From 2b05e2fd1123289bb1d674ebadc329d8e255e38a Mon Sep 17 00:00:00 2001
From: lbluque
Date: Wed, 10 Apr 2024 00:19:48 +0000
Subject: [PATCH] deploy: 80cf3097ff0c864e90b10c360448d82f2b3bc89a
---
.../embedding-monkeypatch.py | 1 +
.../ocpmodels/common/registry/index.rst | 4 +-
.../trainers/energy_trainer/index.rst | 4 +-
.../trainers/forces_trainer/index.rst | 4 +-
.../ocpmodels/trainers/base_trainer/index.rst | 2 +-
_sources/autoapi/ocpmodels/trainers/index.rst | 6 +-
.../ocpmodels/trainers/ocp_trainer/index.rst | 4 +-
_sources/core/MODELS.md | 31 ++---
autoapi/index.html | 4 +-
.../ocpmodels/common/data_parallel/index.html | 4 +-
autoapi/ocpmodels/common/distutils/index.html | 4 +-
autoapi/ocpmodels/common/flags/index.html | 4 +-
autoapi/ocpmodels/common/gp_utils/index.html | 4 +-
autoapi/ocpmodels/common/hpo_utils/index.html | 4 +-
autoapi/ocpmodels/common/index.html | 4 +-
autoapi/ocpmodels/common/logger/index.html | 4 +-
.../common/model_registry/index.html | 4 +-
autoapi/ocpmodels/common/registry/index.html | 8 +-
.../common/relaxation/ase_utils/index.html | 4 +-
.../ocpmodels/common/relaxation/index.html | 4 +-
.../relaxation/ml_relaxation/index.html | 4 +-
.../common/relaxation/optimizers/index.html | 4 +-
.../optimizers/lbfgs_torch/index.html | 4 +-
.../ocpmodels/common/transforms/index.html | 4 +-
.../common/tutorial_utils/index.html | 4 +-
autoapi/ocpmodels/common/typing/index.html | 4 +-
autoapi/ocpmodels/common/utils/index.html | 4 +-
autoapi/ocpmodels/datasets/_utils/index.html | 4 +-
.../datasets/ase_datasets/index.html | 4 +-
.../embeddings/atomic_radii/index.html | 4 +-
.../continuous_embeddings/index.html | 4 +-
.../ocpmodels/datasets/embeddings/index.html | 4 +-
.../embeddings/khot_embeddings/index.html | 4 +-
.../qmof_khot_embeddings/index.html | 4 +-
autoapi/ocpmodels/datasets/index.html | 4 +-
.../datasets/lmdb_database/index.html | 4 +-
.../datasets/lmdb_dataset/index.html | 4 +-
.../datasets/oc22_lmdb_dataset/index.html | 4 +-
.../target_metadata_guesser/index.html | 4 +-
autoapi/ocpmodels/index.html | 4 +-
autoapi/ocpmodels/models/base/index.html | 4 +-
.../models/dimenet_plus_plus/index.html | 4 +-
.../equiformer_v2/activation/index.html | 4 +-
.../models/equiformer_v2/drop/index.html | 4 +-
.../equiformer_v2/edge_rot_mat/index.html | 4 +-
.../equiformer_v2_oc20/index.html | 4 +-
.../equiformer_v2/gaussian_rbf/index.html | 4 +-
.../ocpmodels/models/equiformer_v2/index.html | 4 +-
.../equiformer_v2/input_block/index.html | 4 +-
.../equiformer_v2/layer_norm/index.html | 4 +-
.../equiformer_v2/module_list/index.html | 4 +-
.../equiformer_v2/radial_function/index.html | 4 +-
.../models/equiformer_v2/so2_ops/index.html | 4 +-
.../models/equiformer_v2/so3/index.html | 4 +-
.../trainers/energy_trainer/index.html | 8 +-
.../trainers/forces_trainer/index.html | 8 +-
.../models/equiformer_v2/trainers/index.html | 4 +-
.../trainers/lr_scheduler/index.html | 4 +-
.../transformer_block/index.html | 4 +-
.../models/equiformer_v2/wigner/index.html | 4 +-
autoapi/ocpmodels/models/escn/escn/index.html | 4 +-
autoapi/ocpmodels/models/escn/index.html | 4 +-
autoapi/ocpmodels/models/escn/so3/index.html | 4 +-
.../ocpmodels/models/gemnet/gemnet/index.html | 4 +-
autoapi/ocpmodels/models/gemnet/index.html | 4 +-
.../models/gemnet/initializers/index.html | 4 +-
.../layers/atom_update_block/index.html | 4 +-
.../gemnet/layers/base_layers/index.html | 4 +-
.../gemnet/layers/basis_utils/index.html | 4 +-
.../models/gemnet/layers/efficient/index.html | 4 +-
.../gemnet/layers/embedding_block/index.html | 4 +-
.../ocpmodels/models/gemnet/layers/index.html | 4 +-
.../layers/interaction_block/index.html | 4 +-
.../gemnet/layers/radial_basis/index.html | 4 +-
.../gemnet/layers/spherical_basis/index.html | 4 +-
.../ocpmodels/models/gemnet/utils/index.html | 4 +-
.../models/gemnet_gp/gemnet/index.html | 4 +-
autoapi/ocpmodels/models/gemnet_gp/index.html | 4 +-
.../models/gemnet_gp/initializers/index.html | 4 +-
.../layers/atom_update_block/index.html | 4 +-
.../gemnet_gp/layers/base_layers/index.html | 4 +-
.../gemnet_gp/layers/basis_utils/index.html | 4 +-
.../gemnet_gp/layers/efficient/index.html | 4 +-
.../layers/embedding_block/index.html | 4 +-
.../models/gemnet_gp/layers/index.html | 4 +-
.../layers/interaction_block/index.html | 4 +-
.../gemnet_gp/layers/radial_basis/index.html | 4 +-
.../layers/spherical_basis/index.html | 4 +-
.../models/gemnet_gp/utils/index.html | 4 +-
.../models/gemnet_oc/gemnet_oc/index.html | 4 +-
autoapi/ocpmodels/models/gemnet_oc/index.html | 4 +-
.../models/gemnet_oc/initializers/index.html | 4 +-
.../gemnet_oc/interaction_indices/index.html | 4 +-
.../layers/atom_update_block/index.html | 4 +-
.../gemnet_oc/layers/base_layers/index.html | 4 +-
.../gemnet_oc/layers/basis_utils/index.html | 4 +-
.../gemnet_oc/layers/efficient/index.html | 4 +-
.../layers/embedding_block/index.html | 4 +-
.../gemnet_oc/layers/force_scaler/index.html | 4 +-
.../models/gemnet_oc/layers/index.html | 4 +-
.../layers/interaction_block/index.html | 4 +-
.../gemnet_oc/layers/radial_basis/index.html | 4 +-
.../layers/spherical_basis/index.html | 4 +-
.../models/gemnet_oc/utils/index.html | 4 +-
autoapi/ocpmodels/models/index.html | 4 +-
autoapi/ocpmodels/models/painn/index.html | 4 +-
.../ocpmodels/models/painn/painn/index.html | 4 +-
.../ocpmodels/models/painn/utils/index.html | 4 +-
autoapi/ocpmodels/models/schnet/index.html | 4 +-
autoapi/ocpmodels/models/scn/index.html | 4 +-
.../ocpmodels/models/scn/sampling/index.html | 4 +-
autoapi/ocpmodels/models/scn/scn/index.html | 4 +-
.../ocpmodels/models/scn/smearing/index.html | 4 +-
.../models/scn/spherical_harmonics/index.html | 4 +-
.../models/utils/activations/index.html | 4 +-
.../ocpmodels/models/utils/basis/index.html | 4 +-
autoapi/ocpmodels/models/utils/index.html | 4 +-
.../ocpmodels/modules/evaluator/index.html | 4 +-
.../exponential_moving_average/index.html | 4 +-
autoapi/ocpmodels/modules/index.html | 4 +-
autoapi/ocpmodels/modules/loss/index.html | 4 +-
.../ocpmodels/modules/normalizer/index.html | 4 +-
.../modules/scaling/compat/index.html | 4 +-
.../ocpmodels/modules/scaling/fit/index.html | 4 +-
autoapi/ocpmodels/modules/scaling/index.html | 4 +-
.../modules/scaling/scale_factor/index.html | 4 +-
.../ocpmodels/modules/scaling/util/index.html | 4 +-
.../ocpmodels/modules/scheduler/index.html | 4 +-
.../ocpmodels/modules/transforms/index.html | 4 +-
.../preprocessing/atoms_to_graphs/index.html | 4 +-
autoapi/ocpmodels/preprocessing/index.html | 4 +-
autoapi/ocpmodels/tasks/index.html | 4 +-
autoapi/ocpmodels/tasks/task/index.html | 4 +-
.../trainers/base_trainer/index.html | 6 +-
autoapi/ocpmodels/trainers/index.html | 10 +-
.../ocpmodels/trainers/ocp_trainer/index.html | 8 +-
core/FAQ.html | 4 +-
core/INSTALL.html | 4 +-
core/LICENSE.html | 4 +-
core/MODELS.html | 106 +++++++-----------
core/TRAIN.html | 8 +-
core/datasets/oc20.html | 4 +-
core/datasets/oc22.html | 4 +-
core/datasets/odac.html | 8 +-
execution_time.html | 4 +-
genindex.html | 4 +-
index.html | 4 +-
legacy_tutorials/OCP_Tutorial.html | 4 +-
legacy_tutorials/data_preprocessing.html | 4 +-
legacy_tutorials/data_visualization.html | 4 +-
legacy_tutorials/legacy_tutorials.html | 4 +-
legacy_tutorials/lmdb_dataset_creation.html | 4 +-
objects.inv | Bin 11953 -> 11958 bytes
py-modindex.html | 4 +-
search.html | 4 +-
searchindex.js | 2 +-
tutorials/NRR/NRR_example-gemnet.html | 4 +-
tutorials/NRR/NRR_example.html | 4 +-
tutorials/NRR/NRR_toc.html | 4 +-
tutorials/OCP-introduction.html | 4 +-
tutorials/advanced/advanced_toc.html | 4 +-
tutorials/advanced/embeddings.html | 4 +-
tutorials/advanced/fine-tuning-in-python.html | 4 +-
tutorials/advanced/fine-tuning-toc.html | 4 +-
tutorials/advanced/mass-inference.html | 4 +-
tutorials/fine-tuning/fine-tuning-oxides.html | 4 +-
tutorials/gotchas.html | 4 +-
tutorials/intro.html | 4 +-
videos/intro_series.html | 4 +-
videos/technical_talks.html | 4 +-
170 files changed, 241 insertions(+), 591 deletions(-)
diff --git a/_downloads/f926bfac3d372dde77d6e6dc68532a9c/embedding-monkeypatch.py b/_downloads/f926bfac3d372dde77d6e6dc68532a9c/embedding-monkeypatch.py
index 6566b6b0d..a7e558de9 100644
--- a/_downloads/f926bfac3d372dde77d6e6dc68532a9c/embedding-monkeypatch.py
+++ b/_downloads/f926bfac3d372dde77d6e6dc68532a9c/embedding-monkeypatch.py
@@ -2,6 +2,7 @@
import torch
from ocpmodels.common.utils import conditional_grad, scatter_det
+from ocpmodels.models.gemnet_oc.utils import repeat_blocks
@conditional_grad(torch.enable_grad())
diff --git a/_sources/autoapi/ocpmodels/common/registry/index.rst b/_sources/autoapi/ocpmodels/common/registry/index.rst
index 27c26c4a3..9d7d5befb 100644
--- a/_sources/autoapi/ocpmodels/common/registry/index.rst
+++ b/_sources/autoapi/ocpmodels/common/registry/index.rst
@@ -123,8 +123,8 @@ Attributes
from ocpmodels.common.registry import registry
- @registry.register_logger("tensorboard")
- class WandB():
+ @registry.register_logger("wandb")
+ class WandBLogger():
...
diff --git a/_sources/autoapi/ocpmodels/models/equiformer_v2/trainers/energy_trainer/index.rst b/_sources/autoapi/ocpmodels/models/equiformer_v2/trainers/energy_trainer/index.rst
index 16a71bf99..efae3263f 100644
--- a/_sources/autoapi/ocpmodels/models/equiformer_v2/trainers/energy_trainer/index.rst
+++ b/_sources/autoapi/ocpmodels/models/equiformer_v2/trainers/energy_trainer/index.rst
@@ -25,7 +25,7 @@ Classes
-.. py:class:: EquiformerV2EnergyTrainer(task, model, outputs, dataset, optimizer, loss_fns, eval_metrics, identifier, timestamp_id=None, run_dir=None, is_debug=False, print_every=100, seed=None, logger='tensorboard', local_rank=0, amp=False, cpu=False, slurm={}, noddp=False, name='ocp')
+.. py:class:: EquiformerV2EnergyTrainer(task, model, outputs, dataset, optimizer, loss_fns, eval_metrics, identifier, timestamp_id=None, run_dir=None, is_debug=False, print_every=100, seed=None, logger='wandb', local_rank=0, amp=False, cpu=False, slurm={}, noddp=False, name='ocp')
Bases: :py:obj:`ocpmodels.trainers.OCPTrainer`
@@ -68,7 +68,7 @@ Classes
(default: :obj:`None`)
:type seed: int, optional
:param logger: Type of logger to be used.
- (default: :obj:`tensorboard`)
+ (default: :obj:`wandb`)
:type logger: str, optional
:param local_rank: Local rank of the process, only applicable for distributed training.
(default: :obj:`0`)
diff --git a/_sources/autoapi/ocpmodels/models/equiformer_v2/trainers/forces_trainer/index.rst b/_sources/autoapi/ocpmodels/models/equiformer_v2/trainers/forces_trainer/index.rst
index 03becfd3e..10976df8d 100644
--- a/_sources/autoapi/ocpmodels/models/equiformer_v2/trainers/forces_trainer/index.rst
+++ b/_sources/autoapi/ocpmodels/models/equiformer_v2/trainers/forces_trainer/index.rst
@@ -25,7 +25,7 @@ Classes
-.. py:class:: EquiformerV2ForcesTrainer(task, model, outputs, dataset, optimizer, loss_fns, eval_metrics, identifier, timestamp_id=None, run_dir=None, is_debug=False, print_every=100, seed=None, logger='tensorboard', local_rank=0, amp=False, cpu=False, slurm={}, noddp=False, name='ocp')
+.. py:class:: EquiformerV2ForcesTrainer(task, model, outputs, dataset, optimizer, loss_fns, eval_metrics, identifier, timestamp_id=None, run_dir=None, is_debug=False, print_every=100, seed=None, logger='wandb', local_rank=0, amp=False, cpu=False, slurm={}, noddp=False, name='ocp')
Bases: :py:obj:`ocpmodels.trainers.OCPTrainer`
@@ -68,7 +68,7 @@ Classes
(default: :obj:`None`)
:type seed: int, optional
:param logger: Type of logger to be used.
- (default: :obj:`tensorboard`)
+ (default: :obj:`wandb`)
:type logger: str, optional
:param local_rank: Local rank of the process, only applicable for distributed training.
(default: :obj:`0`)
diff --git a/_sources/autoapi/ocpmodels/trainers/base_trainer/index.rst b/_sources/autoapi/ocpmodels/trainers/base_trainer/index.rst
index d54ef2d81..6ed449b9b 100644
--- a/_sources/autoapi/ocpmodels/trainers/base_trainer/index.rst
+++ b/_sources/autoapi/ocpmodels/trainers/base_trainer/index.rst
@@ -25,7 +25,7 @@ Classes
-.. py:class:: BaseTrainer(task, model, outputs, dataset, optimizer, loss_fns, eval_metrics, identifier: str, timestamp_id: Optional[str] = None, run_dir: Optional[str] = None, is_debug: bool = False, print_every: int = 100, seed: Optional[int] = None, logger: str = 'tensorboard', local_rank: int = 0, amp: bool = False, cpu: bool = False, name: str = 'ocp', slurm={}, noddp: bool = False)
+.. py:class:: BaseTrainer(task, model, outputs, dataset, optimizer, loss_fns, eval_metrics, identifier: str, timestamp_id: Optional[str] = None, run_dir: Optional[str] = None, is_debug: bool = False, print_every: int = 100, seed: Optional[int] = None, logger: str = 'wandb', local_rank: int = 0, amp: bool = False, cpu: bool = False, name: str = 'ocp', slurm={}, noddp: bool = False)
Bases: :py:obj:`abc.ABC`
diff --git a/_sources/autoapi/ocpmodels/trainers/index.rst b/_sources/autoapi/ocpmodels/trainers/index.rst
index ad07ee25a..b5be91f7b 100644
--- a/_sources/autoapi/ocpmodels/trainers/index.rst
+++ b/_sources/autoapi/ocpmodels/trainers/index.rst
@@ -28,7 +28,7 @@ Classes
-.. py:class:: BaseTrainer(task, model, outputs, dataset, optimizer, loss_fns, eval_metrics, identifier: str, timestamp_id: Optional[str] = None, run_dir: Optional[str] = None, is_debug: bool = False, print_every: int = 100, seed: Optional[int] = None, logger: str = 'tensorboard', local_rank: int = 0, amp: bool = False, cpu: bool = False, name: str = 'ocp', slurm={}, noddp: bool = False)
+.. py:class:: BaseTrainer(task, model, outputs, dataset, optimizer, loss_fns, eval_metrics, identifier: str, timestamp_id: Optional[str] = None, run_dir: Optional[str] = None, is_debug: bool = False, print_every: int = 100, seed: Optional[int] = None, logger: str = 'wandb', local_rank: int = 0, amp: bool = False, cpu: bool = False, name: str = 'ocp', slurm={}, noddp: bool = False)
Bases: :py:obj:`abc.ABC`
@@ -98,7 +98,7 @@ Classes
-.. py:class:: OCPTrainer(task, model, outputs, dataset, optimizer, loss_fns, eval_metrics, identifier, timestamp_id=None, run_dir=None, is_debug=False, print_every=100, seed=None, logger='tensorboard', local_rank=0, amp=False, cpu=False, slurm={}, noddp=False, name='ocp')
+.. py:class:: OCPTrainer(task, model, outputs, dataset, optimizer, loss_fns, eval_metrics, identifier, timestamp_id=None, run_dir=None, is_debug=False, print_every=100, seed=None, logger='wandb', local_rank=0, amp=False, cpu=False, slurm={}, noddp=False, name='ocp')
Bases: :py:obj:`ocpmodels.trainers.base_trainer.BaseTrainer`
@@ -141,7 +141,7 @@ Classes
(default: :obj:`None`)
:type seed: int, optional
:param logger: Type of logger to be used.
- (default: :obj:`tensorboard`)
+ (default: :obj:`wandb`)
:type logger: str, optional
:param local_rank: Local rank of the process, only applicable for distributed training.
(default: :obj:`0`)
diff --git a/_sources/autoapi/ocpmodels/trainers/ocp_trainer/index.rst b/_sources/autoapi/ocpmodels/trainers/ocp_trainer/index.rst
index f12c59074..81126877f 100644
--- a/_sources/autoapi/ocpmodels/trainers/ocp_trainer/index.rst
+++ b/_sources/autoapi/ocpmodels/trainers/ocp_trainer/index.rst
@@ -25,7 +25,7 @@ Classes
-.. py:class:: OCPTrainer(task, model, outputs, dataset, optimizer, loss_fns, eval_metrics, identifier, timestamp_id=None, run_dir=None, is_debug=False, print_every=100, seed=None, logger='tensorboard', local_rank=0, amp=False, cpu=False, slurm={}, noddp=False, name='ocp')
+.. py:class:: OCPTrainer(task, model, outputs, dataset, optimizer, loss_fns, eval_metrics, identifier, timestamp_id=None, run_dir=None, is_debug=False, print_every=100, seed=None, logger='wandb', local_rank=0, amp=False, cpu=False, slurm={}, noddp=False, name='ocp')
Bases: :py:obj:`ocpmodels.trainers.base_trainer.BaseTrainer`
@@ -68,7 +68,7 @@ Classes
(default: :obj:`None`)
:type seed: int, optional
:param logger: Type of logger to be used.
- (default: :obj:`tensorboard`)
+ (default: :obj:`wandb`)
:type logger: str, optional
:param local_rank: Local rank of the process, only applicable for distributed training.
(default: :obj:`0`)
diff --git a/_sources/core/MODELS.md b/_sources/core/MODELS.md
index 37c34619a..cc6449a90 100644
--- a/_sources/core/MODELS.md
+++ b/_sources/core/MODELS.md
@@ -1,28 +1,17 @@
-# Pretrained OCP models
+# Pretrained OCP model checkpoints
This page summarizes all the pretrained models released as part of the [Open Catalyst Project](https://opencatalystproject.org/). All models were trained using this codebase.
-
-* [Open Catalyst 2020 (OC20)](#open-catalyst-2020-oc20)
- * [S2EF models optimized for EFwT](#s2ef-models-optimized-for-efwt)
- * [S2EF models optimized for force](#s2ef-models-optimized-for-force-only)
- * [IS2RE models](#is2re-models)
-* [Open Catalyst 2022 (OC22)](#open-catalyst-2022-oc22)
- * [S2EF total models](#s2ef-total-models)
-* [Open Direct Air Capture 2023 (ODAC23)](#open-direct-air-capture-2023-odac23)
- * [S2EF models](#s2ef-models)
- * [IS2RE Direct models](#is2re-direct-models)
-
* * *
-# Open Catalyst 2020 (OC20)
+## Open Catalyst 2020 (OC20)
* All configurations for these models are available in the [`configs/`](https://github.com/Open-Catalyst-Project/ocp/tree/main/configs) directory.
* All of these models are trained on various splits of the OC20 S2EF / IS2RE datasets. For details, see [https://arxiv.org/abs/2010.09990](https://arxiv.org/abs/2010.09990) and https://github.com/Open-Catalyst-Project/ocp/blob/main/DATASET.md.
* All OC20 models are trained on adsorption energies, i.e. the DFT total energies minus the clean surface and gas phase adsorbate energies. For details on how to train models on OC20 total energies, please read the [referencing section here](https://github.com/Open-Catalyst-Project/ocp/blob/main/DATASET.md#oc20-reference-information).
-## S2EF models: optimized for EFwT
+### S2EF models: optimized for EFwT
|Model |Split |Download |val ID force MAE (eV / Å) |val ID EFwT |
|--- |--- |--- |--- |--- |
@@ -60,7 +49,7 @@ This page summarizes all the pretrained models released as part of the [Open Cat
|EquiformerV2 (31M) |All+MD |[checkpoint](https://dl.fbaipublicfiles.com/opencatalystproject/models/2023_06/oc20/s2ef/eq2_31M_ec4_allmd.pt) \| [config](https://github.com/Open-Catalyst-Project/ocp/blob/main/configs/s2ef/all/equiformer_v2/equiformer_v2_N@8_L@4_M@2_31M.yml) |0.0142 |6.20% |
|EquiformerV2 (153M) |All+MD |[checkpoint](https://dl.fbaipublicfiles.com/opencatalystproject/models/2023_06/oc20/s2ef/eq2_153M_ec4_allmd.pt) \| [config](https://github.com/Open-Catalyst-Project/ocp/blob/main/configs/s2ef/all/equiformer_v2/equiformer_v2_N@20_L@6_M@3_153M.yml) |0.0126 |8.90% |
-## S2EF models: optimized for force only
+### S2EF models: optimized for force only
|Model |Split |Download |val ID force MAE |
|--- |--- |--- |--- |
@@ -70,7 +59,7 @@ This page summarizes all the pretrained models released as part of the [Open Cat
|DimeNet++ |20M+Rattled |[checkpoint](https://dl.fbaipublicfiles.com/opencatalystproject/models/2021_02/s2ef/dimenetpp_20M_rattled_forceonly.pt) |0.0614 |
|DimeNet++ |20M+MD |[checkpoint](https://dl.fbaipublicfiles.com/opencatalystproject/models/2021_02/s2ef/dimenetpp_20M_md_forceonly.pt) |0.0594 |
-## IS2RE models
+### IS2RE models
|Model |Split |Download |val ID energy MAE |
|--- |--- |--- |--- |
@@ -103,14 +92,14 @@ OC20 dataset or pretrained models, as well as the original paper for each model:
}
```
-# Open Catalyst 2022 (OC22)
+## Open Catalyst 2022 (OC22)
* All configurations for these models are available in the [`configs/oc22`](https://github.com/Open-Catalyst-Project/ocp/tree/main/configs/oc22) directory.
* All of these models are trained on various splits of the OC22 S2EF / IS2RE datasets. For details, see [https://arxiv.org/abs/2206.08917](https://arxiv.org/abs/2206.08917) and https://github.com/Open-Catalyst-Project/ocp/blob/main/DATASET.md.
* All OC22 models released here are trained on DFT total energies, in contrast to the OC20 models listed above, which are trained on adsorption energies.
-## S2EF-Total models
+### S2EF-Total models
|Model |Training |Download |val ID force MAE |val ID energy MAE |
|--- |--- |--- |--- |--- |
@@ -139,7 +128,7 @@ OC22 dataset or pretrained models, as well as the original paper for each model:
* All config files for the ODAC23 models are available in the [`configs/odac`](https://github.com/Open-Catalyst-Project/ocp/tree/main/configs/odac) directory.
-## S2EF models
+### S2EF models
|Model |Checkpoint | Config |
|--- |--- |--- |
@@ -151,7 +140,7 @@ OC22 dataset or pretrained models, as well as the original paper for each model:
|EquiformerV2 | [checkpoint](https://dl.fbaipublicfiles.com/dac/checkpoints_20231116/eqv2_31M.pt) | [config](https://github.com/Open-Catalyst-Project/ocp/tree/main/configs/odac/s2ef/eqv2_31M.yml) |
|EquiformerV2 (Large) | [checkpoint](https://dl.fbaipublicfiles.com/dac/checkpoints_20231018/Equiformer_V2_Large.pt) | [config](https://github.com/Open-Catalyst-Project/ocp/tree/main/configs/odac/s2ef/eqv2_153M.yml) |
-## IS2RE Direct models
+### IS2RE Direct models
|Model |Checkpoint | Config |
|--- |--- | --- |
@@ -161,7 +150,7 @@ OC22 dataset or pretrained models, as well as the original paper for each model:
The models in the table above were trained to predict relaxed energy directly. Relaxed energies can also be predicted by running structural relaxations using the S2EF models from the previous section.
-## IS2RS
+### IS2RS
The IS2RS is solved by running structural relaxations using the S2EF models from the prior section.
diff --git a/autoapi/index.html b/autoapi/index.html
index 7f6caf78b..16391ad28 100644
--- a/autoapi/index.html
+++ b/autoapi/index.html
@@ -188,9 +188,7 @@
Open Catalyst 2022 (OC22)
Open Direct Air Capture 2023 (ODAC23)
-Pretrained OCP models
-
-
+Pretrained OCP model checkpoints
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
@@ -728,8 +726,8 @@ Attributes
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
@@ -590,7 +588,7 @@ Classes
local_rank (int , optional ) – Local rank of the process, only applicable for distributed training.
(default: 0
)
amp (bool , optional ) – Run using automatic mixed precision.
diff --git a/autoapi/ocpmodels/models/equiformer_v2/trainers/forces_trainer/index.html b/autoapi/ocpmodels/models/equiformer_v2/trainers/forces_trainer/index.html
index a9037f4f5..79303dddd 100644
--- a/autoapi/ocpmodels/models/equiformer_v2/trainers/forces_trainer/index.html
+++ b/autoapi/ocpmodels/models/equiformer_v2/trainers/forces_trainer/index.html
@@ -188,9 +188,7 @@
Open Catalyst 2022 (OC22)
Open Direct Air Capture 2023 (ODAC23)
-Pretrained OCP models
-
-
+Pretrained OCP model checkpoints
Training your own models
@@ -590,7 +588,7 @@ Classes
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
Training your own models
@@ -609,7 +607,7 @@ Classes
Training your own models
@@ -628,7 +626,7 @@ Classes
Training your own models
@@ -595,7 +593,7 @@ Classes
Training your own models
Training your own models
Training your own models
Training your own models
@@ -543,7 +541,7 @@
-
Pretrained OCP models
+
Pretrained OCP model checkpoints
@@ -553,23 +551,23 @@
Contents
@@ -580,40 +578,19 @@ Contents
-
-Pretrained OCP models
+
+Pretrained OCP model checkpoints
This page summarizes all the pretrained models released as part of the Open Catalyst Project . All models were trained using this codebase.
-
-
-
-Open Catalyst 2020 (OC20)
+
+Open Catalyst 2020 (OC20)
All configurations for these models are available in the configs/
directory.
All of these models are trained on various splits of the OC20 S2EF / IS2RE datasets. For details, see https://arxiv.org/abs/2010.09990 and https://github.com/Open-Catalyst-Project/ocp/blob/main/DATASET.md.
All OC20 models are trained on adsorption energies, i.e. the DFT total energies minus the clean surface and gas phase adsorbate energies. For details on how to train models on OC20 total energies, please read the referencing section here .
-S2EF models: optimized for EFwT
+S2EF models: optimized for EFwT
Model
@@ -826,7 +803,7 @@ S2EF models: optimized for EFwT
Model
@@ -865,7 +842,7 @@ S2EF models: optimized for force only
Model
@@ -956,15 +933,15 @@ IS2RE models