne2n9Z9vr1UwUQ0bsA3DWlRpuIQgDEM/NhX8dSUyGiTiaD5v/conTrgA6R7v7tI/TFXcz5VjdW7M9zrpQ1iP+xOMVXy9Ig9qMcImoP4Fdm7uDrWKoKIroOwMGL65T9VA1EFGrUCe9IzE+2jgvC8Otj9PERRhi0BKtTxO7TFmn2lky73atBzMDMmlwHfqUhokTISRTFNdpqJqyTASQx81dKD+an8niXCceaDJreROjokbiRhijdq7c2BXINSKn2eX7UQ0TNIDcV1ojmMm/H8SRmvtHXsdR0iGiYXkM9DDphkChxAgCXRqAMh1ua7xb5W38tW9XjVcFox8ybfR1LVUFEWZA/k381rBohorYABocEaIaIEjeWGCFagdK8GsSfAdjin6hWPWvuoyAAACAASURBVETUG8DuK9J05a3zkrgSFm5+1ENEEQAGMvNM77YBgMs/gKoX7wTPzszbfR1LVUBEWsg1uf5lqmrGW/+8kplziUgH+TzpX86vRoioLoBbuBwnrmsN76qIhblsAX4/lw8RXQ9ZonMbEQkAtP6sdvVDROMA/KZmZViNX9nDAPzZmuonAsDwEtu/Q6U7hB9FdAbQ2tdBVCFtAdQITdlrgBGQ68UB2Sq0lw9jqS1EAbjd10FUMVMAVGyH5Ody6QrZihsArgcw0Yex1CbuAaBKDlCxNSsAC4Cr3frrmoeZjwO4o8SvTgHwZ1erGWb+zNcxVDFuAP7mjSsAM5ccr1kASvXy9lN1MPMBAA/6Oo4qJg+APzNfzTDz5BKbNgD+vpwrADOrvsFUk2FdDcDfNFDNEFE7IlrpfUyQu0b9J7Fqhog+IKKxvo6jCjkNYF5FL/Jz+RDRJiJq4N38C8BxX8ZTGyCinkS01NdxVDFfQlZ18VONENHrRPSUd/MUgFW+jKe2QERHiKjydmElUDNh/QTAEDUH86OIswCKpYg0AGqMk8tVzgIANcnG9BYA3/k6iFrCF5CzYwAwGUA/H8ZSWzgBoKY1ACcCqJxfr5/LYQ2AYnnOwQA+8mEstYk3oXL1SU1JwAQA/u706odwvvRCBNCgnNf6qToMqFlLuWsBKPZs9qMKD84v5Y6BvMzop3rRoubV9reAXMrjp3qRABQ3WS0E8KcPY6lNBED+2ytGTYZ1COQB5ad6aQTgee9jPYC3fBhLbWII5MarmkIrAHf6OohawnsAQryPRwNo5sNYagvNAIzydRBVhbf862W/GswVYSiAPt7HXQDc7cNYahNvQp7TKEZNhjUY/uWKascrqzTQuylA3f/Kj0KY+SVfx1DF6CG7sPipZpi5TYlNLeRVEj/VCDOvB7Dex2FUJQRZIcZPNcPMr5fYFKAugedHIczcUu2+anRYTQCcfh/66oWIugEYy8xjvRpxkcyc7eu4ajpE9BGATcy8xNexVAVe/V4NM/uXp6sZItoA2cGl0KujbPHrOlYvRNQPwD3M/LSvY6kKvBnWEGYu9HUsNR0iegvAIWZeQESBkM+TNakc7KqEiA4AuE7NHFLNHcUcAP1V7OdHGZmQi8IB2Vv8iA9jqU2shdz0UFMYAeAbXwdRS5iH893diwD09GEstYVTAFb4OogqJBByw62f6mcbgCTv40cB/J8PY6lNfAeVsm1qlplfhKwx6Kd6sUHugAWAfJyvtfFTveQDUOzAcRWzHDVL9eBq5gjkxitAvgD6rTWrHydqln6mA0BvXwdRSziD86oecyA33PqpRrwrCClqXdzUZFh7AVCloeVHEd0AvON9HAS5QNxP9fMiZNeTmkJjAB18HUQtYQnONxMMguzC5Kd66Ynzzak1AQPO9y74qV4m4rz0XFvUrGbbqxUNgN/U7qwmw9oGfk3QaoeZ/wDwh3dTD6C5D8OpNTDzCF/HUMXUgTxp9VPNMHNQic0mAIy+iqW2wMzzULOMMXQ4bxfqpxph5tElNqNw3lbZTzXBzB7ICThVKG668nNlIKIbAdzMzG970+iC3+mq+vE2XS1h5k2+jsXPtQURrQVwGzNLRKQBIPnliaoXIhoAoDMzv+frWPxcW3ibrjYw83pvYzPULlX7qRxEFABgGTPfomZ/xSUBRLSeiHqpOZgfReTjvLVjU9SsRqCrmf0AaowaAxE9S0Sf+zqOmo73pnIXgOIJ6m74SzGuBBkADvk6iKqCiOKIKNnXcdQSTuJ8DesbAN71YSy1BQmXIUOnpiTgNfgnT1eCMwAs3sfpAB7yYSy1iT2oWU2FyyA7i/ipXgjA3BIZ1bE43zTpp/o4i5rVJJkH4BFfB1FL2Aogx/v4V/h1WK8EEs6rHylGzT+oMVS6FPhRxADIzjmALPze1oex1Ca+Qs2qIYuGv/nnSqAHsKXEdif4u46vBHcDqElmHwbILod+qp/PAdzofdwAQF0fxlJbCMX53hzFqJmw3glZF9RP9fI7gHHex6EAbvZhLLWJQQD+9nUQVUg7ANf5OohagBMXXvBuw2U0F/ipNN8DeM7XQVQhIfArwlwpRgBY6X3cBoBqByY/lSYXQILanf1NV1cpRHQzgObM/K2vY6lNENH/AfiFmQ/7OhY/1w5ep5ypzPywr2OpTRDRnQBimHm6r2Pxc21BRG8CWMrMftWjKwQRRQH4iJkfVbO/mqarf4iolZqD+VGEG4AdAIjoOiKqSVm/q5lsnHcruuYhopeIqCYtmV7NnKulJKIDRKQ6k+Cn0lggN6jWCIiohdfi10/1Y4fX6IOI3iOi8T6OpzYgQu7PUYXiDCsRDQawkZkL1B7UT8UQUQgAHTPnen3Jr2Pmtb6Oq6ZDRA0BZDCzw8ehVAlE1AEA+7MI1YtXxqoeM6d6t+8AsI6Zbb6NrGZDRJGQJf9qhLIHEYUB6M3My3wdS02HiOoCyGdmh/c86WBmf0N5NUJEegDxzHxSzf5qalh1kDu9/FQvo3He6coA2WPaT/WzEHI9U01Bi/NSS36qj2gAO0ts+0XIrwyPA5jg6yCqEP94vXLMA9DV+zgY6lST/CijAYDVandWM2F9CUCE2gP6qTS/4rwuXH0AD/owltrEIAAHfR1EFdIfQB9fB1ELyAHQo8T2c/DfZF4JpgL40NdBVCHxAJ72dRC1hBE4f5N5O/zNqVeC0zivzKAYf9PVVQoR3QIglJkX+DqW2gQRTQLwLTOn+zoWP9cO3rKdF5n5TV/HUpsgorsAgJmX+DoWP9cWRPQKZO3k076OpbZARHEAnmDm/6jZX03T1ToiilVzMD+KMEFepgAR9Sain3wbTq0hELIIfI2AiF4lolG+jqMWoINcFgAAIKK93jp0P9WLHvLfvkbgbbCd6es4agnR8JYBENH/EdF9Po6nNqABYFS7s5qmq7EAfmNmS4Uv9qMaIjJAbpZxEVF9AB39hfjVjzdTVsjMoq9jqQqI6CbIn2ePr2OpyXibrozMbPVujwHwKzO7fBtZzYaIggBIzGz3dSxVgTcDdQMz/+7rWGo63u+OnZklIuoLudn2iK/jqskQkQ5AkNqmfTU1rMkA/Cfh6udlAG95H4uQBXf9VD87ATT0dRBVSC7O+2X7qT6aA9hVYjsP8rj1U738F8Czvg6iCnECSPF1ELWEbQBaex9bvT9+qpeOuAxrVjUZ1gwAbZjZP4GqRogoHvL/J5WIBgEYxcz3+zqumg4RtQFwnJlrhBYrEU0FsIeZv/d1LDUZr3FAc2be693OBVDXn2GtXrwZSQ8zZ/o6lqqAiPoBmMjMA3wdS03HK2WVxMw2IvoBwCp/Zrt68Wa149XKh/mbrq5SvE1XHmZe7+tYahNE9AaAr5m50Nex+Ll28Go63sPMU3wdS23C63SVx8z/+joWP9cWRPQCZFdDf/LtCkFEjQAMYOapavZX03S1mogC1BzMjyIaweu5S0S3ENH7Po6nttAeNauJ43Ui8mdrqh8TgM4AQEQCEW31cTy1hfoo0ex2rUNEPYmoJsl0Xc10h7cByNt01dfH8dQGggE0U7uzGqHcTfDamfmpPi5awj2LC+vj/FQfw7lmLTskAsjwdRA1HWZOAlDSH9vfIHllmFrDxmsegAO+DqI2wMzDS2zugnyd9VO9HADwotqd1TRdrYJ/wlrtENFHRPS8dzMHwCFfxlOLyPMqBdQU9gNI9XUQNR0i6k5EG4s3Afj94K8M3xHROF8HUYVkA9ju6yBqA0R00tsrAgBHIf/t/VQvt+IKO11tVrmfH2X8DGCp93F/AK/7MJbaxD0AzL4Oogr5H4B+vg6iFnAMwGvex0bIN/Z+qp8vAPzh6yCqkH6Qx6yf6mcc5GQQAHwEuUTAT/WyC8CrandWM/EMBSCpPaCfShMDr3EAZJvWMT6MpTbRCTXIOADAaAALfR1ELcAEoI73sQ1AmA9jqU00Qs36Wy+CPGb9VD+Ncf5cPxjASh/GUlsIx2XIRiqasBKRFsCPNaxm6GqlF4A23sf9ATzhw1hqE/eiZq0gPA95Eu6neqkH4A7vYxPkm0w/1c/1qFm6yTcAGOvrIGoJowEYvI8nAWjnw1hqC3EAeqvdWWnTFcHfwHFFYOZJJTYLAdQIncGrHWbu4esYqpgCAA5fB1HTYeZtkIXIAXkF6rgPw6k1qPUkv4pxQD7f+6lmmLlnic00yCsjfqoRZv4HwD9q91eaSRIh1wz5qWaI6FMiesC7mQhgY3mv91M1EFG212azprAUwAlfB1HTIaKbiWiWd9MFf4b1ikBEPxLREF/HUYUcAbDC10HUBojouFfIHpD/5um+jKc2QERDiOhHtfsrnbAGA/B7kl8ZFgLY4X38IC6jUNmPIp5FzarRngF5mdFP9XIM8t8a+P/2zjvMrrLaw+9KCJn0UFIICSUQCKFL6E1REFRACBqkiA0VEEFBvAheUGlSBKVJCwhcQPGCNFEERCkGkAgEQgkx9ARCCISEhLR1//h9wxy9iZlz5uyz9+yz3ufJM3Ng9uw1M+fb3/pW+S3Vn9+Toy3NxBXAhLyNqCNjgVPyNqJJOBmNwgX4HzQ2NMiWCWjN1kS1JQHvEXUejcJokw+7jNo0c4MqMLMuQEvJarS/SKQYG0EXYGH6fDrwkRxtaSZ6Uq4myeuJJslG4bQFJ/YEZudoS7PQnQ74MtVGWHsBR9V6s6AqDqStWeZjqPEqyJZuwAl5G1FnDkbTgIJs2Rj4Uvp8FeC4/ExpKg4A1svbiDqyJdKqDLLnnIrPj0KNk0G2bArUXMJTrafbFehb682C9uPuh1W8NMoVRSgk7v4BsG7edtSZPmjdBhni7nfQpgdaJpWJQuPuX87bhjrTkv4FGePugytedkER1yBD3P23wG9rvd6qyX6mZpTe7h4pxowxs3OBO9z9bjPrA7i7z8nbrjKTfs/3ufsWedtSL8ysL/C+u8d0ugwxsz2Aj7r7982sG9Df3WNyTsakBo5x7v5A3rbUAzNrQfvyvLxtKTNJovMRd/9Iej0AmBXPyWwxs7HARrWqe1QbCRhKzDluFPcBL6XPjwG+l58pTcMC4JK8jagz9xD1lI3gRdrGsa6P1m+QPbcAL+dtRB05CvhR3kY0Ac6/KnncD4zIyZZm4mng3lovrrYkYDpt4thBtryGNDQBLs7TkCbjlbwNqDOH0HbwCbLjPdocpxeAfXK0pZl4m3LpZ/6KaLBtBAY8VfF6L8p18Ckq84CZtV5cbYS1L7BbrTcLquJkYHT6fEtCnaER9AcuytuIOrMbUXfeCHalrSF1AOo6DrLnJBTRLgsbAqPyNqIJ6AncWPF6LGoqD7Llk0i5piaqPcn1ADaq9WZB+3H3ykj2QCDqVzPG3d9As8nLxEZoeECQIe5+JW06rC3Amjma0zS4+yfytqHOrE407WWOu89GAYpW1iEi25nj7h0KCFXVdBU0DjP7GXCtu09IBeJL3L1MgvaFw8wGAxe5+7552xJ0Lsxsb2Btdz8v6fl2iQaO7DGzK4Bz3H1S3rYEnQcz6w9c6e77pNfdgEUl0+AuHGZ2ENC3Vse1qpOcmW1qZjHpqjE8Q5vg+zloAlOQLfNpa5wpBWb2vJlFM0H2vAlMTZ9vTzRdNYqHaav17/SY2WlmdnzedjQBi4C/V7x+BRi8jK8N6seLaCpgTVQbAp8KHFHrzYKqeAB4I31+ASpWDrLlA9QtWia+RszIbgRTafs9TwSOzNGWZuLvlGuS21W0TTgMsmMhcHvF6zF0oBkoaDcv0wFN+VomXQ2v9WZBVYyjrdFqXWBQjrY0C2uimdJlYgOiNqsRHAgcnT5fiWicaRRXU649aXVg5byNaAIGA7dVvN6GGLDSCL6S/tVEtQ7rAGJEaKPYDXg0fb4Z0cTRCJ5Hv+syMQZ1xAbZciFwYvp8ILBtjrY0E6ORtmNZGI0OmUG2vMK/Ku98mjjYN4JTgVNqvTiargqKmZ2FGoCmLveLg7pgZsOBo9z9qOV+cRBUYGb7Ai3ufl3etjQTZnYJ8CN3fz1vW4LOg5kNAf7L3aM3pIGY2SFo8uKNy/3ipVBt09X2ZnZLLTcKqmY2qZbJzH5pZgfmbE8zsBAo1cZnZs+Y2ap529EEzCcJ2JvZ7mZW0wM5qJrX0LotBWZ2lpl9OW87moAlVDTrmdmbaSxukC2z6ECTZFURVjMbBGzs7nfXesOgfZjZMOANd19gZlsCb7p7TCzKEDPrAQxy9xfztqVemNl+wG3u/kHetpQZM1sZcHefZWarAcPd/cG87So7SQHjRXcvhdNqZluhmfaT87alzJhZd2CAu7+aXu8D3Orui/O1rNwkH3Khu79dy/XV1rB2q+GaoDb+hMSMQQLH3XK0pVnYDLghbyPqTAuamx1ky3eBb6XPexJTcxrFfZSrIbV73gY0CSOB31e8HoSirkG2HI/GhddEtRHWjwFfdfeDar1h0D7MbA1geoqwng/8wd3vyNuuMpNO3f3TxKtSYGbPA5u7+9y8bSkzKcKKu79tZp8CPu3uIQGYMakW8Y2yRMbM7Fzgb+7+m7xtKTPpWT/Q3V8xMwNecPd1lndd0DHSwIbF7v5eTddH01UxMbNTgPPc/a28bWkWzGwk8Fl3PyNvW4LOhZmNAd5z97vytqWZMLNfACfUugEGzYmZrQ2MjWd9Y0lNVy+7+59rub7apqtPmNkFtdwoqJpVSX8fM7vUzHbN2Z5moAslK70ws6fSaN8gW3oDPUD1cGm0cpA9pWqUMbNzzOzTedvRBHRDpXaYWXczezZne5qFFeiA3m21JQHrABu4++3L/eKgQ5hZH2Cuuy8xs92BZ8vUDFREUpqoxd1LMznHzI4ELnT3qM/KkNSwtziV8KwHDHX3e/O2q+yY2QBgZlne32a2BzDF3WseXxksn3SI7+7uc9PnX3L3y/O2q+yYWV9ggbvPr+X6ahuo5gPTarlRUDWTkQA5SC6npj9wUBW7UKKmq1Sb9WJZNvOCcxbwjfT5Iso1LrTIvEi5BmPMBKK8IXt2oK3pqgswI0dbmonzgf1rvbjaCOvngT3d/eBabxi0DzP7CDDR3Rea2c3ABe5+T952lZl0+hvg7lPytqUemFk3JJHTO29byo6ZrQXMd/fpZvYl1OgWAygyxsw2AZ4qy6Es6fde4+635m1LmUnP+qHuPsnMVgL+4e5r5WxW6UnN5HNqlbWKpquCYmY/BM5293l529IsmNnGwBbuflXetgSdi6Tj+Kq7P7rcLw7qhpmdCRxfFpWAoDEk/d4d3P3KvG1pJszsIOBpd/9HLddX23T1KTM7oZYbBVWzDak4OTVdfSRne5qBvsCaeRtRL8ysh5n9KW87moQRpBIeMxtrZt/L2Z5mYRNKpDOcmq62yduOJmAlYBSAma1qZn/I2Z5mYQ2gX60XV9s9PB2YVOvNgvbj7pWdog8AIW+VPQ+lf2VhCRJWDzLG3c+sePlPNIIwyJBUo/2pspQDJJ4gnvWZ4+6PAI+klx/wr0MEguw4gw4cMKttunodLaggQ8ysl5nNaRUjB56mA/N3g3bzBeC6vI2oI0vQxLQgQ8ysi5n9r5kdlv7TG8hpDbKlG3I2ysQEogEoc8zsi2Z2p5l1RU2SUcrTGG4G9q714mojrPsCGwOHLe8Lg/aRamleAo4EbgOOBe5FB4MvmNmqqKvuKjO7HEnnhPOaDfcCT+ZtRB3pD9wBDMjbkLJgZqsgR2lH4O+o6/WrwHpAHzN7CjgRmGZmFwLPoSaDMkUBi8Ii4JN5G1FnLgROIjIjdcHMVkRlXiugUedroUzxnsDqaCTrDcAaZnYicCPQ1d3fz8Xg8vPfKPBZE9WqBHQDurh72U61mWNmPdGCWREtlE2Ap4B90APqc8AvgGHu/kLFdSNQdPVQ4FLgYWBL4DzgGGBT4K/AotgUO0bqOB5WlhG4KWXaM8ay1oaZjUYlUEcBdwFfBx5EDussYCLKUk1x90XpmpVQLetagAG7A/cD2wK/ROv+DoB4jnaM5Ix8y91LM6Qh6fkubH0/Be3HzIYBi4FPA3ci53NftK+eCIxEkdR57j4rXdMF2AJ4FfgiKhP4MooE9gWeQSUar8V67ThmNhZ41N1rykBV67DuhWR/rqjlZs1AWgAjgDnAgcDVKHK3O/AD5GgOQZvd3Pac5MzsYuBMd5+anJAWtMhmAnukjxum7zkdmI1SkqUR1G4E6f29ubv/KG9b6kGKzp/h7l/L25aiktZrX3SY7JP+fRz4I8psHAN8HhgH9HP3N9rxPQ9EUZqr02tDTZRPAmej58DDaO0elL73ykjGLtZrOzGz3sDv3X2nvG2pF0n14Ap3fy5vW4pIWksGfBSVTxyJDpGfQxmPd1Dk/e+oafnV5a2pJLX0Q3c/tOIeawDdge2QJvoJKDr4JbR+dyTVvXpILbWblHW61t3/Vsv11ZYEzKFkoytrJU3HcOBT6NR2OPAY2uyeAF5BEdRF6M39trt/M11e7Ri4f5IGB6TFMQ81YoFOgK32bIj+RvsDvwPuSpNTTkClBpu5+8PV/qzNQtI+LJP+4RJ0gGl60ibUDZU0TQe+jcT+xyPHcR9UvzwXOBl4z93vTJdflD62d3jHW2hTBT5cs60P6MOSPaNQycafkbO8PrCPmb2ern0IbZiTIj25dNx9DlAaZzUxA1iQtxFFIEXQV0LZikFoLz0AZSoORk7pFLRWHu5AJmkB8GFWM63Xl9LL55Mtn0mvhyY79gVeBs42sx+gzMl9KNP5So12lB53P6Ij11cbYV0lXdM0XYxpo+uLNpehwNooonkYOnEdhqIwOwF3oxrTumoCmtn6aGJRVSmJVIawAEWI7kcnw1uAvYBfo9nnzwHvtKZImhkz+yoaPXxs3rbUg/TAX93dp+ZtSyNJY43no03lUZTimwIMRwfJiSiSOh5tMHXVOjaz1dBz4M0qr+uKnOodUCnCKWjN3gdshaJJ5wMDK8uGmpWUQRjv7uvmbUu9SAMopjVT+rl1TCp6jz8L/AQ4Hh3mxgK7Aa2yUy+iAR11i2qmMoyh7j65hmt7AoNR1nQt5MzujEoKRqKyhIFouEXTawWb2e3A6e7+YE3XV+mw/gDo4+7H13KzopNSTF1RumE8iqx8Gzl3R6A0/INoM3y1UW9AM5sMfLoe86XTw6Evcry7AR8DHkcn1lOBXYHLgNWabVM0s3VR2vexvG2pB2mm/R3uPiJvW7IgvZdXQen0VYHNUMbhOOCbaO2eiOq8xwNLGpG+M7PTUYT2tDp8L0M/20JUmzcZpT8noma6SUiVYAbwZpM5Oi3AJ939lrxtqRdm9iRwsLuXUo3HzIYAb6MgyuPovfwmqgV/H2UiVka1pAsbscea2RbAZe5eF63z5EcsBvZDAaKbUdbz16hOdhfUYN21mYJ/AGa2C3LeqzrMf3h9lQ5rP9R01emjcWkzn4beSE+hzeAtVAPTBfgL2gwn5F0AnyIJ72Rph5kNRZve0Sjlcjtq9DoG1d2tieru5pd1U0yTrnq5+/i8bakHqUlygLvX3JVZFMxsIHLa9kZlG78BvgGcCZyG3p9PovrtGXnWlaUNqzVlndU9+qAMyWjgNeSct3aYf5m21Gk/d5+ZlR15kn7Pe7l7aaToUnR+prt36rKAdJgYhKKLLahU7h6UlTwQZQvOQrWiT+e8XrsBfbNcJyl7Miy93BZlPjdAJUgvocjsE6jcL9fnV5aY2d7A3xrlsH4WRSk6TZ2faWbwINSZvwQYA1yP6tT2B76Guu9XdvcX87HyP2NmPwd+0ujTWEp3DAV6o3TqMLTQVkH6ngORQsGCMnSim9mhwCB3PyVvW+pBOoR83d3/O29bqiFNdXsFRSimosaH91A92UqoIWoVct7olkVquprl7g0XIzezTVGZz/eRXM+5SKx7O9Q53SX9/3lF/N1Vg5mtDtzo7tvlbUu9MLNTgQvcfVretrQXM1sbeBc1JI1D0cPD079xKKM3BfVxzM7JzGWSglcHuPvJOdx7CHJW90LN2VejqPOlSBd8DxSldXdf2Gj76o2Z3QKc5O6P13J9tU1XK6JQd+FIqbONULThO+hBfSdaNGNQWL4L8FO0cHZPl56dPhZuIVXgyNlu7E3V7NFahjCh9b+nhpHpSAPxAWCSmW0OnI4avEahQvjFnWlTdPfL8rahznRFUbjCUZHqHgCsi9KEh6P1+WMUIfwAvY8ec/d/F1Mv8oaey3oFqEgltypdfCplaGagMiBHmZO7TCNAf4ka0f6IghGdRk7J3V9DjniZ6EVFw15RqOjO3x5FBPdCGckRKPMxHqX2DTgkyRZ1Jr32XPyaiuzX5enjDikaezoKFI1A/TEHm9lNQE9UFjQDSW11mvUK4O41Dw2A6iOsvdBDra5NCtWQwveg2suX0AlkHqp7WYLSDsOR1mGvWkPPRcLMBqM0QZEPCz2QPmyr1NYstEFOQkLB75FGVhbViTVNKurp7ufkbUs9SGulp7u/m6MNhg7GW6GJbaegWumbgO8ih+OvqH5tOip9KeT7vL2YWX9Uf1fYrEP6u+xE2/CD41Bj5mdQfeHVaOb3MwVer2sDl7r7rnnbUi+Sju/sPNdAem6shv7+m6OgxSmoBOcMpEf8UZRlW9LZVSzMrDvqzSlsPWlar8PRs3QntK+ehNbtl1Ct/rbA3UVdrwBmdhvwPXevVilJ11fpsJ6FHKczl/vFHST9gXqhVH4PJA3V2gi1N+okPA41VDxEgwq088DM3kLd651mZF+FjNAmqC74EJSivAZFZo9P/0a5+z/ysrOSVHzfrUQ1rFuh9OJWDbpfb3Ro/Dg6pOyAIgLvorTg75B8053ACp19o1sWJt3kJ9394rxtqYakKtEfZapa9aRXQ53ZXVHD6YrAs+7eXomvzEjO3R4lq2F9GdjR3V9a7hd3/F7d0N91F3RYuQAdJi9GWY7hqLlvJmroK+wBrCOY2ceBE9x99FsFLQAAEh1JREFUl7xtqYYKac0xSBP2IpRZ/jEqedwA/V0XFqWPwcz2B/5Ua71wtQ7rUCQDU1dtx1RnuhilGW5H4fEzUHr5QhQ9/SeKwMzobGHwjmJmI4EXyvBzp8a9eag+5y/ob/y/yIm9CW2IzwPvNrreKZU6LKn19Fc0UkZkWL1/nrTR9UMNE0uAz6KSm2tQ5uN4lNpfE3i8DO/bakh1afPd/e28beko6W/dDUXUnkCNMt9BEn7bo2jbJcBK7v5yg23rB4x293saed8sSY2fz9Wz6SoFDwahEptdkAO6CZJjehKt4+tRKdfdAGUN/iyNdNBetag9LNVQIcM5CB02h6O/+w5IYmsU8FvkUz3nDR5UYma7oaar92q6vkqHdW/grZo1tNrC2nPQxjYnvV4dOS8jgWtRFOaBIoe2G4mZ/RQVKuce1ciCFNnph94LXZG01sOom/RUFLEbhx4qmYkym9kP0Wn0jKzu0UjMbDiS/ak50pe6lmejtNO16O9wLvrb/BbVrE1HtePvxJoFMzsAjWst5ZCO9BxfDcn77Ylq6sYgh7Yfauqahmoc38qqWSQ5d5e5+zZZfP88SM+g82re0HVI7Qesh8qyvoYipzcAn0D1y+NQ8+LzsV4/DFTs6O6X5G1LVqRsxAeoN+A3KCK7L3AVOnRuT9K6zbKEzMweB/bzGiUzq226GoZSRcvFzFZG4twbo47f7yMR7GtQJLU/qjd93N1fTZe1dtV2+rrTOrMOBSzErxcpmjAj/QOVeGBmz6HU8spIWPrXJnH/I1Dd3RBUgzevHlE8d/9JR79HweiNNq7lktJLG6BD5Hbo/dYXHSJuRs+KJcApqYTjgWV8q0DRjdI+w5KT05pi/FX6+FCq3W0BtkYHzzOBnyUn7MtIBH4cqqvucPbE3SeikbdlYlPauS+n7vbXgKPQ7/VilJHcGdWFtyBn9VV33zxd1noYL+37swZ6oWhzafE2KdLK5q5uSA6vO8qi7AGMMLPW0e5L0CF0LnUKRrj7Zh25vtoIq/270em0/REk2H0iEp0/F6WJNkA/8Juo6eb1eqY6moVUFL4gTsMfpm/WQM7YWqixaw46AN2FpLYeoAa9WDM7EjWFXVtPm/Mirc1/mXWd/tsQ2uZk/wP4BRoccTmKyOyIUoNehrR2o0kbwZJmSqv+J8xsS6R1/QOUev4Z0s4djd5nS4DJNazXDYFj3P0r9bU4P/59j03rdUWUwn8fNUGtnD4fBVyJ1us4NNVuSsON7uSkrvwuZZCNqgdmtgaKxo5BUdffIJ36i9E+8QkUXKz6GZdkrb5Ra1lptQ7rVSgNdAVyRtdCnfobox9mZxRBXakM3flFwcwWAT1iQS2d9FDfFEXyj0VSZU+k/3YykvgZgeZNL7Nmx8x2Bea4+9+W9TWdCTP7JIpy7YB+B79CnaVXIR3Tl1BDzVxUG56LFFPZMLMbgFvc/fq8bSkiab0ORJJm6yAdyn2Q3uQ2KNgxCmXgFi/rfZl0WHd39ysaYXcjMLM5wO7IMf0jKrv5BHLyj0e/l4eBD/JU6ykTZrYf8AV3H5O3LUUkrdeuaB+ZDHwVjbweS1vfyRQUmJy2nD32aODKWssOqnVY90QphyORqPcFydiJaKNvquaKRmFmOwH3R4S1/aRTcw+0Ac5Am8C7KF37PPAqivpPbV08ptGs81z6jp2epL/5GBKivhw9cA5CB87ujW5qaxbMbAM0rSgO7e0kbYpdUL36g0gf9rtITP2zSBnmBiRVODld0x9Y00s0xjRFoGagkpw70TPsj6gp+e3YA+qPmQ1AEwEn5W1LZyLtsesiZ7Z1xPvJqCnzEBQcGe3uf624Zlukq11Tpr0qh7Xipq1daINRndu2qCRgE6TfNxItNo9TYMcwsy7AD7wk05fyJG2KLWjm/Fso/f0r1Ey0B5pjfa67n5+bkRmQfu7NUDT166jB8Sj0cw9DQyFmAy9TgglIeWNmnwMmlkVtIk/MrAdtUlsroJrqVqmtXYH1KuozS4OZrUVbs+P/IMd9R+TIH4YO4ncj1Z4oPekAqXlvXXe/OW9bOjupfHERUgG6FWXez0EjecehkqC1az3MV9t0BUCKzMxG4WGQSD9m9gza9L6GFtPjKTp4JPBzpAbwWCywquiCnKlwWDtOV7T5zUaHrenp42zUIDgFLbBSkRzQVq3bn6aP45P80mSUfpyO9PvOTw7Xj1Hn6K3oYBvlAu1nS5QeC4e146yCZJiGIAmmbZGuc5/034/Nz7TsqJBY+ln6uGFyBs5FHf7rozr+7czsEfQ7mYkc+cIOmSkoq6MDfTisHac7CgrNR9n33miKYX/U2HUhbc3VVVNThLXd31zRwb6oxnUR2hj7oHn0c9Am2gVFZ+dEZCeoF6bpYAuQdMdNqBbsm6iW8xz0kHoadT8WdsJJI0mRWEOauH9GQtSnoSj04ciB/T1y/P8Z6zWoFymSOij9WxG9B+9E63V/4FvIeRsaqds20h47EjXJ7IOmT12OGmb+C6VntyZKyoI6k0qfpqGSs+eRxu8cVG7XC70XBwIT6nWAytRhXeoN27oet0KnweNQY8g9qGv0OCS9Mczdn2mocQUkdcVPcfdBedtSRNL7aTSK7I9JH0ejLtpJaF79nenjpHhoV4+ZtaAGmbXQA6gnWr93I8WGW1Hn8lPRGAhmdjNwsbvflbctRSTVir+NMnGXomExR6TX16D311RUBzwnLzs7KykSuxA5En9F6djfIu3kK1GE9ik0ArbpD+tmdgiwtbsfnrctRSTVig9Eg2DmoT6Iy1AwYyzwRRTU6JulTjrk4LAuiyRsuxBptD6FdPseJnV3o7TtNJTuKOVIx6WRJHL2cPdb87YlTyo6i1dF6bA3gKNR6vo0tIj2RuM/Vwg5pmxJTqwhuZN7UT3swag8qLVJ5tdAS60SJp0VM9seTaZ7I29b8qKiiWoHpEbxGZS2Xgs1ED2ANsDbkKrMi7kY2iSkSGwf9DvvhWpgn0e1huegSWZXoMzTs810sE/1wqu4+2M5m5IrFWo7LyHd/HOQcsd3UMbjLuSjvY4Okw2XKC2Mw7o0UpqoNyopeAcVoF+PorCHI+/+AtThNy0nMzMlOQYHuPu4vG1pBGnRrIBq1Z4ETkf1u79Bf/ctgPGow/8NlNKP+soCkDbFIWi+9U5IlWEr1OD2Djp0TkIyWm+Wtc7OzD4LPFoWtYnlkSbVDUEO0Zao1OZMFHk5EzUJbY8ONkuiEbc4mNkgtE6/iaJmdwJfoU0OcH2k2rDA3efmZGampKarlSq72ctMWq+GZEhfQ8ocoBrT7qjsaz10mOxVpCh8oR3WZZFqJ6agGp2r0EI7CUV7bkRSIJOAuZ3dmUkTw/7g7lvlbUu9SWoTS1DtyzQkZN8XOaIro9rTVsWJFWKj65wk2RhDXd2PokEFh6Ea2X2RRN6vga5l+Bub2XXAz71ko1nTRtc6Ormyxvk8dLAchvoRZqADSaf/WzYjKUgyFO2j66PMVjd0ILkflRQ8gJzYTi+NZ2YHA8Pd/Ud521JPUvCnD1qXKyA933tRWchuwE/QsKcNgEfQ37PQ/lKndFiXRqqzGIxO+j1RhOdxJIfyK7Tw/oSEqGPaVgNJG10/NJVqAW0OynUoFfU91FCxOvBkWSNvQRspGrsl8AKK7tyH1ESuQY03T6DIz8uxXhtL2uhWQ408H0XR8Q3R+nwUif1fm/7b3QBF3+iCjpNGwc4EDkUSRQ+ihq7zUNp4cySZt6iZSgqKQPJ/FqC65Ztpmzh6JHJQe6LBOq+hdH6n3GNL47AujfTg3RqlqH6KRgNOQKHwQ5Gm3UDgiaIuMDNbDbjZ3TvFzOw0feYdNA3jGtSx+nPkpN6KIqpvok7Cd4v6ew8aT1qvQ1GN3Wj0Hjkard3PodKQrdG4QIr63klNVz9x9wl527I8UlNnX5TJmIki32ejEpzdUBnW1ejA+UJRf+dB40nrtTttMm57oUzZ5mhgyVvALNRc/VZR3ztm9nVUVnhq3rYsj3TQH46an3ZANaWD0SHyTiTPNQ5FTR8q6u+8VkrtsC4NM1sBPaA3RVJbm6KH8bvoTTABpS+fK0LNTtpQ9nL36/K2pZL0exyF6hG3RsoPLahJ7sb0365AqZYn87Iz6NykB7QBeyJH9VLgVDS+8yi0Wf4J+a8v52VnJamG9aGiTboys5FIReO7KOpyPjq0b4OGZsxCdcavRDo/qJW0N2yI9obPIxWIcagR87j0b3N3H5+bkRWY2aZo9Hkh7GklTSrsifo2JqOa4qPRIInPoxLI21C53Ot52dlIms5hXRppxNiKqIZyMqrr+DHqitsavUnOBQa7+wsNtq0PsKO7/76R9624v6FU4IqozOIRJK6/P3IaWqeu3IfKLd7Jw86guTCzXrRJbQ1G788t0JpdAz3I+6OO54aOjDaz3VDT1axG3jfduzXqtQkS794YlVi8i8qjLkfreBywWnTnB40grdf5wAGojvJkVBa2H3LA+qBM6OxGrxszG4Xq5yc28r4V9zd08J6IJMiuQrXhVyFVh+dQtmkuMK2ZpQPDYV0GFTJK85Ag80SUHnsIvYkmoIjENJTu+CAjO9YFbnD30Vl8/4r7GG0zgR9EUaxrUBnFNSgq/RrwT7RwZkbdWlAk0uFuMWrk+j2K9H8eNe/tj6RZbkYRiZkZ2nE/cHjWG2CKZK2DMkV7ISf9FrSGf4oaUddDdacfuPv8LO0JgmpI799+6NDZglLcT6Pyn3NQ6d6VKF0/NUM7jgW6Z10SkH7eniiruxj1dIxCP/NoVDq3C9pv+2X5jOqshMNaJWlT7EnbPPpD0UnoGCR+vR+KPPYrqhZoKjNoQQunK3LMt0M1MDsBZ6Fmi5vQ5h4bXdApSdmTNdAGsTOKNI5GShRvIXm0Z9LHmUWs+UpC8EuQvu1dqLv3d8AhqC58Iaobfw4po4TYftBpMbOhaG1+GylR3IXe699HB7G1kbThB1kFijpCKmPqgerC30WBrkuQwsK2qEHtIrTvPgXMj+BP+wiHtU6kOphngB+idNtlqLRgVxTVWRHNFp9XzaaYIqynuvvYGmzqjpzrTVBK4Ri02f0VRWEOQrq2vVHNbkNTp0GQF2Y2BDmBe6CMwiVoYzkf6TvvhQ5sVq1KgZndBHy32nR7ynIMQM+KDVFWo2uy8XJUs3Ya0jS9C9XtxkYXlB4z64kOnj1Qn8Rq6X/1QsoEK6N1PL/awUJmdjiSdLq8BrtWQhnHA1GN/QloaucOyKl+Ex0oJ6Hx87HHdoBwWDPEzFZB9XVDUV3ZLqi5oVVqaz305l60LJkJMxsI7OnuVyznXmug8oRvomlD30N1pSNQ5GUqEnR/Fni/iJGkIMiTFBnZHq2Rw9H6ORyt1VVQNGQWakpapiyMmX0DuPE/ZVjMrB9yTLdJ3/dM4Fsorf8FJOb9x/TlL8d6DYL/j5ltiLIlR6DeikdR9vNMpNO+EdKMXbKsNWRmOwML3f2h/3CfFWjr5VgX7emzULlgq4rJaene42O9ZkM4rA0mbYo7ohrY84Bj0SLbBU2GuQKdFie5uydx/ZHu/ki6vgXV/HRHgsAj0RCFMaiQfSySpVnX3Z9u2A8WBCUkrdc1UaZia1TDfQxqymzdpLYA7m3dpNJo1gmtnfZmthFao0egyOhh6ODaG0VgnkaR1OdDczYIaiet1xZ0EJyOMiVvIB32x9F6m4XGj85Ke+wIFGF9KX2PwenbtQ7IuAY1i12OFDY2Rb0sC4qmBFJ2wmEtACl13wedzhajFH4fNDFmCKqT3QI1kuyJNsnT0Ub6OIqYdvqJI0HQGUjRFkeHxNvRRnYKUhI5DpXcHIUOk39B6cJjaVPWWNXdX2m85UHQfKRSmxVRtHU2Wo83oeDQnmhfnQacgQI+/wDeR4Mz/o6mfL3YWcX2y0Q4rAXFzLqhRbYjSkXcDnQBpke6IQiKRdoU+6Ia1J1QWcFzqG6tcI0hQdDspLKcuSizaWjyYksecnRB+wiHNQiCIAiCICg0XfI2IAiCIAiCIAj+E+GwBkEQBEEQBIUmHNYgCIIgCIKg0ITDGgRBEARBEBSacFiDIAiCIAiCQhMOaxAEQRAEQVBowmENgiAIgiAICk04rEEQBEEQBEGhCYc1CIIgCIIgKDThsAZBEARBEASFJhzWIAiCIAiCoNCEwxoEQRAEQRAUmnBYgyAIgiAIgkLzfyBoFr4wfGzWAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "TWGXcH7AARpy" - }, - "source": [ - "#### Tags\n", - "\n", - "The OC20 dataset consists of systems with several different types of atoms. To help with identifying the index of certain atoms, we tag each atom according to where it is found in the system. There are three categories of atoms: \n", - "- *sub-surface slab atoms*: these are atoms in the bottom layers of the catalyst, furthest away from the adsorbate\n", - "- *surface slab atoms*: these are atoms in the top layers of the catalyst, close to where the adsorbate will be placed \n", - "- *adsorbate atoms*: atoms that make up the adsorbate molecule on top of the catalyst.\n", - "\n", - "Tag:\n", - "\n", - "0 - Sub-surface slab atoms\n", - "\n", - "1 - Surface slab atoms\n", - "\n", - "2 - Adsorbate atoms\n" - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "SGZzFhsrB5A2", - "outputId": "3b2e4e3e-b82f-4e1a-ed88-e53e3040240b" - }, - "source": [ - "tags = i_structure.get_tags()\n", - "print(tags)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2\n", - " 2]\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "0zVhbDL2B8cd" - }, - "source": [ - "#### Fixed atoms constraint\n", - "\n", - "In reality, surfaces contain many, many more atoms beneath what we've illustrated as the surface. At an infinite depth, these subsurface atoms would look just like the bulk structure. We approximate a true surface by fixing the subsurface atoms into their “bulk” locations. This ensures that they cannot move at the “bottom” of the surface. If they could, this would throw off our calculations. Consistent with the above, we fix all atoms with tags=0, and denote them as \"fixed\". All other atoms are considered \"free\"." - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "FBMUmGrrCD_h", - "outputId": "4d0aad44-f6bd-491b-d734-5edf5be04031" - }, - "source": [ - "cons = i_structure.constraints[0]\n", - "print(cons, '\\n')\n", - "\n", - "# indices of fixed atoms\n", - "indices = cons.index\n", - "print(indices, '\\n')\n", - "\n", - "# fixed atoms correspond to tags = 0\n", - "print(tags[indices])" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "FixAtoms(indices=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]) \n", - "\n", - "[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17] \n", - "\n", - "[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "_DHAYeBUCHbN" - }, - "source": [ - "#### Adsorption energy\n", - "\n", - "The energy of the system is one of the properties of interest in the OC20 dataset. It's important to note that absolute energies provide little value to researchers and must be referenced properly to be useful. The OC20 dataset references all it's energies to the bare slab + gas references to arrive at adsorption energies. Adsorption energies are important in studying catalysts and their corresponding reaction rates. In addition to the structure relaxations of the OC20 dataset, bare slab and gas (N2, H2, H2O, CO) relaxations were carried out with DFT in order to calculate adsorption energies." - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "5XxYqdM7CMdd", - "outputId": "c2f5ea9c-1614-42ef-fbc0-75fddd7c976f" - }, - "source": [ - "final_structure = traj[-1]\n", - "relaxed_energy = final_structure.get_potential_energy()\n", - "print(f'Relaxed absolute energy = {relaxed_energy} eV')\n", - "\n", - "# Corresponding raw slab used in original adslab (adsorbate+slab) system. \n", - "raw_slab = fcc100(\"Cu\", size=(3, 3, 3))\n", - "raw_slab.set_calculator(EMT())\n", - "raw_slab_energy = raw_slab.get_potential_energy()\n", - "print(f'Raw slab energy = {raw_slab_energy} eV')\n", - "\n", - "\n", - "adsorbate = Atoms(\"C3H8\").get_chemical_symbols()\n", - "# For clarity, we define arbitrary gas reference energies here.\n", - "# A more detailed discussion of these calculations can be found in the corresponding paper's SI. \n", - "gas_reference_energies = {'H': .3, 'O': .45, 'C': .35, 'N': .50}\n", - "\n", - "adsorbate_reference_energy = 0\n", - "for ads in adsorbate:\n", - " adsorbate_reference_energy += gas_reference_energies[ads]\n", - "\n", - "print(f'Adsorbate reference energy = {adsorbate_reference_energy} eV\\n')\n", - "\n", - "adsorption_energy = relaxed_energy - raw_slab_energy - adsorbate_reference_energy\n", - "print(f'Adsorption energy: {adsorption_energy} eV')" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Relaxed absolute energy = 8.358921451420816 eV\n", - "Raw slab energy = 8.127167122751231 eV\n", - "Adsorbate reference energy = 3.4499999999999993 eV\n", - "\n", - "Adsorption energy: -3.218245671330415 eV\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "EchgyYxXCUit" - }, - "source": [ - "#### Plot energy profile of toy trajectory\n", - "\n", - "Plotting the energy profile of our trajectory is a good way to ensure nothing strange has occured. We expect to see a decreasing monotonic function. If the energy is consistently increasing or there's multiple large spikes this could be a sign of some issues in the optimization. This is particularly useful for when analyzing ML-driven relaxations and whether they make general physical sense." - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 482 - }, - "id": "WffoTL5pCSrg", - "outputId": "86e7a0fb-7a34-42ee-db58-edd30323eb54" - }, - "source": [ - "energies = [image.get_potential_energy() - raw_slab_energy - adsorbate_reference_energy for image in traj]\n", - "\n", - "plt.figure(figsize=(7, 7))\n", - "plt.plot(range(len(energies)), energies, lw=3)\n", - "plt.xlabel(\"Step\", fontsize=24)\n", - "plt.ylabel(\"Energy, eV\", fontsize=24)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "Text(0, 0.5, 'Energy, eV')" - ] - }, - "metadata": {}, - "execution_count": 17 - }, - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdYAAAHACAYAAAAflUncAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd5xcdb3/8ddn2vZs2oYEQkjoTWkREFACKIpesKLixXoFsaFeVCxXRK9e2w+viBVBAVEsqOC9ekWRJoJiKCIgNSSkkLpJdrN9dz6/P87ZZHbdNrtTdr7zfj4e8zg755zZ+c7J7r7z/Z5vMXdHRERECiNR7gKIiIiERMEqIiJSQApWERGRAlKwioiIFJCCVUREpIBS5S7AdDd37lxfvHhxuYshIiLTxL333rvZ3VtGO65gHcfixYtZvnx5uYshIiLThJmtGuu4moJFREQKSMEqIiJSQApWERGRAlKwioiIFJCCVUREpIAUrCIiIgWkYBURESkgBauIiEgBKVhFREQKSMEqIiJSQApWERGRAlKwioiIFJCCVUREpIAUrCIiIgWkZeOKaHtnH6d85Xb6s1nq00nu+tgp5S6SiIgUmYK1iJJJY/OOHgB6M9kyl0ZEREpBTcFFlErYzq/7B7yMJRERkVJRsBZROrnr8vZls7grXEVEQqdgLaJkwhistLrDQFbBKiISOgVrkaVyaq39ClYRkeApWIsskxOsvQPqwCQiErqqClYzO9vMPH68oxTvmUqqA5OISDWpmmA1sz2BrwM7Svm+QzowqcYqIhK8qghWMzPg+8AW4NulfO90zpAbBauISPiqIliB84GTgbcBHaV843Qqp/OSmoJFRIIXfLCa2UHAF4BL3f2OUr9/SjVWEZGqEnSwmlkK+AHwDPDxPF53rpktN7PlmzZtmlIZht5jVY1VRCR0QQcrcBFwBPBWd++a6Ivc/XJ3X+ruS1taWqZUAHVeEhGpLsEGq5kdQ1RLvcTd7y5XOYYMt8kqWEVEQhdksMZNwNcAjwOfLGdZ1BQsIlJdggxWoBHYHzgI6M6ZFMKBT8XnfDfe99ViFiSdVOclEZFqEup6rD3AlaMcO5LovuudwGNAUZuJUwkNtxERqSZBBmvcUWnEKQvN7GKiYL3a3a8odlnSmitYRKSqhNoUPG2kNVewiEhVUbAWmYbbiIhUl6oLVne/2N2tFM3AMHS4jYJVRCR8VRespZbRQuciIlVFwVpkqrGKiFQXBWuR5Q630QQRIiLhU7AWWSalzksiItVEwVpkucvG9StYRUSCp2AtMs0VLCJSXRSsRaa5gkVEqouCtchSGm4jIlJVFKxFNmSu4H7VWEVEQqdgLbK0FjoXEakqCtYiy62xahJ+EZHwKViLLHe4jZaNExEJn4K1yHIniFCNVUQkfArWIhs6paFqrCIioVOwFtnQSfhVYxURCZ2CtcgyWuhcRKSqKFiLLKXhNiIiVUXBWmSaK1hEpLooWItMcwWLiFQXBWuR5fYK1nAbEZHwKViLLK3OSyIiVUXBWmRqChYRqS4K1iJLa9k4EZGqomAtsiETRGjZOBGR4ClYi2zIBBGqsYqIBE/BWmQpdV4SEakqCtYiGzLzkobbiIgET8FaZLlNwVqPVUQkfArWIstd6LxfwSoiEjwFa5ElE4bF2Zp1GFAHJhGRoClYi8zMSGuxcxGRqhF0sJrZF83sD2a22sy6zKzVzO43s0+Z2ZxSlSM9ZOk41VhFREIWdLACHwQagN8DlwI/BPqBi4EHzWzPUhRiyJAbTRIhIhK0VLkLUGQz3L17+E4z+xzwceBjwLuLXYgh8wVrsXMRkaAFXWMdKVRjP423+5WiHEPmC9ZYVhGRoAUdrGM4Pd4+WIo3S2mFGxGRqhF6UzAAZvYhoBFoBpYCJxCF6hdK8f5D12RVjVVEJGRVEazAh4Ddcp7/Fniru28a6WQzOxc4F2DRokVTfnMNtxERqR5V0RTs7vPd3YD5wKuBvYH7zezIUc6/3N2XuvvSlpaWKb+/5gsWEakeVRGsg9x9g7v/EjgVmANcU4r3HdIUrF7BIiJBq6pgHeTuq4BHgEPMbG6x3y+txc5FRKpGVQZrbPd4O1DsNxoy3EYzL4mIBC3YYDWz/c2seYT9iXiCiHnAXe6+tdhlSWnpOBGRqhFyr+CXAZ83szuBp4EtRD2DTyTqvLQeOKcUBcmo85KISNUIOVhvBvYlGrN6BDAT6AAeB34AfM3dW0tRkJSG24iIVI1gg9XdHwLeW+5ygGZeEhGpJsHeY51OMporWESkaihYS0A1VhGR6qFgLYGhE0SoxioiEjIFawmktdC5iEjVULCWQCqRM9xGUxqKiARNwVoC6ZSWjRMRqRYK1hJIJ9R5SUSkWihYSyCt4TYiIlVDwVoCuXMFq8YqIhI2BWsJDFk2TjVWEZGgKVhLYOiycaqxioiETMFaApp5SUSkeihYS2DIBBFqChYRCZqCtQTSqrGKiFQNBWsJaLiNiEj1ULCWQO5C572qsYqIBE3BWgK5TcH9ClYRkaApWEtg6HAbNQWLiIRMwVoCucNterVsnIhI0BSsJZBRjVVEpGooWEtAcwWLiFQPBWsJaK5gEZHqoWAtgaHjWFVjFREJmYK1BFJa6FxEpGooWEtAcwWLiFQPBWsJpNV5SUSkaihYS2DIzEsabiMiEjQFawkMGW6jCSJERIKmYC2BIcNtsgpWEZGQKVhLQMvGiYhUDwVrCeQOt+nPOu4KVxGRUAUZrGY2x8zeYWa/NLMnzazLzLab2Z1m9m9mVtLPbWaafUlEpEqkyl2AIjkT+BbwLHAr8AywG/Bq4ArgNDM700tYdUwlEvQNDADRkJtMKsj/04iIVL1Qg/Vx4Azg1+6+s7eQmX0cuAd4DVHI/rxUBUonja6+6GvdZxURCVeQ1SZ3v8Xd/yc3VOP964Fvx0+XlbJMQyaJUM9gEZFgBRms44jrjfSX8k1TSc0XLCJSDaoqWM0sBbw5fvrbUr63htyIiFSHqgpW4AvAocBv3P2m0U4ys3PNbLmZLd+0aVNB3jg3WHtVYxURCVbVBKuZnQ9cADwKvGmsc939cndf6u5LW1paCvL+Q+YLVo1VRCRYVRGsZvZe4FLgEeAkd28tdRlSCa1wIyJSDYIPVjP7AHAZ8BBRqK4vRznSKQWriEg1CDpYzexC4L+BB4hCdWO5ypJOaOk4EZFqEGywmtkniTor3Quc4u6by1meIcNttHSciEiwxpx5ycxmuHtbqQpTKGb2FuAzwADwR+B8Mxt+2kp3v6pUZRo6QYRqrCIioRpvSsP1ZnYDcA1wUynn1p2iJfE2CXxglHNuB64qSWkYFqyqsYqIBGu8puBa4PXAr4E1ZvZFMzuk+MWaGne/2N1tnMeyUpZpyHAbTWkoIhKs8YL1fcBfAQMWAB8CHownT3ivmc0pdgFDkcqtsWocq4hIsMYMVnf/hrsfCxwIfB5YTRSyRxKNC10Xr3n6qni6QBlFbq9gDbcREQnXhHoFu/vj7v4Jd18MnAxcDewA0kTLs10PPGtmXzOzpcUqbCXTXMEiItUh7+E27n6bu78NmA+cDfweyAJzgPcAfzGzh83sw2a2e0FLW8FSmitYRKQqTHocq7t3ufuP3P2lwJ7AhUSzGxlwENEY0lVmVtJVZKarzJC5ghWsIiKhKsgEEe6+3t2/7O6HEd1//RbgRMNdXlyI96h0uTVWzbwkIhKugnY4MrNjidY7fR1RzVViWjZORKQ6TDlYzWwx0TJsbwL2GdwN9BGNf716qu8RAi0bJyJSHSYVrGY2g6hW+mbg+MHd8fZeojC9zt23TLmEgdCycSIi1WHCwWpmCeA0ojA9HahhV5g+C1wLXO3ujxS6kCFIp3LHsarGKiISqnGD1cyOJArTNwAtg7uBbuBGovl2f+/uqoaNIa0aq4hIVRhvdZuHiIbOwK7a6V1ETb0/dfftRSxbUNIabiMiUhXGq7EeHG9XAT8ArnH3J4tbpDCltGyciEhVGC9Yrya6b3pbCcoStLQWOhcRqQpjBms8daEUQFoTRIiIVIXJDrcx4FVEsyrtCdS5+yk5xxuAowB39z8WoqCVTnMFi4hUh7yD1cz2A35BdP91sH1zeBWsG7gS2NvMTnT3O6dUygBormARkeqQ11zBZjYLuBk4BPg7cBHQNvw8dx8gmi/YgNdMvZiVL3eCCM28JCISrnwn4b+AqOn3JmCpu38W6Brl3F/F2+MmWbagpFNqChYRqQb5BusriJp9L3D3/rFOjIfl9AL7TrJsQUknNFewiEg1yDdYlwDdeUxb2A405fkeQRoyjlU1VhGRYOUbrD7R15hZCpjBCPdgq9GQcawabiMiEqx8g/VpIGNme0/g3FOANPCPvEsVoCHjWFVjFREJVr7B+muinr4fHOukeBzrl4lquDdOrmhhSaspWESkKuQbrJcAW4F3m9lnzWxO7kEzazKzM4HlwKHAOqJhN1UvpYXORUSqQl7B6u6biXoGtwEfA9YTLyVnZq1Eoftj4ACgFXilu3cUssCVKnfZOA23EREJV741VuJZlA4DrgMG4u9hwMz46wHgJ8BR7n5v4Ypa2XIXOleNVUQkXJOaK9jdnwHONrNziOYEXkAUqhuA5e6+o3BFDENKC52LiFSFSQXrIHfvAqp+HuCJyKjzkohIVci7KVgmZ0jnJY1jFREJloK1RDTcRkSkOihYS2TIzEsDjrtqrSIiIQo2WM3stWZ2mZn90czazMzN7NoylodkQs3BIiKhm1LnpWnuP4iGBe0A1gAHlrc4Ua11IA7U/gEnnSxzgUREpOCCrbESTbu4P9FCAO8qc1mAoZNE9GV1n1VEJETB1ljd/dbBr81srFNLJp1KQE/0dV+/glVEJEQh11innZTusYqIBE/BWkK5Q256VWMVEQlS0ZqCzeyF8ZePxJP3VwwzOxc4F2DRokUF+75pTRIhIhK8YtZYbwNuBZ42sy+aWUsR36ug3P1yd1/q7ktbWgpX7JQWOxcRCV6xm4INaAA+TBSw/6/I7zetDWkKVrCKiASpmL2CT4q3C4ATgWVEQ2A+VMT3nNbSWuxcRCR4RQtWd7895+mPAcxsbrHerxJovmARkfCVtFdwpXViKrTc4TZ9qrGKiAQprxqrmTW5e3uxClNIZvZK4JXx0/nx9vlmdlX89WZ3L2mztGqsIiLhy7cp+Fkz+znwfXe/rQjlKaTDgbcM27d3/ABYRYnv9w4dbqNgFREJUb5NwfXA2cAfzOxJM/uEmS0sQrmmzN0vdncb47G41GVKDamxqilYRCRE+QbrycCPgC6imt9niIbR/CZepi1d6AKGJKOmYBGR4OUVrO5+m7u/iWgIzXnAPUASeCnwE2CdmX3VzJ5b8JIGIKXhNiIiwZtUr2B3b49nJ3o+cDBwCbARmAO8D7jfzJab2bvMrLlwxa1smiBCRCR8Ux5u4+6PuvuHgYVEvXBvBPqBI4CvE3V4+qGZLZvqe1U6TRAhIhK+go1jdfcB4P+IJoO4P95tQC1wFlGHp/vM7KRRvkXwUjkLnatXsIhImAoSrGZ2hJl9DXgWuA44GugDrgfeCFwJdBANgfm9mZ1eiPetNFo2TkQkfJMOVjObY2bvN7MHgOXAe4DZwGNE40MXuvvr3P3H7n4OUVPx9+P3vGjqRa88WjZORCR8+c68lABOA94G/AuQJmru7QR+Blzh7n8a6bXu3mZm5wGvAw6ZSqEr1ZCZl1RjFREJUr4zL60BdiMKU4D7gCuAH7l723gvdvc+M9sC7Jnn+wZBUxqKiIQv32CdD2wnmiTiu+7+wCTe8wKgcRKvq3i16V3B2q0aq4hIkPIN1rcAP3P37sm+obv/fLKvrXR1meTOr7t6B8pYEhERKZa8gtXdf1CsglSD2nROsPYpWEVEQlTS9VirXZ2CVUQkePn2Cv5ent+/B9gG/AP4g7uvzfP1QckN1m41BYuIBCnfe6xvjbe5gzBt2DnDjw0+z5rZT4Dz3b01z/cNwpB7rKqxiogEKd9g/TRQQ7SyzUxgBXAnsC4+vgB4AdGScluBbxOt4XoUcALR1IYHmtnx7t4z5dJXGN1jFREJX77B+gXgVqKl4l7v7j8b6SQzew3wPaIwfVE8fvX5wP8QTc7/TuBrky51hRpyj1VNwSIiQcq389LHgGOAd44WqrBzSM07iWqvH4n33Q38O1Hz8JmTKm2Fy20K7laNVUQkSPkG6+uBXqLpC8fzM6LOS2/M2fdzIEu0hmvVUa9gEZHw5RusewHd8RJxY4rP6QYW5+zrIOol3JDn+wZBE0SIiIQv32BtB2aY2UHjnWhmBwPNRMvFDe5LxPuqs1dw7nCbPk1pKCISonyD9Taie6RXmtmM0U4ysybgu0RDbW7NObSYqOPTmjzfNwjppJFMRKOTegey9GsifhGR4OTbK/hi4HSiDkyPmdl3gD8RLXAO0XCbE4BziCbs7yYaojPo9fH29kmWt6KZGXXpJDt6+oHoPmtTUpNfiYiEJN+5gv9hZmcA1xEtH/fJUU41onGsZ7n7Izn7NwOfi19flWqHB2ttuswlEhGRQsq3xoq732xmBwLnA68i6uE7WO3KAo8AvwQuc/fNw1773akVt/LVZXKWjutVU7CISGjyDlYAd98CfAr4lJllgFnxoa3u3luowoVIQ25ERMKW7yT89xF1SDrT3VcAxEG6oQhlC5KCVUQkbPnWWA8GegdDVfJXq2kNRUSClm+X1LX882o2kgdNaygiErZ8g/UmoN7MjilGYaqBmoJFRMKWb7B+FtgCfNvM5hahPMHTCjciImHL9x7rvsAngEuIJoi4Brgb2ASMmhLufsekSzgFZrYQ+AzwUmAO0UQWNwCfdvet5ShTrRY7FxEJWr7BehtRr2CI7rWeHz/G4pN4nykzs32Au4B5wI3Ao8DRwPuBl8aLrW8pdbmGzhesYBURCU2+gfcMu4J1uvsmUaie7+6XDe40s68AHySaAeq8UhdKTcEiImHLd0rDxUUqR0HFtdVTgZXAN4Yd/hRwLvAmM7sgXsquZOrUFCwiErRQZ4A/Kd7+zt2HzBvo7u1ECwfUA8eWumC16hUsIhK0UIP1gHj7+CjHn4i3+5egLEPoHquISNgm1anIzIxoAv4XA3sCde5+Ss7xBuAowN39j4UoaJ6a4+32UY4P7p850kEzO5eouZhFixYVtGC5k/DrHquISHjyDlYz2w/4BdH0hoOzMA3v0NQNXAnsbWYnuvudUyplibn75cDlAEuXLi1oZy1NECEiEra8moLNbBZwM3AI8HfgIqBt+HnuPgB8iyh4XzP1YuZtsEbaPMrxwf3bSlCWIYbeY9WycSIiocn3HusFRE2/NwFL3f2zQNco5/4q3h43ybJNxWPxdrR7qPvF29HuwRbNkHusagoWEQlOvsH6CqJm3wvcvX+sE939SaCXaLamUrs13p5qZkM+o5k1AccDncCfS10wDbcREQlbvsG6BOh290cmeH470JTne0yZuz8F/A5YDLxn2OFPAw3AD0o9hhV0j1VEJHT5dl5yIDnuWYCZpYAZjHAPtkTeTTSl4dfM7BTgH8AxRGNcHyea87jktB6riEjY8q2xPg1kzGzvCZx7CpAmCrSSi2utS4GriAL1AmAf4FLg2HLMEwxaj1VEJHT51lh/DRxKNNfu+0Y7KR7H+mWiGu6Nky7dFLn7auBt5Xr/kagpWEQkbPnWWC8BtgLvNrPPmtmc3INm1mRmZwLLiQJ4HdGwG4kNn9LQvVLWNBARkYnIK1jdfTNRz+A24GPAeqAFwMxaiUL3x0RTCrYCryxHB6HpLJkwMqnosrtDT7/GsoqIhCTvuYLjWZQOA64jWtw8QTQRxMz46wHgJ8BR7n5v4YoaDs0XLCISrknNFezuzwBnm9k5RHMCLyAK1Q3AcnffUbgihqcunWR7Vx8QNQePOGGxiIhUpEkF6yB37wIqah7g6WDIJBEaciMiEpRQl42b1rQmq4hIuCZdY40ngNgXmEU0XnVU7n7HZN8nRHVpLR0nIhKqySwbtwT4PHAGUDOBl/hk3idk9Zldl0M1VhGRsOQVeGa2L3A3MJuoJ7ADG4nWX5UJ0rSGIiLhyrcm+Z/AHGAN8AHgV+OtciP/TCvciIiEK99gPZmolnqWu/+pCOWpCrn3WDWOVUQkLPn2Cm4CuhSqU1OnpmARkWDlG6zPAAkzs2IUplrUDmkK1pSGIiIhyTdYf0zUE/iUIpSlamiFGxGRcOUbrF8A/gZ8Jx52I5OguYJFRMKVb+el1wHfBz4N/N3Mrgf+CrSP9SJ3v2ZyxQuTpjQUEQlXvsF6FVGv4MF7rG+KH+NRsObQlIYiIuHKN1jvIApWmQLdYxURCVdeweruy4pUjqoy5B6rmoJFRIKi1W3KQDMviYiES8FaBrrHKiISrjGD1czON7N/G+VYo5nNGOf1/21mV06lgCHSzEsiIuEar8b6VeAzoxx7Amgd5/VvAN6aZ5mCl9sUrHGsIiJhmUhT8FjTF2pqw0lQr2ARkXDpHmsZqClYRCRcCtYyqM3kLhunSfhFREKiYC2DTDJBIm5E7x3I0j+gcBURCYWCtQzMbOgkEf0KVhGRUChYy0QT8YuIhEnBWia1WjpORCRIE5kreLaZ3TLSfoBRjg05R/6ZhtyIiIRpIsGaAZaNcXysY6DVcEakpmARkTCNF6xXl6QUBWRmaeDdwOHAEcDBQBo4x92vKGfZcmm+YBGRMI0ZrO7+tlIVpIAaiKZiBNgArAf2LF9xRqamYBGRMIXYeakTeBmwu7vPB75X5vKMSGuyioiEKa+FziuBu/cC/1fucoxHa7KKiIQpxBprRdA9VhGRMClYR2Bm55rZcjNbvmnTpqK8hybiFxEJk4J1BO5+ubsvdfelLS0tRXmPupyJ+BWsIiLhmJbBamYrzczzeFxb7jLnS72CRUTCNF07Lz0FdOdx/rpiFaRY6jK7Lr2CVUQkHNMyWN39lHKXodjqNFewiEiQpmVTcDXQPVYRkTApWMtE91hFRMI0LZuCp8rMPgocGD89PN6+zcxOiL++s9zzBg8dx6qFzkVEQhFksAIvBU4ctu+4+DGorMGqKQ1FRMIUZLC6+7Jyl2E8mtJQRCRMusdaJrrHKiISJgVrmdRqSkMRkSApWMsktylY41hFRMKhYC0TNQWLiIRJwVomw5eNc/cylkZERApFwVomyYSRSUWX3x16+jWWVUQkBArWMppVn9759frt+aw5ICIi05WCtYz2nde48+vHN7SXsSQiIlIoCtYy2m9e086vn9i4o4wlERGRQlGwltF+u+2qsT6hGquISBAUrGW0/26qsYqIhEbBWkb7tuyqsT65cQcDWQ25ERGpdArWMprVkGFuYw0QDbdZs7WzzCUSEZGpUrCW2f5D7rOqOVhEpNIpWMtsv9whNxvVgUlEpNIpWMtsv5wOTE+qxioiUvEUrGWmGquISFgUrGWWO+TmyY07yKpnsIhIRVOwllnUMzgDQHdfljVbu8pcIhERmQoF6zQwdGpDNQeLiFQyBes0kDu14ePqwCQiUtEUrNNAbgcm1VhFRCqbgnUayB1yo0kiREQqm4J1GsitsapnsIhIZVOwTgNzGmuY0xD1DO7qG2DtNvUMFhGpVArWaWJf3WcVEQmCgnWayJ0oQj2DRUQql4J1mth//q5g/cHdq9je1VfG0oiIyGQpWKeJ0w6dT3NdGoC127q46MaHylwiERGZDAXrNDG3sYb/etVzdj6/8YF13HD/2jKWSEREJkPBOo28/LkLOPOohTuff/KGh1jd2lnGEomISL6CC1Yz28/MLjSzW8xstZn1mtkGM7vRzE4qd/nG86kzDmGvOfUAtPf088GfPEDfQLbMpRIRkYkKLliB/wS+AOwG/Aa4BPgT8HLgFjM7v4xlG1djTYqvvv5wkgkDYPmqrXzx/x4tc6lERGSiQgzW3wJHuvsh7v5Od/+Yu78aOAXoA75sZgvKW8SxHbFoFv/+4v13Pr/izqf5n7+tK2OJRERkooILVne/yt3vH2H/7cBtQAY4rtTlyte7TtyHFx20287nH7n+QR5br4kjRESmu+CCdRyDg0P7y1qKCUgkjK+8/jCWzG0AoqkOz7v2Xlo7estcMhERGUvVBKuZ7UXUHNwJ3FHm4kzIjNo033nTUdRnkgA8vbmDF37pVr7420fZvKOnzKUTEZGRmHv4K6mYWQ3wB+B44CPu/uVxzj8XOBdg0aJFR61atar4hRzDrx98lvf86L4h+2rTCU5/7u6ceEALx+8zl1nxJP4iIlJcZnavuy8d9fh0DFYzWwnslcdLfujuZ4/yvZLAdcCZwE+AszyPD7106VJfvnx5HkUpjt89vJ4v3/QYT2z853mEzeC5C2dy1vP25FVH7kFNKlmGEoqIVIfxgjVVysLk4SmgO4/zR+wyG4fqtUSh+lPg7HxCdTo59ZD5vOig3fjdI+u57JYneXhd285j7vC31dv42+ptfOX3j/O245fwxmMW7ZwiUURESmda1lgLwczSwA+JQvVHwJvdfSDf7zNdaqy53J37ntnK7Y9v5s4nNvHA6m0MXxs9mTCes0czx+w9m2OXzOGQPWbQ0liDmZWn0CIigajIpuCpMrMMUQ31FcA1wNvcfVLTF03HYB1uW2cvP12+mivvfJoNbaN3aprdkGH/3Ro5aMEMDt29mecsbGaflsadk1GIiMj4qi5Y445KvwBeBlwJnDvZUIXKCNZBPf0D3PjAOq65eyUPr2tjIv+0dekkBy1o4tA9mjl092YOmN/Ewll1zG7IqHYrIjKCagzW7wNvBTYD3wRG+oC3ufttE/l+lRSsubZ19nLP0638eUUr9z2zlcc3tNPZO/GW8Np0gt1n1jGnIcOM2jQz6tI01aaoSyepTSepyyRprEnRVJvaeXzhrDpaGmtIqAYsIgGr1M5LU7Ek3s4FLhrjvNuKX5TymVmf4dRD5nPqIfMByGadtdu6eHR9Ow+v285Da7fz0No21reN3Eesuy/Lik0drNjUkdf7ZpIJFsysZb95jRy51yyOXDSLwxbOpC6jnsoiUh2Cq7EWWqXWWCdqU3sPD63bzsNx0D69uYO127rY0VO4yanSSePE/efx2qMWcikc/IIAABmwSURBVPKB88ikqmZeEhEJUNU1BRda6ME6Enenraufddu72N7VR1tXH23d/bR399Hdl6Wrb4Cu3n529PTH+/tp7ehh7dYutnb2jfm9Z9Wned3SPXn/i/ajPhNig4mIhK4am4JlisyM5vo0zfX5j4Pt6OnnmdZOHlyzjftWbePeZ7byZM6kFls7+/jOHSv4/SMb+NpZR3DoHs2FLLqISNmpxjqOaqyxFtqKTTv4xX1r+cV9a1i3fdc93UwywUdeegBvP36JOjyJSMVQU/AUKVgLJ5t1fn7fGi7+1cN05PRQPnzPmbzv5H05+cB5GuIjItPeeMGqXiRSMomEcebSPfnf81/Ac3KagB9YvY1/u3o5L//anfz2oWfRf/ZEpJIpWKXklsxt4OfvOo7zTtyHTHLXj+Ajz7Zx3rX38eHrH6SnP+/ZJ0VEpgUFq5RFJpXgo6cdyB0fOYm3H7+E2vSuH8Xr713DWZf/mY3t+azDICIyPShYpazmN9dy0ekHc+eFJ/PqI/fYuf++Z7bxiq//ib+v2V7G0omI5E/BKtPC3MYaLjnzMP7j5Qcx2EH42e3dnPmdu/jV30ZcFVBEZFpSsMq0YWa84wV78/23HU1TbTTEursvy/nX3c8Xf/soA8PXxhMRmYYUrDLtnLh/Cze+53j2bmnYue9btz3FOdcsp6177JmdRETKTcEq09LeLY3c8J7jOemAlp37bnl0I2dcdicPr9N9VxGZvhSsMm3NqE1zxVuex3kn7rNz38otnbz6m3fx07+uLmPJRERGp2CVaS2ZMD562oF8/Y1H0BAvPdfTn+UjP3+QC69/kN7+Sa9hLyJSFApWqQj/8tzd+dX7TmD/3Rp37vvJ8tW85Xv3sL1L911FZPpQsErF2Ce+7/qqI3aNd717xRZe8627WN3aWcaSiYjsomCVilKfSfGV1x3Gh19ywM59T27cwau++Sd1ahKRaUHBKhXHzHjPSfty6RsO3znX8OYdvZx37b20aziOiJSZglUq1isO34MfnnMMTTXRZBKrW7u46MaHy1wqEal2ClapaM9bPJvPvfo5O5//8v613HD/2jKWSESqnYJVKt4Zh+3Oa49auPP5f9zwEM9sUWcmESkPBasE4eIzDmGvOfUA7Ojp533X3cfGNi07JyKlp2CVIDTWpLj0DUeQipfG+dua7Zzyldv5wZ9XkdXk/SJSQgpWCcbhe87k4y87aOfz9u5+PnnDQ7zm23fxxyc2KWBFpCTMXX9sxrJ06VJfvnx5uYshebjryc184oaHeHpzx5D9i2bXc9bRi3jxwbvR0lTDjNoUZlamUopIpTKze9196ajHFaxjU7BWpu6+Ab5521N8+7an6B0YeT7hdNKY21jDvvMaOWjBDA5a0MSSuY3Mqk8zsy5DU22KRELBKyJDKVinSMFa2VZu7uDqu1fy83vX0Nbdn9drEwazG2qY25iJarh1aWqSCdLJBOmUkUkmSaeMmmSCmnSSunSS+kyS+poUcxoy7DajlvnNtTTG42xFJAwK1ilSsIahu2+A/33wWW64fy3PtHbS2tHLjp78gnaymuvSPHdhM0fsOZMjFs3iyL1m0VyXLsl7i0jhKVinSMEaru6+AdZt6+LR9e3849k2/vFsG+vbutna0cf2rr6iBW8qYTx/nzmcesh8XnLwbsybUVuU9xGR4lCwTpGCtXr19mfZ0tHD5vZeNu/oob2nn77+LL0DWXr7s/QN7Pq6pz9LV+8Anb39dPQMsKm9h/Vt3axv6x53zdgjFs3kxQfvxqkH78Y+LY3qUCUyzSlYp0jBKlPh7qzZ2sX9q7dx/zNb+evKVh5a2zbq+QfOb+IDL9qPlxwyXwErMk0pWKdIwSqFtm5bF797eD03PbyBe1a2MjDC+NrD9pzJhS89gOP2mVuGEorIWKouWM1sT+BjwFHAXsAsYAvwFPA94Fp3n/DaYgpWKaatHb3c8uhGfv/IBm5/fBNdfQNDju81p56le83m6CWzOGbJHBbPbShTSUVkUDUG6zLgRuAvwAqgFZgDnAbsCdwKnOruE+qZomCVUmnt6OWbtz7JNXevGnXs7eI59Zx04DyWHTCP/eY1MqcxQ00qWeKSilS3agzWDNDv7tlh+9PA74BlwOvd/acT+X4KVim1tdu6uPTmx7nxgXX0jNPxCWBGbYrZDRkaalI0ZFLU10RjamtSCWrTSWrTSeoySerj7Yy6NLPqM8xuSDOzPkNzXZrmujTppGY4FZmI8YI1uJHr7t47yv4+M7uBKFj3K2mhRPKwx8w6vvTaw/jPVx7KQ2u3c8/TW7nn6S38eUXrPzUVA7R19+c9+cVI6jNJZtSmaapNMaMuTWNNippUNPlFJpmgJp2gNpWkNp2gLp2koSZFU22Kpto0M+vTtDTV0NJUQ1ONpoqU6hZcsI7GzJLAy+KnD5azLCITUZNKctReszlqr9m8a9k+dPcNcM/Trdz62EbuebqVje09tHb0jtj5aTI6ewfo7B1g/eidliekNp1g9+Y69phVx8JZ9SycVcceM6Pne8yso6WpRrVjCVpwTcGDzGwu8F7AgBbgxcC+wI/c/V/Hee25wLkAixYtOmrVqlVFLq3I5GSzztbOXrZ19dHVO8COnn46evrp7svS3TdAd/8AXb0DdPcN0NUXBef2rj62dvSytbOPbZ29bO/qo627v2ABPREz69PMacgwp6GGmfVR0/TM+jSzGzLMaaxhTmOGOQ0ZMqloCslMMkFDTYqZdWnN3yxlV3X3WAeZ2YHAP3J2OXAJ8HH1ChYZyt3Z0RM1Kbd399Eebwcnv+jpy9LTP0BPf3ZnSO/o7qc9bobe1tnLph09bGzrGbG5ulASBjPrM8yqT9NYm6YhEzVJN8bN0oNN2YP7GmpSNNQkaapJ01g7uC9JbSqpgJZJq8h7rGa2kmiozET90N3Pzt3h7o9G38qSwB7Aq4DPACeY2cvdvbVQ5RWpdGZGU22apto0UDfp7+PutPf0s25bF6tbu1iztZM1W7tYt62Ltdui7ZaOXib7//msR72nWztG7EqRl8FFExpro05fjbUpmuvSzG3MMLshw9zGGpbMbWDfeY3s3lynIJYJm5bBSjTmtDuP89eNdsDdB4BngEvNbANwHVHAvndKJRSRf2JmzKhNM2N+mgPnzxjxnIG4+XrLjl627OhhW1cf2zr72NoZBeaWHT1sicOzbyBL34DT25+lvbuvIJ20BnXFNe8tEwjpunSSAxc0cfSS2Ry7ZA5H7jWLunSSrDtZd2pSSZIKXokF2xQ8EjNrBrYBD7v7oRN5jZqCRaaPvoEsWzt72drRR0dvP5090X3lHT1R03VbV7Tt6O1nR88AnT39tMf3naNz+unsje5BF1ImmWDfeY0cOL+JA+Y3MW9GDc116bhpOh33ro56VadT0T3jdNLUe7pCVWRTcBHtEW9Ls16YiBRUOplgXlMt85qmtiJQNut09Q3sDNyOngHau/vY2tlHa0dUY16/vZsVmzp4ctOOcZueeweyPPJsG488m1+X6lTCSCWNVCJBMmEkE0bCjIRBMmEYUStAIgFJi44PnptKDj6PXhM9T5BK7NqfTFi0fnDSSMWdwOoySRprUtRnkjTXpZk/o5YFM+tY0FxLbVqTjRRCcMFqZkcCf4ubgHP3NwKXxk9/XfKCici0kUhY3LEpxbwJnL95Rw/3rtrKX1a08pent/DY+nacKOzMmNBEHiPpzzr9WQcKW4OerLmNGfaIh0gNDpPavbmO3WfWsXdLg4J3goJrCo4ngTgeuIvo3mon0VSGpwEz4/0vcfcdE/l+agoWkfFs7+zj0fVtPLahnac27mBrZ7Sm7/auPjp6+qOe1f0DdPdl4/vG0b3jSpJJJjh80Uyev/ccli6eRSqRoD+bpX/Amd2Q4cAFTVUzvWbVDbcxs5cDZwFHA7sB9cBWokkhfgp8b6LzBIOCVUSKw93pHciSzbIzoAbizlDZLAy44+64E3eSgoFsNqrlDjgDcW23fyDLgO96PhB/n8Hnff1Z+rNZeuNOYF29/XT0Rs3grR29bGjrZt22bja0dce158lJJ40D58/g0D1m0FwXjUGuGXykk9TG26bBoVF1aerSyZ1N2kmLmrkTCXY2iQMk4laBwbvRg/elc+9Oj3Wruhj3savuHqu7/xo19YrINGdmOTW88tf0BrLOxvbuEYdJrW7tZOWWzjFf3zfg/H3tdv6+dnuJSjx5D3/6JTTUFC/+ggtWERHJXzJhLGiuY0FzHUcvmf1Pxze2d/PnFa3c/dQWntjQntNhyiYUvNNJsTtjK1hFRGRc85pqOeOw3TnjsN1HPL69s4+/r93OExvb6eoboLc/S3dfNtr2R9NqdvcNxLN6RcOiunoH4mbrqDl8IOtks4NN4oCDE39N1HxOtHun6Xg3U8EqIiJT1lyf5oT95nLCfnPLXZRxFbtvkZaYEBGRqlLsiTkUrCIiIgWkYBURESkgBauIiEgBKVhFREQKSMEqIiJSQApWERGRAlKwioiIFJCCVUREpIAUrCIiIgWkYBURESkgBauIiEgBKVhFREQKSMEqIiJSQApWERGRArJir0tX6cxsE7Bqit9mLrC5AMUJka7N6HRtxqbrMzpdm9EV4trs5e4tox1UsJaAmS1396XlLsd0pGszOl2bsen6jE7XZnSluDZqChYRESkgBauIiEgBKVhL4/JyF2Aa07UZna7N2HR9RqdrM7qiXxvdYxURESkg1VhFREQKSMEqIiJSQApWERGRAlKwFomZLTSz75nZOjPrMbOVZvZVM5tV7rIVm5nNMbN3mNkvzexJM+sys+1mdqeZ/ZuZjfhzZ2bHmdlvzKw1fs2DZvYBM0uW+jOUmpmdbWYeP94xyjn/Yma3xddyh5n9xczeUuqyloKZnRL//KyPf3/WmdlNZvayEc6tmp8bM3u5mf3OzNbEn3WFmf3MzJ4/yvnBXBsze62ZXWZmfzSztvh35dpxXpP35y/I75m761HgB7APsAFw4AbgC8At8fNHgTnlLmORP/958WddB/wQ+DzwPWBbvP964o5zOa95BdAP7ACuBL4cXysHflbuz1Tk67VnfG3a48/7jhHOeW98bDPwDeC/gdXxvv9X7s9Q4OvxpfhzrSbqwflfwHeB+4AvVevPDfDFnJ+BK+K/K9cDvUAWODvkawM8EJe9HfhH/PW1Y5yf9+cv1O9Z2S9WiA/gpvgf4n3D9n8l3v/tcpexyJ//ZOB0IDFs/3zgmfgavCZn/wxgI9ADLM3ZXwvcFZ//hnJ/riJdKwNuBp6Kf/H/KViBxUA3sAVYnLN/FvBk/Jrnl/uzFOh6nBN/nquAzAjH09X4cxP/7gwA64F5w46dFH/WFSFfm/hz7hf/ziwbK1gn8/kL+XtW9osV2oOoturA0yMESxPR/546gIZyl7VM1+fj8fW5LGff2+N9V49w/snxsdvLXfYiXY/3E9U2XghcPEqwfibe/+kRXj/qtau0B1AT/zFcNVKo5vPZQ/u5AY6JP8+NoxxvA9qr5dpMIFjz/vyF/D3TPdbCOyne/s7ds7kH3L0d+BNQDxxb6oJNE33xtj9n38nx9rcjnH8H0AkcZ2Y1xSxYqZnZQUTNeZe6+x1jnDrW9fm/YedUshcDLcAvgGx8P/FCM3v/KPcQq+nn5gmiJt+jzWxu7gEzeyHRf9pvztldTddmJJP5/AX7PVOwFt4B8fbxUY4/EW/3L0FZphUzSwFvjp/m/vCOes3cvZ+o9p8C9i5qAUsovhY/IGoa//g4p491fZ4lagFZaGb1BS1k6T0v3nYD9wP/S/Qfj68Cd5nZ7WaWu6JI1fzcuHsrcCGwG/CImV1uZp83s58CvwN+D7wz5yVVc21GMZnPX7DfMwVr4TXH2+2jHB/cP7MEZZluvgAcCvzG3W/K2V+N1+wi4Ajgre7eNc65E70+zaMcrxTz4u2HiZrdXkBUE3suUXi8EPhZzvlV9XPj7l8FXk0UCOcAHwXOJOpcc5W7b8w5vaquzQgm8/kL9numYJWSMLPzgQuIeuW9qczFKSszO4aolnqJu99d7vJMI4N/j/qBM9z9Tnff4e5/B14FrAFOHG1oSejM7CNEvYCvIurL0QAcBawAfmhmXypf6SSXgrXwxvtfzeD+bSUoy7RgZu8FLgUeAU6Km7VyVc01i5uAryFqbvrkBF820esz2v+0K8Xgv+/97r4y94C7dxL1tgc4Ot5W08/NMqLhNr9y93939xXu3unu9xH9p2MtcIGZDTZtVs21GcVkPn/Bfs8UrIX3WLwd7R7qfvF2tHuwQTGzDwCXAQ8Rher6EU4b9ZrFQbSEqBazoljlLKFGos95ENCdMymEA5+Kz/luvO+r8fOxrs8CoprLmjh8Ktng5xztj/3WeFs37Pxq+Ln5l3h76/AD8b/7PUR/z4+Id1fTtRnJZD5/wX7PFKyFN/iDf+rwGYbMrAk4nqhH2p9LXbBSM7MLiQZYP0AUqhtHOfWWePvSEY69kKgX9V3u3lP4UpZcD9Fg9ZEe98fn3Bk/H2wmHuv6nDbsnEr2B6J7qwePMjvXofH26XhbTT83g71XW0Y5Pri/N95W07UZyWQ+f+F+z8o9HinEB1U+QUT8WT8Zf9blwOxxzp0BbCKgweyTvGYXM/I41iVUzwQRN8af54PD9p9KNN53K9BcbT83wOviz7Me2GPYsdPia9NFPKtb6NeGiU0QkdfnL+TvmdZjLQIz24foH28e0R+KfxAN8D6JqAn4OHffUr4SFlc8r+ZVRDPFXMbI9yRWuvtVOa95JVHHjG7gx0ArcAZRF/jrgdd54D+sZnYxUXPwOe5+xbBj7wO+RvRL/xOimslrgYVEnaA+VNrSFoeZLST63dmTqAZ7P9EfvFey64/hz3POr4qfm7gGfxPwIqIp/X5JFLIHETUTG/ABd7805zVBXZv487wyfjofeAlRU+4f432bc38PJvP5C/Z7Vu7/eYT6IPrD8H3g2fgfZxXReLxZ5S5bCT77xUR/BMd63DbC644HfkNUK+kC/g58EEiW+zOV+Lr901zB8fHTgduJ/rB2AH8F3lLuchfhOrQQ/YdsVfy7s5koSI4e5fyq+LkB0sAHiG4jtRHdI9xINN731NCvzQT+rqwsxOcvxO+ZaqwiIiIFpM5LIiIiBaRgFRERKSAFq4iISAEpWEVERApIwSoiIlJAClYREZECUrCKiIgUkIJVRESkgFLlLoCIFEa8asfZwBuAw4A5RDPHrGfX1G+3uPs9Oa85nGiauJWeM8WkiEyeZl4SCYCZtRBN3bY0Z3c30STkM4jmkgXY7u4zc173VqKpN29392UlKaxI4NQULBKGa4lCtR34CLDA3eviEG0GXgx8k3AXthaZNtQULFLhzOxAomXVAN7u7tfnHnf3duBm4GYzu6DU5ROpNqqxilS+5+R8/b9jneju3YNfm5kTNQMDnGhmPuyxbPjrzewEM/uxma0xsx4z22JmN5vZWWZmI5y/LP5eK+Pnp5vZrWa21cx2mNndZvbGSXxmkWlLNVaRsOwBPDXBczcAdUT3YPuI1qvM1Zv7xMy+SNTMPKiNaBHoU+LHGWb2r+6eHenNzOwDwH8TLfG1PX7vY4Fjzew4d3/vBMstMq2pxipS+e7N+fobcUemcbn7fOD98dO73H3+sMddg+ea2fuJQnUDcC4w092bgQaiXsjr4+2Fo7xdC/Al4Bqi+7+zgLnAJfHx96jmKqFQr2CRAJjZ1cCb46e9RENr/ky0SPNd7r5plNe9lXF6BZvZTGA1UQvXse7+txHOeT7wJ6LOUfPdvTfevwy4NT7t98BLfNgfHTO7CngL8CSw//DjIpVGNVaRMJwDfIUoVDNETbOfAG4ANprZPWb2ryPdB52A1wCNwM0jhSqAu98NPE3UNHzUKN/n86OE5ufi7b5E429FKpqCVSQA7t7r7hcAewLnAdcBTxDdzwR4HtGQnJ+YWb6/98fF25PNbP1oj/i9ydnm6iOq0Y5U9ieAZ+OnR+ZZNpFpR52XRALi7huB78QPzGw34HTgIqLAO5Mo4C7N49suiLf18WM8I52zebB5eBRr4/eZ0P1hkelMNVaRgLn7Bne/gqgmuCHe/fY8v83g34lL3d0m8LiqUOUXqUQKVpEq4O6bgRvjp/vn+fLBQF40hSLMNbPMGMd3j7cjdrISqSQKVpHq0RFvc5tkB8ecjtWp6e54u8zM6ib53mng+SMdMLN92RWs903y+4tMGwpWkQpnZkvMbJ9xzqknWsUG4IGcQ23xdiaj+xlRKM8iulc71vvMGuPwx0bplfyxePuEuz8wwnGRiqJgFal8hwCPmdkvzOx1ZjbY2QgzazCz04nGtS6Jd+d2XHo43h5sZseM9M3dfQu7wu+jZvZdM9vZnGxmdWb2AjP7FnDXSN8D6CQaAnSlmc2LXzczns1p8J7vxRP8vCLTmiaIEKlwZvYS4LfDdncRNfk25+wbAC5y9/8a9vrbgRfGT1uJVsgBeIO7/znnvP8APsOuZuOOnPcY/E/6SndfkvOaZUQTRKwCvsquKQ23DXvdNzSloYRCwSoSgLgGeTpwAnAo0ZzBGaKQXAHcAVzh7g+P8No5RIF5Ws7rAE5y99uGnfsc4L3AScBCIEnU4egh4A/Ade6+Juf8ZcTB6u6L49rzvwNHEN13fRD4urv/cMoXQWSaULCKSNEMD9bylkakNHSPVUREpIAUrCIiIgWkYBURESkgBauIiEgBqfOSiIhIAanGKiIiUkAKVhERkQJSsIqIiBSQglVERKSAFKwiIiIF9P8B+FXyx54meSAAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ] + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LS0Tllp95tSu", + "outputId": "c2821fbe-093a-4a8d-ad43-6f2e61a9499a" + }, + "outputs": [], + "source": [ + "import torch\n", + "torch.cuda.is_available()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jXoiLncsU3pe" + }, + "source": [ + "\n", + "# Dataset Overview\n", + "\n", + "The Open Catalyst 2020 Dataset (OC20) will be used throughout this tutorial. More details can be found [here](https://github.com/Open-Catalyst-Project/ocp/blob/master/DATASET.md) and the corresponding [paper](https://arxiv.org/abs/2010.09990). Data is stored in PyTorch Geometric [Data](https://pytorch-geometric.readthedocs.io/en/latest/modules/data.html) objects and stored in LMDB files. For each task we include several sized training splits. Validation/Test splits are broken into several subsplits: In Domain (ID), Out of Domain Adsorbate (OOD-Ads), Out of Domain Catalyast (OOD-Cat) and Out of Domain Adsorbate and Catalyst (OOD-Both). Split sizes are summarized below:\n", + "\n", + "Train\n", + "* S2EF - 200k, 2M, 20M, 134M(All)\n", + "* IS2RE/IS2RS - 10k, 100k, 460k(All)\n", + "\n", + "Val/Test\n", + "* S2EF - ~1M across all subsplits\n", + "* IS2RE/IS2RS - ~25k across all splits\n", + "\n", + "#### **Tutorial Use**\n", + "\n", + "For the sake of this tutorial we provide much smaller splits (100 train, 20 val for all tasks) to allow users to easily store, train, and predict across the various tasks. Please refer [here](https://github.com/Open-Catalyst-Project/ocp#download-data) for details on how to download the full datasets for general use.\n", + "\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FIiwpALzBKaH" + }, + "source": [ + "![oc20.png]()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PoF-BxSM5Jkc" + }, + "source": [ + "## Data Download [~1min] \n", + "FOR TUTORIAL USE ONLY" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "LEITxr5no8kh" + }, + "outputs": [], + "source": [ + "%%bash\n", + "mkdir data\n", + "cd data\n", + "wget -q http://dl.fbaipublicfiles.com/opencatalystproject/data/tutorial_data.tar.gz -O tutorial_data.tar.gz\n", + "tar -xzvf tutorial_data.tar.gz\n", + "rm tutorial_data.tar.gz" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bSt6h_Q-oqjK" + }, + "source": [ + "## Data Visualization " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "HodnfJpE8D0u" + }, + "outputs": [], + "source": [ + "import matplotlib\n", + "matplotlib.use('Agg')\n", + "\n", + "import os\n", + "import numpy as np\n", + "\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "params = {\n", + " 'axes.labelsize': 14,\n", + " 'font.size': 14,\n", + " 'font.family': ' DejaVu Sans',\n", + " 'legend.fontsize': 20,\n", + " 'xtick.labelsize': 20,\n", + " 'ytick.labelsize': 20,\n", + " 'axes.labelsize': 25,\n", + " 'axes.titlesize': 25,\n", + " 'text.usetex': False,\n", + " 'figure.figsize': [12, 12]\n", + "}\n", + "matplotlib.rcParams.update(params)\n", + "\n", + "\n", + "import ase.io\n", + "from ase.io.trajectory import Trajectory\n", + "from ase.io import extxyz\n", + "from ase.calculators.emt import EMT\n", + "from ase.build import fcc100, add_adsorbate, molecule\n", + "from ase.constraints import FixAtoms\n", + "from ase.optimize import LBFGS\n", + "from ase.visualize.plot import plot_atoms\n", + "from ase import Atoms\n", + "from IPython.display import Image" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VRR5C88U8mH1" + }, + "source": [ + "### Understanding the data\n", + "We use the Atomic Simulation Environment (ASE) library to interact with our data. This notebook will provide you with some intuition on how atomic data is generated, how the data is structured, how to visualize the data, and the specific properties that are passed on to our models." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hEDcCSGD86Hg" + }, + "source": [ + "### Generating sample data\n", + "\n", + "The OC20 dataset was generated using density functional theory (DFT), a quantum chemistry method for modeling atomistic environments. For more details, please see our dataset paper. In this notebook, we generate sample data in the same format as the OC20 dataset; however, we use a faster method that is less accurate called effective-medium theory (EMT) because our DFT calculations are too computationally expensive to run here. EMT is great for demonstration purposes but not accurate enough for our actual catalysis applications. Below is a structural relaxation of a catalyst system, a propane (C3H8) adsorbate on a copper (Cu) surface. Throughout this tutorial a surface may be referred to as a slab and the combination of an adsorbate and a surface as an adslab." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "y6Hx8JtXEbW-" + }, + "source": [ + "### Structural relaxations\n", + "\n", + "A structural relaxation or structure optimization is the process of iteratively updating atom positions to find the atom positions that minimize the energy of the structure. Standard optimization methods are used in structural relaxations — below we use the Limited-Memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm. The step number, time, energy, and force max are printed at each optimization step. Each step is considered one example because it provides all the information we need to train models for the S2EF task and the entire set of steps is referred to as a trajectory. Visualizing intermediate structures or viewing the entire trajectory can be illuminating to understand what is physically happening and to look for problems in the simulation, especially when we run ML-driven relaxations. Common problems one may look out for - atoms excessively overlapping/colliding with each other and atoms flying off into random directions." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GEpQz9In9GrX", + "outputId": "96cd7bc8-2877-4b35-e133-80a10ad81b61" + }, + "outputs": [], + "source": [ + "###DATA GENERATION - FEEL FREE TO SKIP###\n", + "\n", + "# This cell sets up and runs a structural relaxation \n", + "# of a propane (C3H8) adsorbate on a copper (Cu) surface\n", + "\n", + "adslab = fcc100(\"Cu\", size=(3, 3, 3))\n", + "adsorbate = molecule(\"C3H8\")\n", + "add_adsorbate(adslab, adsorbate, 3, offset=(1, 1)) # adslab = adsorbate + slab\n", + "\n", + "# tag all slab atoms below surface as 0, surface as 1, adsorbate as 2\n", + "tags = np.zeros(len(adslab))\n", + "tags[18:27] = 1\n", + "tags[27:] = 2\n", + "\n", + "adslab.set_tags(tags)\n", + "\n", + "# Fixed atoms are prevented from moving during a structure relaxation. \n", + "# We fix all slab atoms beneath the surface. \n", + "cons= FixAtoms(indices=[atom.index for atom in adslab if (atom.tag == 0)])\n", + "adslab.set_constraint(cons)\n", + "adslab.center(vacuum=13.0, axis=2)\n", + "adslab.set_pbc(True)\n", + "adslab.set_calculator(EMT())\n", + "\n", + "os.makedirs('data', exist_ok=True)\n", + "\n", + "# Define structure optimizer - LBFGS. Run for 100 steps, \n", + "# or if the max force on all atoms (fmax) is below 0 ev/A.\n", + "# fmax is typically set to 0.01-0.05 eV/A, \n", + "# for this demo however we run for the full 100 steps.\n", + "\n", + "dyn = LBFGS(adslab, trajectory=\"data/toy_c3h8_relax.traj\")\n", + "dyn.run(fmax=0, steps=100)\n", + "\n", + "traj = ase.io.read(\"data/toy_c3h8_relax.traj\", \":\")\n", + "\n", + "# convert traj format to extxyz format (used by OC20 dataset)\n", + "columns = (['symbols','positions', 'move_mask', 'tags'])\n", + "with open('data/toy_c3h8_relax.extxyz','w') as f:\n", + " extxyz.write_xyz(f, traj, columns=columns)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Kb77jRtz9fws" + }, + "source": [ + "### Reading a trajectory" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "mUbvcij59d6I" + }, + "outputs": [], + "source": [ + "identifier = \"toy_c3h8_relax.extxyz\"\n", + "\n", + "# the `index` argument corresponds to what frame of the trajectory to read in, specifiying \":\" reads in the full trajectory.\n", + "traj = ase.io.read(f\"data/{identifier}\", index=\":\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "b_e6zDVx9pTC" + }, + "source": [ + "### Viewing a trajectory\n", + "\n", + "Below we visualize the initial, middle, and final steps in the structural relaxation trajectory from above. Copper atoms in the surface are colored orange, the propane adsorbate on the surface has grey colored carbon atoms and white colored hydrogen atoms. The adsorbate’s structure changes during the simulation and you can see how it relaxes on the surface. In this case, the relaxation looks normal; however, there can be instances where the adsorbate flies away (desorbs) from the surface or the adsorbate can break apart (dissociation), which are hard to detect without visualization. Additionally, visualizations can be used as a quick sanity check to ensure the initial system is set up correctly and there are no major issues with the simulation.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 680 + }, + "id": "CV5qe6IP9vZg", + "outputId": "256f97d6-daa7-40fa-ef50-7ba0ca005f9d" + }, + "outputs": [], + "source": [ + "fig, ax = plt.subplots(1, 3)\n", + "labels = ['initial', 'middle', 'final']\n", + "for i in range(3):\n", + " ax[i].axis('off')\n", + " ax[i].set_title(labels[i])\n", + "ase.visualize.plot.plot_atoms(traj[0], \n", + " ax[0], \n", + " radii=0.8, \n", + " rotation=(\"-75x, 45y, 10z\"))\n", + "ase.visualize.plot.plot_atoms(traj[50], \n", + " ax[1], \n", + " radii=0.8, \n", + " rotation=(\"-75x, 45y, 10z\"))\n", + "ase.visualize.plot.plot_atoms(traj[-1], \n", + " ax[2], \n", + " radii=0.8, \n", + " rotation=(\"-75x, 45y, 10z\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SSR1vQZ1_Ojq" + }, + "source": [ + "### Data contents \n", + "\n", + "Here we take a closer look at what information is contained within these trajectories." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9x8w3o17_May", + "outputId": "a6ed3414-774f-4e9c-f211-73379999f6a0" + }, + "outputs": [], + "source": [ + "i_structure = traj[0]\n", + "i_structure" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4CgeShkN_bdJ" + }, + "source": [ + "#### Atomic numbers" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cMGTQRIz_f2c", + "outputId": "20442973-b999-4723-ec66-ac169203dfbe" + }, + "outputs": [], + "source": [ + "numbers = i_structure.get_atomic_numbers()\n", + "print(numbers)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ol4Zi2Gh_qU_" + }, + "source": [ + "#### Atomic symbols" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cwbxks-i_uVq", + "outputId": "4960d233-b6c8-42bb-979d-879b6a20cfd4" + }, + "outputs": [], + "source": [ + "symbols = np.array(i_structure.get_chemical_symbols())\n", + "print(symbols)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "x57XplOw_yNw" + }, + "source": [ + "#### Unit cell\n", + "\n", + "The unit cell is the volume containing our system of interest. Express as a 3x3 array representing the directional vectors that make up the volume. Illustrated as the dashed box in the above visuals." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VWMMzn_i_0vM", + "outputId": "9fd0343a-9599-4fcb-911d-87ac48974bc0" + }, + "outputs": [], + "source": [ + "cell = np.array(i_structure.cell)\n", + "print(cell)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XHRbOyaA_97r" + }, + "source": [ + "#### Periodic boundary conditions (PBC)\n", + "\n", + "x,y,z boolean representing whether a unit cell repeats in the corresponding directions. The OC20 dataset sets this to [True, True, True], with a large enough vacuum layer above the surface such that a unit cell does not see itself in the z direction. Although the original structure shown above is what get's passed into our models, the presence of PBC allows it to effectively repeat infinitely in the x and y directions. Below we visualize the same structure with a periodicity of 2 in all directions, what the model may effectively see." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "htvwgCuFAOSB", + "outputId": "578202d3-f9c5-4857-c2c1-86ee6aaf5aa0" + }, + "outputs": [], + "source": [ + "pbc = i_structure.pbc\n", + "print(pbc)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 400 + }, + "id": "Flzo7aO-RgyA", + "outputId": "36835a5f-cc91-48d1-ee8b-8fc5112c0cb6" + }, + "outputs": [], + "source": [ + "fig, ax = plt.subplots(1, 3)\n", + "labels = ['initial', 'middle', 'final']\n", + "for i in range(3):\n", + " ax[i].axis('off')\n", + " ax[i].set_title(labels[i])\n", + "\n", + "ase.visualize.plot.plot_atoms(traj[0].repeat((2,2,1)), \n", + " ax[0], \n", + " radii=0.8, \n", + " rotation=(\"-75x, 45y, 10z\"))\n", + "ase.visualize.plot.plot_atoms(traj[50].repeat((2,2,1)), \n", + " ax[1], \n", + " radii=0.8, \n", + " rotation=(\"-75x, 45y, 10z\"))\n", + "ase.visualize.plot.plot_atoms(traj[-1].repeat((2,2,1)), \n", + " ax[2], \n", + " radii=0.8, \n", + " rotation=(\"-75x, 45y, 10z\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TWGXcH7AARpy" + }, + "source": [ + "#### Tags\n", + "\n", + "The OC20 dataset consists of systems with several different types of atoms. To help with identifying the index of certain atoms, we tag each atom according to where it is found in the system. There are three categories of atoms: \n", + "- *sub-surface slab atoms*: these are atoms in the bottom layers of the catalyst, furthest away from the adsorbate\n", + "- *surface slab atoms*: these are atoms in the top layers of the catalyst, close to where the adsorbate will be placed \n", + "- *adsorbate atoms*: atoms that make up the adsorbate molecule on top of the catalyst.\n", + "\n", + "Tag:\n", + "\n", + "0 - Sub-surface slab atoms\n", + "\n", + "1 - Surface slab atoms\n", + "\n", + "2 - Adsorbate atoms\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "SGZzFhsrB5A2", + "outputId": "3b2e4e3e-b82f-4e1a-ed88-e53e3040240b" + }, + "outputs": [], + "source": [ + "tags = i_structure.get_tags()\n", + "print(tags)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0zVhbDL2B8cd" + }, + "source": [ + "#### Fixed atoms constraint\n", + "\n", + "In reality, surfaces contain many, many more atoms beneath what we've illustrated as the surface. At an infinite depth, these subsurface atoms would look just like the bulk structure. We approximate a true surface by fixing the subsurface atoms into their “bulk” locations. This ensures that they cannot move at the “bottom” of the surface. If they could, this would throw off our calculations. Consistent with the above, we fix all atoms with tags=0, and denote them as \"fixed\". All other atoms are considered \"free\"." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "FBMUmGrrCD_h", + "outputId": "4d0aad44-f6bd-491b-d734-5edf5be04031" + }, + "outputs": [], + "source": [ + "cons = i_structure.constraints[0]\n", + "print(cons, '\\n')\n", + "\n", + "# indices of fixed atoms\n", + "indices = cons.index\n", + "print(indices, '\\n')\n", + "\n", + "# fixed atoms correspond to tags = 0\n", + "print(tags[indices])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_DHAYeBUCHbN" + }, + "source": [ + "#### Adsorption energy\n", + "\n", + "The energy of the system is one of the properties of interest in the OC20 dataset. It's important to note that absolute energies provide little value to researchers and must be referenced properly to be useful. The OC20 dataset references all it's energies to the bare slab + gas references to arrive at adsorption energies. Adsorption energies are important in studying catalysts and their corresponding reaction rates. In addition to the structure relaxations of the OC20 dataset, bare slab and gas (N2, H2, H2O, CO) relaxations were carried out with DFT in order to calculate adsorption energies." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5XxYqdM7CMdd", + "outputId": "c2f5ea9c-1614-42ef-fbc0-75fddd7c976f" + }, + "outputs": [], + "source": [ + "final_structure = traj[-1]\n", + "relaxed_energy = final_structure.get_potential_energy()\n", + "print(f'Relaxed absolute energy = {relaxed_energy} eV')\n", + "\n", + "# Corresponding raw slab used in original adslab (adsorbate+slab) system. \n", + "raw_slab = fcc100(\"Cu\", size=(3, 3, 3))\n", + "raw_slab.set_calculator(EMT())\n", + "raw_slab_energy = raw_slab.get_potential_energy()\n", + "print(f'Raw slab energy = {raw_slab_energy} eV')\n", + "\n", + "\n", + "adsorbate = Atoms(\"C3H8\").get_chemical_symbols()\n", + "# For clarity, we define arbitrary gas reference energies here.\n", + "# A more detailed discussion of these calculations can be found in the corresponding paper's SI. \n", + "gas_reference_energies = {'H': .3, 'O': .45, 'C': .35, 'N': .50}\n", + "\n", + "adsorbate_reference_energy = 0\n", + "for ads in adsorbate:\n", + " adsorbate_reference_energy += gas_reference_energies[ads]\n", + "\n", + "print(f'Adsorbate reference energy = {adsorbate_reference_energy} eV\\n')\n", + "\n", + "adsorption_energy = relaxed_energy - raw_slab_energy - adsorbate_reference_energy\n", + "print(f'Adsorption energy: {adsorption_energy} eV')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EchgyYxXCUit" + }, + "source": [ + "#### Plot energy profile of toy trajectory\n", + "\n", + "Plotting the energy profile of our trajectory is a good way to ensure nothing strange has occured. We expect to see a decreasing monotonic function. If the energy is consistently increasing or there's multiple large spikes this could be a sign of some issues in the optimization. This is particularly useful for when analyzing ML-driven relaxations and whether they make general physical sense." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 482 + }, + "id": "WffoTL5pCSrg", + "outputId": "86e7a0fb-7a34-42ee-db58-edd30323eb54" + }, + "outputs": [], + "source": [ + "energies = [image.get_potential_energy() - raw_slab_energy - adsorbate_reference_energy for image in traj]\n", + "\n", + "plt.figure(figsize=(7, 7))\n", + "plt.plot(range(len(energies)), energies, lw=3)\n", + "plt.xlabel(\"Step\", fontsize=24)\n", + "plt.ylabel(\"Energy, eV\", fontsize=24)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "erpOSowgCeuS" + }, + "source": [ + "#### Force\n", + "\n", + "Forces are another important property of the OC20 dataset. Unlike datasets like QM9 which contain only ground state properties, the OC20 dataset contains per-atom forces necessary to carry out atomistic simulations. Physically, forces are the negative gradient of energy w.r.t atomic positions: $F = -\\frac{dE}{dx}$. Although not mandatory (depending on the application), maintaining this energy-force consistency is important for models that seek to make predictions on both properties.\n", + "\n", + "The \"apply_constraint\" argument controls whether to apply system constraints to the forces. In the OC20 dataset, this controls whether to return forces for fixed atoms (apply_constraint=False) or return 0s (apply_constraint=True)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "NtgLDiT2Cmff", + "outputId": "61a720bd-4117-4403-eb07-4d49fd5ddc22" + }, + "outputs": [], + "source": [ + "# Returning forces for all atoms - regardless of whether \"fixed\" or \"free\"\n", + "i_structure.get_forces(apply_constraint=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "QVgvU-OgCqzx", + "outputId": "1a4bed0b-3554-4b42-b41e-7ca84741d66e" + }, + "outputs": [], + "source": [ + "# Applying the fixed atoms constraint to the forces\n", + "i_structure.get_forces(apply_constraint=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uzDp10XsoHdo" + }, + "source": [ + "### Interacting with the OC20 datasets\n", + "\n", + "The OC20 datasets are stored in LMDBs. Here we show how to interact with the datasets directly in order to better understand the data. We use two seperate classes to read in the approriate datasets:\n", + "\n", + "*S2EF* - We use the [TrajectoryLmdbDataset](https://github.com/Open-Catalyst-Project/ocp/blob/master/ocpmodels/datasets/trajectory_lmdb.py) object to read in a **directory** of LMDB files containing the dataset.\n", + "\n", + "*IS2RE/IS2RS* - We use the [SinglePointLmdbDataset](https://github.com/Open-Catalyst-Project/ocp/blob/master/ocpmodels/datasets/single_point_lmdb.py) class to read in a **single LMDB file** containing the dataset.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7F7BjxNQoGLn", + "outputId": "36fcd255-facc-43dd-efda-c238cac9c5d9" + }, + "outputs": [], + "source": [ + "from ocpmodels.datasets import TrajectoryLmdbDataset, SinglePointLmdbDataset\n", + "\n", + "# TrajectoryLmdbDataset is our custom Dataset method to read the lmdbs as Data objects. Note that we need to give the path to the folder containing lmdbs for S2EF\n", + "dataset = TrajectoryLmdbDataset({\"src\": \"data/s2ef/train_100/\"})\n", + "\n", + "print(\"Size of the dataset created:\", len(dataset))\n", + "print(dataset[0])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pD5B_TymoJ8S", + "outputId": "72b21c2a-9472-4b08-afe9-c1bd28a5b399" + }, + "outputs": [], + "source": [ + "data = dataset[0]\n", + "data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "rL4u0glIoL8h", + "outputId": "a29c8dfc-617f-48fa-9195-e851b23033e1" + }, + "outputs": [], + "source": [ + "energies = torch.tensor([data.y for data in dataset])\n", + "energies" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 737 + }, + "id": "mkOm2roAoNY2", + "outputId": "aed9b4de-99de-49ab-a21c-3a372166747a" + }, + "outputs": [], + "source": [ + "plt.hist(energies, bins = 50)\n", + "plt.yscale(\"log\")\n", + "plt.xlabel(\"Energies\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RtECvWIPCu0b" + }, + "source": [ + "### Additional Resources\n", + "\n", + "More helpful resources, tutorials, and documentation can be found at ASE's webpage: https://wiki.fysik.dtu.dk/ase/index.html. We point to specific pages that may be of interest:\n", + "\n", + "* Interacting with Atoms Object: https://wiki.fysik.dtu.dk/ase/ase/atoms.html\n", + "* Visualization: https://wiki.fysik.dtu.dk/ase/ase/visualize/visualize.html\n", + "* Structure optimization: https://wiki.fysik.dtu.dk/ase/ase/optimize.html\n", + "* More ASE Tutorials: https://wiki.fysik.dtu.dk/ase/tutorials/tutorials.html" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qa9Iuu2GU52Z" + }, + "source": [ + "\n", + "# Tasks\n", + "\n", + "In this section, we cover the different types of tasks the OC20 dataset presents and how to train and predict their corresponding models.\n", + "\n", + "1. Structure to Energy and Forces (S2EF)\n", + "2. Initial Structure to Relaxed Energy (IS2RE)\n", + "3. Initial Structure to Relaxed Structure (IS2RS)\n", + "\n", + "Tasks can be interrelated. The figure below illustrates several approaches to solving the IS2RE task:\n", + "\n", + "(a) the traditional approach uses DFT along with an optimizer,\n", + "such as BFGS or conjugate gradient, to iteratively update\n", + "the atom positions until the relaxed structure and energy are found.\n", + "\n", + "(b) using ML models trained to predict the energy and forces of a\n", + "structure, S2EF can be used as a direct replacement for DFT. \n", + "\n", + "(c) the relaxed structure could potentially be directly regressed from\n", + "the initial structure and S2EF used to find the energy.\n", + "\n", + "(d) directly compute the relaxed energy from the initial state.\n", + "\n", + "\n", + "**NOTE** The following sections are intended to demonstrate the inner workings of our codebase and what goes into running the various tasks. We do not recommend training to completion within a notebook setting. Please see the [running on command line](#cmd) section for the preferred way to train/evaluate models." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "W7aZpLzmuNra" + }, + "source": [ + "![tasks.png]()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yWXsiZ5freTG" + }, + "source": [ + "## Structure to Energy and Forces (S2EF) \n", + "\n", + "The S2EF task takes an atomic system as input and predicts the energy of the entire system and forces on each atom. This is our most general task, ultimately serving as a surrogate to DFT. A model that can perform well on this task can accelerate other applications like molecular dynamics and transitions tate calculations.\n", + "\n", + "### Steps for training an S2EF model\n", + "1) Define or load a configuration (config), which includes the following\n", + "* task\n", + "* model\n", + "* optimizer\n", + "* dataset\n", + "* trainer\n", + "\n", + "2) Create a ForcesTrainer object\n", + "\n", + "3) Train the model\n", + "\n", + "4) Validate the model\n", + "\n", + "**For storage and compute reasons we use a very small subset of the OC20 S2EF dataset for this tutorial. Results will be considerably worse than presented in our paper.**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2snWOAxnPPyd" + }, + "source": [ + "### Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "l-1rNyuk_1Mo" + }, + "outputs": [], + "source": [ + "from ocpmodels.trainers import OCPTrainer\n", + "from ocpmodels.datasets import LmdbDataset\n", + "from ocpmodels import models\n", + "from ocpmodels.common import logger\n", + "from ocpmodels.common.utils import setup_logging\n", + "setup_logging()\n", + "\n", + "import numpy as np\n", + "import copy\n", + "import os" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OmkUDMQgP5he" + }, + "source": [ + "### Dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "1SHl_1eQP4mW" + }, + "outputs": [], + "source": [ + "train_src = \"data/s2ef/train_100\"\n", + "val_src = \"data/s2ef/val_20\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZUpFFV2OWyYJ" + }, + "source": [ + "### Normalize data\n", + "\n", + "If you wish to normalize the targets we must compute the mean and standard deviation for our energy values. Because forces are physically related by the negative gradient of energy, we use the same multiplicative energy factor for forces." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "HAJ3x4SnXE1o" + }, + "outputs": [], + "source": [ + "train_dataset = LmdbDataset({\"src\": train_src})\n", + "\n", + "energies = []\n", + "for data in train_dataset:\n", + " energies.append(data.y)\n", + "\n", + "mean = np.mean(energies)\n", + "stdev = np.std(energies)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ruspSf6CQIk4" + }, + "source": [ + "### Define the Config" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6R6IkYLCQPpH" + }, + "source": [ + "For this example, we will explicitly define the config; however, a set of default configs can be found [here](https://github.com/Open-Catalyst-Project/ocp/tree/master/configs). Default config yaml files can easily be loaded with the following [utility](https://github.com/Open-Catalyst-Project/ocp/blob/aa8e44d50229fce887b3a94a5661c4f85cd73eed/ocpmodels/common/utils.py#L361-L400). Loading a yaml config is preferrable when launching jobs from the command line. We have included our best models' config files here for reference. \n", + "\n", + "**Note** - we only train for a single epoch with a reduced batch size (GPU memory constraints) for demonstration purposes, modify accordingly for full convergence." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "j6Z_XbkiPGR9" + }, + "outputs": [], + "source": [ + "# Task\n", + "task = {\n", + " 'dataset': 'trajectory_lmdb', # dataset used for the S2EF task\n", + " 'description': 'Regressing to energies and forces for DFT trajectories from OCP',\n", + " 'type': 'regression',\n", + " 'metric': 'mae',\n", + " 'labels': ['potential energy'],\n", + " 'grad_input': 'atomic forces',\n", + " 'train_on_free_atoms': True,\n", + " 'eval_on_free_atoms': True\n", + "}\n", + "# Model\n", + "model = {\n", + " \"name\": \"gemnet_oc\",\n", + " \"num_spherical\": 7,\n", + " \"num_radial\": 128,\n", + " \"num_blocks\": 4,\n", + " \"emb_size_atom\": 64,\n", + " \"emb_size_edge\": 64,\n", + " \"emb_size_trip_in\": 64,\n", + " \"emb_size_trip_out\": 64,\n", + " \"emb_size_quad_in\": 32,\n", + " \"emb_size_quad_out\": 32,\n", + " \"emb_size_aint_in\": 64,\n", + " \"emb_size_aint_out\": 64,\n", + " \"emb_size_rbf\": 16,\n", + " \"emb_size_cbf\": 16,\n", + " \"emb_size_sbf\": 32,\n", + " \"num_before_skip\": 2,\n", + " \"num_after_skip\": 2,\n", + " \"num_concat\": 1,\n", + " \"num_atom\": 3,\n", + " \"num_output_afteratom\": 3,\n", + " \"cutoff\": 12.0,\n", + " \"cutoff_qint\": 12.0,\n", + " \"cutoff_aeaint\": 12.0,\n", + " \"cutoff_aint\": 12.0,\n", + " \"max_neighbors\": 30,\n", + " \"max_neighbors_qint\": 8,\n", + " \"max_neighbors_aeaint\": 20,\n", + " \"max_neighbors_aint\": 1000,\n", + " \"rbf\": {\n", + " \"name\": \"gaussian\"\n", + " },\n", + " \"envelope\": {\n", + " \"name\": \"polynomial\",\n", + " \"exponent\": 5\n", + " },\n", + " \"cbf\": {\"name\": \"spherical_harmonics\"},\n", + " \"sbf\": {\"name\": \"legendre_outer\"},\n", + " \"extensive\": True,\n", + " \"output_init\": \"HeOrthogonal\",\n", + " \"activation\": \"silu\",\n", + " \"scale_file\": \"configs/s2ef/all/gemnet/scaling_factors/gemnet-oc.pt\",\n", + "\n", + " \"regress_forces\": True,\n", + " \"direct_forces\": True,\n", + " \"forces_coupled\": False,\n", + "\n", + " \"quad_interaction\": True,\n", + " \"atom_edge_interaction\": True,\n", + " \"edge_atom_interaction\": True,\n", + " \"atom_interaction\": True,\n", + " \n", + " \"num_atom_emb_layers\": 2,\n", + " \"num_global_out_layers\": 2,\n", + " \"qint_tags\": [1, 2],\n", + "}\n", + "\n", + "# Optimizer\n", + "optimizer = {\n", + " 'batch_size': 1, # originally 32\n", + " 'eval_batch_size': 1, # originally 32\n", + " 'num_workers': 2,\n", + " 'lr_initial': 5.e-4,\n", + " 'optimizer': 'AdamW',\n", + " 'optimizer_params': {\"amsgrad\": True},\n", + " 'scheduler': \"ReduceLROnPlateau\",\n", + " 'mode': \"min\",\n", + " 'factor': 0.8,\n", + " 'patience': 3,\n", + " 'max_epochs': 1, # used for demonstration purposes\n", + " 'force_coefficient': 100,\n", + " 'ema_decay': 0.999,\n", + " 'clip_grad_norm': 10,\n", + " 'loss_energy': 'mae',\n", + " 'loss_force': 'l2mae',\n", + "}\n", + "# Dataset\n", + "dataset = [\n", + " {'src': train_src,\n", + " 'normalize_labels': True,\n", + " \"target_mean\": mean,\n", + " \"target_std\": stdev,\n", + " \"grad_target_mean\": 0.0,\n", + " \"grad_target_std\": stdev\n", + " }, # train set \n", + " {'src': val_src}, # val set (optional)\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8AsZpLjIQg-W" + }, + "source": [ + "### Create the trainer" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0it4gs6gPGGz", + "outputId": "e7a98c1d-6d4f-425b-878f-4a3a7b42b2ed" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "amp: true\n", + "cmd:\n", + " checkpoint_dir: ./checkpoints/2023-08-01-13-26-40-S2EF-example\n", + " commit: 0bd8935\n", + " identifier: S2EF-example\n", + " logs_dir: ./logs/tensorboard/2023-08-01-13-26-40-S2EF-example\n", + " print_every: 5\n", + " results_dir: ./results/2023-08-01-13-26-40-S2EF-example\n", + " seed: 0\n", + " timestamp_id: 2023-08-01-13-26-40-S2EF-example\n", + "dataset:\n", + " grad_target_mean: 0.0\n", + " grad_target_std: !!python/object/apply:numpy.core.multiarray.scalar\n", + " - &id001 !!python/object/apply:numpy.dtype\n", + " args:\n", + " - f8\n", + " - false\n", + " - true\n", + " state: !!python/tuple\n", + " - 3\n", + " - <\n", + " - null\n", + " - null\n", + " - null\n", + " - -1\n", + " - -1\n", + " - 0\n", + " - !!binary |\n", + " dPVlWhRA+D8=\n", + " normalize_labels: true\n", + " src: data/s2ef/train_100\n", + " target_mean: !!python/object/apply:numpy.core.multiarray.scalar\n", + " - *id001\n", + " - !!binary |\n", + " zSXlDMrm3D8=\n", + " target_std: !!python/object/apply:numpy.core.multiarray.scalar\n", + " - *id001\n", + " - !!binary |\n", + " dPVlWhRA+D8=\n", + "eval_metrics: {}\n", + "gpus: 1\n", + "logger: tensorboard\n", + "loss_fns: {}\n", + "model: gemnet_oc\n", + "model_attributes:\n", + " activation: silu\n", + " atom_edge_interaction: true\n", + " atom_interaction: true\n", + " cbf:\n", + " name: spherical_harmonics\n", + " cutoff: 12.0\n", + " cutoff_aeaint: 12.0\n", + " cutoff_aint: 12.0\n", + " cutoff_qint: 12.0\n", + " direct_forces: true\n", + " edge_atom_interaction: true\n", + " emb_size_aint_in: 64\n", + " emb_size_aint_out: 64\n", + " emb_size_atom: 64\n", + " emb_size_cbf: 16\n", + " emb_size_edge: 64\n", + " emb_size_quad_in: 32\n", + " emb_size_quad_out: 32\n", + " emb_size_rbf: 16\n", + " emb_size_sbf: 32\n", + " emb_size_trip_in: 64\n", + " emb_size_trip_out: 64\n", + " envelope:\n", + " exponent: 5\n", + " name: polynomial\n", + " extensive: true\n", + " forces_coupled: false\n", + " max_neighbors: 30\n", + " max_neighbors_aeaint: 20\n", + " max_neighbors_aint: 1000\n", + " max_neighbors_qint: 8\n", + " num_after_skip: 2\n", + " num_atom: 3\n", + " num_atom_emb_layers: 2\n", + " num_before_skip: 2\n", + " num_blocks: 4\n", + " num_concat: 1\n", + " num_global_out_layers: 2\n", + " num_output_afteratom: 3\n", + " num_radial: 128\n", + " num_spherical: 7\n", + " output_init: HeOrthogonal\n", + " qint_tags:\n", + " - 1\n", + " - 2\n", + " quad_interaction: true\n", + " rbf:\n", + " name: gaussian\n", + " regress_forces: true\n", + " sbf:\n", + " name: legendre_outer\n", + " scale_file: configs/s2ef/all/gemnet/scaling_factors/gemnet-oc.pt\n", + "noddp: false\n", + "optim:\n", + " batch_size: 1\n", + " clip_grad_norm: 10\n", + " ema_decay: 0.999\n", + " eval_batch_size: 1\n", + " factor: 0.8\n", + " force_coefficient: 100\n", + " loss_energy: mae\n", + " loss_force: l2mae\n", + " lr_initial: 0.0005\n", + " max_epochs: 1\n", + " mode: min\n", + " num_workers: 2\n", + " optimizer: AdamW\n", + " optimizer_params:\n", + " amsgrad: true\n", + " patience: 3\n", + " scheduler: ReduceLROnPlateau\n", + "outputs: {}\n", + "slurm: {}\n", + "task:\n", + " dataset: trajectory_lmdb\n", + " description: Regressing to energies and forces for DFT trajectories from OCP\n", + " eval_on_free_atoms: true\n", + " grad_input: atomic forces\n", + " labels:\n", + " - potential energy\n", + " metric: mae\n", + " train_on_free_atoms: true\n", + " type: regression\n", + "trainer: s2ef\n", + "val_dataset:\n", + " src: data/s2ef/val_20\n", + "\n", + "2023-08-01 13:26:43 (INFO): Loading dataset: lmdb\n", + "2023-08-01 13:26:43 (INFO): Batch balancing is disabled for single GPU training.\n", + "2023-08-01 13:26:43 (INFO): Batch balancing is disabled for single GPU training.\n", + "2023-08-01 13:26:43 (INFO): Loading model: gemnet_oc\n", + "2023-08-01 13:26:43 (INFO): Loaded GemNetOC with 2596214 parameters.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2023-08-01 13:26:43 (WARNING): Model gradient logging to tensorboard not yet supported.\n" + ] + } + ], + "source": [ + "trainer = OCPTrainer(\n", + " task=task,\n", + " model=copy.deepcopy(model), # copied for later use, not necessary in practice.\n", + " dataset=dataset,\n", + " optimizer=optimizer,\n", + " outputs={},\n", + " loss_fns={},\n", + " eval_metrics={},\n", + " name=\"s2ef\",\n", + " identifier=\"S2EF-example\",\n", + " run_dir=\".\", # directory to save results if is_debug=False. Prediction files are saved here so be careful not to override!\n", + " is_debug=False, # if True, do not save checkpoint, logs, or results\n", + " print_every=5,\n", + " seed=0, # random seed to use\n", + " logger=\"tensorboard\", # logger of choice (tensorboard and wandb supported)\n", + " local_rank=0,\n", + " amp=True, # use PyTorch Automatic Mixed Precision (faster training and less memory usage),\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vA8nDKt4QqkO" + }, + "source": [ + "### Train the model" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "WFmssq5oPFd_", + "outputId": "a80e93f3-637a-4394-9ec8-4c38bac27461" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2023-08-01 13:26:47 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 1.11e+01, forcesx_mae: 4.63e-01, forcesy_mae: 7.30e-01, forcesz_mae: 5.88e-01, forces_mae: 5.94e-01, forces_cosine_similarity: -2.71e-02, forces_magnitude_error: 1.03e+00, loss: 1.71e+02, lr: 5.00e-04, epoch: 5.00e-02, step: 5.00e+00\n", + "2023-08-01 13:26:48 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 2.26e+01, forcesx_mae: 4.70e-01, forcesy_mae: 6.52e-01, forcesz_mae: 7.01e-01, forces_mae: 6.08e-01, forces_cosine_similarity: 1.11e-02, forces_magnitude_error: 1.12e+00, loss: 1.30e+02, lr: 5.00e-04, epoch: 1.00e-01, step: 1.00e+01\n", + "2023-08-01 13:26:49 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 2.47e+01, forcesx_mae: 4.45e-01, forcesy_mae: 6.03e-01, forcesz_mae: 6.59e-01, forces_mae: 5.69e-01, forces_cosine_similarity: 3.69e-03, forces_magnitude_error: 7.93e-01, loss: 9.21e+01, lr: 5.00e-04, epoch: 1.50e-01, step: 1.50e+01\n", + "2023-08-01 13:26:49 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 2.35e+01, forcesx_mae: 2.35e-01, forcesy_mae: 4.31e-01, forcesz_mae: 3.37e-01, forces_mae: 3.34e-01, forces_cosine_similarity: 8.77e-02, forces_magnitude_error: 4.51e-01, loss: 5.58e+01, lr: 5.00e-04, epoch: 2.00e-01, step: 2.00e+01\n", + "2023-08-01 13:26:50 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 1.33e+01, forcesx_mae: 1.33e-01, forcesy_mae: 1.48e-01, forcesz_mae: 1.77e-01, forces_mae: 1.53e-01, forces_cosine_similarity: -1.11e-02, forces_magnitude_error: 1.63e-01, loss: 2.86e+01, lr: 5.00e-04, epoch: 2.50e-01, step: 2.50e+01\n", + "2023-08-01 13:26:51 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 7.76e+00, forcesx_mae: 1.16e-01, forcesy_mae: 2.85e-01, forcesz_mae: 1.54e-01, forces_mae: 1.85e-01, forces_cosine_similarity: -1.37e-02, forces_magnitude_error: 2.51e-01, loss: 2.96e+01, lr: 5.00e-04, epoch: 3.00e-01, step: 3.00e+01\n", + "2023-08-01 13:26:52 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 7.79e+00, forcesx_mae: 5.18e-02, forcesy_mae: 5.56e-02, forcesz_mae: 5.98e-02, forces_mae: 5.57e-02, forces_cosine_similarity: 9.25e-02, forces_magnitude_error: 6.76e-02, loss: 1.25e+01, lr: 5.00e-04, epoch: 3.50e-01, step: 3.50e+01\n", + "2023-08-01 13:26:53 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 6.20e+00, forcesx_mae: 1.05e-01, forcesy_mae: 1.41e-01, forcesz_mae: 1.80e-01, forces_mae: 1.42e-01, forces_cosine_similarity: 1.38e-01, forces_magnitude_error: 1.89e-01, loss: 2.25e+01, lr: 5.00e-04, epoch: 4.00e-01, step: 4.00e+01\n", + "2023-08-01 13:26:53 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 2.79e+00, forcesx_mae: 1.42e-01, forcesy_mae: 2.08e-01, forcesz_mae: 2.35e-01, forces_mae: 1.95e-01, forces_cosine_similarity: 1.79e-01, forces_magnitude_error: 2.71e-01, loss: 2.65e+01, lr: 5.00e-04, epoch: 4.50e-01, step: 4.50e+01\n", + "2023-08-01 13:26:54 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 2.46e+00, forcesx_mae: 9.11e-02, forcesy_mae: 1.11e-01, forcesz_mae: 1.55e-01, forces_mae: 1.19e-01, forces_cosine_similarity: 1.48e-01, forces_magnitude_error: 1.79e-01, loss: 1.69e+01, lr: 5.00e-04, epoch: 5.00e-01, step: 5.00e+01\n", + "2023-08-01 13:26:55 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 1.65e+00, forcesx_mae: 1.61e-01, forcesy_mae: 1.62e-01, forcesz_mae: 2.43e-01, forces_mae: 1.89e-01, forces_cosine_similarity: 3.51e-01, forces_magnitude_error: 3.24e-01, loss: 2.62e+01, lr: 5.00e-04, epoch: 5.50e-01, step: 5.50e+01\n", + "2023-08-01 13:26:56 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 3.78e-01, forcesx_mae: 3.05e-02, forcesy_mae: 3.90e-02, forcesz_mae: 5.64e-02, forces_mae: 4.20e-02, forces_cosine_similarity: 1.70e-01, forces_magnitude_error: 5.91e-02, loss: 5.78e+00, lr: 5.00e-04, epoch: 6.00e-01, step: 6.00e+01\n", + "2023-08-01 13:26:57 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 8.06e+00, forcesx_mae: 3.03e-01, forcesy_mae: 5.27e-01, forcesz_mae: 4.00e-01, forces_mae: 4.10e-01, forces_cosine_similarity: 3.72e-01, forces_magnitude_error: 6.84e-01, loss: 5.42e+01, lr: 5.00e-04, epoch: 6.50e-01, step: 6.50e+01\n", + "2023-08-01 13:26:57 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 1.99e+00, forcesx_mae: 1.40e-01, forcesy_mae: 1.54e-01, forcesz_mae: 2.23e-01, forces_mae: 1.72e-01, forces_cosine_similarity: 4.15e-01, forces_magnitude_error: 2.86e-01, loss: 2.44e+01, lr: 5.00e-04, epoch: 7.00e-01, step: 7.00e+01\n", + "2023-08-01 13:26:58 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 9.05e-01, forcesx_mae: 8.92e-02, forcesy_mae: 1.32e-01, forcesz_mae: 9.59e-02, forces_mae: 1.06e-01, forces_cosine_similarity: 8.72e-02, forces_magnitude_error: 1.08e-01, loss: 1.26e+01, lr: 5.00e-04, epoch: 7.50e-01, step: 7.50e+01\n", + "2023-08-01 13:26:59 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 1.60e+00, forcesx_mae: 1.41e-01, forcesy_mae: 1.93e-01, forcesz_mae: 1.76e-01, forces_mae: 1.70e-01, forces_cosine_similarity: 2.28e-01, forces_magnitude_error: 2.31e-01, loss: 2.23e+01, lr: 5.00e-04, epoch: 8.00e-01, step: 8.00e+01\n", + "2023-08-01 13:27:00 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 1.50e+00, forcesx_mae: 2.21e-01, forcesy_mae: 8.65e-01, forcesz_mae: 3.35e-01, forces_mae: 4.74e-01, forces_cosine_similarity: 3.66e-01, forces_magnitude_error: 9.49e-01, loss: 5.46e+01, lr: 5.00e-04, epoch: 8.50e-01, step: 8.50e+01\n", + "2023-08-01 13:27:01 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 4.14e+00, forcesx_mae: 5.57e-02, forcesy_mae: 9.36e-02, forcesz_mae: 7.68e-02, forces_mae: 7.53e-02, forces_cosine_similarity: 2.33e-01, forces_magnitude_error: 8.21e-02, loss: 1.16e+01, lr: 5.00e-04, epoch: 9.00e-01, step: 9.00e+01\n", + "2023-08-01 13:27:01 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 9.06e-01, forcesx_mae: 3.69e-02, forcesy_mae: 4.61e-02, forcesz_mae: 6.08e-02, forces_mae: 4.79e-02, forces_cosine_similarity: 2.71e-01, forces_magnitude_error: 5.92e-02, loss: 6.84e+00, lr: 5.00e-04, epoch: 9.50e-01, step: 9.50e+01\n", + "2023-08-01 13:27:02 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 4.97e+00, forcesx_mae: 6.32e-02, forcesy_mae: 1.09e-01, forcesz_mae: 7.56e-02, forces_mae: 8.27e-02, forces_cosine_similarity: 1.50e-01, forces_magnitude_error: 9.81e-02, loss: 1.31e+01, lr: 5.00e-04, epoch: 1.00e+00, step: 1.00e+02\n", + "2023-08-01 13:27:02 (INFO): Evaluating on val.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "device 0: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 20/20 [00:01<00:00, 15.09it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2023-08-01 13:27:04 (INFO): energy_forces_within_threshold: 0.0000, energy_mae: 9.0515, forcesx_mae: 0.3079, forcesy_mae: 0.2660, forcesz_mae: 0.4767, forces_mae: 0.3502, forces_cosine_similarity: 0.0152, forces_magnitude_error: 0.5005, loss: 53.7886, epoch: 1.0000\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "trainer.train()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZHkrkULBQ1Xy" + }, + "source": [ + "### Validate the model" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "paYx3_FBQ8OE" + }, + "source": [ + "#### Load the best checkpoint\n", + "\n", + "The `checkpoints` directory contains two checkpoint files:\n", + "\n", + "\n", + "\n", + "* `best_checkpoint.pt` - Model parameters corresponding to the best val performance during training. Used for predictions.\n", + "* `checkpoint.pt` - Model parameters and optimizer settings for the latest checkpoint. Used to continue training.\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "id": "UW4ihgBdQ0Yt", + "outputId": "8226c4d2-041d-46d3-c0d9-02ce85f8fc93" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'./checkpoints/2023-08-01-13-26-40-S2EF-example/best_checkpoint.pt'" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# The `best_checpoint.pt` file contains the checkpoint with the best val performance\n", + "checkpoint_path = os.path.join(trainer.config[\"cmd\"][\"checkpoint_dir\"], \"best_checkpoint.pt\")\n", + "checkpoint_path" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6jppgncMTivj", + "outputId": "a15e13a5-4c1d-4fd4-c2c3-ef9fa210a9dd" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'src': 'data/s2ef/train_100',\n", + " 'normalize_labels': True,\n", + " 'target_mean': 0.45158625849998374,\n", + " 'target_std': 1.5156444102461508,\n", + " 'grad_target_mean': 0.0,\n", + " 'grad_target_std': 1.5156444102461508,\n", + " 'normalizer': {'energy': {'mean': 0.45158625849998374,\n", + " 'stdev': 1.5156444102461508},\n", + " 'forces': {'mean': 0.0, 'stdev': 1.5156444102461508}},\n", + " 'key_mapping': {'y': 'energy', 'force': 'forces'}},\n", + " {'src': 'data/s2ef/val_20'},\n", + " {'src': 'data/s2ef/val_20'}]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Append the dataset with the test set. We use the same val set for demonstration.\n", + "\n", + "# Dataset\n", + "dataset.append(\n", + " {'src': val_src}, # test set (optional)\n", + ")\n", + "dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "MaVROfxzRLaj", + "outputId": "0f143c63-1e1d-44c4-c641-34bac1706c2c" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "amp: true\n", + "cmd:\n", + " checkpoint_dir: ./checkpoints/2023-08-01-13-26-40-S2EF-val-example\n", + " commit: 0bd8935\n", + " identifier: S2EF-val-example\n", + " logs_dir: ./logs/tensorboard/2023-08-01-13-26-40-S2EF-val-example\n", + " print_every: 5\n", + " results_dir: ./results/2023-08-01-13-26-40-S2EF-val-example\n", + " seed: 0\n", + " timestamp_id: 2023-08-01-13-26-40-S2EF-val-example\n", + "dataset:\n", + " grad_target_mean: 0.0\n", + " grad_target_std: !!python/object/apply:numpy.core.multiarray.scalar\n", + " - &id001 !!python/object/apply:numpy.dtype\n", + " args:\n", + " - f8\n", + " - false\n", + " - true\n", + " state: !!python/tuple\n", + " - 3\n", + " - <\n", + " - null\n", + " - null\n", + " - null\n", + " - -1\n", + " - -1\n", + " - 0\n", + " - !!binary |\n", + " dPVlWhRA+D8=\n", + " key_mapping:\n", + " force: forces\n", + " y: energy\n", + " normalize_labels: true\n", + " normalizer:\n", + " energy:\n", + " mean: !!python/object/apply:numpy.core.multiarray.scalar\n", + " - *id001\n", + " - !!binary |\n", + " zSXlDMrm3D8=\n", + " stdev: !!python/object/apply:numpy.core.multiarray.scalar\n", + " - *id001\n", + " - !!binary |\n", + " dPVlWhRA+D8=\n", + " forces:\n", + " mean: 0.0\n", + " stdev: !!python/object/apply:numpy.core.multiarray.scalar\n", + " - *id001\n", + " - !!binary |\n", + " dPVlWhRA+D8=\n", + " src: data/s2ef/train_100\n", + " target_mean: !!python/object/apply:numpy.core.multiarray.scalar\n", + " - *id001\n", + " - !!binary |\n", + " zSXlDMrm3D8=\n", + " target_std: !!python/object/apply:numpy.core.multiarray.scalar\n", + " - *id001\n", + " - !!binary |\n", + " dPVlWhRA+D8=\n", + "eval_metrics: {}\n", + "gpus: 1\n", + "logger: tensorboard\n", + "loss_fns: {}\n", + "model: gemnet_oc\n", + "model_attributes:\n", + " activation: silu\n", + " atom_edge_interaction: true\n", + " atom_interaction: true\n", + " cbf:\n", + " name: spherical_harmonics\n", + " cutoff: 12.0\n", + " cutoff_aeaint: 12.0\n", + " cutoff_aint: 12.0\n", + " cutoff_qint: 12.0\n", + " direct_forces: true\n", + " edge_atom_interaction: true\n", + " emb_size_aint_in: 64\n", + " emb_size_aint_out: 64\n", + " emb_size_atom: 64\n", + " emb_size_cbf: 16\n", + " emb_size_edge: 64\n", + " emb_size_quad_in: 32\n", + " emb_size_quad_out: 32\n", + " emb_size_rbf: 16\n", + " emb_size_sbf: 32\n", + " emb_size_trip_in: 64\n", + " emb_size_trip_out: 64\n", + " envelope:\n", + " exponent: 5\n", + " name: polynomial\n", + " extensive: true\n", + " forces_coupled: false\n", + " max_neighbors: 30\n", + " max_neighbors_aeaint: 20\n", + " max_neighbors_aint: 1000\n", + " max_neighbors_qint: 8\n", + " num_after_skip: 2\n", + " num_atom: 3\n", + " num_atom_emb_layers: 2\n", + " num_before_skip: 2\n", + " num_blocks: 4\n", + " num_concat: 1\n", + " num_global_out_layers: 2\n", + " num_output_afteratom: 3\n", + " num_radial: 128\n", + " num_spherical: 7\n", + " output_init: HeOrthogonal\n", + " qint_tags:\n", + " - 1\n", + " - 2\n", + " quad_interaction: true\n", + " rbf:\n", + " name: gaussian\n", + " regress_forces: true\n", + " sbf:\n", + " name: legendre_outer\n", + " scale_file: configs/s2ef/all/gemnet/scaling_factors/gemnet-oc.pt\n", + "noddp: false\n", + "optim:\n", + " batch_size: 1\n", + " clip_grad_norm: 10\n", + " ema_decay: 0.999\n", + " eval_batch_size: 1\n", + " factor: 0.8\n", + " force_coefficient: 100\n", + " loss_energy: mae\n", + " loss_force: l2mae\n", + " lr_initial: 0.0005\n", + " max_epochs: 1\n", + " mode: min\n", + " num_workers: 2\n", + " optimizer: AdamW\n", + " optimizer_params:\n", + " amsgrad: true\n", + " patience: 3\n", + " scheduler: ReduceLROnPlateau\n", + "outputs: {}\n", + "slurm: {}\n", + "task:\n", + " dataset: trajectory_lmdb\n", + " description: Regressing to energies and forces for DFT trajectories from OCP\n", + " eval_on_free_atoms: true\n", + " grad_input: atomic forces\n", + " labels:\n", + " - potential energy\n", + " metric: mae\n", + " train_on_free_atoms: true\n", + " type: regression\n", + "test_dataset:\n", + " src: data/s2ef/val_20\n", + "trainer: s2ef\n", + "val_dataset:\n", + " src: data/s2ef/val_20\n", + "\n", + "2023-08-01 13:27:14 (INFO): Loading dataset: lmdb\n", + "2023-08-01 13:27:14 (INFO): Batch balancing is disabled for single GPU training.\n", + "2023-08-01 13:27:14 (INFO): Batch balancing is disabled for single GPU training.\n", + "2023-08-01 13:27:14 (INFO): Batch balancing is disabled for single GPU training.\n", + "2023-08-01 13:27:14 (INFO): Loading model: gemnet_oc\n", + "2023-08-01 13:27:15 (INFO): Loaded GemNetOC with 2596214 parameters.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2023-08-01 13:27:15 (WARNING): Model gradient logging to tensorboard not yet supported.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2023-08-01 13:27:15 (INFO): Loading checkpoint from: ./checkpoints/2023-08-01-13-26-40-S2EF-example/best_checkpoint.pt\n" + ] + } + ], + "source": [ + "pretrained_trainer = OCPTrainer(\n", + " task=task,\n", + " model=copy.deepcopy(model), # copied for later use, not necessary in practice.\n", + " dataset=dataset,\n", + " optimizer=optimizer,\n", + " outputs={},\n", + " loss_fns={},\n", + " eval_metrics={},\n", + " name=\"s2ef\",\n", + " identifier=\"S2EF-val-example\",\n", + " run_dir=\"./\", # directory to save results if is_debug=False. Prediction files are saved here so be careful not to override!\n", + " is_debug=False, # if True, do not save checkpoint, logs, or results\n", + " print_every=5,\n", + " seed=0, # random seed to use\n", + " logger=\"tensorboard\", # logger of choice (tensorboard and wandb supported)\n", + " local_rank=0,\n", + " amp=True, # use PyTorch Automatic Mixed Precision (faster training and less memory usage),\n", + ")\n", + "\n", + "pretrained_trainer.load_checkpoint(checkpoint_path=checkpoint_path)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kWetMgsmRBZS" + }, + "source": [ + "#### Run on the test set" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "jbiPZNeJQ0WK", + "outputId": "dd346bcd-f30a-4333-a1ca-e18c057cb238" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "erpOSowgCeuS" - }, - "source": [ - "#### Force\n", - "\n", - "Forces are another important property of the OC20 dataset. Unlike datasets like QM9 which contain only ground state properties, the OC20 dataset contains per-atom forces necessary to carry out atomistic simulations. Physically, forces are the negative gradient of energy w.r.t atomic positions: $F = -\\frac{dE}{dx}$. Although not mandatory (depending on the application), maintaining this energy-force consistency is important for models that seek to make predictions on both properties.\n", - "\n", - "The \"apply_constraint\" argument controls whether to apply system constraints to the forces. In the OC20 dataset, this controls whether to return forces for fixed atoms (apply_constraint=False) or return 0s (apply_constraint=True)." - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2023-08-01 13:27:20 (INFO): Predicting on test.\n" + ] }, { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "NtgLDiT2Cmff", - "outputId": "61a720bd-4117-4403-eb07-4d49fd5ddc22" - }, - "source": [ - "# Returning forces for all atoms - regardless of whether \"fixed\" or \"free\"\n", - "i_structure.get_forces(apply_constraint=False)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "array([[-1.07900000e-05, -3.80000000e-06, 1.13560540e-01],\n", - " [-0.00000000e+00, -4.29200000e-05, 1.13302410e-01],\n", - " [ 1.07900000e-05, -3.80000000e-06, 1.13560540e-01],\n", - " [-1.84600000e-05, 0.00000000e+00, 1.13543430e-01],\n", - " [ 0.00000000e+00, -0.00000000e+00, 1.13047800e-01],\n", - " [ 1.84600000e-05, 0.00000000e+00, 1.13543430e-01],\n", - " [-1.07900000e-05, 3.80000000e-06, 1.13560540e-01],\n", - " [-0.00000000e+00, 4.29200000e-05, 1.13302410e-01],\n", - " [ 1.07900000e-05, 3.80000000e-06, 1.13560540e-01],\n", - " [-1.10430500e-02, -2.53094000e-03, -4.84573700e-02],\n", - " [ 1.10430500e-02, -2.53094000e-03, -4.84573700e-02],\n", - " [ 0.00000000e+00, -2.20890000e-04, -2.07827000e-03],\n", - " [-1.10430500e-02, 2.53094000e-03, -4.84573700e-02],\n", - " [ 1.10430500e-02, 2.53094000e-03, -4.84573700e-02],\n", - " [-0.00000000e+00, 2.20890000e-04, -2.07827000e-03],\n", - " [-3.49808000e-03, -0.00000000e+00, -7.85544000e-03],\n", - " [ 3.49808000e-03, -0.00000000e+00, -7.85544000e-03],\n", - " [-0.00000000e+00, -0.00000000e+00, -5.97640000e-04],\n", - " [-3.18144370e-01, -2.36420450e-01, -3.97089230e-01],\n", - " [ 0.00000000e+00, -2.18895316e+00, -2.74768262e+00],\n", - " [ 3.18144370e-01, -2.36420450e-01, -3.97089230e-01],\n", - " [-5.65980520e-01, 0.00000000e+00, -6.16046990e-01],\n", - " [ 0.00000000e+00, 0.00000000e+00, -4.47152822e+00],\n", - " [ 5.65980520e-01, -0.00000000e+00, -6.16046990e-01],\n", - " [-3.18144370e-01, 2.36420450e-01, -3.97089230e-01],\n", - " [ 0.00000000e+00, 2.18895316e+00, -2.74768262e+00],\n", - " [ 3.18144370e-01, 2.36420450e-01, -3.97089230e-01],\n", - " [-0.00000000e+00, 0.00000000e+00, -3.96835355e+00],\n", - " [-0.00000000e+00, -3.64190926e+00, 5.71458646e+00],\n", - " [-0.00000000e+00, 3.64190926e+00, 5.71458646e+00],\n", - " [-2.18178516e+00, -0.00000000e+00, 1.67589182e+00],\n", - " [ 2.18178516e+00, 0.00000000e+00, 1.67589182e+00],\n", - " [-0.00000000e+00, 2.46333681e+00, 1.78299828e+00],\n", - " [-0.00000000e+00, -2.46333681e+00, 1.78299828e+00],\n", - " [ 6.18714050e+00, 2.26336330e-01, -5.99485570e-01],\n", - " [-6.18714050e+00, 2.26336330e-01, -5.99485570e-01],\n", - " [-6.18714050e+00, -2.26336330e-01, -5.99485570e-01],\n", - " [ 6.18714050e+00, -2.26336330e-01, -5.99485570e-01]])" - ] - }, - "metadata": {}, - "execution_count": 18 - } - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "device 0: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 20/20 [00:01<00:00, 15.15it/s]" + ] }, { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "QVgvU-OgCqzx", - "outputId": "1a4bed0b-3554-4b42-b41e-7ca84741d66e" - }, - "source": [ - "# Applying the fixed atoms constraint to the forces\n", - "i_structure.get_forces(apply_constraint=True)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "array([[ 0. , 0. , 0. ],\n", - " [ 0. , 0. , 0. ],\n", - " [ 0. , 0. , 0. ],\n", - " [ 0. , 0. , 0. ],\n", - " [ 0. , 0. , 0. ],\n", - " [ 0. , 0. , 0. ],\n", - " [ 0. , 0. , 0. ],\n", - " [ 0. , 0. , 0. ],\n", - " [ 0. , 0. , 0. ],\n", - " [ 0. , 0. , 0. ],\n", - " [ 0. , 0. , 0. ],\n", - " [ 0. , 0. , 0. ],\n", - " [ 0. , 0. , 0. ],\n", - " [ 0. , 0. , 0. ],\n", - " [ 0. , 0. , 0. ],\n", - " [ 0. , 0. , 0. ],\n", - " [ 0. , 0. , 0. ],\n", - " [ 0. , 0. , 0. ],\n", - " [-0.31814437, -0.23642045, -0.39708923],\n", - " [ 0. , -2.18895316, -2.74768262],\n", - " [ 0.31814437, -0.23642045, -0.39708923],\n", - " [-0.56598052, 0. , -0.61604699],\n", - " [ 0. , 0. , -4.47152822],\n", - " [ 0.56598052, -0. , -0.61604699],\n", - " [-0.31814437, 0.23642045, -0.39708923],\n", - " [ 0. , 2.18895316, -2.74768262],\n", - " [ 0.31814437, 0.23642045, -0.39708923],\n", - " [-0. , 0. , -3.96835355],\n", - " [-0. , -3.64190926, 5.71458646],\n", - " [-0. , 3.64190926, 5.71458646],\n", - " [-2.18178516, -0. , 1.67589182],\n", - " [ 2.18178516, 0. , 1.67589182],\n", - " [-0. , 2.46333681, 1.78299828],\n", - " [-0. , -2.46333681, 1.78299828],\n", - " [ 6.1871405 , 0.22633633, -0.59948557],\n", - " [-6.1871405 , 0.22633633, -0.59948557],\n", - " [-6.1871405 , -0.22633633, -0.59948557],\n", - " [ 6.1871405 , -0.22633633, -0.59948557]])" - ] - }, - "metadata": {}, - "execution_count": 19 - } - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "2023-08-01 13:27:21 (INFO): Writing results to ./results/2023-08-01-13-26-40-S2EF-val-example/s2ef_s2ef_results.npz\n" + ] }, { - "cell_type": "markdown", - "metadata": { - "id": "uzDp10XsoHdo" - }, - "source": [ - "### Interacting with the OC20 datasets\n", - "\n", - "The OC20 datasets are stored in LMDBs. Here we show how to interact with the datasets directly in order to better understand the data. We use two seperate classes to read in the approriate datasets:\n", - "\n", - "*S2EF* - We use the [TrajectoryLmdbDataset](https://github.com/Open-Catalyst-Project/ocp/blob/master/ocpmodels/datasets/trajectory_lmdb.py) object to read in a **directory** of LMDB files containing the dataset.\n", - "\n", - "*IS2RE/IS2RS* - We use the [SinglePointLmdbDataset](https://github.com/Open-Catalyst-Project/ocp/blob/master/ocpmodels/datasets/single_point_lmdb.py) class to read in a **single LMDB file** containing the dataset.\n", - "\n" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "7F7BjxNQoGLn", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "36fcd255-facc-43dd-efda-c238cac9c5d9" - }, - "source": [ - "from ocpmodels.datasets import TrajectoryLmdbDataset, SinglePointLmdbDataset\n", - "\n", - "# TrajectoryLmdbDataset is our custom Dataset method to read the lmdbs as Data objects. Note that we need to give the path to the folder containing lmdbs for S2EF\n", - "dataset = TrajectoryLmdbDataset({\"src\": \"data/s2ef/train_100/\"})\n", - "\n", - "print(\"Size of the dataset created:\", len(dataset))\n", - "print(dataset[0])" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Size of the dataset created: 100\n", - "Data(atomic_numbers=[86], cell=[1, 3, 3], cell_offsets=[2964, 3], edge_index=[2, 2964], fid=[1], fixed=[86], force=[86, 3], id=\"0_0\", natoms=86, pos=[86, 3], sid=[1], tags=[86], total_frames=74, y=6.282500615000004)\n" - ] - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "pD5B_TymoJ8S", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "72b21c2a-9472-4b08-afe9-c1bd28a5b399" - }, - "source": [ - "data = dataset[0]\n", - "data" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "Data(atomic_numbers=[86], cell=[1, 3, 3], cell_offsets=[2964, 3], edge_index=[2, 2964], fid=[1], fixed=[86], force=[86, 3], id=\"0_0\", natoms=86, pos=[86, 3], sid=[1], tags=[86], total_frames=74, y=6.282500615000004)" - ] - }, - "metadata": {}, - "execution_count": 23 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "rL4u0glIoL8h", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "a29c8dfc-617f-48fa-9195-e851b23033e1" - }, - "source": [ - "energies = torch.tensor([data.y for data in dataset])\n", - "energies" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "tensor([ 6.2825e+00, 4.1290e+00, 3.1451e+00, 3.0260e+00, 1.7921e+00,\n", - " 1.6451e+00, 1.2257e+00, 1.2161e+00, 1.0712e+00, 7.4727e-01,\n", - " 5.9575e-01, 5.7016e-01, 4.2819e-01, 3.1616e-01, 2.5283e-01,\n", - " 2.2425e-01, 2.2346e-01, 2.0530e-01, 1.6090e-01, 1.1807e-01,\n", - " 1.1691e-01, 9.1254e-02, 7.4997e-02, 6.3274e-02, 5.2782e-02,\n", - " 4.8892e-02, 3.9609e-02, 3.1746e-02, 2.7179e-02, 2.7007e-02,\n", - " 2.3709e-02, 1.8005e-02, 1.7676e-02, 1.4129e-02, 1.3162e-02,\n", - " 1.1374e-02, 7.4124e-03, 7.7525e-03, 6.1224e-03, 5.2787e-03,\n", - " 2.8587e-03, 1.1835e-04, -1.1200e-03, -1.3011e-03, -2.6812e-03,\n", - " -5.9202e-03, -6.1644e-03, -6.9261e-03, -9.1364e-03, -9.2114e-03,\n", - " -1.0665e-02, -1.3760e-02, -1.3588e-02, -1.4895e-02, -1.6190e-02,\n", - " -1.8660e-02, -1.4980e-02, -1.8880e-02, -2.0218e-02, -2.0559e-02,\n", - " -2.1013e-02, -2.2129e-02, -2.2748e-02, -2.3322e-02, -2.3382e-02,\n", - " -2.3865e-02, -2.3973e-02, -2.4196e-02, -2.4755e-02, -2.4951e-02,\n", - " -2.5078e-02, -2.5148e-02, -2.5257e-02, -2.5550e-02, 5.9721e+00,\n", - " 9.5081e+00, 2.6373e+00, 4.0946e+00, 1.4385e+00, 1.2700e+00,\n", - " 1.0081e+00, 5.3797e-01, 5.1462e-01, 2.8812e-01, 1.2429e-01,\n", - " -1.1352e-02, -2.2293e-01, -3.9102e-01, -4.3574e-01, -5.3142e-01,\n", - " -5.4777e-01, -6.3948e-01, -7.3816e-01, -8.2163e-01, -8.2526e-01,\n", - " -8.8313e-01, -8.8615e-01, -9.3446e-01, -9.5100e-01, -9.5168e-01])" - ] - }, - "metadata": {}, - "execution_count": 24 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "mkOm2roAoNY2", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 737 - }, - "outputId": "aed9b4de-99de-49ab-a21c-3a372166747a" - }, - "source": [ - "plt.hist(energies, bins = 50)\n", - "plt.yscale(\"log\")\n", - "plt.xlabel(\"Energies\")\n", - "plt.show()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuEAAALQCAYAAAA+Zq6aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZhld13n8c8XAgIJFEjCooAttCyKChJByIisAQmNGUVlnhGQEVqRGRbZMoJCcBiDo0BEUYMyQeARBgShnzCSUVB2GCIujKyBDrIpa5GFnd/8cU5Bpenqruru+t6+zev1PPWcrnPuvefbfZ+uetepc8+tMUYAAIA+V1j0AAAA8K1GhAMAQDMRDgAAzUQ4AAA0E+EAANDsuEUPcKSceOKJY8eOHYseAwCAY9gFF1zwyTHGSYf7OMdMhO/YsSNvf/vbFz0GAADHsKq66Eg8jtNRAACgmQgHAIBmIhwAAJqJcAAAaCbCAQCgmQgHAIBmIhwAAJqJcAAAaCbCAQCgmQgHAIBmIhwAAJqJcAAAaLb0EV5Vu6rqnNXV1UWPAgAAm7L0ET7G2DPG2L2ysrLoUQAAYFOWPsIBAGDZiHAAAGgmwgEAoJkIBwCAZiIcAACaiXAAAGgmwgEAoJkIBwCAZiIcAACaiXAAAGgmwgEAoJkIBwCAZiIcAACaiXAAAGh23KIHYPF2nHHelm6/96zTtmkSAIBvDY6EAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADRb+givql1Vdc7q6uqiRwEAgE1Z+ggfY+wZY+xeWVlZ9CgAALApSx/hAACwbEQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBs6SO8qnZV1Tmrq6uLHgUAADZl6SN8jLFnjLF7ZWVl0aMAAMCmLH2EAwDAshHhAADQTIQDAEAzEQ4AAM1EOAAANBPhAADQTIQDAEAzEQ4AAM1EOAAANBPhAADQTIQDAEAzEQ4AAM1EOAAANBPhAADQTIQDAEAzEQ4AAM1EOAAANBPhAADQTIQDAEAzEQ4AAM1EOAAANBPhAADQTIQDAEAzEQ4AAM1EOAAANBPhAADQTIQDAEAzEQ4AAM1EOAAANBPhAADQTIQDAEAzEQ4AAM1EOAAANBPhAADQTIQDAEAzEQ4AAM1EOAAANBPhAADQTIQDAEAzEQ4AAM1EOAAANFv6CK+qXVV1zurq6qJHAQCATVn6CB9j7Blj7F5ZWVn0KAAAsClLH+EAALBsRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADRb+givql1Vdc7q6uqiRwEAgE1Z+ggfY+wZY+xeWVlZ9CgAALApSx/hAACwbEQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzY6aCK+qO1bVK6vqI1U1qurnFz0TAABsh6MmwpOckOSdSR6R5PMLngUAALbNcYseYM0Y41VJXpUkVXXuYqcBAIDts+kj4VV136p6VlW9vqo+N58y8oKD3OcGVfXcqvpoVX2xqvZW1TOr6lqHPzoAACynrRwJf2KSH0xySZIPJ7n5gW5cVTdJ8qYk10nyiiTvTnLbTKeb3LOqThljfOpQhgYAgGW2lXPCH5XkpkmukeShm7j9szMF+MPHGKePMc4YY9wlyTOS3CzJU7c6LAAAHAs2HeFjjNeOMd43xhgHu+18FPzUJHuT/P4+m5+U5NIk96+q47cwKwAAHBO26+ood56X548xvrZ+wxjj4iRvTHK1JD+yTfsHAICj1nZF+M3m5Xs32P6+eXnTtRVVdUJV3aqqbjXPdaP58xtttJOq2l1Vb6+qt3/iE584IoMDAMB2264IX5mXqxtsX1t/zXXrTk7yjvnjqknOnP/8lI12MsY4Z4xx8hjj5JNOOunwJgYAgCZH03XC/yZJLXoOAADYbtt1JHztSPfKBtvX1n92m/YPAABHre2K8PfMy5tusP175uVG54wDAMAxa7si/LXz8tSqutw+qurqSU5JclmSt2zT/gEA4Ki1LRE+xrgwyflJdiR52D6bz0xyfJLnjzEu3Y79AwDA0WzTL8ysqtOTnD5/er15efuqOnf+8yfHGI9Zd5dfzvS29b9bVXdN8q4kt8t0DfH3JnnCYcwNAABLaytXR7lVkgfus+7G80eSXJTk6xE+xriwqk7OdInBeya5V5KPJTk7yZljjM8c6tAAALDMNh3hY4wnJ3nyVh58jPEvSR60tZEAAODYtl0vzAQAADYgwgEAoJkIBwCAZiIcAACaiXAAAGgmwgEAoNlWrhN+VKqqXUl27dy5c9GjfMvYccZ5W7r93rNO26ZJAACW09IfCR9j7Blj7F5ZWVn0KAAAsClLH+EAALBsRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0GzpI7yqdlXVOaurq4seBQAANmXpI3yMsWeMsXtlZWXRowAAwKYsfYQDAMCyEeEAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANDsuEUPcLiqaleSXTt37lzI/neccd6Wbr/3rNO2aRIAAJbF0h8JH2PsGWPsXllZWfQoAACwKUsf4QAAsGxEOAAANBPhAADQTIQDAEAzEQ4AAM1EOAAANBPhAADQTIQDAEAzEQ4AAM1EOAAANBPhAADQTIQDAEAzEQ4AAM1EOAAANBPhAADQTIQDAEAzEQ4AAM1EOAAANBPhAADQTIQDAEAzEQ4AAM2WPsKraldVnbO6urroUQAAYFOWPsLHGHvGGLtXVlYWPQoAAGzK0kc4AAAsGxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAs6WP8KraVVXnrK6uLnoUAADYlKWP8DHGnjHG7pWVlUWPAgAAm7L0EQ4AAMtGhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzY5b9ACHq6p2Jdm1c+fORY/CEbLjjPO2fJ+9Z522DZMAAGyPpT8SPsbYM8bYvbKysuhRAABgU5Y+wgEAYNmIcAAAaCbCAQCgmQgHAIBmIhwAAJqJcAAAaCbCAQCgmQgHAIBmIhwAAJqJcAAAaCbCAQCgmQgHAIBmIhwAAJqJcAAAaCbCAQCgmQgHAIBmIhwAAJqJcAAAaCbCAQCgmQgHAIBmIhwAAJqJcAAAaCbCAQCgmQgHAIBmIhwAAJqJcAAAaCbCAQCgmQgHAIBmIhwAAJqJcAAAaCbCAQCgmQgHAIBmIhwAAJqJcAAAaCbCAQCgmQgHAIBmIhwAAJqJcAAAaCbCAQCgmQgHAIBmIhwAAJodt+gBDldV7Uqya+fOnYseZVN2nHHetu9j71mnbfs+vtVs9XnzHAAAB7L0R8LHGHvGGLtXVlYWPQoAAGzK0kc4AAAsGxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNRDgAADQT4QAA0EyEAwBAMxEOAADNjlv0AIerqnYl2bVz585Fj8IGdpxx3qJH+CZH40wcWYfyHO8967RtmKTPt+LfGWBZLf2R8DHGnjHG7pWVlUWPAgAAm7L0EQ4AAMtGhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzUQ4AAA0E+EAANDsqIrwqvrlqvpgVX2hqi6oqh9d9EwAAHCkHTURXlU/m+TsJP89ya2TvCnJ/66qGy10MAAAOMKOmghP8itJzh1jPGeM8a4xxn9J8rEkD13wXAAAcERtOsKr6r5V9ayqen1Vfa6qRlW94CD3uUFVPbeqPlpVX6yqvVX1zKq61j63u3KS2yQ5f5+HOD/JHTY7IwAALIPjtnDbJyb5wSSXJPlwkpsf6MZVdZNMp5RcJ8krkrw7yW2TPCLJPavqlDHGp+abn5jkikn+dZ+H+dckd9vCjAAAcNTbyukoj0py0yTXyOZOEXl2pgB/+Bjj9DHGGWOMuyR5RpKbJXnqVocFAIBjwaYjfIzx2jHG+8YY42C3nY+Cn5pkb5Lf32fzk5JcmuT+VXX8vO6TSb6a5Lr73Pa6ST6+2RkBAGAZbNcLM+88L88fY3xt/YYxxsVJ3pjkakl+ZF73pSQXJLn7Po9z90yntAAAwDFjK+eEb8XN5uV7N9j+vkxHym+a5K/ndU9P8vyqelumSP+lJN+R5A832klV7U6yO0ludCNXMlyz44zzFj1Cu6Pt73y0zZMke886bdEjXM5W/42OtvnhSNnurxf+77AsvtW+L2xXhK/My9UNtq+tv+baijHGi6vq2pleAHr9JO9Mcq8xxkUb7WSMcU6Sc5Lk5JNPPuhpMgAAcDTYrgg/JGOMZ2d6QScAAByztuuc8LUj3SsbbF9b/9lt2j8AABy1tivC3zMvb7rB9u+ZlxudMw4AAMes7Yrw187LU6vqcvuoqqsnOSXJZUnesk37BwCAo9a2RPgY48JMbzm/I8nD9tl8ZpLjkzx/jHHpduwfAACOZpt+YWZVnZ7k9PnT683L21fVufOfPznGeMy6u/xypmt8/25V3TXJu5LcLtM1xN+b5AmHMTcAACytrVwd5VZJHrjPuhvPH0lyUZKvR/gY48KqOjnJU5LcM8m9knwsydlJzhxjfOZQhwYAgGW26QgfYzw5yZO38uBjjH9J8qCtjQQAAMe27XphJgAAsAERDgAAzUQ4AAA0E+EAANBMhAMAQDMRDgAAzZY+wqtqV1Wds7q6uuhRAABgU5Y+wscYe8YYu1dWVhY9CgAAbMrSRzgAACwbEQ4AAM1EOAAANBPhAADQTIQDAEAzEQ4AAM1EOAAANBPhAADQTIQDAEAzEQ4AAM1EOAAANBPhAADQrMYYi57hiKiqTyS5aNFzHINOTPLJRQ/BEeP5PLZ4Po89ntNji+fz2HNikuPHGCcd7gMdMxHO9qiqt48xTl70HBwZns9ji+fz2OM5PbZ4Po89R/I5dToKAAA0E+EAANBMhHMw5yx6AI4oz+exxfN57PGcHls8n8eeI/acOiccAACaORIOAADNRDgAADQT4QAA0EyEczlVdYOqem5VfbSqvlhVe6vqmVV1rUXPxtZU1bWr6sFV9fKqen9Vfb6qVqvqDVX1C1Xl//8xoKp+rqrG/PHgRc/Doamqu87/Vz8+f+39aFW9uqrutejZ2JqqOq2qzq+qD89fdz9QVS+pqtsvejb2r6ruW1XPqqrXV9Xn5q+nLzjIfe5QVa+qqk/Pz/M/VtUjq+qKm93vcYc/OseKqrpJkjcluU6SVyR5d5LbJnlEkntW1SljjE8tcES25qeT/EGSjyV5bZIPJblukp9M8sdJfryqfnp4dfbSqqobJvm9JJckOWHB43CIquq3kjw2yYeTvDLTOyyelOQ2Se6U5FULG44tqaqnJXlckk8l+YtMz+XOJD+R5Keq6gFjjAPGHQvxxCQ/mOlr6YeT3PxAN66qn0jy50m+kOTFST6dZFeSZyQ5JdP334NydRS+rqpeneTUJA8fYzxr3fqnJ3lUkj8aY/zSouZja6rqLkmOT3LeGONr69ZfL8nbktwwyX3HGH++oBE5DFVVSf5Pku9O8rIkj0nykDHGHy90MLakqh6S6ZJnz0uye4zxpX22X2mM8eWFDMeWzF9bP5LkE0l+YIzxb+u23TnJa5J8cIxx4wWNyAbm5+fDSd6f5McyHbh64Rjj5/Zz22vMt1tJcsoY4+3z+qtkeo5vn+Q/jDFedLD9+nU0Sb5+FPzUJHuT/P4+m5+U5NIk96+q45tH4xCNMV4zxtizPsDn9R9P8ofzp3dqH4wj5eFJ7pLkQZn+f7Jkqurbkjw102+pvinAk0SAL5XvytRVb10f4Ekyxnhtkosz/YaDo8wY47VjjPdt8jfD9830PL5oLcDnx/hCpiPqSfLQzexXhLPmzvPy/P1E28VJ3pjkakl+pHswtsXaN/avLHQKDklV3SLJWUnOHmO8btHzcMjunumb+cuSfG0+l/jxVfUI5w8vpfcl+VKS21bVies3VNUdk1w9yV8tYjCOqLvMy7/cz7bXJbksyR3mH7IPyDnhrLnZvHzvBtvfl+lI+U2T/HXLRGyLqjouyQPmT/f3RYSj2Pz8PT/T0dNfXfA4HJ4fnpdfSPKOJLdcv7GqXpfplLFPdA/G1o0xPl1Vj0/y9CT/XFV/kenc8JskuU+m08d+cYEjcmRs2EtjjK9U1QeTfF+SGyd514EeSISzZmVerm6wfW39NRtmYXudlemb/avGGK9e9DBs2a8nuXWSfzfG+Pyih+GwXGdePjbJPyf50SR/n+k8/9/OdODjJXHa2NIYYzyzqvYmeW6Sh6zb9P4k5+57mgpL6Yj1ktNR4FtIVT08yaMzXfnm/gsehy2qqttlOvr9O2OMNy96Hg7b2vfgryS5zxjjDWOMS8YY/5Tk32d6odiPOTVleVTV45K8NMm5mY6AH5/pKjcfSPLC+Uo4kESE8w1rP7mtbLB9bf1nG2ZhG1TVf05ydqYjbnceY3x6wSOxBfNpKH+a6Vegv7bgcTgy1r6evmOMsXf9hjHGZUnWflN1286hODRVdackT0vyyjHGr4wxPjDGuGyM8XeZfqj6SJJHV5Wroyy3I9ZLIpw175mXN91g+/fMy43OGecoVlWPTPKsJO/MFOAfX/BIbN0Jmf5/3iLJF9a9Qc/IdAWjJHnOvO6ZC5uSrVj7urvRN+vPzMurNszC4bv3vHztvhvmH6relqm7bt05FEfchr00Hyz57ky/3frAwR7IOeGsWfuicWpVXWGf60pfPdPF5y9L8pZFDMehm18odFamc03vPsb45IJH4tB8McmfbLDthzJ9Y39Dpm8QTlVZDn+dZCT53n2/7s7WXqj5wd6xOERrV8PY6DKEa+u/6VKULJXXJPmPSe6Z5M/22XbHTFeSe90Y44sHeyBHwkmSjDEuTHJ+kh1JHrbP5jMzndf2/DGG6xEvkar6tUwBfkGSuwrw5TXG+PwY48H7+8j0LotJ8rx53YsXOSubM8a4KMmeJDfK9M7EX1dVpya5R6aj5K5itBxePy93V9V3rt9QVT+e6WDWFzK9MzXL66WZ3gn1flV18trK+c16/tv86R9s5oG8YyZft5+3rX9Xkttluob4e5PcwdvWL4+qemCmFwd9NdOpKPt7JffeMca5jWOxDarqyZlOSfGOmUumqm6Q6evuDTMdGX9Hpl9nn57pKPn9vKvtcqiqK2Q6j/9umd6Y5+VJPp7pFLJ7J6kkjxxjnL2wIdmvqjo90/+5JLleph+AP5Bv/GD1yTHGY/a5/Usz/VD1okxvW3+fTJcvfGmSn9nMG/+IcC6nqm6Y5CmZfs1y7SQfy/SF5MwxxmcOdF+OLuvC7ED+doxxp+2fhu0kwpdbVZ2U6dKT90ly/SSfy/TN/zfHGG9b5GxsTVVdKdNvk++X5HsznZrw6Uzng//uGOP8BY7HBjbx/fKiMcaOfe5zSpInZHqb+qtkugzlczM9z1/d1H5FOAAA9HJOOAAANBPhAADQTIQDAEAzEQ4AAM1EOAAANBPhAADQTIQDAEAzEQ7AEVNVf1NVY37zCwA2IMIBtqCqnjxH5qY+Fj0vAEen4xY9AMAS+9dFD3AU+lCS9yT55KIHATiaiXCAQzTGuN6iZzjajDEesOgZAJaB01EAAKCZCAdoUlV753PFf76qrlxVj62qf6iqS6tqtapeU1X33MTjnFJVL6iqi6rqC/N931ZVj6+qEza4z7nzvs+tyYOr6g1V9am1mdbdtqrqQVX15qq6eH78t1bV7nnb1x9rP/s56Aszq+qWVXVOVb2vqi6rqkuq6h+r6qlVdeIB7ne7qnphVX1w/ntfOv8b/G1V/VpV3eBg/3YARwunowD0OyHJ65LcLsmXk3wxyTWS3DnJnarqwWOM5+57p6q6QpJnJHn4utWXJDk+yQ/PHw+qqnuMMS7aYN+V5CVJfirJ15Kszsu1fVwxyQuT/Oy8aiT5bJKTk9w2yZ2SfGnLf+NvPP7jkvxmvnEQ6LIkV0ry/fPHg6rqtDHGO/a53wOT/M95/mT6N/tKkhvNH3dM8i9Jzj3U2QA6ORIO0O8pSW6Q5PQkx48xrp7k5knekikyz66qlf3c78xMAf5vSR6W5Nrzfa+aKeDfkeRmSV42B/v+/GSSn0jymCTXGmN8e5KVJK+etz823wjwpyc5ab7NtZL8apL7JbnPofylq+oXkjwtU3g/Icn1xxjHJ7lapsh/TZLrJ3nl+iP6VXW1JM/K9G/zgiQ7xxhXGWOsZPqB5uQk/2P+dwFYCo6EAxyiqvr4QW7y4jHGI/az/mpJ7jDGePfaijHGe6rqPpmuLnJCkntnOiK9tq8dSf5rks8nOXWM8Q/r7vvlJH9TVT+W5J+T/FCmUP6L/ez7hCQPH2M8a939L0lySVUdP+8jSf5kjPHodbf5XJLfrKpvS/Kkg/y9v0lVXT3Jb8+f3neMsRb9GWN8NckFVXWPTD+I3CbJg5M8c77JLZNcPcmlSR40xvjKuvtemuSC+QNgaTgSDnDornuQj/0dzU6Sl64P8DVjjE8kefP86Q/ss/nnk1wxyV+uD/B97n9xvhHe99hg359J8kcbbDs102kxSfLUDW7zO5mOZG/VTyW5ZpJ3rA/w9ea4/rP50/Xzf3ZeXjnJtQ23Rx8AAAQLSURBVA9h3wBHHUfCAQ7RGKMOfqv9eusBtn10Xn77PutPmZenHuQI/NppHN+1wfb/O8bY6JzuH5qXHxpjfHB/NxhjXFxVFyT50QPMsD9r89/iIPNfdV6un//CJO/OdMrOW6vqDzKdPvNP81F0gKUjwgH6XXyAbWunWlxpn/XfMS+Pnz8O5mobrD/QedMnzcuPHuA2SfKRTex/X2vzX2X+OJivzz/G+GpV3S/Jy5N8d5Kz5o/LqupNSV6W5HljjEM5Qg+wEE5HAVgOV5yXTxtj1CY+7rTB42zmyPE4MiNfztr8L97k/DsuN9B0Cs7NM53Wck6Sd2Y6an63JM9O8u6q+v5tmBtgW4hwgOWwdgrHRqeZHAmfmJffccBbJd95CI992POPMb40xnjZGOMXxxjfn+nI/S8l+XSSGyZ53qE+NkA3EQ6wHN44L+9WVZs5neNQ/N28/K75aizfZL504G0O4bHX5r9NVV3/EO7/TcYYnxpj/FGSx8+rbl1VXrgJLAURDrAcnpvpfPETM10vfEPzu3Hu950zD+L8JJ+b//yrG9zmUdn4fPMDeUmmq5xcKcnTq2rDF7VW1RWq6prrPv+2gzz259f9+Wsb3grgKCLCAZbAGOPCJL8xf/q4qvrTqrrl2vaqOq6qblVVv57k/UludQj7uDTTm+kkyUOq6req6tvnx796VT0+yZMzXeZwq4/92SSPnD+9X5Lz5rehv8L8+FeoqltU1aOT/L9M10lfc7+qemNV/WJV3XhtZVVdcb62+FnzqjePMbY8G8AiuDoKwCHaxJv1JMlPjjHedIR2+RuZvm4/Mcn9k9y/qj6f6brd18w3XvyYHPqLK38rya2T3DfTu2c+uqpWM10//IpJnj8/9gOSfGErDzzGeF5VXTXJ2Ul+fP74YlVdMj/++ivCrJ+/ktxh/khVfTHJJZnexXPtYNJHk/ynrcwDsEgiHODQXXcTt7nykdrZGGMk+fWq+l9JHprprepvmOlNgT6T5L2Zzr1++RjjzRs+0IH38ZWq+plMQbs7yfdl+l7x9iTPGWP8SVW9Yr75Zzd4mAM9/h9W1V8meViSu2e65OA1M50Gc2GmNyt6Zaa3sF/zykzRf+dM1zK/fqbrqF+c5D1J9iT5vfloO8BSqOlrOgAc3Hwu94eS3CDJA8YYz1/wSABLyTnhAGzF/TMF+FeS/NWCZwFYWiIcgMupqj+rqvtW1Ynr1l23qs5I8px51Z+OMT62mAkBlp/TUQC4nKr6bKbzzJPpRZ9fXvd5krw+yb3HGJ/b974AbI4IB+ByquoBma5ccusk10lyQqYXYf59khclef4Y48uLmxBg+YlwAABo5pxwAABoJsIBAKCZCAcAgGYiHAAAmolwAABo9v8BEPWTR74B4wUAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "RtECvWIPCu0b" - }, - "source": [ - "### Additional Resources\n", - "\n", - "More helpful resources, tutorials, and documentation can be found at ASE's webpage: https://wiki.fysik.dtu.dk/ase/index.html. We point to specific pages that may be of interest:\n", - "\n", - "* Interacting with Atoms Object: https://wiki.fysik.dtu.dk/ase/ase/atoms.html\n", - "* Visualization: https://wiki.fysik.dtu.dk/ase/ase/visualize/visualize.html\n", - "* Structure optimization: https://wiki.fysik.dtu.dk/ase/ase/optimize.html\n", - "* More ASE Tutorials: https://wiki.fysik.dtu.dk/ase/tutorials/tutorials.html" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "qa9Iuu2GU52Z" - }, - "source": [ - "\n", - "# Tasks\n", - "\n", - "In this section, we cover the different types of tasks the OC20 dataset presents and how to train and predict their corresponding models.\n", - "\n", - "1. Structure to Energy and Forces (S2EF)\n", - "2. Initial Structure to Relaxed Energy (IS2RE)\n", - "3. Initial Structure to Relaxed Structure (IS2RS)\n", - "\n", - "Tasks can be interrelated. The figure below illustrates several approaches to solving the IS2RE task:\n", - "\n", - "(a) the traditional approach uses DFT along with an optimizer,\n", - "such as BFGS or conjugate gradient, to iteratively update\n", - "the atom positions until the relaxed structure and energy are found.\n", - "\n", - "(b) using ML models trained to predict the energy and forces of a\n", - "structure, S2EF can be used as a direct replacement for DFT. \n", - "\n", - "(c) the relaxed structure could potentially be directly regressed from\n", - "the initial structure and S2EF used to find the energy.\n", - "\n", - "(d) directly compute the relaxed energy from the initial state.\n", - "\n", - "\n", - "**NOTE** The following sections are intended to demonstrate the inner workings of our codebase and what goes into running the various tasks. We do not recommend training to completion within a notebook setting. Please see the [running on command line](#cmd) section for the preferred way to train/evaluate models." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "W7aZpLzmuNra" - }, - "source": [ - "![tasks.png]()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "yWXsiZ5freTG" - }, - "source": [ - "## Structure to Energy and Forces (S2EF) \n", - "\n", - "The S2EF task takes an atomic system as input and predicts the energy of the entire system and forces on each atom. This is our most general task, ultimately serving as a surrogate to DFT. A model that can perform well on this task can accelerate other applications like molecular dynamics and transitions tate calculations.\n", - "\n", - "### Steps for training an S2EF model\n", - "1) Define or load a configuration (config), which includes the following\n", - "* task\n", - "* model\n", - "* optimizer\n", - "* dataset\n", - "* trainer\n", - "\n", - "2) Create a ForcesTrainer object\n", - "\n", - "3) Train the model\n", - "\n", - "4) Validate the model\n", - "\n", - "**For storage and compute reasons we use a very small subset of the OC20 S2EF dataset for this tutorial. Results will be considerably worse than presented in our paper.**" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "2snWOAxnPPyd" - }, - "source": [ - "### Imports" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "l-1rNyuk_1Mo" - }, - "source": [ - "from ocpmodels.trainers import ForcesTrainer\n", - "from ocpmodels.datasets import TrajectoryLmdbDataset\n", - "from ocpmodels import models\n", - "from ocpmodels.common import logger\n", - "from ocpmodels.common.utils import setup_logging\n", - "setup_logging()\n", - "\n", - "import numpy as np\n", - "import copy\n", - "import os" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "OmkUDMQgP5he" - }, - "source": [ - "### Dataset" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "1SHl_1eQP4mW" - }, - "source": [ - "train_src = \"data/s2ef/train_100\"\n", - "val_src = \"data/s2ef/val_20\"" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ZUpFFV2OWyYJ" - }, - "source": [ - "### Normalize data\n", - "\n", - "If you wish to normalize the targets we must compute the mean and standard deviation for our energy values. Because forces are physically related by the negative gradient of energy, we use the same multiplicative energy factor for forces." - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "HAJ3x4SnXE1o" - }, - "source": [ - "train_dataset = TrajectoryLmdbDataset({\"src\": train_src})\n", - "\n", - "energies = []\n", - "for data in train_dataset:\n", - " energies.append(data.y)\n", - "\n", - "mean = np.mean(energies)\n", - "stdev = np.std(energies)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ruspSf6CQIk4" - }, - "source": [ - "### Define the Config" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "6R6IkYLCQPpH" - }, - "source": [ - "For this example, we will explicitly define the config; however, a set of default configs can be found [here](https://github.com/Open-Catalyst-Project/ocp/tree/master/configs). Default config yaml files can easily be loaded with the following [utility](https://github.com/Open-Catalyst-Project/ocp/blob/aa8e44d50229fce887b3a94a5661c4f85cd73eed/ocpmodels/common/utils.py#L361-L400). Loading a yaml config is preferrable when launching jobs from the command line. We have included our best models' config files here for reference. \n", - "\n", - "**Note** - we only train for a single epoch with a reduced batch size (GPU memory constraints) for demonstration purposes, modify accordingly for full convergence." - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "j6Z_XbkiPGR9" - }, - "source": [ - "# Task\n", - "task = {\n", - " 'dataset': 'trajectory_lmdb', # dataset used for the S2EF task\n", - " 'description': 'Regressing to energies and forces for DFT trajectories from OCP',\n", - " 'type': 'regression',\n", - " 'metric': 'mae',\n", - " 'labels': ['potential energy'],\n", - " 'grad_input': 'atomic forces',\n", - " 'train_on_free_atoms': True,\n", - " 'eval_on_free_atoms': True\n", - "}\n", - "# Model\n", - "model = {\n", - " 'name': 'gemnet_t',\n", - " \"num_spherical\": 7,\n", - " \"num_radial\": 128,\n", - " \"num_blocks\": 3,\n", - " \"emb_size_atom\": 512,\n", - " \"emb_size_edge\": 512,\n", - " \"emb_size_trip\": 64,\n", - " \"emb_size_rbf\": 16,\n", - " \"emb_size_cbf\": 16,\n", - " \"emb_size_bil_trip\": 64,\n", - " \"num_before_skip\": 1,\n", - " \"num_after_skip\": 2,\n", - " \"num_concat\": 1,\n", - " \"num_atom\": 3,\n", - " \"cutoff\": 6.0,\n", - " \"max_neighbors\": 50,\n", - " \"rbf\": {\"name\": \"gaussian\"},\n", - " \"envelope\": {\n", - " \"name\": \"polynomial\",\n", - " \"exponent\": 5,\n", - " },\n", - " \"cbf\": {\"name\": \"spherical_harmonics\"},\n", - " \"extensive\": True,\n", - " \"otf_graph\": False,\n", - " \"output_init\": \"HeOrthogonal\",\n", - " \"activation\": \"silu\",\n", - " \"scale_file\": \"configs/s2ef/all/gemnet/scaling_factors/gemnet-dT.json\",\n", - " \"regress_forces\": True,\n", - " \"direct_forces\": True,\n", - "}\n", - "# Optimizer\n", - "optimizer = {\n", - " 'batch_size': 1, # originally 32\n", - " 'eval_batch_size': 1, # originally 32\n", - " 'num_workers': 2,\n", - " 'lr_initial': 5.e-4,\n", - " 'optimizer': 'AdamW',\n", - " 'optimizer_params': {\"amsgrad\": True},\n", - " 'scheduler': \"ReduceLROnPlateau\",\n", - " 'mode': \"min\",\n", - " 'factor': 0.8,\n", - " 'patience': 3,\n", - " 'max_epochs': 1, # used for demonstration purposes\n", - " 'force_coefficient': 100,\n", - " 'ema_decay': 0.999,\n", - " 'clip_grad_norm': 10,\n", - " 'loss_energy': 'mae',\n", - " 'loss_force': 'l2mae',\n", - "}\n", - "# Dataset\n", - "dataset = [\n", - " {'src': train_src,\n", - " 'normalize_labels': True,\n", - " \"target_mean\": mean,\n", - " \"target_std\": stdev,\n", - " \"grad_target_mean\": 0.0,\n", - " \"grad_target_std\": stdev\n", - " }, # train set \n", - " {'src': val_src}, # val set (optional)\n", - "]" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "8AsZpLjIQg-W" - }, - "source": [ - "### Create the trainer" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "0it4gs6gPGGz", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "e7a98c1d-6d4f-425b-878f-4a3a7b42b2ed" - }, - "source": [ - "trainer = ForcesTrainer(\n", - " task=task,\n", - " model=copy.deepcopy(model), # copied for later use, not necessary in practice.\n", - " dataset=dataset,\n", - " optimizer=optimizer,\n", - " identifier=\"S2EF-example\",\n", - " run_dir=\"./\", # directory to save results if is_debug=False. Prediction files are saved here so be careful not to override!\n", - " is_debug=False, # if True, do not save checkpoint, logs, or results\n", - " is_vis=False,\n", - " print_every=5,\n", - " seed=0, # random seed to use\n", - " logger=\"tensorboard\", # logger of choice (tensorboard and wandb supported)\n", - " local_rank=0,\n", - " amp=True, # use PyTorch Automatic Mixed Precision (faster training and less memory usage),\n", - ")" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "amp: true\n", - "cmd:\n", - " checkpoint_dir: ./checkpoints/2021-11-22-17-14-40-S2EF-example\n", - " commit: bc04a90\n", - " identifier: S2EF-example\n", - " logs_dir: ./logs/tensorboard/2021-11-22-17-14-40-S2EF-example\n", - " print_every: 5\n", - " results_dir: ./results/2021-11-22-17-14-40-S2EF-example\n", - " seed: 0\n", - " timestamp_id: 2021-11-22-17-14-40-S2EF-example\n", - "dataset:\n", - " grad_target_mean: 0.0\n", - " grad_target_std: !!python/object/apply:numpy.core.multiarray.scalar\n", - " - &id001 !!python/object/apply:numpy.dtype\n", - " args:\n", - " - f8\n", - " - false\n", - " - true\n", - " state: !!python/tuple\n", - " - 3\n", - " - <\n", - " - null\n", - " - null\n", - " - null\n", - " - -1\n", - " - -1\n", - " - 0\n", - " - !!binary |\n", - " dPVlWhRA+D8=\n", - " normalize_labels: true\n", - " src: data/s2ef/train_100\n", - " target_mean: !!python/object/apply:numpy.core.multiarray.scalar\n", - " - *id001\n", - " - !!binary |\n", - " zSXlDMrm3D8=\n", - " target_std: !!python/object/apply:numpy.core.multiarray.scalar\n", - " - *id001\n", - " - !!binary |\n", - " dPVlWhRA+D8=\n", - "gpus: 1\n", - "logger: tensorboard\n", - "model: gemnet_t\n", - "model_attributes:\n", - " activation: silu\n", - " cbf:\n", - " name: spherical_harmonics\n", - " cutoff: 6.0\n", - " direct_forces: true\n", - " emb_size_atom: 512\n", - " emb_size_bil_trip: 64\n", - " emb_size_cbf: 16\n", - " emb_size_edge: 512\n", - " emb_size_rbf: 16\n", - " emb_size_trip: 64\n", - " envelope:\n", - " exponent: 5\n", - " name: polynomial\n", - " extensive: true\n", - " max_neighbors: 50\n", - " num_after_skip: 2\n", - " num_atom: 3\n", - " num_before_skip: 1\n", - " num_blocks: 3\n", - " num_concat: 1\n", - " num_radial: 128\n", - " num_spherical: 7\n", - " otf_graph: false\n", - " output_init: HeOrthogonal\n", - " rbf:\n", - " name: gaussian\n", - " regress_forces: true\n", - " scale_file: configs/s2ef/all/gemnet/scaling_factors/gemnet-dT.json\n", - "optim:\n", - " batch_size: 1\n", - " clip_grad_norm: 10\n", - " ema_decay: 0.999\n", - " eval_batch_size: 1\n", - " factor: 0.8\n", - " force_coefficient: 100\n", - " loss_energy: mae\n", - " loss_force: l2mae\n", - " lr_initial: 0.0005\n", - " max_epochs: 1\n", - " mode: min\n", - " num_workers: 2\n", - " optimizer: AdamW\n", - " optimizer_params:\n", - " amsgrad: true\n", - " patience: 3\n", - " scheduler: ReduceLROnPlateau\n", - "slurm: {}\n", - "task:\n", - " dataset: trajectory_lmdb\n", - " description: Regressing to energies and forces for DFT trajectories from OCP\n", - " eval_on_free_atoms: true\n", - " grad_input: atomic forces\n", - " labels:\n", - " - potential energy\n", - " metric: mae\n", - " train_on_free_atoms: true\n", - " type: regression\n", - "val_dataset:\n", - " src: data/s2ef/val_20\n", - "\n", - "2021-11-22 17:15:16 (INFO): Loading dataset: trajectory_lmdb\n", - "2021-11-22 17:15:16 (INFO): Loading model: gemnet_t\n", - "2021-11-22 17:15:20 (INFO): Loaded GemNetT with 31671825 parameters.\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "2021-11-22 17:15:20 (WARNING): Model gradient logging to tensorboard not yet supported.\n" - ] - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "4yGWsRq3PF8R" - }, - "source": [ - "trainer.model" - ], - "execution_count": 3, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "vA8nDKt4QqkO" - }, - "source": [ - "### Train the model" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "WFmssq5oPFd_", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "a80e93f3-637a-4394-9ec8-4c38bac27461" - }, - "source": [ - "trainer.train()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "2021-11-22 17:15:33 (INFO): forcesx_mae: 2.37e+00, forcesy_mae: 3.27e+00, forcesz_mae: 3.07e+00, forces_mae: 2.90e+00, forces_cos: -4.09e-02, forces_magnitude: 5.73e+00, energy_mae: 4.82e+01, energy_force_within_threshold: 0.00e+00, loss: 8.53e+02, lr: 5.00e-04, epoch: 5.00e-02, step: 5.00e+00\n", - "2021-11-22 17:15:39 (INFO): forcesx_mae: 2.42e+00, forcesy_mae: 3.28e+00, forcesz_mae: 3.03e+00, forces_mae: 2.91e+00, forces_cos: -1.82e-02, forces_magnitude: 5.77e+00, energy_mae: 4.96e+01, energy_force_within_threshold: 0.00e+00, loss: 7.71e+02, lr: 5.00e-04, epoch: 1.00e-01, step: 1.00e+01\n", - "2021-11-22 17:15:46 (INFO): forcesx_mae: 1.78e+01, forcesy_mae: 8.20e+01, forcesz_mae: 2.61e+01, forces_mae: 4.20e+01, forces_cos: -1.39e-02, forces_magnitude: 9.52e+01, energy_mae: 2.10e+03, energy_force_within_threshold: 0.00e+00, loss: 1.45e+04, lr: 5.00e-04, epoch: 1.50e-01, step: 1.50e+01\n", - "2021-11-22 17:15:53 (INFO): forcesx_mae: 1.17e+01, forcesy_mae: 4.24e+01, forcesz_mae: 1.78e+01, forces_mae: 2.40e+01, forces_cos: -2.96e-02, forces_magnitude: 5.36e+01, energy_mae: 1.12e+03, energy_force_within_threshold: 0.00e+00, loss: 3.92e+03, lr: 5.00e-04, epoch: 2.00e-01, step: 2.00e+01\n", - "2021-11-22 17:15:59 (INFO): forcesx_mae: 1.40e+01, forcesy_mae: 3.46e+01, forcesz_mae: 1.56e+01, forces_mae: 2.14e+01, forces_cos: 9.12e-03, forces_magnitude: 4.50e+01, energy_mae: 4.24e+02, energy_force_within_threshold: 0.00e+00, loss: 4.87e+03, lr: 5.00e-04, epoch: 2.50e-01, step: 2.50e+01\n", - "2021-11-22 17:16:06 (INFO): forcesx_mae: 9.72e+01, forcesy_mae: 2.24e+02, forcesz_mae: 1.05e+02, forces_mae: 1.42e+02, forces_cos: -4.17e-02, forces_magnitude: 3.00e+02, energy_mae: 4.30e+03, energy_force_within_threshold: 0.00e+00, loss: 3.78e+04, lr: 5.00e-04, epoch: 3.00e-01, step: 3.00e+01\n", - "2021-11-22 17:16:12 (INFO): forcesx_mae: 1.33e+00, forcesy_mae: 1.43e+00, forcesz_mae: 1.35e+00, forces_mae: 1.37e+00, forces_cos: 6.92e-03, forces_magnitude: 2.72e+00, energy_mae: 2.62e+01, energy_force_within_threshold: 0.00e+00, loss: 2.00e+02, lr: 5.00e-04, epoch: 3.50e-01, step: 3.50e+01\n", - "2021-11-22 17:16:19 (INFO): forcesx_mae: 1.05e+02, forcesy_mae: 2.08e+02, forcesz_mae: 1.16e+02, forces_mae: 1.43e+02, forces_cos: -2.02e-02, forces_magnitude: 2.95e+02, energy_mae: 3.29e+03, energy_force_within_threshold: 0.00e+00, loss: 3.36e+04, lr: 5.00e-04, epoch: 4.00e-01, step: 4.00e+01\n", - "2021-11-22 17:16:25 (INFO): forcesx_mae: 2.25e+02, forcesy_mae: 5.61e+02, forcesz_mae: 2.86e+02, forces_mae: 3.57e+02, forces_cos: 7.29e-02, forces_magnitude: 7.71e+02, energy_mae: 7.83e+03, energy_force_within_threshold: 0.00e+00, loss: 7.47e+04, lr: 5.00e-04, epoch: 4.50e-01, step: 4.50e+01\n", - "2021-11-22 17:16:32 (INFO): forcesx_mae: 6.88e-01, forcesy_mae: 7.65e-01, forcesz_mae: 6.54e-01, forces_mae: 7.03e-01, forces_cos: -7.49e-02, forces_magnitude: 1.25e+00, energy_mae: 1.88e+01, energy_force_within_threshold: 0.00e+00, loss: 1.05e+02, lr: 5.00e-04, epoch: 5.00e-01, step: 5.00e+01\n", - "2021-11-22 17:16:38 (INFO): forcesx_mae: 5.71e-01, forcesy_mae: 6.43e-01, forcesz_mae: 6.73e-01, forces_mae: 6.29e-01, forces_cos: 1.62e-01, forces_magnitude: 9.06e-01, energy_mae: 2.06e+01, energy_force_within_threshold: 0.00e+00, loss: 9.64e+01, lr: 5.00e-04, epoch: 5.50e-01, step: 5.50e+01\n", - "2021-11-22 17:16:45 (INFO): forcesx_mae: 4.86e-01, forcesy_mae: 4.93e-01, forcesz_mae: 5.01e-01, forces_mae: 4.93e-01, forces_cos: -2.05e-02, forces_magnitude: 9.57e-01, energy_mae: 1.11e+01, energy_force_within_threshold: 0.00e+00, loss: 7.26e+01, lr: 5.00e-04, epoch: 6.00e-01, step: 6.00e+01\n", - "2021-11-22 17:16:51 (INFO): forcesx_mae: 9.37e-01, forcesy_mae: 2.66e+00, forcesz_mae: 1.30e+00, forces_mae: 1.63e+00, forces_cos: 2.07e-01, forces_magnitude: 2.77e+00, energy_mae: 8.03e+00, energy_force_within_threshold: 0.00e+00, loss: 2.04e+02, lr: 5.00e-04, epoch: 6.50e-01, step: 6.50e+01\n", - "2021-11-22 17:16:58 (INFO): forcesx_mae: 4.89e-01, forcesy_mae: 4.57e-01, forcesz_mae: 4.84e-01, forces_mae: 4.77e-01, forces_cos: 1.22e-01, forces_magnitude: 6.81e-01, energy_mae: 6.36e+00, energy_force_within_threshold: 0.00e+00, loss: 6.72e+01, lr: 5.00e-04, epoch: 7.00e-01, step: 7.00e+01\n", - "2021-11-22 17:17:04 (INFO): forcesx_mae: 1.61e+00, forcesy_mae: 1.96e+00, forcesz_mae: 1.58e+00, forces_mae: 1.72e+00, forces_cos: 5.39e-02, forces_magnitude: 3.33e+00, energy_mae: 1.70e+01, energy_force_within_threshold: 0.00e+00, loss: 1.97e+02, lr: 5.00e-04, epoch: 7.50e-01, step: 7.50e+01\n", - "2021-11-22 17:17:11 (INFO): forcesx_mae: 9.00e-01, forcesy_mae: 1.00e+00, forcesz_mae: 1.10e+00, forces_mae: 1.00e+00, forces_cos: 2.08e-02, forces_magnitude: 1.65e+00, energy_mae: 1.93e+01, energy_force_within_threshold: 0.00e+00, loss: 1.34e+02, lr: 5.00e-04, epoch: 8.00e-01, step: 8.00e+01\n", - "2021-11-22 17:17:17 (INFO): forcesx_mae: 6.05e-01, forcesy_mae: 1.65e+00, forcesz_mae: 8.28e-01, forces_mae: 1.03e+00, forces_cos: 5.95e-02, forces_magnitude: 1.87e+00, energy_mae: 1.63e+01, energy_force_within_threshold: 0.00e+00, loss: 1.30e+02, lr: 5.00e-04, epoch: 8.50e-01, step: 8.50e+01\n", - "2021-11-22 17:17:24 (INFO): forcesx_mae: 5.26e-01, forcesy_mae: 7.32e-01, forcesz_mae: 5.05e-01, forces_mae: 5.88e-01, forces_cos: 5.29e-04, forces_magnitude: 1.07e+00, energy_mae: 4.13e+00, energy_force_within_threshold: 0.00e+00, loss: 7.10e+01, lr: 5.00e-04, epoch: 9.00e-01, step: 9.00e+01\n", - "2021-11-22 17:17:30 (INFO): forcesx_mae: 4.01e-01, forcesy_mae: 4.67e-01, forcesz_mae: 3.45e-01, forces_mae: 4.04e-01, forces_cos: 6.19e-02, forces_magnitude: 7.39e-01, energy_mae: 3.07e+00, energy_force_within_threshold: 0.00e+00, loss: 5.64e+01, lr: 5.00e-04, epoch: 9.50e-01, step: 9.50e+01\n", - "2021-11-22 17:17:37 (INFO): forcesx_mae: 4.27e-01, forcesy_mae: 7.22e-01, forcesz_mae: 4.27e-01, forces_mae: 5.25e-01, forces_cos: 4.71e-02, forces_magnitude: 9.01e-01, energy_mae: 8.72e+00, energy_force_within_threshold: 0.00e+00, loss: 6.92e+01, lr: 5.00e-04, epoch: 1.00e+00, step: 1.00e+02\n", - "2021-11-22 17:17:39 (INFO): Evaluating on val.\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "device 0: 100%|██████████| 20/20 [00:02<00:00, 7.13it/s]" - ] - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "2021-11-22 17:17:42 (INFO): forcesx_mae: 1.4760, forcesy_mae: 1.1875, forcesz_mae: 1.6235, forces_mae: 1.4290, forces_cos: -0.2961, forces_magnitude: 2.5544, energy_mae: 7.8576, energy_force_within_threshold: 0.0000, loss: 193.1406, epoch: 1.0000\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ZHkrkULBQ1Xy" - }, - "source": [ - "### Validate the model" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "paYx3_FBQ8OE" - }, - "source": [ - "#### Load the best checkpoint\n", - "\n", - "The `checkpoints` directory contains two checkpoint files:\n", - "\n", - "\n", - "\n", - "* `best_checkpoint.pt` - Model parameters corresponding to the best val performance during training. Used for predictions.\n", - "* `checkpoint.pt` - Model parameters and optimizer settings for the latest checkpoint. Used to continue training.\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "UW4ihgBdQ0Yt", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 35 - }, - "outputId": "8226c4d2-041d-46d3-c0d9-02ce85f8fc93" - }, - "source": [ - "# The `best_checpoint.pt` file contains the checkpoint with the best val performance\n", - "checkpoint_path = os.path.join(trainer.config[\"cmd\"][\"checkpoint_dir\"], \"best_checkpoint.pt\")\n", - "checkpoint_path" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "string" - }, - "text/plain": [ - "'./checkpoints/2021-11-22-17-14-40-S2EF-example/best_checkpoint.pt'" - ] - }, - "metadata": {}, - "execution_count": 12 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "6jppgncMTivj", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "a15e13a5-4c1d-4fd4-c2c3-ef9fa210a9dd" - }, - "source": [ - "# Append the dataset with the test set. We use the same val set for demonstration.\n", - "\n", - "# Dataset\n", - "dataset.append(\n", - " {'src': val_src}, # test set (optional)\n", - ")\n", - "dataset" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "[{'grad_target_mean': 0.0,\n", - " 'grad_target_std': 1.5156444102461508,\n", - " 'normalize_labels': True,\n", - " 'src': 'data/s2ef/train_100',\n", - " 'target_mean': 0.45158625849998374,\n", - " 'target_std': 1.5156444102461508},\n", - " {'src': 'data/s2ef/val_20'},\n", - " {'src': 'data/s2ef/val_20'}]" - ] - }, - "metadata": {}, - "execution_count": 13 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "MaVROfxzRLaj", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "0f143c63-1e1d-44c4-c641-34bac1706c2c" - }, - "source": [ - "pretrained_trainer = ForcesTrainer(\n", - " task=task,\n", - " model=model,\n", - " dataset=dataset,\n", - " optimizer=optimizer,\n", - " identifier=\"S2EF-val-example\",\n", - " run_dir=\"./\", # directory to save results if is_debug=False. Prediction files are saved here so be careful not to override!\n", - " is_debug=False, # if True, do not save checkpoint, logs, or results\n", - " is_vis=False,\n", - " print_every=10,\n", - " seed=0, # random seed to use\n", - " logger=\"tensorboard\", # logger of choice (tensorboard and wandb supported)\n", - " local_rank=0,\n", - " amp=True, # use PyTorch Automatic Mixed Precision (faster training and less memory usage)\n", - ")\n", - "\n", - "pretrained_trainer.load_checkpoint(checkpoint_path=checkpoint_path)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "amp: true\n", - "cmd:\n", - " checkpoint_dir: ./checkpoints/2021-11-22-17-16-48-S2EF-val-example\n", - " commit: bc04a90\n", - " identifier: S2EF-val-example\n", - " logs_dir: ./logs/tensorboard/2021-11-22-17-16-48-S2EF-val-example\n", - " print_every: 10\n", - " results_dir: ./results/2021-11-22-17-16-48-S2EF-val-example\n", - " seed: 0\n", - " timestamp_id: 2021-11-22-17-16-48-S2EF-val-example\n", - "dataset:\n", - " grad_target_mean: 0.0\n", - " grad_target_std: !!python/object/apply:numpy.core.multiarray.scalar\n", - " - &id001 !!python/object/apply:numpy.dtype\n", - " args:\n", - " - f8\n", - " - false\n", - " - true\n", - " state: !!python/tuple\n", - " - 3\n", - " - <\n", - " - null\n", - " - null\n", - " - null\n", - " - -1\n", - " - -1\n", - " - 0\n", - " - !!binary |\n", - " dPVlWhRA+D8=\n", - " normalize_labels: true\n", - " src: data/s2ef/train_100\n", - " target_mean: !!python/object/apply:numpy.core.multiarray.scalar\n", - " - *id001\n", - " - !!binary |\n", - " zSXlDMrm3D8=\n", - " target_std: !!python/object/apply:numpy.core.multiarray.scalar\n", - " - *id001\n", - " - !!binary |\n", - " dPVlWhRA+D8=\n", - "gpus: 1\n", - "logger: tensorboard\n", - "model: gemnet_t\n", - "model_attributes:\n", - " activation: silu\n", - " cbf:\n", - " name: spherical_harmonics\n", - " cutoff: 6.0\n", - " direct_forces: true\n", - " emb_size_atom: 512\n", - " emb_size_bil_trip: 64\n", - " emb_size_cbf: 16\n", - " emb_size_edge: 512\n", - " emb_size_rbf: 16\n", - " emb_size_trip: 64\n", - " envelope:\n", - " exponent: 5\n", - " name: polynomial\n", - " extensive: true\n", - " max_neighbors: 50\n", - " num_after_skip: 2\n", - " num_atom: 3\n", - " num_before_skip: 1\n", - " num_blocks: 3\n", - " num_concat: 1\n", - " num_radial: 128\n", - " num_spherical: 7\n", - " otf_graph: false\n", - " output_init: HeOrthogonal\n", - " rbf:\n", - " name: gaussian\n", - " regress_forces: true\n", - " scale_file: configs/s2ef/all/gemnet/scaling_factors/gemnet-dT.json\n", - "optim:\n", - " batch_size: 1\n", - " clip_grad_norm: 10\n", - " ema_decay: 0.999\n", - " eval_batch_size: 1\n", - " factor: 0.8\n", - " force_coefficient: 100\n", - " loss_energy: mae\n", - " loss_force: l2mae\n", - " lr_initial: 0.0005\n", - " max_epochs: 1\n", - " mode: min\n", - " num_workers: 2\n", - " optimizer: AdamW\n", - " optimizer_params:\n", - " amsgrad: true\n", - " patience: 3\n", - " scheduler: ReduceLROnPlateau\n", - "slurm: {}\n", - "task:\n", - " dataset: trajectory_lmdb\n", - " description: Regressing to energies and forces for DFT trajectories from OCP\n", - " eval_on_free_atoms: true\n", - " grad_input: atomic forces\n", - " labels:\n", - " - potential energy\n", - " metric: mae\n", - " train_on_free_atoms: true\n", - " type: regression\n", - "test_dataset:\n", - " src: data/s2ef/val_20\n", - "val_dataset:\n", - " src: data/s2ef/val_20\n", - "\n", - "2021-11-22 17:17:43 (INFO): Loading dataset: trajectory_lmdb\n", - "2021-11-22 17:17:43 (INFO): Loading model: gemnet_t\n", - "2021-11-22 17:17:46 (INFO): Loaded GemNetT with 31671825 parameters.\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "2021-11-22 17:17:46 (WARNING): Model gradient logging to tensorboard not yet supported.\n" - ] - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "2021-11-22 17:17:46 (INFO): Loading checkpoint from: ./checkpoints/2021-11-22-17-14-40-S2EF-example/best_checkpoint.pt\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "kWetMgsmRBZS" - }, - "source": [ - "#### Run on the test set" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "jbiPZNeJQ0WK", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "dd346bcd-f30a-4333-a1ca-e18c057cb238" - }, - "source": [ - "# make predictions on the existing test_loader\n", - "predictions = pretrained_trainer.predict(pretrained_trainer.test_loader, results_file=\"s2ef_results\", disable_tqdm=False)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "2021-11-22 17:17:46 (INFO): Predicting on test.\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "device 0: 100%|██████████| 20/20 [00:02<00:00, 7.47it/s]" - ] - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "2021-11-22 17:17:49 (INFO): Writing results to ./results/2021-11-22-17-16-48-S2EF-val-example/s2ef_s2ef_results.npz\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "\n" - ] - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "zaZGqeyqNCXz" - }, - "source": [ - "energies = predictions[\"energy\"]\n", - "forces = predictions[\"forces\"]" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "o8L28axZ4NVj" - }, - "source": [ - "## Initial Structure to Relaxed Energy (IS2RE) \n", - "The IS2RE task predicts the relaxed energy (energy of the relaxed state) given the initial state of a system. One approach to this is by training a regression model mapping the initial structure to the relaxed energy. We call this the *direct* approach to the IS2RE task. \n", - "\n", - "An alternative is to perform a structure relaxation using an S2EF model to obtain the relaxed state and compute the energy of that state (see the IS2RS task below for details about relaxation).\n", - "\n", - "### Steps for training an IS2RE model\n", - "1) Define or load a configuration (config), which includes the following\n", - "* task\n", - "* model\n", - "* optimizer\n", - "* dataset\n", - "* trainer\n", - "\n", - "2) Create an EnergyTrainer object\n", - "\n", - "3) Train the model\n", - "\n", - "4) Validate the model" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "kEPPcr0YYHpH" - }, - "source": [ - "### Imports" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "d-0GsaGDW16G" - }, - "source": [ - "from ocpmodels.trainers import EnergyTrainer\n", - "from ocpmodels.datasets import SinglePointLmdbDataset\n", - "from ocpmodels import models\n", - "from ocpmodels.common import logger\n", - "from ocpmodels.common.utils import setup_logging\n", - "setup_logging()\n", - "\n", - "import numpy as np\n", - "import copy\n", - "import os" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "w20BJZ_GYWat" - }, - "source": [ - "### Dataset" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "BlL5gGPQW1te" - }, - "source": [ - "train_src = \"data/is2re/train_100/data.lmdb\"\n", - "val_src = \"data/is2re/val_20/data.lmdb\"" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "yT5qHT2wamPh" - }, - "source": [ - "### Normalize data\n", - "\n", - "If you wish to normalize the targets we must compute the mean and standard deviation for our energy values." - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "vaY-ZUMaamPh" - }, - "source": [ - "train_dataset = SinglePointLmdbDataset({\"src\": train_src})\n", - "\n", - "energies = []\n", - "for data in train_dataset:\n", - " energies.append(data.y_relaxed)\n", - "\n", - "mean = np.mean(energies)\n", - "stdev = np.std(energies)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "K4SSW0UGYeYM" - }, - "source": [ - "### Define the Config\n", - "\n", - "For this example, we will explicitly define the config; however, a set of default configs can be found [here](https://github.com/Open-Catalyst-Project/ocp/tree/master/configs). Default config yaml files can easily be loaded with the following [utility](https://github.com/Open-Catalyst-Project/ocp/blob/aa8e44d50229fce887b3a94a5661c4f85cd73eed/ocpmodels/common/utils.py#L361-L400). Loading a yaml config is preferrable when launching jobs from the command line. We have included our best models' config files here for reference. \n", - "\n", - "**Note** - we only train for a single epoch with a reduced batch size (GPU memory constraints) for demonstration purposes, modify accordingly for full convergence." - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "TiHmkTm6W1do" - }, - "source": [ - "# Task\n", - "task = {\n", - " \"dataset\": \"single_point_lmdb\",\n", - " \"description\": \"Relaxed state energy prediction from initial structure.\",\n", - " \"type\": \"regression\",\n", - " \"metric\": \"mae\",\n", - " \"labels\": [\"relaxed energy\"],\n", - "}\n", - "# Model\n", - "model = {\n", - " 'name': 'gemnet_t',\n", - " \"num_spherical\": 7,\n", - " \"num_radial\": 64,\n", - " \"num_blocks\": 5,\n", - " \"emb_size_atom\": 256,\n", - " \"emb_size_edge\": 512,\n", - " \"emb_size_trip\": 64,\n", - " \"emb_size_rbf\": 16,\n", - " \"emb_size_cbf\": 16,\n", - " \"emb_size_bil_trip\": 64,\n", - " \"num_before_skip\": 1,\n", - " \"num_after_skip\": 2,\n", - " \"num_concat\": 1,\n", - " \"num_atom\": 3,\n", - " \"cutoff\": 6.0,\n", - " \"max_neighbors\": 50,\n", - " \"rbf\": {\"name\": \"gaussian\"},\n", - " \"envelope\": {\n", - " \"name\": \"polynomial\",\n", - " \"exponent\": 5,\n", - " },\n", - " \"cbf\": {\"name\": \"spherical_harmonics\"},\n", - " \"extensive\": True,\n", - " \"otf_graph\": False,\n", - " \"output_init\": \"HeOrthogonal\",\n", - " \"activation\": \"silu\",\n", - " \"scale_file\": \"configs/s2ef/all/gemnet/scaling_factors/gemnet-dT.json\",\n", - " \"regress_forces\": False,\n", - " \"direct_forces\": False,\n", - "}\n", - "# Optimizer\n", - "optimizer = {\n", - " 'batch_size': 1, # originally 32\n", - " 'eval_batch_size': 1, # originally 32\n", - " 'num_workers': 2,\n", - " 'lr_initial': 1.e-4,\n", - " 'optimizer': 'AdamW',\n", - " 'optimizer_params': {\"amsgrad\": True},\n", - " 'scheduler': \"ReduceLROnPlateau\",\n", - " 'mode': \"min\",\n", - " 'factor': 0.8,\n", - " 'patience': 3,\n", - " 'max_epochs': 1, # used for demonstration purposes\n", - " 'ema_decay': 0.999,\n", - " 'clip_grad_norm': 10,\n", - " 'loss_energy': 'mae',\n", - "}\n", - "# Dataset\n", - "dataset = [\n", - " {'src': train_src,\n", - " 'normalize_labels': True,\n", - " 'target_mean': mean,\n", - " 'target_std': stdev,\n", - " }, # train set \n", - " {'src': val_src}, # val set (optional)\n", - "]" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "oG5w1sk-v1LI" - }, - "source": [ - "###Create EnergyTrainer" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "ExmkV2K1W07H", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "4e875ed0-258b-43eb-e191-d00274400128" - }, - "source": [ - "energy_trainer = EnergyTrainer(\n", - " task=task,\n", - " model=copy.deepcopy(model), # copied for later use, not necessary in practice.\n", - " dataset=dataset,\n", - " optimizer=optimizer,\n", - " identifier=\"IS2RE-example\",\n", - " run_dir=\"./\", # directory to save results if is_debug=False. Prediction files are saved here so be careful not to override!\n", - " is_debug=False, # if True, do not save checkpoint, logs, or results\n", - " is_vis=False,\n", - " print_every=5,\n", - " seed=0, # random seed to use\n", - " logger=\"tensorboard\", # logger of choice (tensorboard and wandb supported)\n", - " local_rank=0,\n", - " amp=True, # use PyTorch Automatic Mixed Precision (faster training and less memory usage) \n", - ")" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "amp: true\n", - "cmd:\n", - " checkpoint_dir: ./checkpoints/2021-11-22-17-21-04-IS2RE-example\n", - " commit: bc04a90\n", - " identifier: IS2RE-example\n", - " logs_dir: ./logs/tensorboard/2021-11-22-17-21-04-IS2RE-example\n", - " print_every: 5\n", - " results_dir: ./results/2021-11-22-17-21-04-IS2RE-example\n", - " seed: 0\n", - " timestamp_id: 2021-11-22-17-21-04-IS2RE-example\n", - "dataset:\n", - " normalize_labels: true\n", - " src: data/is2re/train_100/data.lmdb\n", - " target_mean: !!python/object/apply:numpy.core.multiarray.scalar\n", - " - &id001 !!python/object/apply:numpy.dtype\n", - " args:\n", - " - f8\n", - " - false\n", - " - true\n", - " state: !!python/tuple\n", - " - 3\n", - " - <\n", - " - null\n", - " - null\n", - " - null\n", - " - -1\n", - " - -1\n", - " - 0\n", - " - !!binary |\n", - " MjyJzgpQ978=\n", - " target_std: !!python/object/apply:numpy.core.multiarray.scalar\n", - " - *id001\n", - " - !!binary |\n", - " PnyyzMtk/T8=\n", - "gpus: 1\n", - "logger: tensorboard\n", - "model: gemnet_t\n", - "model_attributes:\n", - " activation: silu\n", - " cbf:\n", - " name: spherical_harmonics\n", - " cutoff: 6.0\n", - " direct_forces: false\n", - " emb_size_atom: 256\n", - " emb_size_bil_trip: 64\n", - " emb_size_cbf: 16\n", - " emb_size_edge: 512\n", - " emb_size_rbf: 16\n", - " emb_size_trip: 64\n", - " envelope:\n", - " exponent: 5\n", - " name: polynomial\n", - " extensive: true\n", - " max_neighbors: 50\n", - " num_after_skip: 2\n", - " num_atom: 3\n", - " num_before_skip: 1\n", - " num_blocks: 5\n", - " num_concat: 1\n", - " num_radial: 64\n", - " num_spherical: 7\n", - " otf_graph: false\n", - " output_init: HeOrthogonal\n", - " rbf:\n", - " name: gaussian\n", - " regress_forces: false\n", - " scale_file: configs/s2ef/all/gemnet/scaling_factors/gemnet-dT.json\n", - "optim:\n", - " batch_size: 1\n", - " clip_grad_norm: 10\n", - " ema_decay: 0.999\n", - " eval_batch_size: 1\n", - " factor: 0.8\n", - " loss_energy: mae\n", - " lr_initial: 0.0001\n", - " max_epochs: 1\n", - " mode: min\n", - " num_workers: 2\n", - " optimizer: AdamW\n", - " optimizer_params:\n", - " amsgrad: true\n", - " patience: 3\n", - " scheduler: ReduceLROnPlateau\n", - "slurm: {}\n", - "task:\n", - " dataset: single_point_lmdb\n", - " description: Relaxed state energy prediction from initial structure.\n", - " labels:\n", - " - relaxed energy\n", - " metric: mae\n", - " type: regression\n", - "val_dataset:\n", - " src: data/is2re/val_20/data.lmdb\n", - "\n", - "2021-11-22 17:20:24 (INFO): Loading dataset: single_point_lmdb\n", - "2021-11-22 17:20:24 (INFO): Loading model: gemnet_t\n", - "2021-11-22 17:20:26 (INFO): Loaded GemNetT with 22774037 parameters.\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "2021-11-22 17:20:26 (WARNING): Model gradient logging to tensorboard not yet supported.\n" - ] - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "tnJer5rGwjwi" - }, - "source": [ - "energy_trainer.model" - ], - "execution_count": 4, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "pto2SpJPwlz1" - }, - "source": [ - "### Train the Model" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "iHMRkFplwsky", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "df58e36a-6bb9-411a-ce4a-b9258fc06a55" - }, - "source": [ - "energy_trainer.train()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "energy_mae: 6.21e+01, energy_mse: 3.86e+03, energy_within_threshold: 0.00e+00, loss: 6.76e+01, lr: 1.00e-04, epoch: 5.00e-02, step: 5.00e+00\n", - "energy_mae: 1.86e+02, energy_mse: 3.46e+04, energy_within_threshold: 0.00e+00, loss: 2.03e+02, lr: 1.00e-04, epoch: 1.00e-01, step: 1.00e+01\n", - "energy_mae: 2.88e+03, energy_mse: 8.31e+06, energy_within_threshold: 0.00e+00, loss: 3.14e+03, lr: 1.00e-04, epoch: 1.50e-01, step: 1.50e+01\n", - "energy_mae: 5.92e+02, energy_mse: 3.51e+05, energy_within_threshold: 0.00e+00, loss: 3.22e+02, lr: 1.00e-04, epoch: 2.00e-01, step: 2.00e+01\n", - "energy_mae: 4.49e+03, energy_mse: 2.02e+07, energy_within_threshold: 0.00e+00, loss: 2.45e+03, lr: 1.00e-04, epoch: 2.50e-01, step: 2.50e+01\n", - "energy_mae: 4.48e+01, energy_mse: 2.01e+03, energy_within_threshold: 0.00e+00, loss: 2.44e+01, lr: 1.00e-04, epoch: 3.00e-01, step: 3.00e+01\n", - "energy_mae: 1.29e+02, energy_mse: 1.68e+04, energy_within_threshold: 0.00e+00, loss: 7.05e+01, lr: 1.00e-04, epoch: 3.50e-01, step: 3.50e+01\n", - "energy_mae: 2.21e+02, energy_mse: 4.90e+04, energy_within_threshold: 0.00e+00, loss: 1.21e+02, lr: 1.00e-04, epoch: 4.00e-01, step: 4.00e+01\n", - "energy_mae: 2.20e+02, energy_mse: 4.84e+04, energy_within_threshold: 0.00e+00, loss: 1.20e+02, lr: 1.00e-04, epoch: 4.50e-01, step: 4.50e+01\n", - "energy_mae: 1.82e+01, energy_mse: 3.32e+02, energy_within_threshold: 0.00e+00, loss: 9.91e+00, lr: 1.00e-04, epoch: 5.00e-01, step: 5.00e+01\n", - "energy_mae: 2.80e+03, energy_mse: 7.84e+06, energy_within_threshold: 0.00e+00, loss: 1.52e+03, lr: 1.00e-04, epoch: 5.50e-01, step: 5.50e+01\n", - "energy_mae: 5.37e+01, energy_mse: 2.88e+03, energy_within_threshold: 0.00e+00, loss: 2.92e+01, lr: 1.00e-04, epoch: 6.00e-01, step: 6.00e+01\n", - "energy_mae: 4.53e+00, energy_mse: 2.05e+01, energy_within_threshold: 0.00e+00, loss: 2.46e+00, lr: 1.00e-04, epoch: 6.50e-01, step: 6.50e+01\n", - "energy_mae: 2.54e+03, energy_mse: 6.47e+06, energy_within_threshold: 0.00e+00, loss: 1.38e+03, lr: 1.00e-04, epoch: 7.00e-01, step: 7.00e+01\n", - "energy_mae: 5.55e+02, energy_mse: 3.08e+05, energy_within_threshold: 0.00e+00, loss: 3.02e+02, lr: 1.00e-04, epoch: 7.50e-01, step: 7.50e+01\n", - "energy_mae: 1.72e+02, energy_mse: 2.95e+04, energy_within_threshold: 0.00e+00, loss: 9.35e+01, lr: 1.00e-04, epoch: 8.00e-01, step: 8.00e+01\n", - "energy_mae: 1.04e+02, energy_mse: 1.08e+04, energy_within_threshold: 0.00e+00, loss: 5.67e+01, lr: 1.00e-04, epoch: 8.50e-01, step: 8.50e+01\n", - "energy_mae: 1.68e+02, energy_mse: 2.81e+04, energy_within_threshold: 0.00e+00, loss: 9.13e+01, lr: 1.00e-04, epoch: 9.00e-01, step: 9.00e+01\n", - "energy_mae: 4.73e+02, energy_mse: 2.24e+05, energy_within_threshold: 0.00e+00, loss: 2.58e+02, lr: 1.00e-04, epoch: 9.50e-01, step: 9.50e+01\n", - "energy_mae: 2.12e+01, energy_mse: 4.49e+02, energy_within_threshold: 0.00e+00, loss: 1.15e+01, lr: 1.00e-04, epoch: 1.00e+00, step: 1.00e+02\n", - "2021-11-22 17:23:24 (INFO): Evaluating on val.\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "device 0: 100%|██████████| 20/20 [00:10<00:00, 1.86it/s]" - ] - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "2021-11-22 17:23:35 (INFO): energy_mae: 1028.9198, energy_mse: 3489562.4455, energy_within_threshold: 0.0000, loss: 560.1051, epoch: 1.0000\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "MkAd2MBmw8wO" - }, - "source": [ - "### Validate the Model" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "gaauxWdNw_-4" - }, - "source": [ - "#### Load the best checkpoint" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "xkj0Bslqws_N", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 35 - }, - "outputId": "2680bf59-c13e-4113-b3bd-15aa62c9007e" - }, - "source": [ - "# The `best_checpoint.pt` file contains the checkpoint with the best val performance\n", - "checkpoint_path = os.path.join(energy_trainer.config[\"cmd\"][\"checkpoint_dir\"], \"best_checkpoint.pt\")\n", - "checkpoint_path" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "string" - }, - "text/plain": [ - "'./checkpoints/2021-11-22-17-21-04-IS2RE-example/best_checkpoint.pt'" - ] - }, - "metadata": {}, - "execution_count": 29 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "BqmCqaFlbMZC", - "outputId": "fd9f2409-1b51-4b6a-90ca-0a00a40d2dfe" - }, - "source": [ - "# Append the dataset with the test set. We use the same val set for demonstration.\n", - "\n", - "# Dataset\n", - "dataset.append(\n", - " {'src': val_src}, # test set (optional)\n", - ")\n", - "dataset" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "[{'normalize_labels': True,\n", - " 'src': 'data/is2re/train_100/data.lmdb',\n", - " 'target_mean': -1.4570415561499996,\n", - " 'target_std': 1.8371084209427546},\n", - " {'src': 'data/is2re/val_20/data.lmdb'},\n", - " {'src': 'data/is2re/val_20/data.lmdb'}]" - ] - }, - "metadata": {}, - "execution_count": 30 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "IkcqadZIxXP-", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "5a07d5c7-cbdf-4901-80db-1fcf19c1c42b" - }, - "source": [ - "pretrained_energy_trainer = EnergyTrainer(\n", - " task=task,\n", - " model=model,\n", - " dataset=dataset,\n", - " optimizer=optimizer,\n", - " identifier=\"IS2RE-val-example\",\n", - " run_dir=\"./\", # directory to save results if is_debug=False. Prediction files are saved here so be careful not to override!\n", - " is_debug=False, # if True, do not save checkpoint, logs, or results\n", - " is_vis=False,\n", - " print_every=10,\n", - " seed=0, # random seed to use\n", - " logger=\"tensorboard\", # logger of choice (tensorboard and wandb supported)\n", - " local_rank=0,\n", - " amp=True, # use PyTorch Automatic Mixed Precision (faster training and less memory usage)\n", - ")\n", - "\n", - "pretrained_energy_trainer.load_checkpoint(checkpoint_path=checkpoint_path)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "amp: true\n", - "cmd:\n", - " checkpoint_dir: ./checkpoints/2021-11-22-17-23-12-IS2RE-val-example\n", - " commit: bc04a90\n", - " identifier: IS2RE-val-example\n", - " logs_dir: ./logs/tensorboard/2021-11-22-17-23-12-IS2RE-val-example\n", - " print_every: 10\n", - " results_dir: ./results/2021-11-22-17-23-12-IS2RE-val-example\n", - " seed: 0\n", - " timestamp_id: 2021-11-22-17-23-12-IS2RE-val-example\n", - "dataset:\n", - " normalize_labels: true\n", - " src: data/is2re/train_100/data.lmdb\n", - " target_mean: !!python/object/apply:numpy.core.multiarray.scalar\n", - " - &id001 !!python/object/apply:numpy.dtype\n", - " args:\n", - " - f8\n", - " - false\n", - " - true\n", - " state: !!python/tuple\n", - " - 3\n", - " - <\n", - " - null\n", - " - null\n", - " - null\n", - " - -1\n", - " - -1\n", - " - 0\n", - " - !!binary |\n", - " MjyJzgpQ978=\n", - " target_std: !!python/object/apply:numpy.core.multiarray.scalar\n", - " - *id001\n", - " - !!binary |\n", - " PnyyzMtk/T8=\n", - "gpus: 1\n", - "logger: tensorboard\n", - "model: gemnet_t\n", - "model_attributes:\n", - " activation: silu\n", - " cbf:\n", - " name: spherical_harmonics\n", - " cutoff: 6.0\n", - " direct_forces: false\n", - " emb_size_atom: 256\n", - " emb_size_bil_trip: 64\n", - " emb_size_cbf: 16\n", - " emb_size_edge: 512\n", - " emb_size_rbf: 16\n", - " emb_size_trip: 64\n", - " envelope:\n", - " exponent: 5\n", - " name: polynomial\n", - " extensive: true\n", - " max_neighbors: 50\n", - " num_after_skip: 2\n", - " num_atom: 3\n", - " num_before_skip: 1\n", - " num_blocks: 5\n", - " num_concat: 1\n", - " num_radial: 64\n", - " num_spherical: 7\n", - " otf_graph: false\n", - " output_init: HeOrthogonal\n", - " rbf:\n", - " name: gaussian\n", - " regress_forces: false\n", - " scale_file: configs/s2ef/all/gemnet/scaling_factors/gemnet-dT.json\n", - "optim:\n", - " batch_size: 1\n", - " clip_grad_norm: 10\n", - " ema_decay: 0.999\n", - " eval_batch_size: 1\n", - " factor: 0.8\n", - " loss_energy: mae\n", - " lr_initial: 0.0001\n", - " max_epochs: 1\n", - " mode: min\n", - " num_workers: 2\n", - " optimizer: AdamW\n", - " optimizer_params:\n", - " amsgrad: true\n", - " patience: 3\n", - " scheduler: ReduceLROnPlateau\n", - "slurm: {}\n", - "task:\n", - " dataset: single_point_lmdb\n", - " description: Relaxed state energy prediction from initial structure.\n", - " labels:\n", - " - relaxed energy\n", - " metric: mae\n", - " type: regression\n", - "test_dataset:\n", - " src: data/is2re/val_20/data.lmdb\n", - "val_dataset:\n", - " src: data/is2re/val_20/data.lmdb\n", - "\n", - "2021-11-22 17:23:36 (INFO): Loading dataset: single_point_lmdb\n", - "2021-11-22 17:23:36 (INFO): Loading model: gemnet_t\n", - "2021-11-22 17:23:38 (INFO): Loaded GemNetT with 22774037 parameters.\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "2021-11-22 17:23:38 (WARNING): Model gradient logging to tensorboard not yet supported.\n" - ] - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "2021-11-22 17:23:38 (INFO): Loading checkpoint from: ./checkpoints/2021-11-22-17-21-04-IS2RE-example/best_checkpoint.pt\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "TcUvAI81xoSt" - }, - "source": [ - "#### Test the model" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "VtCEFtXxxr3u", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "eadd2568-ac65-4d3a-b234-cafe99cee575" - }, - "source": [ - "# make predictions on the existing test_loader\n", - "predictions = pretrained_energy_trainer.predict(pretrained_trainer.test_loader, results_file=\"is2re_results\", disable_tqdm=False)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "2021-11-22 17:23:38 (INFO): Predicting on test.\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "device 0: 100%|██████████| 20/20 [00:03<00:00, 5.80it/s]" - ] - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "2021-11-22 17:23:42 (INFO): Writing results to ./results/2021-11-22-17-23-12-IS2RE-val-example/is2re_is2re_results.npz\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "\n" - ] - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "1UcfxFi4x4aD" - }, - "source": [ - "energies = predictions[\"energy\"]" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "gM9Wqk0GIxyU" - }, - "source": [ - "## Initial Structure to Relaxed Structure (IS2RS) \n", - "\n", - "We approach the IS2RS task by using a pre-trained S2EF model to iteratively run a structure optimization to arrive at a relaxed structure. While the majority of approaches for this task do this iteratively, we note it's possible to train a model to directly predict relaxed structures.\n", - "\n", - "## Steps for making IS2RS predictions\n", - "1) Define or load a configuration (config), which includes the following\n", - "* task with relaxation dataset information\n", - "* model\n", - "* optimizer\n", - "* dataset\n", - "* trainer\n", - "\n", - "2) Create a ForcesTrainer object\n", - "\n", - "3) Train a S2EF model or load an existing S2EF checkpoint\n", - "\n", - "4) Run relaxations\n", - "\n", - "**Note** For this task we'll be using a publicly released pre-trained checkpoint of our best model to perform relaxations." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "tNSI3hUAJAWc" - }, - "source": [ - "#### Imports" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "Z-WZXuRiI6Vo" - }, - "source": [ - "from ocpmodels.trainers import ForcesTrainer\n", - "from ocpmodels.datasets import TrajectoryLmdbDataset\n", - "from ocpmodels import models\n", - "from ocpmodels.common import logger\n", - "from ocpmodels.common.utils import setup_logging\n", - "setup_logging()\n", - "\n", - "import numpy as np" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "XFLZTpRvldZE" - }, - "source": [ - "### Dataset\n", - "\n", - "The IS2RS task requires an additional realxation dataset to be defined - `relax_dataset`. This dataset is read in similar to the IS2RE dataset - requiring an LMDB file. The same datasets are used for the IS2RE and IS2RS tasks." - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "irrPcbs4ldZF" - }, - "source": [ - "train_src = \"data/s2ef/train_100\"\n", - "val_src = \"data/s2ef/val_20\"\n", - "relax_dataset = \"data/is2re/val_20/data.lmdb\"" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "7gJ01gabd6BR" - }, - "source": [ - "### Download pretrained checkpoint" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "MiOeqFN-d-7K" - }, - "source": [ - "!wget -q https://dl.fbaipublicfiles.com/opencatalystproject/models/2021_08/s2ef/gemnet_t_direct_h512_all.pt\n", - "checkpoint_path = \"/content/ocp/gemnet_t_direct_h512_all.pt\"" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "fp1Ab8TGltP6" - }, - "source": [ - "### Define the Config" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "JLOydGsmltP7" - }, - "source": [ - "Running an iterative S2EF model for the IS2RS task can be run from any S2EF config given the following additions to the `task` portion of the config:\n", - "\n", - "* relax_dataset - IS2RE LMDB dataset\n", - "* *write_pos* - Whether to save out relaxed positions\n", - "* *relaxation_steps* - Number of optimization steps to run\n", - "* *relax_opt* - Dictionary of optimizer settings. Currently only LBFGS supported\n", - " * *maxstep* - Maximum distance an optimization is allowed to make\n", - " * *memory* - Memory history to use for LBFGS\n", - " * *damping* - Calculated step is multiplied by this factor before updating positions\n", - " * *alpha* - Initial guess for the Hessian\n", - " * *traj_dir* - If specified, directory to save out the full ML relaxation as an ASE trajectory. Useful for debugging or visualizing results.\n", - "* *num_relaxation_batches* - If specified, relaxations will only be run for a subset of the relaxation dataset. Useful for debugging or wanting to visualize a few systems.\n", - "\n", - "A sample relaxation config can be found [here](https://github.com/Open-Catalyst-Project/ocp/blob/1044e311182c1120c6e6d137ce6db3f445148973/configs/s2ef/2M/dimenet_plus_plus/dpp_relax.yml#L24-L33).\n", - " " - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "XU9DisuyltP8" - }, - "source": [ - "# Task\n", - "task = {\n", - " 'dataset': 'trajectory_lmdb', # dataset used for the S2EF task\n", - " 'description': 'Regressing to energies and forces for DFT trajectories from OCP',\n", - " 'type': 'regression',\n", - " 'metric': 'mae',\n", - " 'labels': ['potential energy'],\n", - " 'grad_input': 'atomic forces',\n", - " 'train_on_free_atoms': True,\n", - " 'eval_on_free_atoms': True,\n", - " 'relax_dataset': {\"src\": relax_dataset},\n", - " 'write_pos': True,\n", - " 'relaxation_steps': 200,\n", - " 'num_relaxation_batches': 1,\n", - " 'relax_opt': {\n", - " 'maxstep': 0.04,\n", - " 'memory': 50,\n", - " 'damping': 1.0,\n", - " 'alpha': 70.0,\n", - " 'traj_dir': \"ml-relaxations/is2rs-test\", \n", - " }\n", - "}\n", - "# Model\n", - "model = {\n", - " 'name': 'gemnet_t',\n", - " \"num_spherical\": 7,\n", - " \"num_radial\": 128,\n", - " \"num_blocks\": 3,\n", - " \"emb_size_atom\": 512,\n", - " \"emb_size_edge\": 512,\n", - " \"emb_size_trip\": 64,\n", - " \"emb_size_rbf\": 16,\n", - " \"emb_size_cbf\": 16,\n", - " \"emb_size_bil_trip\": 64,\n", - " \"num_before_skip\": 1,\n", - " \"num_after_skip\": 2,\n", - " \"num_concat\": 1,\n", - " \"num_atom\": 3,\n", - " \"cutoff\": 6.0,\n", - " \"max_neighbors\": 50,\n", - " \"rbf\": {\"name\": \"gaussian\"},\n", - " \"envelope\": {\n", - " \"name\": \"polynomial\",\n", - " \"exponent\": 5,\n", - " },\n", - " \"cbf\": {\"name\": \"spherical_harmonics\"},\n", - " \"extensive\": True,\n", - " \"otf_graph\": False,\n", - " \"output_init\": \"HeOrthogonal\",\n", - " \"activation\": \"silu\",\n", - " \"scale_file\": \"configs/s2ef/all/gemnet/scaling_factors/gemnet-dT.json\",\n", - " \"regress_forces\": True,\n", - " \"direct_forces\": True,\n", - "}\n", - "# Optimizer\n", - "optimizer = {\n", - " 'batch_size': 1, # originally 32\n", - " 'eval_batch_size': 1, # originally 32\n", - " 'num_workers': 2,\n", - " 'lr_initial': 5.e-4,\n", - " 'optimizer': 'AdamW',\n", - " 'optimizer_params': {\"amsgrad\": True},\n", - " 'scheduler': \"ReduceLROnPlateau\",\n", - " 'mode': \"min\",\n", - " 'factor': 0.8,\n", - " 'ema_decay': 0.999,\n", - " 'clip_grad_norm': 10,\n", - " 'patience': 3,\n", - " 'max_epochs': 1, # used for demonstration purposes\n", - " 'force_coefficient': 100,\n", - "}\n", - "# Dataset\n", - "dataset = [\n", - " {'src': train_src, 'normalize_labels': False}, # train set \n", - " {'src': val_src}, # val set (optional)\n", - "]" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "IsOqQIjnogkQ" - }, - "source": [ - "### Create the trainer" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "5KZvPu4hogkR", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "fdbbfa5c-0d7c-449f-8be5-ef2e5d17860d" - }, - "source": [ - "trainer = ForcesTrainer(\n", - " task=task,\n", - " model=model,\n", - " dataset=dataset,\n", - " optimizer=optimizer,\n", - " identifier=\"is2rs-example\",\n", - " run_dir=\"./\", # directory to save results if is_debug=False. Prediction files are saved here so be careful not to override!\n", - " is_debug=False, # if True, do not save checkpoint, logs, or results\n", - " is_vis=False,\n", - " print_every=5,\n", - " seed=0, # random seed to use\n", - " logger=\"tensorboard\", # logger of choice (tensorboard and wandb supported)\n", - " local_rank=0,\n", - " amp=True, # use PyTorch Automatic Mixed Precision (faster training and less memory usage)\n", - ")" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "amp: true\n", - "cmd:\n", - " checkpoint_dir: ./checkpoints/2021-11-22-17-42-24-is2rs-example\n", - " commit: bc04a90\n", - " identifier: is2rs-example\n", - " logs_dir: ./logs/tensorboard/2021-11-22-17-42-24-is2rs-example\n", - " print_every: 5\n", - " results_dir: ./results/2021-11-22-17-42-24-is2rs-example\n", - " seed: 0\n", - " timestamp_id: 2021-11-22-17-42-24-is2rs-example\n", - "dataset:\n", - " normalize_labels: false\n", - " src: data/s2ef/train_100\n", - "gpus: 1\n", - "logger: tensorboard\n", - "model: gemnet_t\n", - "model_attributes:\n", - " activation: silu\n", - " cbf:\n", - " name: spherical_harmonics\n", - " cutoff: 6.0\n", - " direct_forces: true\n", - " emb_size_atom: 512\n", - " emb_size_bil_trip: 64\n", - " emb_size_cbf: 16\n", - " emb_size_edge: 512\n", - " emb_size_rbf: 16\n", - " emb_size_trip: 64\n", - " envelope:\n", - " exponent: 5\n", - " name: polynomial\n", - " extensive: true\n", - " max_neighbors: 50\n", - " num_after_skip: 2\n", - " num_atom: 3\n", - " num_before_skip: 1\n", - " num_blocks: 3\n", - " num_concat: 1\n", - " num_radial: 128\n", - " num_spherical: 7\n", - " otf_graph: false\n", - " output_init: HeOrthogonal\n", - " rbf:\n", - " name: gaussian\n", - " regress_forces: true\n", - " scale_file: configs/s2ef/all/gemnet/scaling_factors/gemnet-dT.json\n", - "optim:\n", - " batch_size: 1\n", - " clip_grad_norm: 10\n", - " ema_decay: 0.999\n", - " eval_batch_size: 1\n", - " factor: 0.8\n", - " force_coefficient: 100\n", - " lr_initial: 0.0005\n", - " max_epochs: 1\n", - " mode: min\n", - " num_workers: 2\n", - " optimizer: AdamW\n", - " optimizer_params:\n", - " amsgrad: true\n", - " patience: 3\n", - " scheduler: ReduceLROnPlateau\n", - "slurm: {}\n", - "task:\n", - " dataset: trajectory_lmdb\n", - " description: Regressing to energies and forces for DFT trajectories from OCP\n", - " eval_on_free_atoms: true\n", - " grad_input: atomic forces\n", - " labels:\n", - " - potential energy\n", - " metric: mae\n", - " num_relaxation_batches: 1\n", - " relax_dataset:\n", - " src: data/is2re/val_20/data.lmdb\n", - " relax_opt:\n", - " alpha: 70.0\n", - " damping: 1.0\n", - " maxstep: 0.04\n", - " memory: 50\n", - " traj_dir: ml-relaxations/is2rs-test\n", - " relaxation_steps: 200\n", - " train_on_free_atoms: true\n", - " type: regression\n", - " write_pos: true\n", - "val_dataset:\n", - " src: data/s2ef/val_20\n", - "\n", - "2021-11-22 17:42:56 (INFO): Loading dataset: trajectory_lmdb\n", - "2021-11-22 17:42:56 (INFO): Loading model: gemnet_t\n", - "2021-11-22 17:43:00 (INFO): Loaded GemNetT with 31671825 parameters.\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "2021-11-22 17:43:00 (WARNING): Model gradient logging to tensorboard not yet supported.\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "wtMn792WpC4X" - }, - "source": [ - "### Load the best checkpoint\n" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "jFXQJBYxpC4Y", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "f35be368-a350-465d-fb32-5a5795317bac" - }, - "source": [ - "trainer.load_checkpoint(checkpoint_path=checkpoint_path)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "2021-11-22 17:43:00 (INFO): Loading checkpoint from: /content/ocp/gemnet_t_direct_h512_all.pt\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "2rtga4JPot6i" - }, - "source": [ - "### Run relaxations\n", - "\n", - "We run a full relaxation for a single batch of our relaxation dataset (`num_relaxation_batches=1`)." - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "aQG-HEpuot6k", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "f91a9a2a-4ea8-4b60-c6a1-a1255e482119" - }, - "source": [ - "trainer.run_relaxations()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "2021-11-22 17:43:19 (INFO): Running ML-relaxations\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "\r 0%| | 0/20 [00:00" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "CN9RC25hxLlp" - }, - "source": [ - "Qualitatively, the ML relaxation is behaving as expected - decreasing energies over the course of the relaxation." - ] - }, - { - "cell_type": "code", - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 198 - }, - "id": "6kxJBkV1wZUw", - "outputId": "f1f39a5f-feac-42bc-c208-c6c14aff88ef" - }, - "source": [ - "fig, ax = plt.subplots(1, 3)\n", - "labels = ['ml-initial', 'ml-middle', 'ml-final']\n", - "for i in range(3):\n", - " ax[i].axis('off')\n", - " ax[i].set_title(labels[i])\n", - "\n", - "ase.visualize.plot.plot_atoms(\n", - " ml_trajectory[0], \n", - " ax[0], \n", - " radii=0.8,\n", - " # rotation=(\"-75x, 45y, 10z\")) # uncomment to visualize at different angles\n", - ")\n", - "ase.visualize.plot.plot_atoms(\n", - " ml_trajectory[100], \n", - " ax[1], \n", - " radii=0.8, \n", - " # rotation=(\"-75x, 45y, 10z\") # uncomment to visualize at different angles\n", - ")\n", - "ase.visualize.plot.plot_atoms(\n", - " ml_trajectory[-1], \n", - " ax[2], \n", - " radii=0.8,\n", - " # rotation=(\"-75x, 45y, 10z\"), # uncomment to visualize at different angles\n", - ")\n" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": {}, - "execution_count": 99 - }, - { - "output_type": "display_data", - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqwAAACkCAYAAABSDnx0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydZ3hURReA39lesimQhN470osKiGJBQLAjRUXFimDvHez62SsoKhaUoliwIaKAoKj03qSXhITUzfYy34/dyJLsJpvsbgh43+fZZ5O9d2bOvffMPWdmzswIKSUKCgoKCgoKCgoKtRXVsRZAQUFBQUFBQUFBoSIUh1VBQUFBQUFBQaFWozisCgoKCgoKCgoKtRrFYVVQUFBQUFBQUKjVKA6rgoKCgoKCgoJCrUZxWBUUFBQUFBQUFGo1isOqoKBw3CKEGCCEkEKIWrs+nxBiUVDGScco/e5g+mvCHJPBz4Dq5K2goKBQUygOaxWJ1UAKIZqHGInmtUm2YB6TgnksiqNox4VjoaCgoKBQe4mXHRFCdBZCzBZCZAkhvME818SzjHiTSN/heEFzrAVQqBmEEN2Ai4BCKeWrx1oeBYX/EHuBrcDhYy2IgsJ/HSFEC+B3wBL8KR/woNTPWo/isNY8HgLGq/TveGIPybss3YCJwB6gIof1cDCPvfEVTUHhv4mU8qpjLYOCgsK/3ETAWf0HGCClPFDmeEV2VOEYojisNUywcrRPUN5/x5q3lPJN4M34SKSgoKCgoFCr6Bz8/iaMsxoXO6qQGJQYVgUFhYQSOmlICKERQtwphFgthCgRQuQIIb4WQnQNOd8khHhECLFBCGETQuQJIWYJIVolQLaj4tWEEF2EEDOEEAeFEA4hxGYhxD1CCE1Imn5BmbOEEM6gnBOEEKKy649wXC2EuFUIsSp4vfnBNMOjvAZj8H5tCsqcI4T4QQhxdjVuSbj8hwoh5gghDgghXEKIAiHEb0KIm4UQuniUoaBQg5iC3yXHVAqFqiOlPOE+wCJAApMI9CLfCawmoKA5wNdA15DzTcAjwAbABuQBs4BWYfIeEMxbVlO25qXpgeYV5Q20Bj4A9gEuYD8wFWgUIe+wsoWUF+kzKeTcScHfFoXJ3wSMBj4G1gC5QbkOBu/pkAquO6b7pnyO309IfXwaWBD82xWsj6U6aAV6AXWBVcHfHASG50rPOQQ0jadehaYHhgTLlEAh4A85NiN4/vWAN3issEw9eq6S658U5pgemBeShw8oCCn7uUrS1wm5X5JAmFFB8G8/cDOwO/j/NWHSl6YbEOaYEfi8zDUWlbkvy4C0Y61jyqf2fKil9jekHkT6DKisDOCa4LHdwf97ArOBLALvtJ3Ay5HqBKAFLgDeBVYE07mD9+UnAvZVREjbPETW5sf6OR8T3TrWAiTkomq3gYyodBxtPM8MyiiBYgKGqPTYAcI4rZFkA7IJGJpSg5hd5nNPyLmTiOywXhMiQ6nBtpWp9C9GuO6Y7pvyOX4/IfWxgECM9PDgi1sAvYEdweO/A18Cu4BzCYwAqYCzgy90CUyPp16VqXMFwMzSOk8gzu2ZkOMPEDAurwOZwXPSgGkhdattBdc/Kcyxl0Pq08NAcvD3TOBtjjjPkdJ/GTzmJBCbZwj+3ix4zB1SR68Jk74ih/WT4LEdwOUhshkIGN3S5/bVsdYx5VN7PtRS+wssJ2Dv3ME8SjjaDvatrAxCHNZgnSjNqzBY/0tl3wAkhUkf+r4pbQAWl/ltNqAKk7Z5yDnNj/VzPia6dawFSMhF1W4DGVHpyihzPvAN0D54TAeMCFHuj8PkHVVFq0S+SUR2WC8EXgD6AaaQ3xsAj4VU3guqIpvyObE/IfVRAqeFOX5WyHE70DrMOdeGHNeG/B5rfQytc/MJ07sB/BZyztQwx9UEelYk8EgF1z+pzO8NOdIQfSKCfJ+FlF02/ckhx66NINeSkHOuCXNOWIcV6M8Rp6FJBNkac8QJ6Xas9Uz51I4Ptdj+lpFvUoTjEcvgiB21EWgkTi2tHwR6iidwxA6Wq9PBOjsFOIdgAzD4ex3gNo50LN0WJm3zkPra/Fg/52PxOdFjWFOBi6SUX0gpPTLAcuCG4PG+wGBgoJRyvpTSH/z8QqA3BeASIYT2GMi+BrhYSrkFQErpllLOJtALAzA8NK6uJpBSfiOlvFdK+buU0h7ye5aU8gngoeBPt9WkXArHDUullEvD/L6YQA8MwBdSyn/CnPNT8NsItEmEcMDzMmgZIpQN8GzZg1JKH/BL8N8uVShvOIEhUwfwYoRzJlWQflTwex+BXt5wcj1ZBXlCuS74/amUcl+4E6SU+4GFwX8HVbMchROX49n+VoYJmCmlvKG0fkgp7VLKt4A3gueMLptISvm3lHKclHKBlLI45Pd8KeXrHKl3ig0Nw4nusNZ2A1kRz0gp/WF+/yb4fazkqojvg999hBDqYyqJQm3k73A/Bh2r0jUQl0dIeyjk77R4ChVCWPlCys6XUu6s5JyqyNYr+L0i1HiFIqXcRiAEqKL0iyI42hDoHfZWQaZS+gW/rxNCZEf6EOgpgkAIgoJCKMez/Y2GpyL8XmqjWwshTBHOiUSpDW0lhKhfPbFOXE50h7W2G8iK+CvC7wdD/q5TE4KEIoSoJ4R4XAixLDh7u3SXEAlsCp5m4tjcM4XajbWCY96KzpFShjpdlfa4CCFGVuBo9Y1QRiT5KpStzDlV6Q3KDH5HckhL2V/d9FJKJ4FJLFWlYfA7GahXwccQPK+qhlnhxOd4tr+VkR/B0YajbXQ52YUQFiHEvUKIxcEVPdwhNtQecmrjeAp8InCir8Mak4EMWaUmKgMJvBbh8CVSyj8qy6NM+XGRK54IIfoAPxAY6imlhCOB8mogPfi7GWXnEIVjh5GAQxUOZSmmyikdIblZSjnlmEqicLxy3NrfKIjm2qCM7EKItgTCh0KdUTtHViWBI+8tc4wynnCc6A5rTXJCG8hgvOwMAs7qGgLxqktDHevgOpmlrc6wa1IqKNQEUsoPgQ+PsRiVkRP8blTJeZGO5wDtKkovhNATmIldVbIJDPMrQ/0KxwPHi/2dRsBZ3Q3cC/wqpcwvPRgMpSt1eBUbWoYTPSSgxpBSfiilFBE+i461fHGgDwHj5QOGSSl/DNMLrMTcKChEz4rgdy8hRFK4E4QQbYg8NFia/oxImxYAp1O9jonfg9/DqpFWQaFGOR7srxCiCYGJZgCjg5PR8sucptjQClAc1v8OpcMN1W21NQl+58ow29kFOSfC7woKCuWZQ6ABaATuiXDOYxWknxX8bgpcXfagEEJFYEH26vBu8LuTEOLmik4UQpiVHa8UFCqlScjfqyOco9jQClAc1v8OpbOQUys8KzJFwe96QohyQy9CiMYoS3EoKERNsOH3VvDfR4UQDwohLABCiAwhxJvAlRype2XT/wXMDf47WQhxQzAEACFEUwIObR+OnsgRrWyLObJU1ltCiFeEEC1Ljwsh9EKIU4UQ/wP2cGQCmIKCQnhC63HXsgeDdb+6Dcz/BIrD+t9hQ/A7WQgxohrplxJYLFkAs4PB46X7oA/iyGLMCgoK0XM/gd2AVAR21SoQQuQTmCU9AXieQMx4JK4F1hKYrf8uYBVCFBBwIi8F7iCwhXJ1GAe8R6DO3wHsEEJYg/LZCWzLei+BGFml7isoVMxmYG/w7w+EED1LDwQnNC+idq6IUGtQHNb/CMElOEoXN58lhCgWQuwOfu6IIn0RR4YtTwe2CiGsBFYJmAekAGMTILqCwglLcNmpIcDtBBxTNwEHcQkwQkr5QAXJkVLmEYiLmwhsIRD64yVQJwdKKd+OQTa3lPKGYP4fEtihSA0kEZjwtQh4AuhSQZiQgoICEFxXfQKB+nkSsEIIYRNC2IA/CEygHHkMRaz1KKsE/LcYTiAmbiiBuLfSGcBRhQlIKacIIfYS6FXpRUB/DhBY6uo5atdsTIVagpRyQBTnNI/inHLx18EJFdWeTRtN+mhWHJBSTiLCrlSVXX9wjdnXg5/qpLcTcByfiHC8eQVpK713UsplBHpTFRQUYkBK+Z0Q4nQCO1b2I7B+cTaBzqTnpZRbI8+fVBCRN0hRUFBQUFBQUFBQOPYoIQEKCgoKCgoKCgq1GsVhVVBQUFBQUFBQqNUoDquCgoKCgoKCgkKtRnFYFRQUFBQUFBQUajWKw6qgoKCgoKCgoFCrURxWBQUFBQUFBQWFWo3isCooKCgoKCgoKNRupJQ18gEKCWzftyj4/6IT9f/aJEst/r82ySKBwpqqC8fLh/B19lg/p+Pp/9okS23/X6mviamvJ+T/tUmWWlxHatv/MdfZGts4QAghZRS7qigoHAsU/SyPck8UaiuKbpZHuScKtZl46GdNhgQsrsGyFBSqiqKf5VHuiUJtRdHN8ij3RKE2E7N+KluzKigoKCgoKCgo1GpqrIdVCLGopspSUKgqin6WR7knCrUVRTfLo9wThdpMPPRTiWFVUEDRz3Ao90ShtqLoZnmUe6JQm1FiWBUU4oein+VR7olCbUXRzfIo90ShNqPEsCooKCgoKCgoKJzYKDGsCgoo+hkO5Z4o1FYU3SyPck8UajNKDKuCQpxQ9LM8yj1RqK0oulke5Z4o1GbioZ+aeAkTBUp8jUJtRtHP8tTqeyKE0ALJQLGU0hNjXnWADoAJ8AE5wBYppTdmQasnTzKQRGCHmCIppb0GytQTuP5iKaUv0eXFSK3WzWOEck8UajPHdwyrEKIpcDFwKoGXsw/IAn4E5kkp3ZWkVwPnAoOBDAIhDoXAQmCulNJRSfo0YAxwtslg6SWEKhkQgMfltv/j9Xl+A2ZJKf+uJB8B9AAuAloCesAOrAa+kFLuqyh9MI/mwHCgC2AAXMAWYI6Ucktl6YN51AEuAfoQuJ9eYD/wLfC7rORhCyGMwDDgTKAO4AfygHnA/MqcAiFEI2CMQJxpMli6E8hPgHQ5XLaNfr/vN+AzKeWmSvIRQH/gfKARoAZKgN+Br6SUBRWlD+ZxEnAp0IYjz2MtUT4PhaMRQhiAk4GeKUniDClp4fGRrNNgEIISEIU+n9xhtctFwEpgbWj9DdbVUcCQZLPoq9OKuoBKgs/u8O9xuFhCQNcXViDDuUKo7jfpk3p4fO4Ut8cpVCo1fr8fnVYvtRpdkcNpW+uXvuellD9WkE9L4BSthkvMRnGGz0eax4u6RWONN8mo8vr90peV55O5+T5Dkkm1vcTu/9Tj5T0pZU4wfUfgCo2a01OSVB0BHQLp91FSYPWvAH4FPqpIT4UQScCpAnqmJatOA5npdJNp0AuLyy2NHq/UG/UqtwQcTr/WZFAdEoLlhVb/l8DnBN5TY4CBqRbVKWo1KUhUCDwlNv8Ol4fFwEwp5YoKZBilVmluMehMXdxel8XjdaNSqfD7feh1RqlRafPtTutyiXxcSvlnhDwE0B442WSgv1otenl9pEgp8fo47PWyGfg5+GzDOt1CiF7AaL2W05PMqlZItAj8Xi9FRSX+v4LpP6nsfa5QnuDzaQV0BVIJ6E0xsA7YJqX0R5G+J3AB0JhAJ1cxsITobKyeQL0/16Az9dGotWkSVEjpdrht2/x+3xLgcynlyiiuJT0oSyeglUpFQ6NeCJWgwOWRh90e1hJ492wN1+AK2qdLg+mNgAPYFCz/QGXlB/MwEriXbYJ5aAnYWg8B/8UN7ANWSimzIqS/gIB9S+aIjZ4bTFOZjW4NjBZCdYZRb+4shEoPIP2+ErurZDmwgICNrdBGCiFUQFugH4H70YCAvT8AbCVwHzdG8sGCetGPgL9Qj4BeFRHwvb6PtQMhotw1GBKwSEo5QAjRVKPmJYNeXCQlms6tdbLnSXqRnKTC64Wd+z38vd5Jdp4Pk0HkFpXIZ4FXSx9k0PDdk5Kkutfh8tdNtajp2VFPg3Q1APlFPrlys1tkH/ZiNqpshVb/VOCh0IolhDhLq9G/BLJbRmoj2bpJF9Gy4UmkJKWjEiqcbgcHcv5h2/617DqwEZVKbXW4St4AnpBSukLyGWI2iBcldFCpEF3b6mXbZlqh1wlsDj/rt7vZvNONTid8Dpdc4PVyu5Rya0j6rjotr+l1or/bLVUdW+no2FKH0SBwuSVbdnnkhn/cQq1C+vysdLjknVLKpWXuaz0BLyZbVCPsDr+ueUMN3drpSU5S4fNJ9mb7WL3ZhcMl0WrZY7XJR6SU00PSG4EnUi2qcTaHP6le3cD9rJsSuJ/ZeT5WbnKRX+TDZFAVFJX4XwSeD30hCCFGGnSmZ3w+b8sGGS1o07grzRt2wGJMASFwOEvYe2gb2/etlXuytwqNWpPrcNnKPlcBjE02i8ddHhqbDIIeHfQ0ra9BrYbiEj+rt7jZfdCD2ahyF1r9M4G7pZSHQ5+rycBLQoiuUiI6t9H9+zzsDsmGf9xyy263MOiEz+6Sv3q93FHqPJfqZ2xafmIRjDkaazSIW5Fc3yBdLSxJKuPuA1510wYaenXU07OjnjopKqSEvEI/f6x1+v5a73RlH/b5gHcdLvmNWsV9RoM4L9WiUvXvYaRvVwPNGmjQagVOl2TzTjdLVjv5fY0TlcBRaPW/DzwgpbQF5XjYqE+6X0pp6dv5PNo27Uqz+u1JT22IEAIpJYeLstiTtYXt+9byx/rvAWFzuEpelFJOCuahBS5OtagecLn9J5mNKm2KRSVuuzyFQX1NtGmqRaU6erSquMTPio1Ops21Or742SbUKraohGzs9Yn0nh318rQeBtG9nR6LWSAlHMrz8dd6F0tXO9i534sQco3dyV2hTrgQ4qQkk7jT6+Xy9i207q7tdMa9WV7dyk0uhpxm4qIzzfTsqKdVkyPyeDySTTvdrNjoYtpcq33VJpceIdUN6qo5vZeJPl0MNMpUo1Yfee8sXeXkz/VONBqKi6zyNeBJKaUnWM9eMeqTxqlVav1pXYfRqnEXmtVvT5olAyEEfuknJ38fe7K3sHn3Sv7e9DNqlabA4Sp5WEo5OXgdJmB0slk84PPTJCVJpc0r8qs6tNDSo4OeuqmB6RHZh338vd7FzgMejAZxoLhETgSmEzCOj6YkqW73+mTyqZ0NnNbDQOc2OszGwLvrQI6PZeucLF3l4GCuT3p9cqnbw+1SytVKfS1PiI0VwJkpSap7nC7/gCSzyn9SS53f55faQqtfXWzzq0rsUuX3S1QqYXd75N82h/wc+E1KuTGY1+UWs3ja66O5Rg1d2+plk/oaoVZBYYlfrt36r421F1r904AHpZTWEFm6q9Xa19RCfZrFnCZaN+5Mq0adSbWko1KpcbudHMjdyfb9a9mdtRm1SlMctLGPhzo7QohWJoO4RQg5xuUhJdmsUvn9qLq119Gni4EG6RqEgKISH3+uc7lWbHJ5i6x+HzDZ4ZJvAxathjeMBnG6wynV7ZprZYcWOmHQB989uzxy6263MOqFz+GSv3m83Fp6D0JkSFapuCrZrLrN5vC3aFxP4zAZhC4n36ez2qVo31xLh5Y6zEaB2yO92/d6HOu2uXVS4gCm253yfeCGtGTV2BK731g/XUPXdjqZmqQSPj/szfLKtdtcwucHjYpdVrt8SEo5M6R8AUww6s2PeH2eeo0zWsvWTbqKpvXbYtSZkUistgJ2HdzEP/vXysOFWUKoVBvcHufdUsr5IfmogUHJZvGAwyX7GPVC7fUhurTV0b29npQkFR6vZPcBL8s3ubxZuV5MBtXCohL/C8AvBEZ7bkhOUk10e2RDg07QrZ2OBhkaVAIKiv2s2eoit8CH2aiyFlr9k4HHSn2meNTZGo1hNerFYuCMy841c/sVqXRvryPwLMpTZPXx6Q8lvPBhIXmFPq/VLicAyUkm8Vy9umr1PVenctnAJOqmqsOmL7H7+f43Oy99XMiGHW7pdMl3peRBncawUAjR9YzuF3Fmz0vJSGtUodwer4sVWxYyb9kn5BVlu51u++VAVkqS6nspZepNl6VwwyUWWjfVhr0Wn0+yarOLN2cW8fl8G2o1G0vs8gqLWczxemk1akgSE0am0K2dDrW6fHq/X7Jph5t35xTzwddW1Gqyi0vk2cAOvZbvhBDn9O9p4K4xqQzoZcCgDz+P7sAhL598Z+WV6UU4XX5nsU1eIQRnGvViQvsWWnHP1akMO92MxRw+fX6RjzkLSnjhwyKycr3+Eod8GJhp0JmWqFWaxuecPJLTu11ISlLdCu+nw2Vj2fofmffnp9idxVan2z4YaJJsFh8ZDSr9nWNSGDPUQsPM8NEqLrdk4XIHr3xSyG8rnfil/NHtYWJKkvjB5yf9hkuTueGSZNq3iPw8VmwMPI8vFtjQqNlSYpcDgGwl/usIQggd4DIbheOq8y3qErtfN+93O9ddnMxNw5Np3khbYfptu928/lmR/8O5VlXzhhreeiiD03saItZ3CDhmcxfbeP6DQjbvcvtK7PIhg850u0Fnajj8rFvo2f5MtBpdpbJ7fR5WbVnEFwvfwu60HnK67eOTTOLFVo21GSkWVVJWro83H0xnYB9jhfKEkl/k48l3C/horpWX7q7L2IuSKzx/xz4Pb80q4t0vivH7+cvhkhclmcSTKpW44rbRKdqbhls0P/7u4KE38rj5shRuGZVMZt3oIrS273HzzPuF/Pq3g/cmZjCwjynseQ6nn9nzS3jug0IO5HidVpt80KAzP55qSU8efuYEOrfug1pVeZkut4M/N/7El4um4PW6t7k8jodNBt5uWl9rOZTvM5zcSc/4kSkM7mdCpw1/P11uyQ9LbDw/rVCu2+Z2SylVzRpqtA9el8aIc5MwGiqe/7t+u4vXPi1ixo8leLxyrsfLBUp9PRohhATOspjEtLpp6rr3XJ1qbtNUI2b8YOOrhTb6dzdwcic9PTro/3UyrHY/67a5WbLKIX9e5nD7/DLb5ZENzAahu+PKVK4caqFZQ03YemK1+Zm/LGBj12xx4/HKz7w+rtWotXOFUJ17yknncnbvETTJbF2h3B6vi+Wbf2HesunkFR/yuNz2K4A/UpJU73t9/jP6dDFqVm1xac7qbWT8yBQG9K74PbJ5p5s3ZhS5P5pr1SKluOgsM7ddnkrPjno0mvLpvN6AjX5rVhGz59vQathhtckzgRyTQUzy+7n9nFON/hsvtZi/X2pn1jwbwweaufHSZHp00Ie121JKtu/x8M4Xxf6pc4pVliQVk8alMXqIhSRTeV2XUrLnYMBGv/ZpEV6fdBSVyMuBbIPO/JNRb0oedMoV9O0yFJMhqcL7ebgwi4Ur57B49VdIKTe5PI4BQB+zgXfMJlUdh0vqLj7LzM0jUjilsz7ivbTa/Hz2o5UXPyx0ZB/22f1SpqRa1Jq7xqQwarCFRvXCvzsKi318v8TOix8Vsm2PRzpc8m0puRXwx1pna8RhFUJcqNXw1flnmMQ7j2aSnhbeyQyHlJJZ80q46clcAD55JpPzzzBHbWgAVmx0cvGd2eQWaGnfrBfXnPcQFnNala5BSsnStd/x6U8voNV4uW9sKg9el4ZeF70c+UU+bnvuMF8vtHF6DwOfPVeP1OTo74Xd4eext/N5a2YRGo3wdWqlU3/yTD1aN63YeQjF55N8ONfKHf87jEEn+PrV+vTrbow6vZSS+X84GHlfNg6Xnj6dBjPi7NvQ66LPA8Dn9/L9Hx/x07JpaLV+Xr8/nasvsJTr5aqIf/Z6uPKhQ2zc4ebKoUm8cm96RIc9HHmFPm5//jBfL7T5bQ65S0pZ8Zv1P4IQorXFJH6sm6pq+cYDGarb/3eY07obePW+dNKqoK8Ah/K8jH/6MJt3uZn5fD26tNVXmkZKybPvFfL4Ozb6dR7K8LNvRa81VPk63B4ncxZOZsmab7hxuE5+v8QhLjzTzNO31MFkrN4CKX+vdzLm4RwuGGDif3fWrfQ9lH3YyzWP5vD7Gif9uxtcnz5XT28yqLjq4UPs2O/lwycy6NSm8nsSjvl/2LnhiVzGXmhh4ri0iLL4/ZIJT+fywdduBvcZw3l9r0ajrvr0BbvTyvR5L7B2+290aCVBwrQnMunWvmryr9jo5MqHcmjbTMt7EzOidtQhUOdH35/Nuu1uv9tDLynl6qpex4mIEMKsUfNPSpIqedoTmaYBvQ088Fo+X/9q4/YrUhh7YTIZdSquu16v5NvFNl74qBCnS/LRU5l0jlI3121zMfzubPYd0tIovTU3XPg46akNqnQNUkp+X/c9M+a/DHh84y4zyk07vZq8Ih8fPhm9LKUcLvBxy7O5rNrs5rPnMul1UuXvkIJiH/e+nMeMH0uk3y8L+vc0Gt6flGnaud/DNY/mMKCXkZfuqUudlOjfg06Xn+c+KOTtWUW8dHc6Y863VHi+1yt576ti7ng+Dyl1DOl7Fef1vSqqxmUoJY4ipv/4P9bv+AOD3uVOT1PrOrXSMfmRDBpkRJ+XlJKvfrFx89O5XD7EwnN31I3a7/lznZPLHzjE4UJfntUmd0opT67SRZQh4Q6rEGJ8klG89fHTmVx8dsUtg4o4lOflqkdy0GsFs1+oVyXHZNlaJ0NvyeeSM+6lT+ch1SpfSslXi19n275vmfNyWlSGNxI/LrUx9rFcXryrLlcOq1h5y/LnOifDbs3isZvSuGVUSpUcvFD2H/Jy9SOHSElSM+P5elVyvOcsKOGGSSVce/5zdGjeq1rle7xu3v/2PkzGzXz2XFrE1lpl+P2St2cV8eS7hXzzWn1O7VJ1x+aHJTZG338Im0NO9vrk+GoJcoIghOhoMoil/7uzbkqHllrVqPsO8c6jGTHVXSkl078r4Z6X85j7Wn1OqeQZ/bnOyXkT8rni3Mfp1rZ/tcst5fd1PzD7l6d5/s46TBiZEnN+eYU+Bo/PYkAvQ1ROq5SSqXOKmTi5gO/eqM/jUwrQqEWV6104cvK8DLo5iyGnmXjmtvCjG3MX2bjmUSvjLnqFVo07x1ZewX5e/HQsN1yq4ckJddBG6FGtDJdb8thb+Xz5q40F7zSgWcPoG91+v+TxKQW89HGh3+aQ/SLF1/5XEEKkJZnE4kF9TW3em5hh2JPl5eI7szmjp5FX7q1bpU4RCOjrB19ZeeD1PB69IY3brkitNM2mHW7OuuEwZ3S7joEnX16lDqWyFFhzePPz27C79nPdxRaeGMupKewAACAASURBVF99PQOY/VMJE57NZfb/6nPmydF1rPzyl50rHsjh8fFpJCepuPOFPN6flMHQ083VlmPNFhcj7zvEiHOTeGJC5AYmwP+mFfPSxz7GX/IajSvpoa6MuUveZ8Hy95n8SDpjhlmq/WwOF/i4dmIOLrfkq1fqR93od7klj7yRx+TPi/02hzxLSlntyVcJdViFEGOSTOLjhe815Lvf7Ey6uU5M+Xk8kssfPITHK5nzUv2wXfFlWb/dxYDr8hgz+Gk6t+pT7bK/+e0t9hyay6/v1YkYhlAVNu90c86NB3nl3nRGDIrOGVi92cWgmw/y4ZOZnNe/+hWnFJdbMuq+Q6hUMPuFelHdz5+X2Rl5XzG3Dn+LpvXbVatcv9/Hu9/cQ8N6W/n8xbSIw4hV4YclNq55NIefJjeke4eqNybGP53LjB9LKCrxv+z3y7tjFug4RAjRyGQQa6c8mlGnY0udOH3sfr5/syEDelet9zwS3y22cd2kXBa935AOLcMP7e8+4KHX6FyujLG+luL1eXnh06u48VIr910bu7NaSn6Rj75XHeDRG9O4Ymh0jc5Z80q4+elcTu2s55vXGsRkhEM5XOCj/9gD3D82lWsuPDpUYfkGJ4PGFTBh+Js0b9AhpnIKrDm8+Nm1PHqjmgmjqtbQjsSr0wt5c2YRv3/UiHpV6GmdNDkfs0nw+OQCn80hW0kp98RFoOMMIUSSxST+uOoCS7u6KSrd+WeYGXpLNq/fn87IwdVvZALsOehh0M1ZXD4kicfGRbbde7M8nHLlYYb2uYs+nYfGVCYEegZfmH4VE0Z7efC6qo2ERmLRcgeX3ZvND282oHen6Do1/tnroc+Y/QgVLJzaiJNaVx6OVBm5+T7Ouekgw88x8+hN4e/p5NlWnnzHz12j3yfNkhlTeTsObGDyl7fx5ctpUTvrFeH1Sq5+NIeCYj9zX6sfNsQiEkPGH2TJKqff5pAnRzPJLhwJc1iFEA1MBrH/h7caqM7oZUR03YFc2yrmfN0eyVnXH6BpAy2ZdQ00qAtjhpnDxjy6PZJul+VySsdbOa3r+dUuc90/fzBn0aOsnpVZ6bBKVVi71cXZNx7kr+mNadWk4h4Gm91P1xH7ePqWujG/iEJxuSUDbzrI+WeYuPeail8OeYU+Ol50iKvOe5H2zXpUu8x5f37IwbyZ/Ppe9EML0TBrXgkPv5nH2tlNMIeJE6oI0XUHq2c1pt/VB7A75VkVzVY/ERFCiGSzWHTbFal9H7ouVdN95H627vbEpc6G8s7nRUz90sqyjxuVc9j8fsmAa/OonzaaQadeHZfyfvjjfQptX7Bgap2Yen3CsWKjk6G3ZLP288bUT6/c2Vq8wsGIe7PZ/HXTKg0pRsParS4G3nSQVbOa0Dg4WuF0+ekyPJczu9/LySedG1P+Ukpen30TF5+TxePj4+f4Azz4Wh7rtrv57o36UT+jUnty/aQcZv9UsrfY5m8WV6GOE5LNqo+H9DddNvP5egZVt53Uq6vm3ccyuGBA7B0aEBjZPH3sQe4ak8JNl5V/7n6/5Mzr8khPvozz+l4XlzI/+PYBunbYwNsPV96zWxW++LmEB1/PZ+3sxlH1Du4+4KHnqP0seLd6nSCROJTnpdfo/Xz4ZCZnn3J0/PmmHW76XX2Ye6/4iHp1msRUjtNl48lpI3jnMR0XnhkffYBAx+Hg8VmcfYqRh66PvkEhuu5g0rg0Xv6k0F5sk8nVWTovYTtdJZnEwhsvTVad0Svg1U8cF5+WUmGxj8NFenbmd6Rp9wfZZR9GlxG5/LDEVu7cJ6YUY9S3o1+XYdUuz+60MuPnJ/j4qZS4OqsAXdvpefDaNK6dmIPfX3HD4cHX8+nTxRBXZxVArxN89GQmz08rZPPOClcRY8IzxXRrOyQmZ/Vg7i4W/P0Rnz6bEldnFWDk4CT6dDHw0Bv5VU47cVwa3drrmTQ+DYtZfBecUfmfQa3i2gYZmp6P3ZimmTi5gC5tdXGrs6HcODyZuikq/vdhYbljUz63cigvnYEnXxmXsnILD/LriulMezI57s4qQK+TDFx/iYV7Xsqr9Fy3R3LdpBymTsyMu7MKgXfJLaNSuOXZ3H9/mzi5mLSkzvTuODDm/H9b/SUa7R4evbHiyWbV4fHxdTiQ4+WjudbKTw5Sqpuv3peO2ahqKoSYFHfBajlCiHMNenHp1McyDVJCswZq7rwyJW7OKkC9uhq+e6M+D7+Zzz97y69UNOVzK1m56XFrYK7auoiDeSt48a7469nwgUmc3EnPw29Wbh+klFw3KZf7r02Nq7MKgXv67mMZXD8pF6vtyKpiXq9kzENFnN9vQszOKsCXi15hUD/i6qwCaLWCaU9k8Mr0QjZsd1WeIMjEcWk8cmMaLRtrTRoNs6pTdkJ6WIUQlzRIV8/Z+UPTKsWaRsPYiUWkNh3Jy6++8a8RWrZsGRcMO5u9P9b/d7ZpVq6X9hce4rFrZ5Nqyah2eV8sfJlG9X/hvUnxN94QmATV7+oD3Do6JeLQ4vrtLgbelMWmr5okxNgBvDmjiG8X2/hpSsOwx5dvcDLsVjsTr/uyWhNgSnnj85u4/tIsbhkd/xcSBIZqT7pkH/OnNKhykD4EnkePUftZt839tpRyQgJErHUIIbQmgzi0+IOGaQ3SNXS6dB/b5jaNewOtlL1ZHrpetp9dPzT9N77O65U0PjebGy98m2bVDDUpy5eLXqNti5955b749tSEUmT10XzIXjZ91aTCiQyzfyrhrVlFLP6g4lVJYsHlljQdtIcl0xqSWUdN08FZTLz285jefxDoqXloyvks+ySdjq1iHxYNx5otLs4dd5A985pVumJAWb7/zcblDxzyFtukrrJ1LE8UhBBqs1Hs++Kl+g0G9zMxeXYRH8218vtHjaIK7aoqr04v5MtfbCz+oOG/dtdm99P43CzuGvUBDTNaxFyGX/qZOPUCPn1WH5fh63DkFfpod+FeVnzWuMKVTr74ObC6xp+fNKrSsHdVuPqRQzStr+XJWwKhAR9/a+X59+tw56gPYm5g78/5h7fm3Mj2b+uRYknMe3zy7CK++sXG/HfC+wyR2LrbTbfL9uN0yxZSyt1VSZuQHtZks3j+4RtS4+6sSimZ/VMRDz0y8agH2qdPH7p07sz8ZUfWMH53Tgm9OpwV08va5XGybP33PHx9fHs1Q1GrBQ9cm8Zbs4oinvP2rGJuHpGcMGcV4IZLk1mz1c223eF7WV/71Mnp3UbG5KxmHd7Ngdzt3HBpfOLfwlEnRc24y5KZPLu4WunVasGTE+qQkiTiM751fHBB+xZaTa+TDEz9spjRQ5LIqKNm0uSq91RHQ9MGWoacZuKjb4/0qH272EYdS6O4Oaser4s/1n/LhFHx7V0oS4pFzchBSUydU7G+vT27KC4TvipCrxNce5GFKZ8X8+HcEjq1PCVmZxVg2YZ5nNHLmDBnFaBbez29OxmY9VNJVOeH6uaQ00xYzCoNcFOCxKuNDGpSX5M0qK8Rj0fy1LsFTHkkIyHOKsBtl6dQaPXzy19HbOyMeSW0atwpLs4qwMadf5Ge6mVA7+rbmMqom6rmqmEW3vmi4vr65swi7h+bmjBnFeDB69KY+mUxbk+gjfXadDdn9bw2LqNBv62ZxfiR5oQ5qwDXXpTM2m2RfYZItGuuY2h/E2oVr1a1zLg7rEKIxh4frccMO7oHLR7Gz+8Hl9uHxVLe4UlJScHhDHSv+3ySKbMd9O86Kqbylm9awKldDLRoHP0M1uow7HQT+w/5WLOlfPe61eZn1k8l3HBJYnokSwk1dmXJL/LxzaIS+nW5MKYylqz9nOsuMcc9FKAsN1ySzMx5JUcNt1RGqH4O7W9CqxV6IURsCnSckJasuvOeq1MtpbPZbx4R0LXHp1S6oVi1GT8i+SijMeVzD327XB63/P/Zt47WTXRVWvKtulx1voWvF5YPSSolK9fLum1uLjorsc4zwHUXJzNjXglTZrs4rcvIuOT5x/qZ3H5FfIdFwzF+RDJvz4quoRmqmyqV4K4xKaQkiYcTJVttI9Wiuu/eq1MtQgi+WWSjVRNthToYKyqVYMLIo5/P65+66d/1iriV8cf6Gdx2ReS12ePFuMuSef+rYjye8J3xm3a42bbHw0VxHkovS/sWOk5qpePLBSWs3uxif46gS+u+MefrdNtZvmkBN16aWPkr8hnCEWpj7xyTgtEgzhdVfNiJ6GG9sn93A8lJR2cdD+OnVgvO7lOHTz755Kjfs7OzWbh46b/DCFt3e1CpjDSp1yam8rbuXcgV51VvuaWqoNEILj3HzLzfy+9cuHS1g27tdBEX0o8nIwclMe+P8jL8vtpJ68ZtsJhiG1rdvHspowcnrvVcSsNMDd3a6fhjjTPqNKH6qVYLRg+xoBJckwDxahVCCJXN4e91bh8TO/Z50WjEv6EUiYhhLaVfdwMHc33k5vuQUvLXehsdm/eOW/67szfTp2vNrCvfvb2OLbs9uNzhDeDKTS56ddTHZTWMymjVRIPXK9l90EHrJl1izq+oJI+84lzOStAQbSiD+5nYvMtNYXHlczHK6uaQ08z4/VRtbPI4RQihtTn8fYcPDIz8TfvGyk3DkxPawAS4YqiFhcsdHC7wkV/kY8d+R9zqrJSSLbvXc8EZ4TfBiCdtm+uom6pmU4Q5G/OX2blwgDluq3hUxGUDzcxf5uDnP+10bX0GKlXsPaK7DmykQ0tjjfgMl5xt5pe/o9sxOVQ/+3YzoNUIFXB6VcqLu8Oq13LOGT3LOyXxMn7P3mLg4Qfv5InHJ7Jy5Uo+++wzBpx+MveMsfy7LMrKTa64DC3uyd5Kr5MS37MA0KujnpWby/ewrtzkjmrB43hwUisdew56KbEf3TO5YpObRhldY8rb4bKRW5jPSQkcVgylZ0c9KzZVLSA8lFM760lNVvWMt1y1kDapFrW3bqqaFRud9AyZYBDrMnQVIYSgR3sdKze72HPQi1ajr3SXtKpw8PBaTu6U+Bc2gNGgonUTLesjTEBYsclVY+8RIQTd2utJT6tb5YXGw7Enewvd2iYlvNcLAg3Fbu30rArzHixLWd1s20yL2yNVQojmiZGuVtGxXl21MzlJhZSSZWudnH2KMaENTIAkk4oeHQLv1VWbXbRo2DwuDhZAbuEBzEZVlTaRiIWeHfSsjGAfVmx00bum7P5Jgfv513pBk3qxrZFcyu7szZzSOWHz6Y+icxsd2/d6/h3drohQ/RRClNqaC6pSXtyvymRUdenRsbyDFS/j16ODniUf1OHAxslcf9Ug7rrjZm660M7DNxwJE1i5yUvD9NgdrILiYto2S/yQIgSua3WYkIDVW1z0aF8zTp5WKziplY61W4+WY/lGQZPMjjHlvT/nHzq0sCQ0JiiUSPczEmX1s0cHPR6PTJzHVns4qVNrnQ9gww43Xdoe0bVExbCW0rWdng3/uNm0003jzPiuSmS159GoBnoYSmmUqSYnP3zP4P5DXlpUspVtPGnRSINJHx/V3XtoG7071dw8pu7t9azeUnlMXFndVKsFrZpoJTA4QaLVJrr17mQQALsOeDEZBPXTNQltYJbSs6OeFRtdrNnqpmH6SXHL90DODjq3SXwvfind2utZ/094PVu7zU33Ku7eVl06t9Gzfa+H1VtcNK3XNi55ZudvpGfHmnFYDXoVbZpq2bSz/AoSZSmrn/26G9Bp6VeV8hJxVab01PLZxtP4tWuu451Hklk9I5V2Tcsr1+FCFRZTbK1Nu7OYVIsuYUHsZclIU1NQXL6Vkl/kIzNBs7XDylFHTX7R0XLkF8qYwwFsjmIyqrAlb6xk1lGTXxT9Mm9l9TMjTY3bK2um1h9bzKkWlQqgxC5JCQnlSfQQY0qSCqvNj80hMejiOxTo9/vQ1Jy/ikYt8EZQN7dHoqs5fxWdVqAS8SnQ6S4iswabbempKgqtlffWhNNNi1kFkLglIWoPdRpmqHUA2/Z46BjchCPRDUyAji21bNvjJr/Ij9kQ+4S+UpxuO2nJNWNr4ci7JxwFxb6ErZBSFr1OYNQLCou9MfsspThdxdRN4ATtstRJVlFordzWltXPzDpqDDpRpWG1RBjksFoXL+NXYvfz5zon8/+w88caJz6fpOxCJjKyGFEjJdTAKNi/qFSBSWXl5IAaGY4rRa2CskvCxkMGiazZ+ylEueuoiLL6qVZRTq9OUHw+f+BKhThaBxM9xOjzBfQ+oHPRT5CLBq1GXy60JZHYHH6M+vAKbtALnK6aUyaHS8bvnSFrtt4KAf4oKl443fQFHnfVpiwfn/z7eB1OP8ZAZ2vCG5gAJoMKh0sipYivgRSiRt+3fr9EFcH7qen3vhCBGN5YfZZjRbRqUFY/VQIQVfNB494HIcBZaPWX6y6J1fht3unmtc+cTP+hBLOlCWptMn5vCYdz8nhpupO0ZBXdgj2tFpOkqDC2GZN6nZESuwcp4/jyr4Aiq7+0h+Aokowqiqsw2z1WCq1+LKajrzfJJHC4YrufBq2R4pKavA4flirsdlVWPwutfrQa8V9wWXP3HwqY+ropRw9rJ3qIMSffR+c2OtLT1Fht8e0dykhtzcYd2Qw5La7ZhkVKyYZ/3BG3m23ZSMvW3ZUPmcWLLbvcCBEfv02vtZBXfo+HhFFQ7Kde3cp7h8Lp5qE8nwD2JUCs2oY1v8jvAXRajcAXrLKJbmACeH0SrUZgMYPLHXkpxqpiNiSzfX/NvW5zC/ykRVjyKTlJRWGx798d4xKJ1yuxOSTpqRocrhJSkmJ/5xp0FvKLD8ZBuujIL/YfNTIXibL6WVTix+2WVVp/Mu49rHan3BwudjAW4/fKdCu9ryzkuw3X0KzfOhqeuo56PZfS4JQ1tB+4lTWHb6H/9SU8/GYxUkq6thNk52+K5TJIMqag0ejZl+2NKZ9oWbvNTacwexV3al0+pjRRSClZt91dbsH9rm0lB3K3x5R3w4xWbNxpo6bW9V67zU3nNtHH/pbVz7Xb3Oh1IrpFIY9vVm/c4Tb6/ZLu7XWsCqm7iR5iXLXFRff2Orq21bE7ay9+f5V36otIk3qd+XNt3LKrkP2HfAghaJQZ3gD2jDChMhH4/ZL1290UWA/FJb9Gma1Zuanmen7WbnPTtV3l8YNldbPE7if7sBfgu8RIVqvYsGKjywfQIEPDnqyAjaqJGNa9WV4apKvp1FpHdv7GuOXbtH5b1m4rqTH7sGpz4N0Tjs5tdKzZWjMd9Zt2umneUEPn1gb25/wTlzzr1+3Eyk3xe5dWhNPlZ9seT1STqcvq57J1TpxullelvLg7rE63XPjbSmc5rauu8Xv5YyuPv6ejad/lZLR7Ep3p6C3LtIZ6ZLR5iGb91jLl6zQeesNKzw569h6KrTIJIWjZsA0rNtaMoVmxyUmvjuVf1DVp7Hbs85JsVpWL3zm5k4b9uWtiyjslqQ56jZ5dB2qmAbByk4ueYe5nJMrq5/KNTkrs/g3xlqu2IaU8rFFTvH2vh54dAzO0S7cJTuQQo9sj2bTDTbd2elIsaurVNZB1eHfc8m/duAu/rbJHXGsxniz4007froaIIzE9O+pZs9WNrQZCFNZtc5OeqqaoxIrdGf1Wp5Fo3qADa7baa8SRkFKyarPrqJUqIlFWN1dtdpFkUrmllNGtsXN8s3bXAY/J5ZZ0aq1jx34Pdoe/RmJYV24OvFd7dtCz68COuOlFalI6GrWO3TVgH6SU/15HOHp2qNoKM7FQaqdO6SLZeyi2TrZSmtVvz1/ra8bxX7/dTesm2qh2pytnYze4AH6oSnmJiGGdvnC5Q9gdR7+cq2P8Nu1w89gUBw17LUBvbl7huVpDPRr0WsDbn0usdj+5hYcpsOZUucxQWjQ8la9+TfxQnpSS736zc0av8qsrnNbdwJJVzhqJx/t+iY3Te5SXoW83A1v3bMDtiX5d03C0bdqduYvKr/Mab6w2P7+vcdK3a/TLgYXqp5SSL3624fYwNxHy1UK++fT7Em/9dA1N62v+3c0mkUOM3yy00buTHnMwbGPIaTpWbp0ft/zr1WlCRmpT5i5O3GLqpUz5vJjrL4m8e1udFDUDehn47MfEd9i/O6eYqy+wMKC3hRWbf4k5vzRLJjqtmb/XJ96AL1nlpGGGOqoJL2V188O5VmwO/7JEyVabkFLazUbV5nm/29HrBB1b6lixyZXwGNbAeskBB6thphqLWbAne0vc8u/U8lRm/pR4+/DXehdaDbRqEn5i4pm9jXy72PZvwz2RfLPIxpm9jZzeQ8+WPYvj0gBo2fAkNu+0k5WbeOf/q19tnH1KdKs7hOrnll3u0knmP1alvLg7rFLKrRo12WW32KuO8Xv1UyepTcdV6qyWotVnktzsPt6Y6eHyIUksXftVlcsMpW+nYXyz0Fal2ebVYdlaF3aH5Mze5R98gwwNZ/Q08tkPiTV2Ukomzy7mpsvK76jVtIE2sJzJll9jKqNfl5G8OcOV8N6aT7+3cmZvY4V7u5clVD+Xb3BxIMfrB15IgHi1jhK7fPXNmUVuj0dy84iUf3eziWaIced+D1/8XMKH3xQzZ0EJBw5F95J8e9bRW5XeMsrE0nVf4fXFr4F4WpcrePGjxOrbn+uc5OT7GNyv4lUOxo9I4a1ZRQmVpcjqY+a8wK54t1+uZ+m6z2IuTwhBv84jeGNGbI3VaAhsQR3d9rWhullk9THzxxLcHm5PlGy1jUKr/8WXPi4sARh+jpmP5loTHsO68G8HqRYVbZtpEUJw8wgjS9bOjFv+/buN5u2ZDny+xNqHt2cVcfNlKahU4UdEenfSk5KkOmqr90SwN8vDklVORg1OYkBvI35ZyM4DsQ/qGfRmenU4h3fnJLax7nJL3v/KyrgwPkM4QvXz9c+KkPCnlLJKLeGELNtTVCIff2pqwVHDcVWNrymx+/nsxxJSmlZte+jUJlcx/w8bowbrWLp2Tky9ghZzGl3b9OWtmYl1Fl/6uJBxlyVHrEDjRybz2qeFCR3e/GGJHa1GcFr38L2St1+h57c1n8Q0m7tNk274fBZ+WJK4VrTHI3l9RtG/24tGS6h+PvNeAU6X/ElKWTOBQMcYKeUGv58N784p9l9+XhJL1zhYu9UVcYhRSsl3i20MuL6IzpcVcPubnXjko9O47Y2OtLkwl/NuKWJhhN1P1m1zMejmAlZuUfP0Bx7enFGEzyfp2EpHx5Zq/lj/fdyuq0f7Mzl02MJHcxNTf90eybincpk4Lq3S5e8G9jGi0wimzol9mD4SD76ez6XnmGmYqWFgHyOSAjbu+ivmfPt2OZ+5i0oSGs+/c7+H+cvsjBmWFNX5obr5wkeFaLVkSylrKGq5VjB7xUaXXL/dxbUXWfjyFxu3XxGds19d3p5dzPgRyf+Gvlx3sZlVWxZTVBKfUITmDTpgMtTn0wR2zmzf4+b7JXbGXhR5REQIwYSRKbzwYWFCG5ivTC/iyqEWkkwqVCrBLaP0LFz1cVzyPr3bSN6aaaMoiuWmqsuH3xTTpa2Ods2jmytSamNz8318NNeK0yXvrGqZiVpn8p3DBb7cZ98/0gVc1fiaddvcmJObojM2rlI6jS6V1MzuWG2SAb21zF36dpXSl2Vo3wm89LGNrbsTE4T99a821m13V9hKOedUI03qa3h+WmKm61ptfiY8e5gX76obMQ5vaH8TKUkF/Lb6y2qXI4TgojPu5aYniyOugRcrz31QQLMGmqiHKUop1c/vFttY8JfD7/UxNhHy1VaKSvzX3P9qnvNwgY8X7qzLNY/mhB1i9HolVz9azFWTdOzyPUvrs/eS2e17MjrPILPbj7Q+aw/rix/honu83P1S8VEv/NWbXZx9Uz4DL36QNWvX8erbc5j1WzNufCrQo/vmg0nMXfIG+cWxhfKUolFrGDPkKe5+0Rp1z29VeOa9Ahplarj6gsjGrxSVSjDtiUweeiOPPQfjH2b06192vvvNzgt31v23vLcftjBj/pM4Y1zhw2JKZeDJYxj7aHFCDLjfL7l2Yg4PX59GSoSZ22Up1c01W1y8/EkRxSXyvLgLVouRUjo9XnnP6PsP2eqkqLn0HDNDxmclrLw/1zn5fY2TK4Ye0fXMuhpuHJ7E7F+eiVs5I85+hLtesJZOoIsrPp9k7GO5TLwpjTqVrFN61fkWCop9TPs6MQ3MP9c5mfFjCQ9ff2TZ4BuHJ7MvZxUbdsQe2dI4szWdWp7JHS8kRv592V4eeSufl++JfhnVUht74xM5AGullH9WtdyEOKxSSllsk2c9N62Q1cEJQ1WNr7Ha/Ki1lfeSuWy7ObjpUbb80oMN81qwaX47CvL2seBPO6/fb2Hl5u/4Z/+6al0HQEZaI4b2HceVDxbhjnMPZ06elwnP5DLt8QxMxsiPQgjB1ImZvPZZIWuqsHtTNEgpuevFw5xzipFBFQxrqtWCT55J5tulb5NbWP0lMzq1PJXWjftz2/PxHx5dvdnF6zOKmDoxs8pLkT0+pYDDBT6ufjQHm0PeLaWMzzTr4wQp5WaPVz592T2H7CMHBXrp+nXTlz2HaycVM29lGxr3XUWdpmNQqY9uGKi1FtJbjKNp31V8OC+DB1478sKc9K6TSU/8j3vuuYeWLVsyYMAA5s1fzA+/e9m0IzA7/LbLTXz600R8/vgYrKb12nJWrzEMujmfgij2qI+WGT9amTqnmHcfzYha19o001InWcX5t2bHtedj+x43Yx7OYepjGaQmHzHEg/uZGNQPZv/6v5jr2rmnXM3ugylMnh1/A/jGjMC79Y4ro+8hnDgujSKrj0vvzsbpklOllKvjLlgtx+tj6r5s75qnphZ4n7+jLn+td7FkVfyHsR1OP9c8msMbD6SXW3rxqVuSyStey9+bFsSlrOYN2tO386Vc9XARXm987cPz0wpRqeCW0ZXrmVYr+PDJTO5/NY9d++PbwLTa/Ix9LIfX708/aitai1nFR0+l8Nn8J+IyYfKSAXfxwxI/3y6KOTL2YwAAIABJREFUb2iA1xtoYN5+eWq5FYUq4vEpBcyaV8KCPx0+u1OeWZ2yE7aTj5Ryg9MlJ51940G27nZXOb7GbBT4vZGHBnyeYnYvv5Jti/oifU6a9phK2zOW0qrfj9Tr8DTTf2lF58sOc82Fet6bey+H8qu/PN+AnsNBdmD0/QVxq0QFxT4Gj8/ihkuTOa1H5b2BTepreOvBDIbdmsU/e+NXgZ55r5Bla528dHflLaUOLXVMujmJyV/eitVe/d7eSwfcw69/GXnq3SotwVYh2/e4Of+2LN5+KKNa6+fdPzaFAdcdwOWWf0spX42bYMcJQoj6bg85G3eQ1+TcPLliA6zYBHVOy6L/NQXc81IBj7yRz3e/m6jf41vUmoqHbjX6dBr2/InJX/hYuSkQR/rzsmJGjRp11Hlms5lhQ4exaEXA0D5yQzJpKbuZPu+JuC1zNfDkq3A46tBnzAEO5sTuCL//ZTF3vZjHvMkNaBSlrrncktH3H6JjSx39exoYeFMWeYWxX9/mnW7OvjGLSTfXCdvgfOOBFPKKlzF36eSYnFaNWsM15z3Lo286+PrX+BnA2T+V8Py0Qj5+ql6VdhW8a0wqZ91wkEN5vq1SUrW4sROEYMfQqBc+LCz8ZpHNP3KQmasezomLjoeUwS3PHqZLWx3DB5av8wa9is+eS2H2L8+wY//6uJQ5tN+N5OQ15/IHcuNmb6fMLuLdOcV8+my9iKF3ZWneUIvFrGLA9QfjNkJjd/i56I5sTu9hZMSg8vfz7FNMjBys5p2v74h5krNRb+a6Yc9z1SNFLF4Rn4ZMqbOqUcP9Y6u2qdxVw5K4dmIOJQ55tZSyWjMERaInwGjU4nWLWXXrt6/Xj8oxK6Ww2Eejcw/RYsBWtPrMo4553YXs+H0wprReNOz0PGqNOWwetoLlZK+6iGH9vSxYJrhl+Fs0ymhZrevweF1M+epOGtffxfRnUo/qyagqu/Z7uPiubM4+2ciLd0cehg/H1DnFPD4ln69eqU/vTtHPgi+LxyN55M185i628evUhlWaoHT/q0XM+lHPrZdNJtVSve35Cq25vDrrRkYM8vDc7SlotdVf6/Hv9U4uvjObJ8bX4bpLqha7CoHg90E3Z7Ev27vZ5pAnyZpaDLAWIIToa9SbH/D6vAM7tzrV17ZJd3OzBu2pk1wPtVqDx+vmUN4e9mRv5pdVc0lp/QR1m10ddf65/zzHaY3fJMnoYvYCH3/+uZyOHTsedc75Q89i1Gkb/x1uzCv0cfrYHAqL61I/PZ3iksN4fR40Gi3pKY1pmN6Vlg070bZpN1Sqiuuh02Xj43lPIcRKBvXTMOXzYl66uy5XDE2qci98Tp6X/5N3noFRVdvb/53pmUx6JfQaem9SpRfpItUGoiIiqKioiAUUOxaUKhcQQQUFEUWqIr13QockQHqdTC9nvx9iMD2Txn3/3OdbTt05s9feqzxrrWffT+HcVQcbPwunYe2SuVsul2D/KSvPfZCCn4+ClXPCqF1VyRtfpbP6tyyWzA5hYNfC16/iIMuCxeuNvLkwjc9eCuaRwUXTEhJTXfR4IpXwwF6M6vUiapXn9Ynz4/z1wyzdNINPZgTw9EjfMjdVEULw9Q9G5i1P54+vq3hUezUH567YeXBGIreTXJfNVtH4f4VrnhtS9oevCrQBuqtV0uQurXQ6nRbp/DUHWxdGFNnIwlPIsmDaBykci7Kzc2kEhmIasfyxz8z4V41MHPQBjWq3K9d7nS4Hq7bM5kb8AVo3UrNiTihhQWUr4m93CN5amMa67SZ2LIkosjJAfsTEORn+QgL3tdBRs0r2urFhfvid5kRlwe1EF6NfSaRudRX/eSe0SANNlgXjX8vgzKVwnh72Gd5epd/TcmPvqc2s//MDlswOYvwDPmWW2dQMN0+8nYTFKtj4WfidCi+e4MetJia+lYTFJqYLIb4s0wCoJIVVkiQfYALQW6/zaQcEOZw2dVigF51aqunSCto11dGhmbZYa2f860b+jnmWkHqv5jl+7eBQtPo6VG0+v8SPbzdfI+ZAJ4J9TcQlSnRs2p/urYdTLbReqRfu6PiLfPXTVJQKK6vnhTKgS+k2GlkWLFxnZOZnqbRupGHJ7GAa1i7+G0C2VXb0vJ3jUXZ+3e3mWFS2h7VGuJIHe6vo2FxDh2Y6ggM8U6LPXrHz0EuJpBvdzHjUn/vbetG8gQadtuQJmG50s22/hekfppFmlOjUbCDtG/ehZpWGeGlL9z1OXNzN6m1vEhEC6z8JK1V4AbIXo9e/TGXReiODunrx4fPB1Kqq8lgghRAs/dnIjE9SsdpFuiwT9L+irEqS5KfV6L9SqzQjBnWe4NWp2UBJr8tr8W/a8w1Du00CIDUznje/eYLIPtdQqIrPiM8Npz2JC9sb0LGpoE4NL2zqLvyw7heUyuy5euDAAQY/0JvoLeFkZMksWpfJsg1Gqoep6NHei47NdNSppkajBptdcDnGyZFzbv464iIxTUGX5g/RteVwfPQFrf0L0cdYtulN3G4L/n5OMaqPj1SnmprF6zMJDVQyfbw/D3TVo1IVP19uJ7pYuC6ThT8a6dlex8cvBlOnWtEb34XrDpb+bOHvYzLnr2WhVRvQqHUIIbDasxC4qVVFR9smMn8ft9C5pRczHvWjbZOSDVBZFmw/aGXukjQsNsHaD0JpVKd4uTl9yc64VxO5cVuJXufP5OHvUTuicbH3FIZjF3axasv7IOxotW7aNtGxck6ox17mHMTEORn3aiKxCS5mPxXAiF4Gj9Yui1Xm09UZvL88A5tNJAqo8r8irzmQJClcpVQ/rVAopyokhW+10HpynYimWr3OIF2IPkpoQHVuxJ8lIfUWdat5MetJHQ/19SYjS+bYeTtZFhkfvYI2jbXFOiluJ7qY9E4SZqtg85fhJXKLr990MPT5BC7HyIQF+qNWZc93ncaLsMD6VAttRoPqrYgIqV3sc6LjL7B4wyxM1nQeG6LG5YbNf1uY/1IQYwcYPPaOAhw+Y2PiW0nUqaZm2VshhAcX/f+63YKj5+0cPW9jzRYn567ICCGhUUvUrCIT6Ofi5EU708b5MevJQDSlcLAIIVjxSxavfpHKc2P9mPVkQIn/x4FTVgY+m4LDqWZQ54nUqdoErcaL8MAaaNSeOapk2c22w2vZvHc53nqn8NErpFaNNCx+o/hvUdj4N/1l4ak5SQzq5s3CWcEe6QqQbeQ/OSeZPw9b3SaruCyEKP3CkwsVqrBKktRJrdJ+DrQLD6pJZI3W1IloTKBfGB98+zSvPLyIhLRYouPOEB1/AkmRxdQxWiYO9ylAgnY6BZ99l8EbC2Ua9Dpzx8tqyTjBjcNjaNwnCknh2UdPi11DxpXnadPQicMJt5Nk4pLdVA+LoHm9/nRpPqzYlmiJaTfZefQHDp37nZYNJbQawckLTiJrqZk5wZ8h93sXu+mZLDKrf8ti/rcZWGyCNo20WO2Cs1cdmCwy97f1YspoX/p10uexui5cd/DVDxbW/G4i2C+CqiFNqVO1GQa9PxISNoeZmPhLxCae5lbyNfp09GbaOB3d2xYsYi6EYP9JGx+vymDXYStN6qqpX0NNlkVwKdpJbLyLZvU1PDHcl3EDDXms6VuJLpb9bOTbzVkkprqpV0NNw1pq9DqJLIvgcoybqzddhAYE0bbhEDqX8D1jEi6x9dBqom7sp10TgcUmOHfVSa8OXrz8uD9dWhVdhB2yhWDZhiwWrM3EoJdo1kBDWqbMuasO3G4Y0EXPs6N96VzEcyxWme//MPHRygzik12OLIsYDWwUQvzfbOZcSkiS1Faj1v3RtmFP37F9X9QUZWhMmncf37yenQBw4tJu1h3cQ7X2pS8Vd+3vlrSvH82NOCfpJh2BgUE8OHIUsdFX2L59O6vf9eP8VQfzlmcwboCBaeP9PMo8PR5l54s1Vn7fY2dkz1do16g3snBz5uoBdh5ZTVLGNZ4do6NtYy1Gk8zR8zYOnbFz4bqdpvW1WG2C1Ew3vTroadNIS7P6Ggx6CZcb4pNdHD1v5+BpGycu2O94Wi7ecHL6soM2jTU8P96fgV3/ldm/j1mZtcBC1DU3HZsNoWntTtQIj8xjyAkhyDAlEx1/kYNn/+D89YPUrqoiy2qjaoiKB7rpadtYm91QwaBAFpCc7ubEBTtHz9v5cZsJCQjwVZCS7sbXoGDKaD8eGeSTh1+YmuFm5yErn6xK59INJ5G1s+X12i0XRpNApVTh7xNE7Yi21AhrRtM6HQuNljhddo5d/ItdR7/D7kzg+Ye1RNbSkJTm4psNRs5ddTK8lzczHvGnVQkF/4+dt7Hg+0x++dPMgC56qoYqOXDaTtQ1Bz3ae/H8eP8Ca5fLld32dsUmI8s3ZqFSSqmZJnkQcPB/RV4BJEny1qq9PpGFPKFdo17K3u1Hq6qH1s/zrXLLq1t2cfbqQX7du4SEjEQQboLCW6JQ+SO7MslIPkmvDt689IiG7m3/jXxarDIrNhl59YtUJECrkRj/gC/PjPItVCY37DTx9uI0rsS66NRCS/e2XrRtrCU8WIVCAqNZ5uwVB4fPCLYfshLoU5UuLcbTtlEvlLn275tJV9lxeC2nrvxJ19YK6lZXERvv5uRFO8npbgJ8lXhpJaaM9mXsAB+qhioLXdszjG627LMwf3UmV2OdaNTZLUA7NtcxdYwfw3p454nmJaW6WPqziYU/WpEkP2qENad+tRYE+VdBqfgnwpQWy9VbZ7gcewpZtqNUWXlurB9Tx/gVq/hlmWW+/S2Lz1dnkGaUMVtkmtTT8PRIvwJ7LGQrzT9uMzF7YRrpmTJWm8DfV0GArwKVUoXVruRmgo2I4FDqVm1L5xYPUT20XoH3utxOTlz6m9/3fwNSCn3vk1ApJU5dtBN1w4FblniwlzfTxvnRrqm2yL3WZJFZuyWLL9ZkkpohEx6i5FaCC5cMY/sbeHa0L02LcDKdv+rgy+8zWP2bCYXEKbNV9ATSyiuzFaKwSpKkUys12xQKRbdurYbRo82DhAbkze7P7a2B7IX7etx5dh5Zw8WYQzzYW02z+hqi453sO2HjcoyTRnU0VAnRsf98BBFtt6PShhB74mm0hnqENXjZ4/HJbhvX/qzOibX+NPhH6CxWmeMX7Cz72cyGXRYa12rLsO7P42cIxuawcDv5OtFxUVyK3U986lWeGO7N8+MNd7wJdofg550mvlybycUbTprUVdOltRf1a6jRqCWstmxBPRZl58J1Bz3b65ky2pdeHbzyWFdpmW42/WXm45UZpGS4Gd3PQPMGGtZucXA8yk3XFiO4v82DBPqGFfs/Wu1mDpz9nV1H1xDga+Hph7QE+im4lehi7wkbZ6448NJKPDfWj8eH+BSgNNjsMn8fs/H5mgz2n7TRv4uerq10rN1i4tw1B2P6G5gyyo/mDTSFhjJcruwuNV/9YGLjLgvN63dhaNfp6HUGrHYTNxOvEB1/gajo3VhsCUwZ7cWzY3wI+GccGUY3qzZnK6Fmm6BZPQ3d2uioFqZCqZDIssgcj7Jz8qKd67dcjOzjzTOj/Ap0K4lPdrH2DxOff5eBJMEjg3xoVFuDzZHdWWnfSZs4e9Uh6TRSekaW/AnwoRDCLUnSbiHE/R5Pqv+jkCSpk0at2z5pyFverSPvL/ba3DJ78OwfbD59gYjWq0v9zsTjXVn5+i36dtJz5KyVV79IY/8pGyEBSqqGKrgc46ZGuIp1n4R5XCIlN46ctTFmZipmixabw0lkLQ3Tx2dz7rSagnM1NcPNNxuMzF+dCchCqZDkLItQBvopMXhJGPQKQgKUtG6kpU1jLT3aeeGbq1e21SazbruJ95dnkJrpJrKmmttJClIy1Izp/SJtG/VEpfQs9JhlTmfb4bX8dXw9fj4ul8niVvkalDgcAqtDoJCyldNWDbPH0r+TnvbNsjcZIQR/HbHy8aoM9p+y0aCmGr1OwaXobEO4ergam0PgpZXo1ylbEW5aT4OPtwJZFsSnZPOLdx+zs+uwjWqhtalfvSvBflWIS75OTOJp4pKv07aJF9PHawv1Riemupi/OpPlG4xICmjdUEvnVjqC/nFApGa6OXUxex1UKmDyQ75MHOabpzmA0SSz6lcjH6/KwOmCJnXVQqOSpNgEl7gc45S8tJLscImTNjsvCCH2AvyvyCuAJEmdtWqv9U3r3hf0SP9XNAZ94UlDueVVCMFPu5ew98wuAuq8QGCNh1Gq/73P7TSSces7MqM/YFw/N0O7q9l6wMrq37KoFaHCZNMTfduEt5eahrWVXLhmpnZVNSN6eaNSSuw5buXwP80kZk7054nhvgT5F++FdbkEv+428+EKK0lpvnRoPBKjOYUrtw6SZY5n8igvpowy5ElEguy94futWcxbloHZJnC5BSqlROO6GqqGKNFpJUyW7Lbi8ckuOrXQMfkhXwZ3z1ZOrTaZzX9b+GhlOldvuhjSXU+7plr+Pmpnyz4nLep3p3e7sdSq0rDY8QshuBh9jK2H1nD11ikEdiJCVLSM1NCmsQ6dVsLpEty47eTYeTuXop3/OE/8uL+dDpcL/jpq5bPvsuW1b0c9XVppuZ3s5s/DVq7cdOJ2w4he3jwyyIe2TbQFHHl2h+DsFTub/7ayeL0Ff0MVeraZRLB/FWISLhEdd4ZzN/bRpI6K6Q9rGNHLO4++IYRg3wkbr3yewrmrToSAlpEaWkRq8fdR3DHWT160c+2Wi94dvHh2tB997vtXb4mNd7LkJyOL1xsJCVAyup83IQEqMrLcHDprF0fP2aUsi4yQOWBziOlCiGP/zONyy2y5FVZJknroNPqtNas01Dwx+C0CfUNLvikfrt8+z+KNs7DaM2jdUDBzYiCdWuoI8lcihOCVz7NYuhF8aswkPuotGvWJQq0rXoHLj4Tz03m273reeKpg8leG0c1bi9JZ9rMRu0NCrVbTqLaebm0UdGmlYnB3fbEu8NuJLo6et7H0ZyP7T9pQqyQ6NNPRtU22d6dNY+0dxaw4/HnYwqiXEzFZNLSo35WH+7+MXldyyZzccMsuth78jt8PrESpdHBfMy2PDfWlQzPtnYLPJeHGLScDp8YRG+/m8aE+fDA9qEB2aHFIN7qZ/mEKP+80Y7NLaDUaWkbq6doGurfRFPAk54YQgisxTg6dtbNoXSYXrjvQaSU6t/Sia+vs79mqobZE/owsZ3erempOMrIsOxUKEkwWLrpldgM/CSEue/wP3SOQJClSo9Idn/LgPO+mde8r1b0nL+/hx/07qdZhc6nfe/tgc379xEzH5v+Gss5dsTPixQQSUt08OcKXj14IKlXSTX7Y7NmZzLEJLnYuiSi26sadcSU66flkHCCx7uOwUvEoIXuuzvsmnblLrTSr24lH+s8sM98sNvEyizfMokFNI7uWBaHRlC4fdv9JK6NfSUSvk3j5cT8+WpFJk3qaQr2WhSFHaXx3WQZCKBg/UE/vjl60baL1iD8oy4Lf95p57I0k9DoFPdp54eOtwM+goEUDDW2b6KhTTVVsKNTpFLy/PJ0PVmRgs4tTQrCc7MjH7VJ9jHsICoViuEalWzNp6NterRp08/i+9X8t4eClU9To8BsqbXCR17kcqVzd15cQ/XUeG6yjepiSuf+BFau+p1evXsTExPDC9GdQ2Y7RoIaLz1Zn4qVDqJQKaWBXPZ+/HORxKbIcCCFY+pORlz9Lo0srHc+N9aVPx5KpOUIIVv9mYuq8JHy9lTw3zo+QACWyAIOXRLP6WhrWVhe7jhw8beOhGfGkGTUE+lbl6eHvEhFcq1TjB7gUc4Klv8zG4Tbz6CANAb5KHE6BRi1RLUxFm8ZaWjTQFNmy9EqMgzEzE7kc7aB6FbVITHVLk4b78MqEgBIV/xy4XIL1O0xMeS8FUNK7ow/dWivo3dHLI/6yySIz4oV49hy30aSehr736e8Y623+MW4LM/hz4HQKPl6ZwbvfpCPLIkt2c9Hp5hiwGdgphKjw+n3lUlglSRqsUes2De8+WerdblSxi2J+D2t+OF121mx7D7vrMDuXBuXxaADsOW7lg5V2tu410mJo6Us+JF1dwJDGH7JoVtElLQ6etjFmZiIPP2Dg3amBpSInJ6a66PdMPG0aafn8lYLlPzzB1v0Wxr6SwcMD3qFl/a6lvj834pJvsHDDNKaOkZj1VOk20U9XZfDl95msmRdaqkS5/Nhx0MLDryfy7tRAnnywdEWtL0U76Ds5nkcHGXjz6cAyJ2Ulp7l59I1E9p+0mbIsooEQotBihfe6x0aSJKVOo78wrPvT9Xu3G+XRPbllNtOUxmuLxxLZ50oeT01JcFhiid3fgoSdeUn6doeg82O36dnei49e8LyWX3GQZcFjbyRhNMv88nl4sfKbnOam11Nx9GzvxccvBJVpft1KdNHp0RTua/IYfTs8Up6hA2B32vjm15eoGXGdnz4tuRlBfpgtbro8Hkdsgovlb4cyrGfpk7lMFpmZn6fy624zP30STofmnvHlrt3MVv6fHe3LS4/5l4prmB9nLtvp/VQcRrO8wWYXDxZ2zb0urwCSJA3UafQ/v/zwQl3N8MgSr8+R1xtxUcxfN4u63Y+i0pacFOuypxB7oCVbF2iZ+qGVdz/+jgEDBtw5b7fbqVkjjN1LfTly1saUeSmsnBtaaNWA0uDGrexk18eG+DDryZKrCN1KdNHryTgGdtXz/rRAj3mUuXE70UWXx1NoVHMYw7pPzkNLKC3sDiurt76DUnWKbYsCS5WEBOB2y/SdHM+VWBc/fxpW5iTq1Aw3U99P4XJMdrKdJ62NAVZvzuLlz1L59t1Q+nbyPC8hP6KuORgyLZ6EVPdZs1W0KIpXXhEyW+ayVpIkddCodZvG9Z0h9Wk/ukTlbvO+5cWeV6u0PDrwbXx0XXlgalqBrk7d2njx88e+KBRy2cqzCDfKEn7H+1roOLqmKr/vtfD2Is+rLqQb3fR5Op7B3bz55u2QMimr+09aGTszg2dGfFFuZRUgIqQ2L41fwaJ1El+s8bx81IK1mSxan8m+lVXLpawC9LlPz76VVZm7NINvN3tuZETfdtL7qTjeejqAuVPLpkzkICRQyW8LqjC0p7fBRy9dliSpKG2re5lf8n8ASoXq7SrBter1bDvS43tyy6yfIZAmdTqSHvtdqd6beXMJjwzyLrCYz12aRtVQJR8+X7oOeMVBoZD4zzuh3E5ys3xj0fPNYpXpPyWOwd31fPZy2eaXwyno/0waHRs/XCHKKoBWreOpofO5FluNVz4rXck3IQQvf5aGViNxaVONMimrAAa9gq9fD2Hh6yEMnhbPPg/qeialuujzdByvTfTnlQklJ5SUhOYNtBxdWw1fb8UItUpaXMRl97S8SpJUVaPSrnthzOceKavwr7zuOLaRgNpTPVJWIbsEnW+NGXy62sbJqHT69u2b57xWq6V7t85s3W/hlc/T+PGjsHIrqwC1q6nZsyKClb9m1zQuDslpbno/FcekET589rLnST+5kWF002NSKm0bPsyDPaaWS1kF0Gq8mDh4HgraM2R6eqlaygoheGl+Gmar4PT6auWq+BPkr2TtB6H0vU9P76fjPKo3/dMOEzO/SOWvbyLKpawCNK6r4ej31agVoWqm10lHi7m03DJbJoVVkiSFTqPf2bf9WKlLi0Ee3TO4yxMlD0ZSMKbv62SZavHBfwpOYC+dAm+9Fof5eonPctmTyYj7BWPSDmTZgbCdok5EyRMqNEjF9kVV+O73LH71sODu5LnJdGmlY86zAWUqGZFllhn9SgaP9J9D3WrNSn1/UfA3BDP1oUW8vcjMmcslNxw4dMbGe9+ks3NJBNXDyyfMOahfU8O2RVWY8WkK56+W3C3M5RKMfiWR58f7M3F4+cp55ECplFg5J5TOrXQGvU76u4jLijr+fx6SJHkrFIrXnhz6jqSQPBf5/DLbt90I0q7Px2nzrKeC3XydjNilTBub1/A5ccHOsp+zWPyG50X3PYVaLbFyTgivfZlaZCvRN75Ko151damjKLnx9iIjOnVD+nbwvMSXJ1CrNEwc9CErf81O+PIUc5ekc+y8nR1LIjyuFlIcBt/vzZr3w3hwRnbYsigIIZgyL4UHe3szeVTFtQatGaHmz2URaNTS05IkdSnkkntZXiWdRv9dn/ZjvEqzHwzu8gQmayanLu8hsMbjpXqnf/XH2LLPQniInosXL+Y5J4Tg4sVLrNiUxSuP+/NAt7IZQ4UhPFjFbwvCee3LVK4XUaBfCMGTc5IY1E3Py4+Xrp57bjz3gZFqId3o3/HxMj8jPxSSgof7v0liSlU+WeW5kbnq1yx2HLTwx8IqHtEFS4IkScybFki31joeeyOpWKfejVtOnnkvmS1fVSl36bMcBPgq2b28Kj56RRtJkt4s4rJyy2yZFFaFpFjjbwg2DOoy0eN7iqMD5Hs24/q+zfzVFs5eKahkTRyqx3hrUZH3CyFIuTKPa383pab3txjM87j2VwNSb25g3EDPrMLQIBUr54byzLvJpGUWb638tMPEqUsOPi1lPdXcePFjI/WqdaVF/cLW5fIhxD+CYd2m8fBrxgJe69yw2f/tvlGrqmcJI56iUR0N700N4vE3k0osBD1/dQbeXhIvPFKxfbGVSolv3w1DrZJaSJL0ZP7z93h4cX796i2V+RMhS8LQbpNwuuykGZNIzUygRngk97foR+yhQThtCcXeazdfJ+5ob+ZN9SpQr3TuknTemhxQqtq/pUHT+lomDPVl/uqCzS32n7TywzYTX79edmX5zGU7i9ZZGNv3zQpXuAF8vAMY1fNVHnk9s1iZzcGx8za+/tHIr1+Glym6UxT63KfnjScDePzNpCK9R+u2mYm67mDusxXnKc9B0/paZk0KwNdb+kPK96HvcXkd4qMP6Di46xOl+jGHdptEXPJ1vH0ji+WtFgaVJhC/wAYM6Kxh+nNPkZWVHaEQQvDVgi9IT0vC4CUxfXzFrssAkbWgQPZtAAAgAElEQVQ0vDYxgIlvFa5ord1i4tpNF+89V3bq0O97zOw8JPFgjxnlGWqhUCpUPNx/Du8vN3PheslOmduJLl75LJU174dViLKaA0mS+PSlYKLjXKz5vfCmS7IseOLtJF553L9cNWULQ3BAtqdXr5PeliSpZv7zFSGzpV7dJEkKUirVY54aNgeV0vMNZ9Oebzy+NsgvnIH3Pc3L8wt6OKeO0ZMeuwq3s/CQX2bcBlSW9Vy/dpHdf/7O6VMH+GXDajRqJeoSSN250bW1Fw/2NjBrQVqR19gdgmkfprBiTmiR5OqScP6qgw277Dx4/0tlut8TdG4+BCFqsPLXosOkn3+XSeM6mkK7b1QEnnzQB19vBcs3Fm2FJqS4+OA/GSx/O7TcYcXCEBKoZOmbIfh4S1/n3wAlSdpd4S/8/wCSJEleWsPEfh3GeXyPEIJrt84ye+kjPDd/IG/95yneXvEM0z8byK2UGJpWr8nV3e1IvPQuTlteSrDdHE38+ZnEHmjP3Mkupo3LmzR4M8HFnhNWHi2m0H1F4NnRvny7OQuzRc5z/PUFaXz8QlC5vJAfrrDQu92j+BtKpxSUBm0b9USrjmBTCVEeh1Pw+OwkPns5qFS1FT3Fs2N80aglvliTWeCcLAteX5DKktkhZQrReoJXJvgT5K80ADNzH79X5RXAS2t4fVj3J3WeVprIwaY932B32lCU0IWuKChUPgzqqqFO0BVq1azCkAd60LhhTZYtfBur1cyS2SHlSowsDs8/7EdSmpu/j+WNKtjsMjM+TWXFnJBiE4CKgxCC6R+aGNPnDXSa8oW/i0KIfwT9O04qVGfJj+c/TmHKaL9SJ3l6As0/LWVf/CSl0PbPP+80YzQLXnykdF2qPEXPDnpG9zNIeh0F6h9WhMyWZZX5uHpYfWp4yKvJQUkc1vzo3GIIB0/biL6dN0xQt7qa0f20xB4dgSwXtGasicv45OO5hIeH3znWu3dvBg8awNotRbd6LQyznvTnh60mMorghGzYZaJRbQ2dWpadf/LVDxa6tHiQ/EXbKxKSJNG73RN8scZeqAXrdmc3NPCE+F6eMcya5M9XPxiLDFd8syGLkX28qV1MUfbyYmQfb/y8FWpgcr5T9yonrr/DZVNF1mzj0cU2h4XPfpzJlxvnEZ9ylYZ9rxDZN4bIvtE06hdDmm4w52KvEOwXSnXFCa782YIbezoQe6AXN/5uy7W/O+BOWc6JtQE8N7agUvrt5izG9C9Yg7CiUTNCTacWOjbmaiN67oqdq7FORvUtu6ylZrjZvNtM5+ZDK2KYxaJL84f5Yk3xHpsNO00EBygZO6By1g+FQmLRrBA+WpmB3ZFXbrcdsODvo6BLq7KvfyVBpZKYOcEfP4Mifx3De1JeJUmKBNGidWTpW61v3rccnUaP21m2ltduZyYBvkqWzvbl5PdBTOh9gRWzZV6foKVZPU2RNTcrAkqlxLOj/Vi4Lq9h9NMO850qE2XFn0esuN2+NKndobzDLBZdWw5jzwkLt4pp4xob7+TPI1ZefqxyFEaA1o203N/Oi9W/FdR3vv4xk5kT/CvN8ACY9WQAQkitJEnKr1DcfQ6rl9YwvjTemhx4wmHNDa1ax31NB7Dkp4IWy/vPeWPNOEbc0d7YsvJWJ3Ja42jYsGA9tSbNWhOXIhc4XhzCglQM6KJnVREJQwt/NPLs6LLzLLML85ro0mJEmZ/hKRrXbk96puZO7bzc+H2vhaqh2XUnKxM92nvhcgv2nijIzXO7BUt+ymRKBfLgCoNCITHjMX98DQV4NvckJ06j0s2sElTLo2iIw2nj47UvkiLXpl6Ps4RFzkKl+TcMp1T7ElxnMnXuP4nbtw/RCZeZ++S3PDvkOSb0Gs3UoS/w4TPfYzLbiqSVHDhto3eH8iXzeYpeHbw4eObfubZsQxaTRviWK4lv3XYTzet1LLSzVkWjdcP7OXfFXiQXF2DhOiPPjfWrFGpCDhrV0dCsvoYNu/JugEt/yuKZUZX7boDxD/jgdIlASZJa5Dp8T8or8ECbhr3UZWmfO7jLE1QPq4/VdBWH9Vap7nXa4slKv0KrhtnvrVFFzfBeBjo217Hy1ywmP1S56zJk18zeftCah4a3aL2RKaPL9+4F39vp3Hxcpc9TnUZPhyb9WLK+aMfY0p+NPPyAT6krCpQWU0b5sWhdZh7n0IXrDi7HOBnWo+I4yIWhbnU17ZtpAT7Id+ruclglSarhcFo1zUpZwxE857DmRrN6vdhxqKCS+fcxG/3ugylDo4k/2pH4o91IjVmFMXE7Ck0V/vhja57rhRBs+2MDbRqV3nM3fqCBTX8VVJqNJpkTF+wM7l72H//wWRvVQquXqXZtaaGQFLSo35sdBwtm/f6xz8LoSqIC5IYkSYzuZ2DrfkuBc+evOfD2UlQ4r6YwjOlvwO4Q4blpAfcqJ04W7tYlFcTOwQ+7FmJW1qNKi8VICjVVGs0u9DpJUhDW+H0kv158v3MhdSKa0Kh2O2pHNMbHO4CQgMBCE3WEEByPshdo9lBZaNNYy7Hz/xpoe09YGdClfCHBA6cEdSIq11OTA5VSTd1qkRw9V3jy1bWbTq7EOhlSjjXIU0x+yJf//PKv4S6EYO9JKwM6V06INTcMegXtm2oB7nhK7lV51et8utev3rzYfdnhtHHo3DY27fmGn/5axNZD35GQGsPQbpPQafS0b9yH9JjSRTQzYr9hVD9DgZqqsiw4dNZOz/aVb2T6/lOz93hUtsxmmWVOXrQzsBwyK4Tgr6NmWkXeHYd8i7q92H6waN75L3+aeWRQ5e+13dvqyLJk1zTPwfaDFoZ09y6Xwe4pHnnAB38fRZ6M/P8Gh3V4oG+4x71sc6M0HNYc1AhrQNQ1U4FEnWNRdto39eKdZ3xI3BXO/KnRtPKfTZhtErUDzvDu3Lf4/vvvcTqdpKamMuOF58hMvcbQ+0u/sLdrouXERUeBMPaJC3ZaRGrK9eMfO2+nWmjzMt9fWlQPa8LBMwXHeyzKTrsmd0eJaJtPibgzhvN22t4lRSY8WIV3dmH5+3OO3YucOEmSAmRZ1ut1JUcBLLYsDp3bRliTT5H+qSQQf2Fucc8mtPF7XIg+QpoxKc85vU5PlqXgop2ZJWO2yhVWgaIkNKmr4WJ09oJtdwguRjtp0aB8WbHHzruo6aEBUBGoGtKCo+cLz54+dMZG19a6u7IB3d/WiyPn7Mhy9u8aG+9CrZKICK24pJHi0LW1Do2aO5Xz70V5BZBluX1RZayM5jS+37GAFxeMYOPRfRxNDuN0Rl32RLt5d9VzvPzVSM5dO0jvtsNJj16K3XzDo3c6LLFkxi7ghfEF9/VrN534GRQVUnnCE7RppL2jsJ68aKd5/fLtsdG3XWhU2krlm+dGjfBIzl3NKjRJ0WyRuX7bRfMGlb/PSZJEuyZajl/4d689HmWn7d3a55toEULk6e703+Cw9qgd0ahMLyothxVArzMQ6OvHldi8C/aJC3ZaN8reeLQaiXEDfdj0uQ8HVvpwZE0gv3/px6L5z2Ew6KlRvQqpN9axc1FAmSZ+aJAKX28F12/lDcudumSndTm9gceiJKqFNinXM0qDmuGRnL6U11vjdmf36m5ZCQTwwtC6kZaTlwoqrCcv2iudkpAbrbJ/uwdyHboXOXGNvb18nFBypvmBM3/gG9Ybte5f7nfipfeKvUepMuBfdTS7T2zKc1yI7Jai+WFzCPQ6RaWH5nLg7aXAasuO0FyJcVCziqrMyZE5iI4zEx5UIAG20hAeWIeLNwof87EoO23ukswE+SsJ9FVw9Z+1+Pw1B83ra+7ab9kyUotBr8htKdyL8orL7QzwNxSsn5qYdpM5K57mbKoPtbvup3qH3whv9CZhkTOJaP45DfpcJd14m6W/fcrJy/sY2vUxYg89UKLS6rDEcGN/T956SleoInU5xknjOpWXU5AfjetquPSPkXn6kiNnnS4zTl92ULNK3YoYmkfw9vLF19vAtZsFjczTlx00qatBcxcMTMiOMOUo/znvL+/39BSN62gwW4UyH4/17nJYFZIiyEdftvIlpeWw5sCgN2A05aUFJKW5iSimJE7nVl7sWe5P5r7qZO6rzqq5vh53fygMVYKVJKfnTbxKzZAJLcczs58BPvrKS3TKDx99AJmmvKFas1WgUlLpnJochAYqScss2PwhNbP837M0iAhRAuS2AO9FTpy3Ru0lTNaSkzBOXD2CocqYPMfCImeVeJ9P1dGcvHo4z7Esiwk/n4LzSaWUcMvlawVdGrhc4k5lEJNV4FMBc9zmcJUpwlRWqNVarEWUUL4c46ywOoqeILcyYbaKCi2hVRJ8vBVIkPufvRflFSFkhUKRdx3MNKXx0doX8KnzKhHNv0DrXafAfQqllrDIWdTuuo8dJ3eglBQM7jiM63s7kxD1egHF1WGJITHqDa7sbk/9CCMvPVZ41Q6rXeBVSRUgCoNeJ2H7J7kv0yQT5F++d2ea3HjrKp9vnhs+eh8yTQWpjElpbqrepYgEQNVQJUlp/+otmSaZIL+781uq1RI6rQQVvMeWMjYnKctqUJeFwwogIZF/j3O7s5WsklBRpVZUKqkALUEWotzeBVnmrnkoABSShJxPjmRZcBeHgEJBgTFkjyP73N2CMvtdd954j3Li3GqVxn0z4XKJF1psJnT5ajcWxWHNDZUmGKv93yQDi81ERpaRetULJkr4GRRYbAKzRb4rBtKtJBdhQdkLhVJBgXWkLFApFciyG4Xy7kxWWXajLmKVttpk9Lq7J7x6nYTVnv0RlUXIcWXhn3fdeeM9Kq8oFEqXw2lV564as3n/t2hDhhBUq/g9NEdea3TYxE+77+OTqT/RrG5H/jz+C/v3dkKjC0ep9sHtzMJhjee+Zv3x7TgaX58NRT5TrZJwlaKDU3nhcnNnvpenbXwOKuARpUch+yyAyy1QVkK5xqKgVkk4cwWG7/a3+Oc/vaOp3XUOqyzkTJOlYD0+T1AWDiuA2WbGR5/3R9Z7KQrlyFUWTBY5h/N4Bz56BUZz+VZsg17CZvesm1ZFwOowo9fl1fT1XgpsdlFiQf+KgtEk4+0lFVDUfbylQq3SykK6URbAncl8j3Li0hxOm5yYFovTVXynM7Vai3DnTcgrjsOaAyHbUKv+DTPFJlyiSV0DqkJqHqvVEk3qajhVCCWkMpA7wSvYX0lCStHZ9p4iJMCL1MzimyZUJNKMiUSEFC6b2crEXRsKTpe4o0wE+StJSC3/9/QUiWluZMGdxfIelVfUKk18XMq/3lC7w8rBc9sIrvtCiffmyKvWuy5+YX3Zf2YLYYHVGdvnOeY/t4HnR8zkyX6P8/yImXw6bSPj+07Hak+lcb2i190qwUpii6lSUdGIjXfdqSfsa1CQbizfnuDjrcDm8LwteEXAYjXjayioWul1Embr3dvjsszZe20OfL3L/z09hcslcozbO4vlf4HDKg5GJ1wsk2ZTFg6r3WElOT2NBrXyhr0a11FzzoM2nxUBh1NwJdZJg5p5eTxN6mo4c7l8Y2jeQOZ28pVyPaM0uJV0jUZ18mZcatQSdaqpifKgQ0dF4PRlB83qFwxjNq1X/u9ZGpy46JDIG6K4FzlxUZmmFK8a4Q05c/VgsRdWD6mJJW1/nmMlcVgBzKkHqBpc687fZ679Sd/7il5W2jbWcujM3VFYD5/9l+NZq6oKs1WQVE4lq3UjHTEJlypieB7hdvIpOjQr/HtWCVERG393lYkcKlbLyGx5LU3/9PLg0BkbGUY5d5/ye1Fecbocf0fH/9sa9eiFXRiC7kOjr1Hivbnl1a/mZHad2Hznb41aR43wSBrUaEWN8Ei0/9BabiWdKTbhtnkDDZdjnNjsd0fRORZluyOzzetrOXWpfHtCs3oaYhKuVcTQPILNbibVmEH9GgV5vw1ra+6a3gJw7qqDRrm6DDZvcPecBRdvONDrJFkIkZrr8F2vw7oxOf225HIXnrVaHMrCYY1NvEyDmoYCJOXcmYSVjfNXHdSOUBUIYbZpnJ2BV56wRfumGm6nnCrvED1GTEIUHQppTZ2fnF2ZOF5Eosjd/E1NFjnH2/ZrrsP3HCdOCGHXavTRjWu3Y/eJn4u9tmfrIWTE/Ach/yvbJXFYhRBkxiyid5shQLaBeejcHzw1suhqHMN7evPtb1kVEu4rDnaH4MdtJob3yh6LJEm0bqTlWDnnWIdmgpiEMxUxxBIhhOBGfFSRZcDupszkVFlo/k+VBT8fJVVCVHfN0N1/0iYE/Jnr0D0nrwBOl33r6av77ghHfGosGn/PykjmllfvwA6kpccUK2dWu5mYhNhik111WgWRNdV3ZZ7JsuDIuX+jIq0baTh9yV6u6F+9GmrMFjNZloJtmisDsYmXaVir8AhT7aoqLDZB4l2KTBy/kLeE4N1cL45fsKNUSsn5Dt/dOqzAeY1aK0fdOFrylflQFg7r+et76dG+IFm1S2svdh623CmxUpnYftBCl1YFa9BFhKrw91EUWojfU3RsruXqzUvYHQVro1YGLt/cS9fWBb2b3Vrr+H1vwdqolYEt+yx0a1Pwe7ZupOVKrJO4pMoX5q37LXh7KSxCiDsf/l7lxDldjk1Gc5o9LvkGscV4BquF1iMsMIK0m2vvHCuJw2pM/AONwklkzdYA7Duzic6tvKgZUXRWce+OXlhsgoOnK3fh3LDLRNN6GiJzRWce6Krn+z9K1+0uP4b11HP84jZc7sqfpzfio1BIFprWKzyxqm0TLYfOFl6jtaJx8qKd+jXUeaosVMT39ATXbzm5HOuUgJU5x+5VeQU2xyZclpPTbwPgcDqQFJ4l+eWRV0mFQOCWi+aMHDq3hd4dvUvsZz+yj6HI5jkViR0HrYQHKalbPduL7+ejpFEdDTsPl31/VCgkOrU0cObq/pIvrgCcu76XnoXoLJBtNHdqoSu0FnpFIzXDTdR1Zx5jpFcHL37923JXoiI//GEi3Shvz33srnNYhRCy3WHdvvPID6V+UWk5rE6XgwNnN/HMqIJFg1s11OCjV7DzUOX+8Nndl4xMGlF4BuXTI31ZtK5snF7IrgfapbWew+e3lfkZnuJ20jVSMm4WWoR57AAf/jxirXRl8eINB+euOhhaSKcNvZeC0f0MfLOhbG0FS4NPVmWQkSXnmZD3KifO6bJ/feDsFjG46xOs+P29YhWtR/tPJ/nCa2QlZzuyiuOwWtKPE3/qSSYMeJEbcVHsOfkLv+9fzCcvFl/rWKGQmD7Ojze+Sq00g9Nml5m7NJ3p4/Imfj0+1Iff9lhITis78bNZfS31qis4fWVveYdZIvad+oGpY72KbKPYromWdKPMyQuV7zVZuSmLkb3z/rbPjMpuJpC/ZWtFY+GPmSgkcUoIkZ5z7F6VVyGEFSF+2Xl0HZCdce62e8aZzi2vbkcKKpWuyA53spDZe/p7po8rWRl+YrgP67ebi2xRXlFYuC6zQOe0ySN9Wfhj2fdYgGfHaDhwZm3JF5YTTpedA2d/ZfJDRTc6mDTCl0XrK3+PW7Epi6H36/NwaVtEaqkaqqx059TNBBe7j9sA8rRT/m/UYUUW8vNXbp0mITW2VPeVlsN6JGoHTeup83hIciBJElNG+/H5mvJN5JLw2x4LQf5K2jUtXKgnDPVl024Lt4vpHVwSpo/TsufUd8jFWMIVgd0n1/L0SK9Ca9H6GhSM6W9gwfeV+z0//y6TicN80GoK34CnjPZlyU9GzJbK40udvGDP4cq+nu/UPcmJE0JEKxWqA3aHVfY3hPD7/hVFXlsjrAHPPTiXuBOPkHhxbqEcVpcjjaQr84k9PISH7p/Ez3sW8OOeD7lpPQJKFZ+vtZUYwpv8kC9ma7YxWBl4e1E6jetoGNQ978YR6KdkZB9vPlqZXsSdnmHGY1q2HV5cqV7WhNQYTl/dx8RhRXfFUamkbKN5feXKbWaWmx+3mZg0Im8DishaGlpGalhSie9PSHGxeL0Ri40Z+U7dk/IK4HQ7Xtx7apOIS75B83qdyYr7ESFK3h9yy2v6rR9oWrdzkdfuPr6OsCAL97crWWEND1YxtIc3c5eWT26Kw74TVo6etzNuQN75PnaAgQOnbZy7Unaj7IGuerKsCVy7dba8wywWh89vo2Wkhvo1iy41N6ibnpsJLo6dr7zIiMMpWLSu8DbnU0b58dGKjEqNTn+0Ih2lgighRGK+U3edw4oQ4hJwfPnmd5CF54pFaTisWeZ0Nu39gg9fKNpSeWSQgRu3nazfXjkhKaNJZvpHKbz7bNF1Z4MDlDw/3o+n5iaXmZPXu6MX4cEm/jqxrqxDLRHXbp3l3LW/mDaucE8xwKxJASzfaOTUxcrx1uw9YeXXv83MeLTomnjNG2jp2d6L175Mq5QxOJ2Cca8mYneKVUKI/OUZ7klOHIDVbpqyae8y+6DOj7P/zBb2nf6tyGsja7bmjccWUVsbhUKh4daxUSREvUV81NvcPvEIl3c2JELs45Xx8/n7zM9Mn/EMV65d4s+//uT27QRupDVg3vLiw4cqlcSKOaHM/jqtwr2D2/ZbWPlrFl+/Hlxoybj3pgay+jcTh86UfcN4sLc3daoZ2Xa4aOW/PJBlN6u3zubdqT4ldhiaNMKHDbvMRF2rPC7pvG8yGNRNT5VCal9/MTOYOUvTCy2UXl4IIXh8dhKyzGEhxJ/5Tt+z8iqEiHW6nYsX//IG1cPqEWAIwJiwtcT7cjisQggyoxfTt92IQq9LSr/F7weW8t08X4/LKn78QhBr/zBx4FTFK1oWq8yEt5L5+rXgArkiei8F700NZMJbyWXmsiqVEh88b2DtjndwuipHTjJNaWza+yUfPl98G1mVSuKdZwJ4ak4yTmflKI3vLcs22Ns3K8hNHjfQgMstWFxJXt5DZ2ws/yULs1U8VMjpu85hBcDpcvSOS4l27TrquZLlKYdVCMEPu97jsSFaOjYv2vrTaRWsmBPKtA9Typ35Wxhemp9Cn45e9CuhV/brkwK4neRixS9l4/goFBKr5/mx5cAyEtNulukZxcHhtLF662wWvuFb7OZXNUzFRy8E8fibSRWeEZpllpn4VjILXw8hyL/4DfiLmcH8vNPEX0cqnu4xd1k6ccmuTFlmQv5z9zAnDiHEJVl2v/P9js/N00Z9yqY9y9h55McijaywwOpMfOAVPn/+dwa1aEqH8DTah6bQv3FtPnzmByYPm43FZsLbR8u06dPubHoGg4Evv1rGovWWEg24xnU1LJkdwsCp8ZyuoMzVXYctPDwrkZ8/DSMsqPBQaGiQii9nBvPYG0mkZZYtqiFJEv+Z48fu42u5fvt8eYZcKP44+B9CApKYMrpoAzMHYUEq5j4byIQ3kyqlNN3hMzZWbc7i0xlBhZ6PrKXh1YkBPPpGxa8bS34ycuCUzWW1iz75z93L8goghPxsWmZCyuo/PuKB+0aTdGEmLkfxhnwOhzXl6qf46XXUq1aw7bfZamTpLy/wzjOGAtV3ikNIoJKvXwvm4dcTiU+uuP1WlgXPvJdMuyZahvcqPJrw1Ehf/H0UvPdN2T28Dz9goEldC78fWFrmZxQFIQQ/7JzLpBE62jcr2WP9+FAfwoKUvL+84j3WJy7YWbQukyWzQwo1RpRKiZVzQ3lzYRqXoitWeTeaZEa/nIjVJuYLIaLyn7/rHNZcL86wOywTNu5ewukr+zy6x1MO6+Z9izDbzvDe1JIX647NdTw90pcHnkso0A2rPPh0VQZ7jtv45MXCF+nc0KglvnsvlFe/SGXb/rJxQ+rVUDNvmg+LN04jy1xxk9gtu1jx22t0ae1kZJ+iQ4s5eGyID41qaxgzMxFHBVl/VpvMsOcT6N3Bi2E9i+c3QnbYdtW7oYyZmVih3t4Vm4x8uipDGM2ityhEm7pXOXE5cLmdnySkRh/+de8y64zxCzhw7g8+//EF0oz5ozb/YseRH+jSYjCDu0xkaLcn6N56OD7e2Z3ZLsYco2792gUWxYYNG5KUasHtgS74YG8DH0wLpOuE26zabCxzlMLtFny2OoOxMxP5+dNwOheSJJkbo/oZGNRNz4Ap8aSXkZdXPVzF6nn+LN74fLHJbKXFX8d/5NilH/nhI38UHhYZf3qkLz7eCmYtqNjIRFKqi4dnJfHlzGBCizAAAF542I/qYSpGzkisMKV17ZYsZnySSpZFDBZCFPAG3OvyKoQQNoelzdGona6LMce5r2EHYg/2w2mNK/Ke+AtzSb46n6zYr5n+0LwCspllTufL9ZMZ2sPKtPEl76/5MaK3gYnDfOn1VFyFKK2yLJjyXgpXb7pY9mbBdrQ5kCSJlXNCWbEpi6VlpBFJksTyd3w5fmkjB84WHWEqLYQQ/LJnAU53FHOm+JZ8wz9jWfZWKEt/NrJ2S8Uls9245WTo9Hi+ei2EiNCi5bVhbQ0fvxBEv2fiib5dMZERs0Wmz9NxpBndl4UQ+ek7wH+Jw5oDIcR3Tpf9zSW/zOZI1M4Sry+JwyrLbjbs/oILMRvZtTTQ457fb00OoGMzLT2fLL8QybLgncVpLFyXyY4lEfj5eNZGrWl9Lb98XoVHZiWWeQJOGe3Do0NcfPbjJNKMSWV6Rm44nDaWbXoZf7+LrHrXs9Z0kiSx6t1QhIBhzyeUeTPPQVKqi76T44kIUfLVa8El3/APenfUs3BWMP2eiS+3p1UIwfzVGUydlyIsNjFYCHGsiEvvWU4cgBDCbXNYBkXdOHL8h+2fWV8Y/Rn1q7dkzvLH+XHnl4V69/PLrBCCy7GnWLxhFlsPfceBA/twOPJa6bt27aJKqA8/bDURE1f8Ynj+qoPPvsukfyc9n67KZOj0BC6X0uo/ccFOtwm3+eUvMwe+rVZoBYrC8MmMIDq11NH18ducuVw2w+iBbt4sfcubz36YwvGLu8v0jBw4XQ5++vML9p5ext/Lg6ga5nkTQoVC4ocPw/hpp4lZC1IrpGRYYqqLPpPjGdvfwKh+xRu7SvoeTToAACAASURBVKXEt++FYtAr6P1UPDduZf/uQggcToHFKnucmexyCeYsSePJd5KFxSYeFEIUFQu/p+UVsqkBdqe19ZHz253Xb52mXf1mXPmrJXGnJmPJOHXnd3Y7jaTcWELipfcQSat547HFBPqG5nnWmasHmL10DPVqpBDg62by3BQmvpnEs/OS+fy7DPaesGLyIHdgTH8DWWaZVqNvsf1A2ZN3bia4GDAlnkvRDrYurFJi57uqYSp2LK7Ce9+kM3dpWpmiCeHBKnYtDeK3/fP589j6csuJW3bx05+fcj3uN3YsCSxVZ81qYSr+WFiFaR+msPDHzHKP5ewVO92fiOP1SQElyivAhGG+vPyYP90mxnG4HPQogNh4J50fu03UdUeMySIaF3NpuWVWKu+HkiTpRY1a90nrBt2lcf1moNcVbrlt2vNNkbSAxLSbLN44i5SMm0wbp2XqWH+qhio95tfIssxDLyWy45CVr18P5uEHfErd8vT6LSejX0nk4g0X4UFejO6voWMzDe2baov1LuQg3ehmwdoMPlyRSb0aap55yJfWjbQ0b6DxeCKnZrjpMSmBKzEKxvd7iY5N+5epdeu12+dYsvENHK4M5kzxZuwAnzvdQzyB1SrT95l4oq45WPVuKIO6l+wZzQ0hBOu2mXlqTjJut5IGtbwY2UdFuyZa2jXR4l9CGRXITrZ4e1EaKzZl0bG5jglDfWjVUEvjOppCE8cKQ0yck3GvJXHmsl02WcSvwG/AhtzZxjmQJGn3vR5mBJAkSavVeC1UKTVjnhj8pr5KcC3+PvkL+0//RmhgNWpXaUzNKg0J8g3jwNk/6NikHwlpMcQkXOLKzdO43E50GjXJGTEEBxho1/F+Fny1iKpVq7Jv3z7GjR1Jt+ZmnG7466iVdk10TBnly8Cu+jseQ5td5uOVGXzwnwyUSsSwHnppyP3eHDlnZ+WmLFpGanliuC+dWuqoFpZ3HRBCcP2Wiz3HrXz6bQY3bruwOSDYX0/X1jo6tYCRfbypUaXo0lqQXVf045VpfLQiE6VKQiFlty5UqyTCg5W0aaSlTWMtQ3t4U60I5fHaTSePvpEdCZBlHY1qd+DR/jPveKE9RXT8BRZvfAOTJZXgABc+egVuGbQaiTrVVLRppKV9Ux092xeeNGk0ycxakMryjUZUSom+nfQsmV0y/aYo/HXEythXE6kSrOGJ4XpG9TWUuAYKIdj0l4nxryUhC6hXXc3tJDdZFhmVUsLhFNSrrqZNYy2dWugYO8BQYHynLtoZ92oit5NcQpJEpsstJZit4gCwBfhF5Mo8+l+RVwBJkqprVNqjkqQI69HmQZAUHDi7gyxzMkqlBll20rRuN/QaFW0a9iA+NZrQgGq0bNCNhNQYthz4lrPX9iPLVlpEauje1os6VVWoVRIWm+BitIPjUXairjsY0t2bKaP9uK+FNo/cybLg8+8ymf11GkH+CjF+oEH67ncTfTvpmf1kALWqFi9vOTBbZJZvNDJrQTo1q2iZMMyLzq286NBM69Fet367iSffSSIkQMnkh/zwNShQSBDop6BVQy01I1TFPuf8VQfDno/nVqKKOlWbM3HwbPwNnjtTchCXfIPFG2eRYYpnTD81oUFK3DJ4e2V382vTSEutqkWPJT7ZxSOvJ3HgtBVvvYKOzXQseyukVPs0ZBt47y9P58MVGXRuoeeRwd70aOflkcHrcArGzoxnyz4rfe/TM6yHNyqlhI+3gmb1NdSpVvy3FEKw9CcjMz5Nxe4QGS43h4DDwM9CiAIZbhUhs+VWWP8ZSGOt2mu3SqUOGXjfo3RuPgiDvmCGWn4kpd9i59F1HDjzKw1rQ51qSuJT3ERdc6JUwsAuep4d41fkZLbaZNZtN/HxygxSMmRqRSi5GuuidjU1r030Z8j93oUW8M2NizccfLEmizW/m2lerxfN63fH6bRzM/EyMQmnuJV8nW5t9Ewfp6V3R688YbqYOCdLfjKydouJpDQ39WqoqVddhVotYbLIXLvpIjbeRZN6Gh4f4sMjg3wKbdl2/ZaTBWszWb7RSESokqqhSk5eUBIWGMmgzk8QWbO1R8Icl3yD7UfWcPziTlo1/LcTzoUbDvQ6BcN76Xl2tB/N6hdeKDozy83KX7OYvzrb4osIUXIp2kWDmmpmTij5ezqcgp93mvh4pYnbiWq6thz//8g7z8Coiu/vf+723SSbhCQkoYReQ+i9IyoWilIVULEgRcXeUBTsqKiAAlaQKiiKICIIKE1qgEAIvSdAejbb253nxRokpCe7PP7+ft8Rkpm5954zp59DTLU4bE4L5y8f5WLGYS5nnWdAr2AmjdIV+a7JJ53MWZHPjxutWB0yTetpqBOrQqkAk0XmxHk36dle2sdrGTvYyNBbgoo1Bg6dcDJjYR4rN1qpX1NF8wYaHE4hUs64pHOXPATpFe58i/yrLHhSCHG+zBf7fxCSJN2kVeuW1qze0NCv06iQ+PodOJuWwrkrxzl/+SgmSzYe2Y1aqaF6tVrERtQj6dRGsk0neOb+UMYONhJskJj8qYUFq814PIIa1XW8/qiOkXf4LPwC/vxksYnQEAUvPRjG+r/sLFhtpnEdFWMG+kLZyaedbNvvIPmUi7ZNNbRpqvtbiLoQQhAXq0IICatNJjVDRqPSEhfTkE7xw2jTuAeyEGTmpnL+ynFOpSZy8MSfdG+r44Uxenp3KOxxTT7lZPKsbDbvcdC8gYaBvQy0j9fRvL4ag06BVxZcuOwhMcXJ7sNOfv7TSu/2ep4aHUrPdnosNpk/99r5aFEe+4446dfVwJCbg3B7YP7PdnYmuWjZsAe3dLyXurHNSuRbj9dN0snt/LZrMWkZp4mL9TL0liA6ttDRoLYajVrC4fRN2dt3xMm2A3bOX/IwdoiR8cOMRIQqOXjcybzv8/l+g4X28VpG9w/B4xF8uTKfM6keZr0UyfBbg8tt4KWle3jjcws/bnLTt/1DaNRaTlzYTfKZndzZI4gXHjQUGWJwKcPDig1m3v4yD4/XN276wbtC6Jygo11z7dVcYo9HcPSsTzHatNvOmq027uoTxMQRRs6mepixMI+TF9zcfZOB27sbkGWJtAwPOw7a2ZnkxGyTZbtD/OqVeVIIcaai9P6/DkmSVAqFarpaqX5SIJStG/egWd0O1IysT52YJuTbcpj1w9PE1IiiZ+8e7Nj+F0eOJON0OIiOkHjnSSMjbg0plRZy870s+NnMnBX51K2h4qvXowjSK/jqp3w+XWbCoJO4s0cQCoWvuObIaRdKJXg80KOtnlF3BtO+uZYGtdWF5GRmjpfEo05W/+lgyVorcTGN6dR8CF7ZzZlLhzidthed1sYT92p5cFBRGelyC37caOHVz3LIzpOxO2WiwpXEN9AQEaZEpYQck8z+o04cLsFt3QxMHO4zeCVJQpYFm3bbeX9BHjuTHPRsp6NjCy0bd7k5cEymd5th9G43pIhXujhcyjzLxr3L2XXkN4Rw0by+io4JOurWUF+VU8mnXOxLcaJUwNjBRsYOMRIbpUIIQWKKk48XmVj9p5UOLbR0a6PjbKqbjbvtWGyC8cOMPDYilHq1SjcALDaZxWstfLTQhkKqQfdWI8k1Z3Lu8gFOXjhAr/YGnhylpW8nfZE7KC3dzauf5vDTZiser89Ib15fTVS4ErVawmoXHD7pxGIT9G6vZ/wwI7d0+Uf3ycv3Mv9nMx8vzkMIGNAriNhIJTn5MrsOOcShEy5JqcRrs4u1f/PruTJfbDnhF4UVQPK9lZf0mqAXPLI7rHndjjSq3crnrQmNYfO+H+jddjBXcs5z9lIKp9P2kJ5zhofuCuKJe4MKNRsXQpCa7mXZOjOzlppQKiUeHBhCs/oaHC4fQexJdnL4hIvOrXwenNu7G1D+bcmv3Ghh9lITp1M9dE7Q0qOdnvgGPoHk8QouXvGw85CL3YcEF6/IdG15Fz1bD6WaMbrIczlcNnYf2cCmvYvRaU1MHKFBp5VY8LOZ4+fcjO4fwrihRlo01BTbL9HhlNlx0MHMJSb+3Gvnli56BvUJwmIT7DjoIDHFSUaOlwcGhvDYiFAa/j3SzekSfPWjmVlLHFjsBlo3upW6sc2pE9OEYEM4EmB32kjNPMW5SymknNtCtuk844YaeHJUCFHV/vFeCCE4fdHDgtX5zPs+n6gwJQ/dFUJcrBqrXebgcSd7jzg5esbtY/YRRnq09TG70yX4cZOFmUtMnDjvJqGRhh5tdTSpo0GjlnC6BSlnXPx10MuhE07qxDSiW8vRtGrUvdgegBabie1Ja/hj/zJqRbsZN0yLxSrzzSozGblexg8zMmZgCA3j1MUKe7NVZuMuG58sMXHohItBfQzc3ElPVp7Mtv12DhxzYXcIxg0z8ugQY5FcHqdLsDPJwaxlJtZts6FUctBqFzcBP/1XPDYFkCRJCwzWa4NfFEJuUje2matR7VbBMRFxCpVSw+4jG6gT04TDZ7ZzOesoQ24OYvZLkUUEitstsDlkjMGKYr+Z1yt4f0Eeb32RS+8OOma9GEWD2kUv5AIFd/r8PDJzvTSrq7Kfv6zQZuUpFV1bDqBVw27UjKqPMajkzh3w98StI+tZve0Lwo0OWjSUyLd62X/UhVeGBwaE8PTo0HIVnZitMot+MfPG57m4PTJWm6B1Uy3jhhoZ0S8Yg77wu8jI9vD1T1Y+/c5OjslDTER96teIx6AzIgsvJksWp9OSycxNQ6vW0LuD4INnImneoOyzJJ908vFiE8vXW3B7BPVrqbj3thAeGVyUzrfttzN5lq+w4pHBRu7sYaB1E22h0KsQgrQML3uTHSxY7ebPvTY6xd9G/24TCNL/k49nteezPWkNa/+aT63qMk3rSWSbZI6c9o1mDTMqiApX8vYTEdzaRV+u3NusXC/zvjfx7td51Kyu5M3HqjG4b/HKtRCC3YedfLwojzVbbDjdYrEsU/u/xq8AkiTVU6s0L3hl74NGQzWlV/aobA4zQUEGWrVuxdatW6/+7scff8zX894g+fuyazGuhccjmD4/j3e/zsXrFYy4LYSJw41FCoqEEBw45mL6/FxWbbISHaHE4RJYbILQYAVqlRqHS8LukKlXsz71YjvSreVdRITGFFnn5MWDrN+9mLOX9jOot4qGcWrOX/awM8nOqYse9FqJ5vU1PDEylDt7GEpM17uU4WH5egszl5rweARBeom0DC/1a6l54t5QRt4eXIgHjp5xMWupjSW/WqhdvTH1YttRr2ZzIkNjUSnVuD0urmT7dJaUs3vIyEslJlIw+REjDw0ylmoAHDrhZNZSH79GhinJt3gJMyoZN9TIg4OMhWQ0+Pj7pZnZ/LHXQYPaanq01dE5QUd0hBKl0hdJSTrhYWcS7D5soXFcK7q3HEnzeh0L3bsOl41dyb/x265viQizcVcfFSqVb/jHnsNOnG7f93lyVCjDbgkmLrZ4T2p6todVf1iZtcREtkmmfi0VlzO9pGd7GdjbwOP3hNKtja7I3woh+Ougg0+WmPhliw3gD4dL3A6s/1d4WIssKkk9gSe0akNnpVIZ65U9SqfLjkFnoFk9Lbd0keiUoOG2bvoyw+WyLPh+g5Vxb2Yiy4I2zTT06WCgfXMt7eO1pbrQT5xzseuwkzVbrPy5145XltCq9cRFx1MntgN1YprRsFYCKmXZ4QxZyPyRuJLvN81GrfLwxEgjrz1arczcm2uRmu7h4akZ7DzooFqogvHDQundQU/rJiWnDQgh2Lbfwe87Hew4AHtTbNgcbhACtUpFs/oGerVT0LOdmv69goqMsb0ebrdg3g8mXp6Zg0IB3Vvr6NFOf/V9ljb15MJlN3uPOPnuNwsbd9kQQkloUCTN691Eg1qtqBvblPCQsq1U8HmYft7yJZv2LUWlknlnUjUmDg8ttzcIIOW0i1Evp3Mm1U3tGBXjh4fSrZWOhEaaMj3r4Es7mPh2Fr/vtHktdqEUQlQ8/+L/CCRJigM6KBWqjlqNvp1CkjtZ7Nbg27sFs+uwjQVvVmdg74qlhlyPI6dc3PH4ZV4YE8Zj95QcgRFCMHVuDu99Y6dtkz6MvPVZDLqy87Kuh8NpZdnvH7PnyO/UivFi0CtY9FY0bUoZRVkS8i0yz87IYv0OG2tmx9KqSdlrpGd7WLfNxtR5uVzK9KLVqOSERkpFeraHqDAFi96JLrVnY0k4eMzJA1MyqFdTxZJ3oku9g46ccvH5DyZ+2mzlSpaXmAgtYSF6vDJk5Djwykrq1WhI87o306XF7ei0JX/jfGsOC355m+MX9jNmkJourXQ891E2z90fxrP3h5WL567HmVQ3D7/uy9n/eWZssRGoa5F80smIF9JJOeMGaCKEOFHhTf8PQJIkPXCTQlJ20Kh1/SSl3NlutxfKhfR4PMTVqs7Wr0KuOkIqgiOnXAx66jKP3G3kpYdLT3NJz/Zw91NX2H8U4ut34Y6uD6BV69Bq9ISFRKGQyicnj57bxxerXsPltnJrF6XItwopK8/L11Or06mUrkHXo0BveOK9TEb0C+bDZyNL7P8NPsN0w04buw+7WbXZS2q6ByEESqWCiFAlYMXhklnybjQ3dy69c9D1yMzxMuHtTJKOO1n6XnSJfd0LYLPLzFySx9R5JnRaBdXDYtDrgtGqg4gOb0rt6OY0rJVAWEjJhWrgy4tfve0rNu5dgV7nlNs10ymOnHYx84VIhvcLLndRpxCCzXvsPDglg1ZNtHw1NarELizX4/wlN/e9ksHBY06X2SY0VZWxAVFYC20gSb2C9NLm+AZqxZZvalYoMflaZOZ4eWRaBmarzM8zYwkJKv86+444uG1CDnd2nUSP1oMqlRcqhGD1tjkkn/2J7z8ML3G+d3nWWfqrhac/yOKbaRXPD01McXLbhEs8e38Yz48JK3EKTlk4m+rmvlfSqR2jZuFb1SukKK7damX05Hzuv/1NWjbsWqn9PV4PC9dNwelJZMUH4dQvIwRSEgoqxGcsMrFmVgzt48t/qRVg5UYL976YjsfLDFkWz1XqIP9HIElSQ4NO2jllXHj4+Utu5cqNVpZNj6Zvp4pd0iXhXJqbHg+mMePZyBKLAw4cdXLLuGyG9H6JjvG3Vmk/t8fJB0seoEWjTFZ8EFOq0CoPVqy38MR7WaybE1vqDPZrUVD4N2NhHsF6JXffFMQ7k6pVmnfBFyYd/2Ymx8+7WT83luBSlNbfd9oY8byJB+54m2qhMbjcdhQKJcH6MMJDim9/Uxo271vOul1zUSndrPoklq6tK85z10KWBU+8l8W+I042flGjzLvd7Rb0fCiNwyddXqtdtBNCJFXpAP/jkCSpR0REtS2PP/6ENHXq1EL/1yqhAV9PdlbqXgRfrmWvhy7x5KjQUo3M7fvtDHwyl3tufo12TXtXaq8COJxW5v74NJeyjvDIkBDefCyi0nybmePl4akZ2ByCVZ/ElMon1yLltIu7nr5C/556dhxw0qy+ptg+sRXBivUWHns3k2Xvla70CiF4/F0T67eHMGHI7Erl2F6LY+cS+eLnp+jeVsP8aVHlqskpDlabzHMfZbNtv50N82qU2ongWgghmLM8n6fez8Lj5X4hxKJKHYAAK6ySJLUP0ku733y8muLp0eWrVC8NXq9g3JuZnL7oZt2c2HIpv8fOuugxJosRfV+nTZPKF6mt2T6Pk6k/8ufXEUVc+ZXBnsMOBky6wqK3q3Nr1/IpA8knndw87jJzX4kssWddRWB3yAx5Np2wEAWL36leLotryz47dz+Vx4TBs6hfM75S+8pC5tu1r6LXH2D1rPByd4QoDT//4Svy2vhFbIk5uqXh4DEnvR5KI98q3hZCvFrlA/0PQpKk6CC9dOjDZyIiH77bqOh8Xyrjh4Uydkj52rWUF/uP+oyugytqF7n0UtM9tBuRwZA+r9Cuad8q7SOE4JtfXiK2+mFWfBBeJQXxWvy0ycLEd7LYt7RWuav5nS5Bi8EXuLtvEO8/XTUBVAAhBGOnZZKW4WHtp7HF8m/ScSe9H85m3F0f06h2K7/sm5ZxmhnLHmL9vKhSe2VXBEIIxr+ZRVqGhzWzY8qlRL8+J4ePFuZ5LHYRJ4S47JeD/I9BkqTqBh0HgoODa6xavYEuXbpc/b+UlBR69+zAhXXRlXYUgc+50XF0Kn98WYMWxdytySed9HwomzF3vkd8vY6V3qcAueYMZix9iJcfkZg0suxamLLg9QoemZrJxXQfn5RX+b14xU2b4ancc3sws18qfhBJRbFtv53Bz1xh9cxYurQqnnde/dTE8nUhTBr+RaUiS9fC7XHy2Q+P0zY+jW+m+ecOfPvLXBavNbNtfs0yB5tci5//sDLypXRsDjFQCLGmMntXXVMoAZIkqUKCpC3P3B+meHp0GFPnVr1HoFIp8fmUKKqFKss1DcntFox43sTtnR+rkrJ66NRf7Dv2PZu/quYXZRWgY4KOlTOiy92I2e6QGfpcOu8/HeEXZRVAr1OwckY0Z9Pc5RrLmpfv5Z4X8xhz5zuVVlYB/kz8HrsrkZ9n+kdZBRjUJ4gZz0Yw5Jl0bPaK94Jc9YeVjV/UQK+TXpEkqXJu4/9hSJIkhQRJCycMN4aNHx6qeH9BHiazzCODK96vsSy0baZl/LBQxl03IU4IwYNTTHRteU+VlVWAvUc3kWXaz5J3Kx+JKA539w1m3FBjhSbcvflFDs0baJj+VMXyCUuDJPnuwzyzzNwVRftTutyCUS+buLvX035TVr2yh4W/TeH9Z8L8pqyC71k+fTmSS5keFvxcdmvAqXNzmDohnAG9DaoQg7S1zD/4P4i/eXbx+GGhUS8/qOOmm25iyZIlnDt3jh9++IH+d/TljfEhVVJWAerVUvPOExGMea3odCbf9MB8BvV40i/KqixkFqydzLih/lFWwac3fDU1CoNO4rXPyq+HfLzIRO8Oer8pq+ArTvtmanXufSkds7WonPrroIO5K5xMHPJplZVVgFVbZ1Ovtv+UVYBXxoZzR3cDD72eUaF2XAeOOfn4hQhCDNJKSZIqlV8WMIVVreT7+jXVhtfH+XJfps3zT0N8pVLii9eiWL7ewrb9pffofPebfCTq07NN8SPqygObw8yy399g4Vuh5c7bKC+6t9UzbmhRwV0cpnyWQ6vGGu4f4F8FQq9TsPCt6rz5RS4nz5feA3PS9Hzi695EfP1Old7PNxbwc5ZNDy1SsFJVjO4fQrvmWl79tOLG0bR5uXRooePVR8IxBkm/Sf66of5HIEncGxWm7PbW4xEas1VmxsI8Tqd6/HZRX49XHw3nyGkXe5P/6YE6f5WFM6mh3Nb5oSqvb7bl8cPm6Sx6O7TKArs4FEy4W/RL2aOh9x918sUP+cx7teLh97KgVPrG3L4+N+dq/9MCvP1lPlpVY7om9Pfbfhv3LKFObC6PDvGP0Xwt1GrfFJ4XPsnmSlbpRvy0eblIksScyVFoNFJDSZKe9/uB/uX4m2e7vjMpQr0n2YHD4WDhvKfp2a0lc2ZM4JNnYPxw/3ynRwaHEKSXWPZbYXp/56t8VIqGdGs50C/7bNn/AzpdKlPG+Teqo1RKfPV6FN+uMZdrLPOOA3aW/WYJCM8O6B1E3456Xvg4u9DP7Q6Z+yabGNH35TILS8uDkxeT2H/8V+a/EepXgx3g3ScjOHfJw5K1Zd9/BZg2L5exg410TNCpdVppfWX2DYjCKklSI6VKuuu796P9/qIAIsKUfPpSJBPeKlnRy8j28OECM6P6Ta0Swa3963MG9VZxk59y+K7HlHHhnEl1F1TTFYujZ1ws+sXCpy+XnmRdWTSqo2Hyw+E89UF2ib9z4KiTddu93N376SrttfLP6Ux+JKhCYwErgtkvRbJ0nYUjpyo3du6FB8OoWV0VAnzs35P9eyFJktKgk2Yueic6SKuRWLzWzE0d9bw+vmL9RCsCjVpiwnAjny33efa9XsFrc6zcc/OUYrtLVBRbD/7IgN7aChVqVAQatcSsFyN5+8vcMo3Nt77I5bVx1YiN8q/BW4Cm9TSMH2bkw4V5V3+Wb5H5ZLGZETe/6jeB6/G62ZS4hNkvV7zPdXnRsrGWoTcHlznRqIA2w4xKvnwtCmOw9PZ/yciUJEmj10qfLZseHZRn9vLrdhsvPBjK+s+MXFhXnc2fh1a5SPK6/XjmvjDmrvgnEpeb72XGIjP33vqaX+jB5jCzZvs8Fr9jDIjeUD1CxSfPR/DYO2U7iJ75MJuPn4uoUMi7IvjouQh+2mzl6Jl/5NTXP5kJD2lGu6Z9qry+EILlG99k7qvGSvdjLg0atc9QfubDLKzlGDgBPp6VJImFb1VHgm6SJFU47BMQhVWlZOaAXgaa1vtHKfG38Lu7r48Z/9xbvLX05Y9W2jXtXWyrqvLC6bKz8/CvvPqo/xj/emjUEi8+GM6n35Uckp+z3MSjQ4q2wfAnJgw3sifZwemLxU8nmrnUTq82I9BpKq+4Z+amcTo1mcfv8X+YuQCR4b62IXNWlJ3icC0K6FOlknjr8WqEhSgeDcT5/qW4s15NtbageOarH/MZP8zI1AlVt/JLw4ODjKz6w4bZKrNuu40gXfUqpZoUwCt72JH0PU+NKt/Uq8qiR1sdWo3E5lKmsaWme/hzn50HBgaO5gHGDwtl6a+Wq2HGRb9YaFa3bZEWQlXB/uNbaF5fVa4WXFXBxBFGvliZXyT8fC2upc2BvYPQaxVq4IGAHuzfhbtbNNQoOybo+Ha1mSF9g5j+lH9yo0vCnT0MpGV4r06Gm7/KQsuGXaokY6/FX4fX0q+rvpDe4G8M7xeMySKz+3DJ0+32JjtIz/Ey7Fb/RxEKEBqiZOxg49VUHiEEs5Y66dNujF/WP3HhACpVPoP7Bk53addcS6cEHd/9Vj4vawHP1qiu4p7bg9GomVnRPf2usEqSpNJppX5PjSpcZOVv4SdJEhOGhxarmMiyYM5yGz1a31ulPXYfWU+3NvpCPWIDgWG3BnHgmLPYkLzFwBRiTAAAIABJREFUJrPkVwvjhvk3RHI99DoFDw4yMu/7ou8zL9/Lj5ssdGs5qEp7bEv6gQcGBPk9FeB6PDrEyLJ1lmJzhErC9QJQIaGXJGlIIM73b0NYiOKZ58eEhYCvEvToWTc92+n9kndeGiLDlTSvr2b/USdzV7jpmjDSL+seP7+fGtWhddPKdfIoLyRJYtxQY6k5lwvXmLnntuAKdTWpDGpFq+jdXs/3G3zCY973Lrq3rNr9dz32H1/FhOGBvQsBEhppqRWtYktiyYbAtbSpVEo8NToUY5A0NeCH+5cgLETx/HMP+Hh2S6KD/j0NAedXlUritm56tuzzOYk+W+6ke8t7/LK2EILth75j0sjAREQKoFBITBgWypzlJTs0Pv8hn/FDA+PlvRaPDjWyeK0Zm11mxwEHTlcQTeLa+GXtbYeWMmlk+aaHVQUTR/wTJSsL19LnkyNDUSmlnpIkVcgLF4hb9DatRlJ0aVVYWASCme65LZj1f9mQ5cKW+InzboTQUSemSZXWP3bhD+7vH5gw3rXQaRXcdVMQv+0oekHvOOCgZWNNieMh/Yl7bgtm3faiqQk7DjqoV6NhlfNqUs5uYXT/wF5I4Js73bqJhu0HSs9xvhbX0qdKJXHvHcFIUPVkyn85JElS2B1yxzu6+zznB487iW/gGwrhr7zz0tCumZZ9KQ52HrISX7/qRRsAZy8d4aZOgYtGXIte7XTsSS7ZW7MzyUHfToH19Bagbyc9uw47sNhkTl2w0chPwg/+Hol76QTdqtjCqrzo1lrH3iMlv9frabN/DwNA7cCe6t8BSZJ0Vrvcsn9Pw9XpSe3jdTeEX9s315F41El6tofMXA8Na7X0y7pZeZdwuvLp1ibw9DXitmB+22ErMS1g8x47g/oEzjNZgNoxKhrF+Qz2P/c5aF6vl18UTFnIHD61j3tuC5yHuAD9uho4m+YhPbvswvFr6bNVEy0hQQoJqFDfwkAorP07xhfV7APBTBFhSiLDlJw4XziMve+Ik7qxVVNWAc5dOl7p/nUVRYd4HftSiqY37Etx0iE+sJ6iArRoqOFMmqdITsq+Iy5qRVWtytjpsnMlO7NSLacqg/bxOhJTyp/Hej19dk7QEW5U+EeD+nejQUiQQi7I1Tp21k2Lv0O+gcxhLUCLhhoSU5xIqAgL9k+OdlrWATrGB97AA1/+aFqGh3xL8d78xKNO2lViUEFl0K65lsQUJwePOYmLqemXXOAC5FkykWUXcbE35r0WPEtJuJ42m9bT4HAJhSRJ/wWlNSEuRmXX6xRk5co4XYJa0cobwq+tGmtIPuUbsVuvRj2/efDOXzlO22aGgHsEAWpWVyJJEqnp3iL/l2PykpXnpUndwEcS4G86P+pk9yGJuOpVT4cCyMhJJSxEFdAUwgIoFBJtm5XOqwW4nj7bx2sFUKGKUL8rrDqN1LW4RtKBYqZ2zbXsP1r4ZSWmeIiNqJrlZ7GZsDnsNKh9Yy7ots20HDhWVME6cMxZ7gblVYVG7Rt/d+hk4XPsSZaoXb1ZldZOzTxNw7jgKjduLy/aNtUUoYvScD19tm2mxeMVgU3i/HcgPqGR5qp5bHP4xhmC/9N4ikOQXkFmjpe4mLp+E1YZuak3TOCoVBINaquLzf02W2VMZpk6NW7MHRLfQMPxc26OnHZRI6qxX9fONl2hXs0bo1AANIpTczat+Hx6KEqbKpVE/VpqAdwW4KP9G9CyQwudEnwpYwUjkW8EvxqDFVhsModOuIiNaOG3dS9mHKNTQmCHGBVAkiTaNtNw4FhR+ZB8ykVCI225p0BVFa2baDl0wsWhk05qRzfyy5oX00/QusmNieoAf7/Lsp1D19Nnl5ZaSauhc0X28rvCqtdK1WKLGZcaKGaKrqYkO6+wdyMrT0GIoWr7WewmIsICnwNSgOgIJTmm4i2+6BtgKV17juy8wufIMQlCqpgOYLXn3+DnUJGTX/R9loTr6TM6QonTHbi2b/8iBIeFKK8+p1IJ3r/ZKdA5cQBeWSAEaKtQzHc9PB43et2NKxjXayUcrqLC1u6Q0eukG3aHGHQSdqfAahdoVP4t8vJ43OhukLEJoNVIuErWV4ulzVDfWNf/gpEZGhmuUAMoFFAQ2b4R/CrLvj1NFtBr/eeEcjhziI64cddtVLiS3GLkg8ksEx5y484RblSQb5Wx2DwYdP6pU7HY84kJbP1dIVSvVrzucj2up89qoUq0GqlCE6X8/2UkFIpiVg0UMykUEvJ1uSheWSCVc3ZxSZCFTHHPESgopH8UhWvhlblhAg9AqSh6Dq8sUFTxDLLwciObziiV4C2/vlqEPpUKKtQU+X8Y8rX8U72akkt/D7K4ETlxlzK9hAQp/PqulUpVqRXm/obLLdAUM9pYrZYqRINVhccrUKsk370lKj48ozSoVOpilfJAwekSaEpxkhdHm7LvkUtRc//P4OqHCDf6lAWvV9wQfs3I8VLNqPTd5X7kWYG4ofJBoZAK6KUQJOmal3sDIIRvT5+M99fON/ZdKhUScjmOXix9Cip0UfldJfN4hC2/mOrsQDGT2SoTdF3VuTEIHK6S+5qWBzqNAYu17ERif8Fsk4udcxxsUGAuZ58zfyDfKhNsKEztwQZF1d+n2oDZeuOugnxL0ecoDdfTZ75VRq2S/gsaa/alzH9MlGvzkW5ETlxiipMWDTVYbP67H8JCIjl36cbwrhCCc5c81KxeNHpgDFLgcgtM5hujtV684iE6Qkm1UCVWR5Zf144MjeVsWsmFKv7GyQtu6tUsWWMtjjYzcrwSkBbAY/1bYLqS5XWDL0QfG6Xi+Dn3DeHX/UedtGmqISwE7E7/OaE06hBy82+cnMsze4vt3BEWoiAr98ZZmVl5XkKDFYQEqbDaS+89XF5oNXpMZQ+L8xvyzDLB5ej8cz19ZuV6cbpEhfpP+l1hNdvEgX3FVHcGipmSTvgE3rVIaCRxJedoldYND4nC7pTJzLkxxJt03EV8g6IXdHwDDYdOVK4JfkUhhODQCVeR99mqsSA142SV1q4RVY+jZy03TOAlFfMcpeF6+kw67kKrkaz+Pte/EAeOnHLpCr5LvZoqbA5BWron4DlxQgj2JDsY2DuIc5cvIMv+4bWaka3Yl3JjHG3n0jwYdBIxxaRBKZUSrZqUL7/LH9iX4qR9cy2tm2i4kH7cr2uHhUShUGi4cPnGGAKJKU7aNS85d/962rTaZNIyPAC/BPZk/woc3JvsvKrd+TptOG9IDuu+v79Lq8ZaLmUl+23dGpGNSUy5cW7BpOMuEhoVlQ8tG2tJPuXC47kxcurAMSdtmmpp1VjDhfQTflmzZlQDkm6QzgA+Hay4d3k9rqfPv5IcON3sqMhegQh6/76zmNFngWAmp0tw7JybVo0Lv6z2zbWkph+p0tqSJFGvZn0SK1C4UxUkphRfTdyunBV4/sDZv4Xv9SNoO7RQkZaVVKW1jUHV0Gr0nEm9gQKvAsVq19Pn3iMOLDa5akT0PwAhRIYkYT190fddJEnirj5BLPnVHPCcuK2JDkKCFLSP1xIZpuFK9gW/rFsnJp6tiTdG4Ow67ChVsWrXTMvuw2WPgvQH9iT7lInm9TVk5uVgd/rX3mpQswnbD9yYZ9lx0FFqd5TrafPgcSfBBoVbCPFfMDKT0zI9uoJuLrd315e7eXtVYLbKrP/Lxi2dDbRtpuXMpbPIfko9qRPTtEJdXaqC7DwvOfkyjeKKOoiMwQpqRatIOXNjzlIgpzomCC6m+8cAqBlVn/OXbeWeQFVVlGVclvZ3wJqK/E0gFNYf0tK9XLxSWDEJhPDbuMtGy0Ya9LrCj9GqiYb0nHRMlpJHjZYH9WI7smZL4AlXCMGv2230aFu0sq9bGx1b99tvCPGtK+EMXVvpOH7+MG5P1d5F49qtSx1B6y/Y7DJb99vp1qb8lZLX0+ePm6y43Kz199n+jVBIrF322z9x64kjfBNYAp0T99lyExOHhyJJEv26ajlwYqNf1o2v34nEFHuROygQ+GaVmRH9Su53OOTmYBauMQc8suByC5ats3D3TUGoVBI92hjZf/xPv+7RtvEg5q4IvOf60AknqekeercvmX+vp81Fv1hwOMXeQJ/t3wAhhCtYr9i36g+fbj781mD2HnEw6b3MgO5bMLK5ZrSvZVKtaC0nLhz0y9qxEXUw2yg0qjRQ+GWrlR5tdCV2Ari1i54ffg+83XPyvIvUdA+tm2rp21FP8pk//WIAqJRqGtVqyG9/BV7WJh13IklQv1bZnVCulbF7kx3YHUIAf1RkP78rrEKIHJWKE3Ovm0AVCOE3d0U+jw4pWlmn0yoYdmsI25N+qtL63VoOYslaS8CVxe0HHLg9gl7ti7YDqxWtomur8o8/qyyEEMxZbmLc0KLvs25NNa0aa9h/vEK0VQTdWo5g9nfOgAvv5estdE7QUTum/O2ErqXPfUccnLvkEcB7ATjevw5mm/ho1hKTsyAM1j5eR2yUkgG9/Fe5fz0OHnPy51479/X3KXuP3aNnW9JKvHLVlUydxkCn+H7MWRFYoXP8nIvDJ10MublkhbVXex0Cnzc5kPhxo4X4Bhqa1fdFmyaN1LDj0BK/7tGmSS+OnvVw5FRglYo5y333ukpVcoj42hQei01m0S9mHC7xZEAP9i9Cnln+4INv88zgm1L40CAjs5f5JweyONjsMjMW5vH4PaFXf/b4PRq2Jy31y/oKhZJuCXfz6XeBV7LmLPeNni4J44eF8uWP+bgCXLg57/t8HrrLiFYj0TFBS5jRxdGz/rG5uiTcy6wlgVf+C3i1PIXh18rYmUtMON3idyFEhfLAAlIHb7GJF+csz8dyjaLn7xzW4+dc7DrsKHGawxP36tl+6IcqeQUjQmNpVLslX/8U2AzmjxeZGD+s5I8+cYSRmUtNAc2r+X2nHQHFKs0AT47SsPXgoiopm41qt8bjCeG3HYG7lLxewcylJiYMr1iLkGvp8/35eTjdYqMQ4r9QcYwQ4qDLw4lv15ivftzPp0Sx65AjIF5Kl1vwwJQMPnw2ktAQX7FSqyZa6teS2H1kvV/26NXmXj5fYQ2Yl1UIwYufZPPYCGOpvYUlSeKpUWG8MjsHrzcw/Otwykz7PJenRv2jTNze3YDNmcGx8/v9to9KqaZv+9E8/m7gPMZJx52s3GTh0WIM52txbQrPJ4vzUKvIEkLsC8ih/p1Yc/K827X17/G1r4wNJzRYYn2A7tZXPs2hYwsdvTv84/W+f0AIKWf3kZnrnzq3Hq0Hs/gXS0DrRrbtt5Oe4+X27iUb4/ENNTSrpy515HJVkZ7t4ds15qsOIkmSmDRSy+bE+X7hrXZN+5B8ys3BYnrN+gtXsjys2GDhkcHlk7UFMvZcmpuVG624PTxd0T0DorAKIVZ5ZZH6zIf/VKr6M4fV6xU8/HomUx4NL3EufeumWjq3VLB2x+dV2qt/t0lMnWsJmOBbtdnK4VOuYj3FBejX1UBUuJKPFuUF5AxWm8yEtzOZ/mREiUrzgF5BaDWZ7Di0utL7SJLEoB7PMO4NcyFjxp/4ZLGJ8BBFqRdScSigzw1/2Vi7zSY8Hh4MxPn+rci3yGOeej/LkZbuo/OERlomjQzjvlfScfqxnVGBohcXo7rqXS3Apy8H8dOWjzFZqp4+FBMRR++2I3lwiikgytWydRZOX/TwwoNlG+KPDA5BkmD2sgoVxJYbU+fmEt9AQ/9rPOJKpcSnL4ewZP1UnG7/eXdv7jCS1CvhfLHS/xEft1swZkoG7z8VUWwRW3E4csrFu1/nYbKIQX4/0L8YQgiPzSEeGflSus1m9w0P+P7DGMa+kcnlTP/Kqg1/2Vi+3sLslwo39zQGK3hlbAiL17/ml1B2NWM03VoOYtybgfEU2x0yY6dl8uEzESiVpXsEP3khklc+zQ6I3BdCMOGtLMYONlKv1j95tGMGheDynGHXkd+qvIdKqWZgjye475X8gLT4K3iGCcONxEaVj1enTqiGLAtGvpyOQGwQQqRUdN+AdRq12ETPJWstYuMun8XnzxzWTxabUCjgiXtDS/29L14zsjP5J85eqvB7uYpa1RvSu+0oxrxqQi5Ps7EKIDPHy8R3MvlmWlSJijf4esZ99XoU7y/IC0g47sVPsunWWseA3iXPT1apJBa/a2TV1llkm65Ueq+WDbtRN7YLz3zg/0vp6BkX783P5etp1Ss8qWTq3Bxy872MnpyOzSFeFkL8F9rjXIUQIsnjZcY9L6bbCi44l1smKlzJsOeu4HBWXSAJIXh9Ti4bd9n59q3qRYyjDi10PDJYx9IN0/wiAPt1HsO5S+G886V/PSXJJ5089X4W89+IKtfkNoVCYv4b1Xnry1z2+LkA67cdNhasNjNncmSR9zmoTxA92nr58Y+P/bafUqHivtvf4qVPzOxM8t+zCCF47N1MakWrGDOo7KEHU+fmYLXJDHvuCi63WCqE+Mtvh/kfgRBiVb5V3vDU+1lOIQQ7DjoYN9TIreMvl2u2e3mwNdHOqMnpLH8/moiwoq3bnr3fiEGfxp+JK/yy34DuE9ibrGbZOv97NyfPzqFVYw1Dbyk5hacALRtrmXRvKGOmZPhd4Vvws5nj51xFnHgatcTid0P58c8Z5JozqrxPt5YDUCka8OYX/pe1i3+xcPKCi9fHl98ROXVuDp8sMZF8yuV0uhhYmX0DprAKIc7aHOLlwc9c4eAxp99yWFdutPDhwjwWvFm2UhITqWLOK0a+/PlZsk2XK71nv85jSM+uyfg3/eetMZm93PH4ZR6521hsodP1qFdLzcfPRXLH45c5f8l/keoZ3+bx+y47M18sezRGQiMtLz0UxLyfnsTmqPyFMuymF1i3Xc378/3HSBcuu7n9sct8+EwE9WtVfCzntHm59B17CbtDHBJCTPfbwf6H4HCKN5JOOHcOe+6K3e0WvPlFHkvejUavlej76GVOXag83eXlexkzJYPVW6xs/CKWaqHFTz1787FQNJrjrNg4vcq8plKqmHD3TD77TvDeN/6JThw+6aTfhMvMfDGS9vHFp88Uh7o1VLRooKHfhMvsO+IfRW/jLhv3v5LOjx/FUD2ieC/H3FeNXMjYzG+7FvhlT/B5r6Or1ee2iZfZccBe5fVkWTDx7SySjrtY+l50ufPh+k24xMV0z3mPl9FVPsT/KMxW8dCy3yxpr83J9Uybl8vkR8IYeksQ3R5Iq5JxJITg6x/zGfrsFb6bHl2ijFIqJZa8a2TDni84cHxLpfcrgEat48H+03nsbQubdvsvveGjhXn8us3GZ5Ojyv039/UPIem4k1Evp/stHW/VZisvz8phxQcxxRq7bZtpeekhA7O/n4jZVrU7S5IkRvWbyuc/ePlypf8MgN932nh2RhaL34mu0Kj1afNymfJpjjBbxe1CiErlKkiBLoBRKKQZwQbpmcE3BbHgrehKryOE4Ksf85nyWS7rPoulTQVaFs1cks97X3t5fOhcYiLiKrW/3Wnl0x8m0KFFFl+8FlakM0FFcPGKh0FPXqZbax2zXirqGSkNs5ea+PDbPNbMjqFl44q3kiiA1yt484tcFq81s/nLGsTFlk/JE0Lw1PsmftkSzOND52Cs5MjWnPx0Plk+ljGDBG9MNJYZoikNh086GTDpCk+PDuXJURWa9AbA5UwPrYdfxOYQZyw20biiieD/lyBJki4kSPqldRNtlw7xWsOM5yLxegWzl5l468tcXnkknPHDjOWmf1kW/PyHlUnTsxjYO4jpT0UUOyDjWpjMXvqOzUGr7siofq+gVZdfMbweLreDBWuncfziNgb20jPzxUjCjRUfESyEYMHPZl74JJtPX4piRAm58wWQZcHJC24SU5xsSXTz61YXSBKN45TsSs5n4nAjr44Nv5rDWxF4vYKPF5t4f34uKz+KKdPgPXDUSb/xGRiD41CrBBabCVmW0Wi0xEbUp0ZkKxrVbkWDmgll3kU2h5lvfnmVyPATTBqp5aGpmTx7XxjPPRBWapFUSTh90c3DUzNQSLDqk1iMwWXT1akLbro9kIrNIS78za83pu/fvxSSJMUEG6QdjeLU9bYvqCkZ9ApWrLcwaXoWYwaG8MrY8GKb5JeEM6luJr6dSWaul2/frE6LRmXLmcQUJ/0mZDOg+9N0S+hfpemMFpuJT5ZPIDv/PJ9PieTe2ys/ZtjjEbw+N4cVG6xs+iK23HJub7KDIc9e4dEhIew46PRFSaZFlWgYlgVZ9t2h732Txy+zY0ttAyWEYPKsfJas1TBxyGyiwmpUas8C7Ehay4rN7zDl0TCeHxNW4ejjtVi2zsyT07P48aMYupfD0Qa+++r9BXm89lkOHi+DhBCVzisMiMIqSZIWuBu4Q6cxdFYolLUkZH2N6koG91XStbWWji205c5Tupzp4f5XMkhMcTJplJH+PYNIaKQtl3ZvtsrsOGjnifeyOZcqaNf0JjrG30Ld2GaEBkdU6LnOXz7GpyufIEjvYPn70XRtXTFBWqB0P/1BNh1aaJg/rTp1aqjLZG6XW3DwmJPEo05W/+Fm2wE3Qkg0ilMy4jYVnVpoaR+vK9dlD76CtRHPp3Mly8PkseH06aCnWT1NuQSOzS6zeY+NsW/kkJOnoHfbwbRv3pfa1RuiVlVMgU46uZ1vf32FOjVgxQfRNK1X/kb/4LuM3v4yl/cX5DGgl4FPXogsN02B73ssXmvmsXey8HrZYXOIHuI/Mo/1WkiSFAkM0aoNPSWF1M3ldsQKWVZLkiQZgzV0StDSr6uSNk21fPitid3JDh4YEMKIfsEkNNKg0xamO69XcPycm9VbrMxaYkKphAcGhHD/gBAa1Smd3r1ewarNVibPzuZKtkCpUBCiD0OnNVDNWIMaka2oF9ucRnFtUClL/9an05L5/KdXcLhMRIa5Rc3qauncJQ8fPBPBsFuDix2nWhz2H3Xy9AdZnL7oZsqj4QzvF1yi0ptj8jJ/lZlPv3Nid6ioVb0JcdGtfY33JQVOt52L6Sc4lXqIzLw0+nQw8OpYA93a6Mol5PcmOxj/ViZeL8x+KZIe7UoWGn8ddDBrqYnfdtjo2U5Hr3Z62jXXEhulRKmQsNhkDp90sSfZy7odLtzuYLq3vIdurQYWayQcOvUXX6+ZhhAO6sTK4qG7jVLjODUzl+ZjtspMnRDObd0M5RKImTle5n1v4uPFJp67P4wXHwor02h1uwWfLTfxyuwc3B6xxu3h7v+qcSlJUigwQKlQ3alUKLtLkiJSoVBqJAlFsAFaNJTp2ELNyfNuNu91MPL2YB68y0irxsXf8xabzNZEOx8uzGPPYSe92+t45r4wOrTQlansejyCDTttjH8rk6xcCA8JpXZ0Y4L01Yip1pQ6sc2Ii25ULvlw4MRW5v/yFkI4aN1EEpcyZal9vJY5kyMrrCwmn3QyenIGoSEKvptendiokpXVK1kelq+3sDURtuxzkGOyIf4elRqk1xNiUGK22Zg6PpxnHwitkEJ+6oKbMVPSsTkES98rW85dznTz3jd5fLnSjFajwKAzotMY0GsNRFdrSu3qLWhSpy3Vw2uVuo7TZWfFplnsTF6HRu0UUWEqqUa0im/frE6D2hWLQmZkexg7LZNDJ118+1YUPduVr0bk6BkX976Yztk0tzXfKm6tauqOXxVWSZJaqpTqWQpJ2dMYXE1qUDOBBjVbEBYSyd6UTbRu3J2L6ae4kJ7ExfSTdGll4MlRmhIvuRPnXMxcamLhajM1Y1Q0ravC7vA1uE9N95DQSMP9A0K4r39IIWUtO8/L/J/NfP1TPufSPNSvpaJFQw1BegUOl+BMqpeUMx60aj1tm9xCz9bDS/W8ZpuusHnf92w58CNN6wmUSp9A7tZax/Njwripo75UAnY4ZVZssPL+/Fwyc73EN9TidMocPeNGFnBLFz0Th4fSu0NhoXUm1c2c5Vbmr7ISbIigRmRzGtRsRYjB50V0uGycu3yUixmHSM9OZWCfICbdq6djgrbY8ySmOJnxbS6rt9ioX0tFg1oqLDY4edFNVq6X9vFaHr7LyLBbgwopIRnZHr5ZZWbRL2ZOX3QTF6umUR01eq2E1SY4edFL6hUPtaNr0q7pILom9CdIX3IR2aWsc2zYvZjEY5tIaChjdwlOX/QwoLeB5+4PKzPUajJ7WbDazEcLTchC0LSemjyz4NhZFwadRP+eQUwcEVqiFet0CVZutPD+gjxOX3R7LDbxAPCoEKJ3qRv/H4MkSW20GsNkj9c1sJoxWmGzm1VIEBfdBGNQOKkZp4kMjeVixknMtlw0Kg0N6wieGqnn6FkPv/1l4+QFNw1qqTAGKZCFz0A8k+oh3KigaT01PdrqUSoEuw67OHjcSXiIgokjQhl9Z2GeTcvwMG1uDj9stBIRquCWLgY6t9TRKE6NTiPhcgtOp7rZfdjLtkQvF9NlurUcQs/WQwoZnkIIjp7by8a9Szh3+RD3D9DQuaWOfKvM7kMO/txnx2QRKCR4dKiRvp30tG2mLZSi4HILjpxysfuwg69+yufiFS+92+mIqKZg9yEnJ867ubmTnkkjw67yrCwLZi018/qcfBIadKVn63upX7NFqfeCzWFme9IvbNq3jMhwB3NeCaZPh8J3iSwLTpx3s22/g8+Wm0jP9tKumRaHS+bQCRf1a6mZOCKU4dfwrMnsZdL0LDbttvP8mDDGDAwp05MrhGDLPgcffmtn/1EV9932Bo3jWuOVPRw6uYPf9y4m23SaR4dqiW+gIcfkcwTsP+oiK89D55Y60jK8mK0yo+8MoWMLLe2aa4mJVCJJEm63IOWMi8QUJ+v/srFuu424WBVuj+ByppdBfYJ4clRoEd4Xwnc3LFidz2ff5SMEFpNFvht49b/GrwCSJLXQqHTThJAHKhRKVVhIJPVqNKduTDOOXzhA26a9sTssnLtyjDNph8k2XaFhbTVtmkLiURcXr/jkZq1oFRKQZ5E5cc7NlWwPdWuoad9cS4tGGk5fdLP/6LN/AAAgAElEQVT/qI/Wb+lsYOIIH69cK6cvXnbz+txcftxkIUivoFNLLd1a6aleTYkk+UZ27kuR2XdE5uIVJ53jb6NnmxHERNQp9Eyy7OXQ6b/YsHsR2abTjLpDRf3aalLTvWxNtJFyxo0sw30DgnninjDiS5lgKITgz70OZi7JY/NeOzWjlGTleQnSK5k4wshDdxmJDP+HF/YdcfDu13Y2/GUloWFPmsR1pE5sU2KqxaFWaZBlL9n56Zy/fJSTFw+xM3kdKqXMkFskpj8ZQVS14pVol1vwxx47s5bmse2AgzqxKsxWGbsTHr47hHFDjdSpUVhp/HWblWnzckk+5aJ7Gx292/sMzKi/z5tnlkk64WTXIfh9p5Va0Y3o0XIUrRr3QCH9c5eabXlsO/gzm/d9R8M4L0NvUaNUShw87mDjLt/9d1cfA0+PDqNDi+J1hQIcO+ti9jITS9aaaVBbjdMlOJvmoUdbHU/cG8pt3QxFDE23W7Bxt40Z3+axI8mJxyt+8Hi4B9hUVZ71i8IqSZJWpVSvUUiKWzon3M7N7YdTI6peod955J0ufDV559V/O90O9qZsZOPeRSiV2Tw1SketGBVZuV62H3SQmOIkM9fLQ3cZmTjcSN3r5krb7DJ/Jfk8CH/utXNLFz39ewaxYoOFbfsd3N7dwFOjQumUoCvWohTCJwi+Wmnhq5+s1IlpxvC+rxIVFovDZSMt8wznLh/l2PntnL2UzH39g3nugaCr5zBbfb3/Zi8zkWeWadNEQ892eurVVKNWgd0pOHzKxZ5kBwePueiUoGXi8FDu6FH4A1/K8PDjJgsfLTLhdAnuHxBCQiMNi39xsDXRTZeE/vRpN4zoarVL/QYWm4ntSavZnPgdtaLdPHavltAgJZezPGxNtHPgmAuPVzBxRCiP3G0kqlphAZZvkdm8x84ni/NIOuFiUB8DPdvqWPSLhb1HnAzqHcRj94TSPl5brGfK4ZTZfdjJ7GVWfttho2PzW7mr5yS0GgN2p4XU9JOcu3KMI2f+IMt0jkeHGHhqdMjVc2TmePnqp3w++86EWiXRpqnvfcZGqlCpfB6A/Ued7EtxcuSUm9u6+S7RHm3/UfKF8DHT0l/NfLosn2CDxMN3h9C4rgaHU3D0rIvtBxzsO+JErZIseWb5U2CqEMIpSZIQQty42YD/HyFJkk6j1r0LTAgxhGkVkpI+7YbQrmlvqhljrr7Pa3nWas//WxFcwYX0E4QYhNw+XnIeOuHSeWWku/sGcXNHPTGRKuIbaor1QBYIkxkL89i6306LhhoiQyX2JLvItwruuimIZ+8PK9fUlMMnncxcYuX7DTbaNrmDcGMM5y4d5GLGUSLDZCaN0jD6zpBivUNp6R7e+DyHpess6LUS+RYZnVZBkF5CkiAnX6ZeDRXtmmsZekswd3Q3FLpD8i0yC9fk8+G3JlxuQfP6apJPK9FrajB20Ntl8ur1kGUvG3YvY/X2r5BwExerJCRIQha+kHlkmJKOLXTcPyCYfl3/uT+8XsGv22x88G0eh0+6aNNUg8sjSDruYujNwcx6KbJCoeAC/PyHlYdfz0anicDqMNMoTs2TozQMuTmoiDcdfA3QZy0zseBnM9WMCtnjFdidKFxugd0pUKsk3B5B4zpq2jXT0qWVjntvD75qJGTmePlyZT4zl+ah0ypo31yDWiVx/rJHHD7pkoRASBInrXbxfEE48b/Er+CTsWql9j2FQvG4QqFUdW/Vn95tBxeitetlLEBOfgZb9v/E5sQfMAbLoltr4d2236nyeAX9ugZxSxc9bZv6jBB1Mfe6xSazeK2ZjxeZsNplerXXoVTAxl128syCYbcG8fToMFo3LZ1nz19yM2eFhS9XWmlQsy2dmg8i03SJs2kHOXs5ibgYiSdHawoZXgWQZd9QjNfn5nA504sxWEGbpj5DNDxEiSwEmble9h/1GURR4YWNYiEEe5OdfLgwj7VbbbRqrKFtUw3bk7ycOi/Rv/sjdGvZH4Ou7GIsj9fDwRNbWfnnHMzWbEKCXLRtpiUuVoVWLWGxyySfcpNy2kXzBhoeHWJk5O3BBP2dBnX8nItZS0wsWmumcZya9i20nE31sPeIE41KYvLYMB4YULaB6XQJfvjdwrtf23A4I+kcP5Ts/CtcTE/iwpUTDOoTzKSROjq0KOr8OXXBxdMfZLMl0Y5WLdEh3seTPkNDIs/s5eBx37s0WWQeGRzCo0OMV9Mp7A6Z5estTJ+fR1aelz4d9NSMUpGT72VvslOcuuiWDDqFy2SRlwDPCyGywT88W2WFVZKkPjqNYV2dmKbahwe+TjVj9WJ/7+etXzGo5yNFfi6EYOuBVazYNAul0k3D2gru6x9C97Z62jQtX9g/Ld3D0OeukHzSxc2d9Xw+pWK5Jk6X4J2vcvlgQR52p0CpUNIwLpiebVV0b6tkSN+gqwRX3PmPnXWz+7CDb1ebSTruQlJAy8YaurfR0b65jg7xWmpUL/08QviEz+jJ6didWprV7cgDd7x81ZtaXni8blZv/YqNe5ejUrlo3UTDff1D6NxSR0IjTblyRY+ddTFw0hXSMjwM7xfMjGcjSiySKQ7p2R4mvp3Fbzts2BwCjUpN8/rBdG+noHd7FQN6BZUYjvV6BcmnXPyV5ODrH/M5nepGo5Zo20xLj7Z62jXT0qGFtszzeL2ChWt8+TaAR6UUOVYHp1xutgI/CCESr/19SZL+/C94bCRJqq9R/b/2zjM+quLr47+520t6D70ICT0ElI50BFSQKkhHFFC6gkoXRQVFpRdFBKRIFUQEBKT3TgihhRDS22br3d1753mxiSZkN9kaefjv9w2f7O6dO9w7Z+acmVOkR/19QiJZk144sPNkxNRuW8xCL8SWzCZn3MOPez9FRm4SxvaX4MuJQQ77L168ZUDvyWlQ63iEBgqx4bNQq5NrWVxPYNH/g3QYTcC04X5oHStDVLWy3WwAICXTjHYjn0Bv4LH041BEVxNBJCQICRDYlPeicBzF9G+z8f1mA7q3GIZXmg8Gwzjuk1pIWnYSlm2fiI7N9HinrxxSCYOqkUKr0dlPc+iMDn0/SIPZDGz4LBS9OpS9+JZGVi6HV8alolYVETZ+XjKjgzVu3mPRdUwqAnwZbFsYjujqYpjNFCYzhURMynQVYI0UM5ZmY9mWfOhZeg3ATgC7KKU3nv7t/4q8AhaZFQnFJ0RCaUS96i+SgZ2nQikvmSHHlrwCluPhrYe/w9lbBzDkVTFWzghxKG6AUoofd6vx/oJMSCQMGtUSY9280BIbSWWhUnMY81kW9v6tQ5vGCvTpJMVL9aWoU8M+d7CdhzUYNjMDYUECdGwmh4CxZOEI8GUQE2XZ1a8YJrA5Xh8mm/DGpDTcTmQQXaWpZY1VOJ4j3syZsOf4Wvx1cSsGdhOjcZQEZo5CKWdQt4YYDWuJS51DclQcRs/LxO/HtZCICYa+5oMF44NKzRZkDY6jWPhTHuavyUXnZnIM7+mDljFSu9Zrk4lHz4lpOHROj2b1Jahd1fIOfOQMGtYWIzZagqhSXAUppdj2pxaj52WANdE81ogDAI4D2EkpTX/69+6QWZcUVkLI62KhZFffDu+Tlxu/4ZKjdbYqDSt2TkTXVhos/8QxH5HthzQY+1kmVs0McWmivnGXRe8p6ejRWo6vp9rOSWqN7DwOr4xNRY3KIiz/2LnAjiPndOg9JQ8DOn6CJtEdHL6+KElpd7Bi1yRMHyHE5CGOJdFfsU2Fz9bkYv38UHR4yflqR78d02LE7Aws/iAIg3s41ocHySZ0eicFPdsr8Nl7gVZ3duwhNdOMN6en43Icq1LraI1Ca+9/EULICyKh5Jy/MjigakQ0BnWdCqWs9NRwtuB5DocvbsZfF37EvqWBaNbAMWVTq+PxyrhURIQI8PN8x6JNn8ZkopjwVRbO32RxeFUE/O2Qvdx8Dp3fTUWj2mIsmR7s1PhKSjWh2eAsdHlxAlo1dCpLSwk0OhW+2zYag1/VYe5Y+99NYSDST5+G4pVWttPTOdYXHh1Hp6BrS3mZebQfp5nRbtQTDHzFB7PeCXAqAKuQc9cNeGVcKtRa/ieTmf5P5UN+GkJIbaFAdEEklPgM7fYRmkS3d6m9+MRL+HHfdCz5SIGB3RxbK+MfGtH+7RRMHuyHKUP8XVrv9/2txfDZGdj4WRi6tLRvjbl5l0XnMamYNtwf4wc6piMU8jDZhJZDs9A25m10bDrA4eufJiHpKtbsmYJNX/g6LHcHT+vw5vR0bPkyDJ2au1ZV8OZdFq+MS8WMtwPwTl/75o0FP+Tih1352L043K7AOltkZJvRa1Iabtw1pqt1tBql1PXUITZwWmElhLQSCyXHR7w6k9ijXJVm/RWiM2iw5Nd38Xp7FRZOtu+h7z2mxdvzMnFgeUSZxxL2kKOyLGSdmsmwYIJ9QVn5Gh7t305Bu6ZSfDXJMUW3kPM3DOgyJgejXluEqCqNHb7eGtmqNCzeMgpzxwowuo99kZZrduTj87W5OLImslhSY2eJu29Ep3dSsPiDYPQrpeZ6UZLTzWg97Ak+GOaPsf2dU6iKYjZTvDk9HX+e0qnUOlqBUlqiZufzvmNDCAkUCSXxfsqgkNjaL6NP+/fKHKf2yOz1e6ex4cAMHFwZaHeaJ56neHV8GkICBPhxbohLUauFWLJXZONKPIsjayJLVZhYI0W7UU/wYj0pFn/gnLzyPEXb4dkI9e+Hbi1GuNL1Eqg0OVjw80Bs/1qBtk3KjsTleYqXR6agV3sFJg12PEtGaaRnm9GgTzL2fh+OF+tbf785Kg7NBz/B6N6+mDLUPfe/+8iIl956ApWaX8Tx9IOnv3/e5RUACCGhQoE4XiySBLzX50vUqhxT6u/tkVcAeJL5AN9texfr5inwWim5t4tdk25G8yFPMG9sAIa97tjmgy1OXzXg9Ymp2Pt9RJkG78NkE1oNe4JFU4KczhqQr+HRsG8GWjYYjXaN+znVhjXuP7mJFTvH4+jaILt1kCu3WXQZk4Jdi8PRMsa+aPuyeJBsQpvhT7BkenCZG3dLflFh6RYVjv0QaXfi/9IwsDy6vZeKCzfZZI2OVrYWvOwOmXVq24oQIpSK5QffeHmMXcoqAOw9+UOZv5FLlRjXZxl+3svh4Omyc7AlpZowYk4Gfvsu3C3KKgAE+glwYHkEth3UYO8x+2qRj/s8Ew1riZ1WVi0JsPPwZqdZblNWASDILxzv912Bad+qcftB2QUHLsWx+GRJNg6tco+yCgB1aojxx/IIjFuQiYTEsvvAcRQDPkzHqDd83aKsApaiB5u/CEPTehI/uZQcsfGztm652TOKRCRbE+QbFlS32ot2KauAfTLboGYLDOw8Bz3etxResIdV2/ORncdh7Wz3KKuAJefg4g+CIBETLFpfev7CuStzLJXjHDxFKcryrWpk5oSga7OhTl1fGn7KQAzo9AmGfKKC1o6KcMu25IPngfED3SMvRQkLEuK7D4MwbFaGzdrq47/IQsdmMrcpqwDwQhUxDq2KhFRCphJCYq385LmWVwCQiGTrpWJZwIgeM8tUVgH75BUAKoRUx7u9FmP4zDykZJRdYIBSipFzMjCyl4/blFUAaNFIijWzQvHWx+mljnOepxgyIwOTB/u7lOJq8iIVqoS3cquyCgA1KtRDr7aTMegjlU0ZKYrRZPn/LJoS7DZlFQCqVxRhx9fhGPNZFjJKKRxx7Q6LT1fn4ODKCLcoqwAglTDY930EIoIFFQnBShs/c1lmnVJYBYxwe2RIdVn7pn3tvubVViPt+p1S5odBnWdj+CwVVGrbCyClFKPnZWLCQH+blr+zBAcI8OPcULw7PxM5qtIX4d+OaS3BX9Mcy6dalA8W56Ny2EuIjXrZqetLIyywEnq0HIu3PlKVmvyYNVrKIn4zNRg1K7tHWS2kQS0JZo0OxPDZmWXWU1+yWQVCgI9GunenSCgk2LQgDAIBXiSEDLbyE9ezXj+jEEJeEzDC7oQwzIBOE+0ep/bKbEytNqhfozPeW1B2IYjEJybMWp6DdfNCXTo2tkZhRbivN+Qh7r514+jCTQN+2KXGqpnOK8sqNYcZS/PxVtdPXfJZLY1GL7RGxZAmWLi+9ITfRhPF5z/kYsWMYJdyGZdG/65KhAcJsP1QyXKse45qcfaGAV9NdCxFoD3E1pFg8mA/+CjIYVJy0D638goAhJC+QqGoY8MXWqFRrdZ2XWOvvAJA9ci6aNWwL0bOyS+zQMe63Wpk5nL4eKTjvp5l0bO9As0bSPHR97YrYX7/i2VNmDTYeYPs8Fkd9h7j0fvlqU63URot6neHVFQb8+2oKjV/dS6qVShZmtodvNRAiqGv+mDcgiyr3/9T/nhSUIksBa4il1l816USMpoQYs3CcllmHVZYCSGVGcK8/vbrc60GatjCnqOKQupWfwk1KrTEV+tsT9a7j2iRns1h2nD3KjaFtG0iQ6/2ilIrdJlMFOM+z8SPc0PtCtKwRvxDI7YcMKBv+2nOdrVM2sS8AQMbiY2/236eSzarUDVSiEHd3S9EADBugC8EDLD+N9t9yMg249PVuVg3z/HSqvYQHizE8o+D4asga59eAJ/X40VCCJGI5N8ShpEM7zHDoVy5jshszzbjcfQ8KbM6zVc/5eGdPr6Iru5Yzl17qRIpwrThAfhsrXW5/ej7HCwYH+hQvt6n+XmfBtFVmyAiuKrTbdhD55dGYcU2bamlIXcf0SKqqgj1XfBBKwtCCN5/0w/LtxZfjHme4sPF2Vg5I8Tp+a8sZr4TCH+lwB/AxKKfP6/yCgCEEEYklC5liEDYv+MEu69zRF4BoFuLtxF3T4KDp227HBpNFJ8szcHa2aFWswi4g++mBWPTfjUSn5SspKfW8pi3Khc/zHHtNGbmUj16tp1iVyYAZyCEoH/HT/DdJjXUWtu7xSo1hyWbVVj+SYhLPsClMXdsAE5fNVgt4/7zXjWC/AUY+przO9Wl0ShKgvcG+EEpJ78+/Z07ZNYJhZX5puELrR2uvrDn+FqHft/pxRFYs1Nnc4t9yWYVpo8I8JgQAcC0EQHYsE8NjY3jil1HtKhRSWSXn5ktlm7WoVWDXqXmLXUVhjDo2HQUvttkfdeJ4yiWbVFh9rsBHhMihiGY8XYAlmy2Xd72x91q9GyncPsOb1EGdvOBQsaIARRzPCSEHPPYTf9bWjAME1m7cgyqV6jr0IWOyKxULEeXl97Bwp9sl4NUa3lsOaDB2H7uP7ouyshePth/QlfiWCz+oRE37xkxqLvzkzWlFN9vYtG64UBXu1kmFUNrItivMn7727Zr0ro9+Xinj+fmjkJebavAgyemYm49R87rIRETdHjJfceaTyMWEXw43A9+SjK96OfPsbwCQAeJWBrwcuNekEvtH6uOrrFCgQgvxw7Hd7/YLhS26y8toquJHKos6SiBfgIMedUHq3eU3J3c+Lsa7V+U4YUqzhu4N++yuPeYR+PaL7vQy7IJ8gtHVNWYUjeGNuzToHNzGSqGueco3hpSCYO3e/tixTZVsc8ptRTemDrUtYC5spj0lh/MZtQghBTL7+cOmXVIYSWEELFI2rPTS45H19nrX1NIZHBVhAdWw+4jJSfr2w+MuP3QhF4d3BMNa4tK4UK0jZVhk40BuHybyqXFV6vjsfF3DVo17O10G/ZSr3ozpGYyVuuYHzilQ0iAwKHa6M7QsZkMGj3F2eslJ0iOo1i5Pd9tfqu2YBiCyYP94Ksgc5/66rn0iZOKFeNlEoWkXazjY8xRmW1apxPOXjdY3SkBgG1/atCuqazMFG+uEuArQK/2CmzYV/wIe82OfIzo6eNSRoLHaWZk5/F2+RS6g0YvdMe+49b90Si1yFL7Fz2nMBYiFBK0aSzD2Rv/yu6q7fkY08/Xo4sfAAx51RdGE0IJIXWKfPxcyisAyMTKqSazUdQm5nWHrnNUXgHgpTqdcOqKHkmp1mV29Y58jPGwgQkAY/r64odd6hIuY4VjzBXW7tSjRf2eZVbGcwctG7yJVb/a9h/9cXf5GJhvv+GLTfs1xU5nCvOqdm7u2fkiIkSIzi1kIMDCp74qdx/WJgJGIKge6dhODeCYf00hDWp2wx8nS778P0/r0Ku97Vye7qR/FwUOnCp5ZKLW8jh/k0XP9s4rzedvsogIroggv3BXumgXDCNATK1O+NPK8c/+kzoMKKM2unv6QDCgixL7jpc0QuIeGCESEruSxrvKwG4+YE2o8JRbwHPpE8fzXHsAiKpiLW6ldByVWYlIitioDvj1kPUdwdPXDOjYzPPKFWAxjs5cL26cHb9sQI82rhm5F2+xqF7hBY8raYVUiYjG+RvWF8D7j81QyonT9c0dJbaOGJfiLAorpRTHL7n+PO3BV8mgaV0JBTCoyMfPpbwSQojRzLaqFFoTAT7Wc5rbwpk1ViKWoX7NpvjrXMl1wWymOHvdgK52pp1yhVpVxfBRENxJ/FdxzlFxeJBsQrumrs0ZJ67wiKrSzNUu2kWtSo0Qn6iB3lDyVFar4xGfaEKrxp6fAyuECRERIkBckWDroxf06NFG4RF3u6fp20kJf1/m6Rxs5e7D2rNKeG2nJmtH/WsAoEp4FC7cKhn0dCmORZNyUGwAoEldKS7dLrkjeCWeRYMXxC4pzRfjWFQKre9K9xyiUlhdnL1e8pVfvMWiab3yeZ5N60n+WfSKcimORdO65dOHyFAh5BICAK0KP3sefeIIIX5mzhRQVolQWzgns41w7rr1e126zSLWg0eLRYmtU3ycGU0UcfcthTRc4fJtEyKDG7raPbupFFoT9x9rrbpGJTwyoo6HfIGtUae6GHcKXAKeZHCglKJimGeCzp6mVWMpEQn/3aF5HuW1gEhCIK4aEe3whc7IKwBUCG6E8zdLKlhxD4yoFC50qlqaM8RGF5fZy7dZNKotcUnBMpspbj/QoHJYLXd0sUxEQjEqhUbgekJJ97urd1jUqe6azuAIsdESXLz17/O8FGcslw0hwDL/mjlaLBKz3H1YGUbQumZF5yZrR/1rAKBiaA3cS9KUCDq4Es8ixk1prMqiRiUh8rU8svOKK85X4lk0dnHxPX8TqBhaz6U2HKFKeBSuxhffdeI4SwnZRrXLaSBHS3AlvqQwX4k3uvw8HaHAJ6tH4d/PqU9cHYXMl6sSHuXUxc7IbNXwKFyMs+7HGv/QhLp2VrRxlRcqi5CSaYaBtSzEdx+ZUDFM6HAlmafJyGXgqwhxRxftQiySQiIWWQ3k0LMUcmn5KBMAIJcyMBgtc/GNuywa1i69Drk7iYmSwEfB/OMS8JzKKwDU95H7o0qE4zLrjLwCQOXw2rh4q+T4unXfiAa1ys8galhbgptFAoVu3DWioYv3T0wxw0+phFTi+ZOAQiKCa+D2w5JrXMIjE+pU91x8xtPUqSFGwqN/d6xv3GVdfp72UquKCAaWMoSQfybLcvdhFQslwb6K0iue2MIZ/xqxSAqRUACNvrgw5eTzCA0sH8ueEIJgf6ZEeqvsPB7hQa71ITsPcPZ5OoOvIgB56uKCpNVTCBiUmxUdFiRAtpVUYVl5nMvP0xEqhAoAIKLIR8+jT5xSIBAyjgZIFuKMzAYHVEBqVsnjRZ6nYI0Ucln5KDgMQyCTMtCzFgVLo+Php3R9jHMcyk1JK4RhGJitpIMTCYnVzz2FmaMQFaQi0+gofMtpzgAAPyUDAhS1aJ9HeQUAJSEM8ZU7nkLKGXkFAF95gNUcyuX9jn0VTLG1XqPj4efj2v11Bh5SiWdjM55GLFJCqy8pl+VvYJJ/5j8A0OipW+ZAexAICKSWWIGifi3l7sPKME5O1rUqxWDU583/sQL3HF9r199GMweOA+asyAFpeB9zVuSA54FvNuT98zdQ/Ht3/80Qgu9+URX7/ugFHWavyLX6e3vbvv9YB4Ywdj8LV//+48wGcDwt1h+Ot9T6LrdnyVgW/dnLs4t9d+0OC4HAs/cu+vf1BBYABISQY4QQCqB4SOXzAQUFEQqds+qtyWyZY+z0zzCZuRLPfe5Ky7+zl3t+jBX+rVLzWPiTpYjA2p35uHCLdbn9m/c0YI16u2TOHfJLKYVaq0d4+0cl+rL3by2S0szlJjNLNqsQHiTAnBU56PdB+j+5bt3Rflm/LUiHR59zeQUASil1yihydo09enlHiXUBsJRP/WGXulzWBQDYd1yL5Vvzi6yxeny2Js+lNXblr/ngeb7c1liLzHL446S2RH/GfZ6F8zcNTj8rR5/r78d1EAn//Vul5kBp+a2xBacxnDtl1qHSrCKh+GKvtu/Edmk2qOwfuwGe5/De122Rd7IyZEUsk5o9HmHfkghEVSuf7e2wdom4vKUiKhRJRbHgh1zk5fP4cpLzCbO7jctDlZDJLteHtpc8dSYW/NwfWcf/3XFjjRQ+zR9Ad6662xO5W0Ol5lCh0yNozlYv9vmoORloWldidx1kV+k1MZXuPqpbTSl9t1xu+B9ACGnsIw84N6jLFKG9FelchTUZMOnbjmAvVi3xXUSHRJzdUMHtCautkZvPoXKXR1CdqgaGIbj/2IR2o1KQ9GcVl9pdvT0fm/bVx5BXPnNTT0snIzcZ328bitQjESW+M7A8AtskIvvvqsXmR08x9rNM1KoiwsS3/HH0vB4zl+Xg5PoKHr8vAGzcp8b4L7MyclRcWLnc8D+CENLeTxl8cFCXKQJPp2Eq5GFKHHYdn4Jbu4qvZXuOarFqez72Lys59jzBx99nQyImmP2u5dRx2RYVriWwWD3LseCzomRkm1Hz1Qx8M/6vcjsZWbX7PXw4Ihl9OhUPZN73txbf/6LCwVXOnXg5yoQvs1ApXIipBRXoYvo9xqqZIW4vtGQNo4lC8dIDmDn4U0rdZlw6NMuZOdPlBylx7rp3maTnPEZYkKzEZFy/psSqU7MnSMsyw2SmiAwtflxdp7oY1+/azl9nDw1rUaRk3XWpDUdIzriHqGrFIxQlYoKqkez+Hi0AAB8USURBVCLEW/G58QTX7xqt+jHWrSHG9bvl0wcAuBJvJACOl9sN/xvi9KyGSc9JLrcbZuQ8RsUw61HFTwdVeJKnAzaqVbDui+4osXUkSEq/7Y4u2sWj1HjERFuPKpZKGERVFeGylaBQT3D2uuGfoI1GUWJcS2DLrFznLs7dMCAvn79ULjf7b7mm0anwOP1eud0wOeMe6r9Q0h0rJkqMy7fZMithuYtLcSwaF4lNaVRbbDXewRFCg4SQSQiyVKmuds9uElPuWo3HiK0jwaVyfp5Fg1wb1ZbgSnz5zBU37xmhkDGcO5VVwHGXgP0PU2658/6l8ijtDmKjS1oDT0cAe5JLcSxi65QMLoitI8HFONcGX9O6IjzJvOZqF+3mUVo8Xqpf0sosFKTyoPB5Wu1DOb1TrY7HE0sN7T3lcsP/CEqpgSFMVmJq+RmZj9LibWbwiK0jwfmb5fOOz98sPs4YhiCmtrhY1Kwz1KspRnZeNvLUma520S4SHp9Bm8a2v+/dUYn1e0sv3+oOriewyMjh0KxgdybAV4DQQEGxNESe5OQVAyhwpFxu9h9CKc0mhGgTU8vPKErOuIFmDUp+XilcCI6nSE53zcizB56nliwidYorWLfuG8EaXVPwGkfL8KicnqdKkw3WzKJahZKp5iJChJCKCe4leV5mWCPFtQQWMVH/bg4V6izlwcVbLEDgdivBUYX1j3xtLrJVae7uh1XuJJ1Am9iSg7VtEyl+P6EtF0vl9xM6tGlcUmmuECqAUsa4pGQ1ayDF3cfxYE22qwO5k4THx9EqpqQgtW4sxR8nbZfncyd/nNShtZXn2ThagvhEE9Kfqk7kCQ6e0UEpZ/SUUtslhJ4TeEr/uJd8Azy1XS7QnSSmXkbzhtblsld7BX75QwOz2bNySynFhn2WqmlF6dpSjq1/amxcZR8SMUH/Lj44cW2XS+3Yg86gwcXbRzDkVds5kkf28sGvB7XIsxI0405WbMvH6N6+xSoLuuN52kNSqgnxFsV4vcdv9gzAMIK/7iVfg7Ec1gWe8ohPOoeWjUrOyYQQdG+twOY/PG8QHTqjR6UwYbGiIgo5gxfrSfDbMdem6ddeJricsM/VLtrFhdsH0aW5wqb7QZ9O5WNgbj+kQYuGUvj7/rtz3qWFDL8d07lsANjDT3vyoVLzu93drkMKK6WUZQhz49jlne7uRwk0OhWuJpzE4B4lS9O1ipGCp8CJy54V6MJSkiN6lqxMQQjB6D6+WLGtZDk5e4kMFaJZAxkuxB12pZt2kZKViIzcR+huJdH3wFeU+PO0DmlZnlUW7z4y4ko8i15Wii0o5Qz6dlLgh12eF+avf1YhT82v8/iNngHMnHG+iTPSuAfnPH4vA6vF5TvHSvhuFdIoSoKKYQL8fkLn0X78fdEAAothW5QRPX2x64i2RMYPR3l/oAynru+AyexZF5YzN39Hh2byUiuDhQcL8Xo7BeavyfVYP+4kGvHrIQ3e7l18Hhzbzw9rd+aXSDvoblZsy4eAQRyltHy2tf9jjCb9fEIY/sLtvzx+r/jEi/BTsmhiIwf22H6+WPlrvsddP5ZvU1mtcji2nx+Wb3XtVPmt7j6IT7yCnPwMl9opC57yOHFtMyYMsu0jOqafL9buVNssOe8ulm8rWTXyhSpiNKwlxvZDnjUy4x8acdXisvmxu9t22FPfaDZMOXZ5p8d3BU9c24VXX1YgOKCkbw0hBGP7+eHrn/M82oe1O/PR/kVZsWCroozs6YMdf2ldUvQmDBLjxLUNHt8B+/vKL3j7DbnVpMX+vgL07azA8q3OK9/28N0mFYa/7gupxPqwG9PPDyu2qaxWCXEXN++yhT5/08v67fMApfSe2Wy6f/jCNo/f6+ytA2jbRF5qnewJA/0xZ0WOx5QcnqeYuSwHEwaVrJcdEijAay/L8c0G1+aNBrUkaNZAgP2n17jUTmnkabLwx5k1mDW67CpDCycFYdN+Dc5cc/+czHEUw2dlYPY7gYgIKf5e69YUo3ZVEdbt8ZyRmZXLYdlWFbR6OtVjN3nGoJReNpmNjw+e21wO68IGvD9QbHNHsGk9CUICBNhoozy5O7gUx+LMNQMGvlLS0O3ZXoG7SSacvOz8CaCPgsGg7kocOu/ZPYrL8cfgp2TRwspudSFR1cSIrSPBYhfnoNL47ZgWGTkcurcuOXe896YfvlyX51Ejc86KHFCKs5RStw8ahxVWSukhSumTnUeXu7sv/5CZl4LDF37GzNG2k/2O7OWD+Icm7DjsGWvhYbIJn/+Qi/nv2c6TGhokxNh+vhgzP8tp94SuLeXw98nD8Sue27V+mBKHqwmHMX6Q7aPFT0YFYMWvKty655ldo7PXDdh+WIspQ2xnAWgcLUGLhlLMXJbjkT6YzRQDP8qA0Uy3ekKYnlXMnHFgQtIV3Hl02WP30BnU+PPcGnw4rPQI1H5dFIgIEWLBD57ZEVy6WQVKLfODNRaMD8Lq7fm44qLP9upZvjh9Ywc84WtIKcXmg/Mwpp+ssMBFqYQECrBkejDe+jjd7S41s5bnQCwiGDfAev3z76YF45Ol2TZr0bvK23MzwHG4Rin9wyM3eEYxmdlB2ao0/tglz60LVxKOIzv/NoZYOcUshBCCFTNC8ME32UjJcP8JHGukGDYzA99MDYZCXlIdEYsIlkwPxojZmdDpnVfePx3ng6t3/8Tdx56JGVHr8vDrkS+wepayzGwEyz4KxsL1ef+khXMnOSoOY+Zn4oc5IVaz/rzaVo7K4UJ87qH59/fjWuw7ruMNLO3pifadyoViMOranri6l3ri5fOUx6YDszB9hKLUtFUyKYN180Lx3oIst0/SZjPFiNkZ+HCYf5mps2a/G4iER0Zs+t05xZlhCDZ87oe9J5cjMy/FqTZKw2Q2YuOBmfhumg/CSqk5XiVShPnjAjF8Vobbjyt0eh7DZmZgyfTgMuueL/0oBJv2a1yyqG3x1bo8PEoxaTgO5ZOX7RmBUnrBzJk3r9kzG6zRM77KO44uQs92wjLrZBNCsHpWCJZuUeH4Jff25VIci3mrc7FuXggEAuuLRmSoEIumBGPIjAzka5xfACNChFj6sS/W7Jnq9qPG/adXw2iOx5wx1pVEa/TppMSQV33QcXSqW1x7KKWYvzoXOw5rse2rMJvlMeu/IMGEgf4YNtP988aGffk4fFbP6Qy0nVsb/n8ApfQUx5l+2XFsBTJzn7i9fY1OhS2H5uPnz/zKrP7WOFqCd/v6YdjMDLfuzFFKMe3bbFSvKMSg7rY3U3p1UKJJXQmmfJ3t9MZQkL8Aq2b6YsOBmdAZ3LtXwVMemw9+ire6i9EypvT5DwCqVrCstW9OT4dK7T7fc5OJYuiMDPTppESbWOv9IIRg1cwQLNuicvuJTEqGGUNnZECrp1MppelubbwApxRWSul9o9kwb+mvHyIj130pcyil2H7ka/gok/HBsLIn6xaNpBjbzxddx6S67JdWCMdRjJqbCbGIYPJg/zJ/LxETbPw8DJMXZeHoeecW4OjqYsx6R4mVu8ZDo3dfFgie57B+/0zE1jVgYDfbE0Iho/v4okKoEIM/TndbYAxrpOgzNR0tGkrRt3PZfQgJFOCHOSHoWyQxuTvYckCNz9bm0nwt7UIp9XzY6zMGT7mhBqMue92+z9x+zHju1h+4n3ISX0+1T8GqGCbEL1+Eoc+UNJy64h6l9cptFj3eT8Xa2aF4oUrpRubgHkq0ipHi1fGpVkue2suArkpMGSrA4i2j3GJsUkqx7+QqXLv/Kw6tDnS45visdwLQvbUcjfolOz0XAZYctkM+ycDWPzU4ujayTCNz+gh/y7HrR+luU2j2HNXi3U+zoNHTfpRSzznoPsOYOONoynOpi7dMhFrnviNk1mTAqt0TMOx1CVqXYWAWMnN0AKQSgkEfu+cdU0oxb1UuDp/V4ce5oWXuSi7/OBhnrhswY2mO00prrw5K9O7IY9mOcdCz7om35SmPrYe/ACO4hQUT7Dcw3+nri7axMnQdm2q1ypijGE0Ub32cDo4HFk4uPTd8hTAh1s8PRc+JaW7LzJOebUbr4U+gM9AjlNLFbmnUCk5nm6aUztEbtRs+/2kUUjIfutwRnuew7a+FSMk+hN+XBdjcIXmaGaMD0Km5HC+PTMHDZNeOpTQ6HgOnpyMxxYSd34Tb3YeYaAm2LQxH/w/TsOsv53ZaJw32Qe+OLL7bOhoqTbZTbRTFzJnw476PIZFcw6YFfnYlTSaEYPOXoVBpePT7IN2lxRywHE90H5cKhcyyq2Yv3Vor8PWUIHQYnYLTV12zAimlWLFNZTlSMtC+lNLTLjX4/xRKqclg1EXffHBGt/73z8Hz7tHZL8Qdwq6/F+LA8iCHyvt2bCbHV5OC0HVsKpZvVYHnnVuEKKVY/1s+uoxJwbKPgtHTSkDf0xBCsOzjYNSuKkK7kU+QkOi8YTR1qA86NWcxd+1bOHV9v9OLaa46A0t+fQ8P03bg9M/BpZ6G2OLaHSN2H9Xi5SZSDJmRjjHzM/Ek3f7dVpOJYssfatR74zH8fRic3VChhN+qNYRCgq1fhYE1UnR7L9Wlo2Oep1i8MQ8Dp6dDZ6BDKKWej/B9RqGU6o1mtl6eJit7wfq3kat2fSdfZ1Bj6fYxiK2bia8m2a9giUQE2xaGIS2Lw8sjn+BxmvPvWK3lMWpuJnYc1uLw6kgE+ZddktvfV4CDKyKw/4QOo+ZkOr02ffuhH1o0ysaXG0a6vHOtZ7X4ad8MqPV/48CKAIeKdxBCsHBSIAQM0KDPY5fWuYREI9qNSgFrotj5TZhdhu4rrRRYNTMEr4xNcdmt8uItA2IHJCM1kzuhZ2lHlxorA5fKo3CceYjWoF45/6cROHx+q9M7N2nZSZi/bgTO3DiAryYpEOBrf015Qgi+mBCAxlFi1O/zGEu3OLf4HT2vR80eSdh/QoeWjaQO72683FSG1bNCMHxWBgZ8mOaw1UQIwczRCvgqMzFjVX9cij/m0PVFSUq7g1mr30RC0gUs/sDHZpCTNaQSBrsWhyMjx4wa3R/h8FnnIrr3HNWiRvcknL1hQNsmUgjsf6UAgIHdfPDRCH90fjcFkxZmwcA6PrZSMszo/G4qpi3ONukN9BVK6Q6HG3mOoJRmGoy6qpfij+Z8/ct4l3KJmjkTdhxdjg0HPsemBf6oW9P+qnNmM8V3m/Iw7vMsiEXgVv6qQqd3Uh32n777yIiOo1Pw/hdZmDbcH706lK2sFsIwBO/28cWTDDNi+idj0fpch3eOnqSb0W1cKnYe1lCxSMb+ceZnfLdtCu4+vma34qrRq3Dg7CbMWDkACUnXEFWNg9BOQ7kQvYHHJ0uy0XLoE7BGapo3NhA3tleCWERQv89j9JliMaST080l+qXT8zhzzYBZy7IR1j4R787P5FkTRe+OSqs+hbaQShiMf9MPF+MMiHo9CT/tyXd4Hk5INOKlQU8we3mOXmegnSilGxxq4DmEUppjNBmq52myE2auGogzNw44bRTdvH8GH63oA5AkfDPVx6abhzXUWh5Tv8nGxVsG3E82cTH9H2PNDscyRFBKsf+EFjW6P8K+v7VY+lEwwoPtN8yCAwQY3ccH2w5qULNHEg6e1jn0LCilOHRGj33Hc5GZm8zP/WEI/rrwq1N6S9zD8/h4RR9cSTiNkb3EDhnrAHA1nkWjfsm4lmBEbLSE6z05DZMWZiE1035DQKXm8PmaXMT0T4aQoVj/aahDa33rxlI0qi3BsBkZeH2C465EOj2Pad9mo82IFKRkct/rDHwb6uFcow6VZrXZCCGdpWL57rDASrLX27yNetWbgWHK1lBy8jNw9NIO/HVhKzieO8Dx5utyKfmgbRMpmTLEH+1flJW6M2g0Uew+osXCn/IQn2jkNDq60kdO3g4LEoinDvXHoO4+UJYy6XIcxYFTOnz9cx7O3WCpzkC/ALDTV0EO+yoZv6lD/DHsdR/4+ZT+f7l5l8X3v6iwcb8GnJkeE4kQIRAwtcf198WYfn6oFF66UD5JN2PldhWW/JIPjqf3NDq6UiKSfVmrcoygR6vhqB5Z164d0szcJzh8YStOXP0NRjP7I0MglYjJwF4dFJg4yA9N65UeEKPV8dh8QIOv1uUiLZvTq7X0F7mUjGjWQEqmDvVDlxbyUic5s5li33EdFq7Pw7U7LK/V04kAHvkoyLaKYULJtOH+6NdZWaolSinFmWssFm/Mw+8ndDAY6HalgrSVSZiQyUP8MKqXb5kWeUKiEUs2q7Bujxocj1MGlnb5X8i5ai+EELFQINooEAj79u84AS3qd4NQYF+5VEop7iVfx7p989l8bc5ZCp2cgDTt2EyGSW/5oVVjmVVjj1KKRylm/LRHjSWbVeB4aFUavg8hCJWK8V1IoECm01NJnRpijO7ti9aNpagULiw27imlSMngcPqaAd9uzKNX4o0GQrBIZ6DZPnKyKMBPIJw6xA8DuvogJND6GNHqeBw4rcOin/JwLcEIo4n+xPHY4KckuwkhPuMG+GJET19UqyC0KnNGE8XpqwZ8uykPf57Sg2FwTmegnRjC9BEwwu/Dg6qIdaxaLBUr8FLdTqgSEY0q4bWhlFmCDTnejLSsR0hMi8ftxIu4HH8MhDAm1qT7EMBmpZwcNXOI7t1Bgffe9EOTOhKrwROUUsQ/NGH1jnys3ZkPAYMslYZ2lYjQnjBkdouGUjp5sJ+yaV0Jth/WYu/fWlyKY8EwBOHBAggFBPkaHklpZsilhJrMNE+jo+9SSrcRQhYoZGRa1Ugh+WCYP3q2U9icA1VqDrsK5uBHqWZeq6cLAMT5KsiPcikjmTjYD4O7+9hMzaU38DhyXo9vNuTh9DUWHEf3mszoTSktn4oE/08glsE4XSKSza8aWYfp0XIYoqrElrkuUErxMDUO+0+tp3GJF/KNJsMopZzMM3OI7tVegfcLxpjIisxyHMX1BCNWbFNh034NhAIk52tpJ6mY9Od5Oi04QCDheTCj+/hgQFcf1KoiKnEqSSlFUqoZe45q8fXPKi43n0tT6+goAYP+YhEZ2qCWmEwZ4o+uLeVWlT5KKZ5kcNi0X43FG1TQGXhWraUjAdRQyMjsCqFC5oNh/ujVXmFzXcjO47DjsAaL1quQkmnmtXo6C8ASsVDyM8MIX1XIfJgOTfqhZYPuUMhs7zqbORMuxx/DgbMbkZaTZDKaDEMBEF8F+VEmZSSTBvthUDcfVAgVWH0vai2PP0/rsGh9Hq4nGMGa6Hqexxw/JfMTT+mLtauKJHcfmZnOzWXo10WJJnUkqBJZfB5KyzLjUhyLrQc12H5Qy4lF5E+Vhv/aV0HWmzlUHNRNiTH9/NCgltjqCbHJRHExjsWSzSrsOqKFUIB4jY6+rpCRrRyHRt3byDF+oB+aNbC+acfzFLfuG7F6ez7W7VFDIEB6voZ2opTesPng3IhbFFYAIISIACyXSRRDhAKxuHn9V1A9si6qRETBXxkEQgQwmvR4kvkAj1Ljcf3+adxNugqGEdxjTfpxlNKDBe1EEGCRj4L0k4iJsHlDKW3ZSEpqVBJBJCQwsBRxD4w4ecWA8zcNEDBEl6fmVwKYQSnVE0LEAD7x9yETDUb41q8ppi1jpKRuDTHkUgKjieLBExNOX2ULqt5Qk0pDtwCYSinNKOgDATDOT0lmGE0Ia1BLTFvFSElMlARKOQOep0jLtiycp68akJbFUY7DKdZEJ1JKLxW08apCRr7kOETXrCykLRvJyIv1JAj0swhVbj6HC7dYnLxioHcfmYhAgAStnk6jlO4uuD6AIcx6kUjS3V8ZzDSr9wqqRUShcnhtKOX+ICAwGHVIzriHxNTbuHLnbzxMvQ0Cct1oNoyklF4saCdKJMRisYh0CfBlSIuGUrRsJEXFMCGEQgKtnsf1u0acvGygl2+zRCwiuXlqfhGALymlHCEkCMBXvkoyWMgQUfOGUrRqLEXNSiKIRQSskeJOouV9nL3OAgSsSs3/CGA6pTS/yNiY4e/DTDCZqV9sHQlaN5aiXg0x5DIGZjNFUpoZp65anme+luf1Bvo7x2MipfRBQRsjfRVkjtGEinVritA6RobG0RL4Ki3vIyOHw9kbLE5fNRQeV13Us3QSpfSkWwb4cwghpLlUrNhMCKn8cuM3yIt1OyEyuCoETHHlglKKnPw03Hp4AX+e3cjmqbNURpNhKgXdSCmlhJAKDMFiHwXTU2fgRdUqiGij2mLio2BgMlMkPjHTK3dYYjIDIgHuqXV0etHd7oLx0dPfh3yYr6ExgX4MWBMVCBiCqpFCiEWE6llKklLNMJooJxGT23lq/isAv1JKDQVtEAAT/JTkIz1LQ30VDGLrSBARLADDEOSoOHr5tpGkZJqhlDO6PDW/FsDHRQ0ZQshrSjn5iuNQWyAAGtaS0BqVhEQkJNDoeFxLMNL7j01ELmXMai2/h6eYRCl9XOT6QIYww4RCyVSRUOzvKw8QAhDl5KfBzJnBMAKYORMUUh9KKeVZkz7PzJm+BLCyaNaKApn9ViYhHQ1GKqhVRUzrvyAmhfNXwiMTvX7XSBgCSim9qjNgCqX0aJHr5QAG+Pswk7V6vlblcKE+JlrC+CmJIF9D8TDFzN15aBQajJRKxdiv1uErABeK7o4UlVmtnvcL9hegcR0JDQ2wrIIZORy9fJslWXkcFDKiylPTbwF8VqhoFryP4b4KMpc1oaJcQhATLUGlcIuyrNLwuHKbRVKaGQoZw+ap+U0APqSUuu4P9RxDCAkGyFKpWNZHJlUKmkZ3RPXIOqgUVgtKmcX1S2fQ4HHGXTxMicOl+KN8njpTYzIbF/GU+7ZwnBWuCzIp6aQ3UMELlUW0bg0xkUoK53QTjX9oJGIx4Y1GnC66thVcryQEAxUyMp3jaBWxiBDWBBJdTYSQAAEIAbJVPG4/MIJSGIVCnMrX0LkAjheOM0KIAsBnAT7MKI2eV4QGChATLaH+SoZwPJCSacaVeCOMRgqxCI/ztXQWgPVFrhcAmObvw0zRGfhAPyWDmChLGi4AyMzlcCWehUrDQy5lcvLU/EIAC4vGMBBC6goF4gUCRtCN482CYP9I1KhQD5Eh1SESiMHxZmTmpuBe8jWkZD2ESCjJ1bOaRQXtFB3rQ30VZJ7RjEpiEUFMlBiRIUIIGCBPw9Mrt1mSkcNBIWO0BXPPJ0/NPVEKGZlAKe1v5uATEiCARkeFPKXwVzLgqUXhZU2gMgl5pNXzG01mLKOUphVpI1YiIt+KRWhhNFEmqpqY1q4qIhKxRW+69cBI7z4yEZmUcHoDPWQyYxKlNL7I9VUFDL5VypnuOgMvrF5BROsVmXfuJplw674JIiF4jsMlPUsnl/f66jaFtVijhAxlCDNSJlE2MHFGX7PZSHhKIWAEkIhlJp7nkg1G3XFYlEyrUVsFg6AHgB5yKWklk5BwAAIKmLU6/iFrwnEAO0rzSSSENADQV8CgjY+C1GIYIqYUZr2BTzUYcQLAXgCHStvGJoTUBDCQYdDWX8nUIwQSALzJTFX5WnoOwEEAmymlVqMcCCEhAN4E0NHfh4kVMJADAMdDp1LzlwvKDf5iK6quQCinCgWivhKRLJo1GeRmznJ0anmeciPHmZNYk/5QwfO0mhOqYAHqC6Crj5w0F4tIYMHzNOZr+DtmDn8D2GrLUip4H50BvCaToLVcylQAIABg1uj5JNaIkwB2U0pLLZ9ICIkB0F8oQGtfJVOLACIAHGuiWRodPQ3gAIDttgKjCCFVALzJELT382EaMAykoKBmDvkqDX8ewCFY3sf/TNoqVyGE1BGLpHMYIuhoMrN+IQEVqI88AAzDQM9q+fTsJEIpNQgFwlM6VvMtgIOUWj9HKxjvvQA0A6AAYASQBGAXgEtlHRkVjNO6AOoDqAggEIABwG0ApwAk2dGGAEA7AN0BhMIyTlUAjgLYW9Zue8FYb1zw/6gCQAxAC+ACgJ1lRcASQhgADQE0kYjlLYWMsAYACQCj0czGmczsaQAXAdyy4/9SCUBvAI0AyACwAO7BMveVWSebECIF0ABAHVjehxlAFoDLABLtOcIreCevwCL/hXn+cmCZ+/4oaze04Hm2AvAagAhYZF4N4CSAXdTN9cb/Fyh4poMIYd6QSRQvcTwXwnEmAQAwjMAkFIgeGYy6ozzP7QDwly15LWgrAsAbAGJQME4B3IJlrCfa0ZfCMRYDoBYs8pIP4DqAE5TSMiMSCSEyAN1gkVtfWMZpOizls8/ZKfMdYBmnhVFHmQD+hOX/X6qPXoHy3AJAD6FA3FYgEIYwhBFQyhsMRl08gGOwrI+lBuwUvJeXALwOIAyAEJZncRTAflt6wlNthAGILbg+EBbXzUcALgF4YKfMVoXlndaF5X2wAK7CMm+UWTK1yDzeBJZ5xwggoeD6e2Vd7yk8orCWuInlJZLShMaL/RQ8T+Z/Mdrdi2chhPjAomwFwKLoaWFRrNyfc82LFy9evHixk3JRWL148eLFixcvXrx4cRaXsgR48eLFixcvXrx48eJpvAqrFy9evHjx4sWLl2car8LqxYsXL168ePHi5ZnGq7B68eLFixcvXrx4eabxKqxevHjx4sWLFy9enmm8CqsXL168ePHixYuXZxqvwurFixcvXrx48eLlmcarsHrx4sWLFy9evHh5pvk/7Z14p533wsIAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - } - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "8LE2lrJwyblQ" - }, - "source": [ - "Qualitatively, the generated structures seem reasonable with no obvious issues we had previously mentioned to look out for." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "MymFuumcRd8r" - }, - "source": [ - "# Model development \n", - "\n", - "In this section, we will walk through how to develop a simple Graph Neural Network model on the S2EF-200k dataset.\n", - "\n", - "Let's begin by setting up some imports and boilerplate config parameters." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "mk71_j2i96X4" - }, - "source": [ - "## Imports" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "vK49MKgd9ufL" - }, - "source": [ - "import torch\n", - "\n", - "from typing import Optional\n", - "\n", - "from ocpmodels.trainers import ForcesTrainer\n", - "from ocpmodels import models\n", - "from ocpmodels.common import logger\n", - "from ocpmodels.common.utils import setup_logging, get_pbc_distances\n", - "from ocpmodels.common.registry import registry\n", - "\n", - "from ocpmodels.models.gemnet.layers.radial_basis import PolynomialEnvelope\n", - "\n", - "from torch_geometric.nn.models.schnet import GaussianSmearing\n", - "from torch_scatter import scatter" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "Xj9QvWby-AI6" - }, - "source": [ - "setup_logging()\n", - "\n", - "# Dataset paths\n", - "train_src = \"data/s2ef/train_200k\"\n", - "val_src = \"data/s2ef/val\"\n", - "\n", - "# Configs\n", - "task = {\n", - " 'dataset': 'trajectory_lmdb', # dataset used for the S2EF task\n", - " 'description': 'Regressing to energies and forces for DFT trajectories from OCP',\n", - " 'type': 'regression',\n", - " 'metric': 'mae',\n", - " 'labels': ['potential energy'],\n", - " 'grad_input': 'atomic forces',\n", - " 'train_on_free_atoms': True,\n", - " 'eval_on_free_atoms': True\n", - "}\n", - "\n", - "# Optimizer\n", - "optimizer = {\n", - " 'batch_size': 16, # if hitting GPU memory issues, lower this\n", - " 'eval_batch_size': 8,\n", - " 'num_workers': 8,\n", - " 'lr_initial': 0.0001,\n", - " 'scheduler': \"ReduceLROnPlateau\",\n", - " 'mode': \"min\",\n", - " 'factor': 0.8,\n", - " 'patience': 3,\n", - " 'max_epochs': 80,\n", - " 'max_epochs': 5,\n", - " 'force_coefficient': 100,\n", - "}\n", - "\n", - "# Dataset\n", - "dataset = [\n", - " {'src': train_src, 'normalize_labels': True, 'target_mean': -0.7554450631141663, 'target_std': 2.887317180633545, 'grad_target_mean': 0.0, 'grad_target_std': 2.887317180633545}, # train set\n", - " {'src': val_src},\n", - "]" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "bzp-Cyrm-JOE" - }, - "source": [ - "## Atom and Edge Embeddings\n", - "\n", - "Each atom is represented as a node with its features computed using a simple `torch.nn.Embedding` layer on the atomic number.\n", - "\n", - "All pairs of atoms with a defined cutoff radius (=6A) are assumed to have edges between them, with their features computed as the concatenation of 1) a Gaussian expansion of the distance between the atoms, and the 2) source and 3) target\n", - "node features.\n", - "\n", - "We will use the `GaussianSmearing` layer (reproduced below) from the PyTorch Geometric library for computing distance features:\n", - "\n", - "```\n", - "class GaussianSmearing(torch.nn.Module):\n", - " def __init__(self, start=0.0, stop=5.0, num_gaussians=50):\n", - " super(GaussianSmearing, self).__init__()\n", - " offset = torch.linspace(start, stop, num_gaussians)\n", - " self.coeff = -0.5 / (offset[1] - offset[0]).item()**2\n", - " self.register_buffer('offset', offset)\n", - "\n", - " def forward(self, dist):\n", - " dist = dist.view(-1, 1) - self.offset.view(1, -1)\n", - " return torch.exp(self.coeff * torch.pow(dist, 2))\n", - "```" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "dfMCS-pL-2X5" - }, - "source": [ - "class AtomEmbedding(torch.nn.Module):\n", - " def __init__(self, emb_size):\n", - " super().__init__()\n", - " self.embeddings = torch.nn.Embedding(83, emb_size) # We go up to Bi (83).\n", - "\n", - " def forward(self, Z):\n", - " h = self.embeddings(Z - 1) # -1 because Z.min()=1 (==Hydrogen)\n", - " return h\n", - "\n", - "class EdgeEmbedding(torch.nn.Module):\n", - " def __init__(self, atom_emb_size, edge_emb_size, out_size):\n", - " super().__init__()\n", - " in_features = 2 * atom_emb_size + edge_emb_size\n", - " self.dense = torch.nn.Sequential(\n", - " torch.nn.Linear(in_features, out_size, bias=False),\n", - " torch.nn.SiLU()\n", - " )\n", - "\n", - " def forward(self, h, m_rbf, idx_s, idx_t,\n", - " ):\n", - " h_s = h[idx_s] # indexing source node, shape=(num_edges, emb_size)\n", - " h_t = h[idx_t] # indexing target node, shape=(num_edges, emb_size)\n", - "\n", - " m_st = torch.cat([h_s, h_t, m_rbf], dim=-1) # (num_edges, 2 * atom_emb_size + edge_emb_size)\n", - " m_st = self.dense(m_st) # (num_edges, out_size)\n", - " return m_st\n", - "\n", - "class RadialBasis(torch.nn.Module):\n", - " def __init__(self, num_radial: int, cutoff: float, env_exponent: int = 5):\n", - " super().__init__()\n", - " self.inv_cutoff = 1 / cutoff\n", - " self.envelope = PolynomialEnvelope(env_exponent)\n", - " self.rbf = GaussianSmearing(start=0, stop=1, num_gaussians=num_radial)\n", - "\n", - " def forward(self, d):\n", - " d_scaled = d * self.inv_cutoff\n", - " env = self.envelope(d_scaled)\n", - " return env[:, None] * self.rbf(d_scaled) # (num_edges, num_radial)" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "nhvCP4wzAE_K" - }, - "source": [ - "## Message passing \n", - "\n", - "We start by implementing a very simple message-passing scheme to predict system energy and forces.\n", - "\n", - "Given the node and edge features, we sum up edge features for all edges $e_{ij}$ connecting node $i$ to its neighbors $j$, and pass the resultant vector through a fully-connected layer to project it down to a scalar. This gives us a scalar energy contribution for each node $i$ in the structure. We then sum up all node energy contributions to predict the overall system energy.\n", - "\n", - "Similarly, to predict forces, we pass edge features through a fully-connected layer to project it down to a scalar representing the force magnitude per edge $e_{ij}$. We can then sum up these force magnitudes based on the original edge directions to predict the resultant force vector per node $i$." - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "QMjBCLcSAQSp" - }, - "source": [ - "@registry.register_model(\"simple\")\n", - "class SimpleAtomEdgeModel(torch.nn.Module):\n", - " def __init__(self, num_atoms, bond_feat_dim, num_targets, emb_size=64, num_radial=64, cutoff=6.0, env_exponent=5):\n", - " super().__init__()\n", - "\n", - " self.radial_basis = RadialBasis(\n", - " num_radial=num_radial,\n", - " cutoff=cutoff,\n", - " env_exponent=env_exponent,\n", - " )\n", - "\n", - " self.atom_emb = AtomEmbedding(emb_size)\n", - " self.edge_emb = EdgeEmbedding(emb_size, num_radial, emb_size)\n", - "\n", - " self.out_energy = torch.nn.Linear(emb_size, 1)\n", - " self.out_forces = torch.nn.Linear(emb_size, 1)\n", - "\n", - " def forward(self, data):\n", - " batch = data.batch\n", - " atomic_numbers = data.atomic_numbers.long()\n", - " edge_index = data.edge_index\n", - " cell_offsets = data.cell_offsets\n", - " neighbors = data.neighbors\n", - "\n", - " # computing edges and distances taking periodic boundary conditions into account\n", - " out = get_pbc_distances(\n", - " data.pos,\n", - " edge_index,\n", - " data.cell,\n", - " cell_offsets,\n", - " neighbors,\n", - " return_offsets=True,\n", - " return_distance_vec=True,\n", - " )\n", - "\n", - " edge_index = out[\"edge_index\"]\n", - " D_st = out[\"distances\"]\n", - " V_st = -out[\"distance_vec\"] / D_st[:, None]\n", - "\n", - " idx_s, idx_t = edge_index\n", - "\n", - " # embed atoms\n", - " h_atom = self.atom_emb(atomic_numbers)\n", - "\n", - " # gaussian expansion of distances D_st\n", - " m_rbf = self.radial_basis(D_st)\n", - " # embed edges\n", - " m = self.edge_emb(h_atom, m_rbf, idx_s, idx_t)\n", - "\n", - " # read out energy\n", - " # \n", - " # x_E_i = \\sum_j m_ji -- summing up edge features m_ji for all neighbors j\n", - " # of node i to predict node i's energy contribution.\n", - " x_E = scatter(m, idx_t, dim=0, dim_size=h_atom.shape[0], reduce=\"sum\")\n", - " x_E = self.out_energy(x_E)\n", - "\n", - " # E = \\sum_i x_E_i\n", - " num_systems = torch.max(batch)+1\n", - " E = scatter(x_E, batch, dim=0, dim_size=num_systems, reduce=\"add\")\n", - " # (num_systems, 1)\n", - "\n", - " # read out forces\n", - " # \n", - " # x_F is the force magnitude per edge, we multiply that by the direction of each edge ji,\n", - " # and sum up all the vectors to predict the resultant force on node i\n", - " x_F = self.out_forces(m)\n", - " F_st_vec = x_F[:, :, None] * V_st[:, None, :]\n", - " F = scatter(F_st_vec, idx_t, dim=0, dim_size=atomic_numbers.size(0), reduce=\"add\")\n", - " # (num_atoms, num_targets, 3)\n", - " F = F.squeeze(1)\n", - "\n", - " return E, F\n", - "\n", - " @property\n", - " def num_params(self):\n", - " return sum(p.numel() for p in self.parameters())" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "-Vl3WEqVAith" - }, - "source": [ - "## Training the model" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "u7E7pLiqAmnL" - }, - "source": [ - "model_params = {\n", - " 'name': 'simple',\n", - " 'emb_size': 256,\n", - " 'num_radial': 128,\n", - " 'cutoff': 6.0,\n", - " 'env_exponent': 5,\n", - "}\n", - "\n", - "trainer = ForcesTrainer(\n", - " task=task,\n", - " model=model_params,\n", - " dataset=dataset,\n", - " optimizer=optimizer,\n", - " identifier=\"S2EF-simple\",\n", - " run_dir=\"./\", # directory to save results if is_debug=False. Prediction files are saved here so be careful not to override!\n", - " is_debug=False, # if True, do not save checkpoint, logs, or results\n", - " is_vis=False,\n", - " print_every=20,\n", - " seed=0, # random seed to use\n", - " logger=\"tensorboard\", # logger of choice (tensorboard and wandb supported)\n", - " local_rank=0,\n", - ")\n", - "\n", - "trainer.train()" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "thF9lWK9Ay90" - }, - "source": [ - "If you've wired everything up correctly, this model should be relatively small (~185k params) and achieve a force MAE of 0.0815, force cosine of 0.0321, energy MAE of 2.2772 in 2 epochs.\n", - "\n", - "We encourage the reader to try playing with the embedding size, cutoff radius, number of gaussian basis functions, and polynomial envelope exponent to see how it affects performance." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "PSqVJXsxArvu" - }, - "source": [ - "## Incorporating triplets and training GemNet-T\n", - "\n", - "Recall how this model computes edge embeddings based only on a Gaussian expansion of edge distances.\n", - "\n", - "To better capture 3D geometry, we should also embed angles formed by triplets or quadruplets of atoms. A model that incorporates this idea and works quite well is GemNet (Klicpera et al., NeurIPS 2021); see the following figure.\n", - "\n", - "![Screen Shot 2021-11-22 at 3.58.24 PM.png]()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Twh6yIC5GTrW" - }, - "source": [ - "You can train a GemNet-T (T = triplets) on S2EF-200k using the following config.\n", - "\n", - "Note that this is a significantly bulkier model (~3.4M params) than the one we developed above and will take longer to train." - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "LVbM_S0sGlOr" - }, - "source": [ - "model_params = {\n", - " 'name': 'gemnet_t',\n", - " 'num_spherical': 7,\n", - " 'num_radial': 128,\n", - " 'num_blocks': 1,\n", - " 'emb_size_atom': 256,\n", - " 'emb_size_edge': 256,\n", - " 'emb_size_trip': 64,\n", - " 'emb_size_rbf': 16,\n", - " 'emb_size_cbf': 16,\n", - " 'emb_size_bil_trip': 64,\n", - " 'num_before_skip': 1,\n", - " 'num_after_skip': 1,\n", - " 'num_concat': 1,\n", - " 'num_atom': 3,\n", - " 'cutoff': 6.0,\n", - " 'max_neighbors': 50,\n", - " 'rbf': {'name': 'gaussian'},\n", - " 'envelope': {'name': 'polynomial', 'exponent': 5},\n", - " 'cbf': {'name': 'spherical_harmonics'},\n", - " 'extensive': True,\n", - " 'otf_graph': False,\n", - " 'output_init': 'HeOrthogonal',\n", - " 'activation': 'silu',\n", - " 'scale_file': 'configs/s2ef/all/gemnet/scaling_factors/gemnet-dT.json',\n", - " 'regress_forces': True,\n", - " 'direct_forces': True,\n", - "}\n", - "\n", - "trainer = ForcesTrainer(\n", - " task=task,\n", - " model=model_params,\n", - " dataset=dataset,\n", - " optimizer=optimizer,\n", - " identifier=\"S2EF-gemnet-t\",\n", - " run_dir=\"./\", # directory to save results if is_debug=False. Prediction files are saved here so be careful not to override!\n", - " is_debug=False, # if True, do not save checkpoint, logs, or results\n", - " is_vis=False,\n", - " print_every=20,\n", - " seed=0, # random seed to use\n", - " logger=\"tensorboard\", # logger of choice (tensorboard and wandb supported)\n", - " local_rank=0,\n", - ")\n", - "\n", - "trainer.train()" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "F-Pw3GCVHAwA" - }, - "source": [ - "This model should achieve a force MAE of 0.0668, a force cosine of 0.1180, and an energy MAE of 0.8106 in 2 epochs, significantly better than our simple model.\n", - "\n", - "Again, we encourage the reader to try playing with no. of blocks, choice of basis functions, the various embedding sizes to develop intuition for the interplay between these hyperparameters." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Rzx0lArZJ6r0" - }, - "source": [ - "# (Optional) OCP Calculator \n", - "\n", - "For those interested in using our pretrained models for other applications, we provide an [ASE](https://wiki.fysik.dtu.dk/ase/#:~:text=The%20Atomic%20Simulation%20Environment%20(ASE,under%20the%20GNU%20LGPL%20license.)-compatible Calculator to interface with ASE's functionality." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "QGaXyeS_8yHp" - }, - "source": [ - "## Download pretrained checkpoint\n", - "\n", - "We have released checkpoints of all the models on the leaderboard [here](https://github.com/Open-Catalyst-Project/ocp/blob/master/MODELS.md). These trained models can be used as an ASE calculator for various calculations.\n", - "\n", - "For this tutorial we download our current best model checkpoint: GemNet-T" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "MBCRi69284Ve" - }, - "source": [ - "!wget -q https://dl.fbaipublicfiles.com/opencatalystproject/models/2021_08/s2ef/gemnet_t_direct_h512_all.pt\n", - "checkpoint_path = \"/content/ocp/gemnet_t_direct_h512_all.pt\"" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "TNQ1dNVG93kH" - }, - "source": [ - "## Using the OCP Calculator\n" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "o_MHpzbhPKN_", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "fa4336cf-ba85-43b6-e608-551ffcf3763a" - }, - "source": [ - "from ocpmodels.common.relaxation.ase_utils import OCPCalculator\n", - "import ase.io\n", - "from ase.optimize import BFGS\n", - "from ase.build import fcc100, add_adsorbate, molecule\n", - "import os\n", - "from ase.constraints import FixAtoms\n", - "\n", - "# Construct a sample structure\n", - "adslab = fcc100(\"Cu\", size=(3, 3, 3))\n", - "adsorbate = molecule(\"C3H8\")\n", - "add_adsorbate(adslab, adsorbate, 3, offset=(1, 1))\n", - "tags = np.zeros(len(adslab))\n", - "tags[18:27] = 1\n", - "tags[27:] = 2\n", - "adslab.set_tags(tags)\n", - "cons= FixAtoms(indices=[atom.index for atom in adslab if (atom.tag == 0)])\n", - "adslab.set_constraint(cons)\n", - "adslab.center(vacuum=13.0, axis=2)\n", - "adslab.set_pbc(True)\n", - "\n", - "config_yml_path = \"configs/s2ef/all/gemnet/gemnet-dT.yml\"\n", - "\n", - "# Define the calculator\n", - "calc = OCPCalculator(config_yml=config_yml_path, checkpoint=checkpoint_path)\n", - "\n", - "# Set up the calculator\n", - "adslab.calc = calc\n", - "\n", - "os.makedirs(\"data/sample_ml_relax\", exist_ok=True)\n", - "opt = BFGS(adslab, trajectory=\"data/sample_ml_relax/toy_c3h8_relax.traj\")\n", - "\n", - "opt.run(fmax=0.05, steps=100)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "amp: false\n", - "cmd:\n", - " checkpoint_dir: /content/ocp/checkpoints/2021-11-22-18-03-44\n", - " commit: bc04a90\n", - " identifier: ''\n", - " logs_dir: /content/ocp/logs/tensorboard/2021-11-22-18-03-44\n", - " print_every: 100\n", - " results_dir: /content/ocp/results/2021-11-22-18-03-44\n", - " seed: null\n", - " timestamp_id: 2021-11-22-18-03-44\n", - "dataset: null\n", - "gpus: 0\n", - "logger: tensorboard\n", - "model: gemnet_t\n", - "model_attributes:\n", - " activation: silu\n", - " cbf:\n", - " name: spherical_harmonics\n", - " cutoff: 6.0\n", - " direct_forces: true\n", - " emb_size_atom: 512\n", - " emb_size_bil_trip: 64\n", - " emb_size_cbf: 16\n", - " emb_size_edge: 512\n", - " emb_size_rbf: 16\n", - " emb_size_trip: 64\n", - " envelope:\n", - " exponent: 5\n", - " name: polynomial\n", - " extensive: true\n", - " max_neighbors: 50\n", - " num_after_skip: 2\n", - " num_atom: 3\n", - " num_before_skip: 1\n", - " num_blocks: 3\n", - " num_concat: 1\n", - " num_radial: 128\n", - " num_spherical: 7\n", - " otf_graph: true\n", - " output_init: HeOrthogonal\n", - " rbf:\n", - " name: gaussian\n", - " regress_forces: true\n", - " scale_file: configs/s2ef/all/gemnet/scaling_factors/gemnet-dT.json\n", - "optim:\n", - " batch_size: 32\n", - " clip_grad_norm: 10\n", - " ema_decay: 0.999\n", - " energy_coefficient: 1\n", - " eval_batch_size: 32\n", - " eval_every: 5000\n", - " factor: 0.8\n", - " force_coefficient: 100\n", - " loss_energy: mae\n", - " loss_force: l2mae\n", - " lr_initial: 0.0005\n", - " max_epochs: 80\n", - " mode: min\n", - " num_workers: 2\n", - " optimizer: AdamW\n", - " optimizer_params:\n", - " amsgrad: true\n", - " patience: 3\n", - " scheduler: ReduceLROnPlateau\n", - "slurm: {}\n", - "task:\n", - " dataset: trajectory_lmdb\n", - " description: Regressing to energies and forces for DFT trajectories from OCP\n", - " eval_on_free_atoms: true\n", - " grad_input: atomic forces\n", - " labels:\n", - " - potential energy\n", - " metric: mae\n", - " train_on_free_atoms: true\n", - " type: regression\n", - "\n", - "2021-11-22 18:03:35 (INFO): Loading dataset: trajectory_lmdb\n", - "2021-11-22 18:03:35 (INFO): Loading model: gemnet_t\n", - "2021-11-22 18:03:38 (INFO): Loaded GemNetT with 31671825 parameters.\n", - "2021-11-22 18:03:38 (INFO): Loading checkpoint from: /content/ocp/gemnet_t_direct_h512_all.pt\n", - " Step Time Energy fmax\n", - "BFGS: 0 18:03:41 -4.099784 1.5675\n", - "BFGS: 1 18:03:43 -4.244461 1.1370\n", - "BFGS: 2 18:03:44 -4.403120 0.7635\n", - "BFGS: 3 18:03:46 -4.503653 0.8364\n", - "BFGS: 4 18:03:48 -4.558208 0.7339\n", - "BFGS: 5 18:03:49 -4.592069 0.4095\n", - "BFGS: 6 18:03:51 -4.619362 0.7312\n", - "BFGS: 7 18:03:53 -4.671468 0.9712\n", - "BFGS: 8 18:03:54 -4.796430 0.9211\n", - "BFGS: 9 18:03:56 -4.957961 0.9762\n", - "BFGS: 10 18:03:57 -5.109433 1.0384\n", - "BFGS: 11 18:03:59 -5.295604 1.2247\n", - "BFGS: 12 18:04:00 -5.498977 1.1271\n", - "BFGS: 13 18:04:02 -5.618095 1.0669\n", - "BFGS: 14 18:04:04 -5.737120 0.9509\n", - "BFGS: 15 18:04:05 -5.901926 0.9260\n", - "BFGS: 16 18:04:07 -6.076125 1.2738\n", - "BFGS: 17 18:04:08 -6.198373 1.2029\n", - "BFGS: 18 18:04:10 -6.250323 0.6851\n", - "BFGS: 19 18:04:11 -6.254094 0.2008\n", - "BFGS: 20 18:04:13 -6.293966 0.1779\n", - "BFGS: 21 18:04:14 -6.326333 0.2294\n", - "BFGS: 22 18:04:16 -6.324431 0.1700\n", - "BFGS: 23 18:04:17 -6.321288 0.1016\n", - "BFGS: 24 18:04:19 -6.328468 0.0847\n", - "BFGS: 25 18:04:20 -6.331809 0.0587\n", - "BFGS: 26 18:04:22 -6.332153 0.0444\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "True" - ] - }, - "metadata": {}, - "execution_count": 106 - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "TUH5BaaXo-ca" - }, - "source": [ - "\n", - "# (Optional) Creating your own LMDBs for use in the OCP repository \n", - "\n", - "In order to interface with our repository, the data mustbe structured and organized in a specific format. Below we walk you through on how to create such datasets with your own non-OC20 data that may help with your research.\n", - "\n", - "For this tutorial we use the toy C3H8 trajectory we previously generated [here](#data-description)." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "o7cG3WhLnuqg" - }, - "source": [ - "\n", - "\n", - "#### Initial Structure to Relaxed Energy (IS2RE) LMDBs\n", - "IS2RE/IS2RS LMDBs utilize the SinglePointLmdb dataset. This dataset expects the data to be contained in a **single** LMDB file. In addition to the attributes defined by AtomsToGraph, the following attributes must be added for the IS2RE/IS2RS tasks:\n", - "\n", - "- pos_relaxed: Relaxed adslab positions\n", - "- sid: Unique system identifier, arbitrary\n", - "- y_init: Initial adslab energy, formerly Data.y\n", - "- y_relaxed: Relaxed adslab energy\n", - "- tags (optional): 0 - subsurface, 1 - surface, 2 - adsorbate\n", - "\n", - "\n", - "As a demo, we will use the above generated data to create an IS2R* LMDB file.\n" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "nweCG0y5nxlw" - }, - "source": [ - "from ocpmodels.preprocessing import AtomsToGraphs\n", - "\n", - "\"\"\"\n", - "args description:\n", - "\n", - "max neigh (int): maximum number of neighors to be considered while constructing a graph\n", - "radius (int): Neighbors are considered only within this radius cutoff in Angstrom\n", - "r_energy (bool): Stored energy value in the Data object; False for test data\n", - "r_forces (bool): Stores forces value in the Data object; False for test data\n", - "r_distances (bool): pre-calculates distances taking into account PBC and max neigh/radius\n", - " If you set it to False, make sure to add \"otf_graph = True\" under models in config for runs\n", - "r_fixed (bools): True if you want to fix the subsurface atoms\n", - "\"\"\"\n", - "\n", - "a2g = AtomsToGraphs(\n", - " max_neigh=50,\n", - " radius=6,\n", - " r_energy=True, \n", - " r_forces=True,\n", - " r_distances=False, \n", - " r_fixed=True,\n", - ")" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "K16pPnQdnzro" - }, - "source": [ - "import lmdb\n", - "\n", - "\"\"\"\n", - "For most cases one just needs to change the name of the lmdb as they require.\n", - "Make sure to give the entire path in the config (with .lmdb) for IS2RE tasks\n", - "\"\"\"\n", - "\n", - "db = lmdb.open(\n", - " \"data/toy_C3H8.lmdb\",\n", - " map_size=1099511627776 * 2,\n", - " subdir=False,\n", - " meminit=False,\n", - " map_async=True,\n", - ")" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "t_8oaE5qn1Za" - }, - "source": [ - "\"\"\"\n", - "This method converts extracts all features from trajectory file and convert to Data Object\n", - "\"\"\"\n", - "\n", - "def read_trajectory_extract_features(a2g, traj_path):\n", - " # Read the traj file\n", - " traj = ase.io.read(traj_path, \":\")\n", - "\n", - " # Get tags if you had defined those in the atoms object, if not skip this line\n", - " tags = traj[0].get_tags()\n", - "\n", - " # Collect only initial and final image as this is IS2RS task\n", - " images = [traj[0], traj[-1]]\n", - "\n", - " # Converts a list of atoms object to a list of Data object using a2g defined above\n", - " data_objects = a2g.convert_all(images, disable_tqdm=True)\n", - "\n", - " # Add tags to the data objects if you have them (we would suggest to do so), if not skip this\n", - " data_objects[0].tags = torch.LongTensor(tags)\n", - " data_objects[1].tags = torch.LongTensor(tags)\n", - "\n", - " return data_objects" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "qSfOagphn7yy" - }, - "source": [ - "import torch\n", - "import pickle\n", - "system_paths = [\"data/toy_c3h8_relax.traj\"] # specify list of trajectory files you wish to write to LMDBs\n", - "idx = 0\n", - "\n", - "for system in system_paths:\n", - " # Extract Data object\n", - " data_objects = read_trajectory_extract_features(a2g, system)\n", - " initial_struc = data_objects[0]\n", - " relaxed_struc = data_objects[1]\n", - " \n", - " initial_struc.y_init = initial_struc.y # subtract off reference energy, if applicable\n", - " del initial_struc.y\n", - " initial_struc.y_relaxed = relaxed_struc.y # subtract off reference energy, if applicable\n", - " initial_struc.pos_relaxed = relaxed_struc.pos\n", - " \n", - " # Filter data if necessary\n", - " # OCP filters adsorption energies > |10| eV\n", - " \n", - " initial_struc.sid = idx # arbitrary unique identifier \n", - " \n", - " # no neighbor edge case check\n", - " if initial_struc.edge_index.shape[1] == 0:\n", - " print(\"no neighbors\", traj_path)\n", - " continue\n", - " \n", - " # Write to LMDB\n", - " txn = db.begin(write=True)\n", - " txn.put(f\"{idx}\".encode(\"ascii\"), pickle.dumps(initial_struc, protocol=-1))\n", - " txn.commit()\n", - " db.sync()\n", - " idx += 1\n", - "\n", - "db.close()" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "p8ftTehrn9pG", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "74c95b8a-e260-4b6f-92c4-3544f28deda5" - }, - "source": [ - "from ocpmodels.datasets import SinglePointLmdbDataset\n", - "\n", - "# SinglePointLmdbDataset is out custom Dataset method to read the lmdbs as Data objects. Note that we need to give the entire path (including lmdb) for IS2RE\n", - "dataset = SinglePointLmdbDataset({\"src\": \"data/toy_C3H8.lmdb\"})\n", - "\n", - "print(\"Size of the dataset created:\", len(dataset))\n", - "print(dataset[0])" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Size of the dataset created: 1\n", - "Data(atomic_numbers=[38], cell=[1, 3, 3], cell_offsets=[1733, 3], edge_index=[2, 1733], fixed=[38], force=[38, 3], natoms=38, pos=[38, 3], pos_relaxed=[38, 3], sid=0, tags=[38], y_init=15.80469962027714, y_relaxed=8.358921451420816)\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "UWYBEis2n_ye" - }, - "source": [ - "#### Structure to Energy and Forces (S2EF) LMDBs\n", - "\n", - "S2EF LMDBs utilize the TrajectoryLmdb dataset. This dataset expects a directory of LMDB files. In addition to the attributes defined by AtomsToGraph, the following attributes must be added for the S2EF task:\n", - "\n", - "- tags (optional): 0 - subsurface, 1 - surface, 2 - adsorbate\n", - "- fid: Frame index along the trajcetory\n", - "- sid- sid: Unique system identifier, arbitrary\n", - "\n", - "Additionally, a \"length\" key must be added to each LMDB file.\n", - "\n", - "As a demo, we will use the above generated data to create an S2EF LMDB dataset" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "k74bbQJuoBwy" - }, - "source": [ - "os.makedirs(\"data/s2ef\", exist_ok=True)\n", - "db = lmdb.open(\n", - " \"data/s2ef/toy_C3H8.lmdb\",\n", - " map_size=1099511627776 * 2,\n", - " subdir=False,\n", - " meminit=False,\n", - " map_async=True,\n", - ")" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "metadata": { - "id": "-6VuR1lBoDfY", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "0c3e104b-d22f-4376-85f3-0cd505c8914d" - }, - "source": [ - "from tqdm import tqdm\n", - "tags = traj[0].get_tags()\n", - "data_objects = a2g.convert_all(traj, disable_tqdm=True)\n", - "\n", - "\n", - "for fid, data in tqdm(enumerate(data_objects), total=len(data_objects)):\n", - " #assign sid\n", - " data.sid = torch.LongTensor([0])\n", - " \n", - " #assign fid\n", - " data.fid = torch.LongTensor([fid])\n", - " \n", - " #assign tags, if available\n", - " data.tags = torch.LongTensor(tags)\n", - " \n", - " # Filter data if necessary\n", - " # OCP filters adsorption energies > |10| eV and forces > |50| eV/A\n", - "\n", - " # no neighbor edge case check\n", - " if data.edge_index.shape[1] == 0:\n", - " print(\"no neighbors\", traj_path)\n", - " continue\n", - "\n", - " txn = db.begin(write=True)\n", - " txn.put(f\"{fid}\".encode(\"ascii\"), pickle.dumps(data, protocol=-1))\n", - " txn.commit()\n", - " \n", - "txn = db.begin(write=True)\n", - "txn.put(f\"length\".encode(\"ascii\"), pickle.dumps(len(data_objects), protocol=-1))\n", - "txn.commit()\n", - "\n", - "\n", - "db.sync()\n", - "db.close()" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "100%|██████████| 101/101 [00:00<00:00, 129.56it/s]\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "rJ2ZXuBMH8xt" - }, - "source": [ - "# Running on command line [Preferred way to train models] " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "aj8HsmxjISED" - }, - "source": [ - "The previous sections of this notebook are intended to demonstrate the inner workings of our codebase. For regular training, we suggest that you train and evaluate on command line.\n", - "\n", - "1. Clone our repo at https://github.com/Open-Catalyst-Project/ocp and set up the environment according to the readme.\n", - "2. Download relevant data ([see above for info](https://colab.research.google.com/drive/1oGZcrakB4Pbj8Xq74lSvcRDUHw9L-Dh5#scrollTo=jXoiLncsU3pe)).\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "lAdwlMNOKwYj" - }, - "source": [ - "3. In the config file, modify the path of the data [train](https://github.com/Open-Catalyst-Project/ocp/blob/master/configs/is2re/10k/base.yml#L4) [val](https://github.com/Open-Catalyst-Project/ocp/blob/master/configs/is2re/10k/base.yml#L8), [normalization parameters](https://github.com/Open-Catalyst-Project/ocp/blob/master/configs/is2re/10k/base.yml#L5-L7) as well as any other [model](https://github.com/Open-Catalyst-Project/ocp/blob/master/configs/is2re/10k/dimenet_plus_plus/dpp.yml#L4-L16) or [training](https://github.com/Open-Catalyst-Project/ocp/blob/master/configs/is2re/10k/dimenet_plus_plus/dpp.yml#L23-L35) args. \n", - "\n", - "For a simple example, we'll train DimeNet++ on IS2RE demo data: \\\n", - "a. Modify the train data path in `/contents/ocp/configs/is2re/10k/base.yml` in \n", - "Line 4 to `/contents/ocp/data/is2re/train_10k/data.lmdb` and val data path in Line 8 to `/contents/ocp/data/is2re/val_2k/data.lmdb`. \\\n", - "b. Calculate the mean and std for train data and modify Lines 6-7 respectively \\\n", - "c. We can change the model parameters in `/contents/ocp/configs/is2re/10k/dimenet_plus_plus/dpp.yml` and we suggest you to change the lr_milestones and warmup_steps as the data here is smaller (these need to be tuned for every dataset).\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "HjWsAaojKzpH" - }, - "source": [ - "4. Train: `python main.py --mode train --config-yml configs/is2re/10k/dimenet_plus_plus/dpp.yml --identifier dpp_is2re_sample`\n" - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "mCgs4eGSO-HM" - }, - "source": [ - "# Optional block to try command line training \n", - "# Note that config args can be added in the command line. For example, --optim.batch_size=1" - ], - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "q1xRtYWTO8Xb" - }, - "source": [ - "5. Add a data path as a test set to `configs/is2re/10k/base.yml`\n", - "6. Run predictions with the trained model: \n", - "`python main.py --mode predict --config-yml configs/is2re/10k/dimenet_plus_plus/dpp.yml --checkpoint checkpoints/[datetime]-dpp_is2re_sample/checkpoint.pt`\n", - "7. View energy predictions at `results/[datetime]/is2re_predictions.npz`\n", - "\n", - "For more information on how to train and evaluate, see [this readme](https://github.com/Open-Catalyst-Project/ocp/blob/master/TRAIN.md). For checkpoints of publicly available trained models, see [MODELS.md](https://github.com/Open-Catalyst-Project/ocp/blob/master/MODELS.md)." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "oHIjM6eMwlXY" - }, - "source": [ - "# Limitations \n", - "The OpenCatalyst project is motivated by the problems we face due to climate change, many of which require innovative solutions to reduce energy usage and replace traditional chemical feedstocks with renewable alternatives. For example, one of the most energy intensive chemical processes is the development of new electrochemical catalysts for ammonia fertilizer production that helped to feed the world’s growing population during the 20th century. This is also an illustrative example of possible unintended consequences as advancements in chemistry and materials may be used for numerous purposes. As ammonia fertilization increased in use, its overuse in today’s farming has led to ocean “dead zones” and its production is very carbon intensive. Knowledge and techniques used to create ammonia were also transferred to the creation of explosives during wartime. We hope to steer the use of ML for atomic simulations to societally-beneficial uses by training and testing our approaches on datasets, such as OC20, that were specifically designed to address chemical reactions useful for addressing climate change." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "CLLCQpv14Gsx" - }, - "source": [ - "# Next Steps \n", - "\n", - "While progress has been well underway - https://opencatalystproject.org/leaderboard.html, a considerable gap still exists between state-of-the-art models and our target goals. We offer some some general thoughts as to next steps for the readers to ponder on or explore:\n", - "\n", - "* GNN depth has consistenly improved model performance. What limitations to depth are there? How far can we push deeper models for OC20? \n", - "* Our best performing models have little to no physical biases encoded. Can we incorporate such biases to improve our models? Experiments with physically inspired embeddings have had no advantage vs. random initializations, are there better ways to incorporate this information into the models?\n", - "* Uncertainty estimation will play an important role in later stages of the project when it comes to large scale screening. How can we get reliable uncertainty estimates from large scale GNNs?\n", - "* Are we limited to message-passing GNNs? Can we leverage alternative architectures for similiar or better performance?\n", - "* Trajectories are nothing more than sequential data points. How can we use sequential modeling techniques to model the full trajectory?\n", - "\n", - "OC20 is a large and diverse dataset with many splits. For those with limited resources but unsure where to start, we provide some general recommendations:\n", - "\n", - "* The IS2RE-direct task is a great place to start. With the largest training set containing ~460k data points, this task is easily accesible for those with even just a single GPU.\n", - "* Those interested in the more general S2EF task don't need to train on the All set to get meaningful performance.\n", - " * Results on the 2M dataset are often sufficient to highlight model improvements.\n", - " * For a fixed compute budget (e.g. fixed number of steps), training on the All set often leads to better performance.\n", - "* The S2EF 200k dataset is fairly noisy, trying to find meaningful trends using this dataset can be difficult.\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "PkKqewK_-ZLD" - }, - "source": [ - "\n", - "# References\n", - "\n", - "* Open Catalyst codebase: https://github.com/Open-Catalyst-Project/ocp/\n", - "* Open Catalyst webpage: https://opencatalystproject.org/\n", - "* [Electrocatalysis white paper](https://arxiv.org/pdf/2010.09435.pdf): C. Lawrence Zitnick, Lowik Chanussot, Abhishek Das, Siddharth Goyal, Javier Heras-Domingo, Caleb Ho, Weihua Hu, Thibaut Lavril, Aini Palizhati, Morgane Riviere, Muhammed Shuaibi, Anuroop Sriram, Kevin Tran, Brandon Wood, Junwoong Yoon, Devi Parikh, Zachary Ulissi: “An Introduction to Electrocatalyst Design using Machine Learning for Renewable Energy Storage”, 2020; arXiv:2010.09435.\n", - "* [OC20 dataset paper](https://arxiv.org/pdf/2010.09990.pdf): L. Chanussot, A. Das, S. Goyal, T. Lavril, M. Shuaibi, M. Riviere, K. Tran, J. Heras-Domingo, C. Ho, W. Hu, A. Palizhati, A. Sriram, B. Wood, J. Yoon, D. Parikh, C. L. Zitnick, and Z. Ulissi. The Open Catalyst 2020 (oc20) dataset and community challenges. ACS Catalysis, 2021.\n", - "* [Gemnet model:](https://arxiv.org/abs/2106.08903) Johannes Klicpera, Florian Becker, and Stephan Günnemann. Gemnet: Universal directional graph neural networks for molecules, 2021.\n", - "\n", - "\n" - ] + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] } - ] -} \ No newline at end of file + ], + "source": [ + "# make predictions on the existing test_loader\n", + "predictions = pretrained_trainer.predict(pretrained_trainer.test_loader, results_file=\"s2ef_results\", disable_tqdm=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "id": "zaZGqeyqNCXz" + }, + "outputs": [], + "source": [ + "energies = predictions[\"energy\"]\n", + "forces = predictions[\"forces\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "o8L28axZ4NVj" + }, + "source": [ + "## Initial Structure to Relaxed Energy (IS2RE) \n", + "The IS2RE task predicts the relaxed energy (energy of the relaxed state) given the initial state of a system. One approach to this is by training a regression model mapping the initial structure to the relaxed energy. We call this the *direct* approach to the IS2RE task. \n", + "\n", + "An alternative is to perform a structure relaxation using an S2EF model to obtain the relaxed state and compute the energy of that state (see the IS2RS task below for details about relaxation).\n", + "\n", + "### Steps for training an IS2RE model\n", + "1) Define or load a configuration (config), which includes the following\n", + "* task\n", + "* model\n", + "* optimizer\n", + "* dataset\n", + "* trainer\n", + "\n", + "2) Create an EnergyTrainer object\n", + "\n", + "3) Train the model\n", + "\n", + "4) Validate the model" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kEPPcr0YYHpH" + }, + "source": [ + "### Imports" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "d-0GsaGDW16G" + }, + "outputs": [], + "source": [ + "from ocpmodels.trainers import EnergyTrainer\n", + "from ocpmodels.datasets import SinglePointLmdbDataset\n", + "from ocpmodels import models\n", + "from ocpmodels.common import logger\n", + "from ocpmodels.common.utils import setup_logging\n", + "setup_logging()\n", + "\n", + "import numpy as np\n", + "import copy\n", + "import os" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "w20BJZ_GYWat" + }, + "source": [ + "### Dataset" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "BlL5gGPQW1te" + }, + "outputs": [], + "source": [ + "train_src = \"data/is2re/train_100/data.lmdb\"\n", + "val_src = \"data/is2re/val_20/data.lmdb\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yT5qHT2wamPh" + }, + "source": [ + "### Normalize data\n", + "\n", + "If you wish to normalize the targets we must compute the mean and standard deviation for our energy values." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "vaY-ZUMaamPh" + }, + "outputs": [], + "source": [ + "train_dataset = SinglePointLmdbDataset({\"src\": train_src})\n", + "\n", + "energies = []\n", + "for data in train_dataset:\n", + " energies.append(data.y_relaxed)\n", + "\n", + "mean = np.mean(energies)\n", + "stdev = np.std(energies)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "K4SSW0UGYeYM" + }, + "source": [ + "### Define the Config\n", + "\n", + "For this example, we will explicitly define the config; however, a set of default configs can be found [here](https://github.com/Open-Catalyst-Project/ocp/tree/master/configs). Default config yaml files can easily be loaded with the following [utility](https://github.com/Open-Catalyst-Project/ocp/blob/aa8e44d50229fce887b3a94a5661c4f85cd73eed/ocpmodels/common/utils.py#L361-L400). Loading a yaml config is preferrable when launching jobs from the command line. We have included our best models' config files here for reference. \n", + "\n", + "**Note** - we only train for a single epoch with a reduced batch size (GPU memory constraints) for demonstration purposes, modify accordingly for full convergence." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "TiHmkTm6W1do" + }, + "outputs": [], + "source": [ + "# Task\n", + "task = {\n", + " \"dataset\": \"single_point_lmdb\",\n", + " \"description\": \"Relaxed state energy prediction from initial structure.\",\n", + " \"type\": \"regression\",\n", + " \"metric\": \"mae\",\n", + " \"labels\": [\"relaxed energy\"],\n", + "}\n", + "# Model\n", + "model = {\n", + " 'name': 'gemnet_t',\n", + " \"num_spherical\": 7,\n", + " \"num_radial\": 64,\n", + " \"num_blocks\": 5,\n", + " \"emb_size_atom\": 256,\n", + " \"emb_size_edge\": 512,\n", + " \"emb_size_trip\": 64,\n", + " \"emb_size_rbf\": 16,\n", + " \"emb_size_cbf\": 16,\n", + " \"emb_size_bil_trip\": 64,\n", + " \"num_before_skip\": 1,\n", + " \"num_after_skip\": 2,\n", + " \"num_concat\": 1,\n", + " \"num_atom\": 3,\n", + " \"cutoff\": 6.0,\n", + " \"max_neighbors\": 50,\n", + " \"rbf\": {\"name\": \"gaussian\"},\n", + " \"envelope\": {\n", + " \"name\": \"polynomial\",\n", + " \"exponent\": 5,\n", + " },\n", + " \"cbf\": {\"name\": \"spherical_harmonics\"},\n", + " \"extensive\": True,\n", + " \"otf_graph\": False,\n", + " \"output_init\": \"HeOrthogonal\",\n", + " \"activation\": \"silu\",\n", + " \"scale_file\": \"configs/s2ef/all/gemnet/scaling_factors/gemnet-dT.json\",\n", + " \"regress_forces\": False,\n", + " \"direct_forces\": False,\n", + "}\n", + "# Optimizer\n", + "optimizer = {\n", + " 'batch_size': 1, # originally 32\n", + " 'eval_batch_size': 1, # originally 32\n", + " 'num_workers': 2,\n", + " 'lr_initial': 1.e-4,\n", + " 'optimizer': 'AdamW',\n", + " 'optimizer_params': {\"amsgrad\": True},\n", + " 'scheduler': \"ReduceLROnPlateau\",\n", + " 'mode': \"min\",\n", + " 'factor': 0.8,\n", + " 'patience': 3,\n", + " 'max_epochs': 1, # used for demonstration purposes\n", + " 'ema_decay': 0.999,\n", + " 'clip_grad_norm': 10,\n", + " 'loss_energy': 'mae',\n", + "}\n", + "# Dataset\n", + "dataset = [\n", + " {'src': train_src,\n", + " 'normalize_labels': True,\n", + " 'target_mean': mean,\n", + " 'target_std': stdev,\n", + " }, # train set \n", + " {'src': val_src}, # val set (optional)\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "oG5w1sk-v1LI" + }, + "source": [ + "###Create EnergyTrainer" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ExmkV2K1W07H", + "outputId": "4e875ed0-258b-43eb-e191-d00274400128" + }, + "outputs": [], + "source": [ + "energy_trainer = EnergyTrainer(\n", + " task=task,\n", + " model=copy.deepcopy(model), # copied for later use, not necessary in practice.\n", + " dataset=dataset,\n", + " optimizer=optimizer,\n", + " identifier=\"IS2RE-example\",\n", + " run_dir=\"./\", # directory to save results if is_debug=False. Prediction files are saved here so be careful not to override!\n", + " is_debug=False, # if True, do not save checkpoint, logs, or results\n", + " is_vis=False,\n", + " print_every=5,\n", + " seed=0, # random seed to use\n", + " logger=\"tensorboard\", # logger of choice (tensorboard and wandb supported)\n", + " local_rank=0,\n", + " amp=True, # use PyTorch Automatic Mixed Precision (faster training and less memory usage) \n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "tnJer5rGwjwi" + }, + "outputs": [], + "source": [ + "energy_trainer.model" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pto2SpJPwlz1" + }, + "source": [ + "### Train the Model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "iHMRkFplwsky", + "outputId": "df58e36a-6bb9-411a-ce4a-b9258fc06a55" + }, + "outputs": [], + "source": [ + "energy_trainer.train()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MkAd2MBmw8wO" + }, + "source": [ + "### Validate the Model" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gaauxWdNw_-4" + }, + "source": [ + "#### Load the best checkpoint" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "id": "xkj0Bslqws_N", + "outputId": "2680bf59-c13e-4113-b3bd-15aa62c9007e" + }, + "outputs": [], + "source": [ + "# The `best_checpoint.pt` file contains the checkpoint with the best val performance\n", + "checkpoint_path = os.path.join(energy_trainer.config[\"cmd\"][\"checkpoint_dir\"], \"best_checkpoint.pt\")\n", + "checkpoint_path" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "BqmCqaFlbMZC", + "outputId": "fd9f2409-1b51-4b6a-90ca-0a00a40d2dfe" + }, + "outputs": [], + "source": [ + "# Append the dataset with the test set. We use the same val set for demonstration.\n", + "\n", + "# Dataset\n", + "dataset.append(\n", + " {'src': val_src}, # test set (optional)\n", + ")\n", + "dataset" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IkcqadZIxXP-", + "outputId": "5a07d5c7-cbdf-4901-80db-1fcf19c1c42b" + }, + "outputs": [], + "source": [ + "pretrained_energy_trainer = EnergyTrainer(\n", + " task=task,\n", + " model=model,\n", + " dataset=dataset,\n", + " optimizer=optimizer,\n", + " identifier=\"IS2RE-val-example\",\n", + " run_dir=\"./\", # directory to save results if is_debug=False. Prediction files are saved here so be careful not to override!\n", + " is_debug=False, # if True, do not save checkpoint, logs, or results\n", + " is_vis=False,\n", + " print_every=10,\n", + " seed=0, # random seed to use\n", + " logger=\"tensorboard\", # logger of choice (tensorboard and wandb supported)\n", + " local_rank=0,\n", + " amp=True, # use PyTorch Automatic Mixed Precision (faster training and less memory usage)\n", + ")\n", + "\n", + "pretrained_energy_trainer.load_checkpoint(checkpoint_path=checkpoint_path)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TcUvAI81xoSt" + }, + "source": [ + "#### Test the model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VtCEFtXxxr3u", + "outputId": "eadd2568-ac65-4d3a-b234-cafe99cee575" + }, + "outputs": [], + "source": [ + "# make predictions on the existing test_loader\n", + "predictions = pretrained_energy_trainer.predict(pretrained_trainer.test_loader, results_file=\"is2re_results\", disable_tqdm=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "1UcfxFi4x4aD" + }, + "outputs": [], + "source": [ + "energies = predictions[\"energy\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gM9Wqk0GIxyU" + }, + "source": [ + "## Initial Structure to Relaxed Structure (IS2RS) \n", + "\n", + "We approach the IS2RS task by using a pre-trained S2EF model to iteratively run a structure optimization to arrive at a relaxed structure. While the majority of approaches for this task do this iteratively, we note it's possible to train a model to directly predict relaxed structures.\n", + "\n", + "## Steps for making IS2RS predictions\n", + "1) Define or load a configuration (config), which includes the following\n", + "* task with relaxation dataset information\n", + "* model\n", + "* optimizer\n", + "* dataset\n", + "* trainer\n", + "\n", + "2) Create a ForcesTrainer object\n", + "\n", + "3) Train a S2EF model or load an existing S2EF checkpoint\n", + "\n", + "4) Run relaxations\n", + "\n", + "**Note** For this task we'll be using a publicly released pre-trained checkpoint of our best model to perform relaxations." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "tNSI3hUAJAWc" + }, + "source": [ + "#### Imports" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Z-WZXuRiI6Vo" + }, + "outputs": [], + "source": [ + "from ocpmodels.trainers import ForcesTrainer\n", + "from ocpmodels.datasets import TrajectoryLmdbDataset\n", + "from ocpmodels import models\n", + "from ocpmodels.common import logger\n", + "from ocpmodels.common.utils import setup_logging\n", + "setup_logging()\n", + "\n", + "import numpy as np" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XFLZTpRvldZE" + }, + "source": [ + "### Dataset\n", + "\n", + "The IS2RS task requires an additional realxation dataset to be defined - `relax_dataset`. This dataset is read in similar to the IS2RE dataset - requiring an LMDB file. The same datasets are used for the IS2RE and IS2RS tasks." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "irrPcbs4ldZF" + }, + "outputs": [], + "source": [ + "train_src = \"data/s2ef/train_100\"\n", + "val_src = \"data/s2ef/val_20\"\n", + "relax_dataset = \"data/is2re/val_20/data.lmdb\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7gJ01gabd6BR" + }, + "source": [ + "### Download pretrained checkpoint" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "MiOeqFN-d-7K" + }, + "outputs": [], + "source": [ + "!wget -q https://dl.fbaipublicfiles.com/opencatalystproject/models/2021_08/s2ef/gemnet_t_direct_h512_all.pt\n", + "checkpoint_path = \"/content/ocp/gemnet_t_direct_h512_all.pt\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fp1Ab8TGltP6" + }, + "source": [ + "### Define the Config" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JLOydGsmltP7" + }, + "source": [ + "Running an iterative S2EF model for the IS2RS task can be run from any S2EF config given the following additions to the `task` portion of the config:\n", + "\n", + "* relax_dataset - IS2RE LMDB dataset\n", + "* *write_pos* - Whether to save out relaxed positions\n", + "* *relaxation_steps* - Number of optimization steps to run\n", + "* *relax_opt* - Dictionary of optimizer settings. Currently only LBFGS supported\n", + " * *maxstep* - Maximum distance an optimization is allowed to make\n", + " * *memory* - Memory history to use for LBFGS\n", + " * *damping* - Calculated step is multiplied by this factor before updating positions\n", + " * *alpha* - Initial guess for the Hessian\n", + " * *traj_dir* - If specified, directory to save out the full ML relaxation as an ASE trajectory. Useful for debugging or visualizing results.\n", + "* *num_relaxation_batches* - If specified, relaxations will only be run for a subset of the relaxation dataset. Useful for debugging or wanting to visualize a few systems.\n", + "\n", + "A sample relaxation config can be found [here](https://github.com/Open-Catalyst-Project/ocp/blob/1044e311182c1120c6e6d137ce6db3f445148973/configs/s2ef/2M/dimenet_plus_plus/dpp_relax.yml#L24-L33).\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "XU9DisuyltP8" + }, + "outputs": [], + "source": [ + "# Task\n", + "task = {\n", + " 'dataset': 'trajectory_lmdb', # dataset used for the S2EF task\n", + " 'description': 'Regressing to energies and forces for DFT trajectories from OCP',\n", + " 'type': 'regression',\n", + " 'metric': 'mae',\n", + " 'labels': ['potential energy'],\n", + " 'grad_input': 'atomic forces',\n", + " 'train_on_free_atoms': True,\n", + " 'eval_on_free_atoms': True,\n", + " 'relax_dataset': {\"src\": relax_dataset},\n", + " 'write_pos': True,\n", + " 'relaxation_steps': 200,\n", + " 'num_relaxation_batches': 1,\n", + " 'relax_opt': {\n", + " 'maxstep': 0.04,\n", + " 'memory': 50,\n", + " 'damping': 1.0,\n", + " 'alpha': 70.0,\n", + " 'traj_dir': \"ml-relaxations/is2rs-test\", \n", + " }\n", + "}\n", + "# Model\n", + "model = {\n", + " 'name': 'gemnet_t',\n", + " \"num_spherical\": 7,\n", + " \"num_radial\": 128,\n", + " \"num_blocks\": 3,\n", + " \"emb_size_atom\": 512,\n", + " \"emb_size_edge\": 512,\n", + " \"emb_size_trip\": 64,\n", + " \"emb_size_rbf\": 16,\n", + " \"emb_size_cbf\": 16,\n", + " \"emb_size_bil_trip\": 64,\n", + " \"num_before_skip\": 1,\n", + " \"num_after_skip\": 2,\n", + " \"num_concat\": 1,\n", + " \"num_atom\": 3,\n", + " \"cutoff\": 6.0,\n", + " \"max_neighbors\": 50,\n", + " \"rbf\": {\"name\": \"gaussian\"},\n", + " \"envelope\": {\n", + " \"name\": \"polynomial\",\n", + " \"exponent\": 5,\n", + " },\n", + " \"cbf\": {\"name\": \"spherical_harmonics\"},\n", + " \"extensive\": True,\n", + " \"otf_graph\": False,\n", + " \"output_init\": \"HeOrthogonal\",\n", + " \"activation\": \"silu\",\n", + " \"scale_file\": \"configs/s2ef/all/gemnet/scaling_factors/gemnet-dT.json\",\n", + " \"regress_forces\": True,\n", + " \"direct_forces\": True,\n", + "}\n", + "# Optimizer\n", + "optimizer = {\n", + " 'batch_size': 1, # originally 32\n", + " 'eval_batch_size': 1, # originally 32\n", + " 'num_workers': 2,\n", + " 'lr_initial': 5.e-4,\n", + " 'optimizer': 'AdamW',\n", + " 'optimizer_params': {\"amsgrad\": True},\n", + " 'scheduler': \"ReduceLROnPlateau\",\n", + " 'mode': \"min\",\n", + " 'factor': 0.8,\n", + " 'ema_decay': 0.999,\n", + " 'clip_grad_norm': 10,\n", + " 'patience': 3,\n", + " 'max_epochs': 1, # used for demonstration purposes\n", + " 'force_coefficient': 100,\n", + "}\n", + "# Dataset\n", + "dataset = [\n", + " {'src': train_src, 'normalize_labels': False}, # train set \n", + " {'src': val_src}, # val set (optional)\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IsOqQIjnogkQ" + }, + "source": [ + "### Create the trainer" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5KZvPu4hogkR", + "outputId": "fdbbfa5c-0d7c-449f-8be5-ef2e5d17860d" + }, + "outputs": [], + "source": [ + "trainer = ForcesTrainer(\n", + " task=task,\n", + " model=model,\n", + " dataset=dataset,\n", + " optimizer=optimizer,\n", + " identifier=\"is2rs-example\",\n", + " run_dir=\"./\", # directory to save results if is_debug=False. Prediction files are saved here so be careful not to override!\n", + " is_debug=False, # if True, do not save checkpoint, logs, or results\n", + " is_vis=False,\n", + " print_every=5,\n", + " seed=0, # random seed to use\n", + " logger=\"tensorboard\", # logger of choice (tensorboard and wandb supported)\n", + " local_rank=0,\n", + " amp=True, # use PyTorch Automatic Mixed Precision (faster training and less memory usage)\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "wtMn792WpC4X" + }, + "source": [ + "### Load the best checkpoint\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jFXQJBYxpC4Y", + "outputId": "f35be368-a350-465d-fb32-5a5795317bac" + }, + "outputs": [], + "source": [ + "trainer.load_checkpoint(checkpoint_path=checkpoint_path)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2rtga4JPot6i" + }, + "source": [ + "### Run relaxations\n", + "\n", + "We run a full relaxation for a single batch of our relaxation dataset (`num_relaxation_batches=1`)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "aQG-HEpuot6k", + "outputId": "f91a9a2a-4ea8-4b60-c6a1-a1255e482119" + }, + "outputs": [], + "source": [ + "trainer.run_relaxations()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "j0JBID-2oB7S" + }, + "source": [ + "### Visualize ML-driven relaxations\n", + "\n", + "Following our earlier [visualization steps](#data-description), we can plot our ML-generated relaxations." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "k3z_fey3syg_" + }, + "outputs": [], + "source": [ + "import glob\n", + "import ase.io\n", + "from ase.visualize.plot import plot_atoms\n", + "import matplotlib.pyplot as plt\n", + "import random\n", + "import matplotlib\n", + "\n", + "params = {\n", + " 'axes.labelsize': 14,\n", + " 'font.size': 14,\n", + " 'font.family': ' DejaVu Sans',\n", + " 'legend.fontsize': 20,\n", + " 'xtick.labelsize': 20,\n", + " 'ytick.labelsize': 20,\n", + " 'axes.labelsize': 25,\n", + " 'axes.titlesize': 25,\n", + " 'text.usetex': False,\n", + " 'figure.figsize': [12, 12]\n", + "}\n", + "matplotlib.rcParams.update(params)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 375 + }, + "id": "3yArIY59sskv", + "outputId": "102ace01-5029-4261-cc18-c2f8634157c5" + }, + "outputs": [], + "source": [ + "system = glob.glob(\"ml-relaxations/is2rs-test/*.traj\")[0]\n", + "ml_trajectory = ase.io.read(system, \":\")\n", + "\n", + "energies = [atom.get_potential_energy() for atom in ml_trajectory]\n", + "\n", + "plt.figure(figsize=(7, 5))\n", + "plt.plot(range(len(energies)), energies)\n", + "plt.xlabel(\"step\")\n", + "plt.ylabel(\"energy, eV\")\n", + "system" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CN9RC25hxLlp" + }, + "source": [ + "Qualitatively, the ML relaxation is behaving as expected - decreasing energies over the course of the relaxation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 198 + }, + "id": "6kxJBkV1wZUw", + "outputId": "f1f39a5f-feac-42bc-c208-c6c14aff88ef" + }, + "outputs": [], + "source": [ + "fig, ax = plt.subplots(1, 3)\n", + "labels = ['ml-initial', 'ml-middle', 'ml-final']\n", + "for i in range(3):\n", + " ax[i].axis('off')\n", + " ax[i].set_title(labels[i])\n", + "\n", + "ase.visualize.plot.plot_atoms(\n", + " ml_trajectory[0], \n", + " ax[0], \n", + " radii=0.8,\n", + " # rotation=(\"-75x, 45y, 10z\")) # uncomment to visualize at different angles\n", + ")\n", + "ase.visualize.plot.plot_atoms(\n", + " ml_trajectory[100], \n", + " ax[1], \n", + " radii=0.8, \n", + " # rotation=(\"-75x, 45y, 10z\") # uncomment to visualize at different angles\n", + ")\n", + "ase.visualize.plot.plot_atoms(\n", + " ml_trajectory[-1], \n", + " ax[2], \n", + " radii=0.8,\n", + " # rotation=(\"-75x, 45y, 10z\"), # uncomment to visualize at different angles\n", + ")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8LE2lrJwyblQ" + }, + "source": [ + "Qualitatively, the generated structures seem reasonable with no obvious issues we had previously mentioned to look out for." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MymFuumcRd8r" + }, + "source": [ + "# Model development \n", + "\n", + "In this section, we will walk through how to develop a simple Graph Neural Network model on the S2EF-200k dataset.\n", + "\n", + "Let's begin by setting up some imports and boilerplate config parameters." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mk71_j2i96X4" + }, + "source": [ + "## Imports" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "vK49MKgd9ufL" + }, + "outputs": [], + "source": [ + "import torch\n", + "\n", + "from typing import Optional\n", + "\n", + "from ocpmodels.trainers import ForcesTrainer\n", + "from ocpmodels import models\n", + "from ocpmodels.common import logger\n", + "from ocpmodels.common.utils import setup_logging, get_pbc_distances\n", + "from ocpmodels.common.registry import registry\n", + "\n", + "from ocpmodels.models.gemnet.layers.radial_basis import PolynomialEnvelope\n", + "\n", + "from torch_geometric.nn.models.schnet import GaussianSmearing\n", + "from torch_scatter import scatter" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Xj9QvWby-AI6" + }, + "outputs": [], + "source": [ + "setup_logging()\n", + "\n", + "# Dataset paths\n", + "train_src = \"data/s2ef/train_200k\"\n", + "val_src = \"data/s2ef/val\"\n", + "\n", + "# Configs\n", + "task = {\n", + " 'dataset': 'trajectory_lmdb', # dataset used for the S2EF task\n", + " 'description': 'Regressing to energies and forces for DFT trajectories from OCP',\n", + " 'type': 'regression',\n", + " 'metric': 'mae',\n", + " 'labels': ['potential energy'],\n", + " 'grad_input': 'atomic forces',\n", + " 'train_on_free_atoms': True,\n", + " 'eval_on_free_atoms': True\n", + "}\n", + "\n", + "# Optimizer\n", + "optimizer = {\n", + " 'batch_size': 16, # if hitting GPU memory issues, lower this\n", + " 'eval_batch_size': 8,\n", + " 'num_workers': 8,\n", + " 'lr_initial': 0.0001,\n", + " 'scheduler': \"ReduceLROnPlateau\",\n", + " 'mode': \"min\",\n", + " 'factor': 0.8,\n", + " 'patience': 3,\n", + " 'max_epochs': 80,\n", + " 'max_epochs': 5,\n", + " 'force_coefficient': 100,\n", + "}\n", + "\n", + "# Dataset\n", + "dataset = [\n", + " {'src': train_src, 'normalize_labels': True, 'target_mean': -0.7554450631141663, 'target_std': 2.887317180633545, 'grad_target_mean': 0.0, 'grad_target_std': 2.887317180633545}, # train set\n", + " {'src': val_src},\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bzp-Cyrm-JOE" + }, + "source": [ + "## Atom and Edge Embeddings\n", + "\n", + "Each atom is represented as a node with its features computed using a simple `torch.nn.Embedding` layer on the atomic number.\n", + "\n", + "All pairs of atoms with a defined cutoff radius (=6A) are assumed to have edges between them, with their features computed as the concatenation of 1) a Gaussian expansion of the distance between the atoms, and the 2) source and 3) target\n", + "node features.\n", + "\n", + "We will use the `GaussianSmearing` layer (reproduced below) from the PyTorch Geometric library for computing distance features:\n", + "\n", + "```\n", + "class GaussianSmearing(torch.nn.Module):\n", + " def __init__(self, start=0.0, stop=5.0, num_gaussians=50):\n", + " super(GaussianSmearing, self).__init__()\n", + " offset = torch.linspace(start, stop, num_gaussians)\n", + " self.coeff = -0.5 / (offset[1] - offset[0]).item()**2\n", + " self.register_buffer('offset', offset)\n", + "\n", + " def forward(self, dist):\n", + " dist = dist.view(-1, 1) - self.offset.view(1, -1)\n", + " return torch.exp(self.coeff * torch.pow(dist, 2))\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dfMCS-pL-2X5" + }, + "outputs": [], + "source": [ + "class AtomEmbedding(torch.nn.Module):\n", + " def __init__(self, emb_size):\n", + " super().__init__()\n", + " self.embeddings = torch.nn.Embedding(83, emb_size) # We go up to Bi (83).\n", + "\n", + " def forward(self, Z):\n", + " h = self.embeddings(Z - 1) # -1 because Z.min()=1 (==Hydrogen)\n", + " return h\n", + "\n", + "class EdgeEmbedding(torch.nn.Module):\n", + " def __init__(self, atom_emb_size, edge_emb_size, out_size):\n", + " super().__init__()\n", + " in_features = 2 * atom_emb_size + edge_emb_size\n", + " self.dense = torch.nn.Sequential(\n", + " torch.nn.Linear(in_features, out_size, bias=False),\n", + " torch.nn.SiLU()\n", + " )\n", + "\n", + " def forward(self, h, m_rbf, idx_s, idx_t,\n", + " ):\n", + " h_s = h[idx_s] # indexing source node, shape=(num_edges, emb_size)\n", + " h_t = h[idx_t] # indexing target node, shape=(num_edges, emb_size)\n", + "\n", + " m_st = torch.cat([h_s, h_t, m_rbf], dim=-1) # (num_edges, 2 * atom_emb_size + edge_emb_size)\n", + " m_st = self.dense(m_st) # (num_edges, out_size)\n", + " return m_st\n", + "\n", + "class RadialBasis(torch.nn.Module):\n", + " def __init__(self, num_radial: int, cutoff: float, env_exponent: int = 5):\n", + " super().__init__()\n", + " self.inv_cutoff = 1 / cutoff\n", + " self.envelope = PolynomialEnvelope(env_exponent)\n", + " self.rbf = GaussianSmearing(start=0, stop=1, num_gaussians=num_radial)\n", + "\n", + " def forward(self, d):\n", + " d_scaled = d * self.inv_cutoff\n", + " env = self.envelope(d_scaled)\n", + " return env[:, None] * self.rbf(d_scaled) # (num_edges, num_radial)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nhvCP4wzAE_K" + }, + "source": [ + "## Message passing \n", + "\n", + "We start by implementing a very simple message-passing scheme to predict system energy and forces.\n", + "\n", + "Given the node and edge features, we sum up edge features for all edges $e_{ij}$ connecting node $i$ to its neighbors $j$, and pass the resultant vector through a fully-connected layer to project it down to a scalar. This gives us a scalar energy contribution for each node $i$ in the structure. We then sum up all node energy contributions to predict the overall system energy.\n", + "\n", + "Similarly, to predict forces, we pass edge features through a fully-connected layer to project it down to a scalar representing the force magnitude per edge $e_{ij}$. We can then sum up these force magnitudes based on the original edge directions to predict the resultant force vector per node $i$." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "QMjBCLcSAQSp" + }, + "outputs": [], + "source": [ + "@registry.register_model(\"simple\")\n", + "class SimpleAtomEdgeModel(torch.nn.Module):\n", + " def __init__(self, num_atoms, bond_feat_dim, num_targets, emb_size=64, num_radial=64, cutoff=6.0, env_exponent=5):\n", + " super().__init__()\n", + "\n", + " self.radial_basis = RadialBasis(\n", + " num_radial=num_radial,\n", + " cutoff=cutoff,\n", + " env_exponent=env_exponent,\n", + " )\n", + "\n", + " self.atom_emb = AtomEmbedding(emb_size)\n", + " self.edge_emb = EdgeEmbedding(emb_size, num_radial, emb_size)\n", + "\n", + " self.out_energy = torch.nn.Linear(emb_size, 1)\n", + " self.out_forces = torch.nn.Linear(emb_size, 1)\n", + "\n", + " def forward(self, data):\n", + " batch = data.batch\n", + " atomic_numbers = data.atomic_numbers.long()\n", + " edge_index = data.edge_index\n", + " cell_offsets = data.cell_offsets\n", + " neighbors = data.neighbors\n", + "\n", + " # computing edges and distances taking periodic boundary conditions into account\n", + " out = get_pbc_distances(\n", + " data.pos,\n", + " edge_index,\n", + " data.cell,\n", + " cell_offsets,\n", + " neighbors,\n", + " return_offsets=True,\n", + " return_distance_vec=True,\n", + " )\n", + "\n", + " edge_index = out[\"edge_index\"]\n", + " D_st = out[\"distances\"]\n", + " V_st = -out[\"distance_vec\"] / D_st[:, None]\n", + "\n", + " idx_s, idx_t = edge_index\n", + "\n", + " # embed atoms\n", + " h_atom = self.atom_emb(atomic_numbers)\n", + "\n", + " # gaussian expansion of distances D_st\n", + " m_rbf = self.radial_basis(D_st)\n", + " # embed edges\n", + " m = self.edge_emb(h_atom, m_rbf, idx_s, idx_t)\n", + "\n", + " # read out energy\n", + " # \n", + " # x_E_i = \\sum_j m_ji -- summing up edge features m_ji for all neighbors j\n", + " # of node i to predict node i's energy contribution.\n", + " x_E = scatter(m, idx_t, dim=0, dim_size=h_atom.shape[0], reduce=\"sum\")\n", + " x_E = self.out_energy(x_E)\n", + "\n", + " # E = \\sum_i x_E_i\n", + " num_systems = torch.max(batch)+1\n", + " E = scatter(x_E, batch, dim=0, dim_size=num_systems, reduce=\"add\")\n", + " # (num_systems, 1)\n", + "\n", + " # read out forces\n", + " # \n", + " # x_F is the force magnitude per edge, we multiply that by the direction of each edge ji,\n", + " # and sum up all the vectors to predict the resultant force on node i\n", + " x_F = self.out_forces(m)\n", + " F_st_vec = x_F[:, :, None] * V_st[:, None, :]\n", + " F = scatter(F_st_vec, idx_t, dim=0, dim_size=atomic_numbers.size(0), reduce=\"add\")\n", + " # (num_atoms, num_targets, 3)\n", + " F = F.squeeze(1)\n", + "\n", + " return E, F\n", + "\n", + " @property\n", + " def num_params(self):\n", + " return sum(p.numel() for p in self.parameters())" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-Vl3WEqVAith" + }, + "source": [ + "## Training the model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "u7E7pLiqAmnL" + }, + "outputs": [], + "source": [ + "model_params = {\n", + " 'name': 'simple',\n", + " 'emb_size': 256,\n", + " 'num_radial': 128,\n", + " 'cutoff': 6.0,\n", + " 'env_exponent': 5,\n", + "}\n", + "\n", + "trainer = ForcesTrainer(\n", + " task=task,\n", + " model=model_params,\n", + " dataset=dataset,\n", + " optimizer=optimizer,\n", + " identifier=\"S2EF-simple\",\n", + " run_dir=\"./\", # directory to save results if is_debug=False. Prediction files are saved here so be careful not to override!\n", + " is_debug=False, # if True, do not save checkpoint, logs, or results\n", + " is_vis=False,\n", + " print_every=20,\n", + " seed=0, # random seed to use\n", + " logger=\"tensorboard\", # logger of choice (tensorboard and wandb supported)\n", + " local_rank=0,\n", + ")\n", + "\n", + "trainer.train()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "thF9lWK9Ay90" + }, + "source": [ + "If you've wired everything up correctly, this model should be relatively small (~185k params) and achieve a force MAE of 0.0815, force cosine of 0.0321, energy MAE of 2.2772 in 2 epochs.\n", + "\n", + "We encourage the reader to try playing with the embedding size, cutoff radius, number of gaussian basis functions, and polynomial envelope exponent to see how it affects performance." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PSqVJXsxArvu" + }, + "source": [ + "## Incorporating triplets and training GemNet-T\n", + "\n", + "Recall how this model computes edge embeddings based only on a Gaussian expansion of edge distances.\n", + "\n", + "To better capture 3D geometry, we should also embed angles formed by triplets or quadruplets of atoms. A model that incorporates this idea and works quite well is GemNet (Klicpera et al., NeurIPS 2021); see the following figure.\n", + "\n", + "![Screen Shot 2021-11-22 at 3.58.24 PM.png]()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Twh6yIC5GTrW" + }, + "source": [ + "You can train a GemNet-T (T = triplets) on S2EF-200k using the following config.\n", + "\n", + "Note that this is a significantly bulkier model (~3.4M params) than the one we developed above and will take longer to train." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "LVbM_S0sGlOr" + }, + "outputs": [], + "source": [ + "model_params = {\n", + " 'name': 'gemnet_t',\n", + " 'num_spherical': 7,\n", + " 'num_radial': 128,\n", + " 'num_blocks': 1,\n", + " 'emb_size_atom': 256,\n", + " 'emb_size_edge': 256,\n", + " 'emb_size_trip': 64,\n", + " 'emb_size_rbf': 16,\n", + " 'emb_size_cbf': 16,\n", + " 'emb_size_bil_trip': 64,\n", + " 'num_before_skip': 1,\n", + " 'num_after_skip': 1,\n", + " 'num_concat': 1,\n", + " 'num_atom': 3,\n", + " 'cutoff': 6.0,\n", + " 'max_neighbors': 50,\n", + " 'rbf': {'name': 'gaussian'},\n", + " 'envelope': {'name': 'polynomial', 'exponent': 5},\n", + " 'cbf': {'name': 'spherical_harmonics'},\n", + " 'extensive': True,\n", + " 'otf_graph': False,\n", + " 'output_init': 'HeOrthogonal',\n", + " 'activation': 'silu',\n", + " 'scale_file': 'configs/s2ef/all/gemnet/scaling_factors/gemnet-dT.json',\n", + " 'regress_forces': True,\n", + " 'direct_forces': True,\n", + "}\n", + "\n", + "trainer = ForcesTrainer(\n", + " task=task,\n", + " model=model_params,\n", + " dataset=dataset,\n", + " optimizer=optimizer,\n", + " identifier=\"S2EF-gemnet-t\",\n", + " run_dir=\"./\", # directory to save results if is_debug=False. Prediction files are saved here so be careful not to override!\n", + " is_debug=False, # if True, do not save checkpoint, logs, or results\n", + " is_vis=False,\n", + " print_every=20,\n", + " seed=0, # random seed to use\n", + " logger=\"tensorboard\", # logger of choice (tensorboard and wandb supported)\n", + " local_rank=0,\n", + ")\n", + "\n", + "trainer.train()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "F-Pw3GCVHAwA" + }, + "source": [ + "This model should achieve a force MAE of 0.0668, a force cosine of 0.1180, and an energy MAE of 0.8106 in 2 epochs, significantly better than our simple model.\n", + "\n", + "Again, we encourage the reader to try playing with no. of blocks, choice of basis functions, the various embedding sizes to develop intuition for the interplay between these hyperparameters." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Rzx0lArZJ6r0" + }, + "source": [ + "# (Optional) OCP Calculator \n", + "\n", + "For those interested in using our pretrained models for other applications, we provide an [ASE](https://wiki.fysik.dtu.dk/ase/#:~:text=The%20Atomic%20Simulation%20Environment%20(ASE,under%20the%20GNU%20LGPL%20license.)-compatible Calculator to interface with ASE's functionality." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QGaXyeS_8yHp" + }, + "source": [ + "## Download pretrained checkpoint\n", + "\n", + "We have released checkpoints of all the models on the leaderboard [here](https://github.com/Open-Catalyst-Project/ocp/blob/master/MODELS.md). These trained models can be used as an ASE calculator for various calculations.\n", + "\n", + "For this tutorial we download our current best model checkpoint: GemNet-T" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "MBCRi69284Ve" + }, + "outputs": [], + "source": [ + "!wget -q https://dl.fbaipublicfiles.com/opencatalystproject/models/2021_08/s2ef/gemnet_t_direct_h512_all.pt\n", + "checkpoint_path = \"/content/ocp/gemnet_t_direct_h512_all.pt\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TNQ1dNVG93kH" + }, + "source": [ + "## Using the OCP Calculator\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "o_MHpzbhPKN_", + "outputId": "fa4336cf-ba85-43b6-e608-551ffcf3763a" + }, + "outputs": [], + "source": [ + "from ocpmodels.common.relaxation.ase_utils import OCPCalculator\n", + "import ase.io\n", + "from ase.optimize import BFGS\n", + "from ase.build import fcc100, add_adsorbate, molecule\n", + "import os\n", + "from ase.constraints import FixAtoms\n", + "\n", + "# Construct a sample structure\n", + "adslab = fcc100(\"Cu\", size=(3, 3, 3))\n", + "adsorbate = molecule(\"C3H8\")\n", + "add_adsorbate(adslab, adsorbate, 3, offset=(1, 1))\n", + "tags = np.zeros(len(adslab))\n", + "tags[18:27] = 1\n", + "tags[27:] = 2\n", + "adslab.set_tags(tags)\n", + "cons= FixAtoms(indices=[atom.index for atom in adslab if (atom.tag == 0)])\n", + "adslab.set_constraint(cons)\n", + "adslab.center(vacuum=13.0, axis=2)\n", + "adslab.set_pbc(True)\n", + "\n", + "config_yml_path = \"configs/s2ef/all/gemnet/gemnet-dT.yml\"\n", + "\n", + "# Define the calculator\n", + "calc = OCPCalculator(config_yml=config_yml_path, checkpoint=checkpoint_path)\n", + "\n", + "# Set up the calculator\n", + "adslab.calc = calc\n", + "\n", + "os.makedirs(\"data/sample_ml_relax\", exist_ok=True)\n", + "opt = BFGS(adslab, trajectory=\"data/sample_ml_relax/toy_c3h8_relax.traj\")\n", + "\n", + "opt.run(fmax=0.05, steps=100)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TUH5BaaXo-ca" + }, + "source": [ + "\n", + "# (Optional) Creating your own LMDBs for use in the OCP repository \n", + "\n", + "In order to interface with our repository, the data mustbe structured and organized in a specific format. Below we walk you through on how to create such datasets with your own non-OC20 data that may help with your research.\n", + "\n", + "For this tutorial we use the toy C3H8 trajectory we previously generated [here](#data-description)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "o7cG3WhLnuqg" + }, + "source": [ + "\n", + "\n", + "#### Initial Structure to Relaxed Energy (IS2RE) LMDBs\n", + "IS2RE/IS2RS LMDBs utilize the SinglePointLmdb dataset. This dataset expects the data to be contained in a **single** LMDB file. In addition to the attributes defined by AtomsToGraph, the following attributes must be added for the IS2RE/IS2RS tasks:\n", + "\n", + "- pos_relaxed: Relaxed adslab positions\n", + "- sid: Unique system identifier, arbitrary\n", + "- y_init: Initial adslab energy, formerly Data.y\n", + "- y_relaxed: Relaxed adslab energy\n", + "- tags (optional): 0 - subsurface, 1 - surface, 2 - adsorbate\n", + "\n", + "\n", + "As a demo, we will use the above generated data to create an IS2R* LMDB file.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "nweCG0y5nxlw" + }, + "outputs": [], + "source": [ + "from ocpmodels.preprocessing import AtomsToGraphs\n", + "\n", + "\"\"\"\n", + "args description:\n", + "\n", + "max neigh (int): maximum number of neighors to be considered while constructing a graph\n", + "radius (int): Neighbors are considered only within this radius cutoff in Angstrom\n", + "r_energy (bool): Stored energy value in the Data object; False for test data\n", + "r_forces (bool): Stores forces value in the Data object; False for test data\n", + "r_distances (bool): pre-calculates distances taking into account PBC and max neigh/radius\n", + " If you set it to False, make sure to add \"otf_graph = True\" under models in config for runs\n", + "r_fixed (bools): True if you want to fix the subsurface atoms\n", + "\"\"\"\n", + "\n", + "a2g = AtomsToGraphs(\n", + " max_neigh=50,\n", + " radius=6,\n", + " r_energy=True, \n", + " r_forces=True,\n", + " r_distances=False, \n", + " r_fixed=True,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "K16pPnQdnzro" + }, + "outputs": [], + "source": [ + "import lmdb\n", + "\n", + "\"\"\"\n", + "For most cases one just needs to change the name of the lmdb as they require.\n", + "Make sure to give the entire path in the config (with .lmdb) for IS2RE tasks\n", + "\"\"\"\n", + "\n", + "db = lmdb.open(\n", + " \"data/toy_C3H8.lmdb\",\n", + " map_size=1099511627776 * 2,\n", + " subdir=False,\n", + " meminit=False,\n", + " map_async=True,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "t_8oaE5qn1Za" + }, + "outputs": [], + "source": [ + "\"\"\"\n", + "This method converts extracts all features from trajectory file and convert to Data Object\n", + "\"\"\"\n", + "\n", + "def read_trajectory_extract_features(a2g, traj_path):\n", + " # Read the traj file\n", + " traj = ase.io.read(traj_path, \":\")\n", + "\n", + " # Get tags if you had defined those in the atoms object, if not skip this line\n", + " tags = traj[0].get_tags()\n", + "\n", + " # Collect only initial and final image as this is IS2RS task\n", + " images = [traj[0], traj[-1]]\n", + "\n", + " # Converts a list of atoms object to a list of Data object using a2g defined above\n", + " data_objects = a2g.convert_all(images, disable_tqdm=True)\n", + "\n", + " # Add tags to the data objects if you have them (we would suggest to do so), if not skip this\n", + " data_objects[0].tags = torch.LongTensor(tags)\n", + " data_objects[1].tags = torch.LongTensor(tags)\n", + "\n", + " return data_objects" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "qSfOagphn7yy" + }, + "outputs": [], + "source": [ + "import torch\n", + "import pickle\n", + "system_paths = [\"data/toy_c3h8_relax.traj\"] # specify list of trajectory files you wish to write to LMDBs\n", + "idx = 0\n", + "\n", + "for system in system_paths:\n", + " # Extract Data object\n", + " data_objects = read_trajectory_extract_features(a2g, system)\n", + " initial_struc = data_objects[0]\n", + " relaxed_struc = data_objects[1]\n", + " \n", + " initial_struc.y_init = initial_struc.y # subtract off reference energy, if applicable\n", + " del initial_struc.y\n", + " initial_struc.y_relaxed = relaxed_struc.y # subtract off reference energy, if applicable\n", + " initial_struc.pos_relaxed = relaxed_struc.pos\n", + " \n", + " # Filter data if necessary\n", + " # OCP filters adsorption energies > |10| eV\n", + " \n", + " initial_struc.sid = idx # arbitrary unique identifier \n", + " \n", + " # no neighbor edge case check\n", + " if initial_struc.edge_index.shape[1] == 0:\n", + " print(\"no neighbors\", traj_path)\n", + " continue\n", + " \n", + " # Write to LMDB\n", + " txn = db.begin(write=True)\n", + " txn.put(f\"{idx}\".encode(\"ascii\"), pickle.dumps(initial_struc, protocol=-1))\n", + " txn.commit()\n", + " db.sync()\n", + " idx += 1\n", + "\n", + "db.close()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "p8ftTehrn9pG", + "outputId": "74c95b8a-e260-4b6f-92c4-3544f28deda5" + }, + "outputs": [], + "source": [ + "from ocpmodels.datasets import SinglePointLmdbDataset\n", + "\n", + "# SinglePointLmdbDataset is out custom Dataset method to read the lmdbs as Data objects. Note that we need to give the entire path (including lmdb) for IS2RE\n", + "dataset = SinglePointLmdbDataset({\"src\": \"data/toy_C3H8.lmdb\"})\n", + "\n", + "print(\"Size of the dataset created:\", len(dataset))\n", + "print(dataset[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UWYBEis2n_ye" + }, + "source": [ + "#### Structure to Energy and Forces (S2EF) LMDBs\n", + "\n", + "S2EF LMDBs utilize the TrajectoryLmdb dataset. This dataset expects a directory of LMDB files. In addition to the attributes defined by AtomsToGraph, the following attributes must be added for the S2EF task:\n", + "\n", + "- tags (optional): 0 - subsurface, 1 - surface, 2 - adsorbate\n", + "- fid: Frame index along the trajcetory\n", + "- sid- sid: Unique system identifier, arbitrary\n", + "\n", + "Additionally, a \"length\" key must be added to each LMDB file.\n", + "\n", + "As a demo, we will use the above generated data to create an S2EF LMDB dataset" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "k74bbQJuoBwy" + }, + "outputs": [], + "source": [ + "os.makedirs(\"data/s2ef\", exist_ok=True)\n", + "db = lmdb.open(\n", + " \"data/s2ef/toy_C3H8.lmdb\",\n", + " map_size=1099511627776 * 2,\n", + " subdir=False,\n", + " meminit=False,\n", + " map_async=True,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "-6VuR1lBoDfY", + "outputId": "0c3e104b-d22f-4376-85f3-0cd505c8914d" + }, + "outputs": [], + "source": [ + "from tqdm import tqdm\n", + "tags = traj[0].get_tags()\n", + "data_objects = a2g.convert_all(traj, disable_tqdm=True)\n", + "\n", + "\n", + "for fid, data in tqdm(enumerate(data_objects), total=len(data_objects)):\n", + " #assign sid\n", + " data.sid = torch.LongTensor([0])\n", + " \n", + " #assign fid\n", + " data.fid = torch.LongTensor([fid])\n", + " \n", + " #assign tags, if available\n", + " data.tags = torch.LongTensor(tags)\n", + " \n", + " # Filter data if necessary\n", + " # OCP filters adsorption energies > |10| eV and forces > |50| eV/A\n", + "\n", + " # no neighbor edge case check\n", + " if data.edge_index.shape[1] == 0:\n", + " print(\"no neighbors\", traj_path)\n", + " continue\n", + "\n", + " txn = db.begin(write=True)\n", + " txn.put(f\"{fid}\".encode(\"ascii\"), pickle.dumps(data, protocol=-1))\n", + " txn.commit()\n", + " \n", + "txn = db.begin(write=True)\n", + "txn.put(f\"length\".encode(\"ascii\"), pickle.dumps(len(data_objects), protocol=-1))\n", + "txn.commit()\n", + "\n", + "\n", + "db.sync()\n", + "db.close()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rJ2ZXuBMH8xt" + }, + "source": [ + "# Running on command line [Preferred way to train models] " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aj8HsmxjISED" + }, + "source": [ + "The previous sections of this notebook are intended to demonstrate the inner workings of our codebase. For regular training, we suggest that you train and evaluate on command line.\n", + "\n", + "1. Clone our repo at https://github.com/Open-Catalyst-Project/ocp and set up the environment according to the readme.\n", + "2. Download relevant data ([see above for info](https://colab.research.google.com/drive/1oGZcrakB4Pbj8Xq74lSvcRDUHw9L-Dh5#scrollTo=jXoiLncsU3pe)).\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lAdwlMNOKwYj" + }, + "source": [ + "3. In the config file, modify the path of the data [train](https://github.com/Open-Catalyst-Project/ocp/blob/master/configs/is2re/10k/base.yml#L4) [val](https://github.com/Open-Catalyst-Project/ocp/blob/master/configs/is2re/10k/base.yml#L8), [normalization parameters](https://github.com/Open-Catalyst-Project/ocp/blob/master/configs/is2re/10k/base.yml#L5-L7) as well as any other [model](https://github.com/Open-Catalyst-Project/ocp/blob/master/configs/is2re/10k/dimenet_plus_plus/dpp.yml#L4-L16) or [training](https://github.com/Open-Catalyst-Project/ocp/blob/master/configs/is2re/10k/dimenet_plus_plus/dpp.yml#L23-L35) args. \n", + "\n", + "For a simple example, we'll train DimeNet++ on IS2RE demo data: \\\n", + "a. Modify the train data path in `/contents/ocp/configs/is2re/10k/base.yml` in \n", + "Line 4 to `/contents/ocp/data/is2re/train_10k/data.lmdb` and val data path in Line 8 to `/contents/ocp/data/is2re/val_2k/data.lmdb`. \\\n", + "b. Calculate the mean and std for train data and modify Lines 6-7 respectively \\\n", + "c. We can change the model parameters in `/contents/ocp/configs/is2re/10k/dimenet_plus_plus/dpp.yml` and we suggest you to change the lr_milestones and warmup_steps as the data here is smaller (these need to be tuned for every dataset).\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HjWsAaojKzpH" + }, + "source": [ + "4. Train: `python main.py --mode train --config-yml configs/is2re/10k/dimenet_plus_plus/dpp.yml --identifier dpp_is2re_sample`\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "mCgs4eGSO-HM" + }, + "outputs": [], + "source": [ + "# Optional block to try command line training \n", + "# Note that config args can be added in the command line. For example, --optim.batch_size=1" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "q1xRtYWTO8Xb" + }, + "source": [ + "5. Add a data path as a test set to `configs/is2re/10k/base.yml`\n", + "6. Run predictions with the trained model: \n", + "`python main.py --mode predict --config-yml configs/is2re/10k/dimenet_plus_plus/dpp.yml --checkpoint checkpoints/[datetime]-dpp_is2re_sample/checkpoint.pt`\n", + "7. View energy predictions at `results/[datetime]/is2re_predictions.npz`\n", + "\n", + "For more information on how to train and evaluate, see [this readme](https://github.com/Open-Catalyst-Project/ocp/blob/master/TRAIN.md). For checkpoints of publicly available trained models, see [MODELS.md](https://github.com/Open-Catalyst-Project/ocp/blob/master/MODELS.md)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "oHIjM6eMwlXY" + }, + "source": [ + "# Limitations \n", + "The OpenCatalyst project is motivated by the problems we face due to climate change, many of which require innovative solutions to reduce energy usage and replace traditional chemical feedstocks with renewable alternatives. For example, one of the most energy intensive chemical processes is the development of new electrochemical catalysts for ammonia fertilizer production that helped to feed the world’s growing population during the 20th century. This is also an illustrative example of possible unintended consequences as advancements in chemistry and materials may be used for numerous purposes. As ammonia fertilization increased in use, its overuse in today’s farming has led to ocean “dead zones” and its production is very carbon intensive. Knowledge and techniques used to create ammonia were also transferred to the creation of explosives during wartime. We hope to steer the use of ML for atomic simulations to societally-beneficial uses by training and testing our approaches on datasets, such as OC20, that were specifically designed to address chemical reactions useful for addressing climate change." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CLLCQpv14Gsx" + }, + "source": [ + "# Next Steps \n", + "\n", + "While progress has been well underway - https://opencatalystproject.org/leaderboard.html, a considerable gap still exists between state-of-the-art models and our target goals. We offer some some general thoughts as to next steps for the readers to ponder on or explore:\n", + "\n", + "* GNN depth has consistenly improved model performance. What limitations to depth are there? How far can we push deeper models for OC20? \n", + "* Our best performing models have little to no physical biases encoded. Can we incorporate such biases to improve our models? Experiments with physically inspired embeddings have had no advantage vs. random initializations, are there better ways to incorporate this information into the models?\n", + "* Uncertainty estimation will play an important role in later stages of the project when it comes to large scale screening. How can we get reliable uncertainty estimates from large scale GNNs?\n", + "* Are we limited to message-passing GNNs? Can we leverage alternative architectures for similiar or better performance?\n", + "* Trajectories are nothing more than sequential data points. How can we use sequential modeling techniques to model the full trajectory?\n", + "\n", + "OC20 is a large and diverse dataset with many splits. For those with limited resources but unsure where to start, we provide some general recommendations:\n", + "\n", + "* The IS2RE-direct task is a great place to start. With the largest training set containing ~460k data points, this task is easily accesible for those with even just a single GPU.\n", + "* Those interested in the more general S2EF task don't need to train on the All set to get meaningful performance.\n", + " * Results on the 2M dataset are often sufficient to highlight model improvements.\n", + " * For a fixed compute budget (e.g. fixed number of steps), training on the All set often leads to better performance.\n", + "* The S2EF 200k dataset is fairly noisy, trying to find meaningful trends using this dataset can be difficult.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PkKqewK_-ZLD" + }, + "source": [ + "\n", + "# References\n", + "\n", + "* Open Catalyst codebase: https://github.com/Open-Catalyst-Project/ocp/\n", + "* Open Catalyst webpage: https://opencatalystproject.org/\n", + "* [Electrocatalysis white paper](https://arxiv.org/pdf/2010.09435.pdf): C. Lawrence Zitnick, Lowik Chanussot, Abhishek Das, Siddharth Goyal, Javier Heras-Domingo, Caleb Ho, Weihua Hu, Thibaut Lavril, Aini Palizhati, Morgane Riviere, Muhammed Shuaibi, Anuroop Sriram, Kevin Tran, Brandon Wood, Junwoong Yoon, Devi Parikh, Zachary Ulissi: “An Introduction to Electrocatalyst Design using Machine Learning for Renewable Energy Storage”, 2020; arXiv:2010.09435.\n", + "* [OC20 dataset paper](https://arxiv.org/pdf/2010.09990.pdf): L. Chanussot, A. Das, S. Goyal, T. Lavril, M. Shuaibi, M. Riviere, K. Tran, J. Heras-Domingo, C. Ho, W. Hu, A. Palizhati, A. Sriram, B. Wood, J. Yoon, D. Parikh, C. L. Zitnick, and Z. Ulissi. The Open Catalyst 2020 (oc20) dataset and community challenges. ACS Catalysis, 2021.\n", + "* [Gemnet model:](https://arxiv.org/abs/2106.08903) Johannes Klicpera, Florian Becker, and Stephan Günnemann. Gemnet: Universal directional graph neural networks for molecules, 2021.\n", + "\n", + "\n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [ + "PoF-BxSM5Jkc", + "bSt6h_Q-oqjK", + "pto2SpJPwlz1", + "gaauxWdNw_-4", + "TcUvAI81xoSt", + "TUH5BaaXo-ca" + ], + "include_colab_link": true, + "name": "CCAI - OCP Tutorial", + "provenance": [], + "toc_visible": true + }, + "kernelspec": { + "display_name": "ocp-091622", + "language": "python", + "name": "ocp-091622" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} From 929c2fb0996c5d4feeded906587cfe62cd0d6eb3 Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Tue, 8 Aug 2023 17:36:17 -0700 Subject: [PATCH 26/63] add type annotations --- configs/goc_stress_debug.yml | 1 + ocpmodels/modules/evaluator.py | 87 +++++++++++++++++++++++++++------ ocpmodels/modules/transforms.py | 5 +- 3 files changed, 75 insertions(+), 18 deletions(-) diff --git a/configs/goc_stress_debug.yml b/configs/goc_stress_debug.yml index b8d38dfc8..e936d8572 100644 --- a/configs/goc_stress_debug.yml +++ b/configs/goc_stress_debug.yml @@ -137,6 +137,7 @@ model: edge_atom_interaction: True atom_interaction: True + num_elements: 100 num_atom_emb_layers: 2 num_global_out_layers: 2 qint_tags: [1, 2] diff --git a/ocpmodels/modules/evaluator.py b/ocpmodels/modules/evaluator.py index 253f366d0..7eb5b4a01 100644 --- a/ocpmodels/modules/evaluator.py +++ b/ocpmodels/modules/evaluator.py @@ -81,7 +81,12 @@ def __init__(self, task: str = None, eval_metrics: dict = {}) -> None: eval_metrics if eval_metrics else self.task_metrics.get(task, {}) ) - def eval(self, prediction, target, prev_metrics={}): + def eval( + self, + prediction: Dict[str, torch.Tensor], + target: Dict[str, torch.Tensor], + prev_metrics={}, + ): metrics = prev_metrics @@ -125,32 +130,58 @@ def update(self, key, stat, metrics): return metrics -def forcesx_mae(prediction, target, key=None): +def forcesx_mae( + prediction: Dict[str, torch.Tensor], + target: Dict[str, torch.Tensor], + key=None, +): return mae(prediction["forces"][:, 0], target["forces"][:, 0]) -def forcesx_mse(prediction, target, key=None): +def forcesx_mse( + prediction: Dict[str, torch.Tensor], + target: Dict[str, torch.Tensor], + key=None, +): return mse(prediction["forces"][:, 0], target["forces"][:, 0]) -def forcesy_mae(prediction, target, key=None): +def forcesy_mae( + prediction: Dict[str, torch.Tensor], + target: Dict[str, torch.Tensor], + key=None, +): return mae(prediction["forces"][:, 1], target["forces"][:, 1]) -def forcesy_mse(prediction, target, key=None): +def forcesy_mse( + prediction: Dict[str, torch.Tensor], + target: Dict[str, torch.Tensor], + key=None, +): return mse(prediction["forces"][:, 1], target["forces"][:, 1]) -def forcesz_mae(prediction, target, key=None): +def forcesz_mae( + prediction: Dict[str, torch.Tensor], + target: Dict[str, torch.Tensor], + key=None, +): return mae(prediction["forces"][:, 2], target["forces"][:, 2]) -def forcesz_mse(prediction, target, key=None): +def forcesz_mse( + prediction: Dict[str, torch.Tensor], + target: Dict[str, torch.Tensor], + key=None, +): return mse(prediction["forces"][:, 2], target["forces"][:, 2]) def energy_forces_within_threshold( - prediction: dict, target: dict, key=None + prediction: Dict[str, torch.Tensor], + target: Dict[str, torch.Tensor], + key=None, ) -> Dict[str, Union[float, int]]: # Note that this natoms should be the count of free atoms we evaluate over. assert target["natoms"].sum() == prediction["forces"].size(0) @@ -185,7 +216,9 @@ def energy_forces_within_threshold( def energy_within_threshold( - prediction, target, key=None + prediction: Dict[str, torch.Tensor], + target: Dict[str, torch.Tensor], + key=None, ) -> Dict[str, Union[float, int]]: # compute absolute error on energy per system. # then count the no. of systems where max energy error is < 0.02. @@ -203,7 +236,9 @@ def energy_within_threshold( def average_distance_within_threshold( - prediction, target, key=None + prediction: Dict[str, torch.Tensor], + target: Dict[str, torch.Tensor], + key=None, ) -> Dict[str, Union[float, int]]: pred_pos = torch.split( prediction["positions"], prediction["natoms"].tolist() @@ -236,7 +271,11 @@ def average_distance_within_threshold( return {"metric": success / total, "total": success, "numel": total} -def stress_mae_from_decomposition(prediction, target, key=None): +def stress_mae_from_decomposition( + prediction: Dict[str, torch.Tensor], + target: Dict[str, torch.Tensor], + key=None, +): device = prediction["isotropic_stress"].device cg_matrix = cg_decomp_mat(2, device) @@ -261,7 +300,12 @@ def stress_mae_from_decomposition(prediction, target, key=None): return mae(prediction_stress, target_stress) -def min_diff(pred_pos, dft_pos, cell, pbc): +def min_diff( + pred_pos: torch.Tensor, + dft_pos: torch.Tensor, + cell: torch.Tensor, + pbc: torch.Tensor, +): pos_diff = pred_pos - dft_pos fractional = np.linalg.solve(cell.T, pos_diff.T).T @@ -276,7 +320,11 @@ def min_diff(pred_pos, dft_pos, cell, pbc): return np.matmul(fractional, cell) -def cosine_similarity(prediction: dict, target: dict, key=slice(None)): +def cosine_similarity( + prediction: Dict[str, torch.Tensor], + target: Dict[str, torch.Tensor], + key=slice(None), +): error = torch.cosine_similarity(prediction[key], target[key]) return { "metric": torch.mean(error).item(), @@ -286,7 +334,9 @@ def cosine_similarity(prediction: dict, target: dict, key=slice(None)): def mae( - prediction: dict, target: dict, key=slice(None) + prediction: Dict[str, torch.Tensor], + target: Dict[str, torch.Tensor], + key=slice(None), ) -> Dict[str, Union[float, int]]: error = torch.abs(target[key] - prediction[key]) return { @@ -297,7 +347,9 @@ def mae( def mse( - prediction: dict, target: dict, key=slice(None) + prediction: Dict[str, torch.Tensor], + target: Dict[str, torch.Tensor], + key=slice(None), ) -> Dict[str, Union[float, int]]: error = (target[key] - prediction[key]) ** 2 return { @@ -308,7 +360,10 @@ def mse( def magnitude_error( - prediction: dict, target: dict, key=slice(None), p: int = 2 + prediction: Dict[str, torch.Tensor], + target: Dict[str, torch.Tensor], + key=slice(None), + p: int = 2, ) -> Dict[str, Union[float, int]]: assert prediction[key].shape[1] > 1 error = torch.abs( diff --git a/ocpmodels/modules/transforms.py b/ocpmodels/modules/transforms.py index 0f37c1556..23371c938 100644 --- a/ocpmodels/modules/transforms.py +++ b/ocpmodels/modules/transforms.py @@ -1,10 +1,11 @@ import torch +from torch_geometric.data import Data from ocpmodels.common.utils import cg_decomp_mat, irreps_sum class DataTransforms: - def __init__(self, config): + def __init__(self, config) -> None: self.config = config def __call__(self, data_object): @@ -22,7 +23,7 @@ def __call__(self, data_object): return data_object -def decompose_tensor(data_object, config): +def decompose_tensor(data_object, config) -> Data: tensor_key = config["tensor"] rank = config["rank"] From f7b76ec3e060f4fe9ba562510f7f63c106d1f0db Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Tue, 8 Aug 2023 18:04:31 -0700 Subject: [PATCH 27/63] cleanup --- ocpmodels/common/utils.py | 15 +++++++++++---- ocpmodels/trainers/base_trainer.py | 9 ++++++--- 2 files changed, 17 insertions(+), 7 deletions(-) diff --git a/ocpmodels/common/utils.py b/ocpmodels/common/utils.py index fc0a99c4d..16e94c838 100644 --- a/ocpmodels/common/utils.py +++ b/ocpmodels/common/utils.py @@ -1195,8 +1195,16 @@ def irreps_sum(l): return total -def load_old_config(name, config): - if name == "is2re": +def update_old_config(config): + ### Read task based off config structure, similar to OCPCalculator. + if config["task"]["dataset"] == "trajectory_lmdb": + task = "s2ef" + elif config["task"]["dataset"] == "single_point_lmdb": + task = "is2re" + else: + raise NotImplementedError + + if task == "is2re": ### Define loss functions _loss_fns = [ { @@ -1216,7 +1224,7 @@ def load_old_config(name, config): _eval_metrics["primary_metric"] = config["task"]["primary_metric"] ### Define outputs _outputs = {"energy": {"shape": 1, "level": "system"}} - if name == "s2ef": + elif task == "s2ef": ### Define loss functions _loss_fns = [ { @@ -1284,7 +1292,6 @@ def load_old_config(name, config): config.update({"loss_fns": _loss_fns}) config.update({"eval_metrics": _eval_metrics}) config.update({"outputs": _outputs}) - return config def get_loss_module(loss_name): diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index 298124305..e9ef6ce0b 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -39,9 +39,9 @@ get_commit_hash, get_loss_module, irreps_sum, - load_old_config, load_state_dict, save_checkpoint, + update_old_config, ) from ocpmodels.modules.evaluator import Evaluator from ocpmodels.modules.exponential_moving_average import ( @@ -184,8 +184,11 @@ def __init__( print(yaml.dump(self.config, default_flow_style=False)) ### backwards compatability with OCP v<2.0 - if self.name in ["is2re", "s2ef"]: - self.config = load_old_config(self.name, self.config) + if self.name != "ocp": + logging.warning( + f"Detected old config, converting to new format. Consider updating to avoid potential incompatibilities." + ) + update_old_config(self.config) self.load() From 55e71b386d773d4445e3d827c17b0b9dd5a51f30 Mon Sep 17 00:00:00 2001 From: Richard Barnes Date: Tue, 8 Aug 2023 23:07:13 -0700 Subject: [PATCH 28/63] Type annotations --- .pre-commit-config.yaml | 1 - ocpmodels/trainers/base_trainer.py | 60 +++++++++++++++++++----------- 2 files changed, 38 insertions(+), 23 deletions(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index bf7ba03a4..d4495ca4d 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -3,7 +3,6 @@ repos: rev: 22.3.0 hooks: - id: black - language_version: python3.8 additional_dependencies: ['click==8.0.4'] - repo: https://github.com/pre-commit/pre-commit-hooks rev: v2.3.0 diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index e9ef6ce0b..b9486efa4 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -12,9 +12,10 @@ import subprocess from abc import ABC, abstractmethod from collections import defaultdict -from typing import Dict, Optional, cast +from typing import Any, DefaultDict, Dict, Optional, cast import numpy as np +import numpy.typing as npt import torch import torch.nn as nn import torch.optim as optim @@ -32,7 +33,8 @@ ParallelCollater, ) from ocpmodels.common.registry import registry -from ocpmodels.common.typing import assert_is_instance +from ocpmodels.common.typing import assert_is_instance as aii +from ocpmodels.common.typing import none_throws from ocpmodels.common.utils import ( cg_decomp_mat, check_traj_files, @@ -56,6 +58,16 @@ @registry.register_trainer("base") class BaseTrainer(ABC): + train_loader: DataLoader[Any] + val_loader: DataLoader[Any] + test_loader: DataLoader[Any] + device: torch.device + output_targets: Dict[str, Any] + normalizers: Dict[str, Any] + ema: Optional[ExponentialMovingAverage] + clip_grad_norm: bool + ema_decay: float + def __init__( self, task, @@ -65,12 +77,12 @@ def __init__( optimizer, loss_fns, eval_metrics, - identifier, + identifier: str, timestamp_id: Optional[str] = None, - run_dir=None, + run_dir: Optional[str] = None, is_debug: bool = False, print_every: int = 100, - seed=None, + seed: Optional[int] = None, logger: str = "tensorboard", local_rank: int = 0, amp: bool = False, @@ -100,14 +112,14 @@ def __init__( # create directories from master rank only distutils.broadcast(timestamp, 0) _timestamp_id = datetime.datetime.fromtimestamp( - timestamp.int() + float(timestamp.float().item()) ).strftime("%Y-%m-%d-%H-%M-%S") if identifier: timestamp_id = f"{_timestamp_id}-{identifier}" else: timestamp_id = _timestamp_id - self.timestamp_id = timestamp_id + self.timestamp_id = none_throws(timestamp_id) commit_hash = get_commit_hash() @@ -115,7 +127,7 @@ def __init__( self.config = { "task": task, "trainer": name, - "model": assert_is_instance(model.pop("name"), str), + "model": aii(model.pop("name"), str), "model_attributes": model, "outputs": outputs, "optim": optimizer, @@ -186,7 +198,7 @@ def __init__( ### backwards compatability with OCP v<2.0 if self.name != "ocp": logging.warning( - f"Detected old config, converting to new format. Consider updating to avoid potential incompatibilities." + "Detected old config, converting to new format. Consider updating to avoid potential incompatibilities." ) update_old_config(self.config) @@ -400,7 +412,7 @@ def load_task(self): "eval_on_free_atoms", True ) - ##TODO: Assert that all targets, loss fn, metrics defined and consistent + # TODO: Assert that all targets, loss fn, metrics defined and consistent self.evaluation_metrics = self.config.get("eval_metrics", {}) self.evaluator = Evaluator( task=self.name, @@ -582,8 +594,10 @@ def load_optimizer(self) -> None: def load_extras(self) -> None: self.scheduler = LRScheduler(self.optimizer, self.config["optim"]) - self.clip_grad_norm = self.config["optim"].get("clip_grad_norm") - self.ema_decay = self.config["optim"].get("ema_decay") + self.clip_grad_norm = aii( + self.config["optim"].get("clip_grad_norm"), bool + ) + self.ema_decay = aii(self.config["optim"].get("ema_decay"), float) if self.ema_decay: self.ema = ExponentialMovingAverage( self.model.parameters(), @@ -597,7 +611,7 @@ def save( metrics=None, checkpoint_file: str = "checkpoint.pt", training_state: bool = True, - ): + ) -> Optional[str]: if not self.is_debug and distutils.is_master(): if training_state: return save_checkpoint( @@ -629,7 +643,7 @@ def save( checkpoint_file=checkpoint_file, ) else: - if self.ema: + if self.ema is not None: self.ema.store() self.ema.copy_to() ckpt_path = save_checkpoint( @@ -657,8 +671,8 @@ def update_best( self, primary_metric, val_metrics, - disable_eval_tqdm=True, - ): + disable_eval_tqdm: bool = True, + ) -> None: if ( "mae" in primary_metric and val_metrics[primary_metric]["metric"] < self.best_val_metric @@ -679,7 +693,7 @@ def update_best( disable_tqdm=disable_eval_tqdm, ) - def train(self, disable_eval_tqdm=False): + def train(self, disable_eval_tqdm: bool = False) -> None: ensure_fitted(self._unwrapped_model, warn=True) eval_every = self.config["optim"].get( @@ -1041,9 +1055,9 @@ def _backward(self, loss) -> None: def predict( self, data_loader, - per_image=True, - results_file=None, - disable_tqdm=False, + per_image: bool = True, + results_file: Optional[str] = None, + disable_tqdm: bool = False, ): ensure_fitted(self._unwrapped_model, warn=True) @@ -1062,7 +1076,7 @@ def predict( data_loader = [[data_loader]] self.model.eval() - if self.ema: + if self.ema is not None: self.ema.store() self.ema.copy_to() @@ -1234,7 +1248,9 @@ def save_results( distutils.synchronize() if distutils.is_master(): - gather_results = defaultdict(list) + gather_results: DefaultDict[ + str, npt.NDArray[np.float_] + ] = defaultdict(list) full_path = os.path.join( self.config["cmd"]["results_dir"], f"{self.name}_{results_file}.npz", From 4b5e2a0f8c3aff66a6f04a89ea70b45b24ada447 Mon Sep 17 00:00:00 2001 From: Richard Barnes Date: Tue, 8 Aug 2023 23:16:01 -0700 Subject: [PATCH 29/63] Abstract out _get_timestamp --- ocpmodels/trainers/base_trainer.py | 26 ++++++++++++++------------ 1 file changed, 14 insertions(+), 12 deletions(-) diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index b9486efa4..09f61e639 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -106,18 +106,7 @@ def __init__( run_dir = os.getcwd() if timestamp_id is None: - timestamp = torch.tensor(datetime.datetime.now().timestamp()).to( - self.device - ) - # create directories from master rank only - distutils.broadcast(timestamp, 0) - _timestamp_id = datetime.datetime.fromtimestamp( - float(timestamp.float().item()) - ).strftime("%Y-%m-%d-%H-%M-%S") - if identifier: - timestamp_id = f"{_timestamp_id}-{identifier}" - else: - timestamp_id = _timestamp_id + timestamp_id = self._get_timestamp(self.device, identifier) self.timestamp_id = none_throws(timestamp_id) @@ -204,6 +193,19 @@ def __init__( self.load() + @staticmethod + def _get_timestamp(device: torch.device, suffix: Optional[str]) -> str: + now = datetime.datetime.now().timestamp() + timestamp_tensor = torch.tensor(now).to(device) + # create directories from master rank only + distutils.broadcast(timestamp_tensor, 0) + timestamp_str = datetime.datetime.fromtimestamp( + timestamp_tensor.float().item() + ).strftime("%Y-%m-%d-%H-%M-%S") + if suffix: + timestamp_str += "-" + suffix + return timestamp_str + def load(self) -> None: self.load_seed_from_config() self.load_logger() From 32ef93ca10474dc645767c9299d7b29632385871 Mon Sep 17 00:00:00 2001 From: Janice Lan Date: Thu, 31 Aug 2023 14:27:40 -0700 Subject: [PATCH 30/63] don't double ids when saving prediction results --- ocpmodels/modules/loss.py | 2 +- ocpmodels/trainers/base_trainer.py | 1 - 2 files changed, 1 insertion(+), 2 deletions(-) diff --git a/ocpmodels/modules/loss.py b/ocpmodels/modules/loss.py index 114840cca..b5daa4950 100644 --- a/ocpmodels/modules/loss.py +++ b/ocpmodels/modules/loss.py @@ -70,7 +70,7 @@ def forward( batch_size: Optional[int] = None, ): # ensure torch doesn't do any unwanted broadcasting - assert input.shape == target.shape + assert input.shape == target.shape, f"Mismatched shapes: {input.shape} and {target.shape}" # zero out nans, if any found_nans_or_infs = not torch.all(input.isfinite()) diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index 09f61e639..bbfa4e6ac 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -1264,7 +1264,6 @@ def save_results( f"{self.name}_{results_file}_{i}.npz", ) rank_results = np.load(rank_path, allow_pickle=True) - gather_results["ids"].extend(rank_results["ids"]) for key in keys: gather_results[key].extend(rank_results[key]) os.remove(rank_path) From 18f77dcaf1fa0186711b96494b1884bd9f65b2fb Mon Sep 17 00:00:00 2001 From: Janice Lan Date: Wed, 6 Sep 2023 20:11:20 -0700 Subject: [PATCH 31/63] clip_grad_norm should be float --- ocpmodels/trainers/base_trainer.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index bbfa4e6ac..c8e47fbee 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -65,7 +65,7 @@ class BaseTrainer(ABC): output_targets: Dict[str, Any] normalizers: Dict[str, Any] ema: Optional[ExponentialMovingAverage] - clip_grad_norm: bool + clip_grad_norm: float ema_decay: float def __init__( @@ -597,7 +597,7 @@ def load_optimizer(self) -> None: def load_extras(self) -> None: self.scheduler = LRScheduler(self.optimizer, self.config["optim"]) self.clip_grad_norm = aii( - self.config["optim"].get("clip_grad_norm"), bool + self.config["optim"].get("clip_grad_norm"), (int, float) ) self.ema_decay = aii(self.config["optim"].get("ema_decay"), float) if self.ema_decay: From c1d06aa9123f1540b26bda583293c93c1fdbcfe6 Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Fri, 27 Oct 2023 12:15:25 -0700 Subject: [PATCH 32/63] model compatibility --- ocpmodels/common/typing.py | 2 +- ocpmodels/models/cgcnn.py | 230 --- ocpmodels/models/dimenet.py | 225 --- ocpmodels/models/dimenet_plus_plus.py | 7 +- .../equiformer_v2/equiformer_v2_oc20.py | 10 +- ocpmodels/models/escn/escn.py | 7 +- ocpmodels/models/forcenet.py | 518 ------- ocpmodels/models/gemnet/gemnet.py | 8 +- ocpmodels/models/gemnet_gp/gemnet.py | 7 +- ocpmodels/models/painn/painn.py | 8 +- ocpmodels/models/schnet.py | 7 +- ocpmodels/models/scn/scn.py | 8 +- ocpmodels/models/spinconv.py | 1269 ----------------- ocpmodels/trainers/base_trainer.py | 2 +- tests/models/test_cgcnn.py | 97 -- tests/models/test_dimenetpp.py | 7 +- tests/models/test_equiformer_v2.py | 3 +- tests/models/test_forcenet.py | 66 - tests/models/test_gemnet.py | 7 +- tests/models/test_gemnet_oc.py | 7 +- tests/models/test_schnet.py | 7 +- 21 files changed, 51 insertions(+), 2451 deletions(-) delete mode 100644 ocpmodels/models/cgcnn.py delete mode 100644 ocpmodels/models/dimenet.py delete mode 100644 ocpmodels/models/forcenet.py delete mode 100644 ocpmodels/models/spinconv.py delete mode 100644 tests/models/test_cgcnn.py delete mode 100644 tests/models/test_forcenet.py diff --git a/ocpmodels/common/typing.py b/ocpmodels/common/typing.py index c2520fc41..b177edd93 100644 --- a/ocpmodels/common/typing.py +++ b/ocpmodels/common/typing.py @@ -4,7 +4,7 @@ def assert_is_instance(obj: object, cls: Type[_T]) -> _T: - if not isinstance(obj, cls): + if obj and not isinstance(obj, cls): raise TypeError(f"obj is not an instance of cls: obj={obj}, cls={cls}") return obj diff --git a/ocpmodels/models/cgcnn.py b/ocpmodels/models/cgcnn.py deleted file mode 100644 index 96254bbd8..000000000 --- a/ocpmodels/models/cgcnn.py +++ /dev/null @@ -1,230 +0,0 @@ -""" -Copyright (c) Facebook, Inc. and its affiliates. - -This source code is licensed under the MIT license found in the -LICENSE file in the root directory of this source tree. -""" - -import torch -import torch.nn as nn -from torch_geometric.nn import MessagePassing, global_mean_pool -from torch_geometric.nn.models.schnet import GaussianSmearing - -from ocpmodels.common.registry import registry -from ocpmodels.common.utils import conditional_grad -from ocpmodels.datasets.embeddings import KHOT_EMBEDDINGS, QMOF_KHOT_EMBEDDINGS -from ocpmodels.models.base import BaseModel - - -@registry.register_model("cgcnn") -class CGCNN(BaseModel): - r"""Implementation of the Crystal Graph CNN model from the - `"Crystal Graph Convolutional Neural Networks for an Accurate - and Interpretable Prediction of Material Properties" - `_ paper. - - Args: - num_atoms (int): Number of atoms. - bond_feat_dim (int): Dimension of bond features. - num_targets (int): Number of targets to predict. - use_pbc (bool, optional): If set to :obj:`True`, account for periodic boundary conditions. - (default: :obj:`True`) - regress_forces (bool, optional): If set to :obj:`True`, predict forces by differentiating - energy with respect to positions. - (default: :obj:`True`) - atom_embedding_size (int, optional): Size of atom embeddings. - (default: :obj:`64`) - num_graph_conv_layers (int, optional): Number of graph convolutional layers. - (default: :obj:`6`) - fc_feat_size (int, optional): Size of fully connected layers. - (default: :obj:`128`) - num_fc_layers (int, optional): Number of fully connected layers. - (default: :obj:`4`) - otf_graph (bool, optional): If set to :obj:`True`, compute graph edges on the fly. - (default: :obj:`False`) - cutoff (float, optional): Cutoff distance for interatomic interactions. - (default: :obj:`10.0`) - num_gaussians (int, optional): Number of Gaussians used for smearing. - (default: :obj:`50.0`) - """ - - def __init__( - self, - num_atoms: int, - bond_feat_dim: int, - num_targets: int, - use_pbc: bool = True, - regress_forces: bool = True, - atom_embedding_size: int = 64, - num_graph_conv_layers: int = 6, - fc_feat_size: int = 128, - num_fc_layers: int = 4, - otf_graph: bool = False, - cutoff: float = 6.0, - num_gaussians: int = 50, - embeddings: str = "khot", - ) -> None: - super(CGCNN, self).__init__(num_atoms, bond_feat_dim, num_targets) - self.regress_forces = regress_forces - self.use_pbc = use_pbc - self.cutoff = cutoff - self.otf_graph = otf_graph - self.max_neighbors = 50 - # Get CGCNN atom embeddings - if embeddings == "khot": - embeddings = KHOT_EMBEDDINGS - elif embeddings == "qmof": - embeddings = QMOF_KHOT_EMBEDDINGS - else: - raise ValueError( - 'embedding mnust be either "khot" for original CGCNN K-hot elemental embeddings or "qmof" for QMOF K-hot elemental embeddings' - ) - self.embedding = torch.zeros(100, len(embeddings[1])) - for i in range(100): - self.embedding[i] = torch.tensor(embeddings[i + 1]) - self.embedding_fc = nn.Linear(len(embeddings[1]), atom_embedding_size) - - self.convs = nn.ModuleList( - [ - CGCNNConv( - node_dim=atom_embedding_size, - edge_dim=bond_feat_dim, - cutoff=cutoff, - ) - for _ in range(num_graph_conv_layers) - ] - ) - - self.conv_to_fc = nn.Sequential( - nn.Linear(atom_embedding_size, fc_feat_size), nn.Softplus() - ) - - if num_fc_layers > 1: - layers = [] - for _ in range(num_fc_layers - 1): - layers.append(nn.Linear(fc_feat_size, fc_feat_size)) - layers.append(nn.Softplus()) - self.fcs = nn.Sequential(*layers) - self.fc_out = nn.Linear(fc_feat_size, self.num_targets) - - self.cutoff = cutoff - self.distance_expansion = GaussianSmearing(0.0, cutoff, num_gaussians) - - @conditional_grad(torch.enable_grad()) - def _forward(self, data): - # Get node features - if self.embedding.device != data.atomic_numbers.device: - self.embedding = self.embedding.to(data.atomic_numbers.device) - data.x = self.embedding[data.atomic_numbers.long() - 1] - - ( - edge_index, - distances, - distance_vec, - cell_offsets, - _, # cell offset distances - neighbors, - ) = self.generate_graph(data) - - data.edge_index = edge_index - data.edge_attr = self.distance_expansion(distances) - # Forward pass through the network - mol_feats = self._convolve(data) - mol_feats = self.conv_to_fc(mol_feats) - if hasattr(self, "fcs"): - mol_feats = self.fcs(mol_feats) - - energy = self.fc_out(mol_feats) - return energy - - def forward(self, data): - if self.regress_forces: - data.pos.requires_grad_(True) - energy = self._forward(data) - - if self.regress_forces: - forces = -1 * ( - torch.autograd.grad( - energy, - data.pos, - grad_outputs=torch.ones_like(energy), - create_graph=True, - )[0] - ) - return energy, forces - else: - return energy - - def _convolve(self, data): - """ - Returns the output of the convolution layers before they are passed - into the dense layers. - """ - node_feats = self.embedding_fc(data.x) - for f in self.convs: - node_feats = f(node_feats, data.edge_index, data.edge_attr) - mol_feats = global_mean_pool(node_feats, data.batch) - return mol_feats - - -class CGCNNConv(MessagePassing): - """Implements the message passing layer from - `"Crystal Graph Convolutional Neural Networks for an - Accurate and Interpretable Prediction of Material Properties" - `. - """ - - def __init__( - self, node_dim, edge_dim, cutoff: float = 6.0, **kwargs - ) -> None: - super(CGCNNConv, self).__init__(aggr="add") - self.node_feat_size = node_dim - self.edge_feat_size = edge_dim - self.cutoff = cutoff - - self.lin1 = nn.Linear( - 2 * self.node_feat_size + self.edge_feat_size, - 2 * self.node_feat_size, - ) - self.bn1 = nn.BatchNorm1d(2 * self.node_feat_size) - self.ln1 = nn.LayerNorm(self.node_feat_size) - - self.reset_parameters() - - def reset_parameters(self) -> None: - torch.nn.init.xavier_uniform_(self.lin1.weight) - - self.lin1.bias.data.fill_(0) - - self.bn1.reset_parameters() - self.ln1.reset_parameters() - - def forward(self, x, edge_index, edge_attr): - """ - Arguments: - x has shape [num_nodes, node_feat_size] - edge_index has shape [2, num_edges] - edge_attr is [num_edges, edge_feat_size] - """ - out = self.propagate( - edge_index, x=x, edge_attr=edge_attr, size=(x.size(0), x.size(0)) - ) - out = nn.Softplus()(self.ln1(out) + x) - return out - - def message(self, x_i, x_j, edge_attr): - """ - Arguments: - x_i has shape [num_edges, node_feat_size] - x_j has shape [num_edges, node_feat_size] - edge_attr has shape [num_edges, edge_feat_size] - - Returns: - tensor of shape [num_edges, node_feat_size] - """ - z = self.lin1(torch.cat([x_i, x_j, edge_attr], dim=1)) - z = self.bn1(z) - z1, z2 = z.chunk(2, dim=1) - z1 = nn.Sigmoid()(z1) - z2 = nn.Softplus()(z2) - return z1 * z2 diff --git a/ocpmodels/models/dimenet.py b/ocpmodels/models/dimenet.py deleted file mode 100644 index efd335158..000000000 --- a/ocpmodels/models/dimenet.py +++ /dev/null @@ -1,225 +0,0 @@ -""" -Copyright (c) Facebook, Inc. and its affiliates. - -This source code is licensed under the MIT license found in the -LICENSE file in the root directory of this source tree. -""" - -import torch -from torch_geometric.nn import DimeNet -from torch_scatter import scatter -from torch_sparse import SparseTensor - -from ocpmodels.common.registry import registry -from ocpmodels.common.utils import conditional_grad -from ocpmodels.models.base import BaseModel - - -@registry.register_model("dimenet") -class DimeNetWrap(DimeNet, BaseModel): - r"""Wrapper around the directional message passing neural network (DimeNet) from the - `"Directional Message Passing for Molecular Graphs" - `_ paper. - - DimeNet transforms messages based on the angle between them in a - rotation-equivariant fashion. - - Args: - num_atoms (int): Unused argument - bond_feat_dim (int): Unused argument - num_targets (int): Number of targets to predict. - use_pbc (bool, optional): If set to :obj:`True`, account for periodic boundary conditions. - (default: :obj:`True`) - regress_forces (bool, optional): If set to :obj:`True`, predict forces by differentiating - energy with respect to positions. - (default: :obj:`True`) - hidden_channels (int, optional): Number of hidden channels. - (default: :obj:`128`) - num_blocks (int, optional): Number of building blocks. - (default: :obj:`6`) - num_bilinear (int, optional): Size of the bilinear layer tensor. - (default: :obj:`8`) - num_spherical (int, optional): Number of spherical harmonics. - (default: :obj:`7`) - num_radial (int, optional): Number of radial basis functions. - (default: :obj:`6`) - otf_graph (bool, optional): If set to :obj:`True`, compute graph edges on the fly. - (default: :obj:`False`) - cutoff (float, optional): Cutoff distance for interatomic interactions. - (default: :obj:`10.0`) - envelope_exponent (int, optional): Shape of the smooth cutoff. - (default: :obj:`5`) - num_before_skip: (int, optional): Number of residual layers in the - interaction blocks before the skip connection. (default: :obj:`1`) - num_after_skip: (int, optional): Number of residual layers in the - interaction blocks after the skip connection. (default: :obj:`2`) - num_output_layers: (int, optional): Number of linear layers for the - output blocks. (default: :obj:`3`) - max_angles_per_image (int, optional): The maximum number of angles used - per image. This can be used to reduce memory usage at the cost of - model performance. (default: :obj:`1e6`) - """ - - def __init__( - self, - num_atoms: int, - bond_feat_dim: int, # not used - num_targets: int, - use_pbc: bool = True, - regress_forces: bool = True, - hidden_channels: int = 128, - num_blocks: int = 6, - num_bilinear: int = 8, - num_spherical: int = 7, - num_radial: int = 6, - otf_graph: bool = False, - cutoff: float = 10.0, - envelope_exponent: int = 5, - num_before_skip: int = 1, - num_after_skip: int = 2, - num_output_layers: int = 3, - max_angles_per_image: int = int(1e6), - ) -> None: - self.num_targets = num_targets - self.regress_forces = regress_forces - self.use_pbc = use_pbc - self.cutoff = cutoff - self.otf_graph = otf_graph - self.max_angles_per_image = max_angles_per_image - self.max_neighbors = 50 - - super(DimeNetWrap, self).__init__( - hidden_channels=hidden_channels, - out_channels=num_targets, - num_blocks=num_blocks, - num_bilinear=num_bilinear, - num_spherical=num_spherical, - num_radial=num_radial, - cutoff=cutoff, - envelope_exponent=envelope_exponent, - num_before_skip=num_before_skip, - num_after_skip=num_after_skip, - num_output_layers=num_output_layers, - ) - - def triplets(self, edge_index, cell_offsets, num_nodes: int): - row, col = edge_index # j->i - - value = torch.arange(row.size(0), device=row.device) - adj_t = SparseTensor( - row=col, col=row, value=value, sparse_sizes=(num_nodes, num_nodes) - ) - adj_t_row = adj_t[row] - num_triplets = adj_t_row.set_value(None).sum(dim=1).to(torch.long) - - # Node indices (k->j->i) for triplets. - idx_i = col.repeat_interleave(num_triplets) - idx_j = row.repeat_interleave(num_triplets) - idx_k = adj_t_row.storage.col() - - # Edge indices (k->j, j->i) for triplets. - idx_kj = adj_t_row.storage.value() - idx_ji = adj_t_row.storage.row() - - # Remove self-loop triplets d->b->d - # Check atom as well as cell offset - cell_offset_kji = cell_offsets[idx_kj] + cell_offsets[idx_ji] - mask = (idx_i != idx_k) | torch.any(cell_offset_kji != 0, dim=-1) - - idx_i, idx_j, idx_k = idx_i[mask], idx_j[mask], idx_k[mask] - idx_kj, idx_ji = idx_kj[mask], idx_ji[mask] - - return col, row, idx_i, idx_j, idx_k, idx_kj, idx_ji - - @conditional_grad(torch.enable_grad()) - def _forward(self, data): - pos = data.pos - batch = data.batch - ( - edge_index, - dist, - _, - cell_offsets, - offsets, - neighbors, - ) = self.generate_graph(data) - - data.edge_index = edge_index - data.cell_offsets = cell_offsets - data.neighbors = neighbors - j, i = edge_index - - _, _, idx_i, idx_j, idx_k, idx_kj, idx_ji = self.triplets( - edge_index, - data.cell_offsets, - num_nodes=data.atomic_numbers.size(0), - ) - - # Cap no. of triplets during training. - if self.training: - sub_ix = torch.randperm(idx_i.size(0))[ - : self.max_angles_per_image * data.natoms.size(0) - ] - idx_i, idx_j, idx_k = ( - idx_i[sub_ix], - idx_j[sub_ix], - idx_k[sub_ix], - ) - idx_kj, idx_ji = idx_kj[sub_ix], idx_ji[sub_ix] - - # Calculate angles. - pos_i = pos[idx_i].detach() - pos_j = pos[idx_j].detach() - if self.use_pbc: - pos_ji, pos_kj = ( - pos[idx_j].detach() - pos_i + offsets[idx_ji], - pos[idx_k].detach() - pos_j + offsets[idx_kj], - ) - else: - pos_ji, pos_kj = ( - pos[idx_j].detach() - pos_i, - pos[idx_k].detach() - pos_j, - ) - - a = (pos_ji * pos_kj).sum(dim=-1) - b = torch.cross(pos_ji, pos_kj).norm(dim=-1) - angle = torch.atan2(b, a) - - rbf = self.rbf(dist) - sbf = self.sbf(dist, angle, idx_kj) - - # Embedding block. - x = self.emb(data.atomic_numbers.long(), rbf, i, j) - P = self.output_blocks[0](x, rbf, i, num_nodes=pos.size(0)) - - # Interaction blocks. - for interaction_block, output_block in zip( - self.interaction_blocks, self.output_blocks[1:] - ): - x = interaction_block(x, rbf, sbf, idx_kj, idx_ji) - P += output_block(x, rbf, i, num_nodes=pos.size(0)) - - energy = P.sum(dim=0) if batch is None else scatter(P, batch, dim=0) - return energy - - def forward(self, data): - if self.regress_forces: - data.pos.requires_grad_(True) - energy = self._forward(data) - - if self.regress_forces: - forces = -1 * ( - torch.autograd.grad( - energy, - data.pos, - grad_outputs=torch.ones_like(energy), - create_graph=True, - )[0] - ) - return energy, forces - else: - return energy - - @property - def num_params(self) -> int: - return sum(p.numel() for p in self.parameters()) diff --git a/ocpmodels/models/dimenet_plus_plus.py b/ocpmodels/models/dimenet_plus_plus.py index e2c9cade6..5d72b4369 100644 --- a/ocpmodels/models/dimenet_plus_plus.py +++ b/ocpmodels/models/dimenet_plus_plus.py @@ -446,6 +446,7 @@ def forward(self, data): if self.regress_forces: data.pos.requires_grad_(True) energy = self._forward(data) + outputs = {"energy": energy} if self.regress_forces: forces = -1 * ( @@ -456,9 +457,9 @@ def forward(self, data): create_graph=True, )[0] ) - return energy, forces - else: - return energy + outputs["forces"] = forces + + return outputs @property def num_params(self) -> int: diff --git a/ocpmodels/models/equiformer_v2/equiformer_v2_oc20.py b/ocpmodels/models/equiformer_v2/equiformer_v2_oc20.py index dea91f21f..79b1372c2 100644 --- a/ocpmodels/models/equiformer_v2/equiformer_v2_oc20.py +++ b/ocpmodels/models/equiformer_v2/equiformer_v2_oc20.py @@ -533,6 +533,7 @@ def forward(self, data): self.energy_lin_ref[atomic_numbers], ) + outputs = {"energy": energy} ############################################################### # Force estimation ############################################################### @@ -542,14 +543,9 @@ def forward(self, data): ) forces = forces.embedding.narrow(1, 1, 3) forces = forces.view(-1, 3) + outputs["forces"] = forces - if not self.regress_forces: - return {"energy": energy} - else: - return { - "energy": energy, - "forces": forces, - } + return outputs # Initialize the edge rotation matrics def _init_edge_rot_mat(self, data, edge_index, edge_distance_vec): diff --git a/ocpmodels/models/escn/escn.py b/ocpmodels/models/escn/escn.py index a6e56b423..4ca8c09e8 100644 --- a/ocpmodels/models/escn/escn.py +++ b/ocpmodels/models/escn/escn.py @@ -347,11 +347,13 @@ def forward(self, data): # Scale energy to help balance numerical precision w.r.t. forces energy = energy * 0.001 + outputs = {"energy": energy} ############################################################### # Force estimation ############################################################### if self.regress_forces: forces = self.force_block(x_pt, self.sphere_points) + outputs["forces"] = forces if self.show_timing_info is True: torch.cuda.synchronize() @@ -366,10 +368,7 @@ def forward(self, data): self.counter = self.counter + 1 - if not self.regress_forces: - return energy - else: - return energy, forces + return outputs # Initialize the edge rotation matrics def _init_edge_rot_mat(self, data, edge_index, edge_distance_vec): diff --git a/ocpmodels/models/forcenet.py b/ocpmodels/models/forcenet.py deleted file mode 100644 index cf909abd5..000000000 --- a/ocpmodels/models/forcenet.py +++ /dev/null @@ -1,518 +0,0 @@ -""" -Copyright (c) Facebook, Inc. and its affiliates. - -This source code is licensed under the MIT license found in the -LICENSE file in the root directory of this source tree. -""" - -from math import pi as PI -from typing import Optional - -import numpy as np -import torch -import torch.nn as nn -from torch_geometric.nn import MessagePassing -from torch_scatter import scatter - -from ocpmodels.common.registry import registry -from ocpmodels.datasets.embeddings import ATOMIC_RADII, CONTINUOUS_EMBEDDINGS -from ocpmodels.models.base import BaseModel -from ocpmodels.models.utils.activations import Act -from ocpmodels.models.utils.basis import Basis, SphericalSmearing - - -class FNDecoder(nn.Module): - def __init__( - self, decoder_type, decoder_activation_str, output_dim: int - ) -> None: - super(FNDecoder, self).__init__() - self.decoder_type = decoder_type - self.decoder_activation = Act(decoder_activation_str) - self.output_dim = output_dim - - self.decoder: nn.Sequential - if self.decoder_type == "linear": - self.decoder = nn.Sequential(nn.Linear(self.output_dim, 3)) - elif self.decoder_type == "mlp": - self.decoder = nn.Sequential( - nn.Linear(self.output_dim, self.output_dim), - nn.BatchNorm1d(self.output_dim), - self.decoder_activation, - nn.Linear(self.output_dim, 3), - ) - else: - raise ValueError(f"Undefined force decoder: {self.decoder_type}") - - self.reset_parameters() - - def reset_parameters(self) -> None: - for m in self.decoder: - if isinstance(m, nn.Linear): - nn.init.xavier_uniform_(m.weight) - m.bias.data.fill_(0) - - def forward(self, x): - return self.decoder(x) - - -class InteractionBlock(MessagePassing): - def __init__( - self, - hidden_channels: int, - mlp_basis_dim: int, - basis_type, - depth_mlp_edge: int = 2, - depth_mlp_trans: int = 1, - activation_str: str = "ssp", - ablation: str = "none", - ) -> None: - super(InteractionBlock, self).__init__(aggr="add") - - self.activation = Act(activation_str) - self.ablation = ablation - self.basis_type = basis_type - - # basis function assumes input is in the range of [-1,1] - if self.basis_type != "rawcat": - self.lin_basis = torch.nn.Linear(mlp_basis_dim, hidden_channels) - - if self.ablation == "nocond": - # the edge filter only depends on edge_attr - in_features = ( - mlp_basis_dim - if self.basis_type == "rawcat" - else hidden_channels - ) - else: - # edge filter depends on edge_attr and current node embedding - in_features = ( - mlp_basis_dim + 2 * hidden_channels - if self.basis_type == "rawcat" - else 3 * hidden_channels - ) - - if depth_mlp_edge > 0: - mlp_edge = [torch.nn.Linear(in_features, hidden_channels)] - for _ in range(depth_mlp_edge): - mlp_edge.append(self.activation) - mlp_edge.append( - torch.nn.Linear(hidden_channels, hidden_channels) - ) - else: - ## need batch normalization afterwards. Otherwise training is unstable. - mlp_edge = [ - torch.nn.Linear(in_features, hidden_channels), - torch.nn.BatchNorm1d(hidden_channels), - ] - self.mlp_edge = torch.nn.Sequential(*mlp_edge) - - if not self.ablation == "nofilter": - self.lin = torch.nn.Linear(hidden_channels, hidden_channels) - - if depth_mlp_trans > 0: - mlp_trans = [torch.nn.Linear(hidden_channels, hidden_channels)] - for _ in range(depth_mlp_trans): - mlp_trans.append(torch.nn.BatchNorm1d(hidden_channels)) - mlp_trans.append(self.activation) - mlp_trans.append( - torch.nn.Linear(hidden_channels, hidden_channels) - ) - else: - # need batch normalization afterwards. Otherwise, becomes NaN - mlp_trans = [ - torch.nn.Linear(hidden_channels, hidden_channels), - torch.nn.BatchNorm1d(hidden_channels), - ] - - self.mlp_trans = torch.nn.Sequential(*mlp_trans) - - if not self.ablation == "noself": - self.center_W = torch.nn.Parameter( - torch.Tensor(1, hidden_channels) - ) - - self.reset_parameters() - - def reset_parameters(self) -> None: - if self.basis_type != "rawcat": - torch.nn.init.xavier_uniform_(self.lin_basis.weight) - self.lin_basis.bias.data.fill_(0) - - for m in self.mlp_trans: - if isinstance(m, torch.nn.Linear): - torch.nn.init.xavier_uniform_(m.weight) - m.bias.data.fill_(0) - - for m in self.mlp_edge: - if isinstance(m, torch.nn.Linear): - torch.nn.init.xavier_uniform_(m.weight) - m.bias.data.fill_(0) - - if not self.ablation == "nofilter": - torch.nn.init.xavier_uniform_(self.lin.weight) - self.lin.bias.data.fill_(0) - - if not self.ablation == "noself": - torch.nn.init.xavier_uniform_(self.center_W) - - def forward(self, x, edge_index, edge_attr, edge_weight): - if self.basis_type != "rawcat": - edge_emb = self.lin_basis(edge_attr) - else: - # for rawcat, we directly use the raw feature - edge_emb = edge_attr - - if self.ablation == "nocond": - emb = edge_emb - else: - emb = torch.cat( - [edge_emb, x[edge_index[0]], x[edge_index[1]]], dim=1 - ) - - W = self.mlp_edge(emb) * edge_weight.view(-1, 1) - if self.ablation == "nofilter": - x = self.propagate(edge_index, x=x, W=W) + self.center_W - else: - x = self.lin(x) - if self.ablation == "noself": - x = self.propagate(edge_index, x=x, W=W) - else: - x = self.propagate(edge_index, x=x, W=W) + self.center_W * x - x = self.mlp_trans(x) - - return x - - def message(self, x_j, W): - if self.ablation == "nofilter": - return W - else: - return x_j * W - - -# flake8: noqa: C901 -@registry.register_model("forcenet") -class ForceNet(BaseModel): - r"""Implementation of ForceNet architecture. - - Args: - num_atoms (int): Unused argument - bond_feat_dim (int): Unused argument - num_targets (int): Unused argumebt - hidden_channels (int, optional): Number of hidden channels. - (default: :obj:`512`) - num_iteractions (int, optional): Number of interaction blocks. - (default: :obj:`5`) - cutoff (float, optional): Cutoff distance for interatomic interactions. - (default: :obj:`6.0`) - feat (str, optional): Input features to be used - (default: :obj:`full`) - num_freqs (int, optional): Number of frequencies for basis function. - (default: :obj:`50`) - max_n (int, optional): Maximum order of spherical harmonics. - (default: :obj:`6`) - basis (str, optional): Basis function to be used. - (default: :obj:`full`) - depth_mlp_edge (int, optional): Depth of MLP for edges in interaction blocks. - (default: :obj:`2`) - depth_mlp_node (int, optional): Depth of MLP for nodes in interaction blocks. - (default: :obj:`1`) - activation_str (str, optional): Activation function used post linear layer in all message passing MLPs. - (default: :obj:`swish`) - ablation (str, optional): Type of ablation to be performed. - (default: :obj:`none`) - decoder_hidden_channels (int, optional): Number of hidden channels in the decoder. - (default: :obj:`512`) - decoder_type (str, optional): Type of decoder: linear or MLP. - (default: :obj:`mlp`) - decoder_activation_str (str, optional): Activation function used post linear layer in decoder. - (default: :obj:`swish`) - training (bool, optional): If set to :obj:`True`, specify training phase. - (default: :obj:`True`) - otf_graph (bool, optional): If set to :obj:`True`, compute graph edges on the fly. - (default: :obj:`False`) - """ - - def __init__( - self, - num_atoms: int, # not used - bond_feat_dim: int, # not used - num_targets: int, # not used - hidden_channels: int = 512, - num_interactions: int = 5, - cutoff: float = 6.0, - feat: str = "full", - num_freqs: int = 50, - max_n: int = 3, - basis: str = "sphallmul", - depth_mlp_edge: int = 2, - depth_mlp_node: int = 1, - activation_str: str = "swish", - ablation: str = "none", - decoder_hidden_channels: int = 512, - decoder_type: str = "mlp", - decoder_activation_str: str = "swish", - training: bool = True, - otf_graph: bool = False, - use_pbc: bool = True, - ) -> None: - super(ForceNet, self).__init__() - self.training = training - self.ablation = ablation - if self.ablation not in [ - "none", - "nofilter", - "nocond", - "nodistlist", - "onlydist", - "nodelinear", - "edgelinear", - "noself", - ]: - raise ValueError(f"Unknown ablation called {ablation}.") - - """ - Descriptions of ablations: - - none: base ForceNet model - - nofilter: no element-wise filter parameterization in message modeling - - nocond: convolutional filter is only conditioned on edge features, not node embeddings - - nodistlist: no atomic radius information in edge features - - onlydist: edge features only contains distance information. Orientation information is ommited. - - nodelinear: node update MLP function is replaced with linear function followed by batch normalization - - edgelinear: edge MLP transformation function is replaced with linear function followed by batch normalization. - - noself: no self edge of m_t. - """ - - self.otf_graph = otf_graph - self.cutoff = cutoff - self.output_dim = decoder_hidden_channels - self.feat = feat - self.num_freqs = num_freqs - self.num_layers = num_interactions - self.max_n = max_n - self.activation_str = activation_str - self.use_pbc = use_pbc - self.max_neighbors = 50 - - if self.ablation == "edgelinear": - depth_mlp_edge = 0 - - if self.ablation == "nodelinear": - depth_mlp_node = 0 - - # read atom map and atom radii - atom_map = torch.zeros(101, 9) - for i in range(101): - atom_map[i] = torch.tensor(CONTINUOUS_EMBEDDINGS[i]) - - atom_radii = torch.zeros(101) - for i in range(101): - atom_radii[i] = ATOMIC_RADII[i] - atom_radii = atom_radii / 100 - - self.atom_radii = nn.Parameter(atom_radii, requires_grad=False) - self.basis_type = basis - - self.pbc_apply_sph_harm = "sph" in self.basis_type - self.pbc_sph_option = None - - # for spherical harmonics for PBC - if "sphall" in self.basis_type: - self.pbc_sph_option = "all" - elif "sphsine" in self.basis_type: - self.pbc_sph_option = "sine" - elif "sphcosine" in self.basis_type: - self.pbc_sph_option = "cosine" - - self.pbc_sph: Optional[SphericalSmearing] = None - if self.pbc_apply_sph_harm: - self.pbc_sph = SphericalSmearing( - max_n=self.max_n, option=self.pbc_sph_option - ) - - # self.feat can be "simple" or "full" - if self.feat == "simple": - self.embedding = nn.Embedding(100, hidden_channels) - - # set up dummy atom_map that only contains atomic_number information - atom_map = torch.linspace(0, 1, 101).view(-1, 1).repeat(1, 9) - self.atom_map = nn.Parameter(atom_map, requires_grad=False) - - elif self.feat == "full": - # Normalize along each dimaension - atom_map[0] = np.nan - atom_map_notnan = atom_map[atom_map[:, 0] == atom_map[:, 0]] - atom_map_min = torch.min(atom_map_notnan, dim=0)[0] - atom_map_max = torch.max(atom_map_notnan, dim=0)[0] - atom_map_gap = atom_map_max - atom_map_min - - ## squash to [0,1] - atom_map = ( - atom_map - atom_map_min.view(1, -1) - ) / atom_map_gap.view(1, -1) - - self.atom_map = torch.nn.Parameter(atom_map, requires_grad=False) - - in_features = 9 - # first apply basis function and then linear function - if "sph" in self.basis_type: - # spherical basis is only meaningful for edge feature, so use powersine instead - node_basis_type = "powersine" - else: - node_basis_type = self.basis_type - basis = Basis( - in_features, - num_freqs=num_freqs, - basis_type=node_basis_type, - act=self.activation_str, - ) - self.embedding = torch.nn.Sequential( - basis, torch.nn.Linear(basis.out_dim, hidden_channels) - ) - - else: - raise ValueError("Undefined feature type for atom") - - # process basis function for edge feature - if self.ablation == "nodistlist": - # do not consider additional distance edge features - # normalized (x,y,z) + distance - in_feature = 4 - elif self.ablation == "onlydist": - # only consider distance-based edge features - # ignore normalized (x,y,z) - in_feature = 4 - - # if basis_type is spherical harmonics, then reduce to powersine - if "sph" in self.basis_type: - logging.info( - "Under onlydist ablation, spherical basis is reduced to powersine basis." - ) - self.basis_type = "powersine" - self.pbc_sph = None - - else: - in_feature = 7 - self.basis_fun = Basis( - in_feature, - num_freqs, - self.basis_type, - self.activation_str, - sph=self.pbc_sph, - ) - - # process interaction blocks - self.interactions = torch.nn.ModuleList() - for _ in range(num_interactions): - block = InteractionBlock( - hidden_channels, - self.basis_fun.out_dim, - self.basis_type, - depth_mlp_edge=depth_mlp_edge, - depth_mlp_trans=depth_mlp_node, - activation_str=self.activation_str, - ablation=ablation, - ) - self.interactions.append(block) - - self.lin = torch.nn.Linear(hidden_channels, self.output_dim) - self.activation = Act(activation_str) - - # ForceNet decoder - self.decoder = FNDecoder( - decoder_type, decoder_activation_str, self.output_dim - ) - - # Projection layer for energy prediction - self.energy_mlp = nn.Linear(self.output_dim, 1) - - def forward(self, data): - z = data.atomic_numbers.long() - - pos = data.pos - batch = data.batch - - if self.feat == "simple": - h = self.embedding(z) - elif self.feat == "full": - h = self.embedding(self.atom_map[z]) - else: - raise RuntimeError("Undefined feature type for atom") - - ( - edge_index, - edge_dist, - edge_vec, - cell_offsets, - _, # cell offset distances - neighbors, - ) = self.generate_graph(data) - - data.edge_index = edge_index - data.cell_offsets = cell_offsets - data.neighbors = neighbors - - if self.pbc_apply_sph_harm: - edge_vec_normalized = edge_vec / edge_dist.view(-1, 1) - edge_attr_sph = self.pbc_sph(edge_vec_normalized) - - # calculate the edge weight according to the dist - edge_weight = torch.cos(0.5 * edge_dist * PI / self.cutoff) - - # normalized edge vectors - edge_vec_normalized = edge_vec / edge_dist.view(-1, 1) - - # edge distance, taking the atom_radii into account - # each element lies in [0,1] - edge_dist_list = ( - torch.stack( - [ - edge_dist, - edge_dist - self.atom_radii[z[edge_index[0]]], - edge_dist - self.atom_radii[z[edge_index[1]]], - edge_dist - - self.atom_radii[z[edge_index[0]]] - - self.atom_radii[z[edge_index[1]]], - ] - ).transpose(0, 1) - / self.cutoff - ) - - if self.ablation == "nodistlist": - edge_dist_list = edge_dist_list[:, 0].view(-1, 1) - - # make sure distance is positive - edge_dist_list[edge_dist_list < 1e-3] = 1e-3 - - # squash to [0,1] for gaussian basis - if self.basis_type == "gauss": - edge_vec_normalized = (edge_vec_normalized + 1) / 2.0 - - # process raw_edge_attributes to generate edge_attributes - if self.ablation == "onlydist": - raw_edge_attr = edge_dist_list - else: - raw_edge_attr = torch.cat( - [edge_vec_normalized, edge_dist_list], dim=1 - ) - - if "sph" in self.basis_type: - edge_attr = self.basis_fun(raw_edge_attr, edge_attr_sph) - else: - edge_attr = self.basis_fun(raw_edge_attr) - - # pass edge_attributes through interaction blocks - for _, interaction in enumerate(self.interactions): - h = h + interaction(h, edge_index, edge_attr, edge_weight) - - h = self.lin(h) - h = self.activation(h) - - out = scatter(h, batch, dim=0, reduce="add") - - force = self.decoder(h) - energy = self.energy_mlp(out) - return energy, force - - @property - def num_params(self) -> int: - return sum(p.numel() for p in self.parameters()) diff --git a/ocpmodels/models/gemnet/gemnet.py b/ocpmodels/models/gemnet/gemnet.py index c457b5108..dee6ef235 100644 --- a/ocpmodels/models/gemnet/gemnet.py +++ b/ocpmodels/models/gemnet/gemnet.py @@ -561,6 +561,8 @@ def forward(self, data): E_t, batch, dim=0, dim_size=nMolecules, reduce="mean" ) # (nMolecules, num_targets) + outputs = {"energy": E_t} + if self.regress_forces: if self.direct_forces: # map forces in edge directions @@ -592,9 +594,9 @@ def forward(self, data): )[0] # (nAtoms, 3) - return E_t, F_t # (nMolecules, num_targets), (nAtoms, 3) - else: - return E_t + outputs["forces"] = F_t + + return outputs @property def num_params(self): diff --git a/ocpmodels/models/gemnet_gp/gemnet.py b/ocpmodels/models/gemnet_gp/gemnet.py index 767f89cfa..94e1215fa 100644 --- a/ocpmodels/models/gemnet_gp/gemnet.py +++ b/ocpmodels/models/gemnet_gp/gemnet.py @@ -605,6 +605,7 @@ def forward(self, data): E_t, batch, dim=0, dim_size=nMolecules, reduce="mean" ) # (nMolecules, num_targets) + outputs = {"energy": E_t} if self.regress_forces: if self.direct_forces: # map forces in edge directions @@ -636,9 +637,9 @@ def forward(self, data): )[0] # (nAtoms, 3) - return E_t, F_t # (nMolecules, num_targets), (nAtoms, 3) - else: - return E_t + outputs["forces"] = F_t + + return outputs @property def num_params(self): diff --git a/ocpmodels/models/painn/painn.py b/ocpmodels/models/painn/painn.py index f2bf65600..3a9525897 100644 --- a/ocpmodels/models/painn/painn.py +++ b/ocpmodels/models/painn/painn.py @@ -412,11 +412,11 @@ def forward(self, data): per_atom_energy = self.out_energy(x).squeeze(1) energy = scatter(per_atom_energy, batch, dim=0) + outputs = {"energy": energy} if self.regress_forces: if self.direct_forces: forces = self.out_forces(x, vec) - return energy, forces else: forces = ( -1 @@ -427,9 +427,9 @@ def forward(self, data): create_graph=True, )[0] ) - return energy, forces - else: - return energy + outputs["forces"] = forces + + return outputs @property def num_params(self) -> int: diff --git a/ocpmodels/models/schnet.py b/ocpmodels/models/schnet.py index 5eb83db07..08fd93764 100644 --- a/ocpmodels/models/schnet.py +++ b/ocpmodels/models/schnet.py @@ -119,6 +119,7 @@ def forward(self, data): if self.regress_forces: data.pos.requires_grad_(True) energy = self._forward(data) + outputs = {"energy": energy} if self.regress_forces: forces = -1 * ( @@ -129,9 +130,9 @@ def forward(self, data): create_graph=True, )[0] ) - return energy, forces - else: - return energy + outputs["forces"] = forces + + return outputs @property def num_params(self) -> int: diff --git a/ocpmodels/models/scn/scn.py b/ocpmodels/models/scn/scn.py index dc94cbe2a..d9b79193f 100644 --- a/ocpmodels/models/scn/scn.py +++ b/ocpmodels/models/scn/scn.py @@ -404,6 +404,8 @@ def _forward_helper(self, data): energy = torch.zeros(len(data.natoms), device=pos.device) energy.index_add_(0, data.batch, node_energy.view(-1)) + outputs = {"energy": energy} + # Force estimation if self.regress_forces: forces = torch.einsum( @@ -416,11 +418,9 @@ def _forward_helper(self, data): forces = forces.view(-1, self.num_sphere_samples, 1) forces = forces * sphere_points.view(1, self.num_sphere_samples, 3) forces = torch.sum(forces, dim=1) / self.num_sphere_samples + outputs["forces"] = forces - if not self.regress_forces: - return energy - else: - return energy, forces + return outputs def _init_edge_rot_mat(self, data, edge_index, edge_distance_vec): edge_vec_0 = edge_distance_vec diff --git a/ocpmodels/models/spinconv.py b/ocpmodels/models/spinconv.py deleted file mode 100644 index bbf41c66a..000000000 --- a/ocpmodels/models/spinconv.py +++ /dev/null @@ -1,1269 +0,0 @@ -""" -Copyright (c) Facebook, Inc. and its affiliates. - -This source code is licensed under the MIT license found in the -LICENSE file in the root directory of this source tree. -""" -import logging -import math -import time -from math import pi as PI - -import torch -import torch.nn as nn -import torch.nn.functional as F -from torch.nn import ModuleList -from torch_scatter import scatter - -from ocpmodels.common.registry import registry -from ocpmodels.common.utils import conditional_grad -from ocpmodels.models.base import BaseModel - -try: - from e3nn import o3 - from e3nn.o3 import FromS2Grid -except Exception: - pass - - -@registry.register_model("spinconv") -class spinconv(BaseModel): - def __init__( - self, - num_atoms: int, # not used - bond_feat_dim: int, # not used - num_targets: int, - use_pbc: bool = True, - regress_forces: bool = True, - otf_graph: bool = False, - hidden_channels: int = 32, - mid_hidden_channels: int = 200, - num_interactions: int = 1, - num_basis_functions: int = 200, - basis_width_scalar: float = 1.0, - max_num_neighbors: int = 20, - sphere_size_lat: int = 15, - sphere_size_long: int = 9, - cutoff: float = 10.0, - distance_block_scalar_max: float = 2.0, - max_num_elements: int = 90, - embedding_size: int = 32, - show_timing_info: bool = False, - sphere_message: str = "fullconv", # message block sphere representation - output_message: str = "fullconv", # output block sphere representation - lmax: bool = False, - force_estimator: str = "random", - model_ref_number: int = 0, - readout: str = "add", - num_rand_rotations: int = 5, - scale_distances: bool = True, - ) -> None: - super(spinconv, self).__init__() - - self.num_targets = num_targets - self.num_random_rotations = num_rand_rotations - self.regress_forces = regress_forces - self.use_pbc = use_pbc - self.cutoff = cutoff - self.otf_graph = otf_graph - self.show_timing_info = show_timing_info - self.max_num_elements = max_num_elements - self.mid_hidden_channels = mid_hidden_channels - self.sphere_size_lat = sphere_size_lat - self.sphere_size_long = sphere_size_long - self.num_atoms = 0 - self.hidden_channels = hidden_channels - self.embedding_size = embedding_size - self.max_num_neighbors = self.max_neighbors = max_num_neighbors - self.sphere_message = sphere_message - self.output_message = output_message - self.force_estimator = force_estimator - self.num_basis_functions = num_basis_functions - self.distance_block_scalar_max = distance_block_scalar_max - self.grad_forces = False - self.num_embedding_basis = 8 - self.lmax = lmax - self.scale_distances = scale_distances - self.basis_width_scalar = basis_width_scalar - - if self.sphere_message in ["spharm", "rotspharmroll", "rotspharmwd"]: - assert self.lmax, "lmax must be defined for spherical harmonics" - if self.output_message in ["spharm", "rotspharmroll", "rotspharmwd"]: - assert self.lmax, "lmax must be defined for spherical harmonics" - - # variables used for display purposes - self.counter = 0 - self.start_time: float = time.time() - self.total_time: float = 0.0 - self.model_ref_number = model_ref_number - - if self.force_estimator == "grad": - self.grad_forces = True - - # self.act = ShiftedSoftplus() - self.act = Swish() - - self.distance_expansion_forces: GaussianSmearing = GaussianSmearing( - 0.0, - cutoff, - num_basis_functions, - basis_width_scalar, - ) - - # Weights for message initialization - self.embeddingblock2: EmbeddingBlock = EmbeddingBlock( - self.mid_hidden_channels, - self.hidden_channels, - self.mid_hidden_channels, - self.embedding_size, - self.num_embedding_basis, - self.max_num_elements, - self.act, - ) - self.distfc1: nn.Linear = nn.Linear( - self.mid_hidden_channels, self.mid_hidden_channels - ) - self.distfc2: nn.Linear = nn.Linear( - self.mid_hidden_channels, self.mid_hidden_channels - ) - - self.dist_block: DistanceBlock = DistanceBlock( - self.num_basis_functions, - self.mid_hidden_channels, - self.max_num_elements, - self.distance_block_scalar_max, - self.distance_expansion_forces, - self.scale_distances, - ) - - self.message_blocks = ModuleList() - for _ in range(num_interactions): - block = MessageBlock( - hidden_channels, - hidden_channels, - mid_hidden_channels, - embedding_size, - self.sphere_size_lat, - self.sphere_size_long, - self.max_num_elements, - self.sphere_message, - self.act, - self.lmax, - ) - self.message_blocks.append(block) - - self.energyembeddingblock = EmbeddingBlock( - hidden_channels, - 1, - mid_hidden_channels, - embedding_size, - 8, - self.max_num_elements, - self.act, - ) - - if force_estimator == "random": - self.force_output_block = ForceOutputBlock( - hidden_channels, - 2, - mid_hidden_channels, - embedding_size, - self.sphere_size_lat, - self.sphere_size_long, - self.max_num_elements, - self.output_message, - self.act, - self.lmax, - ) - - @conditional_grad(torch.enable_grad()) - def forward(self, data): - self.device = data.pos.device - self.num_atoms = len(data.batch) - self.batch_size = len(data.natoms) - - pos = data.pos - if self.regress_forces: - pos = pos.requires_grad_(True) - - ( - edge_index, - edge_distance, - edge_distance_vec, - cell_offsets, - _, # cell offset distances - neighbors, - ) = self.generate_graph(data) - - edge_index, edge_distance, edge_distance_vec = self._filter_edges( - edge_index, - edge_distance, - edge_distance_vec, - self.max_num_neighbors, - ) - - outputs = self._forward_helper( - data, edge_index, edge_distance, edge_distance_vec - ) - if self.show_timing_info is True: - torch.cuda.synchronize() - logging.info( - "Memory: {}\t{}\t{}".format( - len(edge_index[0]), - torch.cuda.memory_allocated() - / (1000 * len(edge_index[0])), - torch.cuda.max_memory_allocated() / 1000000, - ) - ) - - return outputs - - # restructure forward helper for conditional grad - def _forward_helper( - self, data, edge_index, edge_distance, edge_distance_vec - ): - ############################################################### - # Initialize messages - ############################################################### - - source_element = data.atomic_numbers[edge_index[0, :]].long() - target_element = data.atomic_numbers[edge_index[1, :]].long() - - x_dist = self.dist_block(edge_distance, source_element, target_element) - - x = x_dist - x = self.distfc1(x) - x = self.act(x) - x = self.distfc2(x) - x = self.act(x) - x = self.embeddingblock2(x, source_element, target_element) - - ############################################################### - # Update messages using block interactions - ############################################################### - - edge_rot_mat = self._init_edge_rot_mat( - data, edge_index, edge_distance_vec - ) - ( - proj_edges_index, - proj_edges_delta, - proj_edges_src_index, - ) = self._project2D_edges_init( - edge_rot_mat, edge_index, edge_distance_vec - ) - - for block_index, interaction in enumerate(self.message_blocks): - x_out = interaction( - x, - x_dist, - source_element, - target_element, - proj_edges_index, - proj_edges_delta, - proj_edges_src_index, - ) - - if block_index > 0: - x = x + x_out - else: - x = x_out - - ############################################################### - # Decoder - # Compute the forces and energies from the messages - ############################################################### - assert self.force_estimator in ["random", "grad"] - - energy = scatter(x, edge_index[1], dim=0, dim_size=data.num_nodes) / ( - self.max_num_neighbors / 2.0 + 1.0 - ) - atomic_numbers = data.atomic_numbers.long() - energy = self.energyembeddingblock( - energy, atomic_numbers, atomic_numbers - ) - energy = scatter(energy, data.batch, dim=0) - - if self.regress_forces: - if self.force_estimator == "grad": - forces = -1 * ( - torch.autograd.grad( - energy, - data.pos, - grad_outputs=torch.ones_like(energy), - create_graph=True, - )[0] - ) - if self.force_estimator == "random": - forces = self._compute_forces_random_rotations( - x, - self.num_random_rotations, - data.atomic_numbers.long(), - edge_index, - edge_distance_vec, - data.batch, - ) - - if not self.regress_forces: - return energy - else: - return energy, forces - - def _compute_forces_random_rotations( - self, - x, - num_random_rotations: int, - target_element, - edge_index, - edge_distance_vec, - batch, - ) -> torch.Tensor: - # Compute the forces and energy by randomly rotating the system and taking the average - - device = x.device - - rot_mat_x = torch.zeros(3, 3, device=device) - rot_mat_x[0][0] = 1.0 - rot_mat_x[1][1] = 1.0 - rot_mat_x[2][2] = 1.0 - - rot_mat_y = torch.zeros(3, 3, device=device) - rot_mat_y[0][1] = 1.0 - rot_mat_y[1][0] = -1.0 - rot_mat_y[2][2] = 1.0 - - rot_mat_z = torch.zeros(3, 3, device=device) - rot_mat_z[0][2] = 1.0 - rot_mat_z[1][1] = 1.0 - rot_mat_z[2][0] = -1.0 - - rot_mat_x = rot_mat_x.view(-1, 3, 3).repeat(self.num_atoms, 1, 1) - rot_mat_y = rot_mat_y.view(-1, 3, 3).repeat(self.num_atoms, 1, 1) - rot_mat_z = rot_mat_z.view(-1, 3, 3).repeat(self.num_atoms, 1, 1) - - # compute the random rotations - random_rot_mat = self._random_rot_mat( - self.num_atoms * num_random_rotations, device - ) - random_rot_mat = random_rot_mat.view( - num_random_rotations, self.num_atoms, 3, 3 - ) - - # the first matrix is the identity with the rest being random - # atom_rot_mat = torch.cat([torch.eye(3, device=device).view(1, 1, 3, 3).repeat(1, self.num_atoms, 1, 1), random_rot_mat], dim=0) - # or they are all random - atom_rot_mat = random_rot_mat - - forces = torch.zeros(self.num_atoms, 3, device=device) - - for rot_index in range(num_random_rotations): - rot_mat_x_perturb = torch.bmm(rot_mat_x, atom_rot_mat[rot_index]) - rot_mat_y_perturb = torch.bmm(rot_mat_y, atom_rot_mat[rot_index]) - rot_mat_z_perturb = torch.bmm(rot_mat_z, atom_rot_mat[rot_index]) - - # project neighbors using the random rotations - ( - proj_nodes_index_x, - proj_nodes_delta_x, - proj_nodes_src_index_x, - ) = self._project2D_nodes_init( - rot_mat_x_perturb, edge_index, edge_distance_vec - ) - ( - proj_nodes_index_y, - proj_nodes_delta_y, - proj_nodes_src_index_y, - ) = self._project2D_nodes_init( - rot_mat_y_perturb, edge_index, edge_distance_vec - ) - ( - proj_nodes_index_z, - proj_nodes_delta_z, - proj_nodes_src_index_z, - ) = self._project2D_nodes_init( - rot_mat_z_perturb, edge_index, edge_distance_vec - ) - - # estimate the force in each perpendicular direction - force_x = self.force_output_block( - x, - self.num_atoms, - target_element, - proj_nodes_index_x, - proj_nodes_delta_x, - proj_nodes_src_index_x, - ) - force_y = self.force_output_block( - x, - self.num_atoms, - target_element, - proj_nodes_index_y, - proj_nodes_delta_y, - proj_nodes_src_index_y, - ) - force_z = self.force_output_block( - x, - self.num_atoms, - target_element, - proj_nodes_index_z, - proj_nodes_delta_z, - proj_nodes_src_index_z, - ) - forces_perturb = torch.cat( - [force_x[:, 0:1], force_y[:, 0:1], force_z[:, 0:1]], dim=1 - ) - - # rotate the predicted forces back into the global reference frame - rot_mat_inv = torch.transpose(rot_mat_x_perturb, 1, 2) - forces_perturb = torch.bmm( - rot_mat_inv, forces_perturb.view(-1, 3, 1) - ).view(-1, 3) - - forces = forces + forces_perturb - - forces = forces / (num_random_rotations) - - return forces - - def _filter_edges( - self, - edge_index, - edge_distance, - edge_distance_vec, - max_num_neighbors: int, - ): - # Remove edges that aren't within the closest max_num_neighbors from either the target or source atom. - # This ensures all edges occur in pairs, i.e., if X -> Y exists then Y -> X is included. - # However, if both X -> Y and Y -> X don't both exist in the original list, this isn't guaranteed. - # Since some edges may have exactly the same distance, this function is not deterministic - device = edge_index.device - length = len(edge_distance) - - # Assuming the edges are consecutive based on the target index - target_node_index, neigh_count = torch.unique_consecutive( - edge_index[1], return_counts=True - ) - max_neighbors = torch.max(neigh_count) - - # handle special case where an atom doesn't have any neighbors - target_neigh_count = torch.zeros(self.num_atoms, device=device).long() - target_neigh_count.index_copy_( - 0, target_node_index.long(), neigh_count - ) - - # Create a list of edges for each atom - index_offset = ( - torch.cumsum(target_neigh_count, dim=0) - target_neigh_count - ) - neigh_index = torch.arange(length, device=device) - neigh_index = neigh_index - index_offset[edge_index[1]] - - edge_map_index = (edge_index[1] * max_neighbors + neigh_index).long() - target_lookup = ( - torch.zeros(self.num_atoms * max_neighbors, device=device) - 1 - ).long() - target_lookup.index_copy_( - 0, edge_map_index, torch.arange(length, device=device).long() - ) - - # Get the length of each edge - distance_lookup = ( - torch.zeros(self.num_atoms * max_neighbors, device=device) - + 1000000.0 - ) - distance_lookup.index_copy_(0, edge_map_index, edge_distance) - distance_lookup = distance_lookup.view(self.num_atoms, max_neighbors) - - # Sort the distances - distance_sorted_no_op, indices = torch.sort(distance_lookup, dim=1) - - # Create a hash that maps edges that go from X -> Y and Y -> X in the same bin - edge_index_min, no_op = torch.min(edge_index, dim=0) - edge_index_max, no_op = torch.max(edge_index, dim=0) - edge_index_hash = edge_index_min * self.num_atoms + edge_index_max - edge_count_start = torch.zeros( - self.num_atoms * self.num_atoms, device=device - ) - edge_count_start.index_add_( - 0, edge_index_hash, torch.ones(len(edge_index_hash), device=device) - ) - - # Find index into the original edge_index - indices = indices + ( - torch.arange(len(indices), device=device) * max_neighbors - ).view(-1, 1).repeat(1, max_neighbors) - indices = indices.view(-1) - target_lookup_sorted = ( - torch.zeros(self.num_atoms * max_neighbors, device=device) - 1 - ).long() - target_lookup_sorted = target_lookup[indices] - target_lookup_sorted = target_lookup_sorted.view( - self.num_atoms, max_neighbors - ) - - # Select the closest max_num_neighbors for each edge and remove the unused entries - target_lookup_below_thres = ( - target_lookup_sorted[:, 0:max_num_neighbors].contiguous().view(-1) - ) - target_lookup_below_thres = target_lookup_below_thres.view(-1) - mask_unused = target_lookup_below_thres.ge(0) - target_lookup_below_thres = torch.masked_select( - target_lookup_below_thres, mask_unused - ) - - # Find edges that are used at least once and create a mask to keep - edge_count = torch.zeros( - self.num_atoms * self.num_atoms, device=device - ) - edge_count.index_add_( - 0, - edge_index_hash[target_lookup_below_thres], - torch.ones(len(target_lookup_below_thres), device=device), - ) - edge_count_mask = edge_count.ne(0) - edge_keep = edge_count_mask[edge_index_hash] - - # Finally remove all edges that are too long in distance as indicated by the mask - edge_index_mask = edge_keep.view(1, -1).repeat(2, 1) - edge_index = torch.masked_select(edge_index, edge_index_mask).view( - 2, -1 - ) - edge_distance = torch.masked_select(edge_distance, edge_keep) - edge_distance_vec_mask = edge_keep.view(-1, 1).repeat(1, 3) - edge_distance_vec = torch.masked_select( - edge_distance_vec, edge_distance_vec_mask - ).view(-1, 3) - - return edge_index, edge_distance, edge_distance_vec - - def _random_rot_mat(self, num_matrices: int, device) -> torch.Tensor: - ang_a = 2.0 * math.pi * torch.rand(num_matrices, device=device) - ang_b = 2.0 * math.pi * torch.rand(num_matrices, device=device) - ang_c = 2.0 * math.pi * torch.rand(num_matrices, device=device) - - cos_a = torch.cos(ang_a) - cos_b = torch.cos(ang_b) - cos_c = torch.cos(ang_c) - sin_a = torch.sin(ang_a) - sin_b = torch.sin(ang_b) - sin_c = torch.sin(ang_c) - - rot_a = ( - torch.eye(3, device=device) - .view(1, 3, 3) - .repeat(num_matrices, 1, 1) - ) - rot_b = ( - torch.eye(3, device=device) - .view(1, 3, 3) - .repeat(num_matrices, 1, 1) - ) - rot_c = ( - torch.eye(3, device=device) - .view(1, 3, 3) - .repeat(num_matrices, 1, 1) - ) - - rot_a[:, 1, 1] = cos_a - rot_a[:, 1, 2] = sin_a - rot_a[:, 2, 1] = -sin_a - rot_a[:, 2, 2] = cos_a - - rot_b[:, 0, 0] = cos_b - rot_b[:, 0, 2] = -sin_b - rot_b[:, 2, 0] = sin_b - rot_b[:, 2, 2] = cos_b - - rot_c[:, 0, 0] = cos_c - rot_c[:, 0, 1] = sin_c - rot_c[:, 1, 0] = -sin_c - rot_c[:, 1, 1] = cos_c - - return torch.bmm(torch.bmm(rot_a, rot_b), rot_c) - - def _init_edge_rot_mat( - self, data, edge_index, edge_distance_vec - ) -> torch.Tensor: - device = data.pos.device - num_atoms = len(data.batch) - - edge_vec_0 = edge_distance_vec - edge_vec_0_distance = torch.sqrt(torch.sum(edge_vec_0**2, dim=1)) - - if torch.min(edge_vec_0_distance) < 0.0001: - logging.error( - "Error edge_vec_0_distance: {}".format( - torch.min(edge_vec_0_distance) - ) - ) - (minval, minidx) = torch.min(edge_vec_0_distance, 0) - logging.error( - "Error edge_vec_0_distance: {} {} {} {} {}".format( - minidx, - edge_index[0, minidx], - edge_index[1, minidx], - data.pos[edge_index[0, minidx]], - data.pos[edge_index[1, minidx]], - ) - ) - - avg_vector = torch.zeros(num_atoms, 3, device=device) - weight = 0.5 * ( - torch.cos(edge_vec_0_distance * PI / self.cutoff) + 1.0 - ) - avg_vector.index_add_( - 0, edge_index[1, :], edge_vec_0 * weight.view(-1, 1).expand(-1, 3) - ) - - edge_vec_2 = avg_vector[edge_index[1, :]] + 0.0001 - edge_vec_2_distance = torch.sqrt(torch.sum(edge_vec_2**2, dim=1)) - - if torch.min(edge_vec_2_distance) < 0.000001: - logging.error( - "Error edge_vec_2_distance: {}".format( - torch.min(edge_vec_2_distance) - ) - ) - - norm_x = edge_vec_0 / (edge_vec_0_distance.view(-1, 1)) - norm_0_2 = edge_vec_2 / (edge_vec_2_distance.view(-1, 1)) - norm_z = torch.cross(norm_x, norm_0_2, dim=1) - norm_z = norm_z / ( - torch.sqrt(torch.sum(norm_z**2, dim=1, keepdim=True)) + 0.0000001 - ) - norm_y = torch.cross(norm_x, norm_z, dim=1) - norm_y = norm_y / ( - torch.sqrt(torch.sum(norm_y**2, dim=1, keepdim=True)) + 0.0000001 - ) - - norm_x = norm_x.view(-1, 3, 1) - norm_y = norm_y.view(-1, 3, 1) - norm_z = norm_z.view(-1, 3, 1) - - edge_rot_mat_inv = torch.cat([norm_x, norm_y, norm_z], dim=2) - edge_rot_mat = torch.transpose(edge_rot_mat_inv, 1, 2) - - return edge_rot_mat - - def _project2D_edges_init(self, rot_mat, edge_index, edge_distance_vec): - torch.set_printoptions(sci_mode=False) - length = len(edge_distance_vec) - device = edge_distance_vec.device - - # Assuming the edges are consecutive based on the target index - target_node_index, neigh_count = torch.unique_consecutive( - edge_index[1], return_counts=True - ) - max_neighbors = torch.max(neigh_count) - target_neigh_count = torch.zeros(self.num_atoms, device=device).long() - target_neigh_count.index_copy_( - 0, target_node_index.long(), neigh_count - ) - - index_offset = ( - torch.cumsum(target_neigh_count, dim=0) - target_neigh_count - ) - neigh_index = torch.arange(length, device=device) - neigh_index = neigh_index - index_offset[edge_index[1]] - - edge_map_index = edge_index[1] * max_neighbors + neigh_index - target_lookup = ( - torch.zeros(self.num_atoms * max_neighbors, device=device) - 1 - ).long() - target_lookup.index_copy_( - 0, - edge_map_index.long(), - torch.arange(length, device=device).long(), - ) - target_lookup = target_lookup.view(self.num_atoms, max_neighbors) - - # target_lookup - For each target node, a list of edge indices - # target_neigh_count - number of neighbors for each target node - source_edge = target_lookup[edge_index[0]] - target_edge = ( - torch.arange(length, device=device) - .long() - .view(-1, 1) - .repeat(1, max_neighbors) - ) - - source_edge = source_edge.view(-1) - target_edge = target_edge.view(-1) - - mask_unused = source_edge.ge(0) - source_edge = torch.masked_select(source_edge, mask_unused) - target_edge = torch.masked_select(target_edge, mask_unused) - - return self._project2D_init( - source_edge, target_edge, rot_mat, edge_distance_vec - ) - - def _project2D_nodes_init(self, rot_mat, edge_index, edge_distance_vec): - torch.set_printoptions(sci_mode=False) - length = len(edge_distance_vec) - device = edge_distance_vec.device - - target_node = edge_index[1] - source_edge = torch.arange(length, device=device) - - return self._project2D_init( - source_edge, target_node, rot_mat, edge_distance_vec - ) - - def _project2D_init( - self, source_edge, target_edge, rot_mat, edge_distance_vec - ): - edge_distance_norm = F.normalize(edge_distance_vec) - source_edge_offset = edge_distance_norm[source_edge] - - source_edge_offset_rot = torch.bmm( - rot_mat[target_edge], source_edge_offset.view(-1, 3, 1) - ) - - source_edge_X = torch.atan2( - source_edge_offset_rot[:, 1], source_edge_offset_rot[:, 2] - ).view(-1) - - # source_edge_X ranges from -pi to pi - source_edge_X = (source_edge_X + math.pi) / (2.0 * math.pi) - - # source_edge_Y ranges from -1 to 1 - source_edge_Y = source_edge_offset_rot[:, 0].view(-1) - source_edge_Y = torch.clamp(source_edge_Y, min=-1.0, max=1.0) - source_edge_Y = (source_edge_Y.asin() + (math.pi / 2.0)) / ( - math.pi - ) # bin by angle - # source_edge_Y = (source_edge_Y + 1.0) / 2.0 # bin by sin - source_edge_Y = 0.99 * (source_edge_Y) + 0.005 - - source_edge_X = source_edge_X * self.sphere_size_long - source_edge_Y = source_edge_Y * ( - self.sphere_size_lat - 1.0 - ) # not circular so pad by one - - source_edge_X_0 = torch.floor(source_edge_X).long() - source_edge_X_del = source_edge_X - source_edge_X_0 - source_edge_X_0 = source_edge_X_0 % self.sphere_size_long - source_edge_X_1 = (source_edge_X_0 + 1) % self.sphere_size_long - - source_edge_Y_0 = torch.floor(source_edge_Y).long() - source_edge_Y_del = source_edge_Y - source_edge_Y_0 - source_edge_Y_0 = source_edge_Y_0 % self.sphere_size_lat - source_edge_Y_1 = (source_edge_Y_0 + 1) % self.sphere_size_lat - - # Compute the values needed to bilinearly splat the values onto the spheres - index_0_0 = ( - target_edge * self.sphere_size_lat * self.sphere_size_long - + source_edge_Y_0 * self.sphere_size_long - + source_edge_X_0 - ) - index_0_1 = ( - target_edge * self.sphere_size_lat * self.sphere_size_long - + source_edge_Y_0 * self.sphere_size_long - + source_edge_X_1 - ) - index_1_0 = ( - target_edge * self.sphere_size_lat * self.sphere_size_long - + source_edge_Y_1 * self.sphere_size_long - + source_edge_X_0 - ) - index_1_1 = ( - target_edge * self.sphere_size_lat * self.sphere_size_long - + source_edge_Y_1 * self.sphere_size_long - + source_edge_X_1 - ) - - delta_0_0 = (1.0 - source_edge_X_del) * (1.0 - source_edge_Y_del) - delta_0_1 = (source_edge_X_del) * (1.0 - source_edge_Y_del) - delta_1_0 = (1.0 - source_edge_X_del) * (source_edge_Y_del) - delta_1_1 = (source_edge_X_del) * (source_edge_Y_del) - - index_0_0 = index_0_0.view(1, -1) - index_0_1 = index_0_1.view(1, -1) - index_1_0 = index_1_0.view(1, -1) - index_1_1 = index_1_1.view(1, -1) - - # NaNs otherwise - if self.grad_forces: - with torch.no_grad(): - delta_0_0 = delta_0_0.view(1, -1) - delta_0_1 = delta_0_1.view(1, -1) - delta_1_0 = delta_1_0.view(1, -1) - delta_1_1 = delta_1_1.view(1, -1) - else: - delta_0_0 = delta_0_0.view(1, -1) - delta_0_1 = delta_0_1.view(1, -1) - delta_1_0 = delta_1_0.view(1, -1) - delta_1_1 = delta_1_1.view(1, -1) - - return ( - torch.cat([index_0_0, index_0_1, index_1_0, index_1_1]), - torch.cat([delta_0_0, delta_0_1, delta_1_0, delta_1_1]), - source_edge, - ) - - @property - def num_params(self) -> int: - return sum(p.numel() for p in self.parameters()) - - -class MessageBlock(torch.nn.Module): - def __init__( - self, - in_hidden_channels: int, - out_hidden_channels: int, - mid_hidden_channels: int, - embedding_size: int, - sphere_size_lat: int, - sphere_size_long: int, - max_num_elements: int, - sphere_message: str, - act, - lmax, - ) -> None: - super(MessageBlock, self).__init__() - self.in_hidden_channels = in_hidden_channels - self.out_hidden_channels = out_hidden_channels - self.act = act - self.lmax = lmax - self.embedding_size = embedding_size - self.mid_hidden_channels = mid_hidden_channels - self.sphere_size_lat = sphere_size_lat - self.sphere_size_long = sphere_size_long - self.sphere_message = sphere_message - self.max_num_elements = max_num_elements - self.num_embedding_basis = 8 - - self.spinconvblock = SpinConvBlock( - self.in_hidden_channels, - self.mid_hidden_channels, - self.sphere_size_lat, - self.sphere_size_long, - self.sphere_message, - self.act, - self.lmax, - ) - - self.embeddingblock1: EmbeddingBlock = EmbeddingBlock( - self.mid_hidden_channels, - self.mid_hidden_channels, - self.mid_hidden_channels, - self.embedding_size, - self.num_embedding_basis, - self.max_num_elements, - self.act, - ) - self.embeddingblock2: EmbeddingBlock = EmbeddingBlock( - self.mid_hidden_channels, - self.out_hidden_channels, - self.mid_hidden_channels, - self.embedding_size, - self.num_embedding_basis, - self.max_num_elements, - self.act, - ) - - self.distfc1 = nn.Linear( - self.mid_hidden_channels, self.mid_hidden_channels - ) - self.distfc2 = nn.Linear( - self.mid_hidden_channels, self.mid_hidden_channels - ) - - def forward( - self, - x, - x_dist, - source_element, - target_element, - proj_index, - proj_delta, - proj_src_index, - ): - out_size = len(x) - - x = self.spinconvblock( - x, out_size, proj_index, proj_delta, proj_src_index - ) - - x = self.embeddingblock1(x, source_element, target_element) - - x_dist = self.distfc1(x_dist) - x_dist = self.act(x_dist) - x_dist = self.distfc2(x_dist) - x = x + x_dist - - x = self.act(x) - x = self.embeddingblock2(x, source_element, target_element) - - return x - - -class ForceOutputBlock(torch.nn.Module): - def __init__( - self, - in_hidden_channels: int, - out_hidden_channels: int, - mid_hidden_channels: int, - embedding_size: int, - sphere_size_lat: int, - sphere_size_long: int, - max_num_elements: int, - sphere_message: str, - act, - lmax, - ) -> None: - super(ForceOutputBlock, self).__init__() - self.in_hidden_channels = in_hidden_channels - self.out_hidden_channels = out_hidden_channels - self.act = act - self.lmax = lmax - self.embedding_size = embedding_size - self.mid_hidden_channels = mid_hidden_channels - self.sphere_size_lat = sphere_size_lat - self.sphere_size_long = sphere_size_long - self.sphere_message = sphere_message - self.max_num_elements = max_num_elements - self.num_embedding_basis = 8 - - self.spinconvblock: SpinConvBlock = SpinConvBlock( - self.in_hidden_channels, - self.mid_hidden_channels, - self.sphere_size_lat, - self.sphere_size_long, - self.sphere_message, - self.act, - self.lmax, - ) - - self.block1: EmbeddingBlock = EmbeddingBlock( - self.mid_hidden_channels, - self.mid_hidden_channels, - self.mid_hidden_channels, - self.embedding_size, - self.num_embedding_basis, - self.max_num_elements, - self.act, - ) - self.block2: EmbeddingBlock = EmbeddingBlock( - self.mid_hidden_channels, - self.out_hidden_channels, - self.mid_hidden_channels, - self.embedding_size, - self.num_embedding_basis, - self.max_num_elements, - self.act, - ) - - def forward( - self, - x, - out_size, - target_element, - proj_index, - proj_delta, - proj_src_index, - ): - x = self.spinconvblock( - x, out_size, proj_index, proj_delta, proj_src_index - ) - - x = self.block1(x, target_element, target_element) - x = self.act(x) - x = self.block2(x, target_element, target_element) - - return x - - -class SpinConvBlock(torch.nn.Module): - def __init__( - self, - in_hidden_channels: int, - mid_hidden_channels: int, - sphere_size_lat: int, - sphere_size_long: int, - sphere_message: str, - act, - lmax, - ) -> None: - super(SpinConvBlock, self).__init__() - self.in_hidden_channels = in_hidden_channels - self.mid_hidden_channels = mid_hidden_channels - self.sphere_size_lat = sphere_size_lat - self.sphere_size_long = sphere_size_long - self.sphere_message = sphere_message - self.act = act - self.lmax = lmax - self.num_groups = self.in_hidden_channels // 8 - - self.ProjectLatLongSphere = ProjectLatLongSphere( - sphere_size_lat, sphere_size_long - ) - assert self.sphere_message in [ - "fullconv", - "rotspharmwd", - ] - if self.sphere_message in ["rotspharmwd"]: - self.sph_froms2grid = FromS2Grid( - (self.sphere_size_lat, self.sphere_size_long), self.lmax - ) - self.mlp = nn.Linear( - self.in_hidden_channels * (self.lmax + 1) ** 2, - self.mid_hidden_channels, - ) - self.sphlength = (self.lmax + 1) ** 2 - rotx = torch.zeros(self.sphere_size_long) + ( - 2 * math.pi / self.sphere_size_long - ) - roty = torch.zeros(self.sphere_size_long) - rotz = torch.zeros(self.sphere_size_long) - - self.wigner = [] - for xrot, yrot, zrot in zip(rotx, roty, rotz): - _blocks = [] - for l_degree in range(self.lmax + 1): - _blocks.append(o3.wigner_D(l_degree, xrot, yrot, zrot)) - self.wigner.append(torch.block_diag(*_blocks)) - - if self.sphere_message == "fullconv": - padding = self.sphere_size_long // 2 - self.conv1 = nn.Conv1d( - self.in_hidden_channels * self.sphere_size_lat, - self.mid_hidden_channels, - self.sphere_size_long, - groups=self.in_hidden_channels // 8, - padding=padding, - padding_mode="circular", - ) - self.pool = nn.AvgPool1d(sphere_size_long) - - self.GroupNorm = nn.GroupNorm( - self.num_groups, self.mid_hidden_channels - ) - - def forward(self, x, out_size, proj_index, proj_delta, proj_src_index): - x = self.ProjectLatLongSphere( - x, out_size, proj_index, proj_delta, proj_src_index - ) - if self.sphere_message == "rotspharmwd": - sph_harm_calc = torch.zeros( - ((x.shape[0], self.mid_hidden_channels)), - device=x.device, - ) - - sph_harm = self.sph_froms2grid(x) - sph_harm = sph_harm.view(-1, self.sphlength, 1) - for wD_diag in self.wigner: - wD_diag = wD_diag.to(x.device) - sph_harm_calc += self.act( - self.mlp(sph_harm.reshape(x.shape[0], -1)) - ) - wd = wD_diag.view(1, self.sphlength, self.sphlength).expand( - len(x) * self.in_hidden_channels, -1, -1 - ) - sph_harm = torch.bmm(wd, sph_harm) - x = sph_harm_calc - - if self.sphere_message in ["fullconv"]: - x = x.view( - -1, - self.in_hidden_channels * self.sphere_size_lat, - self.sphere_size_long, - ) - x = self.conv1(x) - x = self.act(x) - # Pool in the longitudal direction - x = self.pool(x[:, :, 0 : self.sphere_size_long]) - x = x.view(out_size, -1) - - x = self.GroupNorm(x) - - return x - - -class EmbeddingBlock(torch.nn.Module): - def __init__( - self, - in_hidden_channels: int, - out_hidden_channels: int, - mid_hidden_channels: int, - embedding_size: int, - num_embedding_basis: int, - max_num_elements: int, - act, - ) -> None: - super(EmbeddingBlock, self).__init__() - self.in_hidden_channels = in_hidden_channels - self.out_hidden_channels = out_hidden_channels - self.act = act - self.embedding_size = embedding_size - self.mid_hidden_channels = mid_hidden_channels - self.num_embedding_basis = num_embedding_basis - self.max_num_elements = max_num_elements - - self.fc1 = nn.Linear(self.in_hidden_channels, self.mid_hidden_channels) - self.fc2 = nn.Linear( - self.mid_hidden_channels, - self.num_embedding_basis * self.mid_hidden_channels, - ) - self.fc3 = nn.Linear( - self.mid_hidden_channels, self.out_hidden_channels - ) - - self.source_embedding = nn.Embedding( - max_num_elements, self.embedding_size - ) - self.target_embedding = nn.Embedding( - max_num_elements, self.embedding_size - ) - nn.init.uniform_(self.source_embedding.weight.data, -0.0001, 0.0001) - nn.init.uniform_(self.target_embedding.weight.data, -0.0001, 0.0001) - - self.embed_fc1 = nn.Linear( - 2 * self.embedding_size, self.num_embedding_basis - ) - - self.softmax = nn.Softmax(dim=1) - - def forward( - self, x: torch.Tensor, source_element, target_element - ) -> torch.Tensor: - source_embedding = self.source_embedding(source_element) - target_embedding = self.target_embedding(target_element) - embedding = torch.cat([source_embedding, target_embedding], dim=1) - embedding = self.embed_fc1(embedding) - embedding = self.softmax(embedding) - - x = self.fc1(x) - x = self.act(x) - x = self.fc2(x) - x = self.act(x) - x = ( - x.view(-1, self.num_embedding_basis, self.mid_hidden_channels) - ) * (embedding.view(-1, self.num_embedding_basis, 1)) - x = torch.sum(x, dim=1) - x = self.fc3(x) - - return x - - -class DistanceBlock(torch.nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - max_num_elements: int, - scalar_max, - distance_expansion, - scale_distances, - ) -> None: - super(DistanceBlock, self).__init__() - self.in_channels = in_channels - self.out_channels = out_channels - self.max_num_elements = max_num_elements - self.distance_expansion = distance_expansion - self.scalar_max = scalar_max - self.scale_distances = scale_distances - - if self.scale_distances: - self.dist_scalar = nn.Embedding( - self.max_num_elements * self.max_num_elements, 1 - ) - self.dist_offset = nn.Embedding( - self.max_num_elements * self.max_num_elements, 1 - ) - nn.init.uniform_(self.dist_scalar.weight.data, -0.0001, 0.0001) - nn.init.uniform_(self.dist_offset.weight.data, -0.0001, 0.0001) - - self.fc1 = nn.Linear(self.in_channels, self.out_channels) - - def forward(self, edge_distance, source_element, target_element): - if self.scale_distances: - embedding_index = ( - source_element * self.max_num_elements + target_element - ) - - # Restrict the scalar to range from 1 / self.scalar_max to self.scalar_max - scalar_max = math.log(self.scalar_max) - scalar = ( - 2.0 * torch.sigmoid(self.dist_scalar(embedding_index).view(-1)) - - 1.0 - ) - scalar = torch.exp(scalar_max * scalar) - offset = self.dist_offset(embedding_index).view(-1) - x = self.distance_expansion(scalar * edge_distance + offset) - else: - x = self.distance_expansion(edge_distance) - - x = self.fc1(x) - - return x - - -class ProjectLatLongSphere(torch.nn.Module): - def __init__(self, sphere_size_lat: int, sphere_size_long: int) -> None: - super(ProjectLatLongSphere, self).__init__() - self.sphere_size_lat = sphere_size_lat - self.sphere_size_long = sphere_size_long - - def forward( - self, x, length: int, index, delta, source_edge_index - ) -> torch.Tensor: - device = x.device - hidden_channels = len(x[0]) - - x_proj = torch.zeros( - length * self.sphere_size_lat * self.sphere_size_long, - hidden_channels, - device=device, - ) - splat_values = x[source_edge_index] - - # Perform bilinear splatting - x_proj.index_add_(0, index[0], splat_values * (delta[0].view(-1, 1))) - x_proj.index_add_(0, index[1], splat_values * (delta[1].view(-1, 1))) - x_proj.index_add_(0, index[2], splat_values * (delta[2].view(-1, 1))) - x_proj.index_add_(0, index[3], splat_values * (delta[3].view(-1, 1))) - - x_proj = x_proj.view( - length, - self.sphere_size_lat * self.sphere_size_long, - hidden_channels, - ) - x_proj = torch.transpose(x_proj, 1, 2).contiguous() - x_proj = x_proj.view( - length, - hidden_channels, - self.sphere_size_lat, - self.sphere_size_long, - ) - - return x_proj - - -class Swish(torch.nn.Module): - def __init__(self) -> None: - super(Swish, self).__init__() - - def forward(self, x): - return x * torch.sigmoid(x) - - -class GaussianSmearing(torch.nn.Module): - def __init__( - self, - start: float = -5.0, - stop: float = 5.0, - num_gaussians: int = 50, - basis_width_scalar: float = 1.0, - ) -> None: - super(GaussianSmearing, self).__init__() - offset = torch.linspace(start, stop, num_gaussians) - self.coeff = ( - -0.5 / (basis_width_scalar * (offset[1] - offset[0])).item() ** 2 - ) - self.register_buffer("offset", offset) - - def forward(self, dist) -> torch.Tensor: - dist = dist.view(-1, 1) - self.offset.view(1, -1) - return torch.exp(self.coeff * torch.pow(dist, 2)) diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index 7af24ffbb..afa5c0a9a 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -603,7 +603,7 @@ def load_optimizer(self) -> None: def load_extras(self) -> None: self.scheduler = LRScheduler(self.optimizer, self.config["optim"]) self.clip_grad_norm = aii( - self.config["optim"].get("clip_grad_norm"), (int, float) + self.config["optim"].get("clip_grad_norm", None), (int, float) ) self.ema_decay = aii(self.config["optim"].get("ema_decay"), float) if self.ema_decay: diff --git a/tests/models/test_cgcnn.py b/tests/models/test_cgcnn.py deleted file mode 100644 index 57873adf0..000000000 --- a/tests/models/test_cgcnn.py +++ /dev/null @@ -1,97 +0,0 @@ -""" -Copyright (c) Facebook, Inc. and its affiliates. - -This source code is licensed under the MIT license found in the -LICENSE file in the root directory of this source tree. -""" - -import os -import random - -import numpy as np -import pytest -import torch -from ase.io import read - -from ocpmodels.common.registry import registry -from ocpmodels.common.transforms import RandomRotate -from ocpmodels.common.utils import setup_imports -from ocpmodels.datasets import data_list_collater -from ocpmodels.preprocessing import AtomsToGraphs - - -@pytest.fixture(scope="class") -def load_data(request) -> None: - atoms = read( - os.path.join(os.path.dirname(os.path.abspath(__file__)), "atoms.json"), - index=0, - format="json", - ) - a2g = AtomsToGraphs( - max_neigh=200, - radius=6, - r_energy=True, - r_forces=True, - r_distances=True, - ) - data_list = a2g.convert_all([atoms]) - request.cls.data = data_list[0] - - -@pytest.fixture(scope="class") -def load_model(request) -> None: - torch.manual_seed(4) - setup_imports() - - num_gaussians = 50 - model = registry.get_model_class("cgcnn")( - None, - num_gaussians, - 1, - cutoff=6.0, - num_gaussians=num_gaussians, - regress_forces=True, - use_pbc=True, - ) - request.cls.model = model - - -@pytest.mark.usefixtures("load_data") -@pytest.mark.usefixtures("load_model") -class TestCGCNN: - def test_rotation_invariance(self) -> None: - random.seed(1) - data = self.data - - # Sampling a random rotation within [-180, 180] for all axes. - transform = RandomRotate([-180, 180], [0, 1, 2]) - data_rotated, rot, inv_rot = transform(data.clone()) - assert not np.array_equal(data.pos, data_rotated.pos) - - # Pass it through the model. - batch = data_list_collater([data, data_rotated]) - out = self.model(batch) - - # Compare predicted energies and forces (after inv-rotation). - energies = out[0].detach() - np.testing.assert_almost_equal(energies[0], energies[1], decimal=5) - - forces = out[1].detach() - np.testing.assert_array_almost_equal( - forces[: forces.shape[0] // 2], - torch.matmul(forces[forces.shape[0] // 2 :], inv_rot), - decimal=5, - ) - - def test_energy_force_shape(self, snapshot) -> None: - # Recreate the Data object to only keep the necessary features. - data = self.data - - # Pass it through the model. - energy, forces = self.model(data_list_collater([data])) - - assert snapshot == energy.shape - assert snapshot == pytest.approx(energy.detach()) - - assert snapshot == forces.shape - assert snapshot == pytest.approx(forces.detach()) diff --git a/tests/models/test_dimenetpp.py b/tests/models/test_dimenetpp.py index 77357cbb2..3eea80b43 100644 --- a/tests/models/test_dimenetpp.py +++ b/tests/models/test_dimenetpp.py @@ -72,10 +72,10 @@ def test_rotation_invariance(self) -> None: out = self.model(batch) # Compare predicted energies and forces (after inv-rotation). - energies = out[0].detach() + energies = out["energy"].detach() np.testing.assert_almost_equal(energies[0], energies[1], decimal=5) - forces = out[1].detach() + forces = out["forces"].detach() logging.info(forces) np.testing.assert_array_almost_equal( forces[: forces.shape[0] // 2], @@ -88,7 +88,8 @@ def test_energy_force_shape(self, snapshot) -> None: data = self.data # Pass it through the model. - energy, forces = self.model(data_list_collater([data])) + outputs = self.model(data_list_collater([data])) + energy, forces = outputs["energy"], outputs["forces"] assert snapshot == energy.shape assert snapshot == pytest.approx(energy.detach()) diff --git a/tests/models/test_equiformer_v2.py b/tests/models/test_equiformer_v2.py index f28e6ea9b..b3ced3e33 100644 --- a/tests/models/test_equiformer_v2.py +++ b/tests/models/test_equiformer_v2.py @@ -109,7 +109,8 @@ def test_energy_force_shape(self, snapshot): data = self.data # Pass it through the model. - energy, forces = self.model(data_list_collater([data])) + outputs = self.model(data_list_collater([data])) + energy, forces = outputs["energy"], outputs["forces"] assert snapshot == energy.shape assert snapshot == pytest.approx(energy.detach()) diff --git a/tests/models/test_forcenet.py b/tests/models/test_forcenet.py deleted file mode 100644 index dcd4d96de..000000000 --- a/tests/models/test_forcenet.py +++ /dev/null @@ -1,66 +0,0 @@ -""" -Copyright (c) Facebook, Inc. and its affiliates. - -This source code is licensed under the MIT license found in the -LICENSE file in the root directory of this source tree. -""" - -import os - -import pytest -import torch -from ase.io import read - -from ocpmodels.common.registry import registry -from ocpmodels.common.utils import setup_imports -from ocpmodels.datasets import data_list_collater -from ocpmodels.preprocessing import AtomsToGraphs - - -@pytest.fixture(scope="class") -def load_data(request) -> None: - atoms = read( - os.path.join(os.path.dirname(os.path.abspath(__file__)), "atoms.json"), - index=0, - format="json", - ) - a2g = AtomsToGraphs( - max_neigh=200, - radius=6, - r_energy=True, - r_forces=True, - r_distances=True, - ) - data_list = a2g.convert_all([atoms]) - request.cls.data = data_list[0] - - -@pytest.fixture(scope="class") -def load_model(request) -> None: - torch.manual_seed(4) - setup_imports() - - model = registry.get_model_class("forcenet")( - None, - 32, - 1, - cutoff=6.0, - ) - request.cls.model = model - - -@pytest.mark.usefixtures("load_data") -@pytest.mark.usefixtures("load_model") -class TestForceNet: - def test_energy_force_shape(self, snapshot) -> None: - # Recreate the Data object to only keep the necessary features. - data = self.data - - # Pass it through the model. - energy, forces = self.model(data_list_collater([data])) - - assert snapshot == energy.shape - assert snapshot == pytest.approx(energy.detach()) - - assert snapshot == forces.shape - assert snapshot == pytest.approx(forces.detach()) diff --git a/tests/models/test_gemnet.py b/tests/models/test_gemnet.py index df86f11b9..a82b8ffc3 100644 --- a/tests/models/test_gemnet.py +++ b/tests/models/test_gemnet.py @@ -88,10 +88,10 @@ def test_rotation_invariance(self) -> None: out = self.model(batch) # Compare predicted energies and forces (after inv-rotation). - energies = out[0].detach() + energies = out["energy"].detach() np.testing.assert_almost_equal(energies[0], energies[1], decimal=5) - forces = out[1].detach() + forces = out["forces"].detach() logging.info(forces) np.testing.assert_array_almost_equal( forces[: forces.shape[0] // 2], @@ -104,7 +104,8 @@ def test_energy_force_shape(self, snapshot) -> None: data = self.data # Pass it through the model. - energy, forces = self.model(data_list_collater([data])) + outputs = self.model(data_list_collater([data])) + energy, forces = outputs["energy"], outputs["forces"] assert snapshot == energy.shape assert snapshot == pytest.approx(energy.detach()) diff --git a/tests/models/test_gemnet_oc.py b/tests/models/test_gemnet_oc.py index 8d9095481..455ac01d8 100644 --- a/tests/models/test_gemnet_oc.py +++ b/tests/models/test_gemnet_oc.py @@ -134,10 +134,10 @@ def test_rotation_invariance(self) -> None: out = self.model(batch) # Compare predicted energies and forces (after inv-rotation). - energies = out[0].detach() + energies = out["energy"].detach() np.testing.assert_almost_equal(energies[0], energies[1], decimal=3) - forces = out[1].detach() + forces = out["forces"].detach() logging.info(forces) np.testing.assert_array_almost_equal( forces[: forces.shape[0] // 2], @@ -150,7 +150,8 @@ def test_energy_force_shape(self, snapshot) -> None: data = self.data # Pass it through the model. - energy, forces = self.model(data_list_collater([data])) + outputs = self.model(data_list_collater([data])) + energy, forces = outputs["energy"], outputs["forces"] assert snapshot == energy.shape assert snapshot == pytest.approx(energy.detach()) diff --git a/tests/models/test_schnet.py b/tests/models/test_schnet.py index 6e6282f83..f2fc4a522 100644 --- a/tests/models/test_schnet.py +++ b/tests/models/test_schnet.py @@ -66,10 +66,10 @@ def test_rotation_invariance(self) -> None: out = self.model(batch) # Compare predicted energies and forces (after inv-rotation). - energies = out[0].detach() + energies = out["energy"].detach() np.testing.assert_almost_equal(energies[0], energies[1], decimal=5) - forces = out[1].detach() + forces = out["forces"].detach() np.testing.assert_array_almost_equal( forces[: forces.shape[0] // 2], torch.matmul(forces[forces.shape[0] // 2 :], inv_rot), @@ -81,7 +81,8 @@ def test_energy_force_shape(self, snapshot) -> None: data = self.data # Pass it through the model. - energy, forces = self.model(data_list_collater([data])) + outputs = self.model(data_list_collater([data])) + energy, forces = outputs["energy"], outputs["forces"] assert snapshot == energy.shape assert snapshot == pytest.approx(energy.detach()) From 7fa38709d5af300a8e7b6a94a44477e1e8531f8d Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Fri, 27 Oct 2023 15:02:07 -0700 Subject: [PATCH 33/63] evaluator test fix --- ocpmodels/modules/evaluator.py | 46 ++++++++++++++----------------- tests/evaluator/test_evaluator.py | 6 ++-- 2 files changed, 23 insertions(+), 29 deletions(-) diff --git a/ocpmodels/modules/evaluator.py b/ocpmodels/modules/evaluator.py index 7eb5b4a01..dc19799cb 100644 --- a/ocpmodels/modules/evaluator.py +++ b/ocpmodels/modules/evaluator.py @@ -35,36 +35,30 @@ class Evaluator: task_metrics = { "s2ef": { - "metrics": { - "energy": ["mae"], - "forces": [ - "forcesx_mae", - "forcesy_mae", - "forcesz_mae", - "mae", - "cosine_similarity", - "magnitude_error", - "energy_forces_within_threshold", - ], - } + "energy": ["mae"], + "forces": [ + "forcesx_mae", + "forcesy_mae", + "forcesz_mae", + "mae", + "cosine_similarity", + "magnitude_error", + "energy_forces_within_threshold", + ], }, "is2rs": { - "metrics": { - "positions": [ - "average_distance_within_threshold", - "mae", - "mse", - ] - } + "positions": [ + "average_distance_within_threshold", + "mae", + "mse", + ] }, "is2re": { - "metrics": { - "energy": [ - "mae", - "mse", - "energy_within_threshold", - ] - }, + "energy": [ + "mae", + "mse", + "energy_within_threshold", + ] }, } diff --git a/tests/evaluator/test_evaluator.py b/tests/evaluator/test_evaluator.py index 448bc9831..7a7fcd300 100644 --- a/tests/evaluator/test_evaluator.py +++ b/tests/evaluator/test_evaluator.py @@ -89,14 +89,14 @@ class TestS2EFEval: def test_metrics_exist(self) -> None: assert "energy_mae" in self.metrics assert "forces_mae" in self.metrics - assert "forces_cos" in self.metrics - assert "energy_force_within_threshold" in self.metrics + assert "forces_cosine_similarity" in self.metrics + assert "energy_forces_within_threshold" in self.metrics @pytest.mark.usefixtures("load_evaluator_is2rs") class TestIS2RSEval: def test_metrics_exist(self) -> None: - assert "average_distance_within_threshold" in self.metrics + assert "positions_average_distance_within_threshold" in self.metrics @pytest.mark.usefixtures("load_evaluator_is2re") From 4371bfa98db61160b37c859908fa08868863eab5 Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Fri, 27 Oct 2023 16:09:13 -0700 Subject: [PATCH 34/63] lint --- ocpmodels/modules/loss.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/ocpmodels/modules/loss.py b/ocpmodels/modules/loss.py index b5daa4950..bf3888d8e 100644 --- a/ocpmodels/modules/loss.py +++ b/ocpmodels/modules/loss.py @@ -70,7 +70,9 @@ def forward( batch_size: Optional[int] = None, ): # ensure torch doesn't do any unwanted broadcasting - assert input.shape == target.shape, f"Mismatched shapes: {input.shape} and {target.shape}" + assert ( + input.shape == target.shape + ), f"Mismatched shapes: {input.shape} and {target.shape}" # zero out nans, if any found_nans_or_infs = not torch.all(input.isfinite()) From 1abf998e15a2d6c7facda5beec8edab7aef17350 Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Fri, 27 Oct 2023 16:47:37 -0700 Subject: [PATCH 35/63] remove old models --- ocpmodels/models/__init__.py | 15 --------------- 1 file changed, 15 deletions(-) diff --git a/ocpmodels/models/__init__.py b/ocpmodels/models/__init__.py index ef016b2e3..626423691 100644 --- a/ocpmodels/models/__init__.py +++ b/ocpmodels/models/__init__.py @@ -2,18 +2,3 @@ # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. - -from .base import BaseModel -from .cgcnn import CGCNN -from .dimenet import DimeNetWrap as DimeNet -from .dimenet_plus_plus import DimeNetPlusPlusWrap as DimeNetPlusPlus -from .equiformer_v2 import EquiformerV2 -from .escn import eSCN -from .forcenet import ForceNet -from .gemnet.gemnet import GemNetT -from .gemnet_gp.gemnet import GraphParallelGemNetT as GraphParallelGemNetT -from .gemnet_oc.gemnet_oc import GemNetOC -from .painn.painn import PaiNN -from .schnet import SchNetWrap as SchNet -from .scn.scn import SphericalChannelNetwork -from .spinconv import spinconv From 8395a3a087b395a7503e1b0ca3ea7bc369447f04 Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Thu, 2 Nov 2023 15:15:25 -0700 Subject: [PATCH 36/63] pass calculator test --- ocpmodels/common/relaxation/ase_utils.py | 45 +++---- ocpmodels/common/utils.py | 6 +- ocpmodels/trainers/base_trainer.py | 124 ++++++++++-------- .../__snapshots__/test_ase_calculator.ambr | 2 +- tests/common/test_ase_calculator.py | 2 +- 5 files changed, 93 insertions(+), 86 deletions(-) diff --git a/ocpmodels/common/relaxation/ase_utils.py b/ocpmodels/common/relaxation/ase_utils.py index ac0614b53..838b3d023 100644 --- a/ocpmodels/common/relaxation/ase_utils.py +++ b/ocpmodels/common/relaxation/ase_utils.py @@ -20,7 +20,12 @@ from ase.constraints import FixAtoms from ocpmodels.common.registry import registry -from ocpmodels.common.utils import load_config, setup_imports, setup_logging +from ocpmodels.common.utils import ( + load_config, + setup_imports, + setup_logging, + update_old_config, +) from ocpmodels.datasets import data_list_collater from ocpmodels.preprocessing import AtomsToGraphs @@ -123,19 +128,8 @@ def __init__( checkpoint_path, map_location=torch.device("cpu") ) config = checkpoint["config"] - if trainer is not None: # passing the arg overrides everything else - config["trainer"] = trainer - else: - if "trainer" not in config: # older checkpoint - if config["task"]["dataset"] == "trajectory_lmdb": - config["trainer"] = "forces" - elif config["task"]["dataset"] == "single_point_lmdb": - config["trainer"] = "energy" - else: - logging.warning( - "Unable to identify OCP trainer, defaulting to `forces`. Specify the `trainer` argument into OCPCalculator if otherwise." - ) - config["trainer"] = "forces" + + config["trainer"] = "ocp" if "model_attributes" in config: config["model_attributes"]["name"] = config.pop("model") @@ -150,20 +144,20 @@ def __init__( config["model"]["otf_graph"] = True # Save config so obj can be transported over network (pkl) + update_old_config(config) self.config = copy.deepcopy(config) self.config["checkpoint"] = checkpoint_path - - if "normalizer" not in config: - del config["dataset"]["src"] - config["normalizer"] = config["dataset"] + del config["dataset"]["src"] self.trainer = registry.get_trainer_class( - config.get("trainer", "energy") + config.get("trainer", "ocp") )( task=config["task"], model=config["model"], - dataset=None, - normalizer=config["normalizer"], + dataset=[config["dataset"]], + outputs=config["outputs"], + loss_fns=config["loss_fns"], + eval_metrics=config["eval_metrics"], optimizer=config["optim"], identifier="", slurm=config.get("slurm", {}), @@ -211,9 +205,8 @@ def calculate(self, atoms: Atoms, properties, system_changes) -> None: predictions = self.trainer.predict( batch, per_image=False, disable_tqdm=True ) - if self.trainer.name == "s2ef": - self.results["energy"] = predictions["energy"].item() - self.results["forces"] = predictions["forces"].cpu().numpy() - elif self.trainer.name == "is2re": - self.results["energy"] = predictions["energy"].item() + for key in predictions: + _pred = predictions[key] + _pred = _pred.item() if _pred.numel() == 1 else _pred.cpu().numpy() + self.results[key] = _pred diff --git a/ocpmodels/common/utils.py b/ocpmodels/common/utils.py index 27364dc5d..3efa08351 100644 --- a/ocpmodels/common/utils.py +++ b/ocpmodels/common/utils.py @@ -1197,7 +1197,11 @@ def irreps_sum(l): def update_old_config(config): ### Read task based off config structure, similar to OCPCalculator. - if config["task"]["dataset"] == "trajectory_lmdb": + if config["task"]["dataset"] in [ + "trajectory_lmdb", + "lmdb", + "trajectory_lmdb_v2", + ]: task = "s2ef" elif config["task"]["dataset"] == "single_point_lmdb": task = "is2re" diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index afa5c0a9a..e30d15be1 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -60,7 +60,6 @@ class BaseTrainer(ABC): test_loader: DataLoader[Any] device: torch.device output_targets: Dict[str, Any] - normalizers: Dict[str, Any] ema: Optional[ExponentialMovingAverage] clip_grad_norm: float ema_decay: float @@ -281,9 +280,6 @@ def get_dataloader(self, dataset, sampler) -> DataLoader: return loader def load_datasets(self) -> None: - logging.info( - f"Loading dataset: {self.config['dataset'].get('format', 'lmdb')}" - ) self.parallel_collater = ParallelCollater( 0 if self.cpu else 1, self.config["model_attributes"].get("otf_graph", False), @@ -294,7 +290,11 @@ def load_datasets(self) -> None: self.test_loader = None # load train, val, test datasets - if self.config.get("dataset", None): + if self.config["dataset"].get("src", None): + logging.info( + f"Loading dataset: {self.config['dataset'].get('format', 'lmdb')}" + ) + self.train_dataset = registry.get_dataset_class( self.config["dataset"].get("format", "lmdb") )(self.config["dataset"]) @@ -1097,22 +1097,11 @@ def predict( desc="device {}".format(rank), disable=disable_tqdm, ): - batch_size = batch_list[0].natoms.numel() - - ### Get unique system identifiers - sids = batch_list[0].sid.tolist() - ## Support naming structure for OC20 S2EF - if "fid" in batch_list[0]: - fids = batch_list[0].fid.tolist() - systemids = [f"{sid}_{fid}" for sid, fid in zip(sids, fids)] - else: - systemids = [f"{sid}" for sid in sids] - - predictions["ids"].extend(systemids) with torch.cuda.amp.autocast(enabled=self.scaler is not None): out = self._forward(batch_list) + batch_size = batch_list[0].natoms.numel() for target_key in self.config["outputs"]: ### Target property is a direct output of the model if target_key in out: @@ -1180,50 +1169,71 @@ def predict( pred = pred.cpu().detach().to(dtype) - ### Split predictions into per-image predictions - if ( - self.config["outputs"][target_key].get("level", "system") - == "atom" - ): - batch_natoms = torch.cat( - [batch.natoms for batch in batch_list] - ) - batch_fixed = torch.cat( - [batch.fixed for batch in batch_list] - ) - per_image_pred = torch.split(pred, batch_natoms.tolist()) + if per_image: + ### Split predictions into per-image predictions + if ( + self.config["outputs"][target_key].get( + "level", "system" + ) + == "atom" + ): + batch_natoms = torch.cat( + [batch.natoms for batch in batch_list] + ) + batch_fixed = torch.cat( + [batch.fixed for batch in batch_list] + ) + per_image_pred = torch.split( + pred, batch_natoms.tolist() + ) - ### Save out only free atom, EvalAI does not need fixed atoms - _per_image_fixed = torch.split( - batch_fixed, batch_natoms.tolist() - ) - _per_image_free_preds = [ - _pred[(fixed == 0).tolist()].numpy() - for _pred, fixed in zip( - per_image_pred, _per_image_fixed + ### Save out only free atom, EvalAI does not need fixed atoms + _per_image_fixed = torch.split( + batch_fixed, batch_natoms.tolist() ) - ] - _chunk_idx = np.array( - [ - free_pred.shape[0] - for free_pred in _per_image_free_preds + _per_image_free_preds = [ + _pred[(fixed == 0).tolist()].numpy() + for _pred, fixed in zip( + per_image_pred, _per_image_fixed + ) ] - ) - per_image_pred = _per_image_free_preds - ### Assumes system level properties are of the same dimension - else: - per_image_pred = pred.numpy() - _chunk_idx = None - - predictions[f"{target_key}"].extend(per_image_pred) - ### Backwards compatibility, retain 'chunk_idx' for forces. - if _chunk_idx is not None: - if target_key == "forces": - predictions["chunk_idx"].extend(_chunk_idx) - else: - predictions[f"{target_key}_chunk_idx"].extend( - _chunk_idx + _chunk_idx = np.array( + [ + free_pred.shape[0] + for free_pred in _per_image_free_preds + ] ) + per_image_pred = _per_image_free_preds + ### Assumes system level properties are of the same dimension + else: + per_image_pred = pred.numpy() + _chunk_idx = None + + predictions[f"{target_key}"].extend(per_image_pred) + ### Backwards compatibility, retain 'chunk_idx' for forces. + if _chunk_idx is not None: + if target_key == "forces": + predictions["chunk_idx"].extend(_chunk_idx) + else: + predictions[f"{target_key}_chunk_idx"].extend( + _chunk_idx + ) + else: + predictions[f"{target_key}"] = pred.detach() + + if not per_image: + return predictions + + ### Get unique system identifiers + sids = batch_list[0].sid.tolist() + ## Support naming structure for OC20 S2EF + if "fid" in batch_list[0]: + fids = batch_list[0].fid.tolist() + systemids = [f"{sid}_{fid}" for sid, fid in zip(sids, fids)] + else: + systemids = [f"{sid}" for sid in sids] + + predictions["ids"].extend(systemids) for key in predictions: predictions[key] = np.array(predictions[key]) diff --git a/tests/common/__snapshots__/test_ase_calculator.ambr b/tests/common/__snapshots__/test_ase_calculator.ambr index 23fbb01b0..2277d3eb2 100644 --- a/tests/common/__snapshots__/test_ase_calculator.ambr +++ b/tests/common/__snapshots__/test_ase_calculator.ambr @@ -1,3 +1,3 @@ # name: TestCalculator.test_relaxation_final_energy - 0.92 + 0.74 # --- diff --git a/tests/common/test_ase_calculator.py b/tests/common/test_ase_calculator.py index ad0c08822..1be5e95db 100644 --- a/tests/common/test_ase_calculator.py +++ b/tests/common/test_ase_calculator.py @@ -43,7 +43,7 @@ def load_model_list(request) -> None: # eSCN "https://dl.fbaipublicfiles.com/opencatalystproject/models/2023_03/s2ef/escn_l6_m3_lay20_all_md_s2ef.pt", # EquiformerV2 - "https://dl.fbaipublicfiles.com/opencatalystproject/models/2023_06/oc20/s2ef/eq2_153M_ec4_allmd.pt", + # "https://dl.fbaipublicfiles.com/opencatalystproject/models/2023_06/oc20/s2ef/eq2_153M_ec4_allmd.pt", ] From a49bb4a6981d4f607393bfa0a49799d74f7b02d6 Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Fri, 3 Nov 2023 13:25:03 -0700 Subject: [PATCH 37/63] remove DP, cleanup --- ocpmodels/common/data_parallel.py | 99 ------- ocpmodels/common/relaxation/ase_utils.py | 4 +- ocpmodels/common/relaxation/ml_relaxation.py | 2 +- ocpmodels/common/utils.py | 18 +- ocpmodels/datasets/oc22_lmdb_dataset.py | 5 +- .../equiformer_v2/trainers/forces_trainer.py | 7 +- ocpmodels/modules/evaluator.py | 31 --- ocpmodels/modules/transforms.py | 4 +- ocpmodels/trainers/base_trainer.py | 244 ++++++++---------- ocpmodels/trainers/ocp_trainer.py | 6 +- 10 files changed, 134 insertions(+), 286 deletions(-) diff --git a/ocpmodels/common/data_parallel.py b/ocpmodels/common/data_parallel.py index 0b3beafdd..18509e039 100644 --- a/ocpmodels/common/data_parallel.py +++ b/ocpmodels/common/data_parallel.py @@ -7,7 +7,6 @@ import heapq import logging -from itertools import chain from pathlib import Path from typing import List, Literal, Protocol, Tuple, Union, runtime_checkable @@ -16,106 +15,8 @@ import numpy.typing as npt import torch from torch.utils.data import BatchSampler, DistributedSampler, Sampler -from torch_geometric.data.data import BaseData from ocpmodels.common import distutils, gp_utils -from ocpmodels.datasets import data_list_collater - - -class OCPDataParallel(torch.nn.DataParallel): - use_cpu: bool - - def __init__( - self, module, output_device: torch.device, num_gpus: int - ) -> None: - if num_gpus < 0: - raise ValueError("# GPUs must be positive.") - if num_gpus > torch.cuda.device_count(): - raise ValueError("# GPUs specified larger than available") - - self.src_device = torch.device(output_device) - - self.use_cpu = False - if num_gpus == 0: - self.use_cpu = True - elif num_gpus == 1: - device_ids = [self.src_device] - else: - if ( - self.src_device.type == "cuda" - and self.src_device.index >= num_gpus - ): - raise ValueError("Main device must be less than # of GPUs") - device_ids = list(range(num_gpus)) - - if self.use_cpu: - super(torch.nn.DataParallel, self).__init__() - self.module = module - - else: - super(OCPDataParallel, self).__init__( - module=module, - device_ids=device_ids, - output_device=self.src_device, - ) - - def forward(self, batch_list, **kwargs): - if self.use_cpu: - return self.module(batch_list[0]) - - if len(self.device_ids) == 1: - return self.module( - batch_list[0].to(f"cuda:{self.device_ids[0]}"), **kwargs - ) - - for t in chain(self.module.parameters(), self.module.buffers()): - if t.device != self.src_device: - raise RuntimeError( - ( - "Module must have its parameters and buffers on device " - "{} but found one of them on device {}." - ).format(self.src_device, t.device) - ) - - inputs = [ - batch.to(f"cuda:{self.device_ids[i]}") - for i, batch in enumerate(batch_list) - ] - replicas = self.replicate(self.module, self.device_ids[: len(inputs)]) - outputs = self.parallel_apply(replicas, inputs, kwargs) - return self.gather(outputs, self.output_device) - - -class ParallelCollater: - def __init__(self, num_gpus: int, otf_graph: bool = False) -> None: - self.num_gpus = num_gpus - self.otf_graph = otf_graph - - def __call__(self, data_list: List[BaseData]) -> List[BaseData]: - if self.num_gpus in [0, 1]: # adds cpu-only case - batch = data_list_collater(data_list, otf_graph=self.otf_graph) - return [batch] - - else: - num_devices = min(self.num_gpus, len(data_list)) - - count = torch.tensor([data.num_nodes for data in data_list]) - cumsum = count.cumsum(0) - cumsum = torch.cat([cumsum.new_zeros(1), cumsum], dim=0) - device_id = ( - num_devices * cumsum.to(torch.float) / cumsum[-1].item() - ) - device_id = (device_id[:-1] + device_id[1:]) / 2.0 - device_id = device_id.to(torch.long) - split = device_id.bincount().cumsum(0) - split = torch.cat([split.new_zeros(1), split], dim=0) - split = torch.unique(split, sorted=True) - split = split.tolist() - - return [ - data_list_collater(data_list[split[i] : split[i + 1]]) - for i in range(len(split) - 1) - ] @numba.njit diff --git a/ocpmodels/common/relaxation/ase_utils.py b/ocpmodels/common/relaxation/ase_utils.py index 838b3d023..2de31bf2d 100644 --- a/ocpmodels/common/relaxation/ase_utils.py +++ b/ocpmodels/common/relaxation/ase_utils.py @@ -24,7 +24,7 @@ load_config, setup_imports, setup_logging, - update_old_config, + update_config, ) from ocpmodels.datasets import data_list_collater from ocpmodels.preprocessing import AtomsToGraphs @@ -144,7 +144,7 @@ def __init__( config["model"]["otf_graph"] = True # Save config so obj can be transported over network (pkl) - update_old_config(config) + config = update_config(config) self.config = copy.deepcopy(config) self.config["checkpoint"] = checkpoint_path del config["dataset"]["src"] diff --git a/ocpmodels/common/relaxation/ml_relaxation.py b/ocpmodels/common/relaxation/ml_relaxation.py index 5305c34b5..655d3f017 100644 --- a/ocpmodels/common/relaxation/ml_relaxation.py +++ b/ocpmodels/common/relaxation/ml_relaxation.py @@ -45,7 +45,7 @@ def ml_relax( save_full_traj: bool Whether to save out the full ASE trajectory. If False, only save out initial and final frames. """ - batches = deque([batch[0]]) + batches = deque([batch]) relaxed_batches = [] while batches: batch = batches.popleft() diff --git a/ocpmodels/common/utils.py b/ocpmodels/common/utils.py index 3efa08351..8ea3addcb 100644 --- a/ocpmodels/common/utils.py +++ b/ocpmodels/common/utils.py @@ -1154,7 +1154,7 @@ def get_commit_hash(): return commit_hash -def cg_decomp_mat(l, device="cpu"): +def cg_change_mat(l, device="cpu"): if l not in [2]: raise NotImplementedError @@ -1188,6 +1188,9 @@ def cg_decomp_mat(l, device="cpu"): def irreps_sum(l): + """ + Returns the sum of the dimensions of the irreps up to the specified l. + """ total = 0 for i in range(l + 1): total += 2 * i + 1 @@ -1195,7 +1198,12 @@ def irreps_sum(l): return total -def update_old_config(config): +def update_config(base_config): + """ + Configs created prior to OCP 2.0 are organized a little different than they + are now. Update old configs to fit the new expected structure. + """ + config = copy.deepcopy(base_config) ### Read task based off config structure, similar to OCPCalculator. if config["task"]["dataset"] in [ "trajectory_lmdb", @@ -1238,13 +1246,15 @@ def update_old_config(config): "energy_coefficient", 1 ), }, + }, + { "forces": { "fn": config["optim"].get("loss_forces", "l2mae"), "coefficient": config["optim"].get( "force_coefficient", 30 ), }, - } + }, ] ### Define evaluation metrics _eval_metrics = { @@ -1297,6 +1307,8 @@ def update_old_config(config): config.update({"eval_metrics": _eval_metrics}) config.update({"outputs": _outputs}) + return config + def get_loss_module(loss_name): if loss_name in ["l1", "mae"]: diff --git a/ocpmodels/datasets/oc22_lmdb_dataset.py b/ocpmodels/datasets/oc22_lmdb_dataset.py index 86a5437cd..c04d614ed 100644 --- a/ocpmodels/datasets/oc22_lmdb_dataset.py +++ b/ocpmodels/datasets/oc22_lmdb_dataset.py @@ -17,6 +17,7 @@ from ocpmodels.common.registry import registry from ocpmodels.common.typing import assert_is_instance as aii from ocpmodels.common.utils import pyg2_data_transform +from ocpmodels.modules.transforms import DataTransforms @registry.register_dataset("oc22_lmdb") @@ -100,7 +101,9 @@ def __init__(self, config, transform=None) -> None: self._keys = list(range(num_entries)) self.num_samples = num_entries - self.transform = transform + self.key_mapping = self.config.get("key_mapping", None) + self.transforms = DataTransforms(self.config.get("transforms", {})) + self.lin_ref = self.oc20_ref = False # only needed for oc20 datasets, oc22 is total by default self.train_on_oc20_total_energies = self.config.get( diff --git a/ocpmodels/models/equiformer_v2/trainers/forces_trainer.py b/ocpmodels/models/equiformer_v2/trainers/forces_trainer.py index 406f2d3e1..b8a58d3ba 100755 --- a/ocpmodels/models/equiformer_v2/trainers/forces_trainer.py +++ b/ocpmodels/models/equiformer_v2/trainers/forces_trainer.py @@ -11,7 +11,6 @@ from torch.nn.parallel.distributed import DistributedDataParallel from ocpmodels.common import distutils -from ocpmodels.common.data_parallel import OCPDataParallel from ocpmodels.common.registry import registry from ocpmodels.modules.exponential_moving_average import ( ExponentialMovingAverage, @@ -93,11 +92,7 @@ def load_model(self) -> None: if self.logger is not None: self.logger.watch(self.model) - self.model = OCPDataParallel( - self.model, - output_device=self.device, - num_gpus=1 if not self.cpu else 0, - ) + self.model.to(self.device) if distutils.initialized() and not self.config["noddp"]: self.model = DistributedDataParallel( self.model, device_ids=[self.device] diff --git a/ocpmodels/modules/evaluator.py b/ocpmodels/modules/evaluator.py index dc19799cb..a963609b9 100644 --- a/ocpmodels/modules/evaluator.py +++ b/ocpmodels/modules/evaluator.py @@ -10,8 +10,6 @@ import numpy as np import torch -from ocpmodels.common.utils import cg_decomp_mat - """ An evaluation module for use with the OCP dataset and suite of tasks. It should be possible to import this independently of the rest of the codebase, e.g: @@ -265,35 +263,6 @@ def average_distance_within_threshold( return {"metric": success / total, "total": success, "numel": total} -def stress_mae_from_decomposition( - prediction: Dict[str, torch.Tensor], - target: Dict[str, torch.Tensor], - key=None, -): - device = prediction["isotropic_stress"].device - cg_matrix = cg_decomp_mat(2, device) - - zero_vectors = torch.zeros( - (prediction["isotropic_stress"].shape[0], 3), - device=device, - ) - prediction_irreps = torch.concat( - [ - prediction["isotropic_stress"].reshape(-1, 1), - zero_vectors, - prediction["anisotropic_stress"].reshape(-1, 5), - ], - dim=1, - ) - prediction_stress = torch.einsum( - "ba, cb->ca", cg_matrix, prediction_irreps - ).reshape(-1) - - target_stress = target["stress"].reshape(-1) - - return mae(prediction_stress, target_stress) - - def min_diff( pred_pos: torch.Tensor, dft_pos: torch.Tensor, diff --git a/ocpmodels/modules/transforms.py b/ocpmodels/modules/transforms.py index 23371c938..0a836daa5 100644 --- a/ocpmodels/modules/transforms.py +++ b/ocpmodels/modules/transforms.py @@ -1,7 +1,7 @@ import torch from torch_geometric.data import Data -from ocpmodels.common.utils import cg_decomp_mat, irreps_sum +from ocpmodels.common.utils import cg_change_mat, irreps_sum class DataTransforms: @@ -32,7 +32,7 @@ def decompose_tensor(data_object, config) -> Data: tensor_decomposition = torch.einsum( "ab, cb->ca", - cg_decomp_mat(rank), + cg_change_mat(rank), data_object[tensor_key].reshape(1, irreps_sum(rank)), ) diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index e30d15be1..dd8ee7904 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -25,23 +25,20 @@ from tqdm import tqdm from ocpmodels.common import distutils, gp_utils -from ocpmodels.common.data_parallel import ( - BalancedBatchSampler, - OCPDataParallel, - ParallelCollater, -) +from ocpmodels.common.data_parallel import BalancedBatchSampler from ocpmodels.common.registry import registry from ocpmodels.common.typing import assert_is_instance as aii from ocpmodels.common.typing import none_throws from ocpmodels.common.utils import ( - cg_decomp_mat, + cg_change_mat, get_commit_hash, get_loss_module, irreps_sum, load_state_dict, save_checkpoint, - update_old_config, + update_config, ) +from ocpmodels.datasets import data_list_collater from ocpmodels.modules.evaluator import Evaluator from ocpmodels.modules.exponential_moving_average import ( ExponentialMovingAverage, @@ -87,12 +84,13 @@ def __init__( slurm={}, noddp: bool = False, ) -> None: + self.name = name + self.is_debug = is_debug self.cpu = cpu self.epoch = 0 self.step = 0 - self.device: torch.device if torch.cuda.is_available() and not self.cpu: self.device = torch.device(f"cuda:{local_rank}") else: @@ -159,6 +157,7 @@ def __init__( "folder" ].replace("%j", self.config["slurm"]["job_id"]) + # Define datasets if isinstance(dataset, list): if len(dataset) > 0: self.config["dataset"] = dataset[0] @@ -178,17 +177,15 @@ def __init__( os.makedirs(self.config["cmd"]["results_dir"], exist_ok=True) os.makedirs(self.config["cmd"]["logs_dir"], exist_ok=True) - self.is_debug = is_debug - - if distutils.is_master(): - logging.info(yaml.dump(self.config, default_flow_style=False)) - ### backwards compatability with OCP v<2.0 if self.name != "ocp": logging.warning( "Detected old config, converting to new format. Consider updating to avoid potential incompatibilities." ) - update_old_config(self.config) + self.config = update_config(self.config) + + if distutils.is_master(): + logging.info(yaml.dump(self.config, default_flow_style=False)) self.load() @@ -272,7 +269,8 @@ def get_sampler( def get_dataloader(self, dataset, sampler) -> DataLoader: loader = DataLoader( dataset, - collate_fn=self.parallel_collater, + # collate_fn=self.parallel_collater, + collate_fn=data_list_collater, num_workers=self.config["optim"]["num_workers"], pin_memory=True, batch_sampler=sampler, @@ -280,10 +278,10 @@ def get_dataloader(self, dataset, sampler) -> DataLoader: return loader def load_datasets(self) -> None: - self.parallel_collater = ParallelCollater( - 0 if self.cpu else 1, - self.config["model_attributes"].get("otf_graph", False), - ) + # self.parallel_collater = ParallelCollater( + # 0 if self.cpu else 1, + # self.config["model_attributes"].get("otf_graph", False), + # ) self.train_loader = None self.val_loader = None @@ -455,11 +453,7 @@ def load_model(self) -> None: if self.logger is not None: self.logger.watch(self.model) - self.model = OCPDataParallel( - self.model, - output_device=self.device, - num_gpus=1 if not self.cpu else 0, - ) + self.model.to(self.device) if distutils.initialized() and not self.config["noddp"]: self.model = DistributedDataParallel( self.model, device_ids=[self.device] @@ -468,7 +462,7 @@ def load_model(self) -> None: @property def _unwrapped_model(self): module = self.model - while isinstance(module, (OCPDataParallel, DistributedDataParallel)): + while isinstance(module, DistributedDataParallel): module = module.module return module @@ -834,19 +828,60 @@ def train(self, disable_eval_tqdm: bool = False) -> None: if self.config.get("test_dataset", False): self.test_dataset.close_db() - def _forward(self, batch_list): - return self.model(batch_list) + def _forward(self, batch): + out = self.model(batch.to(self.device)) + + ### TOOD: Move into BaseModel in OCP 2.0 + outputs = {} + batch_size = batch.natoms.numel() + for target_key in self.config["outputs"]: + ### Target property is a direct output of the model + if target_key in out: + pred = out[target_key] + ## Target property is a derived output of the model. Construct the + ## parent property + else: + _max_rank = 0 + for subtarget_key in self.config["outputs"][target_key][ + "decomposition" + ]: + _max_rank = max( + _max_rank, + self.output_targets[subtarget_key]["irrep_dim"], + ) + + pred_irreps = torch.zeros( + (batch_size, irreps_sum(_max_rank)), device=self.device + ) - def _compute_loss(self, out, batch_list): - natoms = torch.cat( - [batch.natoms.to(self.device) for batch in batch_list], dim=0 - ) + for subtarget_key in self.config["outputs"][target_key][ + "decomposition" + ]: + irreps = self.output_targets[subtarget_key]["irrep_dim"] + _pred = out[subtarget_key] + + ## Fill in the corresponding irreps prediction + pred_irreps[ + :, + max(0, irreps_sum(irreps - 1)) : irreps_sum(irreps), + ] = _pred + + pred = torch.einsum( + "ba, cb->ca", + cg_change_mat(_max_rank, self.device), + pred_irreps, + ) + + outputs[target_key] = pred + + return outputs + + def _compute_loss(self, out, batch): + natoms = batch.natoms.to(self.device) batch_size = natoms.numel() natoms = torch.repeat_interleave(natoms, natoms) - fixed = torch.cat( - [batch.fixed.to(self.device) for batch in batch_list] - ) + fixed = batch.fixed.to(self.device) mask = fixed == 0 loss = [] @@ -854,10 +889,7 @@ def _compute_loss(self, out, batch_list): for loss_fn in self.loss_fns: target_name, loss_info = loss_fn - target = torch.cat( - [batch[target_name].to(self.device) for batch in batch_list], - dim=0, - ) + target = batch[target_name].to(self.device) pred = out[target_name] if self.output_targets[target_name].get( @@ -891,15 +923,11 @@ def _compute_loss(self, out, batch_list): loss = sum(loss) return loss - def _compute_metrics(self, out, batch_list, evaluator, metrics={}): - natoms = torch.cat( - [batch.natoms.to(self.device) for batch in batch_list], dim=0 - ) + def _compute_metrics(self, out, batch, evaluator, metrics={}): + natoms = batch.natoms.to(self.device) ### Retrieve free atoms - fixed = torch.cat( - [batch.fixed.to(self.device) for batch in batch_list] - ) + fixed = batch.fixed.to(self.device) mask = fixed == 0 s_idx = 0 @@ -911,22 +939,13 @@ def _compute_metrics(self, out, batch_list, evaluator, metrics={}): targets = {} for target_name in self.output_targets: - target = torch.cat( - [batch[target_name].to(self.device) for batch in batch_list], - dim=0, - ) + target = batch[target_name].to(self.device) # Add parent target to targets if "parent" in self.output_targets[target_name]: parent_target_name = self.output_targets[target_name]["parent"] if parent_target_name not in targets: - parent_target = torch.cat( - [ - batch[parent_target_name].to(self.device) - for batch in batch_list - ], - dim=0, - ) + parent_target = batch[parent_target_name].to(self.device) targets[parent_target_name] = parent_target if self.output_targets[target_name].get( @@ -982,6 +1001,7 @@ def validate(self, split: str = "val", disable_tqdm: bool = False): ): # Forward. with torch.cuda.amp.autocast(enabled=self.scaler is not None): + batch.to(self.device) out = self._forward(batch) loss = self._compute_loss(out, batch) @@ -1027,8 +1047,8 @@ def _backward(self, loss) -> None: self.optimizer.zero_grad() loss.backward() # Scale down the gradients of shared parameters - if hasattr(self.model.module, "shared_parameters"): - for p, factor in self.model.module.shared_parameters: + if hasattr(self.model, "shared_parameters"): + for p, factor in self.model.shared_parameters: if hasattr(p, "grad") and p.grad is not None: p.grad.detach().div_(factor) else: @@ -1081,7 +1101,7 @@ def predict( rank = distutils.get_rank() if isinstance(data_loader, torch_geometric.data.Batch): - data_loader = [[data_loader]] + data_loader = [data_loader] self.model.eval() if self.ema is not None: @@ -1090,7 +1110,7 @@ def predict( predictions = defaultdict(list) - for i, batch_list in tqdm( + for i, batch in tqdm( enumerate(data_loader), total=len(data_loader), position=rank, @@ -1099,77 +1119,33 @@ def predict( ): with torch.cuda.amp.autocast(enabled=self.scaler is not None): - out = self._forward(batch_list) + out = self._forward(batch) - batch_size = batch_list[0].natoms.numel() + batch_size = batch.natoms.numel() for target_key in self.config["outputs"]: - ### Target property is a direct output of the model - if target_key in out: - pred = out[target_key] - ### Denormalize predictions if needed - if self.normalizers.get(target_key, False): - pred = self.normalizers[target_key].denorm(pred) - ## Target property is a derived output of the model - else: - _max_rank = 0 - for subtarget_key in self.config["outputs"][target_key][ - "decomposition" - ]: - _max_rank = max( - _max_rank, - self.output_targets[subtarget_key]["irrep_dim"], - ) - - pred_irreps = torch.zeros( - (batch_size, irreps_sum(_max_rank)), device=self.device - ) - - for subtarget_key in self.config["outputs"][target_key][ - "decomposition" - ]: - irreps = self.output_targets[subtarget_key][ - "irrep_dim" - ] - _pred = out[subtarget_key] - - ### Denormalize predictions if needed - if self.normalizers.get(subtarget_key, False): - _pred = self.normalizers[subtarget_key].denorm( - _pred - ) - - ## Fill in the corresponding irreps prediction - pred_irreps[ - :, - max(0, irreps_sum(irreps - 1)) : irreps_sum( - irreps - ), - ] = _pred - - pred = torch.einsum( - "ba, cb->ca", - cg_decomp_mat(_max_rank, self.device), - pred_irreps, - ) - - ### Save outputs in desired precision, default float16 - if ( - self.config["outputs"][target_key].get( - "prediction_dtype", "float16" - ) - == "float32" - or self.config["task"].get("prediction_dtype", "float16") - == "float32" - or self.config["task"].get("dataset", "lmdb") - == "oc22_lmdb" - ): - dtype = torch.float32 - else: - dtype = torch.float16 - - pred = pred.cpu().detach().to(dtype) + pred = out[target_key] + if self.normalizers.get(target_key, False): + pred = self.normalizers[target_key].denorm(pred) if per_image: + ### Save outputs in desired precision, default float16 + if ( + self.config["outputs"][target_key].get( + "prediction_dtype", "float16" + ) + == "float32" + or self.config["task"].get( + "prediction_dtype", "float16" + ) + == "float32" + or self.config["task"].get("dataset", "lmdb") + == "oc22_lmdb" + ): + dtype = torch.float32 + else: + dtype = torch.float16 + + pred = pred.cpu().detach().to(dtype) ### Split predictions into per-image predictions if ( self.config["outputs"][target_key].get( @@ -1177,12 +1153,8 @@ def predict( ) == "atom" ): - batch_natoms = torch.cat( - [batch.natoms for batch in batch_list] - ) - batch_fixed = torch.cat( - [batch.fixed for batch in batch_list] - ) + batch_natoms = batch.natoms + batch_fixed = batch.fixed per_image_pred = torch.split( pred, batch_natoms.tolist() ) @@ -1225,10 +1197,10 @@ def predict( return predictions ### Get unique system identifiers - sids = batch_list[0].sid.tolist() + sids = batch.sid.tolist() ## Support naming structure for OC20 S2EF - if "fid" in batch_list[0]: - fids = batch_list[0].fid.tolist() + if "fid" in batch: + fids = batch.fid.tolist() systemids = [f"{sid}_{fid}" for sid, fid in zip(sids, fids)] else: systemids = [f"{sid}" for sid in sids] diff --git a/ocpmodels/trainers/ocp_trainer.py b/ocpmodels/trainers/ocp_trainer.py index 768ef9c1b..18947f409 100644 --- a/ocpmodels/trainers/ocp_trainer.py +++ b/ocpmodels/trainers/ocp_trainer.py @@ -7,21 +7,17 @@ import logging import os -import pathlib from collections import defaultdict -from pathlib import Path import numpy as np import torch -import torch_geometric from tqdm import tqdm from ocpmodels.common import distutils from ocpmodels.common.registry import registry from ocpmodels.common.relaxation.ml_relaxation import ml_relax -from ocpmodels.common.utils import cg_decomp_mat, check_traj_files, irreps_sum +from ocpmodels.common.utils import check_traj_files from ocpmodels.modules.evaluator import Evaluator -from ocpmodels.modules.normalizer import Normalizer from ocpmodels.modules.scaling.util import ensure_fitted from ocpmodels.trainers.base_trainer import BaseTrainer From 1f5a6bea135693181a40d8cc0100c4f71975e88a Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Fri, 3 Nov 2023 13:29:06 -0700 Subject: [PATCH 38/63] remove comments --- ocpmodels/trainers/base_trainer.py | 7 ------- 1 file changed, 7 deletions(-) diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index dd8ee7904..af2087f8f 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -269,7 +269,6 @@ def get_sampler( def get_dataloader(self, dataset, sampler) -> DataLoader: loader = DataLoader( dataset, - # collate_fn=self.parallel_collater, collate_fn=data_list_collater, num_workers=self.config["optim"]["num_workers"], pin_memory=True, @@ -278,11 +277,6 @@ def get_dataloader(self, dataset, sampler) -> DataLoader: return loader def load_datasets(self) -> None: - # self.parallel_collater = ParallelCollater( - # 0 if self.cpu else 1, - # self.config["model_attributes"].get("otf_graph", False), - # ) - self.train_loader = None self.val_loader = None self.test_loader = None @@ -1121,7 +1115,6 @@ def predict( with torch.cuda.amp.autocast(enabled=self.scaler is not None): out = self._forward(batch) - batch_size = batch.natoms.numel() for target_key in self.config["outputs"]: pred = out[target_key] if self.normalizers.get(target_key, False): From 72a90d79e81524767d600e6f1340afaac6bc96ef Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Fri, 3 Nov 2023 15:25:42 -0700 Subject: [PATCH 39/63] eqv2 support --- ocpmodels/common/relaxation/ase_utils.py | 9 +++++---- ocpmodels/trainers/base_trainer.py | 3 ++- tests/common/__snapshots__/test_ase_calculator.ambr | 2 +- tests/common/test_ase_calculator.py | 2 +- 4 files changed, 9 insertions(+), 7 deletions(-) diff --git a/ocpmodels/common/relaxation/ase_utils.py b/ocpmodels/common/relaxation/ase_utils.py index 2de31bf2d..7b7202823 100644 --- a/ocpmodels/common/relaxation/ase_utils.py +++ b/ocpmodels/common/relaxation/ase_utils.py @@ -129,7 +129,10 @@ def __init__( ) config = checkpoint["config"] - config["trainer"] = "ocp" + if trainer is not None: + config["trainer"] = trainer + else: + config["trainer"] = config.get("trainer", "ocp") if "model_attributes" in config: config["model_attributes"]["name"] = config.pop("model") @@ -149,9 +152,7 @@ def __init__( self.config["checkpoint"] = checkpoint_path del config["dataset"]["src"] - self.trainer = registry.get_trainer_class( - config.get("trainer", "ocp") - )( + self.trainer = registry.get_trainer_class(config["trainer"])( task=config["task"], model=config["model"], dataset=[config["dataset"]], diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index af2087f8f..f7da19992 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -178,7 +178,8 @@ def __init__( os.makedirs(self.config["cmd"]["logs_dir"], exist_ok=True) ### backwards compatability with OCP v<2.0 - if self.name != "ocp": + ### TODO: better format check for older configs + if not self.config.get("loss_fns"): logging.warning( "Detected old config, converting to new format. Consider updating to avoid potential incompatibilities." ) diff --git a/tests/common/__snapshots__/test_ase_calculator.ambr b/tests/common/__snapshots__/test_ase_calculator.ambr index 2277d3eb2..23fbb01b0 100644 --- a/tests/common/__snapshots__/test_ase_calculator.ambr +++ b/tests/common/__snapshots__/test_ase_calculator.ambr @@ -1,3 +1,3 @@ # name: TestCalculator.test_relaxation_final_energy - 0.74 + 0.92 # --- diff --git a/tests/common/test_ase_calculator.py b/tests/common/test_ase_calculator.py index 1be5e95db..ad0c08822 100644 --- a/tests/common/test_ase_calculator.py +++ b/tests/common/test_ase_calculator.py @@ -43,7 +43,7 @@ def load_model_list(request) -> None: # eSCN "https://dl.fbaipublicfiles.com/opencatalystproject/models/2023_03/s2ef/escn_l6_m3_lay20_all_md_s2ef.pt", # EquiformerV2 - # "https://dl.fbaipublicfiles.com/opencatalystproject/models/2023_06/oc20/s2ef/eq2_153M_ec4_allmd.pt", + "https://dl.fbaipublicfiles.com/opencatalystproject/models/2023_06/oc20/s2ef/eq2_153M_ec4_allmd.pt", ] From 2a82f56b024943495d11276fad5ef25d48e42dcd Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Fri, 3 Nov 2023 16:34:50 -0700 Subject: [PATCH 40/63] odac energy trainer merge fix --- .../models/equiformer_v2/trainers/energy_trainer.py | 11 +++-------- 1 file changed, 3 insertions(+), 8 deletions(-) diff --git a/ocpmodels/models/equiformer_v2/trainers/energy_trainer.py b/ocpmodels/models/equiformer_v2/trainers/energy_trainer.py index 3fd88639b..a39e6fa83 100644 --- a/ocpmodels/models/equiformer_v2/trainers/energy_trainer.py +++ b/ocpmodels/models/equiformer_v2/trainers/energy_trainer.py @@ -11,12 +11,11 @@ from torch.nn.parallel.distributed import DistributedDataParallel from ocpmodels.common import distutils -from ocpmodels.common.data_parallel import OCPDataParallel from ocpmodels.common.registry import registry from ocpmodels.modules.exponential_moving_average import ( ExponentialMovingAverage, ) -from ocpmodels.trainers import EnergyTrainer +from ocpmodels.trainers import OCPTrainer from .lr_scheduler import LRScheduler @@ -49,7 +48,7 @@ def add_weight_decay(model, weight_decay, skip_list=()): @registry.register_trainer("equiformerv2_energy") -class EquiformerV2EnergyTrainer(EnergyTrainer): +class EquiformerV2EnergyTrainer(OCPTrainer): # This trainer does a few things differently from the parent energy trainer: # - When loading the model, it has a different way of setting up the params # with no weight decay. @@ -95,11 +94,7 @@ def load_model(self): if self.logger is not None: self.logger.watch(self.model) - self.model = OCPDataParallel( - self.model, - output_device=self.device, - num_gpus=1 if not self.cpu else 0, - ) + self.model.to(self.device) if distutils.initialized() and not self.config["noddp"]: self.model = DistributedDataParallel( self.model, device_ids=[self.device] From 843fbbded8a923a71de92aff7e3327263683221c Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Mon, 6 Nov 2023 09:50:55 -0800 Subject: [PATCH 41/63] is2re support --- ocpmodels/common/utils.py | 18 ++++++++++-------- ocpmodels/trainers/base_trainer.py | 4 ++++ 2 files changed, 14 insertions(+), 8 deletions(-) diff --git a/ocpmodels/common/utils.py b/ocpmodels/common/utils.py index 8ea3addcb..599748f79 100644 --- a/ocpmodels/common/utils.py +++ b/ocpmodels/common/utils.py @@ -1235,7 +1235,9 @@ def update_config(base_config): if "primary_metric" in config["task"]: _eval_metrics["primary_metric"] = config["task"]["primary_metric"] ### Define outputs - _outputs = {"energy": {"shape": 1, "level": "system"}} + _outputs = {"energy": {"level": "system"}} + ### Define key mapping + config["dataset"]["key_mapping"] = {"y_relaxed": "energy"} elif task == "s2ef": ### Define loss functions _loss_fns = [ @@ -1275,9 +1277,8 @@ def update_config(base_config): _eval_metrics["primary_metric"] = config["task"]["primary_metric"] ### Define outputs _outputs = { - "energy": {"shape": 1, "level": "system"}, + "energy": {"level": "system"}, "forces": { - "shape": 3, "level": "atom", "train_on_free_atoms": ( config["task"].get("train_on_free_atoms", False) @@ -1287,21 +1288,22 @@ def update_config(base_config): ), }, } + ### Define key mapping + config["dataset"]["key_mapping"] = {"y": "energy", "force": "forces"} if config["dataset"].get("normalize_labels", False): normalizer = { "energy": { - "mean": config["dataset"]["target_mean"], - "stdev": config["dataset"]["target_std"], + "mean": config["dataset"].get("target_mean", 0), + "stdev": config["dataset"].get("target_std", 1), }, "forces": { - "mean": config["dataset"]["grad_target_mean"], - "stdev": config["dataset"]["grad_target_std"], + "mean": config["dataset"].get("grad_target_mean", 0), + "stdev": config["dataset"].get("grad_target_std", 1), }, } config["dataset"]["normalizer"] = normalizer - config["dataset"]["key_mapping"] = {"y": "energy", "force": "forces"} ### Update config config.update({"loss_fns": _loss_fns}) config.update({"eval_metrics": _eval_metrics}) diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index f7da19992..625bcecd1 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -867,6 +867,10 @@ def _forward(self, batch): pred_irreps, ) + ### not all models are consistent with the output shape + if len(pred.shape) > 1: + pred = pred.squeeze(1) + outputs[target_key] = pred return outputs From 4566c231b7909b589a5acfb91d8a4be69b0c39aa Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Mon, 6 Nov 2023 15:28:06 -0800 Subject: [PATCH 42/63] cleanup --- .../2M/equiformer_v2/equiformer_refactor.yml | 131 ------------------ ocpmodels/common/utils.py | 4 +- ocpmodels/datasets/lmdb_dataset.py | 2 +- ocpmodels/trainers/base_trainer.py | 1 - 4 files changed, 3 insertions(+), 135 deletions(-) delete mode 100755 configs/s2ef/2M/equiformer_v2/equiformer_refactor.yml diff --git a/configs/s2ef/2M/equiformer_v2/equiformer_refactor.yml b/configs/s2ef/2M/equiformer_v2/equiformer_refactor.yml deleted file mode 100755 index 5ad262728..000000000 --- a/configs/s2ef/2M/equiformer_v2/equiformer_refactor.yml +++ /dev/null @@ -1,131 +0,0 @@ -trainer: equiformerv2_forces - -dataset: - train: - format: lmdb - src: /datasets01/open_catalyst/oc20/082422/struct_to_energy_forces/train/2M - key_mapping: - y: energy - force: forces - transforms: - normalizer: - energy: - mean: -0.7554450631141663 - stdev: 2.887317180633545 - forces: - mean: 0 - stdev: 2.887317180633545 - val: - src: /datasets01/open_catalyst/oc20/082422/struct_to_energy_forces/val/id_30k - # test: - # src: /datasets01/open_catalyst/oc20/082422/struct_to_energy_forces/val/id_30k - -logger: - name: wandb - project: is2dt_v4 - -loss_functions: - - energy: - fn: mae - coefficient: 1 - - forces: - fn: l2mae - coefficient: 100 - -evaluation_metrics: - metrics: - energy: - - mae - - mse - - energy_within_threshold - forces: - - mae - - cosine_similarity - misc: - - energy_forces_within_threshold - primary_metric: forces_mae - -outputs: - energy: - shape: 1 - level: system - forces: - shape: 3 - level: atom - train_on_free_atoms: True - eval_on_free_atoms: True - -slurm: - constraint: "volta32gb" - -model: - name: equiformer_v2 - - use_pbc: True - regress_forces: True - otf_graph: True - max_neighbors: 20 - max_radius: 12.0 - max_num_elements: 90 - - num_layers: 12 - sphere_channels: 128 - attn_hidden_channels: 64 # [64, 96] This determines the hidden size of message passing. Do not necessarily use 96. - num_heads: 8 - attn_alpha_channels: 64 # Not used when `use_s2_act_attn` is True. - attn_value_channels: 16 - ffn_hidden_channels: 128 - norm_type: 'layer_norm_sh' # ['rms_norm_sh', 'layer_norm', 'layer_norm_sh'] - - lmax_list: [6] - mmax_list: [2] - grid_resolution: 18 # [18, 16, 14, None] For `None`, simply comment this line. - - num_sphere_samples: 128 - - edge_channels: 128 - use_atom_edge_embedding: True - share_atom_edge_embedding: False # If `True`, `use_atom_edge_embedding` must be `True` and the atom edge embedding will be shared across all blocks. - distance_function: 'gaussian' - num_distance_basis: 512 # not used - - attn_activation: 'silu' - use_s2_act_attn: False # [False, True] Switch between attention after S2 activation or the original EquiformerV1 attention. - use_attn_renorm: True # Attention re-normalization. Used for ablation study. - ffn_activation: 'silu' # ['silu', 'swiglu'] - use_gate_act: False # [True, False] Switch between gate activation and S2 activation - use_grid_mlp: True # [False, True] If `True`, use projecting to grids and performing MLPs for FFNs. - use_sep_s2_act: True # Separable S2 activation. Used for ablation study. - - alpha_drop: 0.1 # [0.0, 0.1] - drop_path_rate: 0.05 # [0.0, 0.05] - proj_drop: 0.0 - - weight_init: 'uniform' # ['uniform', 'normal'] - -optim: - batch_size: 4 # 6 - eval_batch_size: 4 # 6 - load_balancing: atoms - num_workers: 8 - lr_initial: 0.0004 # [0.0002, 0.0004], eSCN uses 0.0008 for batch size 96 - - optimizer: AdamW - optimizer_params: - weight_decay: 0.001 - scheduler: LambdaLR - scheduler_params: - lambda_type: cosine - warmup_factor: 0.2 - warmup_epochs: 0.1 - lr_min_factor: 0.01 # - - max_epochs: 30 - force_coefficient: 100 - energy_coefficient: 2 - clip_grad_norm: 100 - ema_decay: 0.999 - loss_energy: mae - loss_force: l2mae - - eval_every: 5000 diff --git a/ocpmodels/common/utils.py b/ocpmodels/common/utils.py index 599748f79..4f0792385 100644 --- a/ocpmodels/common/utils.py +++ b/ocpmodels/common/utils.py @@ -1000,9 +1000,9 @@ class _TrainingContext: setup_imports(config) trainer_name = config.get("trainer", "ocp") # backwards compatibility for older configs - if trainer_name == "forces": + if trainer_name in ["forces", "equiformerv2_forces"]: task_name = "s2ef" - elif trainer_name == "energy": + elif trainer_name in ["energy", "equiformerv2_energy"]: task_name = "is2re" else: task_name = "ocp" diff --git a/ocpmodels/datasets/lmdb_dataset.py b/ocpmodels/datasets/lmdb_dataset.py index 3343628ab..93e13ed33 100644 --- a/ocpmodels/datasets/lmdb_dataset.py +++ b/ocpmodels/datasets/lmdb_dataset.py @@ -159,7 +159,7 @@ def __getitem__(self, idx: int) -> T_co: data_object[new_property] = data_object[_property] del data_object[_property] - self.transforms(data_object) + data_object = self.transforms(data_object) return data_object diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index 625bcecd1..06e63f317 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -1209,7 +1209,6 @@ def predict( predictions[key] = np.array(predictions[key]) self.save_results(predictions, results_file) - # TODO relaxation support if self.ema: self.ema.restore() From 92336ec7022ec7f57c9e9f2419b8457c093b85d4 Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Mon, 6 Nov 2023 15:31:44 -0800 Subject: [PATCH 43/63] config cleanup --- configs/is2re/100k/cgcnn/cgcnn.yml | 32 ----------- configs/is2re/10k/cgcnn/cgcnn.yml | 32 ----------- configs/is2re/all/base.yml | 2 +- configs/is2re/all/cgcnn/cgcnn.yml | 32 ----------- configs/s2ef/200k/cgcnn/cgcnn.yml | 31 ----------- configs/s2ef/200k/forcenet/fn_forceonly.yml | 55 ------------------- configs/s2ef/200k/spinconv/spinconv_force.yml | 37 ------------- configs/s2ef/20M/cgcnn/cgcnn.yml | 32 ----------- configs/s2ef/20M/spinconv/spinconv_force.yml | 37 ------------- configs/s2ef/2M/cgcnn/cgcnn.yml | 32 ----------- configs/s2ef/2M/spinconv/spinconv_force.yml | 37 ------------- configs/s2ef/all/cgcnn/cgcnn.yml | 32 ----------- configs/s2ef/all/spinconv/spinconv_force.yml | 37 ------------- 13 files changed, 1 insertion(+), 427 deletions(-) delete mode 100755 configs/is2re/100k/cgcnn/cgcnn.yml delete mode 100755 configs/is2re/10k/cgcnn/cgcnn.yml delete mode 100755 configs/is2re/all/cgcnn/cgcnn.yml delete mode 100755 configs/s2ef/200k/cgcnn/cgcnn.yml delete mode 100755 configs/s2ef/200k/forcenet/fn_forceonly.yml delete mode 100755 configs/s2ef/200k/spinconv/spinconv_force.yml delete mode 100755 configs/s2ef/20M/cgcnn/cgcnn.yml delete mode 100755 configs/s2ef/20M/spinconv/spinconv_force.yml delete mode 100755 configs/s2ef/2M/cgcnn/cgcnn.yml delete mode 100755 configs/s2ef/2M/spinconv/spinconv_force.yml delete mode 100755 configs/s2ef/all/cgcnn/cgcnn.yml delete mode 100755 configs/s2ef/all/spinconv/spinconv_force.yml diff --git a/configs/is2re/100k/cgcnn/cgcnn.yml b/configs/is2re/100k/cgcnn/cgcnn.yml deleted file mode 100755 index 324b38546..000000000 --- a/configs/is2re/100k/cgcnn/cgcnn.yml +++ /dev/null @@ -1,32 +0,0 @@ -includes: -- configs/is2re/100k/base.yml - -model: - name: cgcnn - atom_embedding_size: 384 - fc_feat_size: 128 - num_fc_layers: 4 - num_graph_conv_layers: 5 - num_gaussians: 100 - cutoff: 6.0 - regress_forces: False - use_pbc: True - -# *** Important note *** -# The total number of gpus used for this run was 1. -# If the global batch size (num_gpus * batch_size) is modified -# the lr_milestones and warmup_steps need to be adjusted accordingly. - -optim: - batch_size: 16 - eval_batch_size: 16 - num_workers: 16 - lr_initial: 0.01 - lr_gamma: 0.1 - lr_milestones: # steps at which lr_initial <- lr_initial * lr_gamma - - 31250 - - 56250 - - 75000 - warmup_steps: 18750 - warmup_factor: 0.2 - max_epochs: 30 diff --git a/configs/is2re/10k/cgcnn/cgcnn.yml b/configs/is2re/10k/cgcnn/cgcnn.yml deleted file mode 100755 index df4bf922e..000000000 --- a/configs/is2re/10k/cgcnn/cgcnn.yml +++ /dev/null @@ -1,32 +0,0 @@ -includes: -- configs/is2re/10k/base.yml - -model: - name: cgcnn - atom_embedding_size: 128 - fc_feat_size: 256 - num_fc_layers: 4 - num_graph_conv_layers: 5 - num_gaussians: 100 - cutoff: 6.0 - regress_forces: False - use_pbc: True - -# *** Important note *** -# The total number of gpus used for this run was 1. -# If the global batch size (num_gpus * batch_size) is modified -# the lr_milestones and warmup_steps need to be adjusted accordingly. - -optim: - batch_size: 64 - eval_batch_size: 64 - num_workers: 16 - lr_initial: 0.01 - lr_gamma: 0.1 - lr_milestones: # steps at which lr_initial <- lr_initial * lr_gamma - - 781 - - 1406 - - 2031 - warmup_steps: 468 - warmup_factor: 0.2 - max_epochs: 20 diff --git a/configs/is2re/all/base.yml b/configs/is2re/all/base.yml index cf61f8309..cfd817ffc 100755 --- a/configs/is2re/all/base.yml +++ b/configs/is2re/all/base.yml @@ -7,7 +7,7 @@ dataset: target_std: 2.279365062713623 - src: data/is2re/all/val_id/data.lmdb -logger: tensorboard +logger: wandb task: dataset: single_point_lmdb diff --git a/configs/is2re/all/cgcnn/cgcnn.yml b/configs/is2re/all/cgcnn/cgcnn.yml deleted file mode 100755 index 8caeda837..000000000 --- a/configs/is2re/all/cgcnn/cgcnn.yml +++ /dev/null @@ -1,32 +0,0 @@ -includes: -- configs/is2re/all/base.yml - -model: - name: cgcnn - atom_embedding_size: 384 - fc_feat_size: 512 - num_fc_layers: 4 - num_graph_conv_layers: 6 - num_gaussians: 100 - cutoff: 6.0 - regress_forces: False - use_pbc: True - -# *** Important note *** -# The total number of gpus used for this run was 4. -# If the global batch size (num_gpus * batch_size) is modified -# the lr_milestones and warmup_steps need to be adjusted accordingly. - -optim: - batch_size: 32 - eval_batch_size: 32 - num_workers: 16 - lr_initial: 0.01 - lr_gamma: 0.1 - lr_milestones: # steps at which lr_initial <- lr_initial * lr_gamma - - 17981 - - 32366 - - 46752 - warmup_steps: 10788 - warmup_factor: 0.2 - max_epochs: 20 diff --git a/configs/s2ef/200k/cgcnn/cgcnn.yml b/configs/s2ef/200k/cgcnn/cgcnn.yml deleted file mode 100755 index fd27082fb..000000000 --- a/configs/s2ef/200k/cgcnn/cgcnn.yml +++ /dev/null @@ -1,31 +0,0 @@ -includes: -- configs/s2ef/200k/base.yml - -model: - name: cgcnn - atom_embedding_size: 128 - fc_feat_size: 128 - num_fc_layers: 3 - num_graph_conv_layers: 2 - cutoff: 6.0 - num_gaussians: 100 - use_pbc: True - -# *** Important note *** -# The total number of gpus used for this run was 4. -# If the global batch size (num_gpus * batch_size) is modified -# the lr_milestones and warmup_steps need to be adjusted accordingly. - -optim: - batch_size: 32 - eval_batch_size: 32 - num_workers: 16 - lr_initial: 0.0005 - lr_gamma: 0.1 - lr_milestones: # steps at which lr_initial <- lr_initial * lr_gamma - - 23437 - - 31250 - warmup_steps: 3125 - warmup_factor: 0.2 - max_epochs: 50 - force_coefficient: 10 diff --git a/configs/s2ef/200k/forcenet/fn_forceonly.yml b/configs/s2ef/200k/forcenet/fn_forceonly.yml deleted file mode 100755 index e85592d89..000000000 --- a/configs/s2ef/200k/forcenet/fn_forceonly.yml +++ /dev/null @@ -1,55 +0,0 @@ -trainer: forces - -dataset: - - src: data/s2ef/200k/train/ - - src: data/s2ef/all/val_id/ - -model: - name: forcenet - num_interactions: 5 - cutoff: 6 - basis: "sphallmul" - ablation: "none" - depth_mlp_edge: 2 - depth_mlp_node: 1 - activation_str: "swish" - decoder_activation_str: "swish" - feat: "full" - hidden_channels: 512 - decoder_hidden_channels: 512 - max_n: 3 - -# *** Important note *** -# The total number of gpus used for this run was 8. -# If the global batch size (num_gpus * batch_size) is modified -# the lr_milestones and warmup_steps need to be adjusted accordingly. - -optim: - batch_size: 8 - eval_batch_size: 8 - eval_every: 10000 - num_workers: 8 - lr_initial: 0.0005 - max_epochs: 20 - energy_coefficient: 0 - lr_gamma: 0.1 - lr_milestones: # steps at which lr_initial <- lr_initial * lr_gamma - - 15625 - - 25000 - - 31250 - warmup_steps: 9375 - warmup_factor: 0.2 - -task: - dataset: trajectory_lmdb - description: "Regressing to energies and forces for DFT trajectories from OCP" - type: regression - metric: mae - primary_metric: forces_mae - labels: - - potential energy - grad_input: atomic forces - tag_specific_weights: - - 0.05 - - 1.0 - - 1.0 diff --git a/configs/s2ef/200k/spinconv/spinconv_force.yml b/configs/s2ef/200k/spinconv/spinconv_force.yml deleted file mode 100755 index c7c929340..000000000 --- a/configs/s2ef/200k/spinconv/spinconv_force.yml +++ /dev/null @@ -1,37 +0,0 @@ -includes: -- configs/s2ef/200k/base.yml - -model: - name: spinconv - model_ref_number: 0 - hidden_channels: 32 - mid_hidden_channels: 256 - num_interactions: 3 - num_basis_functions: 512 - sphere_size_lat: 16 - sphere_size_long: 12 - max_num_neighbors: 40 - cutoff: 6.0 - sphere_message: fullconv - output_message: fullconv - force_estimator: random - regress_forces: True - use_pbc: True - scale_distances: True - basis_width_scalar: 3.0 - -optim: - batch_size: 3 - eval_batch_size: 3 - num_workers: 8 - lr_initial: 0.0004 - optimizer: Adam - optimizer_params: {"amsgrad": True} - eval_every: 5000 - scheduler: ReduceLROnPlateau - mode: min - factor: 0.8 - patience: 3 - max_epochs: 80 - force_coefficient: 100 - energy_coefficient: 1 diff --git a/configs/s2ef/20M/cgcnn/cgcnn.yml b/configs/s2ef/20M/cgcnn/cgcnn.yml deleted file mode 100755 index 60aa4bee4..000000000 --- a/configs/s2ef/20M/cgcnn/cgcnn.yml +++ /dev/null @@ -1,32 +0,0 @@ -includes: -- configs/s2ef/20M/base.yml - -model: - name: cgcnn - atom_embedding_size: 512 - fc_feat_size: 128 - num_fc_layers: 3 - num_graph_conv_layers: 3 - cutoff: 6.0 - num_gaussians: 100 - use_pbc: True - -# *** Important note *** -# The total number of gpus used for this run was 48. -# If the global batch size (num_gpus * batch_size) is modified -# the lr_milestones and warmup_steps need to be adjusted accordingly. - -optim: - batch_size: 24 - eval_batch_size: 24 - num_workers: 16 - lr_initial: 0.0005 - lr_gamma: 0.1 - lr_milestones: # steps at which lr_initial <- lr_initial * lr_gamma - - 52083 - - 86805 - - 121527 - warmup_steps: 34722 - warmup_factor: 0.2 - max_epochs: 20 - force_coefficient: 100 diff --git a/configs/s2ef/20M/spinconv/spinconv_force.yml b/configs/s2ef/20M/spinconv/spinconv_force.yml deleted file mode 100755 index 51deaed0e..000000000 --- a/configs/s2ef/20M/spinconv/spinconv_force.yml +++ /dev/null @@ -1,37 +0,0 @@ -includes: -- configs/s2ef/20M/base.yml - -model: - name: spinconv - model_ref_number: 0 - hidden_channels: 32 - mid_hidden_channels: 256 - num_interactions: 3 - num_basis_functions: 512 - sphere_size_lat: 16 - sphere_size_long: 12 - max_num_neighbors: 40 - cutoff: 6.0 - sphere_message: fullconv - output_message: fullconv - force_estimator: random - regress_forces: True - use_pbc: True - scale_distances: True - basis_width_scalar: 3.0 - -optim: - batch_size: 3 - eval_batch_size: 3 - num_workers: 8 - lr_initial: 0.0004 - optimizer: Adam - optimizer_params: {"amsgrad": True} - eval_every: 5000 - scheduler: ReduceLROnPlateau - mode: min - factor: 0.8 - patience: 3 - max_epochs: 80 - force_coefficient: 100 - energy_coefficient: 1 diff --git a/configs/s2ef/2M/cgcnn/cgcnn.yml b/configs/s2ef/2M/cgcnn/cgcnn.yml deleted file mode 100755 index dfc5ba76f..000000000 --- a/configs/s2ef/2M/cgcnn/cgcnn.yml +++ /dev/null @@ -1,32 +0,0 @@ -includes: -- configs/s2ef/2M/base.yml - -model: - name: cgcnn - atom_embedding_size: 384 - fc_feat_size: 128 - num_fc_layers: 3 - num_graph_conv_layers: 3 - cutoff: 6.0 - num_gaussians: 100 - use_pbc: True - -# *** Important note *** -# The total number of gpus used for this run was 8. -# If the global batch size (num_gpus * batch_size) is modified -# the lr_milestones and warmup_steps need to be adjusted accordingly. - -optim: - batch_size: 8 - eval_batch_size: 8 - num_workers: 8 - lr_initial: 0.001 - lr_gamma: 0.1 - lr_milestones: # steps at which lr_initial <- lr_initial * lr_gamma - - 156250 - - 281250 - - 437500 - warmup_steps: 62500 - warmup_factor: 0.2 - max_epochs: 20 - force_coefficient: 10 diff --git a/configs/s2ef/2M/spinconv/spinconv_force.yml b/configs/s2ef/2M/spinconv/spinconv_force.yml deleted file mode 100755 index ac25afd57..000000000 --- a/configs/s2ef/2M/spinconv/spinconv_force.yml +++ /dev/null @@ -1,37 +0,0 @@ -includes: -- configs/s2ef/2M/base.yml - -model: - name: spinconv - model_ref_number: 0 - hidden_channels: 32 - mid_hidden_channels: 256 - num_interactions: 3 - num_basis_functions: 512 - sphere_size_lat: 16 - sphere_size_long: 12 - max_num_neighbors: 40 - cutoff: 6.0 - sphere_message: fullconv - output_message: fullconv - force_estimator: random - regress_forces: True - use_pbc: True - scale_distances: True - basis_width_scalar: 3.0 - -optim: - batch_size: 3 - eval_batch_size: 3 - num_workers: 8 - lr_initial: 0.0004 - optimizer: Adam - optimizer_params: {"amsgrad": True} - eval_every: 5000 - scheduler: ReduceLROnPlateau - mode: min - factor: 0.8 - patience: 3 - max_epochs: 80 - force_coefficient: 100 - energy_coefficient: 1 diff --git a/configs/s2ef/all/cgcnn/cgcnn.yml b/configs/s2ef/all/cgcnn/cgcnn.yml deleted file mode 100755 index 4b3b4e3bc..000000000 --- a/configs/s2ef/all/cgcnn/cgcnn.yml +++ /dev/null @@ -1,32 +0,0 @@ -includes: -- configs/s2ef/all/base.yml - -model: - name: cgcnn - atom_embedding_size: 512 - fc_feat_size: 128 - num_fc_layers: 3 - num_graph_conv_layers: 3 - cutoff: 6.0 - num_gaussians: 100 - use_pbc: True - -# *** Important note *** -# The total number of gpus used for this run was 32. -# If the global batch size (num_gpus * batch_size) is modified -# the lr_milestones and warmup_steps need to be adjusted accordingly. - -optim: - batch_size: 24 - eval_batch_size: 24 - num_workers: 16 - lr_initial: 0.0005 - lr_gamma: 0.1 - lr_milestones: # steps at which lr_initial <- lr_initial * lr_gamma - - 523179 - - 871966 - - 1220752 - warmup_steps: 348786 - warmup_factor: 0.2 - max_epochs: 20 - force_coefficient: 10 diff --git a/configs/s2ef/all/spinconv/spinconv_force.yml b/configs/s2ef/all/spinconv/spinconv_force.yml deleted file mode 100755 index da2a9348a..000000000 --- a/configs/s2ef/all/spinconv/spinconv_force.yml +++ /dev/null @@ -1,37 +0,0 @@ -includes: -- configs/s2ef/all/base.yml - -model: - name: spinconv - model_ref_number: 0 - hidden_channels: 32 - mid_hidden_channels: 256 - num_interactions: 3 - num_basis_functions: 512 - sphere_size_lat: 16 - sphere_size_long: 12 - max_num_neighbors: 40 - cutoff: 6.0 - sphere_message: fullconv - output_message: fullconv - force_estimator: random - regress_forces: True - use_pbc: True - scale_distances: True - basis_width_scalar: 3.0 - -optim: - batch_size: 3 - eval_batch_size: 3 - num_workers: 8 - lr_initial: 0.0004 - optimizer: Adam - optimizer_params: {"amsgrad": True} - eval_every: 5000 - scheduler: ReduceLROnPlateau - mode: min - factor: 0.8 - patience: 3 - max_epochs: 80 - force_coefficient: 100 - energy_coefficient: 1 From 371ad84f585e02992d134599e97121d9ffec47ba Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Mon, 6 Nov 2023 16:21:44 -0800 Subject: [PATCH 44/63] oc22 support --- ocpmodels/common/utils.py | 2 ++ ocpmodels/datasets/oc22_lmdb_dataset.py | 14 +++++++++++--- ocpmodels/modules/transforms.py | 5 ++++- 3 files changed, 17 insertions(+), 4 deletions(-) diff --git a/ocpmodels/common/utils.py b/ocpmodels/common/utils.py index 4f0792385..354dd86fd 100644 --- a/ocpmodels/common/utils.py +++ b/ocpmodels/common/utils.py @@ -1204,11 +1204,13 @@ def update_config(base_config): are now. Update old configs to fit the new expected structure. """ config = copy.deepcopy(base_config) + config["dataset"]["format"] = config["task"].get("dataset", "lmdb") ### Read task based off config structure, similar to OCPCalculator. if config["task"]["dataset"] in [ "trajectory_lmdb", "lmdb", "trajectory_lmdb_v2", + "oc22_lmdb", ]: task = "s2ef" elif config["task"]["dataset"] == "single_point_lmdb": diff --git a/ocpmodels/datasets/oc22_lmdb_dataset.py b/ocpmodels/datasets/oc22_lmdb_dataset.py index c04d614ed..aee0a2f81 100644 --- a/ocpmodels/datasets/oc22_lmdb_dataset.py +++ b/ocpmodels/datasets/oc22_lmdb_dataset.py @@ -149,8 +149,6 @@ def __getitem__(self, idx): ) data_object = pyg2_data_transform(pickle.loads(datapoint_pickled)) - if self.transform is not None: - data_object = self.transform(data_object) # make types consistent sid = data_object.sid if isinstance(sid, torch.Tensor): @@ -168,7 +166,7 @@ def __getitem__(self, idx): attr = "y" # if targets are not available, test data is being used else: - return data_object + return self.transforms(data_object) # convert s2ef energies to raw energies if attr == "y": @@ -199,6 +197,14 @@ def __getitem__(self, idx): lin_energy = sum(self.lin_ref[data_object.atomic_numbers.long()]) data_object[attr] -= lin_energy + if self.key_mapping is not None: + for _property in self.key_mapping: + if _property in data_object: + new_property = self.key_mapping[_property] + if new_property not in data_object: + data_object[new_property] = data_object[_property] + del data_object[_property] + # to jointly train on oc22+oc20, need to delete these oc20-only attributes # ensure otf_graph=1 in your model configuration if "edge_index" in data_object: @@ -208,6 +214,8 @@ def __getitem__(self, idx): if "distances" in data_object: del data_object.distances + data_object = self.transforms(data_object) + return data_object def connect_db(self, lmdb_path=None): diff --git a/ocpmodels/modules/transforms.py b/ocpmodels/modules/transforms.py index 0a836daa5..ffdbe2a3c 100644 --- a/ocpmodels/modules/transforms.py +++ b/ocpmodels/modules/transforms.py @@ -13,7 +13,8 @@ def __call__(self, data_object): return data_object for transform_fn in self.config: - # TODO move normalizer into dataset + # TODO: Normalization information used in the trainers. Ignore here + # for now. if transform_fn == "normalizer": continue data_object = eval(transform_fn)( @@ -27,6 +28,8 @@ def decompose_tensor(data_object, config) -> Data: tensor_key = config["tensor"] rank = config["rank"] + assert tensor_key in data_object + if rank != 2: raise NotImplementedError From de2a6adc75adb9040a24ab300383a4f1d7c759ed Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Mon, 6 Nov 2023 16:52:31 -0800 Subject: [PATCH 45/63] introduce collater to handle otf_graph arg --- ocpmodels/common/data_parallel.py | 11 +++++++++++ ocpmodels/trainers/base_trainer.py | 8 +++++--- 2 files changed, 16 insertions(+), 3 deletions(-) diff --git a/ocpmodels/common/data_parallel.py b/ocpmodels/common/data_parallel.py index 18509e039..123ee35b8 100644 --- a/ocpmodels/common/data_parallel.py +++ b/ocpmodels/common/data_parallel.py @@ -15,8 +15,19 @@ import numpy.typing as npt import torch from torch.utils.data import BatchSampler, DistributedSampler, Sampler +from torch_geometric.data import Batch, Data from ocpmodels.common import distutils, gp_utils +from ocpmodels.datasets import data_list_collater + + +class OCPCollater: + def __init__(self, otf_graph: bool = False) -> None: + self.otf_graph = otf_graph + + def __call__(self, data_list: List[Data]) -> Batch: + batch = data_list_collater(data_list, otf_graph=self.otf_graph) + return batch @numba.njit diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index 06e63f317..b0af991f9 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -25,7 +25,7 @@ from tqdm import tqdm from ocpmodels.common import distutils, gp_utils -from ocpmodels.common.data_parallel import BalancedBatchSampler +from ocpmodels.common.data_parallel import BalancedBatchSampler, OCPCollater from ocpmodels.common.registry import registry from ocpmodels.common.typing import assert_is_instance as aii from ocpmodels.common.typing import none_throws @@ -38,7 +38,6 @@ save_checkpoint, update_config, ) -from ocpmodels.datasets import data_list_collater from ocpmodels.modules.evaluator import Evaluator from ocpmodels.modules.exponential_moving_average import ( ExponentialMovingAverage, @@ -270,7 +269,7 @@ def get_sampler( def get_dataloader(self, dataset, sampler) -> DataLoader: loader = DataLoader( dataset, - collate_fn=data_list_collater, + collate_fn=self.ocp_collater, num_workers=self.config["optim"]["num_workers"], pin_memory=True, batch_sampler=sampler, @@ -278,6 +277,9 @@ def get_dataloader(self, dataset, sampler) -> DataLoader: return loader def load_datasets(self) -> None: + self.ocp_collater = OCPCollater( + self.config["model_attributes"].get("otf_graph", False) + ) self.train_loader = None self.val_loader = None self.test_loader = None From 5df5120fb6aa0940160f7899863dad433bf23f67 Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Mon, 6 Nov 2023 16:58:07 -0800 Subject: [PATCH 46/63] organize methods --- ocpmodels/trainers/base_trainer.py | 279 ----------------------------- ocpmodels/trainers/ocp_trainer.py | 279 ++++++++++++++++++++++++++++- 2 files changed, 278 insertions(+), 280 deletions(-) diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index b0af991f9..8ee19f398 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -30,10 +30,8 @@ from ocpmodels.common.typing import assert_is_instance as aii from ocpmodels.common.typing import none_throws from ocpmodels.common.utils import ( - cg_change_mat, get_commit_hash, get_loss_module, - irreps_sum, load_state_dict, save_checkpoint, update_config, @@ -692,283 +690,6 @@ def update_best( disable_tqdm=disable_eval_tqdm, ) - def train(self, disable_eval_tqdm: bool = False) -> None: - ensure_fitted(self._unwrapped_model, warn=True) - - eval_every = self.config["optim"].get( - "eval_every", len(self.train_loader) - ) - checkpoint_every = self.config["optim"].get( - "checkpoint_every", eval_every - ) - primary_metric = self.evaluation_metrics.get( - "primary_metric", self.evaluator.task_primary_metric[self.name] - ) - if ( - not hasattr(self, "primary_metric") - or self.primary_metric != primary_metric - ): - self.best_val_metric = 1e9 if "mae" in primary_metric else -1.0 - else: - primary_metric = self.primary_metric - self.metrics = {} - - # Calculate start_epoch from step instead of loading the epoch number - # to prevent inconsistencies due to different batch size in checkpoint. - start_epoch = self.step // len(self.train_loader) - - for epoch_int in range( - start_epoch, self.config["optim"]["max_epochs"] - ): - self.train_sampler.set_epoch(epoch_int) - skip_steps = self.step % len(self.train_loader) - train_loader_iter = iter(self.train_loader) - - for i in range(skip_steps, len(self.train_loader)): - self.epoch = epoch_int + (i + 1) / len(self.train_loader) - self.step = epoch_int * len(self.train_loader) + i + 1 - self.model.train() - - # Get a batch. - batch = next(train_loader_iter) - - # Forward, loss, backward. - with torch.cuda.amp.autocast(enabled=self.scaler is not None): - out = self._forward(batch) - loss = self._compute_loss(out, batch) - loss = self.scaler.scale(loss) if self.scaler else loss - self._backward(loss) - scale = self.scaler.get_scale() if self.scaler else 1.0 - - # Compute metrics. - self.metrics = self._compute_metrics( - out, - batch, - self.evaluator, - self.metrics, - ) - self.metrics = self.evaluator.update( - "loss", loss.item() / scale, self.metrics - ) - - # Log metrics. - log_dict = {k: self.metrics[k]["metric"] for k in self.metrics} - log_dict.update( - { - "lr": self.scheduler.get_lr(), - "epoch": self.epoch, - "step": self.step, - } - ) - if ( - self.step % self.config["cmd"]["print_every"] == 0 - and distutils.is_master() - ): - log_str = [ - "{}: {:.2e}".format(k, v) for k, v in log_dict.items() - ] - logging.info(", ".join(log_str)) - self.metrics = {} - - if self.logger is not None: - self.logger.log( - log_dict, - step=self.step, - split="train", - ) - - if ( - checkpoint_every != -1 - and self.step % checkpoint_every == 0 - ): - self.save( - checkpoint_file="checkpoint.pt", training_state=True - ) - - # Evaluate on val set every `eval_every` iterations. - if self.step % eval_every == 0: - if self.val_loader is not None: - val_metrics = self.validate( - split="val", - disable_tqdm=disable_eval_tqdm, - ) - self.update_best( - primary_metric, - val_metrics, - disable_eval_tqdm=disable_eval_tqdm, - ) - - if self.config["task"].get("eval_relaxations", False): - if "relax_dataset" not in self.config["task"]: - logging.warning( - "Cannot evaluate relaxations, relax_dataset not specified" - ) - else: - self.run_relaxations() - - if self.scheduler.scheduler_type == "ReduceLROnPlateau": - if self.step % eval_every == 0: - self.scheduler.step( - metrics=val_metrics[primary_metric]["metric"], - ) - else: - self.scheduler.step() - - torch.cuda.empty_cache() - - if checkpoint_every == -1: - self.save(checkpoint_file="checkpoint.pt", training_state=True) - - self.train_dataset.close_db() - if self.config.get("val_dataset", False): - self.val_dataset.close_db() - if self.config.get("test_dataset", False): - self.test_dataset.close_db() - - def _forward(self, batch): - out = self.model(batch.to(self.device)) - - ### TOOD: Move into BaseModel in OCP 2.0 - outputs = {} - batch_size = batch.natoms.numel() - for target_key in self.config["outputs"]: - ### Target property is a direct output of the model - if target_key in out: - pred = out[target_key] - ## Target property is a derived output of the model. Construct the - ## parent property - else: - _max_rank = 0 - for subtarget_key in self.config["outputs"][target_key][ - "decomposition" - ]: - _max_rank = max( - _max_rank, - self.output_targets[subtarget_key]["irrep_dim"], - ) - - pred_irreps = torch.zeros( - (batch_size, irreps_sum(_max_rank)), device=self.device - ) - - for subtarget_key in self.config["outputs"][target_key][ - "decomposition" - ]: - irreps = self.output_targets[subtarget_key]["irrep_dim"] - _pred = out[subtarget_key] - - ## Fill in the corresponding irreps prediction - pred_irreps[ - :, - max(0, irreps_sum(irreps - 1)) : irreps_sum(irreps), - ] = _pred - - pred = torch.einsum( - "ba, cb->ca", - cg_change_mat(_max_rank, self.device), - pred_irreps, - ) - - ### not all models are consistent with the output shape - if len(pred.shape) > 1: - pred = pred.squeeze(1) - - outputs[target_key] = pred - - return outputs - - def _compute_loss(self, out, batch): - natoms = batch.natoms.to(self.device) - batch_size = natoms.numel() - natoms = torch.repeat_interleave(natoms, natoms) - - fixed = batch.fixed.to(self.device) - mask = fixed == 0 - - loss = [] - - for loss_fn in self.loss_fns: - target_name, loss_info = loss_fn - - target = batch[target_name].to(self.device) - pred = out[target_name] - - if self.output_targets[target_name].get( - "level", "system" - ) == "atom" and self.output_targets[target_name].get( - "train_on_free_atoms", True - ): - target = target[mask] - pred = pred[mask] - natoms = natoms[mask] - - if self.normalizers.get(target_name, False): - target = self.normalizers[target_name].norm(target) - - mult = loss_info["coefficient"] - - loss.append( - mult - * loss_info["fn"]( - pred, - target, - natoms=natoms, - batch_size=batch_size, - ) - ) - - # Sanity check to make sure the compute graph is correct. - for lc in loss: - assert hasattr(lc, "grad_fn") - - loss = sum(loss) - return loss - - def _compute_metrics(self, out, batch, evaluator, metrics={}): - natoms = batch.natoms.to(self.device) - - ### Retrieve free atoms - fixed = batch.fixed.to(self.device) - mask = fixed == 0 - - s_idx = 0 - natoms_free = [] - for _natoms in natoms: - natoms_free.append(torch.sum(mask[s_idx : s_idx + _natoms]).item()) - s_idx += _natoms - natoms = torch.LongTensor(natoms_free).to(self.device) - - targets = {} - for target_name in self.output_targets: - target = batch[target_name].to(self.device) - # Add parent target to targets - if "parent" in self.output_targets[target_name]: - parent_target_name = self.output_targets[target_name]["parent"] - - if parent_target_name not in targets: - parent_target = batch[parent_target_name].to(self.device) - targets[parent_target_name] = parent_target - - if self.output_targets[target_name].get( - "level", "system" - ) == "atom" and self.output_targets[target_name].get( - "eval_on_free_atoms", True - ): - target = target[mask] - out[target_name] = out[target_name][mask] - - targets[target_name] = target - if self.normalizers.get(target_name, False): - out[target_name] = self.normalizers[target_name].denorm( - out[target_name] - ) - - targets["natoms"] = natoms - out["natoms"] = natoms - - metrics = evaluator.eval(out, targets, prev_metrics=metrics) - return metrics - @torch.no_grad() def validate(self, split: str = "val", disable_tqdm: bool = False): ensure_fitted(self._unwrapped_model, warn=True) diff --git a/ocpmodels/trainers/ocp_trainer.py b/ocpmodels/trainers/ocp_trainer.py index 18947f409..fc2514b7d 100644 --- a/ocpmodels/trainers/ocp_trainer.py +++ b/ocpmodels/trainers/ocp_trainer.py @@ -16,7 +16,7 @@ from ocpmodels.common import distutils from ocpmodels.common.registry import registry from ocpmodels.common.relaxation.ml_relaxation import ml_relax -from ocpmodels.common.utils import check_traj_files +from ocpmodels.common.utils import cg_change_mat, check_traj_files, irreps_sum from ocpmodels.modules.evaluator import Evaluator from ocpmodels.modules.scaling.util import ensure_fitted from ocpmodels.trainers.base_trainer import BaseTrainer @@ -106,6 +106,283 @@ def __init__( name=name, ) + def train(self, disable_eval_tqdm: bool = False) -> None: + ensure_fitted(self._unwrapped_model, warn=True) + + eval_every = self.config["optim"].get( + "eval_every", len(self.train_loader) + ) + checkpoint_every = self.config["optim"].get( + "checkpoint_every", eval_every + ) + primary_metric = self.evaluation_metrics.get( + "primary_metric", self.evaluator.task_primary_metric[self.name] + ) + if ( + not hasattr(self, "primary_metric") + or self.primary_metric != primary_metric + ): + self.best_val_metric = 1e9 if "mae" in primary_metric else -1.0 + else: + primary_metric = self.primary_metric + self.metrics = {} + + # Calculate start_epoch from step instead of loading the epoch number + # to prevent inconsistencies due to different batch size in checkpoint. + start_epoch = self.step // len(self.train_loader) + + for epoch_int in range( + start_epoch, self.config["optim"]["max_epochs"] + ): + self.train_sampler.set_epoch(epoch_int) + skip_steps = self.step % len(self.train_loader) + train_loader_iter = iter(self.train_loader) + + for i in range(skip_steps, len(self.train_loader)): + self.epoch = epoch_int + (i + 1) / len(self.train_loader) + self.step = epoch_int * len(self.train_loader) + i + 1 + self.model.train() + + # Get a batch. + batch = next(train_loader_iter) + + # Forward, loss, backward. + with torch.cuda.amp.autocast(enabled=self.scaler is not None): + out = self._forward(batch) + loss = self._compute_loss(out, batch) + loss = self.scaler.scale(loss) if self.scaler else loss + self._backward(loss) + scale = self.scaler.get_scale() if self.scaler else 1.0 + + # Compute metrics. + self.metrics = self._compute_metrics( + out, + batch, + self.evaluator, + self.metrics, + ) + self.metrics = self.evaluator.update( + "loss", loss.item() / scale, self.metrics + ) + + # Log metrics. + log_dict = {k: self.metrics[k]["metric"] for k in self.metrics} + log_dict.update( + { + "lr": self.scheduler.get_lr(), + "epoch": self.epoch, + "step": self.step, + } + ) + if ( + self.step % self.config["cmd"]["print_every"] == 0 + and distutils.is_master() + ): + log_str = [ + "{}: {:.2e}".format(k, v) for k, v in log_dict.items() + ] + logging.info(", ".join(log_str)) + self.metrics = {} + + if self.logger is not None: + self.logger.log( + log_dict, + step=self.step, + split="train", + ) + + if ( + checkpoint_every != -1 + and self.step % checkpoint_every == 0 + ): + self.save( + checkpoint_file="checkpoint.pt", training_state=True + ) + + # Evaluate on val set every `eval_every` iterations. + if self.step % eval_every == 0: + if self.val_loader is not None: + val_metrics = self.validate( + split="val", + disable_tqdm=disable_eval_tqdm, + ) + self.update_best( + primary_metric, + val_metrics, + disable_eval_tqdm=disable_eval_tqdm, + ) + + if self.config["task"].get("eval_relaxations", False): + if "relax_dataset" not in self.config["task"]: + logging.warning( + "Cannot evaluate relaxations, relax_dataset not specified" + ) + else: + self.run_relaxations() + + if self.scheduler.scheduler_type == "ReduceLROnPlateau": + if self.step % eval_every == 0: + self.scheduler.step( + metrics=val_metrics[primary_metric]["metric"], + ) + else: + self.scheduler.step() + + torch.cuda.empty_cache() + + if checkpoint_every == -1: + self.save(checkpoint_file="checkpoint.pt", training_state=True) + + self.train_dataset.close_db() + if self.config.get("val_dataset", False): + self.val_dataset.close_db() + if self.config.get("test_dataset", False): + self.test_dataset.close_db() + + def _forward(self, batch): + out = self.model(batch.to(self.device)) + + ### TOOD: Move into BaseModel in OCP 2.0 + outputs = {} + batch_size = batch.natoms.numel() + for target_key in self.config["outputs"]: + ### Target property is a direct output of the model + if target_key in out: + pred = out[target_key] + ## Target property is a derived output of the model. Construct the + ## parent property + else: + _max_rank = 0 + for subtarget_key in self.config["outputs"][target_key][ + "decomposition" + ]: + _max_rank = max( + _max_rank, + self.output_targets[subtarget_key]["irrep_dim"], + ) + + pred_irreps = torch.zeros( + (batch_size, irreps_sum(_max_rank)), device=self.device + ) + + for subtarget_key in self.config["outputs"][target_key][ + "decomposition" + ]: + irreps = self.output_targets[subtarget_key]["irrep_dim"] + _pred = out[subtarget_key] + + ## Fill in the corresponding irreps prediction + pred_irreps[ + :, + max(0, irreps_sum(irreps - 1)) : irreps_sum(irreps), + ] = _pred + + pred = torch.einsum( + "ba, cb->ca", + cg_change_mat(_max_rank, self.device), + pred_irreps, + ) + + ### not all models are consistent with the output shape + if len(pred.shape) > 1: + pred = pred.squeeze(1) + + outputs[target_key] = pred + + return outputs + + def _compute_loss(self, out, batch): + natoms = batch.natoms.to(self.device) + batch_size = natoms.numel() + natoms = torch.repeat_interleave(natoms, natoms) + + fixed = batch.fixed.to(self.device) + mask = fixed == 0 + + loss = [] + + for loss_fn in self.loss_fns: + target_name, loss_info = loss_fn + + target = batch[target_name].to(self.device) + pred = out[target_name] + + if self.output_targets[target_name].get( + "level", "system" + ) == "atom" and self.output_targets[target_name].get( + "train_on_free_atoms", True + ): + target = target[mask] + pred = pred[mask] + natoms = natoms[mask] + + if self.normalizers.get(target_name, False): + target = self.normalizers[target_name].norm(target) + + mult = loss_info["coefficient"] + + loss.append( + mult + * loss_info["fn"]( + pred, + target, + natoms=natoms, + batch_size=batch_size, + ) + ) + + # Sanity check to make sure the compute graph is correct. + for lc in loss: + assert hasattr(lc, "grad_fn") + + loss = sum(loss) + return loss + + def _compute_metrics(self, out, batch, evaluator, metrics={}): + natoms = batch.natoms.to(self.device) + + ### Retrieve free atoms + fixed = batch.fixed.to(self.device) + mask = fixed == 0 + + s_idx = 0 + natoms_free = [] + for _natoms in natoms: + natoms_free.append(torch.sum(mask[s_idx : s_idx + _natoms]).item()) + s_idx += _natoms + natoms = torch.LongTensor(natoms_free).to(self.device) + + targets = {} + for target_name in self.output_targets: + target = batch[target_name].to(self.device) + # Add parent target to targets + if "parent" in self.output_targets[target_name]: + parent_target_name = self.output_targets[target_name]["parent"] + + if parent_target_name not in targets: + parent_target = batch[parent_target_name].to(self.device) + targets[parent_target_name] = parent_target + + if self.output_targets[target_name].get( + "level", "system" + ) == "atom" and self.output_targets[target_name].get( + "eval_on_free_atoms", True + ): + target = target[mask] + out[target_name] = out[target_name][mask] + + targets[target_name] = target + if self.normalizers.get(target_name, False): + out[target_name] = self.normalizers[target_name].denorm( + out[target_name] + ) + + targets["natoms"] = natoms + out["natoms"] = natoms + + metrics = evaluator.eval(out, targets, prev_metrics=metrics) + return metrics + def run_relaxations(self, split="val"): ensure_fitted(self._unwrapped_model) From 2f793a8c85425e3e50b637fe0d1f58562938e479 Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Mon, 6 Nov 2023 17:14:46 -0800 Subject: [PATCH 47/63] include parent in targets --- ocpmodels/trainers/base_trainer.py | 11 +++++------ ocpmodels/trainers/ocp_trainer.py | 7 ++++--- 2 files changed, 9 insertions(+), 9 deletions(-) diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index 8ee19f398..46e04a8ba 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -371,11 +371,10 @@ def load_task(self): self.output_targets = {} for target_name in self.config["outputs"]: - if "decomposition" not in self.config["outputs"][target_name]: - self.output_targets[target_name] = self.config["outputs"][ - target_name - ] - else: + self.output_targets[target_name] = self.config["outputs"][ + target_name + ] + if "decomposition" in self.config["outputs"][target_name]: for subtarget in self.config["outputs"][target_name][ "decomposition" ]: @@ -407,7 +406,7 @@ def load_task(self): "eval_on_free_atoms", True ) - # TODO: Assert that all targets, loss fn, metrics defined and consistent + # TODO: Assert that all targets, loss fn, metrics defined are consistent self.evaluation_metrics = self.config.get("eval_metrics", {}) self.evaluator = Evaluator( task=self.name, diff --git a/ocpmodels/trainers/ocp_trainer.py b/ocpmodels/trainers/ocp_trainer.py index fc2514b7d..32d6e75bb 100644 --- a/ocpmodels/trainers/ocp_trainer.py +++ b/ocpmodels/trainers/ocp_trainer.py @@ -245,7 +245,7 @@ def _forward(self, batch): ### TOOD: Move into BaseModel in OCP 2.0 outputs = {} batch_size = batch.natoms.numel() - for target_key in self.config["outputs"]: + for target_key in self.output_targets: ### Target property is a direct output of the model if target_key in out: pred = out[target_key] @@ -253,7 +253,7 @@ def _forward(self, batch): ## parent property else: _max_rank = 0 - for subtarget_key in self.config["outputs"][target_key][ + for subtarget_key in self.output_targets[target_key][ "decomposition" ]: _max_rank = max( @@ -265,7 +265,7 @@ def _forward(self, batch): (batch_size, irreps_sum(_max_rank)), device=self.device ) - for subtarget_key in self.config["outputs"][target_key][ + for subtarget_key in self.output_targets[target_key][ "decomposition" ]: irreps = self.output_targets[subtarget_key]["irrep_dim"] @@ -284,6 +284,7 @@ def _forward(self, batch): ) ### not all models are consistent with the output shape + # TODO: Verify not an issue for high order predictions if len(pred.shape) > 1: pred = pred.squeeze(1) From 26179df3185a356eee4e01c8f9d9ba93e6fad3e6 Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Tue, 7 Nov 2023 13:30:18 -0800 Subject: [PATCH 48/63] shape flexibility --- ocpmodels/trainers/base_trainer.py | 139 ------------------- ocpmodels/trainers/ocp_trainer.py | 205 ++++++++++++++++++++++++----- 2 files changed, 174 insertions(+), 170 deletions(-) diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index 46e04a8ba..e69f46cce 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -18,7 +18,6 @@ import torch import torch.nn as nn import torch.optim as optim -import torch_geometric import yaml from torch.nn.parallel.distributed import DistributedDataParallel from torch.utils.data import DataLoader @@ -799,144 +798,6 @@ def _backward(self, loss) -> None: if self.ema: self.ema.update() - # Takes in a new data source and generates predictions on it. - @torch.no_grad() - def predict( - self, - data_loader, - per_image: bool = True, - results_file: Optional[str] = None, - disable_tqdm: bool = False, - ): - ensure_fitted(self._unwrapped_model, warn=True) - - if distutils.is_master() and not disable_tqdm: - logging.info("Predicting on test.") - assert isinstance( - data_loader, - ( - torch.utils.data.dataloader.DataLoader, - torch_geometric.data.Batch, - ), - ) - rank = distutils.get_rank() - - if isinstance(data_loader, torch_geometric.data.Batch): - data_loader = [data_loader] - - self.model.eval() - if self.ema is not None: - self.ema.store() - self.ema.copy_to() - - predictions = defaultdict(list) - - for i, batch in tqdm( - enumerate(data_loader), - total=len(data_loader), - position=rank, - desc="device {}".format(rank), - disable=disable_tqdm, - ): - - with torch.cuda.amp.autocast(enabled=self.scaler is not None): - out = self._forward(batch) - - for target_key in self.config["outputs"]: - pred = out[target_key] - if self.normalizers.get(target_key, False): - pred = self.normalizers[target_key].denorm(pred) - - if per_image: - ### Save outputs in desired precision, default float16 - if ( - self.config["outputs"][target_key].get( - "prediction_dtype", "float16" - ) - == "float32" - or self.config["task"].get( - "prediction_dtype", "float16" - ) - == "float32" - or self.config["task"].get("dataset", "lmdb") - == "oc22_lmdb" - ): - dtype = torch.float32 - else: - dtype = torch.float16 - - pred = pred.cpu().detach().to(dtype) - ### Split predictions into per-image predictions - if ( - self.config["outputs"][target_key].get( - "level", "system" - ) - == "atom" - ): - batch_natoms = batch.natoms - batch_fixed = batch.fixed - per_image_pred = torch.split( - pred, batch_natoms.tolist() - ) - - ### Save out only free atom, EvalAI does not need fixed atoms - _per_image_fixed = torch.split( - batch_fixed, batch_natoms.tolist() - ) - _per_image_free_preds = [ - _pred[(fixed == 0).tolist()].numpy() - for _pred, fixed in zip( - per_image_pred, _per_image_fixed - ) - ] - _chunk_idx = np.array( - [ - free_pred.shape[0] - for free_pred in _per_image_free_preds - ] - ) - per_image_pred = _per_image_free_preds - ### Assumes system level properties are of the same dimension - else: - per_image_pred = pred.numpy() - _chunk_idx = None - - predictions[f"{target_key}"].extend(per_image_pred) - ### Backwards compatibility, retain 'chunk_idx' for forces. - if _chunk_idx is not None: - if target_key == "forces": - predictions["chunk_idx"].extend(_chunk_idx) - else: - predictions[f"{target_key}_chunk_idx"].extend( - _chunk_idx - ) - else: - predictions[f"{target_key}"] = pred.detach() - - if not per_image: - return predictions - - ### Get unique system identifiers - sids = batch.sid.tolist() - ## Support naming structure for OC20 S2EF - if "fid" in batch: - fids = batch.fid.tolist() - systemids = [f"{sid}_{fid}" for sid, fid in zip(sids, fids)] - else: - systemids = [f"{sid}" for sid in sids] - - predictions["ids"].extend(systemids) - - for key in predictions: - predictions[key] = np.array(predictions[key]) - - self.save_results(predictions, results_file) - - if self.ema: - self.ema.restore() - - return predictions - def save_results( self, predictions, results_file: Optional[str], keys=None ) -> None: diff --git a/ocpmodels/trainers/ocp_trainer.py b/ocpmodels/trainers/ocp_trainer.py index 32d6e75bb..3ea5c3d95 100644 --- a/ocpmodels/trainers/ocp_trainer.py +++ b/ocpmodels/trainers/ocp_trainer.py @@ -8,9 +8,11 @@ import logging import os from collections import defaultdict +from typing import Optional import numpy as np import torch +import torch_geometric from tqdm import tqdm from ocpmodels.common import distutils @@ -245,6 +247,7 @@ def _forward(self, batch): ### TOOD: Move into BaseModel in OCP 2.0 outputs = {} batch_size = batch.natoms.numel() + num_atoms_in_batch = batch.natoms.sum() for target_key in self.output_targets: ### Target property is a direct output of the model if target_key in out: @@ -272,10 +275,11 @@ def _forward(self, batch): _pred = out[subtarget_key] ## Fill in the corresponding irreps prediction + ## Reshape irrep prediction to (batch_size, irrep_dim) pred_irreps[ :, max(0, irreps_sum(irreps - 1)) : irreps_sum(irreps), - ] = _pred + ] = _pred.view(batch_size, -1) pred = torch.einsum( "ba, cb->ca", @@ -284,44 +288,49 @@ def _forward(self, batch): ) ### not all models are consistent with the output shape - # TODO: Verify not an issue for high order predictions - if len(pred.shape) > 1: - pred = pred.squeeze(1) + ### reshape accordingly: num_atoms_in_batch, -1 or num_systems_in_batch, -1 + if self.output_targets[target_key]["level"] == "atom": + pred = pred.view(num_atoms_in_batch, -1) + else: + pred = pred.view(batch_size, -1) outputs[target_key] = pred return outputs def _compute_loss(self, out, batch): - natoms = batch.natoms.to(self.device) - batch_size = natoms.numel() - natoms = torch.repeat_interleave(natoms, natoms) - - fixed = batch.fixed.to(self.device) + batch_size = batch.natoms.numel() + fixed = batch.fixed mask = fixed == 0 loss = [] - for loss_fn in self.loss_fns: target_name, loss_info = loss_fn - target = batch[target_name].to(self.device) + target = batch[target_name] pred = out[target_name] + natoms = batch.natoms + natoms = torch.repeat_interleave(natoms, natoms) - if self.output_targets[target_name].get( - "level", "system" - ) == "atom" and self.output_targets[target_name].get( - "train_on_free_atoms", True + if ( + self.output_targets[target_name]["level"] == "atom" + and self.output_targets[target_name]["train_on_free_atoms"] ): target = target[mask] pred = pred[mask] natoms = natoms[mask] + num_atoms_in_batch = natoms.numel() if self.normalizers.get(target_name, False): target = self.normalizers[target_name].norm(target) - mult = loss_info["coefficient"] + ### reshape accordingly: num_atoms_in_batch, -1 or num_systems_in_batch, -1 + if self.output_targets[target_name]["level"] == "atom": + target = target.view(num_atoms_in_batch, -1) + else: + target = target.view(batch_size, -1) + mult = loss_info["coefficient"] loss.append( mult * loss_info["fn"]( @@ -340,10 +349,11 @@ def _compute_loss(self, out, batch): return loss def _compute_metrics(self, out, batch, evaluator, metrics={}): - natoms = batch.natoms.to(self.device) + natoms = batch.natoms + batch_size = natoms.numel() ### Retrieve free atoms - fixed = batch.fixed.to(self.device) + fixed = batch.fixed mask = fixed == 0 s_idx = 0 @@ -355,22 +365,22 @@ def _compute_metrics(self, out, batch, evaluator, metrics={}): targets = {} for target_name in self.output_targets: - target = batch[target_name].to(self.device) - # Add parent target to targets - if "parent" in self.output_targets[target_name]: - parent_target_name = self.output_targets[target_name]["parent"] - - if parent_target_name not in targets: - parent_target = batch[parent_target_name].to(self.device) - targets[parent_target_name] = parent_target - - if self.output_targets[target_name].get( - "level", "system" - ) == "atom" and self.output_targets[target_name].get( - "eval_on_free_atoms", True + target = batch[target_name] + num_atoms_in_batch = batch.natoms.sum() + + if ( + self.output_targets[target_name]["level"] == "atom" + and self.output_targets[target_name]["eval_on_free_atoms"] ): target = target[mask] out[target_name] = out[target_name][mask] + num_atoms_in_batch = natoms.sum() + + ### reshape accordingly: num_atoms_in_batch, -1 or num_systems_in_batch, -1 + if self.output_targets[target_name]["level"] == "atom": + target = target.view(num_atoms_in_batch, -1) + else: + target = target.view(batch_size, -1) targets[target_name] = target if self.normalizers.get(target_name, False): @@ -384,6 +394,139 @@ def _compute_metrics(self, out, batch, evaluator, metrics={}): metrics = evaluator.eval(out, targets, prev_metrics=metrics) return metrics + # Takes in a new data source and generates predictions on it. + @torch.no_grad() + def predict( + self, + data_loader, + per_image: bool = True, + results_file: Optional[str] = None, + disable_tqdm: bool = False, + ): + ensure_fitted(self._unwrapped_model, warn=True) + + if distutils.is_master() and not disable_tqdm: + logging.info("Predicting on test.") + assert isinstance( + data_loader, + ( + torch.utils.data.dataloader.DataLoader, + torch_geometric.data.Batch, + ), + ) + rank = distutils.get_rank() + + if isinstance(data_loader, torch_geometric.data.Batch): + data_loader = [data_loader] + + self.model.eval() + if self.ema is not None: + self.ema.store() + self.ema.copy_to() + + predictions = defaultdict(list) + + for i, batch in tqdm( + enumerate(data_loader), + total=len(data_loader), + position=rank, + desc="device {}".format(rank), + disable=disable_tqdm, + ): + + with torch.cuda.amp.autocast(enabled=self.scaler is not None): + out = self._forward(batch) + + for target_key in self.config["outputs"]: + pred = out[target_key] + if self.normalizers.get(target_key, False): + pred = self.normalizers[target_key].denorm(pred) + + if per_image: + ### Save outputs in desired precision, default float16 + if ( + self.config["outputs"][target_key].get( + "prediction_dtype", "float16" + ) + == "float32" + or self.config["task"].get( + "prediction_dtype", "float16" + ) + == "float32" + or self.config["task"].get("dataset", "lmdb") + == "oc22_lmdb" + ): + dtype = torch.float32 + else: + dtype = torch.float16 + + pred = pred.cpu().detach().to(dtype) + ### Split predictions into per-image predictions + if self.config["outputs"][target_key]["level"] == "atom": + batch_natoms = batch.natoms + batch_fixed = batch.fixed + per_image_pred = torch.split( + pred, batch_natoms.tolist() + ) + + ### Save out only free atom, EvalAI does not need fixed atoms + _per_image_fixed = torch.split( + batch_fixed, batch_natoms.tolist() + ) + _per_image_free_preds = [ + _pred[(fixed == 0).tolist()].numpy() + for _pred, fixed in zip( + per_image_pred, _per_image_fixed + ) + ] + _chunk_idx = np.array( + [ + free_pred.shape[0] + for free_pred in _per_image_free_preds + ] + ) + per_image_pred = _per_image_free_preds + ### Assumes system level properties are of the same dimension + else: + per_image_pred = pred.numpy() + _chunk_idx = None + + predictions[f"{target_key}"].extend(per_image_pred) + ### Backwards compatibility, retain 'chunk_idx' for forces. + if _chunk_idx is not None: + if target_key == "forces": + predictions["chunk_idx"].extend(_chunk_idx) + else: + predictions[f"{target_key}_chunk_idx"].extend( + _chunk_idx + ) + else: + predictions[f"{target_key}"] = pred.detach() + + if not per_image: + return predictions + + ### Get unique system identifiers + sids = batch.sid.tolist() + ## Support naming structure for OC20 S2EF + if "fid" in batch: + fids = batch.fid.tolist() + systemids = [f"{sid}_{fid}" for sid, fid in zip(sids, fids)] + else: + systemids = [f"{sid}" for sid in sids] + + predictions["ids"].extend(systemids) + + for key in predictions: + predictions[key] = np.array(predictions[key]) + + self.save_results(predictions, results_file) + + if self.ema: + self.ema.restore() + + return predictions + def run_relaxations(self, split="val"): ensure_fitted(self._unwrapped_model) From cc6c6c27110f401b74f71c52be6ed7e0f838d1e2 Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Tue, 7 Nov 2023 16:12:24 -0800 Subject: [PATCH 49/63] cleanup debug lines --- configs/is2re/all/base.yml | 2 +- ocpmodels/models/gemnet_oc/gemnet_oc.py | 17 +++-------------- 2 files changed, 4 insertions(+), 15 deletions(-) diff --git a/configs/is2re/all/base.yml b/configs/is2re/all/base.yml index cfd817ffc..cf61f8309 100755 --- a/configs/is2re/all/base.yml +++ b/configs/is2re/all/base.yml @@ -7,7 +7,7 @@ dataset: target_std: 2.279365062713623 - src: data/is2re/all/val_id/data.lmdb -logger: wandb +logger: tensorboard task: dataset: single_point_lmdb diff --git a/ocpmodels/models/gemnet_oc/gemnet_oc.py b/ocpmodels/models/gemnet_oc/gemnet_oc.py index a8486ad80..d6e0d8362 100644 --- a/ocpmodels/models/gemnet_oc/gemnet_oc.py +++ b/ocpmodels/models/gemnet_oc/gemnet_oc.py @@ -1323,6 +1323,8 @@ def forward(self, data): E_t, batch, dim=0, dim_size=nMolecules, reduce="mean" ) # (nMolecules, num_targets) + E_t = E_t.squeeze(1) # (num_molecules) + outputs = {"energy": E_t} if self.regress_forces: if self.direct_forces: if self.forces_coupled: # enforce F_st = F_ts @@ -1354,22 +1356,9 @@ def forward(self, data): else: F_t = self.force_scaler.calc_forces_and_update(E_t, pos) - E_t = E_t.squeeze(1) # (num_molecules) F_t = F_t.squeeze(1) # (num_atoms, 3) - outputs = { - "energy": E_t, - "forces": F_t, - "isotropic_stress": torch.rand( - (E_t.numel(), 1), device=E_t.device - ), - "anisotropic_stress": torch.rand( - (E_t.numel(), 5), device=E_t.device - ), - } - else: - E_t = E_t.squeeze(1) # (num_molecules) - outputs = {"y": E_t} + outputs["forces"] = F_t return outputs From d2bdc6e383ebcf65f5306e53355bee91fc952105 Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Tue, 7 Nov 2023 17:03:18 -0800 Subject: [PATCH 50/63] cleanup --- ocpmodels/trainers/base_trainer.py | 11 +---------- 1 file changed, 1 insertion(+), 10 deletions(-) diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index e69f46cce..426ae8a57 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -11,7 +11,7 @@ import random from abc import ABC from collections import defaultdict -from typing import Any, DefaultDict, Dict, Optional +from typing import DefaultDict, Dict, Optional import numpy as np import numpy.typing as npt @@ -48,15 +48,6 @@ @registry.register_trainer("base") class BaseTrainer(ABC): - train_loader: DataLoader[Any] - val_loader: DataLoader[Any] - test_loader: DataLoader[Any] - device: torch.device - output_targets: Dict[str, Any] - ema: Optional[ExponentialMovingAverage] - clip_grad_norm: float - ema_decay: float - def __init__( self, task, From 9984ae7618ba87d4d6e08537f68545f23f36150f Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Tue, 14 Nov 2023 15:51:40 -0800 Subject: [PATCH 51/63] normalizer bugfix for new configs --- ocpmodels/trainers/base_trainer.py | 6 ++++-- ocpmodels/trainers/ocp_trainer.py | 5 ++++- 2 files changed, 8 insertions(+), 3 deletions(-) diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index 426ae8a57..62ece8107 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -350,9 +350,11 @@ def load_datasets(self) -> None: def load_task(self): # Normalizer for the dataset. + normalizer = ( + self.config["dataset"].get("transforms", {}).get("normalizer", {}) + ) self.normalizers = {} - if "normalizer" in self.config["dataset"]: - normalizer = self.config["dataset"]["normalizer"] + if normalizer: for target in normalizer: self.normalizers[target] = Normalizer( mean=normalizer[target].get("mean", 0), diff --git a/ocpmodels/trainers/ocp_trainer.py b/ocpmodels/trainers/ocp_trainer.py index 3ea5c3d95..812f68fa9 100644 --- a/ocpmodels/trainers/ocp_trainer.py +++ b/ocpmodels/trainers/ocp_trainer.py @@ -244,7 +244,7 @@ def train(self, disable_eval_tqdm: bool = False) -> None: def _forward(self, batch): out = self.model(batch.to(self.device)) - ### TOOD: Move into BaseModel in OCP 2.0 + ### TODO: Move into BaseModel in OCP 2.0 outputs = {} batch_size = batch.natoms.numel() num_atoms_in_batch = batch.natoms.sum() @@ -274,6 +274,9 @@ def _forward(self, batch): irreps = self.output_targets[subtarget_key]["irrep_dim"] _pred = out[subtarget_key] + if self.normalizers.get(subtarget_key, False): + _pred = self.normalizers[subtarget_key].denorm(_pred) + ## Fill in the corresponding irreps prediction ## Reshape irrep prediction to (batch_size, irrep_dim) pred_irreps[ From d278b6e81021f97e942bd837cb8613fdc387f9ba Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Fri, 17 Nov 2023 09:36:48 -0800 Subject: [PATCH 52/63] calculator normalization fix, backwards support for ckpt loads --- ocpmodels/common/utils.py | 5 ++++- ocpmodels/trainers/base_trainer.py | 17 +++++++++++++---- 2 files changed, 17 insertions(+), 5 deletions(-) diff --git a/ocpmodels/common/utils.py b/ocpmodels/common/utils.py index 354dd86fd..53b497e32 100644 --- a/ocpmodels/common/utils.py +++ b/ocpmodels/common/utils.py @@ -1304,7 +1304,10 @@ def update_config(base_config): "stdev": config["dataset"].get("grad_target_std", 1), }, } - config["dataset"]["normalizer"] = normalizer + + transforms = config["dataset"].get("transforms", {}) + transforms["normalizer"] = normalizer + config["dataset"]["transforms"] = transforms ### Update config config.update({"loss_fns": _loss_fns}) diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index 62ece8107..ea46c024a 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -515,12 +515,21 @@ def load_checkpoint( load_scales_compat(self._unwrapped_model, scale_dict) for key in checkpoint["normalizers"]: - if key in self.normalizers: - self.normalizers[key].load_state_dict( + ### Convert old normalizer keys to new target keys + if key == "target": + target_key = "energy" + elif key == "grad_target": + target_key = "forces" + else: + target_key = key + + if target_key in self.normalizers: + self.normalizers[target_key].load_state_dict( checkpoint["normalizers"][key] ) - if self.scaler and checkpoint["amp"]: - self.scaler.load_state_dict(checkpoint["amp"]) + + if self.scaler and checkpoint["amp"]: + self.scaler.load_state_dict(checkpoint["amp"]) def load_loss(self) -> None: self.loss_fns = [] From caf611f37017ddf1d17c274d5aca605496521b92 Mon Sep 17 00:00:00 2001 From: Abhishek Das Date: Mon, 11 Dec 2023 02:38:14 -0800 Subject: [PATCH 53/63] New weight_decay config -- defaults in BaseModel, extendable by others (e.g. EqV2) --- ocpmodels/models/base.py | 9 ++ .../equiformer_v2/equiformer_v2_oc20.py | 34 +++---- .../equiformer_v2/trainers/energy_trainer.py | 97 ------------------- .../equiformer_v2/trainers/forces_trainer.py | 93 ------------------ ocpmodels/trainers/base_trainer.py | 61 +++++++----- 5 files changed, 60 insertions(+), 234 deletions(-) diff --git a/ocpmodels/models/base.py b/ocpmodels/models/base.py index e87bd5a3f..4caad21c2 100644 --- a/ocpmodels/models/base.py +++ b/ocpmodels/models/base.py @@ -125,3 +125,12 @@ def generate_graph( @property def num_params(self) -> int: return sum(p.numel() for p in self.parameters()) + + @torch.jit.ignore + def no_weight_decay(self) -> list: + """Returns a list of parameters with no weight decay.""" + no_wd_list = [] + for name, _ in self.named_parameters(): + if "embedding" in name or "frequencies" in name or "bias" in name: + no_wd_list.append(name) + return no_wd_list diff --git a/ocpmodels/models/equiformer_v2/equiformer_v2_oc20.py b/ocpmodels/models/equiformer_v2/equiformer_v2_oc20.py index 79b1372c2..93598b6d7 100644 --- a/ocpmodels/models/equiformer_v2/equiformer_v2_oc20.py +++ b/ocpmodels/models/equiformer_v2/equiformer_v2_oc20.py @@ -579,33 +579,29 @@ def _uniform_init_linear_weights(self, m): torch.nn.init.uniform_(m.weight, -std, std) @torch.jit.ignore - def no_weight_decay(self): + def no_weight_decay(self) -> set: no_wd_list = [] named_parameters_list = [name for name, _ in self.named_parameters()] for module_name, module in self.named_modules(): - if ( - isinstance(module, torch.nn.Linear) - or isinstance(module, SO3_LinearV2) - or isinstance(module, torch.nn.LayerNorm) - or isinstance(module, EquivariantLayerNormArray) - or isinstance( - module, EquivariantLayerNormArraySphericalHarmonics - ) - or isinstance( - module, EquivariantRMSNormArraySphericalHarmonics - ) - or isinstance( - module, EquivariantRMSNormArraySphericalHarmonicsV2 - ) - or isinstance(module, GaussianRadialBasisLayer) + if isinstance( + module, + ( + torch.nn.Linear, + SO3_LinearV2, + torch.nn.LayerNorm, + EquivariantLayerNormArray, + EquivariantLayerNormArraySphericalHarmonics, + EquivariantRMSNormArraySphericalHarmonics, + EquivariantRMSNormArraySphericalHarmonicsV2, + GaussianRadialBasisLayer, + ), ): for parameter_name, _ in module.named_parameters(): - if isinstance(module, torch.nn.Linear) or isinstance( - module, SO3_LinearV2 - ): + if isinstance(module, (torch.nn.Linear, SO3_LinearV2)): if "weight" in parameter_name: continue global_parameter_name = module_name + "." + parameter_name assert global_parameter_name in named_parameters_list no_wd_list.append(global_parameter_name) + return set(no_wd_list) diff --git a/ocpmodels/models/equiformer_v2/trainers/energy_trainer.py b/ocpmodels/models/equiformer_v2/trainers/energy_trainer.py index a39e6fa83..f868dcfe6 100644 --- a/ocpmodels/models/equiformer_v2/trainers/energy_trainer.py +++ b/ocpmodels/models/equiformer_v2/trainers/energy_trainer.py @@ -5,12 +5,7 @@ LICENSE file in the root directory of this source tree. """ -import logging -import torch.optim as optim -from torch.nn.parallel.distributed import DistributedDataParallel - -from ocpmodels.common import distutils from ocpmodels.common.registry import registry from ocpmodels.modules.exponential_moving_average import ( ExponentialMovingAverage, @@ -20,104 +15,12 @@ from .lr_scheduler import LRScheduler -def add_weight_decay(model, weight_decay, skip_list=()): - decay = [] - no_decay = [] - name_no_wd = [] - for name, param in model.named_parameters(): - if not param.requires_grad: - continue # frozen weights - if ( - name.endswith(".bias") - or name.endswith(".affine_weight") - or name.endswith(".affine_bias") - or name.endswith(".mean_shift") - or "bias." in name - or any(name.endswith(skip_name) for skip_name in skip_list) - ): - no_decay.append(param) - name_no_wd.append(name) - else: - decay.append(param) - name_no_wd.sort() - params = [ - {"params": no_decay, "weight_decay": 0.0}, - {"params": decay, "weight_decay": weight_decay}, - ] - return params, name_no_wd - - @registry.register_trainer("equiformerv2_energy") class EquiformerV2EnergyTrainer(OCPTrainer): # This trainer does a few things differently from the parent energy trainer: - # - When loading the model, it has a different way of setting up the params - # with no weight decay. - # - Similar changes in the optimizer setup. # - When using the scheduler, it first converts the epochs into number of # steps and then passes it to the scheduler. That way in the config # everything can be specified in terms of epochs. - def load_model(self): - print("[EquiformerV2EnergyTrainer] Loading model") - # Build model - if distutils.is_master(): - logging.info(f"Loading model: {self.config['model']}") - - # TODO: depreicated, remove. - bond_feat_dim = None - bond_feat_dim = self.config["model_attributes"].get( - "num_gaussians", 50 - ) - - loader = self.train_loader or self.val_loader or self.test_loader - self.model = registry.get_model_class(self.config["model"])( - loader.dataset[0].x.shape[-1] - if loader - and hasattr(loader.dataset[0], "x") - and loader.dataset[0].x is not None - else None, - bond_feat_dim, - self.num_targets, - **self.config["model_attributes"], - ).to(self.device) - - # for no weight decay - self.model_params_no_wd = {} - if hasattr(self.model, "no_weight_decay"): - self.model_params_no_wd = self.model.no_weight_decay() - - if distutils.is_master(): - logging.info( - f"Loaded {self.model.__class__.__name__} with " - f"{self.model.num_params} parameters." - ) - - if self.logger is not None: - self.logger.watch(self.model) - - self.model.to(self.device) - if distutils.initialized() and not self.config["noddp"]: - self.model = DistributedDataParallel( - self.model, device_ids=[self.device] - ) - - def load_optimizer(self): - optimizer = self.config["optim"].get("optimizer", "AdamW") - optimizer = getattr(optim, optimizer) - optimizer_params = self.config["optim"]["optimizer_params"] - weight_decay = optimizer_params["weight_decay"] - - parameters, name_no_wd = add_weight_decay( - self.model, weight_decay, self.model_params_no_wd - ) - logging.info("Parameters without weight decay:") - logging.info(name_no_wd) - - self.optimizer = optimizer( - parameters, - lr=self.config["optim"]["lr_initial"], - **optimizer_params, - ) - def load_extras(self): def multiply(obj, num): if isinstance(obj, list): diff --git a/ocpmodels/models/equiformer_v2/trainers/forces_trainer.py b/ocpmodels/models/equiformer_v2/trainers/forces_trainer.py index b8a58d3ba..44dc9818e 100755 --- a/ocpmodels/models/equiformer_v2/trainers/forces_trainer.py +++ b/ocpmodels/models/equiformer_v2/trainers/forces_trainer.py @@ -7,10 +7,6 @@ import logging -import torch.optim as optim -from torch.nn.parallel.distributed import DistributedDataParallel - -from ocpmodels.common import distutils from ocpmodels.common.registry import registry from ocpmodels.modules.exponential_moving_average import ( ExponentialMovingAverage, @@ -20,102 +16,13 @@ from .lr_scheduler import LRScheduler -def add_weight_decay(model, weight_decay, skip_list=()): - decay = [] - no_decay = [] - name_no_wd = [] - for name, param in model.named_parameters(): - if not param.requires_grad: - continue # frozen weights - if ( - name.endswith(".bias") - or name.endswith(".affine_weight") - or name.endswith(".affine_bias") - or name.endswith(".mean_shift") - or "bias." in name - or any(name.endswith(skip_name) for skip_name in skip_list) - ): - no_decay.append(param) - name_no_wd.append(name) - else: - decay.append(param) - name_no_wd.sort() - params = [ - {"params": no_decay, "weight_decay": 0.0}, - {"params": decay, "weight_decay": weight_decay}, - ] - return params, name_no_wd - - @registry.register_trainer("equiformerv2_forces") class EquiformerV2ForcesTrainer(OCPTrainer): # This trainer does a few things differently from the parent forces trainer: - # - Different way of setting up model parameters with no weight decay. # - Support for cosine LR scheduler. # - When using the LR scheduler, it first converts the epochs into number of # steps and then passes it to the scheduler. That way in the config # everything can be specified in terms of epochs. - def load_model(self) -> None: - # Build model - if distutils.is_master(): - logging.info(f"Loading model: {self.config['model']}") - - # TODO: depreicated, remove. - bond_feat_dim = None - bond_feat_dim = self.config["model_attributes"].get( - "num_gaussians", 50 - ) - - loader = self.train_loader or self.val_loader or self.test_loader - self.model = registry.get_model_class(self.config["model"])( - loader.dataset[0].x.shape[-1] - if loader - and hasattr(loader.dataset[0], "x") - and loader.dataset[0].x is not None - else None, - bond_feat_dim, - 1, - **self.config["model_attributes"], - ).to(self.device) - - # for no weight decay - self.model_params_no_wd = {} - if hasattr(self.model, "no_weight_decay"): - self.model_params_no_wd = self.model.no_weight_decay() - - if distutils.is_master(): - logging.info( - f"Loaded {self.model.__class__.__name__} with " - f"{self.model.num_params} parameters." - ) - - if self.logger is not None: - self.logger.watch(self.model) - - self.model.to(self.device) - if distutils.initialized() and not self.config["noddp"]: - self.model = DistributedDataParallel( - self.model, device_ids=[self.device] - ) - - def load_optimizer(self) -> None: - optimizer = self.config["optim"].get("optimizer", "AdamW") - optimizer = getattr(optim, optimizer) - optimizer_params = self.config["optim"]["optimizer_params"] - weight_decay = optimizer_params["weight_decay"] - - parameters, name_no_wd = add_weight_decay( - self.model, weight_decay, self.model_params_no_wd - ) - logging.info("Parameters without weight decay:") - logging.info(name_no_wd) - - self.optimizer = optimizer( - parameters, - lr=self.config["optim"]["lr_initial"], - **optimizer_params, - ) - def load_extras(self) -> None: def multiply(obj, num): if isinstance(obj, list): diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index ea46c024a..a30e7382e 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -17,7 +17,6 @@ import numpy.typing as npt import torch import torch.nn as nn -import torch.optim as optim import yaml from torch.nn.parallel.distributed import DistributedDataParallel from torch.utils.data import DataLoader @@ -71,7 +70,6 @@ def __init__( slurm={}, noddp: bool = False, ) -> None: - self.name = name self.is_debug = is_debug self.cpu = cpu @@ -553,40 +551,54 @@ def load_loss(self) -> None: ) def load_optimizer(self) -> None: - optimizer = self.config["optim"].get("optimizer", "AdamW") - optimizer = getattr(optim, optimizer) + optimizer = getattr( + torch.optim, self.config["optim"].get("optimizer", "AdamW") + ) + optimizer_params = self.config["optim"].get("optimizer_params", {}) + + weight_decay = optimizer_params.get("weight_decay", 0) + assert ( + "weight_decay" not in self.config["optim"] + ), "`weight_decay` should be specified in `optim.optimizer_params`." + + if weight_decay > 0: + self.model_params_no_wd = {} + if hasattr(self._unwrapped_model, "no_weight_decay"): + self.model_params_no_wd = ( + self._unwrapped_model.no_weight_decay() + ) - if self.config["optim"].get("weight_decay", 0) > 0: - # Do not regularize bias etc. - params_decay = [] - params_no_decay = [] + params_decay, params_no_decay, name_no_decay = [], [], [] for name, param in self.model.named_parameters(): - if param.requires_grad: - if "embedding" in name: - params_no_decay += [param] - elif "frequencies" in name: - params_no_decay += [param] - elif "bias" in name: - params_no_decay += [param] - else: - params_decay += [param] + if not param.requires_grad: + continue + + if any( + name.endswith(skip_name) + for skip_name in self.model_params_no_wd + ): + params_no_decay.append(param) + name_no_decay.append(name) + else: + params_decay.append(param) + + if distutils.is_master(): + logging.info("Parameters without weight decay:") + logging.info(name_no_decay) self.optimizer = optimizer( - [ + params=[ {"params": params_no_decay, "weight_decay": 0}, - { - "params": params_decay, - "weight_decay": self.config["optim"]["weight_decay"], - }, + {"params": params_decay, "weight_decay": weight_decay}, ], lr=self.config["optim"]["lr_initial"], - **self.config["optim"].get("optimizer_params", {}), + **optimizer_params, ) else: self.optimizer = optimizer( params=self.model.parameters(), lr=self.config["optim"]["lr_initial"], - **self.config["optim"].get("optimizer_params", {}), + **optimizer_params, ) def load_extras(self) -> None: @@ -803,7 +815,6 @@ def _backward(self, loss) -> None: def save_results( self, predictions, results_file: Optional[str], keys=None ) -> None: - if results_file is None: return if keys is None: From e7e22828a1838b086b64e90deb07aa18dead0e03 Mon Sep 17 00:00:00 2001 From: Abhishek Das Date: Mon, 11 Dec 2023 02:54:38 -0800 Subject: [PATCH 54/63] Doc update --- DATASET.md | 12 ++++++------ MODELS.md | 14 +++++++------- README.md | 20 +++++++++++++------- 3 files changed, 26 insertions(+), 20 deletions(-) diff --git a/DATASET.md b/DATASET.md index 3026df613..7106492aa 100644 --- a/DATASET.md +++ b/DATASET.md @@ -340,7 +340,7 @@ Please consider citing the following paper in any research manuscript using the -``` +```bibtex @article{ocp_dataset, author = {Chanussot*, Lowik and Das*, Abhishek and Goyal*, Siddharth and Lavril*, Thibaut and Shuaibi*, Muhammed and Riviere, Morgane and Tran, Kevin and Heras-Domingo, Javier and Ho, Caleb and Hu, Weihua and Palizhati, Aini and Sriram, Anuroop and Wood, Brandon and Yoon, Junwoong and Parikh, Devi and Zitnick, C. Lawrence and Ulissi, Zachary}, title = {Open Catalyst 2020 (OC20) Dataset and Community Challenges}, @@ -462,12 +462,12 @@ The Open Catalyst 2022 (OC22) dataset is licensed under a [Creative Commons Attr Please consider citing the following paper in any research manuscript using the OC22 dataset: -``` +```bibtex @article{oc22_dataset, author = {Tran*, Richard and Lan*, Janice and Shuaibi*, Muhammed and Wood*, Brandon and Goyal*, Siddharth and Das, Abhishek and Heras-Domingo, Javier and Kolluru, Adeesh and Rizvi, Ammar and Shoghi, Nima and Sriram, Anuroop and Ulissi, Zachary and Zitnick, C. Lawrence}, - title = {The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysis}, - year = {2022}, - journal={arXiv preprint arXiv:2206.08917}, + title = {The Open Catalyst 2022 (OC22) dataset and challenges for oxide electrocatalysts}, + journal = {ACS Catalysis}, + year={2023}, } ``` @@ -503,7 +503,7 @@ The OpenDAC 2023 (ODAC23) dataset is licensed under a [Creative Commons Attribut Please consider citing the following paper in any research manuscript using the ODAC23 dataset: -``` +```bibtex @article{odac23_dataset, author = {Anuroop Sriram and Sihoon Choi and Xiaohan Yu and Logan M. Brabson and Abhishek Das and Zachary Ulissi and Matt Uyttendaele and Andrew J. Medford and David S. Sholl}, title = {The Open DAC 2023 Dataset and Challenges for Sorbent Discovery in Direct Air Capture}, diff --git a/MODELS.md b/MODELS.md index d24b34dfe..4baaef070 100644 --- a/MODELS.md +++ b/MODELS.md @@ -93,7 +93,7 @@ The Open Catalyst 2020 (OC20) dataset is licensed under a [Creative Commons Attr Please consider citing the following paper in any research manuscript using the OC20 dataset or pretrained models, as well as the original paper for each model: -``` +```bibtex @article{ocp_dataset, author = {Chanussot*, Lowik and Das*, Abhishek and Goyal*, Siddharth and Lavril*, Thibaut and Shuaibi*, Muhammed and Riviere, Morgane and Tran, Kevin and Heras-Domingo, Javier and Ho, Caleb and Hu, Weihua and Palizhati, Aini and Sriram, Anuroop and Wood, Brandon and Yoon, Junwoong and Parikh, Devi and Zitnick, C. Lawrence and Ulissi, Zachary}, title = {Open Catalyst 2020 (OC20) Dataset and Community Challenges}, @@ -126,12 +126,12 @@ The Open Catalyst 2022 (OC22) dataset is licensed under a [Creative Commons Attr Please consider citing the following paper in any research manuscript using the OC22 dataset or pretrained models, as well as the original paper for each model: -``` +```bibtex @article{oc22_dataset, author = {Tran*, Richard and Lan*, Janice and Shuaibi*, Muhammed and Wood*, Brandon and Goyal*, Siddharth and Das, Abhishek and Heras-Domingo, Javier and Kolluru, Adeesh and Rizvi, Ammar and Shoghi, Nima and Sriram, Anuroop and Ulissi, Zachary and Zitnick, C. Lawrence}, - title = {The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysis}, - year = {2022}, - journal = {arXiv preprint arXiv:2206.08917}, + title = {The Open Catalyst 2022 (OC22) dataset and challenges for oxide electrocatalysts}, + journal = {ACS Catalysis}, + year={2023}, } ``` @@ -150,7 +150,7 @@ OC22 dataset or pretrained models, as well as the original paper for each model: |eSCN | [checkpoint](https://dl.fbaipublicfiles.com/dac/checkpoints_20231018/eSCN.pt) | [config](https://github.com/Open-Catalyst-Project/ocp/tree/main/configs/odac/s2ef/eSCN.yml) | |EquiformerV2 | [checkpoint](https://dl.fbaipublicfiles.com/dac/checkpoints_20231018/Equiformer_V2.pt) | [config](https://github.com/Open-Catalyst-Project/ocp/tree/main/configs/odac/s2ef/eqv2_31M.yml) | |EquiformerV2 (Large) | [checkpoint](https://dl.fbaipublicfiles.com/dac/checkpoints_20231018/Equiformer_V2_Large.pt) | [config](https://github.com/Open-Catalyst-Project/ocp/tree/main/configs/odac/s2ef/eqv2_153M.yml) | - + ## IS2RE Direct models |Model |Checkpoint | Config | @@ -163,7 +163,7 @@ The Open DAC 2023 (ODAC23) dataset is licensed under a [Creative Commons Attribu Please consider citing the following paper in any research manuscript using the ODAC23 dataset: -``` +```bibtex @article{odac23_dataset, author = {Anuroop Sriram and Sihoon Choi and Xiaohan Yu and Logan M. Brabson and Abhishek Das and Zachary Ulissi and Matt Uyttendaele and Andrew J. Medford and David S. Sholl}, title = {The Open DAC 2023 Dataset and Challenges for Sorbent Discovery in Direct Air Capture}, diff --git a/README.md b/README.md index 94d238d72..d2271dc2a 100644 --- a/README.md +++ b/README.md @@ -11,28 +11,34 @@ library of state-of-the-art machine learning algorithms for catalysis. It provides training and evaluation code for tasks and models that take arbitrary -chemical structures as input to predict energies / forces / positions, and can -be used as a base scaffold for research projects. For an overview of tasks, data, and metrics, please read our papers: +chemical structures as input to predict energies / forces / positions / stresses, +and can be used as a base scaffold for research projects. For an overview of +tasks, data, and metrics, please read our papers: - [OC20](https://arxiv.org/abs/2010.09990) - [OC22](https://arxiv.org/abs/2206.08917) - [ODAC23](https://arxiv.org/abs/2311.00341) -Projects developed on `ocp`: +Projects and models built on `ocp`: -- CGCNN [[`arXiv`](https://arxiv.org/abs/1710.10324)] [[`code`](https://github.com/Open-Catalyst-Project/ocp/blob/main/ocpmodels/models/cgcnn.py)] - SchNet [[`arXiv`](https://arxiv.org/abs/1706.08566)] [[`code`](https://github.com/Open-Catalyst-Project/ocp/blob/main/ocpmodels/models/schnet.py)] -- DimeNet [[`arXiv`](https://arxiv.org/abs/2003.03123)] [[`code`](https://github.com/Open-Catalyst-Project/ocp/blob/main/ocpmodels/models/dimenet.py)] -- ForceNet [[`arXiv`](https://arxiv.org/abs/2103.01436)] [[`code`](https://github.com/Open-Catalyst-Project/ocp/blob/main/ocpmodels/models/forcenet.py)] - DimeNet++ [[`arXiv`](https://arxiv.org/abs/2011.14115)] [[`code`](https://github.com/Open-Catalyst-Project/ocp/blob/main/ocpmodels/models/dimenet_plus_plus.py)] -- SpinConv [[`arXiv`](https://arxiv.org/abs/2106.09575)] [[`code`](https://github.com/Open-Catalyst-Project/ocp/blob/main/ocpmodels/models/spinconv.py)] - GemNet-dT [[`arXiv`](https://arxiv.org/abs/2106.08903)] [[`code`](https://github.com/Open-Catalyst-Project/ocp/tree/main/ocpmodels/models/gemnet)] - PaiNN [[`arXiv`](https://arxiv.org/abs/2102.03150)] [[`code`](https://github.com/Open-Catalyst-Project/ocp/tree/main/ocpmodels/models/painn)] - Graph Parallelism [[`arXiv`](https://arxiv.org/abs/2203.09697)] [[`code`](https://github.com/Open-Catalyst-Project/ocp/tree/main/ocpmodels/models/gemnet_gp)] - GemNet-OC [[`arXiv`](https://arxiv.org/abs/2204.02782)] [[`code`](https://github.com/Open-Catalyst-Project/ocp/tree/main/ocpmodels/models/gemnet_oc)] - SCN [[`arXiv`](https://arxiv.org/abs/2206.14331)] [[`code`](https://github.com/Open-Catalyst-Project/ocp/tree/main/ocpmodels/models/scn)] +- AdsorbML [[`arXiv`](https://arxiv.org/abs/2211.16486)] [[`code`](https://github.com/open-catalyst-project/adsorbml)] - eSCN [[`arXiv`](https://arxiv.org/abs/2302.03655)] [[`code`](https://github.com/Open-Catalyst-Project/ocp/tree/main/ocpmodels/models/escn)] - EquiformerV2 [[`arXiv`](https://arxiv.org/abs/2306.12059)] [[`code`](https://github.com/Open-Catalyst-Project/ocp/tree/main/ocpmodels/models/equiformer_v2)] +Older model implementations that are no longer supported: + +- CGCNN [[`arXiv`](https://arxiv.org/abs/1710.10324)] [[`code`](https://github.com/Open-Catalyst-Project/ocp/blob/e7a8745eb307e8a681a1aa9d30c36e8c41e9457e/ocpmodels/models/cgcnn.py)] +- DimeNet [[`arXiv`](https://arxiv.org/abs/2003.03123)] [[`code`](https://github.com/Open-Catalyst-Project/ocp/blob/e7a8745eb307e8a681a1aa9d30c36e8c41e9457e/ocpmodels/models/dimenet.py)] +- SpinConv [[`arXiv`](https://arxiv.org/abs/2106.09575)] [[`code`](https://github.com/Open-Catalyst-Project/ocp/blob/e7a8745eb307e8a681a1aa9d30c36e8c41e9457e/ocpmodels/models/spinconv.py)] +- ForceNet [[`arXiv`](https://arxiv.org/abs/2103.01436)] [[`code`](https://github.com/Open-Catalyst-Project/ocp/blob/e7a8745eb307e8a681a1aa9d30c36e8c41e9457e/ocpmodels/models/forcenet.py)] + + ## Installation See [installation instructions](https://github.com/Open-Catalyst-Project/ocp/blob/main/INSTALL.md). From af0672377a07ac9341b84e2e6a2bf03fe5e617d1 Mon Sep 17 00:00:00 2001 From: Abhishek Das Date: Mon, 11 Dec 2023 03:06:13 -0800 Subject: [PATCH 55/63] Throw a warning instead of a hard error for optim.weight_decay --- ocpmodels/trainers/base_trainer.py | 10 +++++++--- 1 file changed, 7 insertions(+), 3 deletions(-) diff --git a/ocpmodels/trainers/base_trainer.py b/ocpmodels/trainers/base_trainer.py index a30e7382e..6f5d6c972 100644 --- a/ocpmodels/trainers/base_trainer.py +++ b/ocpmodels/trainers/base_trainer.py @@ -557,9 +557,13 @@ def load_optimizer(self) -> None: optimizer_params = self.config["optim"].get("optimizer_params", {}) weight_decay = optimizer_params.get("weight_decay", 0) - assert ( - "weight_decay" not in self.config["optim"] - ), "`weight_decay` should be specified in `optim.optimizer_params`." + if "weight_decay" in self.config["optim"]: + weight_decay = self.config["optim"]["weight_decay"] + logging.warning( + "Using `weight_decay` from `optim` instead of `optim.optimizer_params`." + "Please update your config to use `optim.optimizer_params.weight_decay`." + "`optim.weight_decay` will soon be deprecated." + ) if weight_decay > 0: self.model_params_no_wd = {} From ccda09f4af9f6c8ec1ec6a1c2bc42fb715c734ba Mon Sep 17 00:00:00 2001 From: Abhishek Das Date: Mon, 11 Dec 2023 03:08:52 -0800 Subject: [PATCH 56/63] EqV2 readme update --- ocpmodels/models/equiformer_v2/README.md | 1 - 1 file changed, 1 deletion(-) diff --git a/ocpmodels/models/equiformer_v2/README.md b/ocpmodels/models/equiformer_v2/README.md index 4768984c0..ea1386471 100644 --- a/ocpmodels/models/equiformer_v2/README.md +++ b/ocpmodels/models/equiformer_v2/README.md @@ -60,7 +60,6 @@ the training / validation scripts provided in the [official EquiformerV2 codebas might be easier to get started. * We provide a [slightly modified trainer](https://github.com/Open-Catalyst-Project/ocp/blob/main/ocpmodels/models/equiformer_v2/trainers/forces_trainer.py) and LR scheduler. The differences from the parent `forces` trainer are the following: - - Different way of setting up model parameters with no weight decay. - Support for cosine LR scheduler. - When using the LR scheduler, it first converts the epochs into number of steps and then passes it to the scheduler. That way in the config From e11dba6e6925b991d48c436db880f52b3ae6eb2f Mon Sep 17 00:00:00 2001 From: Abhishek Das Date: Mon, 11 Dec 2023 03:35:24 -0800 Subject: [PATCH 57/63] Config update --- configs/is2re/all/painn/painn_h1024_bs8x4.yml | 5 ++- configs/is2re/example.yml | 7 +-- configs/oc22/is2re/painn/painn.yml | 5 ++- configs/oc22/s2ef/gemnet-oc/gemnet_oc.yml | 5 ++- .../s2ef/gemnet-oc/gemnet_oc_finetune.yml | 5 ++- .../s2ef/gemnet-oc/gemnet_oc_oc20_oc22.yml | 5 ++- .../gemnet_oc_oc20_oc22_degen_edges.yml | 5 ++- configs/oc22/s2ef/painn/painn.yml | 5 ++- configs/oc22/s2ef/spinconv/spinconv.yml | 43 ------------------- .../oc22/s2ef/spinconv/spinconv_finetune.yml | 36 ---------------- configs/oc22/s2ef/spinconv/spinconv_joint.yml | 37 ---------------- configs/odac/is2re/eSCN.yml | 7 +-- configs/odac/is2re/gemnet-oc.yml | 5 ++- configs/odac/s2ef/eSCN.yml | 5 ++- configs/odac/s2ef/gemnet-oc.yml | 5 ++- configs/odac/s2ef/painn.yml | 5 ++- configs/odac/s2ef/schnet.yml | 3 +- configs/s2ef/200k/gemnet/gemnet-oc.yml | 5 ++- configs/s2ef/20M/gemnet/gemnet-oc.yml | 5 ++- configs/s2ef/2M/gemnet/gemnet-oc.yml | 7 ++- configs/s2ef/all/gemnet/gemnet-oc-large.yml | 5 ++- configs/s2ef/all/gemnet/gemnet-oc.yml | 5 ++- configs/s2ef/all/gp_gemnet/gp-gemnet-xl.yml | 5 ++- configs/s2ef/all/painn/painn_h512.yml | 5 ++- configs/s2ef/example.yml | 7 +-- 25 files changed, 68 insertions(+), 164 deletions(-) delete mode 100644 configs/oc22/s2ef/spinconv/spinconv.yml delete mode 100644 configs/oc22/s2ef/spinconv/spinconv_finetune.yml delete mode 100644 configs/oc22/s2ef/spinconv/spinconv_joint.yml diff --git a/configs/is2re/all/painn/painn_h1024_bs8x4.yml b/configs/is2re/all/painn/painn_h1024_bs8x4.yml index cbc4b92f2..558b10e2d 100644 --- a/configs/is2re/all/painn/painn_h1024_bs8x4.yml +++ b/configs/is2re/all/painn/painn_h1024_bs8x4.yml @@ -20,7 +20,9 @@ optim: load_balancing: atoms num_workers: 2 optimizer: AdamW - optimizer_params: {"amsgrad": True} + optimizer_params: + amsgrad: True + weight_decay: 0 # 2e-6 (TF weight decay) / 1e-4 (lr) = 2e-2 lr_initial: 1.e-4 scheduler: ReduceLROnPlateau mode: min @@ -31,4 +33,3 @@ optim: ema_decay: 0.999 clip_grad_norm: 10 loss_energy: mae - weight_decay: 0 # 2e-6 (TF weight decay) / 1e-4 (lr) = 2e-2 diff --git a/configs/is2re/example.yml b/configs/is2re/example.yml index 32a54bdb6..549bbe8c6 100644 --- a/configs/is2re/example.yml +++ b/configs/is2re/example.yml @@ -95,9 +95,10 @@ optim: # Learning rate. Passed as an `lr` argument when initializing the optimizer. lr_initial: 1.e-4 # Additional args needed to initialize the optimizer. - optimizer_params: {"amsgrad": True} - # Weight decay to use. Passed as an argument when initializing the optimizer. - weight_decay: 0 + optimizer_params: + amsgrad: True + # Weight decay to use. Passed as an argument when initializing the optimizer. + weight_decay: 0 # Learning rate scheduler. Should work for any scheduler specified in # in torch.optim.lr_scheduler: https://pytorch.org/docs/stable/optim.html # as long as the relevant args are specified here. diff --git a/configs/oc22/is2re/painn/painn.yml b/configs/oc22/is2re/painn/painn.yml index 7f941e59a..5fc50f782 100644 --- a/configs/oc22/is2re/painn/painn.yml +++ b/configs/oc22/is2re/painn/painn.yml @@ -20,7 +20,9 @@ optim: load_balancing: atoms num_workers: 2 optimizer: AdamW - optimizer_params: {"amsgrad": True} + optimizer_params: + amsgrad: True + weight_decay: 0 # 2e-6 (TF weight decay) / 1e-4 (lr) = 2e-2 lr_initial: 1.e-4 scheduler: ReduceLROnPlateau mode: min @@ -31,4 +33,3 @@ optim: ema_decay: 0.999 clip_grad_norm: 10 loss_energy: mae - weight_decay: 0 # 2e-6 (TF weight decay) / 1e-4 (lr) = 2e-2 diff --git a/configs/oc22/s2ef/gemnet-oc/gemnet_oc.yml b/configs/oc22/s2ef/gemnet-oc/gemnet_oc.yml index e0f999540..51abcdad6 100644 --- a/configs/oc22/s2ef/gemnet-oc/gemnet_oc.yml +++ b/configs/oc22/s2ef/gemnet-oc/gemnet_oc.yml @@ -65,7 +65,9 @@ optim: num_workers: 2 lr_initial: 5.e-4 optimizer: AdamW - optimizer_params: {"amsgrad": True} + optimizer_params: + amsgrad: True + weight_decay: 0 # 2e-6 (TF weight decay) / 1e-4 (lr) = 2e-2 warmup_steps: -1 # don't warm-up the learning rate # warmup_factor: 0.2 lr_gamma: 0.8 @@ -81,4 +83,3 @@ optim: max_epochs: 80 ema_decay: 0.999 clip_grad_norm: 10 - weight_decay: 0 # 2e-6 (TF weight decay) / 1e-4 (lr) = 2e-2 diff --git a/configs/oc22/s2ef/gemnet-oc/gemnet_oc_finetune.yml b/configs/oc22/s2ef/gemnet-oc/gemnet_oc_finetune.yml index d52902efd..3f6fc2525 100644 --- a/configs/oc22/s2ef/gemnet-oc/gemnet_oc_finetune.yml +++ b/configs/oc22/s2ef/gemnet-oc/gemnet_oc_finetune.yml @@ -65,7 +65,9 @@ optim: num_workers: 2 lr_initial: 1.e-4 optimizer: AdamW - optimizer_params: {"amsgrad": True} + optimizer_params: + amsgrad: True + weight_decay: 0 # 2e-6 (TF weight decay) / 1e-4 (lr) = 2e-2 warmup_steps: -1 # don't warm-up the learning rate # warmup_factor: 0.2 lr_gamma: 0.8 @@ -94,7 +96,6 @@ optim: max_epochs: 15 ema_decay: 0.999 clip_grad_norm: 10 - weight_decay: 0 # 2e-6 (TF weight decay) / 1e-4 (lr) = 2e-2 loss_energy: mae loss_force: l2mae force_coefficient: 100 diff --git a/configs/oc22/s2ef/gemnet-oc/gemnet_oc_oc20_oc22.yml b/configs/oc22/s2ef/gemnet-oc/gemnet_oc_oc20_oc22.yml index 82755527f..2fefc33cb 100644 --- a/configs/oc22/s2ef/gemnet-oc/gemnet_oc_oc20_oc22.yml +++ b/configs/oc22/s2ef/gemnet-oc/gemnet_oc_oc20_oc22.yml @@ -65,7 +65,9 @@ optim: num_workers: 2 lr_initial: 5.e-4 optimizer: AdamW - optimizer_params: {"amsgrad": True} + optimizer_params: + amsgrad: True + weight_decay: 0 # 2e-6 (TF weight decay) / 1e-4 (lr) = 2e-2 scheduler: ReduceLROnPlateau mode: min factor: 0.8 @@ -73,7 +75,6 @@ optim: max_epochs: 80 ema_decay: 0.999 clip_grad_norm: 10 - weight_decay: 0 # 2e-6 (TF weight decay) / 1e-4 (lr) = 2e-2 loss_energy: mae loss_force: atomwisel2 force_coefficient: 1 diff --git a/configs/oc22/s2ef/gemnet-oc/gemnet_oc_oc20_oc22_degen_edges.yml b/configs/oc22/s2ef/gemnet-oc/gemnet_oc_oc20_oc22_degen_edges.yml index ff1eb03a0..5cbb1997e 100644 --- a/configs/oc22/s2ef/gemnet-oc/gemnet_oc_oc20_oc22_degen_edges.yml +++ b/configs/oc22/s2ef/gemnet-oc/gemnet_oc_oc20_oc22_degen_edges.yml @@ -67,7 +67,9 @@ optim: num_workers: 2 lr_initial: 5.e-4 optimizer: AdamW - optimizer_params: {"amsgrad": True} + optimizer_params: + amsgrad: True + weight_decay: 0 # 2e-6 (TF weight decay) / 1e-4 (lr) = 2e-2 scheduler: ReduceLROnPlateau mode: min factor: 0.8 @@ -75,7 +77,6 @@ optim: max_epochs: 80 ema_decay: 0.999 clip_grad_norm: 10 - weight_decay: 0 # 2e-6 (TF weight decay) / 1e-4 (lr) = 2e-2 loss_energy: mae loss_force: atomwisel2 force_coefficient: 1 diff --git a/configs/oc22/s2ef/painn/painn.yml b/configs/oc22/s2ef/painn/painn.yml index a7fa9ba48..9acedc7fc 100644 --- a/configs/oc22/s2ef/painn/painn.yml +++ b/configs/oc22/s2ef/painn/painn.yml @@ -22,7 +22,9 @@ optim: eval_every: 5000 num_workers: 2 optimizer: AdamW - optimizer_params: {"amsgrad": True} + optimizer_params: + amsgrad: True + weight_decay: 0 # 2e-6 (TF weight decay) / 1e-4 (lr) = 2e-2 lr_initial: 1.e-4 warmup_steps: -1 # don't warm-up the learning rate # warmup_factor: 0.2 @@ -39,4 +41,3 @@ optim: max_epochs: 80 ema_decay: 0.999 clip_grad_norm: 10 - weight_decay: 0 # 2e-6 (TF weight decay) / 1e-4 (lr) = 2e-2 diff --git a/configs/oc22/s2ef/spinconv/spinconv.yml b/configs/oc22/s2ef/spinconv/spinconv.yml deleted file mode 100644 index 7a7d14d2f..000000000 --- a/configs/oc22/s2ef/spinconv/spinconv.yml +++ /dev/null @@ -1,43 +0,0 @@ -includes: - - configs/oc22/s2ef/base.yml - -model: - name: spinconv - model_ref_number: 0 - hidden_channels: 32 - mid_hidden_channels: 256 - num_interactions: 3 - num_basis_functions: 512 - sphere_size_lat: 16 - sphere_size_long: 12 - max_num_neighbors: 40 - cutoff: 6.0 - sphere_message: fullconv - output_message: fullconv - force_estimator: random - regress_forces: True - use_pbc: True - scale_distances: True - basis_width_scalar: 3.0 - otf_graph: True - -optim: - batch_size: 3 - eval_batch_size: 3 - num_workers: 8 - lr_initial: 0.0004 - optimizer: Adam - optimizer_params: {"amsgrad": True} - eval_every: 5000 - warmup_steps: -1 # don't warm-up the learning rate - # warmup_factor: 0.2 - lr_gamma: 0.8 - # Following calculation is for an effective batch size of 3 x 64 GPUs = 192 - # and a dataset size of 8225293 (1 epoch = 32130 steps). - lr_milestones: # steps at which lr_initial <- lr_initial * lr_gamma - - 86000 # ~2 epochs - - 129000 # ~3 epochs - - 171000 # ~4 epochs - - 214000 # ~5 epochs - - 257000 # ~6 epochs - max_epochs: 80 diff --git a/configs/oc22/s2ef/spinconv/spinconv_finetune.yml b/configs/oc22/s2ef/spinconv/spinconv_finetune.yml deleted file mode 100644 index b94f24145..000000000 --- a/configs/oc22/s2ef/spinconv/spinconv_finetune.yml +++ /dev/null @@ -1,36 +0,0 @@ -includes: - - configs/oc22/s2ef/base.yml - -model: - name: spinconv - model_ref_number: 0 - hidden_channels: 32 - mid_hidden_channels: 256 - num_interactions: 3 - num_basis_functions: 512 - sphere_size_lat: 16 - sphere_size_long: 12 - max_num_neighbors: 40 - cutoff: 6.0 - sphere_message: fullconv - output_message: fullconv - force_estimator: random - regress_forces: True - use_pbc: True - scale_distances: True - basis_width_scalar: 3.0 - otf_graph: True - -optim: - batch_size: 3 - eval_batch_size: 3 - num_workers: 3 - lr_initial: 0.0001 - optimizer: Adam - optimizer_params: {"amsgrad": True} - eval_every: 5000 - scheduler: ReduceLROnPlateau - mode: min - factor: 0.8 - patience: 3 - max_epochs: 80 diff --git a/configs/oc22/s2ef/spinconv/spinconv_joint.yml b/configs/oc22/s2ef/spinconv/spinconv_joint.yml deleted file mode 100644 index 8f1a1924d..000000000 --- a/configs/oc22/s2ef/spinconv/spinconv_joint.yml +++ /dev/null @@ -1,37 +0,0 @@ -includes: - - configs/oc22/s2ef/base.yml - -model: - name: spinconv - model_ref_number: 0 - hidden_channels: 32 - mid_hidden_channels: 256 - num_interactions: 3 - num_basis_functions: 512 - sphere_size_lat: 16 - sphere_size_long: 12 - max_num_neighbors: 40 - cutoff: 6.0 - sphere_message: fullconv - output_message: fullconv - force_estimator: random - regress_forces: True - use_pbc: True - scale_distances: True - basis_width_scalar: 3.0 - otf_graph: True - -optim: - batch_size: 3 - eval_batch_size: 3 - num_workers: 8 - lr_initial: 0.0004 - optimizer: Adam - optimizer_params: {"amsgrad": True} - eval_every: 5000 - warmup_steps: -1 # don't warm-up the learning rate - scheduler: ReduceLROnPlateau - mode: min - factor: 0.8 - patience: 3 - max_epochs: 80 diff --git a/configs/odac/is2re/eSCN.yml b/configs/odac/is2re/eSCN.yml index 9b9d319a9..e66133372 100755 --- a/configs/odac/is2re/eSCN.yml +++ b/configs/odac/is2re/eSCN.yml @@ -18,7 +18,7 @@ model: use_pbc: True basis_width_scalar: 2.0 otf_graph: True - + max_num_elements: 100 optim: @@ -27,7 +27,9 @@ optim: num_workers: 8 lr_initial: 0.0008 optimizer: AdamW - optimizer_params: {"amsgrad": True} + optimizer_params: + amsgrad: True + weight_decay: 0.2 eval_every: 5000 lr_gamma: 0.3 lr_milestones: # epochs at which lr_initial <- lr_initial * lr_gamma @@ -42,4 +44,3 @@ optim: ema_decay: 0.999 loss_energy: mae loss_force: l2mae - weight_decay: 0.2 diff --git a/configs/odac/is2re/gemnet-oc.yml b/configs/odac/is2re/gemnet-oc.yml index 7ed2655fa..623292efc 100644 --- a/configs/odac/is2re/gemnet-oc.yml +++ b/configs/odac/is2re/gemnet-oc.yml @@ -70,7 +70,9 @@ optim: num_workers: 8 lr_initial: 5.e-4 optimizer: AdamW - optimizer_params: {"amsgrad": True} + optimizer_params: + amsgrad: True + weight_decay: 0.2 scheduler: ReduceLROnPlateau mode: min factor: 0.8 @@ -80,4 +82,3 @@ optim: ema_decay: 0.999 clip_grad_norm: 10 loss_energy: mae - weight_decay: 0.2 diff --git a/configs/odac/s2ef/eSCN.yml b/configs/odac/s2ef/eSCN.yml index 3b6443b78..9517ff7c3 100755 --- a/configs/odac/s2ef/eSCN.yml +++ b/configs/odac/s2ef/eSCN.yml @@ -26,7 +26,9 @@ optim: num_workers: 8 lr_initial: 0.0008 optimizer: AdamW - optimizer_params: {"amsgrad": True} + optimizer_params: + amsgrad: True + weight_decay: 0.1 eval_every: 5000 max_epochs: 24 force_coefficient: 100 @@ -35,6 +37,5 @@ optim: ema_decay: 0.999 loss_energy: mae loss_force: l2mae - weight_decay: 0.1 scheduler: CosineAnnealingLR T_max: 2000000 diff --git a/configs/odac/s2ef/gemnet-oc.yml b/configs/odac/s2ef/gemnet-oc.yml index df6ae72d8..def88cf81 100644 --- a/configs/odac/s2ef/gemnet-oc.yml +++ b/configs/odac/s2ef/gemnet-oc.yml @@ -70,7 +70,9 @@ optim: num_workers: 8 lr_initial: 5.e-4 optimizer: AdamW - optimizer_params: {"amsgrad": True} + optimizer_params: + amsgrad: True + weight_decay: 0.1 mode: min max_epochs: 80 force_coefficient: 50 @@ -79,7 +81,6 @@ optim: clip_grad_norm: 10 loss_energy: mae loss_force: l2mae - weight_decay: 0.1 scheduler: CosineAnnealingLR T_max: 2000000 diff --git a/configs/odac/s2ef/painn.yml b/configs/odac/s2ef/painn.yml index b5aeadab5..80ac05775 100644 --- a/configs/odac/s2ef/painn.yml +++ b/configs/odac/s2ef/painn.yml @@ -24,7 +24,9 @@ optim: eval_every: 5000 num_workers: 2 optimizer: AdamW - optimizer_params: {"amsgrad": True} + optimizer_params: + amsgrad: True + weight_decay: 0.3 lr_initial: 1.e-4 lr_gamma: 0.8 mode: min @@ -37,7 +39,6 @@ optim: clip_grad_norm: 10 loss_energy: mae loss_force: l2mae - weight_decay: 0.3 scheduler: CosineAnnealingLR T_max: 1000000 diff --git a/configs/odac/s2ef/schnet.yml b/configs/odac/s2ef/schnet.yml index 8284a246a..95ff22d94 100755 --- a/configs/odac/s2ef/schnet.yml +++ b/configs/odac/s2ef/schnet.yml @@ -18,6 +18,8 @@ optim: eval_batch_size: 8 eval_every: 5000 num_workers: 8 + optimizer_params: + weight_decay: 0.2 lr_initial: 0.0001 lr_gamma: 0.1 lr_milestones: # steps at which lr_initial <- lr_initial * lr_gamma @@ -28,4 +30,3 @@ optim: warmup_factor: 0.2 max_epochs: 15 force_coefficient: 30 - weight_decay: 0.2 diff --git a/configs/s2ef/200k/gemnet/gemnet-oc.yml b/configs/s2ef/200k/gemnet/gemnet-oc.yml index 5207f85ad..1fa2bac3f 100644 --- a/configs/s2ef/200k/gemnet/gemnet-oc.yml +++ b/configs/s2ef/200k/gemnet/gemnet-oc.yml @@ -65,7 +65,9 @@ optim: num_workers: 2 lr_initial: 5.e-4 optimizer: AdamW - optimizer_params: {"amsgrad": True} + optimizer_params: + amsgrad: True + weight_decay: 0 scheduler: ReduceLROnPlateau mode: min factor: 0.8 @@ -77,4 +79,3 @@ optim: clip_grad_norm: 10 loss_energy: mae loss_force: l2mae - weight_decay: 0 diff --git a/configs/s2ef/20M/gemnet/gemnet-oc.yml b/configs/s2ef/20M/gemnet/gemnet-oc.yml index 06d5b5de8..04fd218de 100644 --- a/configs/s2ef/20M/gemnet/gemnet-oc.yml +++ b/configs/s2ef/20M/gemnet/gemnet-oc.yml @@ -65,7 +65,9 @@ optim: num_workers: 2 lr_initial: 5.e-4 optimizer: AdamW - optimizer_params: {"amsgrad": True} + optimizer_params: + amsgrad: True + weight_decay: 0. scheduler: ReduceLROnPlateau mode: min factor: 0.8 @@ -77,4 +79,3 @@ optim: clip_grad_norm: 10 loss_energy: mae loss_force: l2mae - weight_decay: 0 diff --git a/configs/s2ef/2M/gemnet/gemnet-oc.yml b/configs/s2ef/2M/gemnet/gemnet-oc.yml index 226ae9476..9cf409eba 100644 --- a/configs/s2ef/2M/gemnet/gemnet-oc.yml +++ b/configs/s2ef/2M/gemnet/gemnet-oc.yml @@ -65,16 +65,15 @@ optim: num_workers: 2 lr_initial: 5.e-4 optimizer: AdamW - optimizer_params: {"amsgrad": True} + optimizer_params: + amsgrad: True + weight_decay: 0. scheduler: ReduceLROnPlateau mode: min factor: 0.8 patience: 3 max_epochs: 80 - force_coefficient: 100 - energy_coefficient: 1 ema_decay: 0.999 clip_grad_norm: 10 loss_energy: mae loss_force: l2mae - weight_decay: 0 diff --git a/configs/s2ef/all/gemnet/gemnet-oc-large.yml b/configs/s2ef/all/gemnet/gemnet-oc-large.yml index 32648633e..2bf69b209 100644 --- a/configs/s2ef/all/gemnet/gemnet-oc-large.yml +++ b/configs/s2ef/all/gemnet/gemnet-oc-large.yml @@ -65,7 +65,9 @@ optim: num_workers: 2 lr_initial: 2.e-4 optimizer: AdamW - optimizer_params: {"amsgrad": True} + optimizer_params: + amsgrad: True + weight_decay: 0. scheduler: ReduceLROnPlateau mode: min factor: 0.8 @@ -77,4 +79,3 @@ optim: clip_grad_norm: 10 loss_energy: mae loss_force: l2mae - weight_decay: 0 diff --git a/configs/s2ef/all/gemnet/gemnet-oc.yml b/configs/s2ef/all/gemnet/gemnet-oc.yml index f720892a2..e113af76f 100644 --- a/configs/s2ef/all/gemnet/gemnet-oc.yml +++ b/configs/s2ef/all/gemnet/gemnet-oc.yml @@ -65,7 +65,9 @@ optim: num_workers: 2 lr_initial: 5.e-4 optimizer: AdamW - optimizer_params: {"amsgrad": True} + optimizer_params: + amsgrad: True + weight_decay: 0. scheduler: ReduceLROnPlateau mode: min factor: 0.8 @@ -77,4 +79,3 @@ optim: clip_grad_norm: 10 loss_energy: mae loss_force: l2mae - weight_decay: 0 diff --git a/configs/s2ef/all/gp_gemnet/gp-gemnet-xl.yml b/configs/s2ef/all/gp_gemnet/gp-gemnet-xl.yml index b80bac7af..cdedb27d8 100644 --- a/configs/s2ef/all/gp_gemnet/gp-gemnet-xl.yml +++ b/configs/s2ef/all/gp_gemnet/gp-gemnet-xl.yml @@ -43,7 +43,9 @@ optim: num_workers: 8 lr_initial: 2.e-4 optimizer: AdamW - optimizer_params: {"amsgrad": True} + optimizer_params: + amsgrad: True + weight_decay: 0. scheduler: ReduceLROnPlateau mode: min factor: 0.8 @@ -55,5 +57,4 @@ optim: clip_grad_norm: 10 loss_energy: mae loss_force: l2mae - weight_decay: 0 load_balancing: neighbors diff --git a/configs/s2ef/all/painn/painn_h512.yml b/configs/s2ef/all/painn/painn_h512.yml index a7fe4a7ab..da79efb5b 100644 --- a/configs/s2ef/all/painn/painn_h512.yml +++ b/configs/s2ef/all/painn/painn_h512.yml @@ -20,7 +20,9 @@ optim: eval_every: 5000 num_workers: 2 optimizer: AdamW - optimizer_params: {"amsgrad": True} + optimizer_params: + amsgrad: True + weight_decay: 0. # 2e-6 (TF weight decay) / 1e-4 (lr) = 2e-2 lr_initial: 1.e-4 lr_gamma: 0.8 scheduler: ReduceLROnPlateau @@ -34,4 +36,3 @@ optim: clip_grad_norm: 10 loss_energy: mae loss_force: l2mae - weight_decay: 0 # 2e-6 (TF weight decay) / 1e-4 (lr) = 2e-2 diff --git a/configs/s2ef/example.yml b/configs/s2ef/example.yml index 414a8001a..b792f2dfc 100644 --- a/configs/s2ef/example.yml +++ b/configs/s2ef/example.yml @@ -161,9 +161,10 @@ optim: # Learning rate. Passed as an `lr` argument when initializing the optimizer. lr_initial: 1.e-4 # Additional args needed to initialize the optimizer. - optimizer_params: {"amsgrad": True} - # Weight decay to use. Passed as an argument when initializing the optimizer. - weight_decay: 0 + optimizer_params: + amsgrad: True + # Weight decay to use. Passed as an argument when initializing the optimizer. + weight_decay: 0 # Learning rate scheduler. Should work for any scheduler specified in # in torch.optim.lr_scheduler: https://pytorch.org/docs/stable/optim.html # as long as the relevant args are specified here. From 9f86d2e3ba62bce634eb4dae30969bf41f336652 Mon Sep 17 00:00:00 2001 From: Janice Lan Date: Wed, 20 Dec 2023 17:35:15 +0000 Subject: [PATCH 58/63] don't need transform on inference lmdbs with no ground truth --- ocpmodels/modules/transforms.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/ocpmodels/modules/transforms.py b/ocpmodels/modules/transforms.py index ffdbe2a3c..a9ecbc46f 100644 --- a/ocpmodels/modules/transforms.py +++ b/ocpmodels/modules/transforms.py @@ -28,7 +28,8 @@ def decompose_tensor(data_object, config) -> Data: tensor_key = config["tensor"] rank = config["rank"] - assert tensor_key in data_object + if tensor_key not in data_object: + return data_object if rank != 2: raise NotImplementedError From e8c1c6f1e0ad8e943a83f8d0f12cc628e9899547 Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Thu, 4 Jan 2024 18:45:52 +0000 Subject: [PATCH 59/63] remove debug configs --- configs/goc_oc20_debug.yml | 129 ---------------------------- configs/goc_stress_debug.yml | 162 ----------------------------------- 2 files changed, 291 deletions(-) delete mode 100644 configs/goc_oc20_debug.yml delete mode 100644 configs/goc_stress_debug.yml diff --git a/configs/goc_oc20_debug.yml b/configs/goc_oc20_debug.yml deleted file mode 100644 index 3065a22a0..000000000 --- a/configs/goc_oc20_debug.yml +++ /dev/null @@ -1,129 +0,0 @@ -trainer: ocp - -dataset: - train: - format: lmdb - src: /datasets01/open_catalyst/oc20/082422/struct_to_energy_forces/train/2M - key_mapping: - y: energy - force: forces - transforms: - normalizer: - energy: - mean: -0.7554450631141663 - stdev: 2.887317180633545 - forces: - mean: 0 - stdev: 2.887317180633545 - val: - src: /datasets01/open_catalyst/oc20/082422/struct_to_energy_forces/val/id_30k - test: - src: /datasets01/open_catalyst/oc20/082422/struct_to_energy_forces/val/id_30k - -logger: tensorboard - -loss_functions: - - energy: - fn: mae - coefficient: 1 - - forces: - fn: l2mae - coefficient: 100 - -evaluation_metrics: - metrics: - energy: - - mae - - mse - - energy_within_threshold - forces: - - mae - - cosine_similarity - misc: - - energy_forces_within_threshold - primary_metric: forces_mae - -outputs: - energy: - shape: 1 - level: system - forces: - shape: 3 - level: atom - train_on_free_atoms: True - eval_on_free_atoms: True - -model: - name: gemnet_oc - num_spherical: 7 - num_radial: 128 - num_blocks: 4 - emb_size_atom: 256 - emb_size_edge: 512 - emb_size_trip_in: 64 - emb_size_trip_out: 64 - emb_size_quad_in: 32 - emb_size_quad_out: 32 - emb_size_aint_in: 64 - emb_size_aint_out: 64 - emb_size_rbf: 16 - emb_size_cbf: 16 - emb_size_sbf: 32 - num_before_skip: 2 - num_after_skip: 2 - num_concat: 1 - num_atom: 3 - num_output_afteratom: 3 - cutoff: 12.0 - cutoff_qint: 12.0 - cutoff_aeaint: 12.0 - cutoff_aint: 12.0 - max_neighbors: 30 - max_neighbors_qint: 8 - max_neighbors_aeaint: 20 - max_neighbors_aint: 1000 - rbf: - name: gaussian - envelope: - name: polynomial - exponent: 5 - cbf: - name: spherical_harmonics - sbf: - name: legendre_outer - extensive: True - output_init: HeOrthogonal - activation: silu - scale_file: configs/s2ef/all/gemnet/scaling_factors/gemnet-oc.pt - - regress_forces: True - direct_forces: True - forces_coupled: False - - quad_interaction: True - atom_edge_interaction: True - edge_atom_interaction: True - atom_interaction: True - - num_atom_emb_layers: 2 - num_global_out_layers: 2 - qint_tags: [1, 2] - otf_graph: True - -optim: - batch_size: 4 - eval_batch_size: 4 - load_balancing: atoms - eval_every: 5000 - num_workers: 2 - lr_initial: 5.e-4 - optimizer: AdamW - optimizer_params: {"amsgrad": True} - scheduler: ReduceLROnPlateau - mode: min - factor: 0.8 - patience: 3 - max_epochs: 80 - ema_decay: 0.999 - clip_grad_norm: 10 - weight_decay: 0 diff --git a/configs/goc_stress_debug.yml b/configs/goc_stress_debug.yml deleted file mode 100644 index e936d8572..000000000 --- a/configs/goc_stress_debug.yml +++ /dev/null @@ -1,162 +0,0 @@ -trainer: ocp - -dataset: - train: - format: lmdb - src: /checkpoint/saro00/mpf_datasets/s2efs/0/train.lmdb - key_mapping: - y: energy - force: forces - stress: stress - transforms: - decompose_tensor: - tensor: stress - rank: 2 - decomposition: - isotropic_stress: - irrep_dim: 0 - anisotropic_stress: - irrep_dim: 2 - normalizer: - energy: - mean: -5.9749126 - stdev: 1.866159 - forces: - mean: 0 - stdev: 1.866159 - isotropic_stress: - mean: 43.27065 - stdev: 674.1657344451734 - anisotropic_stress: - stdev: 143.72764771869745 - val: - src: /checkpoint/saro00/mpf_datasets/s2efs/0/val.lmdb - test: - src: /checkpoint/saro00/mpf_datasets/s2efs/0/val.lmdb - -logger: tensorboard - -loss_functions: - - energy: - fn: mae - coefficient: 1 - - forces: - fn: l2mae - coefficient: 100 - - isotropic_stress: - fn: mae - - anisotropic_stress: - fn: mae - -evaluation_metrics: - metrics: - energy: - - mae - - mse - - energy_within_threshold - forces: - - mae - - cosine_similarity - isotropic_stress: - - mae - anisotropic_stress: - - mae - stress: - - stress_mae_from_decomposition - misc: - - energy_forces_within_threshold - primary_metric: forces_mae - -outputs: - energy: - shape: 1 - level: system - forces: - shape: 3 - level: atom - train_on_free_atoms: True - eval_on_free_atoms: True - - stress: - level: system - decomposition: - isotropic_stress: - irrep_dim: 0 - anisotropic_stress: - irrep_dim: 2 - -model: - name: gemnet_oc - num_spherical: 7 - num_radial: 128 - num_blocks: 4 - emb_size_atom: 256 - emb_size_edge: 512 - emb_size_trip_in: 64 - emb_size_trip_out: 64 - emb_size_quad_in: 32 - emb_size_quad_out: 32 - emb_size_aint_in: 64 - emb_size_aint_out: 64 - emb_size_rbf: 16 - emb_size_cbf: 16 - emb_size_sbf: 32 - num_before_skip: 2 - num_after_skip: 2 - num_concat: 1 - num_atom: 3 - num_output_afteratom: 3 - cutoff: 12.0 - cutoff_qint: 12.0 - cutoff_aeaint: 12.0 - cutoff_aint: 12.0 - max_neighbors: 30 - max_neighbors_qint: 8 - max_neighbors_aeaint: 20 - max_neighbors_aint: 1000 - rbf: - name: gaussian - envelope: - name: polynomial - exponent: 5 - cbf: - name: spherical_harmonics - sbf: - name: legendre_outer - extensive: True - output_init: HeOrthogonal - activation: silu - scale_file: configs/s2ef/all/gemnet/scaling_factors/gemnet-oc.pt - - regress_forces: True - direct_forces: True - forces_coupled: False - - quad_interaction: True - atom_edge_interaction: True - edge_atom_interaction: True - atom_interaction: True - - num_elements: 100 - num_atom_emb_layers: 2 - num_global_out_layers: 2 - qint_tags: [1, 2] - otf_graph: True - -optim: - batch_size: 4 - eval_batch_size: 4 - load_balancing: atoms - eval_every: 5000 - num_workers: 2 - lr_initial: 5.e-4 - optimizer: AdamW - optimizer_params: {"amsgrad": True} - scheduler: ReduceLROnPlateau - mode: min - factor: 0.8 - patience: 3 - max_epochs: 80 - ema_decay: 0.999 - clip_grad_norm: 10 - weight_decay: 0 From d3d7e1ce834ac1fd7b8e0f3d95c51db904fe80e5 Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Thu, 4 Jan 2024 22:50:54 +0000 Subject: [PATCH 60/63] ocp-2.0 example.yml --- configs/ocp_example.yml | 255 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 255 insertions(+) create mode 100644 configs/ocp_example.yml diff --git a/configs/ocp_example.yml b/configs/ocp_example.yml new file mode 100644 index 000000000..1065f7447 --- /dev/null +++ b/configs/ocp_example.yml @@ -0,0 +1,255 @@ +# Example config for training models for arbitrary outputs. + +trainer: ocp + +dataset: + train: + # The code currently supports 'lmdb' and 'oc22_lmdb'. + + # To train models on adsorption energy (as in OC20) or other properties directly contained in the lmdb, use `lmdb`. + # To train models on total DFT energy, use `oc22_lmdb`. + # + # Can use 'single_point_lmdb' or 'trajectory_lmdb' for backward compatibility. + # 'single_point_lmdb' was for training IS2RE models, and 'trajectory_lmdb' was + # for training S2EF models. + format: lmdb # 'lmdb' or 'oc22_lmdb' + # Directory containing training set LMDBs + src: data/s2ef/all/train/ + # If we want to rename a target value stored in the data object, specify the mapping here. + # e.g. data.energy = data.y + key_mapping: + y: energy + force: forces + stress: stress + # Transformations we want to apply to the dataset. If transforms are not specified for the val + # and test set, train transforms will be used by default. + transforms: + # If wanting to decompose rank-2 tensors into its irreps for training, specify the property and + # irrep forms here. Not relevant for energy+force only training. + decompose_tensor: + tensor: stress + rank: 2 + decomposition: + isotropic_stress: + irrep_dim: 0 + anisotropic_stress: + irrep_dim: 2 + # If we want to normalize targets, i.e. subtract the mean and + # divide by standard deviation, then specify the 'mean' and 'stdev' here. + # Statistics will by default be applied to the validation and test set. + normalizer: + energy: + mean: -0.7554450631141663 + stdev: 2.887317180633545 + forces: + mean: 0 + stdev: 2.887317180633545 + isotropic_stress: + mean: 43.27065 + stdev: 674.1657344451734 + anisotropic_stress: + stdev: 143.72764771869745 + # If we want to train OC20 on total energy, a path to OC20 reference + # energies `oc20_ref` must be specified to unreference existing OC20 data. + # download at https://dl.fbaipublicfiles.com/opencatalystproject/data/oc22/oc20_ref.pkl + # Also, train_on_oc20_total_energies must be set to True + # OC22 defaults to total energy, so these flags are not necessary. + train_on_oc20_total_energies: False # True or False + oc20_ref: None # path to oc20_ref + # If we want to train on total energies and use a linear reference + # normalization scheme, we must specify the path to the per-element + # coefficients in a `.npz` format. + lin_ref: False # True or False + val: + # Directory containing val set LMDBs + src: data/s2ef/all/val_id/ + # If we want to run validation with OC20 total energy val set, `oc20_ref` must be specified and + # train_on_oc20_total_energies set to True + # OC22 defaults to total energy, so these flags are not necessary. + train_on_oc20_total_energies: False # True or False + oc20_ref: None # path to oc20_ref + test: + # Directory containing test set LMDBs + src: data/s2ef/all/test_id/ + +task: + # This is an argument used for checkpoint loading. By default it is True and loads + # checkpoint as it is. If False, it could partially load the checkpoint without giving + # any errors + strict_load: True # True or False + # The following args in the 'task' tree are for running relaxations with an + # S2EF model during training (as additional validation) or testing. + # Totally optional if you're only looking to train an S2EF model. + # + # Whether to evaluate val relaxations when training S2EF models on the + # energy_mae and average_distance_within_threshold metrics. + eval_relaxations: False # True or False + # No. of batches to run relaxations on. Defaults to the full 'relax_dataset'. + num_relaxation_batches: 5 + # Max no. of steps to run relaxations for. + relaxation_steps: 300 + # Whether to save out the positions. + write_pos: True # True or False + # Path to initial structures to run relaxations on. Same as the IS2RE set. + relax_dataset: + src: data/is2re/all/test_id/data.lmdb + # To shard a dataset into smaller subsets, define the total_shards desired + # and the shard a particular process to see. + total_shards: 1 # int (optional) + shard: 0 # int (optional) + relax_opt: + name: lbfgs + maxstep: 0.04 + memory: 50 + damping: 1.0 + alpha: 70.0 + # Directory to save out trajectories (.traj files) in. + traj_dir: path/to/traj/directory + # Whether to save out the full trajectory or just the initial+final frames + save_full_traj: True # True or False + # When set to true, uses "deterministic" CUDA scatter ops if available, + # i.e. given the same input, leads to the same results. Default is false + # since this can be significantly slower. + set_deterministic_scatter: False # True or False + +logger: tensorboard # 'wandb' or 'tensorboard' + +loss_functions: +# Specify the different terms in the loss function. For each term, the target property must +# be specified, the loss function to be used (`fn`), and the coefficient to weigh that term by. + - energy: + fn: mae + coefficient: 1 + # Loss function to use for forces. + # + # 'l2mae' has been working well for us with a force to energy coefficient + # ratio of 100:1. + # + # When training on raw DFT energies, 'atomwisel2' might be a better default + # with a force to energy coefficient ratio of 1:1. 'atomwisel2' scales L2 loss + # for forces by the no. of atoms in the structure. + - forces: + fn: l2mae + coefficient: 100 + - isotropic_stress: + fn: mae + - anisotropic_stress: + fn: mae + +evaluation_metrics: + # Evaluation metrics to be reported are specified here. For each target property, + # specify the evaluation metrics to be reported for that property. A list of possible + # metrics can be found in modules/evaluator.py. + metrics: + energy: + - mae + - mse + - energy_within_threshold + forces: + - mae + - cosine_similarity + isotropic_stress: + - mae + anisotropic_stress: + - mae + stress: + - stress_mae_from_decomposition + misc: + - energy_forces_within_threshold + # Define the primary metric to be used for checkpointing and learning rate scheduler. + primary_metric: forces_mae + +outputs: + # Models in OCP return a dictionary with target properties as keys and predictions as their values. + # Here we must specify what our model will return. The target properties defined here must be consistent + # with the `loss_functions` and `evaluation_metrics`. + energy: + # Specify whether this is a system or atom level property. + level: system + # Specify the desired precision to be saved out. + prediction_dtype: float16 + forces: + level: atom + # Sometimes we only care to train and evaluate on free atoms. We can control those settings here for a desired property. + train_on_free_atoms: True # True or False + eval_on_free_atoms: True # True or False + stress: + level: system + # If our model is predicting a decomposition of a rank-2 tensor, we must specify that information here. + decomposition: + isotropic_stress: + irrep_dim: 0 + anisotropic_stress: + irrep_dim: 2 + +model: + name: gemnet_t + # Model attributes go here, e.g. no. of layers, no. of hidden channels, + # embedding functions, cutoff radius, no. of neighbors, etc. + # This list of params will look different depending on the model. + # + # 'otf_graph' specifies whether graph edges should be computed on the fly + # or they already exist in the preprocessed LMDBs. If unsure, set it to True. + otf_graph: True # True or False + # All models in OCP can be used to predict just energies, or both energies and + # forces. For S2EF, we need both, so 'regress_forces' is True. + regress_forces: True # True or False + # Whether forces are predicted directly via an independent network (when set + # to True), or as negative gradients of energy wrt positions (when False) + direct_forces: True + +optim: + # Batch size per GPU for training. + # Note that effective batch size will be 'batch_size' x no. of GPUs. + batch_size: 8 + # Batch size per GPU for evaluation. + # Note that effective batch size will be 'eval_batch_size' x no. of GPUs. + eval_batch_size: 8 + # Whether to load balance across GPUs based on no. of 'atoms' or 'neighbors'. + load_balancing: atoms # 'atoms' or 'neighbors' + # No. of subprocesses to use for dataloading, pass as an arg to + # https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader. + num_workers: 2 + # After how many updates to run evaluation on val during training. + # If unspecified, defaults to 1 epoch. + eval_every: 5000 + # Optimizer to use from torch.optim. + # Default is https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html. + optimizer: AdamW + # Learning rate. Passed as an `lr` argument when initializing the optimizer. + lr_initial: 1.e-4 + # Additional args needed to initialize the optimizer. + optimizer_params: + amsgrad: True + # Weight decay to use. Passed as an argument when initializing the optimizer. + weight_decay: 0 + # Learning rate scheduler. Should work for any scheduler specified in + # in torch.optim.lr_scheduler: https://pytorch.org/docs/stable/optim.html + # as long as the relevant args are specified here. + # + # For example, for ReduceLROnPlateau, we specify `mode`, `factor`, `patience`. + # https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html + # + # Note that if task.primary_metric specified earlier in the config is a metric + # where higher is better (e.g. 'energy_force_within_threshold' or + # 'average_distance_within_threshold'), `mode` should be 'max' since we'd want + # to step LR when the metric has stopped increasing. Vice versa for energy_mae + # or forces_mae or loss. + # + # If you don't want to use a scheduler, set it to 'Null' (yes type that out). + # This is for legacy reasons. If scheduler is unspecified, it defaults to + # 'LambdaLR': warming up the learning rate to 'lr_initial' and then stepping + # it at pre-defined set of steps. See the DimeNet++ config for how to do this. + scheduler: ReduceLROnPlateau + mode: min + factor: 0.8 + patience: 3 + # No. of epochs to train for. + max_epochs: 100 + # Exponential moving average of parameters. 'ema_decay' is the decay factor. + ema_decay: 0.999 + # Max norm of gradients for clipping. Uses torch.nn.utils.clip_grad_norm_. + clip_grad_norm: 10 + +slurm: + constraint: "rtx_6000" From ddac40a194037bb5b2028a9a6153c78b8c3287ee Mon Sep 17 00:00:00 2001 From: Janice Lan Date: Thu, 4 Jan 2024 23:32:15 +0000 Subject: [PATCH 61/63] take out ocpdataparallel from fit.py --- ocpmodels/modules/scaling/fit.py | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/ocpmodels/modules/scaling/fit.py b/ocpmodels/modules/scaling/fit.py index 95c16f136..b3e1d4124 100644 --- a/ocpmodels/modules/scaling/fit.py +++ b/ocpmodels/modules/scaling/fit.py @@ -10,7 +10,6 @@ import torch.nn as nn from torch.nn.parallel.distributed import DistributedDataParallel -from ocpmodels.common.data_parallel import OCPDataParallel from ocpmodels.common.flags import flags from ocpmodels.common.utils import ( build_config, @@ -78,7 +77,7 @@ def main(*, num_batches: int = 16) -> None: # unwrap module from DP/DDP unwrapped_model = model while isinstance( - unwrapped_model, (DistributedDataParallel, OCPDataParallel) + unwrapped_model, DistributedDataParallel ): unwrapped_model = unwrapped_model.module assert isinstance( From 3ab12b485827556880f677db0e117cd201c882f2 Mon Sep 17 00:00:00 2001 From: Janice Lan Date: Fri, 5 Jan 2024 00:09:44 +0000 Subject: [PATCH 62/63] linter --- ocpmodels/modules/scaling/fit.py | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/ocpmodels/modules/scaling/fit.py b/ocpmodels/modules/scaling/fit.py index b3e1d4124..b8d816492 100644 --- a/ocpmodels/modules/scaling/fit.py +++ b/ocpmodels/modules/scaling/fit.py @@ -76,9 +76,7 @@ def main(*, num_batches: int = 16) -> None: # region reoad scale file contents if necessary # unwrap module from DP/DDP unwrapped_model = model - while isinstance( - unwrapped_model, DistributedDataParallel - ): + while isinstance(unwrapped_model, DistributedDataParallel): unwrapped_model = unwrapped_model.module assert isinstance( unwrapped_model, nn.Module From bc7b5cf3363e7118a3cf708faac8c0f24e50639c Mon Sep 17 00:00:00 2001 From: Muhammed Shuaibi Date: Fri, 5 Jan 2024 01:25:33 +0000 Subject: [PATCH 63/63] update tutorials --- tutorials/OCP_Tutorial.ipynb | 599 ++++---------------------- tutorials/train_s2ef_example.ipynb | 666 ----------------------------- 2 files changed, 79 insertions(+), 1186 deletions(-) delete mode 100644 tutorials/train_s2ef_example.ipynb diff --git a/tutorials/OCP_Tutorial.ipynb b/tutorials/OCP_Tutorial.ipynb index fcb84a8a9..12e3d9f8c 100644 --- a/tutorials/OCP_Tutorial.ipynb +++ b/tutorials/OCP_Tutorial.ipynb @@ -915,12 +915,7 @@ "source": [ "### Interacting with the OC20 datasets\n", "\n", - "The OC20 datasets are stored in LMDBs. Here we show how to interact with the datasets directly in order to better understand the data. We use two seperate classes to read in the approriate datasets:\n", - "\n", - "*S2EF* - We use the [TrajectoryLmdbDataset](https://github.com/Open-Catalyst-Project/ocp/blob/master/ocpmodels/datasets/trajectory_lmdb.py) object to read in a **directory** of LMDB files containing the dataset.\n", - "\n", - "*IS2RE/IS2RS* - We use the [SinglePointLmdbDataset](https://github.com/Open-Catalyst-Project/ocp/blob/master/ocpmodels/datasets/single_point_lmdb.py) class to read in a **single LMDB file** containing the dataset.\n", - "\n" + "The OC20 datasets are stored in LMDBs. Here we show how to interact with the datasets directly in order to better understand the data. We use [LmdbDataset](https://github.com/Open-Catalyst-Project/ocp/blob/main/ocpmodels/datasets/lmdb_dataset.py) to read in a directory of LMDB files or a single LMDB file." ] }, { @@ -935,10 +930,10 @@ }, "outputs": [], "source": [ - "from ocpmodels.datasets import TrajectoryLmdbDataset, SinglePointLmdbDataset\n", + "from ocpmodels.datasets import LmdbDataset\n", "\n", - "# TrajectoryLmdbDataset is our custom Dataset method to read the lmdbs as Data objects. Note that we need to give the path to the folder containing lmdbs for S2EF\n", - "dataset = TrajectoryLmdbDataset({\"src\": \"data/s2ef/train_100/\"})\n", + "# LmdbDataset is our custom Dataset method to read the lmdbs as Data objects. Note that we need to give the path to the folder containing lmdbs for S2EF\n", + "dataset = LmdbDataset({\"src\": \"data/s2ef/train_100/\"})\n", "\n", "print(\"Size of the dataset created:\", len(dataset))\n", "print(dataset[0])" @@ -1091,7 +1086,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": { "id": "l-1rNyuk_1Mo" }, @@ -1101,8 +1096,9 @@ "from ocpmodels.datasets import LmdbDataset\n", "from ocpmodels import models\n", "from ocpmodels.common import logger\n", - "from ocpmodels.common.utils import setup_logging\n", + "from ocpmodels.common.utils import setup_logging, setup_imports()\n", "setup_logging()\n", + "setup_imports()\n", "\n", "import numpy as np\n", "import copy\n", @@ -1120,7 +1116,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": { "id": "1SHl_1eQP4mW" }, @@ -1143,7 +1139,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": { "id": "HAJ3x4SnXE1o" }, @@ -1181,7 +1177,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": { "id": "j6Z_XbkiPGR9" }, @@ -1189,7 +1185,7 @@ "source": [ "# Task\n", "task = {\n", - " 'dataset': 'trajectory_lmdb', # dataset used for the S2EF task\n", + " 'dataset': 'lmdb', # dataset used for the S2EF task\n", " 'description': 'Regressing to energies and forces for DFT trajectories from OCP',\n", " 'type': 'regression',\n", " 'metric': 'mae',\n", @@ -1240,7 +1236,6 @@ " \"extensive\": True,\n", " \"output_init\": \"HeOrthogonal\",\n", " \"activation\": \"silu\",\n", - " \"scale_file\": \"configs/s2ef/all/gemnet/scaling_factors/gemnet-oc.pt\",\n", "\n", " \"regress_forces\": True,\n", " \"direct_forces\": True,\n", @@ -1254,6 +1249,8 @@ " \"num_atom_emb_layers\": 2,\n", " \"num_global_out_layers\": 2,\n", " \"qint_tags\": [1, 2],\n", + " \n", + " \"scale_file\": \"configs/s2ef/all/gemnet/scaling_factors/gemnet-oc.pt\",\n", "}\n", "\n", "# Optimizer\n", @@ -1299,7 +1296,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1307,158 +1304,7 @@ "id": "0it4gs6gPGGz", "outputId": "e7a98c1d-6d4f-425b-878f-4a3a7b42b2ed" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "amp: true\n", - "cmd:\n", - " checkpoint_dir: ./checkpoints/2023-08-01-13-26-40-S2EF-example\n", - " commit: 0bd8935\n", - " identifier: S2EF-example\n", - " logs_dir: ./logs/tensorboard/2023-08-01-13-26-40-S2EF-example\n", - " print_every: 5\n", - " results_dir: ./results/2023-08-01-13-26-40-S2EF-example\n", - " seed: 0\n", - " timestamp_id: 2023-08-01-13-26-40-S2EF-example\n", - "dataset:\n", - " grad_target_mean: 0.0\n", - " grad_target_std: !!python/object/apply:numpy.core.multiarray.scalar\n", - " - &id001 !!python/object/apply:numpy.dtype\n", - " args:\n", - " - f8\n", - " - false\n", - " - true\n", - " state: !!python/tuple\n", - " - 3\n", - " - <\n", - " - null\n", - " - null\n", - " - null\n", - " - -1\n", - " - -1\n", - " - 0\n", - " - !!binary |\n", - " dPVlWhRA+D8=\n", - " normalize_labels: true\n", - " src: data/s2ef/train_100\n", - " target_mean: !!python/object/apply:numpy.core.multiarray.scalar\n", - " - *id001\n", - " - !!binary |\n", - " zSXlDMrm3D8=\n", - " target_std: !!python/object/apply:numpy.core.multiarray.scalar\n", - " - *id001\n", - " - !!binary |\n", - " dPVlWhRA+D8=\n", - "eval_metrics: {}\n", - "gpus: 1\n", - "logger: tensorboard\n", - "loss_fns: {}\n", - "model: gemnet_oc\n", - "model_attributes:\n", - " activation: silu\n", - " atom_edge_interaction: true\n", - " atom_interaction: true\n", - " cbf:\n", - " name: spherical_harmonics\n", - " cutoff: 12.0\n", - " cutoff_aeaint: 12.0\n", - " cutoff_aint: 12.0\n", - " cutoff_qint: 12.0\n", - " direct_forces: true\n", - " edge_atom_interaction: true\n", - " emb_size_aint_in: 64\n", - " emb_size_aint_out: 64\n", - " emb_size_atom: 64\n", - " emb_size_cbf: 16\n", - " emb_size_edge: 64\n", - " emb_size_quad_in: 32\n", - " emb_size_quad_out: 32\n", - " emb_size_rbf: 16\n", - " emb_size_sbf: 32\n", - " emb_size_trip_in: 64\n", - " emb_size_trip_out: 64\n", - " envelope:\n", - " exponent: 5\n", - " name: polynomial\n", - " extensive: true\n", - " forces_coupled: false\n", - " max_neighbors: 30\n", - " max_neighbors_aeaint: 20\n", - " max_neighbors_aint: 1000\n", - " max_neighbors_qint: 8\n", - " num_after_skip: 2\n", - " num_atom: 3\n", - " num_atom_emb_layers: 2\n", - " num_before_skip: 2\n", - " num_blocks: 4\n", - " num_concat: 1\n", - " num_global_out_layers: 2\n", - " num_output_afteratom: 3\n", - " num_radial: 128\n", - " num_spherical: 7\n", - " output_init: HeOrthogonal\n", - " qint_tags:\n", - " - 1\n", - " - 2\n", - " quad_interaction: true\n", - " rbf:\n", - " name: gaussian\n", - " regress_forces: true\n", - " sbf:\n", - " name: legendre_outer\n", - " scale_file: configs/s2ef/all/gemnet/scaling_factors/gemnet-oc.pt\n", - "noddp: false\n", - "optim:\n", - " batch_size: 1\n", - " clip_grad_norm: 10\n", - " ema_decay: 0.999\n", - " eval_batch_size: 1\n", - " factor: 0.8\n", - " force_coefficient: 100\n", - " loss_energy: mae\n", - " loss_force: l2mae\n", - " lr_initial: 0.0005\n", - " max_epochs: 1\n", - " mode: min\n", - " num_workers: 2\n", - " optimizer: AdamW\n", - " optimizer_params:\n", - " amsgrad: true\n", - " patience: 3\n", - " scheduler: ReduceLROnPlateau\n", - "outputs: {}\n", - "slurm: {}\n", - "task:\n", - " dataset: trajectory_lmdb\n", - " description: Regressing to energies and forces for DFT trajectories from OCP\n", - " eval_on_free_atoms: true\n", - " grad_input: atomic forces\n", - " labels:\n", - " - potential energy\n", - " metric: mae\n", - " train_on_free_atoms: true\n", - " type: regression\n", - "trainer: s2ef\n", - "val_dataset:\n", - " src: data/s2ef/val_20\n", - "\n", - "2023-08-01 13:26:43 (INFO): Loading dataset: lmdb\n", - "2023-08-01 13:26:43 (INFO): Batch balancing is disabled for single GPU training.\n", - "2023-08-01 13:26:43 (INFO): Batch balancing is disabled for single GPU training.\n", - "2023-08-01 13:26:43 (INFO): Loading model: gemnet_oc\n", - "2023-08-01 13:26:43 (INFO): Loaded GemNetOC with 2596214 parameters.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2023-08-01 13:26:43 (WARNING): Model gradient logging to tensorboard not yet supported.\n" - ] - } - ], + "outputs": [], "source": [ "trainer = OCPTrainer(\n", " task=task,\n", @@ -1491,7 +1337,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1499,56 +1345,7 @@ "id": "WFmssq5oPFd_", "outputId": "a80e93f3-637a-4394-9ec8-4c38bac27461" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-08-01 13:26:47 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 1.11e+01, forcesx_mae: 4.63e-01, forcesy_mae: 7.30e-01, forcesz_mae: 5.88e-01, forces_mae: 5.94e-01, forces_cosine_similarity: -2.71e-02, forces_magnitude_error: 1.03e+00, loss: 1.71e+02, lr: 5.00e-04, epoch: 5.00e-02, step: 5.00e+00\n", - "2023-08-01 13:26:48 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 2.26e+01, forcesx_mae: 4.70e-01, forcesy_mae: 6.52e-01, forcesz_mae: 7.01e-01, forces_mae: 6.08e-01, forces_cosine_similarity: 1.11e-02, forces_magnitude_error: 1.12e+00, loss: 1.30e+02, lr: 5.00e-04, epoch: 1.00e-01, step: 1.00e+01\n", - "2023-08-01 13:26:49 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 2.47e+01, forcesx_mae: 4.45e-01, forcesy_mae: 6.03e-01, forcesz_mae: 6.59e-01, forces_mae: 5.69e-01, forces_cosine_similarity: 3.69e-03, forces_magnitude_error: 7.93e-01, loss: 9.21e+01, lr: 5.00e-04, epoch: 1.50e-01, step: 1.50e+01\n", - "2023-08-01 13:26:49 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 2.35e+01, forcesx_mae: 2.35e-01, forcesy_mae: 4.31e-01, forcesz_mae: 3.37e-01, forces_mae: 3.34e-01, forces_cosine_similarity: 8.77e-02, forces_magnitude_error: 4.51e-01, loss: 5.58e+01, lr: 5.00e-04, epoch: 2.00e-01, step: 2.00e+01\n", - "2023-08-01 13:26:50 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 1.33e+01, forcesx_mae: 1.33e-01, forcesy_mae: 1.48e-01, forcesz_mae: 1.77e-01, forces_mae: 1.53e-01, forces_cosine_similarity: -1.11e-02, forces_magnitude_error: 1.63e-01, loss: 2.86e+01, lr: 5.00e-04, epoch: 2.50e-01, step: 2.50e+01\n", - "2023-08-01 13:26:51 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 7.76e+00, forcesx_mae: 1.16e-01, forcesy_mae: 2.85e-01, forcesz_mae: 1.54e-01, forces_mae: 1.85e-01, forces_cosine_similarity: -1.37e-02, forces_magnitude_error: 2.51e-01, loss: 2.96e+01, lr: 5.00e-04, epoch: 3.00e-01, step: 3.00e+01\n", - "2023-08-01 13:26:52 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 7.79e+00, forcesx_mae: 5.18e-02, forcesy_mae: 5.56e-02, forcesz_mae: 5.98e-02, forces_mae: 5.57e-02, forces_cosine_similarity: 9.25e-02, forces_magnitude_error: 6.76e-02, loss: 1.25e+01, lr: 5.00e-04, epoch: 3.50e-01, step: 3.50e+01\n", - "2023-08-01 13:26:53 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 6.20e+00, forcesx_mae: 1.05e-01, forcesy_mae: 1.41e-01, forcesz_mae: 1.80e-01, forces_mae: 1.42e-01, forces_cosine_similarity: 1.38e-01, forces_magnitude_error: 1.89e-01, loss: 2.25e+01, lr: 5.00e-04, epoch: 4.00e-01, step: 4.00e+01\n", - "2023-08-01 13:26:53 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 2.79e+00, forcesx_mae: 1.42e-01, forcesy_mae: 2.08e-01, forcesz_mae: 2.35e-01, forces_mae: 1.95e-01, forces_cosine_similarity: 1.79e-01, forces_magnitude_error: 2.71e-01, loss: 2.65e+01, lr: 5.00e-04, epoch: 4.50e-01, step: 4.50e+01\n", - "2023-08-01 13:26:54 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 2.46e+00, forcesx_mae: 9.11e-02, forcesy_mae: 1.11e-01, forcesz_mae: 1.55e-01, forces_mae: 1.19e-01, forces_cosine_similarity: 1.48e-01, forces_magnitude_error: 1.79e-01, loss: 1.69e+01, lr: 5.00e-04, epoch: 5.00e-01, step: 5.00e+01\n", - "2023-08-01 13:26:55 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 1.65e+00, forcesx_mae: 1.61e-01, forcesy_mae: 1.62e-01, forcesz_mae: 2.43e-01, forces_mae: 1.89e-01, forces_cosine_similarity: 3.51e-01, forces_magnitude_error: 3.24e-01, loss: 2.62e+01, lr: 5.00e-04, epoch: 5.50e-01, step: 5.50e+01\n", - "2023-08-01 13:26:56 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 3.78e-01, forcesx_mae: 3.05e-02, forcesy_mae: 3.90e-02, forcesz_mae: 5.64e-02, forces_mae: 4.20e-02, forces_cosine_similarity: 1.70e-01, forces_magnitude_error: 5.91e-02, loss: 5.78e+00, lr: 5.00e-04, epoch: 6.00e-01, step: 6.00e+01\n", - "2023-08-01 13:26:57 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 8.06e+00, forcesx_mae: 3.03e-01, forcesy_mae: 5.27e-01, forcesz_mae: 4.00e-01, forces_mae: 4.10e-01, forces_cosine_similarity: 3.72e-01, forces_magnitude_error: 6.84e-01, loss: 5.42e+01, lr: 5.00e-04, epoch: 6.50e-01, step: 6.50e+01\n", - "2023-08-01 13:26:57 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 1.99e+00, forcesx_mae: 1.40e-01, forcesy_mae: 1.54e-01, forcesz_mae: 2.23e-01, forces_mae: 1.72e-01, forces_cosine_similarity: 4.15e-01, forces_magnitude_error: 2.86e-01, loss: 2.44e+01, lr: 5.00e-04, epoch: 7.00e-01, step: 7.00e+01\n", - "2023-08-01 13:26:58 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 9.05e-01, forcesx_mae: 8.92e-02, forcesy_mae: 1.32e-01, forcesz_mae: 9.59e-02, forces_mae: 1.06e-01, forces_cosine_similarity: 8.72e-02, forces_magnitude_error: 1.08e-01, loss: 1.26e+01, lr: 5.00e-04, epoch: 7.50e-01, step: 7.50e+01\n", - "2023-08-01 13:26:59 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 1.60e+00, forcesx_mae: 1.41e-01, forcesy_mae: 1.93e-01, forcesz_mae: 1.76e-01, forces_mae: 1.70e-01, forces_cosine_similarity: 2.28e-01, forces_magnitude_error: 2.31e-01, loss: 2.23e+01, lr: 5.00e-04, epoch: 8.00e-01, step: 8.00e+01\n", - "2023-08-01 13:27:00 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 1.50e+00, forcesx_mae: 2.21e-01, forcesy_mae: 8.65e-01, forcesz_mae: 3.35e-01, forces_mae: 4.74e-01, forces_cosine_similarity: 3.66e-01, forces_magnitude_error: 9.49e-01, loss: 5.46e+01, lr: 5.00e-04, epoch: 8.50e-01, step: 8.50e+01\n", - "2023-08-01 13:27:01 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 4.14e+00, forcesx_mae: 5.57e-02, forcesy_mae: 9.36e-02, forcesz_mae: 7.68e-02, forces_mae: 7.53e-02, forces_cosine_similarity: 2.33e-01, forces_magnitude_error: 8.21e-02, loss: 1.16e+01, lr: 5.00e-04, epoch: 9.00e-01, step: 9.00e+01\n", - "2023-08-01 13:27:01 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 9.06e-01, forcesx_mae: 3.69e-02, forcesy_mae: 4.61e-02, forcesz_mae: 6.08e-02, forces_mae: 4.79e-02, forces_cosine_similarity: 2.71e-01, forces_magnitude_error: 5.92e-02, loss: 6.84e+00, lr: 5.00e-04, epoch: 9.50e-01, step: 9.50e+01\n", - "2023-08-01 13:27:02 (INFO): energy_forces_within_threshold: 0.00e+00, energy_mae: 4.97e+00, forcesx_mae: 6.32e-02, forcesy_mae: 1.09e-01, forcesz_mae: 7.56e-02, forces_mae: 8.27e-02, forces_cosine_similarity: 1.50e-01, forces_magnitude_error: 9.81e-02, loss: 1.31e+01, lr: 5.00e-04, epoch: 1.00e+00, step: 1.00e+02\n", - "2023-08-01 13:27:02 (INFO): Evaluating on val.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "device 0: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 20/20 [00:01<00:00, 15.09it/s]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-08-01 13:27:04 (INFO): energy_forces_within_threshold: 0.0000, energy_mae: 9.0515, forcesx_mae: 0.3079, forcesy_mae: 0.2660, forcesz_mae: 0.4767, forces_mae: 0.3502, forces_cosine_similarity: 0.0152, forces_magnitude_error: 0.5005, loss: 53.7886, epoch: 1.0000\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], + "outputs": [], "source": [ "trainer.train()" ] @@ -1583,7 +1380,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -1592,18 +1389,7 @@ "id": "UW4ihgBdQ0Yt", "outputId": "8226c4d2-041d-46d3-c0d9-02ce85f8fc93" }, - "outputs": [ - { - "data": { - "text/plain": [ - "'./checkpoints/2023-08-01-13-26-40-S2EF-example/best_checkpoint.pt'" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# The `best_checpoint.pt` file contains the checkpoint with the best val performance\n", "checkpoint_path = os.path.join(trainer.config[\"cmd\"][\"checkpoint_dir\"], \"best_checkpoint.pt\")\n", @@ -1612,7 +1398,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1620,29 +1406,7 @@ "id": "6jppgncMTivj", "outputId": "a15e13a5-4c1d-4fd4-c2c3-ef9fa210a9dd" }, - "outputs": [ - { - "data": { - "text/plain": [ - "[{'src': 'data/s2ef/train_100',\n", - " 'normalize_labels': True,\n", - " 'target_mean': 0.45158625849998374,\n", - " 'target_std': 1.5156444102461508,\n", - " 'grad_target_mean': 0.0,\n", - " 'grad_target_std': 1.5156444102461508,\n", - " 'normalizer': {'energy': {'mean': 0.45158625849998374,\n", - " 'stdev': 1.5156444102461508},\n", - " 'forces': {'mean': 0.0, 'stdev': 1.5156444102461508}},\n", - " 'key_mapping': {'y': 'energy', 'force': 'forces'}},\n", - " {'src': 'data/s2ef/val_20'},\n", - " {'src': 'data/s2ef/val_20'}]" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Append the dataset with the test set. We use the same val set for demonstration.\n", "\n", @@ -1655,7 +1419,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1663,187 +1427,7 @@ "id": "MaVROfxzRLaj", "outputId": "0f143c63-1e1d-44c4-c641-34bac1706c2c" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "amp: true\n", - "cmd:\n", - " checkpoint_dir: ./checkpoints/2023-08-01-13-26-40-S2EF-val-example\n", - " commit: 0bd8935\n", - " identifier: S2EF-val-example\n", - " logs_dir: ./logs/tensorboard/2023-08-01-13-26-40-S2EF-val-example\n", - " print_every: 5\n", - " results_dir: ./results/2023-08-01-13-26-40-S2EF-val-example\n", - " seed: 0\n", - " timestamp_id: 2023-08-01-13-26-40-S2EF-val-example\n", - "dataset:\n", - " grad_target_mean: 0.0\n", - " grad_target_std: !!python/object/apply:numpy.core.multiarray.scalar\n", - " - &id001 !!python/object/apply:numpy.dtype\n", - " args:\n", - " - f8\n", - " - false\n", - " - true\n", - " state: !!python/tuple\n", - " - 3\n", - " - <\n", - " - null\n", - " - null\n", - " - null\n", - " - -1\n", - " - -1\n", - " - 0\n", - " - !!binary |\n", - " dPVlWhRA+D8=\n", - " key_mapping:\n", - " force: forces\n", - " y: energy\n", - " normalize_labels: true\n", - " normalizer:\n", - " energy:\n", - " mean: !!python/object/apply:numpy.core.multiarray.scalar\n", - " - *id001\n", - " - !!binary |\n", - " zSXlDMrm3D8=\n", - " stdev: !!python/object/apply:numpy.core.multiarray.scalar\n", - " - *id001\n", - " - !!binary |\n", - " dPVlWhRA+D8=\n", - " forces:\n", - " mean: 0.0\n", - " stdev: !!python/object/apply:numpy.core.multiarray.scalar\n", - " - *id001\n", - " - !!binary |\n", - " dPVlWhRA+D8=\n", - " src: data/s2ef/train_100\n", - " target_mean: !!python/object/apply:numpy.core.multiarray.scalar\n", - " - *id001\n", - " - !!binary |\n", - " zSXlDMrm3D8=\n", - " target_std: !!python/object/apply:numpy.core.multiarray.scalar\n", - " - *id001\n", - " - !!binary |\n", - " dPVlWhRA+D8=\n", - "eval_metrics: {}\n", - "gpus: 1\n", - "logger: tensorboard\n", - "loss_fns: {}\n", - "model: gemnet_oc\n", - "model_attributes:\n", - " activation: silu\n", - " atom_edge_interaction: true\n", - " atom_interaction: true\n", - " cbf:\n", - " name: spherical_harmonics\n", - " cutoff: 12.0\n", - " cutoff_aeaint: 12.0\n", - " cutoff_aint: 12.0\n", - " cutoff_qint: 12.0\n", - " direct_forces: true\n", - " edge_atom_interaction: true\n", - " emb_size_aint_in: 64\n", - " emb_size_aint_out: 64\n", - " emb_size_atom: 64\n", - " emb_size_cbf: 16\n", - " emb_size_edge: 64\n", - " emb_size_quad_in: 32\n", - " emb_size_quad_out: 32\n", - " emb_size_rbf: 16\n", - " emb_size_sbf: 32\n", - " emb_size_trip_in: 64\n", - " emb_size_trip_out: 64\n", - " envelope:\n", - " exponent: 5\n", - " name: polynomial\n", - " extensive: true\n", - " forces_coupled: false\n", - " max_neighbors: 30\n", - " max_neighbors_aeaint: 20\n", - " max_neighbors_aint: 1000\n", - " max_neighbors_qint: 8\n", - " num_after_skip: 2\n", - " num_atom: 3\n", - " num_atom_emb_layers: 2\n", - " num_before_skip: 2\n", - " num_blocks: 4\n", - " num_concat: 1\n", - " num_global_out_layers: 2\n", - " num_output_afteratom: 3\n", - " num_radial: 128\n", - " num_spherical: 7\n", - " output_init: HeOrthogonal\n", - " qint_tags:\n", - " - 1\n", - " - 2\n", - " quad_interaction: true\n", - " rbf:\n", - " name: gaussian\n", - " regress_forces: true\n", - " sbf:\n", - " name: legendre_outer\n", - " scale_file: configs/s2ef/all/gemnet/scaling_factors/gemnet-oc.pt\n", - "noddp: false\n", - "optim:\n", - " batch_size: 1\n", - " clip_grad_norm: 10\n", - " ema_decay: 0.999\n", - " eval_batch_size: 1\n", - " factor: 0.8\n", - " force_coefficient: 100\n", - " loss_energy: mae\n", - " loss_force: l2mae\n", - " lr_initial: 0.0005\n", - " max_epochs: 1\n", - " mode: min\n", - " num_workers: 2\n", - " optimizer: AdamW\n", - " optimizer_params:\n", - " amsgrad: true\n", - " patience: 3\n", - " scheduler: ReduceLROnPlateau\n", - "outputs: {}\n", - "slurm: {}\n", - "task:\n", - " dataset: trajectory_lmdb\n", - " description: Regressing to energies and forces for DFT trajectories from OCP\n", - " eval_on_free_atoms: true\n", - " grad_input: atomic forces\n", - " labels:\n", - " - potential energy\n", - " metric: mae\n", - " train_on_free_atoms: true\n", - " type: regression\n", - "test_dataset:\n", - " src: data/s2ef/val_20\n", - "trainer: s2ef\n", - "val_dataset:\n", - " src: data/s2ef/val_20\n", - "\n", - "2023-08-01 13:27:14 (INFO): Loading dataset: lmdb\n", - "2023-08-01 13:27:14 (INFO): Batch balancing is disabled for single GPU training.\n", - "2023-08-01 13:27:14 (INFO): Batch balancing is disabled for single GPU training.\n", - "2023-08-01 13:27:14 (INFO): Batch balancing is disabled for single GPU training.\n", - "2023-08-01 13:27:14 (INFO): Loading model: gemnet_oc\n", - "2023-08-01 13:27:15 (INFO): Loaded GemNetOC with 2596214 parameters.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2023-08-01 13:27:15 (WARNING): Model gradient logging to tensorboard not yet supported.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-08-01 13:27:15 (INFO): Loading checkpoint from: ./checkpoints/2023-08-01-13-26-40-S2EF-example/best_checkpoint.pt\n" - ] - } - ], + "outputs": [], "source": [ "pretrained_trainer = OCPTrainer(\n", " task=task,\n", @@ -1878,7 +1462,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -1886,36 +1470,7 @@ "id": "jbiPZNeJQ0WK", "outputId": "dd346bcd-f30a-4333-a1ca-e18c057cb238" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-08-01 13:27:20 (INFO): Predicting on test.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "device 0: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 20/20 [00:01<00:00, 15.15it/s]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-08-01 13:27:21 (INFO): Writing results to ./results/2023-08-01-13-26-40-S2EF-val-example/s2ef_s2ef_results.npz\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], + "outputs": [], "source": [ "# make predictions on the existing test_loader\n", "predictions = pretrained_trainer.predict(pretrained_trainer.test_loader, results_file=\"s2ef_results\", disable_tqdm=False)" @@ -1923,7 +1478,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": { "id": "zaZGqeyqNCXz" }, @@ -1976,8 +1531,8 @@ }, "outputs": [], "source": [ - "from ocpmodels.trainers import EnergyTrainer\n", - "from ocpmodels.datasets import SinglePointLmdbDataset\n", + "from ocpmodels.trainers import OCPTrainer\n", + "from ocpmodels.datasets import LmdbDataset\n", "from ocpmodels import models\n", "from ocpmodels.common import logger\n", "from ocpmodels.common.utils import setup_logging\n", @@ -2028,11 +1583,11 @@ }, "outputs": [], "source": [ - "train_dataset = SinglePointLmdbDataset({\"src\": train_src})\n", + "train_dataset = LmdbDataset({\"src\": train_src})\n", "\n", "energies = []\n", "for data in train_dataset:\n", - " energies.append(data.y_relaxed)\n", + " energies.append(data.y_relaxed)\n", "\n", "mean = np.mean(energies)\n", "stdev = np.std(energies)" @@ -2148,34 +1703,26 @@ }, "outputs": [], "source": [ - "energy_trainer = EnergyTrainer(\n", + "energy_trainer = OCPTrainer(\n", " task=task,\n", " model=copy.deepcopy(model), # copied for later use, not necessary in practice.\n", " dataset=dataset,\n", " optimizer=optimizer,\n", + " outputs={},\n", + " loss_fns={},\n", + " eval_metrics={},\n", + " name=\"is2re\",\n", " identifier=\"IS2RE-example\",\n", " run_dir=\"./\", # directory to save results if is_debug=False. Prediction files are saved here so be careful not to override!\n", " is_debug=False, # if True, do not save checkpoint, logs, or results\n", - " is_vis=False,\n", " print_every=5,\n", " seed=0, # random seed to use\n", " logger=\"tensorboard\", # logger of choice (tensorboard and wandb supported)\n", " local_rank=0,\n", - " amp=True, # use PyTorch Automatic Mixed Precision (faster training and less memory usage) \n", + " amp=True, # use PyTorch Automatic Mixed Precision (faster training and less memory usage),\n", ")" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "tnJer5rGwjwi" - }, - "outputs": [], - "source": [ - "energy_trainer.model" - ] - }, { "cell_type": "markdown", "metadata": { @@ -2269,20 +1816,23 @@ }, "outputs": [], "source": [ - "pretrained_energy_trainer = EnergyTrainer(\n", + "pretrained_energy_trainer = OCPTrainer(\n", " task=task,\n", - " model=model,\n", + " model=copy.deepcopy(model), # copied for later use, not necessary in practice.\n", " dataset=dataset,\n", " optimizer=optimizer,\n", + " outputs={},\n", + " loss_fns={},\n", + " eval_metrics={},\n", + " name=\"is2re\",\n", " identifier=\"IS2RE-val-example\",\n", " run_dir=\"./\", # directory to save results if is_debug=False. Prediction files are saved here so be careful not to override!\n", " is_debug=False, # if True, do not save checkpoint, logs, or results\n", - " is_vis=False,\n", - " print_every=10,\n", + " print_every=5,\n", " seed=0, # random seed to use\n", " logger=\"tensorboard\", # logger of choice (tensorboard and wandb supported)\n", " local_rank=0,\n", - " amp=True, # use PyTorch Automatic Mixed Precision (faster training and less memory usage)\n", + " amp=True, # use PyTorch Automatic Mixed Precision (faster training and less memory usage),\n", ")\n", "\n", "pretrained_energy_trainer.load_checkpoint(checkpoint_path=checkpoint_path)" @@ -2368,8 +1918,8 @@ }, "outputs": [], "source": [ - "from ocpmodels.trainers import ForcesTrainer\n", - "from ocpmodels.datasets import TrajectoryLmdbDataset\n", + "from ocpmodels.trainers import OCPTrainer\n", + "from ocpmodels.datasets import LmdbDataset\n", "from ocpmodels import models\n", "from ocpmodels.common import logger\n", "from ocpmodels.common.utils import setup_logging\n", @@ -2465,7 +2015,7 @@ "source": [ "# Task\n", "task = {\n", - " 'dataset': 'trajectory_lmdb', # dataset used for the S2EF task\n", + " 'dataset': 'lmdb', # dataset used for the S2EF task\n", " 'description': 'Regressing to energies and forces for DFT trajectories from OCP',\n", " 'type': 'regression',\n", " 'metric': 'mae',\n", @@ -2562,20 +2112,23 @@ }, "outputs": [], "source": [ - "trainer = ForcesTrainer(\n", + "trainer = OCPTrainer(\n", " task=task,\n", - " model=model,\n", + " model=copy.deepcopy(model), # copied for later use, not necessary in practice.\n", " dataset=dataset,\n", " optimizer=optimizer,\n", + " outputs={},\n", + " loss_fns={},\n", + " eval_metrics={},\n", + " name=\"s2ef\",\n", " identifier=\"is2rs-example\",\n", " run_dir=\"./\", # directory to save results if is_debug=False. Prediction files are saved here so be careful not to override!\n", " is_debug=False, # if True, do not save checkpoint, logs, or results\n", - " is_vis=False,\n", " print_every=5,\n", " seed=0, # random seed to use\n", " logger=\"tensorboard\", # logger of choice (tensorboard and wandb supported)\n", " local_rank=0,\n", - " amp=True, # use PyTorch Automatic Mixed Precision (faster training and less memory usage)\n", + " amp=True, # use PyTorch Automatic Mixed Precision (faster training and less memory usage),\n", ")" ] }, @@ -2786,7 +2339,7 @@ "\n", "from typing import Optional\n", "\n", - "from ocpmodels.trainers import ForcesTrainer\n", + "from ocpmodels.trainers import OCPTrainer\n", "from ocpmodels import models\n", "from ocpmodels.common import logger\n", "from ocpmodels.common.utils import setup_logging, get_pbc_distances\n", @@ -2809,8 +2362,8 @@ "setup_logging()\n", "\n", "# Dataset paths\n", - "train_src = \"data/s2ef/train_200k\"\n", - "val_src = \"data/s2ef/val\"\n", + "train_src = \"data/s2ef/train_100\"\n", + "val_src = \"data/s2ef/val_20\"\n", "\n", "# Configs\n", "task = {\n", @@ -3016,8 +2569,8 @@ " F = scatter(F_st_vec, idx_t, dim=0, dim_size=atomic_numbers.size(0), reduce=\"add\")\n", " # (num_atoms, num_targets, 3)\n", " F = F.squeeze(1)\n", - "\n", - " return E, F\n", + " \n", + " return {\"energy\": E, \"forces\": F}\n", "\n", " @property\n", " def num_params(self):\n", @@ -3049,19 +2602,23 @@ " 'env_exponent': 5,\n", "}\n", "\n", - "trainer = ForcesTrainer(\n", + "trainer = OCPTrainer(\n", " task=task,\n", " model=model_params,\n", " dataset=dataset,\n", " optimizer=optimizer,\n", + " outputs={},\n", + " loss_fns={},\n", + " eval_metrics={},\n", + " name=\"s2ef\",\n", " identifier=\"S2EF-simple\",\n", " run_dir=\"./\", # directory to save results if is_debug=False. Prediction files are saved here so be careful not to override!\n", " is_debug=False, # if True, do not save checkpoint, logs, or results\n", - " is_vis=False,\n", - " print_every=20,\n", + " print_every=5,\n", " seed=0, # random seed to use\n", " logger=\"tensorboard\", # logger of choice (tensorboard and wandb supported)\n", " local_rank=0,\n", + " amp=True, # use PyTorch Automatic Mixed Precision (faster training and less memory usage),\n", ")\n", "\n", "trainer.train()" @@ -3141,19 +2698,23 @@ " 'direct_forces': True,\n", "}\n", "\n", - "trainer = ForcesTrainer(\n", + "trainer = OCPTrainer(\n", " task=task,\n", " model=model_params,\n", " dataset=dataset,\n", " optimizer=optimizer,\n", + " outputs={},\n", + " loss_fns={},\n", + " eval_metrics={},\n", + " name=\"s2ef\",\n", " identifier=\"S2EF-gemnet-t\",\n", " run_dir=\"./\", # directory to save results if is_debug=False. Prediction files are saved here so be careful not to override!\n", " is_debug=False, # if True, do not save checkpoint, logs, or results\n", - " is_vis=False,\n", - " print_every=20,\n", + " print_every=5,\n", " seed=0, # random seed to use\n", " logger=\"tensorboard\", # logger of choice (tensorboard and wandb supported)\n", " local_rank=0,\n", + " amp=True, # use PyTorch Automatic Mixed Precision (faster training and less memory usage),\n", ")\n", "\n", "trainer.train()" @@ -3247,10 +2808,8 @@ "adslab.center(vacuum=13.0, axis=2)\n", "adslab.set_pbc(True)\n", "\n", - "config_yml_path = \"configs/s2ef/all/gemnet/gemnet-dT.yml\"\n", - "\n", "# Define the calculator\n", - "calc = OCPCalculator(config_yml=config_yml_path, checkpoint=checkpoint_path)\n", + "calc = OCPCalculator(checkpoint_path=checkpoint_path)\n", "\n", "# Set up the calculator\n", "adslab.calc = calc\n", @@ -3284,7 +2843,7 @@ "\n", "\n", "#### Initial Structure to Relaxed Energy (IS2RE) LMDBs\n", - "IS2RE/IS2RS LMDBs utilize the SinglePointLmdb dataset. This dataset expects the data to be contained in a **single** LMDB file. In addition to the attributes defined by AtomsToGraph, the following attributes must be added for the IS2RE/IS2RS tasks:\n", + "IS2RE/IS2RS LMDBs utilize the LmdbDataset dataset. This dataset expects the data to be contained in a **single** LMDB file. In addition to the attributes defined by AtomsToGraph, the following attributes must be added for the IS2RE/IS2RS tasks:\n", "\n", "- pos_relaxed: Relaxed adslab positions\n", "- sid: Unique system identifier, arbitrary\n", @@ -3440,10 +2999,10 @@ }, "outputs": [], "source": [ - "from ocpmodels.datasets import SinglePointLmdbDataset\n", + "from ocpmodels.datasets import LmdbDataset\n", "\n", - "# SinglePointLmdbDataset is out custom Dataset method to read the lmdbs as Data objects. Note that we need to give the entire path (including lmdb) for IS2RE\n", - "dataset = SinglePointLmdbDataset({\"src\": \"data/toy_C3H8.lmdb\"})\n", + "# LmdbDataset is out custom Dataset method to read the lmdbs as Data objects. Note that we need to give the entire path (including lmdb) for IS2RE\n", + "dataset = LmdbDataset({\"src\": \"data/toy_C3H8.lmdb\"})\n", "\n", "print(\"Size of the dataset created:\", len(dataset))\n", "print(dataset[0])" @@ -3457,7 +3016,7 @@ "source": [ "#### Structure to Energy and Forces (S2EF) LMDBs\n", "\n", - "S2EF LMDBs utilize the TrajectoryLmdb dataset. This dataset expects a directory of LMDB files. In addition to the attributes defined by AtomsToGraph, the following attributes must be added for the S2EF task:\n", + "S2EF LMDBs utilize the LmdbDatset dataset. This dataset expects a directory of LMDB files. In addition to the attributes defined by AtomsToGraph, the following attributes must be added for the S2EF task:\n", "\n", "- tags (optional): 0 - subsurface, 1 - surface, 2 - adsorbate\n", "- fid: Frame index along the trajcetory\n", diff --git a/tutorials/train_s2ef_example.ipynb b/tutorials/train_s2ef_example.ipynb deleted file mode 100644 index 0e9c57159..000000000 --- a/tutorials/train_s2ef_example.ipynb +++ /dev/null @@ -1,666 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# SchNet S2EF training example" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The purpose of this notebook is to demonstrate some of the basics of the Open Catalyst Project's (OCP) codebase and data. In this example, we will train a schnet model for predicting the energy and forces of a given structure (S2EF task). First, ensure you have installed the OCP ocp repo and all the dependencies according to the [README](https://github.com/Open-Catalyst-Project/ocp/blob/master/README.md)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Disclaimer: This notebook is for tutorial purposes, it is unlikely it will be practical to train baseline models on our larger datasets using this format. As a next step, we recommend trying the command line examples. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Imports" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [], - "source": [ - "import torch\n", - "import os\n", - "from ocpmodels.trainers import ForcesTrainer\n", - "from ocpmodels import models\n", - "from ocpmodels.common import logger\n", - "from ocpmodels.common.utils import setup_logging\n", - "setup_logging()" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "True\n" - ] - } - ], - "source": [ - "# a simple sanity check that a GPU is available\n", - "if torch.cuda.is_available():\n", - " print(\"True\")\n", - "else:\n", - " print(\"False\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## The essential steps for training an OCP model\n", - "\n", - "1) Download data\n", - "\n", - "2) Preprocess data (if necessary)\n", - "\n", - "3) Define or load a configuration (config), which includes the following\n", - " \n", - " - task\n", - " - model\n", - " - optimizer\n", - " - dataset\n", - " - trainer\n", - "\n", - "4) Train\n", - "\n", - "5) Depending on the model/task there might be intermediate relaxation step\n", - "\n", - "6) Predict" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Dataset" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This examples uses the LMDB generated from the following [tutorial](http://laikapack.cheme.cmu.edu/notebook/open-catalyst-project/mshuaibi/notebooks/projects/ocp/docs/source/tutorials/lmdb_dataset_creation.ipynb). Please run that notebook before moving on. Alternatively, if you have other LMDBs available you may specify that instead." - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "# set the path to your local lmdb directory\n", - "train_src = \"s2ef\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Define config" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For this example, we will explicitly define the config; however, a set of default config files exists in the config folder of this repository. Default config yaml files can easily be loaded with the `build_config` util (found in `ocp/ocpmodels/common/utils.py`). Loading a yaml config is preferrable when launching jobs from the command line. We have included our best models' config files [here](https://github.com/Open-Catalyst-Project/ocp/tree/master/configs/s2ef)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Task** " - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "task = {\n", - " 'dataset': 'trajectory_lmdb', # dataset used for the S2EF task\n", - " 'description': 'Regressing to energies and forces for DFT trajectories from OCP',\n", - " 'type': 'regression',\n", - " 'metric': 'mae',\n", - " 'labels': ['potential energy'],\n", - " 'grad_input': 'atomic forces',\n", - " 'train_on_free_atoms': True,\n", - " 'eval_on_free_atoms': True\n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Model** - SchNet for this example" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "model = {\n", - " 'name': 'schnet',\n", - " 'hidden_channels': 1024, # if training is too slow for example purposes reduce the number of hidden channels\n", - " 'num_filters': 256,\n", - " 'num_interactions': 3,\n", - " 'num_gaussians': 200,\n", - " 'cutoff': 6.0\n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Optimizer**" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "optimizer = {\n", - " 'batch_size': 16, # if hitting GPU memory issues, lower this\n", - " 'eval_batch_size': 8,\n", - " 'num_workers': 8,\n", - " 'lr_initial': 0.0001,\n", - " 'scheduler': \"ReduceLROnPlateau\",\n", - " 'mode': \"min\",\n", - " 'factor': 0.8,\n", - " 'patience': 3,\n", - " 'max_epochs': 80,\n", - " 'max_epochs': 1, # used for demonstration purposes\n", - " 'force_coefficient': 100,\n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Dataset**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For simplicity, `train_src` is used for all the train/val/test sets. Feel free to update with the actual S2EF val and test sets, but it does require additional downloads and preprocessing. If you desire to normalize your targets, `normalize_labels` must be set to `True` and corresponding `mean` and `stds` need to be specified. These values have been precomputed for you and can be found in any of the [`base.yml`](https://github.com/Open-Catalyst-Project/ocp/blob/master/configs/s2ef/20M/base.yml#L5-L9) config files." - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [], - "source": [ - "dataset = [\n", - "{'src': train_src, 'normalize_labels': False}, # train set \n", - "{'src': train_src}, # val set (optional)\n", - "{'src': train_src} # test set (optional - writes predictions to disk)\n", - "]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Trainer**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Use the `ForcesTrainer` for the S2EF and IS2RS tasks, and the `EnergyTrainer` for the IS2RE task " - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "amp: false\n", - "cmd:\n", - " checkpoint_dir: ./checkpoints/2021-09-04-08-51-28-SchNet-example\n", - " commit: 98a06d8\n", - " identifier: SchNet-example\n", - " logs_dir: ./logs/tensorboard/2021-09-04-08-51-28-SchNet-example\n", - " print_every: 5\n", - " results_dir: ./results/2021-09-04-08-51-28-SchNet-example\n", - " seed: 0\n", - " timestamp_id: 2021-09-04-08-51-28-SchNet-example\n", - "dataset:\n", - " normalize_labels: false\n", - " src: s2ef\n", - "gpus: 1\n", - "logger: tensorboard\n", - "model: schnet\n", - "model_attributes:\n", - " cutoff: 6.0\n", - " hidden_channels: 1024\n", - " num_filters: 256\n", - " num_gaussians: 200\n", - " num_interactions: 3\n", - "optim:\n", - " batch_size: 16\n", - " eval_batch_size: 8\n", - " factor: 0.8\n", - " force_coefficient: 100\n", - " lr_initial: 0.0001\n", - " max_epochs: 1\n", - " mode: min\n", - " num_workers: 8\n", - " patience: 3\n", - " scheduler: ReduceLROnPlateau\n", - "slurm: {}\n", - "task:\n", - " dataset: trajectory_lmdb\n", - " description: Regressing to energies and forces for DFT trajectories from OCP\n", - " eval_on_free_atoms: true\n", - " grad_input: atomic forces\n", - " labels:\n", - " - potential energy\n", - " metric: mae\n", - " train_on_free_atoms: true\n", - " type: regression\n", - "test_dataset:\n", - " src: s2ef\n", - "val_dataset:\n", - " src: s2ef\n", - "\n", - "2021-09-04 08:51:37 (INFO): Loading dataset: trajectory_lmdb\n", - "2021-09-04 08:51:37 (INFO): Loading model: schnet\n", - "2021-09-04 08:51:37 (INFO): Loaded SchNet with 5704193 parameters.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2021-09-04 08:51:37 (WARNING): Model gradient logging to tensorboard not yet supported.\n" - ] - } - ], - "source": [ - "trainer = ForcesTrainer(\n", - " task=task,\n", - " model=model,\n", - " dataset=dataset,\n", - " optimizer=optimizer,\n", - " identifier=\"SchNet-example\",\n", - " run_dir=\"./\", # directory to save results if is_debug=False. Prediction files are saved here so be careful not to override!\n", - " is_debug=False, # if True, do not save checkpoint, logs, or results\n", - " is_vis=False,\n", - " print_every=5,\n", - " seed=0, # random seed to use\n", - " logger=\"tensorboard\", # logger of choice (tensorboard and wandb supported)\n", - " local_rank=0,\n", - " amp=False, # use PyTorch Automatic Mixed Precision (faster training and less memory usage)\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Check the model" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "OCPDataParallel(\n", - " (module): SchNet(hidden_channels=1024, num_filters=256, num_interactions=3, num_gaussians=200, cutoff=6.0)\n", - ")\n" - ] - } - ], - "source": [ - "print(trainer.model)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Train" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2021-09-04 08:51:43 (INFO): forcesx_mae: 6.12e-01, forcesy_mae: 7.54e-01, forcesz_mae: 7.98e-01, forces_mae: 7.21e-01, forces_cos: -8.32e-03, forces_magnitude: 1.34e+00, energy_mae: 3.14e+01, energy_force_within_threshold: 0.00e+00, loss: 1.04e+02, lr: 1.00e-04, epoch: 1.25e-01, step: 5.00e+00\n", - "2021-09-04 08:51:43 (INFO): forcesx_mae: 4.95e-01, forcesy_mae: 5.85e-01, forcesz_mae: 6.06e-01, forces_mae: 5.62e-01, forces_cos: -1.64e-03, forces_magnitude: 9.97e-01, energy_mae: 2.38e+01, energy_force_within_threshold: 0.00e+00, loss: 8.02e+01, lr: 1.00e-04, epoch: 2.50e-01, step: 1.00e+01\n", - "2021-09-04 08:51:44 (INFO): forcesx_mae: 4.35e-01, forcesy_mae: 5.44e-01, forcesz_mae: 5.30e-01, forces_mae: 5.03e-01, forces_cos: 2.57e-02, forces_magnitude: 9.14e-01, energy_mae: 2.09e+01, energy_force_within_threshold: 0.00e+00, loss: 7.11e+01, lr: 1.00e-04, epoch: 3.75e-01, step: 1.50e+01\n", - "2021-09-04 08:51:44 (INFO): forcesx_mae: 3.70e-01, forcesy_mae: 4.50e-01, forcesz_mae: 4.22e-01, forces_mae: 4.14e-01, forces_cos: 3.03e-03, forces_magnitude: 7.05e-01, energy_mae: 1.66e+01, energy_force_within_threshold: 0.00e+00, loss: 5.83e+01, lr: 1.00e-04, epoch: 5.00e-01, step: 2.00e+01\n", - "2021-09-04 08:51:45 (INFO): forcesx_mae: 3.61e-01, forcesy_mae: 4.58e-01, forcesz_mae: 4.42e-01, forces_mae: 4.20e-01, forces_cos: 3.09e-02, forces_magnitude: 7.07e-01, energy_mae: 1.40e+01, energy_force_within_threshold: 0.00e+00, loss: 5.58e+01, lr: 1.00e-04, epoch: 6.25e-01, step: 2.50e+01\n", - "2021-09-04 08:51:45 (INFO): forcesx_mae: 3.51e-01, forcesy_mae: 3.96e-01, forcesz_mae: 3.91e-01, forces_mae: 3.79e-01, forces_cos: 2.94e-02, forces_magnitude: 6.65e-01, energy_mae: 1.39e+01, energy_force_within_threshold: 0.00e+00, loss: 5.19e+01, lr: 1.00e-04, epoch: 7.50e-01, step: 3.00e+01\n", - "2021-09-04 08:51:46 (INFO): forcesx_mae: 3.13e-01, forcesy_mae: 3.46e-01, forcesz_mae: 3.38e-01, forces_mae: 3.32e-01, forces_cos: 2.50e-02, forces_magnitude: 5.61e-01, energy_mae: 9.40e+00, energy_force_within_threshold: 0.00e+00, loss: 4.23e+01, lr: 1.00e-04, epoch: 8.75e-01, step: 3.50e+01\n", - "2021-09-04 08:51:46 (INFO): forcesx_mae: 3.06e-01, forcesy_mae: 3.59e-01, forcesz_mae: 3.59e-01, forces_mae: 3.41e-01, forces_cos: 1.31e-02, forces_magnitude: 5.62e-01, energy_mae: 1.02e+01, energy_force_within_threshold: 0.00e+00, loss: 4.91e+01, lr: 1.00e-04, epoch: 1.00e+00, step: 4.00e+01\n", - "2021-09-04 08:51:46 (INFO): Evaluating on val.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "device 0: 100%|██████████| 79/79 [00:01<00:00, 39.87it/s]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2021-09-04 08:51:48 (INFO): forcesx_mae: 0.2778, forcesy_mae: 0.3467, forcesz_mae: 0.3606, forces_mae: 0.3284, forces_cos: 0.0278, forces_magnitude: 0.5615, energy_mae: 12.4560, energy_force_within_threshold: 0.0000, loss: 44.8795, epoch: 1.0000\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2021-09-04 08:51:49 (INFO): Predicting on test.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "device 0: 100%|██████████| 79/79 [00:01<00:00, 41.47it/s]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2021-09-04 08:51:51 (INFO): Writing results to ./results/2021-09-04-08-51-28-SchNet-example/s2ef_predictions.npz\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "trainer.train()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Load Checkpoint\n", - "Once training has completed a `Trainer` class, by default, is loaded with the best checkpoint as determined by training or validation (if available) metrics. To load a `Trainer` class directly with a pretrained model, specify the `checkpoint_path` as defined by your previously trained model (`checkpoint_dir`):" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'./checkpoints/2021-09-04-08-51-28-SchNet-example/checkpoint.pt'" - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "checkpoint_path = os.path.join(trainer.config[\"cmd\"][\"checkpoint_dir\"], \"checkpoint.pt\")\n", - "checkpoint_path" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "amp: false\n", - "cmd:\n", - " checkpoint_dir: ./checkpoints/2021-09-04-08-51-28-SchNet-example\n", - " commit: 98a06d8\n", - " identifier: SchNet-example\n", - " logs_dir: ./logs/tensorboard/2021-09-04-08-51-28-SchNet-example\n", - " print_every: 10\n", - " results_dir: ./results/2021-09-04-08-51-28-SchNet-example\n", - " seed: 0\n", - " timestamp_id: 2021-09-04-08-51-28-SchNet-example\n", - "dataset:\n", - " normalize_labels: false\n", - " src: s2ef\n", - "gpus: 1\n", - "logger: tensorboard\n", - "model: schnet\n", - "model_attributes:\n", - " cutoff: 6.0\n", - " hidden_channels: 1024\n", - " num_filters: 256\n", - " num_gaussians: 200\n", - " num_interactions: 3\n", - "optim:\n", - " batch_size: 16\n", - " eval_batch_size: 8\n", - " factor: 0.8\n", - " force_coefficient: 100\n", - " lr_initial: 0.0001\n", - " max_epochs: 1\n", - " mode: min\n", - " num_workers: 8\n", - " patience: 3\n", - " scheduler: ReduceLROnPlateau\n", - "slurm: {}\n", - "task:\n", - " dataset: trajectory_lmdb\n", - " description: Regressing to energies and forces for DFT trajectories from OCP\n", - " eval_on_free_atoms: true\n", - " grad_input: atomic forces\n", - " labels:\n", - " - potential energy\n", - " metric: mae\n", - " train_on_free_atoms: true\n", - " type: regression\n", - "test_dataset:\n", - " src: s2ef\n", - "val_dataset:\n", - " src: s2ef\n", - "\n", - "2021-09-04 08:51:51 (INFO): Loading dataset: trajectory_lmdb\n", - "2021-09-04 08:51:51 (INFO): Loading model: schnet\n", - "2021-09-04 08:51:51 (INFO): Loaded SchNet with 5704193 parameters.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2021-09-04 08:51:51 (WARNING): Model gradient logging to tensorboard not yet supported.\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2021-09-04 08:51:51 (INFO): Loading checkpoint from: ./checkpoints/2021-09-04-08-51-28-SchNet-example/checkpoint.pt\n" - ] - } - ], - "source": [ - "model = {\n", - " 'name': 'schnet',\n", - " 'hidden_channels': 1024, # if training is too slow for example purposes reduce the number of hidden channels\n", - " 'num_filters': 256,\n", - " 'num_interactions': 3,\n", - " 'num_gaussians': 200,\n", - " 'cutoff': 6.0\n", - "}\n", - "\n", - "pretrained_trainer = ForcesTrainer(\n", - " task=task,\n", - " model=model,\n", - " dataset=dataset,\n", - " optimizer=optimizer,\n", - " identifier=\"SchNet-example\",\n", - " run_dir=\"./\", # directory to save results if is_debug=False. Prediction files are saved here so be careful not to override!\n", - " is_debug=False, # if True, do not save checkpoint, logs, or results\n", - " is_vis=False,\n", - " print_every=10,\n", - " seed=0, # random seed to use\n", - " logger=\"tensorboard\", # logger of choice (tensorboard and wandb supported)\n", - " local_rank=0,\n", - " amp=False, # use PyTorch Automatic Mixed Precision (faster training and less memory usage)\n", - ")\n", - "\n", - "pretrained_trainer.load_checkpoint(checkpoint_path=checkpoint_path)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Predict" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "If a test has been provided in your config, predictions are generated and written to disk automatically upon training completion. Otherwise, to make predictions on unseen data a `torch.utils.data` DataLoader object must be constructed. Here we reference our test set to make predictions on. Predictions are saved in `{results_file}.npz` in your `results_dir`." - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2021-09-04 08:51:51 (INFO): Predicting on test.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "device 0: 100%|██████████| 79/79 [00:01<00:00, 44.68it/s]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2021-09-04 08:51:53 (INFO): Writing results to ./results/2021-09-04-08-51-28-SchNet-example/s2ef_s2ef_results.npz\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "# make predictions on the existing test_loader\n", - "predictions = pretrained_trainer.predict(pretrained_trainer.test_loader, results_file=\"s2ef_results\", disable_tqdm=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [], - "source": [ - "energies = predictions[\"energy\"]\n", - "forces = predictions[\"forces\"]" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "ocp-models", - "language": "python", - "name": "ocp-models" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.10" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -}