-
Notifications
You must be signed in to change notification settings - Fork 2
/
index.html
1129 lines (1126 loc) · 103 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<meta name="author" content="Nithiya Streethran" />
<meta name="dcterms.date" content="2019-09-26" />
<title>Short-term forecasting of electricity generation, demand and market prices using machine learning</title>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
</style>
<style type="text/css">
a.sourceLine { display: inline-block; line-height: 1.25; }
a.sourceLine { pointer-events: none; color: inherit; text-decoration: inherit; }
a.sourceLine:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode { white-space: pre; position: relative; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
code.sourceCode { white-space: pre-wrap; }
a.sourceLine { text-indent: -1em; padding-left: 1em; }
}
pre.numberSource a.sourceLine
{ position: relative; left: -4em; }
pre.numberSource a.sourceLine::before
{ content: attr(data-line-number);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; pointer-events: all; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ background-color: #f8f8f8; }
@media screen {
a.sourceLine::before { text-decoration: underline; }
}
code span.al { color: #ef2929; } /* Alert */
code span.an { color: #8f5902; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #c4a000; } /* Attribute */
code span.bn { color: #0000cf; } /* BaseN */
code span.cf { color: #204a87; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4e9a06; } /* Char */
code span.cn { color: #000000; } /* Constant */
code span.co { color: #8f5902; font-style: italic; } /* Comment */
code span.cv { color: #8f5902; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #8f5902; font-weight: bold; font-style: italic; } /* Documentation */
code span.dt { color: #204a87; } /* DataType */
code span.dv { color: #0000cf; } /* DecVal */
code span.er { color: #a40000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #0000cf; } /* Float */
code span.fu { color: #000000; } /* Function */
code span.im { } /* Import */
code span.in { color: #8f5902; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #204a87; font-weight: bold; } /* Keyword */
code span.op { color: #ce5c00; font-weight: bold; } /* Operator */
code span.ot { color: #8f5902; } /* Other */
code span.pp { color: #8f5902; font-style: italic; } /* Preprocessor */
code span.sc { color: #000000; } /* SpecialChar */
code span.ss { color: #4e9a06; } /* SpecialString */
code span.st { color: #4e9a06; } /* String */
code span.va { color: #000000; } /* Variable */
code span.vs { color: #4e9a06; } /* VerbatimString */
code span.wa { color: #8f5902; font-weight: bold; font-style: italic; } /* Warning */
</style>
<link rel="stylesheet" href="solarized.css" />
<!--[if lt IE 9]>
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
<![endif]-->
</head>
<body>
<header>
<h1 class="title">Short-term forecasting of electricity generation, demand and market prices using machine learning</h1>
<p class="author">Nithiya Streethran</p>
<p class="date">26 September 2019</p>
</header>
<nav id="TOC">
<ul>
<li><a href="#sec:preface">Preface</a></li>
<li><a href="#sec:background">Background</a></li>
<li><a href="#sec:problem-definition">Problem definition</a><ul>
<li><a href="#sec:electricity-system">Electricity system</a></li>
<li><a href="#sec:generation-technologies">Generation technologies</a></li>
<li><a href="#sec:electricity-market">Electricity market</a></li>
</ul></li>
<li><a href="#sec:objectives">Objectives</a></li>
<li><a href="#sec:regions">Regions</a><ul>
<li><a href="#sec:territories-in-the-north-sea-region">Territories in the North Sea region</a></li>
<li><a href="#sec:bidding-zones-in-the-north-sea-region">Bidding zones in the North Sea region</a></li>
<li><a href="#sec:transmission-system-operators-and-interconnections">Transmission system operators and interconnections</a></li>
</ul></li>
<li><a href="#sec:data">Data</a><ul>
<li><a href="#sec:folder-navigation">Folder navigation</a></li>
<li><a href="#sec:generation-and-load-data">Generation and load data</a><ul>
<li><a href="#sec:actual-generation-per-production-type">Actual generation per production type</a></li>
<li><a href="#sec:installed-capacity-per-production-unit">Installed capacity per production unit</a></li>
<li><a href="#sec:load">Load</a></li>
<li><a href="#sec:extracting-data-through-entso-e-transparency-platforms-restful-api">Extracting data through ENTSO-E Transparency Platform’s Restful API</a></li>
</ul></li>
<li><a href="#sec:market-data">Market data</a><ul>
<li><a href="#sec:remit-umm">REMIT UMM</a></li>
</ul></li>
<li><a href="#sec:meteorological-data">Meteorological data</a></li>
<li><a href="#sec:territorial-units">Territorial units</a></li>
<li><a href="#sec:terms-of-use">Terms of use</a></li>
</ul></li>
<li><a href="#sec:methodology">Methodology</a></li>
<li><a href="#sec:abbreviations">Abbreviations</a></li>
<li><a href="#sec:references">References</a></li>
<li><a href="#sec:license">License</a><ul>
<li><a href="#sec:gnu-free-documentation-license">GNU Free Documentation License</a><ul>
<li><a href="#sec:addendum-how-to-use-this-license-for-your-documents">ADDENDUM: How to use this License for your documents</a></li>
</ul></li>
</ul></li>
</ul>
</nav>
<h1 id="sec:preface">Preface</h1>
<p>Repository: <a href="https://github.com/ENSYSTRA/short-term-forecasting">ENSYSTRA/short-term-forecasting</a></p>
<p>Short-term forecasting of electricity generation, demand and prices using machine learning [WIP].</p>
<p>Copyright (C) 2019 <a href="mailto:[email protected]">Nithiya Streethran</a>.</p>
<p>Permission is granted to copy, distribute and/or modify this document under the terms of the <a href="https://www.gnu.org/licenses/fdl-1.3">GNU Free Documentation License</a>, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free Documentation License”.</p>
<p>Content sources have been attributed where appropriate. Images are licensed under the <a href="https://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)</a> license, where the image source has not been specified.</p>
<p>This work is part of Nithiya Streethran’s research as Early-Stage Researcher (ESR) 9 of the <a href="https://ensystra.eu/">ENSYSTRA - ENergy SYStems in TRAnsition</a> Innovative Training Network, based at the <a href="https://www.uis.no/">University of Stavanger</a>. ENSYSTRA is funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No: 765515.</p>
<p align="center">
<img src="logos/ensystra-ls.png" alt="ENSYSTRA" height="100" title="ENSYSTRA"> <img src="logos/eu.jpg" alt="European Union" height="100" title="European Union">
</p>
<p align="center">
<img src="logos/rug.png" alt="University of Groningen" height="50" title="University of Groningen"> <img src="logos/uoe.png" alt="University of Edinburgh" height="50" title="University of Edinburgh"> <img src="logos/chalmers.png" alt="Chalmers University of Technology" height="50" title="Chalmers University of Technology">
</p>
<p align="center">
<img src="logos/uis.png" alt="University of Stavanger" height="100" title="University of Stavanger"> <img src="logos/aau.png" alt="Aalborg University" height="120" title="Aalborg University"> <img src="logos/euf.png" alt="University of Flensburg" height="100" title="University of Flensburg">
</p>
<p align="center">
<a href="https://www.gnu.org/licenses/gpl-3.0"><img src="https://img.shields.io/badge/code-GPL%20v3-blue.svg" title="Code License: GPL v3" alt="Code License: GPL v3"></a> <a href="https://www.gnu.org/licenses/fdl-1.3"><img src="https://img.shields.io/badge/docs-FDL%20v1.3-blue.svg" title="Documentation License: FDL 1.3" alt="Documentation License: FDL 1.3"></a> <a href="https://creativecommons.org/licenses/by-sa/4.0/"><img src="https://img.shields.io/badge/images-CC%20BY--SA%204.0-lightgrey.svg" title="Image License: CC BY-SA 4.0" alt="Image License: CC BY-SA 4.0"></a> <a href="https://opendatacommons.org/licenses/odbl/"><img src="https://img.shields.io/badge/output%20data-ODbL-brightgreen.svg" title="Output Data License: ODbL" alt="Output Data License: ODbL"></a>
</p>
<!--
- [Background](#background)
-->
<h1 id="sec:background">Background</h1>
<p>The transition towards a future low-carbon economy is driven globally by the Paris Agreement <span class="citation" data-cites="Paris15">[<a href="#ref-Paris15">1</a>]</span>, which recognises the need for sustainable development worldwide to counter the threats of climate change. The European Union (EU) is committed to reduce greenhouse gas (GHG) emissions by 2050 to 80-90 % below 1990 levels <span class="citation" data-cites="Energ12">[<a href="#ref-Energ12">2</a>]</span>. As the energy industry is responsible for the highest share of anthropogenic GHG emissions, importance is placed on how changes in energy systems can help achieve these GHG emission reduction targets <span class="citation" data-cites="Energ12">[<a href="#ref-Energ12">2</a>]</span>.</p>
<p>A number of opportunities exist for the decarbonisation of the energy industry. The International Renewable Energy Agency (IRENA), in their renewable energy roadmap study, has identified renewable energy as having the highest potential in reducing energy-related carbon dioxide (CO<sub>2</sub>) emissions globally, which is closely followed by energy efficiency and electrification with renewable energy <span class="citation" data-cites="Globa18">[<a href="#ref-Globa18">3</a>]</span>. In a 2018 political agreement, the EU member states agreed upon a target of at least 32 % of the demand being met with renewables by 2030, through national targets of the individual member states <span class="citation" data-cites="Renew">[<a href="#ref-Renew">4</a>]</span>. The electricity demand in the transport sector is also expected to increase due to expected petrol and diesel engine bans and subsequently the electrification of road transport <span class="citation" data-cites="World17">[<a href="#ref-World17">5</a>]</span>.</p>
<p>The energy system is also transitioning towards a decentralised system with more consumer participation and new forms of flexibilities, including sector coupling, demand-side management (DSM), energy conversion and storage, cross-border interconnection and curtailment. This allows demand patterns to shift to better suit the generation patterns in systems with high penetration of variable renewable energy (VRE) resources, such as solar and wind <span class="citation" data-cites="Lund17">[<a href="#ref-Lund17">6</a>]</span>, <span class="citation" data-cites="Towar18">[<a href="#ref-Towar18">7</a>]</span>. However, this requires cooperation involving many actors with various responsibilities and dependencies that interact within this energy system, and opens up the opportunity to perform interdisciplinary research work in the area of energy system analysis.</p>
<p>The ENSYSTRA - ENergy SYStems in TRAnsition Innovative Training Network has been established to address the challenges of the energy transition with interdisciplinary collaboration and regional cooperation involving academia, government and industry <span class="citation" data-cites="About">[<a href="#ref-About">8</a>]</span>. ENSYSTRA is centred on the North Sea region and focusses on performing interdisciplinary modelling work involving technology, economics, social science and humanities, and combining various modelling approaches in different levels and resolutions. ENSYSTRA aims to keep an open science approach, which will allow the resulting models to be subject to full scientific scrutiny.</p>
<p>Energy systems models, which are tools used to project the future energy supply of a country or region <span class="citation" data-cites="Herbs12">[<a href="#ref-Herbs12">9</a>]</span>, is the centre of ENSYSTRA. Fig. 1 explains the energy systems modelling process using a system analysis approach. This process starts with creating a model of the actual energy system by simplifying and conceptualising the present system. This conceptualised system with all assumptions is then mathematically solved to produce numerical results. These results can then be interpreted and conclusions can be drawn regarding the future energy system. Such conclusions form the evidence-base for decision makers, resulting in policy implications or operational strategies that help achieve these climate targets.</p>
<figure>
<img src="images/system-analysis.png" title="The system analysis approach applied on the energy system modelling process, adapted from Krook-Riekkola 2015 [@Krook15]." alt="Figure 1: The system analysis approach applied on the energy system modelling process, adapted from Krook-Riekkola 2015 [10]." id="fig:system" /><figcaption>Figure 1: The system analysis approach applied on the energy system modelling process, adapted from Krook-Riekkola 2015 <span class="citation" data-cites="Krook15">[<a href="#ref-Krook15">10</a>]</span>.</figcaption>
</figure>
<p>There are 15 early-stage researchers (ESRs) across four work packages (WPs) in ENSYSTRA, as shown in fig. 2. The research project entitled “Development of a real-time optimisation solution for dispatchable energy supply units” is conducted by ESR 9, who is enrolled as a PhD student at University of Stavanger (UiS) in Norway. This project is within WP 2 (technology prospects and development pathways), which focusses on technological options for the energy transition, mainly in terms of techno-economic performance over time. For this research project, the technology focus is on the digitalisation of the electricity sector. As the electricity system transitions into smart systems, the system will have an increasing amount of sensors and controllers that continuously record measurements of the system <span class="citation" data-cites="Lund17">[<a href="#ref-Lund17">6</a>]</span>. Advancements in these technologies mean that data that is fast, heterogeneous and high in volume from the electricity system will be generated. Data with these characteristics must be managed and analysed effectively to gain insights on the electricity system, which can then be converted to strategies that optimise the system <span class="citation" data-cites="Manag12">[<a href="#ref-Manag12">11</a>]</span>. This project will specifically investigate how artificial intelligence can play a role in the transition to a low-carbon electricity system by utilising high resolution data of the system. The next section will investigate this, as well as explain what is meant by “real-time” and “dispatchable” in the context of electricity systems in this project.</p>
<figure>
<img src="images/wp.png" title="Interactions between the four WPs of the ENSYSTRA project. Source: ENSYSTRA [@About]." alt="Figure 2: Interactions between the four WPs of the ENSYSTRA project. Source: ENSYSTRA [8]." id="fig:wp" /><figcaption>Figure 2: Interactions between the four WPs of the ENSYSTRA project. Source: ENSYSTRA <span class="citation" data-cites="About">[<a href="#ref-About">8</a>]</span>.</figcaption>
</figure>
<!--
- [Problem definition](#problem-definition)
- [Electricity system](#electricity-system)
- [Generation technologies](#generation-technologies)
- [Electricity market](#electricity-market)
-->
<h1 id="sec:problem-definition">Problem definition</h1>
<h2 id="sec:electricity-system">Electricity system</h2>
<p>The electricity system can be seen as having two components; the physical grid consisting of generators and transmission and distribution systems, and the electricity market consisting of a number of actors <span class="citation" data-cites="Erbac16">[<a href="#ref-Erbac16">12</a>]</span>.</p>
<p>Electricity systems exist in different resolutions and levels of uncertainty. Fig. 3 represents the different scales of electricity systems, mainly in terms of temporal resolution, but also uncertainty and spatial resolution <span class="citation" data-cites="Glism18">[<a href="#ref-Glism18">13</a>]</span>, <span class="citation" data-cites="Pfenn14">[<a href="#ref-Pfenn14">14</a>]</span>. Temporally, “real-time” is referred to as the time of dispatch. It can be observed that the operational planning scale has high spatial and temporal resolution, and relatively low uncertainty. Operational planning includes dispatch planning and plant scheduling (i.e., unit commitment), which ranges from a few minutes to a week before dispatch. Maintenance planning can take a few weeks to years, as it involves upgrade and maintenance work which may require shut-down of units or assets, in turn affecting the availability of generation units and grid infrastructure. Adequacy assessments, which takes years, involve assessing the existing generation and storage capacities and planning for new installations based on demand projections, to ensure this demand will be met in the future. Finally, grid investment decisions, including planning transmission and distribution grid networks, cross-border and regional interconnections and grid capacity expansions, take many years to decades and have very high uncertainty as a result.</p>
<figure>
<img src="images/resolution.png" title="The various scales of electricity systems in terms of their approximate temporal resolution, as well as spatial resolution and uncertainty, adapted from Glismann 2018 and Pfenninger, et al. 2014 [@Glism18], [@Pfenn14]." alt="Figure 3: The various scales of electricity systems in terms of their approximate temporal resolution, as well as spatial resolution and uncertainty, adapted from Glismann 2018 and Pfenninger, et al. 2014 [13], [14]." id="fig:res" /><figcaption>Figure 3: The various scales of electricity systems in terms of their approximate temporal resolution, as well as spatial resolution and uncertainty, adapted from Glismann 2018 and Pfenninger, et al. 2014 <span class="citation" data-cites="Glism18">[<a href="#ref-Glism18">13</a>]</span>, <span class="citation" data-cites="Pfenn14">[<a href="#ref-Pfenn14">14</a>]</span>.</figcaption>
</figure>
<h2 id="sec:generation-technologies">Generation technologies</h2>
<p>Tbl. 1 shows the characteristics of the main energy generation technologies, including their costs. These generation sources have different variabilities, fuel types, flexibilities, costs and carbon emissions. According to the EU reference scenario 2016 <span class="citation" data-cites="Energ">[<a href="#ref-Energ">15</a>]</span>, wind and solar energy resources, which are VRE resources, are expected to generate a total of 35 % of EU’s electricity by 2050, which is a significant increase (23 %) from 2015 levels. Conversely, generation from nuclear and solids, which are not variable and provide base load generation, are expected to decrease significantly. Unlike conventional generators, VRE are intermittent as they are dependent on atmospheric conditions, such as wind speed and cloud cover, and they vary both spatially (i.e., location-dependent) and temporally <span class="citation" data-cites="Josko11">[<a href="#ref-Josko11">16</a>]</span>. Therefore, VRE generation cannot be controlled to meet the demand patterns and needs of the energy system <span class="citation" data-cites="Josko11">[<a href="#ref-Josko11">16</a>]</span>, which is a challenge to electricity and energy system operators in general. The costs listed in tbl. 1 are derived based on National Renewable Energy Laboratory (NREL)’s NREL-SEAC 2008 Data Set <span class="citation" data-cites="Tidba10">[<a href="#ref-Tidba10">17</a>]</span>. VRE generation technologies have high capital expenditure (CAPEX) compared to conventional fossil-powered and biomass generation. Conversely, the operational expenditure (OPEX), which includes fuel and fixed operational and maintenance (O&M) costs, is low for VRE generation technologies, as they have no fuel costs unlike conventional generators.</p>
<div id="tbl:entech">
<table>
<caption>Table 1: Characteristics of the main energy generation technologies, adapted from Erbach 2016 <span class="citation" data-cites="Erbac16">[<a href="#ref-Erbac16">12</a>]</span> and Tidball, et al. 2010 <span class="citation" data-cites="Tidba10">[<a href="#ref-Tidba10">17</a>]</span>.</caption>
<thead>
<tr class="header">
<th><strong>Type</strong><a href="#fn1" class="footnote-ref" id="fnref1"><sup>1</sup></a></th>
<th><strong>Variable</strong></th>
<th><strong>Fuel type</strong></th>
<th><strong>Flexibility</strong></th>
<th><strong>Low carbon</strong></th>
<th><strong>CAPEX</strong></th>
<th><strong>OPEX</strong></th>
<th><strong>LCOE</strong><a href="#fn2" class="footnote-ref" id="fnref2"><sup>2</sup></a></th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>Coal</td>
<td>no</td>
<td>fossil</td>
<td>medium</td>
<td>no</td>
<td>low</td>
<td>high</td>
<td>very low</td>
</tr>
<tr class="even">
<td>Natural gas</td>
<td>no</td>
<td>fossil</td>
<td>high</td>
<td>no</td>
<td>very low</td>
<td>very high</td>
<td>low</td>
</tr>
<tr class="odd">
<td>Biomass</td>
<td>no</td>
<td>renewable</td>
<td>medium</td>
<td>yes<a href="#fn3" class="footnote-ref" id="fnref3"><sup>3</sup></a></td>
<td>low</td>
<td>very high</td>
<td>very high</td>
</tr>
<tr class="even">
<td>Nuclear</td>
<td>no</td>
<td>nuclear</td>
<td>low</td>
<td>zero-emission</td>
<td>medium</td>
<td>medium</td>
<td>medium</td>
</tr>
<tr class="odd">
<td>Hydro</td>
<td>no</td>
<td>renewable</td>
<td>very high</td>
<td>zero-emission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr class="even">
<td>Solar</td>
<td>yes</td>
<td>renewable</td>
<td>very low</td>
<td>zero-emission</td>
<td>very high</td>
<td>very low</td>
<td>very high</td>
</tr>
<tr class="odd">
<td>Wind</td>
<td>yes</td>
<td>renewable</td>
<td>very low</td>
<td>zero-emission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr class="even">
<td><em>Onshore wind</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>high</td>
<td>very low</td>
<td>very low</td>
</tr>
<tr class="odd">
<td><em>Offshore wind</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very high</td>
<td>low</td>
<td>high</td>
</tr>
<tr class="even">
<td>Geothermal</td>
<td>no</td>
<td>renewable</td>
<td>high</td>
<td>zero-emission</td>
<td>high</td>
<td>medium</td>
<td>high</td>
</tr>
</tbody>
</table>
</div>
<h2 id="sec:electricity-market">Electricity market</h2>
<p>The actors in the electricity market include generators, retailers, large and small consumers, transmission system operators (TSOs), distribution network operators (DNOs), balance responsible parties (BRPs), aggregators, regulators, and market operators <span class="citation" data-cites="Erbac16">[<a href="#ref-Erbac16">12</a>]</span>, <span class="citation" data-cites="Pinso">[<a href="#ref-Pinso">18</a>]</span>, <span class="citation" data-cites="Thec15">[<a href="#ref-Thec15">19</a>]</span>.</p>
<p>There are two types of electricity markets; the retail market and the wholesale market <span class="citation" data-cites="Erbac16">[<a href="#ref-Erbac16">12</a>]</span>. The retail market involves the retailers buying electricity from generators and selling it to consumers. The wholesale market involves generators, retailers and (large) consumers, who buy and sell electricity. Energy-only transactions in the wholesale market have different temporal resolutions <span class="citation" data-cites="Pinso">[<a href="#ref-Pinso">18</a>]</span>, <span class="citation" data-cites="Thec15">[<a href="#ref-Thec15">19</a>]</span> and take place before dispatch, shown in green in fig. 4. Balancing markets, shown in pink in fig. 4, which involve both energy and services, operate both before and after dispatch <span class="citation" data-cites="Thec15">[<a href="#ref-Thec15">19</a>]</span>. The energy-only markets are operated by the market operator or power exchanges, while the balancing market is operated by the system operator. The day-ahead and intra-day markets can be considered short-term electricity markets, as the former takes place 24 hours in advance of dispatch, while the latter takes place continuously after the day-ahead market, up to minutes before dispatch <span class="citation" data-cites="Overv16">[<a href="#ref-Overv16">20</a>]</span>.</p>
<figure>
<img src="images/market-resolution.png" title="The various electricity markets in terms of operator and temporal resolution, before and after dispatch, adapted from KU Leuven Energy Institute 2015 and Pinson 2018 [@Pinso], [@Thec15]." alt="Figure 4: The various electricity markets in terms of operator and temporal resolution, before and after dispatch, adapted from KU Leuven Energy Institute 2015 and Pinson 2018 [18], [19]." id="fig:market" /><figcaption>Figure 4: The various electricity markets in terms of operator and temporal resolution, before and after dispatch, adapted from KU Leuven Energy Institute 2015 and Pinson 2018 <span class="citation" data-cites="Pinso">[<a href="#ref-Pinso">18</a>]</span>, <span class="citation" data-cites="Thec15">[<a href="#ref-Thec15">19</a>]</span>.</figcaption>
</figure>
<p>In short-term electricity market auctions, such as the day-ahead market auction, generating companies have the incentive to bid as low as possible, as the supply bids are ranked in ascending order of price. Conversely, on the demand side, consumers have the incentive to bid as high as possible, as the demand bids are ranked in descending order of price. These two curves form a so called merit order, and the intersection between these two curves is the equilibrium point. The price at this equilibrium point is the market clearing price, which is what all accepted bids will receive, regardless of their initial bid. All supply and demand bids to the left of the equilibrium point will be accepted, and those to the right are rejected.</p>
<p>In the case of generating companies, the OPEX of their generators determine the price at which it is bid. For conventional power plants, this OPEX includes fuel costs and carbon costs (except nuclear power plants). For solar and wind power plants, the OPEX is close to zero, as they do not require fuel to run. The revenue received by generating companies in the day-ahead market for each power plant contributes towards their CAPEX. Since conventional power plants have relatively low CAPEX, and fuel costs are high, the main decision generating companies have to make in short-term electricity markets is whether it is economical to run these power plants. For solar and wind power plants, which have relatively high CAPEX, companies are interested in getting as many bids accepted and as much of the electricity generated sold as possible.</p>
<!-- The figure below is a typical supply and demand curve with merit order ranking [Pins18]. In an electricity market auction, the demand bids are ranked in descending order of price, and the generation bids are ranked in ascending order of price. An equilibrium point is formed at the intersection between the supply and demand curves, which allows the social welfare to be maximised. Maximisation of social welfare means that both the supply and demand sides do not suffer from revenue losses. -->
<!-- ![Merit order ranking of supply and demand bids in an electricity market auction, illustrating the equilibrium point and maximisation of the social welfare. Source: Pinson 2018 [Pins18].](images/merit-order.png "Merit order ranking of supply and demand bids in an electricity market auction, illustrating the equilibrium point and maximisation of the social welfare. Source: Pinson 2018 [Pins18].") -->
<!-- Increase in revenue for generators due to electricity generated by VRE resources, and increased utilisation of renewable electricity in the demand side would facilitate more investments in renewable electricity technologies and infrastructure. Current energy systems models focus more on longer time horizons and therefore lack the spatial and temporal resolution that appropriately includes VRE and their intermittent nature. Increased investments and utilisation of renewables is important to ensure cheaper electricity for consumers and enable the transition to a low-carbon electricity system. -->
<!--
- [Objectives](#objectives)
-->
<h1 id="sec:objectives">Objectives</h1>
<p>The main research objective of this project is:</p>
<blockquote>
<p><em>To develop an open-source electricity market model for the North Sea region which will help electricity generating companies that participate in short-term electricity markets (i.e., day-ahead and intra-day markets) to develop operational and bidding strategies that maximise their revenue under uncertainty of VRE generation. The model will consist of a forecaster based on machine learning, which will use high resolution time series weather forecasts for the upcoming period, and recent historical measurements of electricity generation, demand and market prices, to forecast the latter three quantities for the upcoming period. These forecasts will serve as inputs to a decision-making tool, which decides whether to sell, store and/or convert the electricity based on the most economical approach for the company’s production portfolio.</em></p>
</blockquote>
<p>Based on the main research objective, the following research questions have been derived:</p>
<ul>
<li>What methods and resources are needed to process and store the large volume of high resolution data required for this model?</li>
<li>What type of machine learning algorithms are suited for the time series forecasting of electricity prices, demand and generation?</li>
<li>What methods can be used to analyse the inputs and outputs of the model and translate them into operational strategies relevant to the market participant?</li>
<li>How can this model be standardised and published so that it is available for use openly by any participant in the electricity market, as well as other interested parties, such as policymakers?</li>
<li>How can this high resolution electricity market operational model be integrated with the overall North Sea energy systems model to provide insights on long-term planning and investments in the energy sector?</li>
</ul>
<!--
- [Regions](#regions)
- [Territories in the North Sea region](#territories-in-the-north-sea-region)
- [Bidding zones in the North Sea region](#bidding-zones-in-the-north-sea-region)
- [Transmission system operators and interconnections](#transmission-system-operators-and-interconnections)
-->
<h1 id="sec:regions">Regions</h1>
<h2 id="sec:territories-in-the-north-sea-region">Territories in the North Sea region</h2>
<p>As per the definition provided by the European MSP Platform <span class="citation" data-cites="North">[<a href="#ref-North">21</a>]</span> and the CPMR North Sea Commission <span class="citation" data-cites="Membe15">[<a href="#ref-Membe15">22</a>]</span>, the North Sea region consists of eight countries: Belgium, Denmark, France, Germany, Netherlands, Norway, Sweden and United Kingdom.</p>
<p>The nomenclature of territorial units for statistics (NUTS) classifies territorial units in Europe in different levels <span class="citation" data-cites="NUTS">[<a href="#ref-NUTS">23</a>]</span>:</p>
<ul>
<li>NUTS 0: country-level</li>
<li>NUTS 1: major socio-economic regions</li>
<li>NUTS 2: basic regions for the application of regional policies</li>
<li>NUTS 3: small regions for specific diagnoses</li>
</ul>
<p>As explained in the problem definition section, short-term operational planning and systems with a high penetration of VRE must be described using data of high temporal and spatial resolutions. Therefore, NUTS 3 territories will be used as a standard in this project for aggregating short-term forecasting data.</p>
<p>This <a href="https://github.com/ENSYSTRA/short-term-forecasting/tree/master/jupyter-notebooks/nuts.ipynb">Jupyter notebook</a> lists the NUTS territories in the North Sea region at all four NUTS levels. France is the only North Sea country with overseas territories included in the NUTS data (RUP FR - RÉGIONS ULTRAPÉRIPHÉRIQUES FRANÇAISES), so these were removed accordingly.</p>
<p>Performing the forecasting task at NUTS 3 level would be straightforward if it does not include the electricity market. Since the electricity market is considered in this project, it is important to look at how the bidding zones overlap with NUTS 3 territories.</p>
<h2 id="sec:bidding-zones-in-the-north-sea-region">Bidding zones in the North Sea region</h2>
<p>A bidding zone is the largest geographical area within which market participants are able to exchange energy without capacity allocation <span class="citation" data-cites="Biddi14">[<a href="#ref-Biddi14">24</a>]</span>. According to <span class="citation" data-cites="Biddi14">[<a href="#ref-Biddi14">24</a>]</span>, there are three types of bidding zones:</p>
<ol type="1">
<li>national borders (e.g., France or the Netherlands) - majority of bidding zones in Europe</li>
<li>larger than national borders (e.g., Germany and Luxembourg or the Single Electricity Market for the island of Ireland)</li>
<li>smaller zones within individual countries (e.g., Italy, Norway or Sweden)</li>
</ol>
<p>The bidding zones in the North Sea electricity markets and surrounding regions are illustrated in fig. 5.</p>
<figure>
<img src="images/market-map.png" title="Bidding zones in the North Sea electricity markets and surrounding regions. Countries in the North Sea region are in blue, while neighbouring contries with interconnections are in purple. Made using a blank SVG map of Europe from Wikimedia Commons (CC-BY-SA-4.0) [@Nordw15]." alt="Figure 5: Bidding zones in the North Sea electricity markets and surrounding regions. Countries in the North Sea region are in blue, while neighbouring contries with interconnections are in purple. Made using a blank SVG map of Europe from Wikimedia Commons (CC-BY-SA-4.0) [25]." id="fig:map" /><figcaption>Figure 5: Bidding zones in the North Sea electricity markets and surrounding regions. Countries in the North Sea region are in blue, while neighbouring contries with interconnections are in purple. Made using a blank SVG map of Europe from Wikimedia Commons (CC-BY-SA-4.0) <span class="citation" data-cites="Nordw15">[<a href="#ref-Nordw15">25</a>]</span>.</figcaption>
</figure>
<p>The power exchanges (market operators) that operate in the North Sea region are APX (Netherlands, United Kingdom), Belpex (Belgium), EEX (Germany, Denmark, France, Norway, Sweden), EPEX (Germany, France), N2EX (United Kingdom) and Nord Pool (Denmark, Norway, Sweden) <span class="citation" data-cites="Power">[<a href="#ref-Power">26</a>]</span>, <span class="citation" data-cites="Overv16">[<a href="#ref-Overv16">20</a>]</span>, <span class="citation" data-cites="Seem">[<a href="#ref-Seem">27</a>]</span>, <span class="citation" data-cites="EPEX">[<a href="#ref-EPEX">28</a>]</span>. The day-ahead market takes place generally as an hourly auction 24 hours prior to dispatch <span class="citation" data-cites="Overv16">[<a href="#ref-Overv16">20</a>]</span>. The intra-day market has continuous trading and will operate until two hours and up to five minutes before dispatch <span class="citation" data-cites="Overv16">[<a href="#ref-Overv16">20</a>]</span>.</p>
<p>Both Nord Pool and EPEX are part of the Price Coupling of Regions (PCR) project which aims to develop a single price coupling solution for the calculation of day-ahead electricity prices in Europe, taking into account day-ahead network capacities <span class="citation" data-cites="PCRE17">[<a href="#ref-PCRE17">29</a>]</span>.</p>
<p>Tbl. 2 below lists all bidding zones in the North Sea region by country and market operator.</p>
<div id="tbl:zones">
<table>
<caption>Table 2: Bidding zones and market operators in the North Sea region.</caption>
<thead>
<tr class="header">
<th><strong>Country</strong></th>
<th><strong>Markets</strong></th>
<th><strong>Zones</strong><a href="#fn4" class="footnote-ref" id="fnref4"><sup>4</sup></a></th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>Belgium (BE)</td>
<td>Belpex</td>
<td>BE</td>
</tr>
<tr class="even">
<td>Germany (DE)</td>
<td>EEX, EPEX</td>
<td>DE-LU</td>
</tr>
<tr class="odd">
<td>Denmark (DK)</td>
<td>EEX, Nord Pool</td>
<td>DK1, DK2</td>
</tr>
<tr class="even">
<td>France (FR)</td>
<td>EEX, EPEX</td>
<td>FR</td>
</tr>
<tr class="odd">
<td>Netherlands (NL)</td>
<td>APX</td>
<td>NL</td>
</tr>
<tr class="even">
<td>Norway (NO)</td>
<td>EEX, Nord Pool</td>
<td>NO1, NO2, NO3, NO4, NO5</td>
</tr>
<tr class="odd">
<td>Sweden (SE)</td>
<td>EEX, Nord Pool</td>
<td>SE1, SE2, SE3, SE4</td>
</tr>
<tr class="even">
<td>United Kingdom (UK)</td>
<td>APX, N2EX</td>
<td>GB, IE-SEM</td>
</tr>
</tbody>
</table>
</div>
<p>Prior to 01/10/2018, Germany was part of the DE-AT-LU bidding zone, together with Austria and Luxembourg, which had split into the DE-LU and AT bidding zones, as reported by European Network of Transmission Systems Operators for Electricity (ENTSO-E) below <span class="citation" data-cites="DEATL">[<a href="#ref-DEATL">30</a>]</span>.</p>
<blockquote>
<p><em>[…] DE-AT-LU bidding zone split on the 23rd of August. BZN|DE-AT-LU will be separated into 2 new bidding zones BZN|DE-LU and BZN|AT.</em></p>
<p><em>New bidding zones will be active from the 1st of October, however, first data submissions, like month ahead forecasts, are expected from the 1st of September.</em></p>
<p><em>Validity end date for BZN|DE-AT-LU is the end of September 2018. […]</em></p>
</blockquote>
<p>Mapping bidding zones to NUTS 3 territories is straightforward for Belgium, Germany, France and Netherlands (bidding zone type 1 or 2) – all NUTS 3 territories in these countries have the same bidding zone.</p>
<p>Denmark and United Kingdom are both conveniently separated into two zones that are easily distinguishable. For Denmark, these are Western Denmark (NUTS IDs containing DK03-DK05) and Southern Denmark (NUTS IDs containing DK01-DK02). For United Kingdom, these are Great Britain (NUTS IDs containing UKC-UKM) and Northern Ireland (NUTS IDs containing UKN).</p>
<p>There is no clear indication of the bidding zone boundaries for Norway and Sweden, so some assumptions were made. Both countries have multiple smaller bidding zones (type 3) with flexible borders <span class="citation" data-cites="Europ10">[<a href="#ref-Europ10">31</a>]</span>, <span class="citation" data-cites="List">[<a href="#ref-List">32</a>]</span>. This was done to optimise allocation of resources and reduce the overall price of electricity <span class="citation" data-cites="Europ10">[<a href="#ref-Europ10">31</a>]</span>, <span class="citation" data-cites="List">[<a href="#ref-List">32</a>]</span>. Norway has five zones and Sweden has four zones. By cross-referencing Nord Pool market data <span class="citation" data-cites="Seem">[<a href="#ref-Seem">27</a>]</span>, NUTS 3 data and county maps of Norway <span class="citation" data-cites="Count19">[<a href="#ref-Count19">33</a>]</span> and Sweden <span class="citation" data-cites="Count19a">[<a href="#ref-Count19a">34</a>]</span>, the territories are split into the bidding zones as shown in tbl. 3. Nord Pool associates each bidding zone with a major reference city in that zone. However, there were six cities for Norway instead of the expected five. Historical Nord Pool market data for Norway suggests that two cities, Trondheim and Molde, have had the same system price since 2003. The ELSPOT area change log <span class="citation" data-cites="List">[<a href="#ref-List">32</a>]</span> also confirms that Trondheim and Molde are city references for the NO3 bidding zone . Therefore, these two cities are grouped into the same bidding zone, which also satisfies what the maps suggest.</p>
<div id="tbl:nord">
<table>
<caption>Table 3: Bidding zones and their territories for Norway and Sweden, approximated based on Nord Pool market data <span class="citation" data-cites="Seem">[<a href="#ref-Seem">27</a>]</span>, <span class="citation" data-cites="List">[<a href="#ref-List">32</a>]</span>, NUTS 3 data and county maps of Norway <span class="citation" data-cites="Count19">[<a href="#ref-Count19">33</a>]</span> and Sweden <span class="citation" data-cites="Count19a">[<a href="#ref-Count19a">34</a>]</span>.</caption>
<colgroup>
<col style="width: 15%" />
<col style="width: 15%" />
<col style="width: 46%" />
<col style="width: 23%" />
</colgroup>
<thead>
<tr class="header">
<th><strong>Bidding zone</strong></th>
<th><strong>Reference cities</strong></th>
<th><strong>Counties</strong></th>
<th><strong>NUTS 3 IDs</strong></th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>NO1</td>
<td>Oslo</td>
<td>Oslo, Akershus, Hedmark, Oppland, Østfold, Buskerud, Vestfold, Telemark</td>
<td>NO011-034</td>
</tr>
<tr class="even">
<td>NO2</td>
<td>Kristiansand</td>
<td>Aust-Agder, Vest-Agder, Rogaland</td>
<td>NO041-043</td>
</tr>
<tr class="odd">
<td>NO3</td>
<td>Trondheim, Molde</td>
<td>Sogn og Fjordane, Møre og Romsdal, Trøndelag</td>
<td>NO052-060</td>
</tr>
<tr class="even">
<td>NO4</td>
<td>Tromsø</td>
<td>Nordland, Troms, Finnmark</td>
<td>NO071-073</td>
</tr>
<tr class="odd">
<td>NO5</td>
<td>Bergen</td>
<td>Hordaland</td>
<td>NO051</td>
</tr>
<tr class="even">
<td>SE1</td>
<td>Luleå</td>
<td>Norrbotten</td>
<td>SE332</td>
</tr>
<tr class="odd">
<td>SE2</td>
<td>Sundsvall</td>
<td>Gävleborg, Västernorrland, Jämtland, Västerbotten</td>
<td>SE313-331</td>
</tr>
<tr class="even">
<td>SE3</td>
<td>Stockholm</td>
<td>Stockholm, Uppsala, Södermanland, Östergötland, Örebro, Västmanland, Jönköping, Gotland, Västra Götaland, Värmland, Dalarna</td>
<td>SE110-211, SE214, SE232-312</td>
</tr>
<tr class="odd">
<td>SE4</td>
<td>Malmö</td>
<td>Kronoberg, Kalmar, Blekinge, Halland, Skåne</td>
<td>SE212-213, SE221-231</td>
</tr>
</tbody>
</table>
</div>
<p>This <a href="https://github.com/ENSYSTRA/short-term-forecasting/tree/master/jupyter-notebooks/nuts_biddingZones.ipynb">Jupyter notebook</a> lists all NUTS 3 territories and their bidding zones in the North Sea region, and explains how the different bidding zones were assigned to the territories.</p>
<h2 id="sec:transmission-system-operators-and-interconnections">Transmission system operators and interconnections</h2>
<p>The North Sea region consists of multiple TSOs and cross-border interconnections. These are listed, along with the bidding zones, in tbl. 4.</p>
<div id="tbl:tso">
<table>
<caption>Table 4: TSOs and cross-border interconnections in the North Sea region. Data: European Network of Transmission System Operators for Electricity <span class="citation" data-cites="ENTSO">[<a href="#ref-ENTSO">35</a>]</span>, <span class="citation" data-cites="Regio">[<a href="#ref-Regio">36</a>]</span>.</caption>
<colgroup>
<col style="width: 8%" />
<col style="width: 41%" />
<col style="width: 25%" />
<col style="width: 25%" />
</colgroup>
<thead>
<tr class="header">
<th><strong>Ctry.</strong><a href="#fn5" class="footnote-ref" id="fnref5"><sup>5</sup></a></th>
<th><strong>TSOs</strong></th>
<th><strong>Cross-border interconnections</strong><a href="#fn6" class="footnote-ref" id="fnref6"><sup>6</sup></a></th>
<th><strong>Bidding zones</strong></th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>BE</td>
<td>Elia System Operator</td>
<td>FR, LU, NL, UK</td>
<td>BE</td>
</tr>
<tr class="even">
<td>DK</td>
<td>Energinet</td>
<td>DE, NO, SE</td>
<td>DK1, DK2</td>
</tr>
<tr class="odd">
<td>DE</td>
<td>TransnetBW, TenneT TSO, Amprion, 50Hertz Transmission</td>
<td>AT, CH, CZ, DK, FR, LU, NL, PL, SE</td>
<td>DE-LU</td>
</tr>
<tr class="even">
<td>FR</td>
<td>Réseau de Transport d’Electricité</td>
<td>BE, CH, DE, ES, IT, UK</td>
<td>FR</td>
</tr>
<tr class="odd">
<td>NL</td>
<td>TenneT TSO</td>
<td>BE, DE, NO, UK</td>
<td>NL</td>
</tr>
<tr class="even">
<td>NO</td>
<td>Statnett</td>
<td>DK, FI, NL, SE</td>
<td>NO1, NO2, NO3, NO4, NO5</td>
</tr>
<tr class="odd">
<td>SE</td>
<td>Svenska Kraftnät</td>
<td>DK, FI, DE, LT, NO, PL</td>
<td>SE1, SE2, SE3, SE4</td>
</tr>
<tr class="even">
<td>UK</td>
<td>National Grid Electricity Transmission, System Operator for Northern Ireland, Scottish Hydro Electric Transmission, ScottishPower Transmission</td>
<td>BE, FR, IE, NL</td>
<td>GB, IE-SEM</td>
</tr>
</tbody>
</table>
</div>
<!--
- [Data](#data)
- [Folder navigation](#folder-navigation)
- [Generation and load data](#generation-and-load-data)
- [Actual generation per production type](#actual-generation-per-production-type)
- [Installed capacity per production unit](#installed-capacity-per-production-unit)
- [Load](#load)
- [Extracting data through ENTSO-E Transparency Platform's Restful API](#extracting-data-through-entso-e-transparency-platforms-restful-api)
- [Market data](#market-data)
- [REMIT UMM](#remit-umm)
- [Meteorological data](#meteorological-data)
- [Territorial units](#territorial-units)
- [Terms of use](#terms-of-use)
-->
<h1 id="sec:data">Data</h1>
<p>All input and output data can be found in the <a href="https://www.dropbox.com/sh/vjo4gkfk6dlye6h/AAAQNltY7-Y4N9SQYjGZDHY5a?dl=0">data</a> folder on Dropbox. Licenses and terms of the input data used can be found in their corresponding folders.</p>
<h2 id="sec:folder-navigation">Folder navigation</h2>
<ul>
<li><strong>entsoe-api</strong> - generation and load data at TSO level for each bidding zone, downloaded from the ENTSO-E Transparency Platform</li>
<li><strong>met</strong> - meteorological data, grouped by country, downloaded from country-specific meteorological services</li>
<li><strong>nuts</strong> - territorial units, downloaded from Eurostat</li>
<li><strong>output</strong> - output data</li>
</ul>
<h2 id="sec:generation-and-load-data">Generation and load data</h2>
<p>Generation and load data for each bidding zone are downloaded from the ENTSO-E Transparency Platform <span class="citation" data-cites="ENTSO">[<a href="#ref-ENTSO">35</a>]</span>. The following descriptions of the data are from ENTSO-E Transparency Platform’s Knowledge Base <span class="citation" data-cites="Help">[<a href="#ref-Help">37</a>]</span>. Three types of data will be used.</p>
<h3 id="sec:actual-generation-per-production-type">Actual generation per production type</h3>
<ul>
<li>Actual aggregated net generation output (MW) per market time unit and per production type</li>
<li>Published no later than one hour after the operational period</li>
<li>Computed as the average of all available instantaneous net generation output values on each market time unit</li>
<li>If unknown, it is estimated</li>
<li>The actual generation of small-scale units might be estimated if no real-time measurement devices exist</li>
</ul>
<h3 id="sec:installed-capacity-per-production-unit">Installed capacity per production unit</h3>
<p>This data contains information about production units (existing and planned) with an installed generation capacity of at least 100 MW, which includes the following:</p>
<ul>
<li>unit name</li>
<li>code</li>
<li>installed net generation capacity (MW)</li>
<li>voltage connection level (kV)</li>
<li>bidding zone (denoted using Energy Identification Codes (EICs))</li>
<li>production type (e.g., fossil gas, wind offshore)</li>
</ul>
<p>This information is published annually at the start of the year and is valid for the three following years.</p>
<!-- #### [Installed Capacity per Production Type](https://transparency.entsoe.eu/generation/r2/installedGenerationCapacityAggregation/show)
The sum of installed net generation capacity (MW) per control area for all existing production units equalling to or exceeding 1 MW installed generation capacity, per production type. The information shall be published annually no later than one week before the end of the previous year. The installed net generation capacity refers to to the generation capacity which is effectively installed on January 1st of the following year.
**Incomplete data**:
- Data for Sweden is unavailable at the bidding zone level for 2018 and 2019 (last checked on 15/08/2019) -->
<h3 id="sec:load">Load</h3>
<ul>
<li>Actual total load per bidding zone per market time unit</li>
<li>The total load is defined as equal to the sum of power generated by plants on both TSO/DNO networks, from which is deduced:
<ul>
<li>the balance (export-import) of exchanges on interconnections between neighbouring bidding zones</li>
<li>the power absorbed by energy storage resources</li>
</ul></li>
<li>The information is published no later than one hour after the end of the operating period</li>
<li>Calculated using the average of real-time load values per bidding zone per market time unit</li>
<li>Actual total Load (including losses without stored energy) = Net Generation – Exports + Imports – Absorbed Energy</li>
<li>Net generation is preferred, but gross generation could be used where it is available with the better precision</li>
<li>TSOs should decide gross or net generation will be used but the net/gross characteristic should be consistent per bidding zone</li>
<li>Absorbed energy is also provided as separate information with the aggregated generation output of the hydro pumped storage</li>
<li>The physical flow on the tie line is measured as agreed by neighbouring TSOs or bidding zones, where applicable</li>
</ul>
<h3 id="sec:extracting-data-through-entso-e-transparency-platforms-restful-api">Extracting data through ENTSO-E Transparency Platform’s Restful API</h3>
<p>ENTSO-E Transparency Platform’s Restful application programming interface (API) can be used to automate the data extraction process <span class="citation" data-cites="ENTSO16">[<a href="#ref-ENTSO16">38</a>]</span>, <span class="citation" data-cites="Trans">[<a href="#ref-Trans">39</a>]</span>. Registration to the transparency platform is required to access the API. The security token can be requested by sending an email to the ENTSO-E Helpdesk.</p>
<p>The ENTSO-E API Python client <span class="citation" data-cites="Energ19">[<a href="#ref-Energ19">40</a>]</span> is used to easily query the required data and return them as Pandas dataframes or series. The queries for generation and installed generation capacity per unit return dataframes, while the query for load returns a series. <a href="https://github.com/ENSYSTRA/short-term-forecasting/blob/master/scripts/entsoe_api.py"><code>entsoe_api.py</code></a> is the script used to perform this.</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb1-1" data-line-number="1"><span class="im">import</span> pandas <span class="im">as</span> pd</a>
<a class="sourceLine" id="cb1-2" data-line-number="2"><span class="im">from</span> entsoe <span class="im">import</span> EntsoePandasClient</a>
<a class="sourceLine" id="cb1-3" data-line-number="3"><span class="im">from</span> entsoe.mappings <span class="im">import</span> DOMAIN_MAPPINGS, BIDDING_ZONES</a>
<a class="sourceLine" id="cb1-4" data-line-number="4"><span class="co"># combine domain and bidding zone keys and values into the DOMAIN_MAPPINGS dictionary</span></a>
<a class="sourceLine" id="cb1-5" data-line-number="5">DOMAIN_MAPPINGS.update(BIDDING_ZONES)</a></code></pre></div>
<div class="sourceCode" id="cb2"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb2-1" data-line-number="1"><span class="co"># import security token saved in a separate file (login.py)</span></a>
<a class="sourceLine" id="cb2-2" data-line-number="2"><span class="im">from</span> login <span class="im">import</span> token</a>
<a class="sourceLine" id="cb2-3" data-line-number="3"><span class="co"># use security token to access the api through the entsoe pandas client</span></a>
<a class="sourceLine" id="cb2-4" data-line-number="4">client <span class="op">=</span> EntsoePandasClient(api_key<span class="op">=</span>token)</a></code></pre></div>
<p>The bidding zones in the North Sea region, mapped to their corresponding EICs as shown in tbl. 5, are used when querying using the Pandas client. Note that <code>DE-LU</code> only works for timestamps starting 01/10/2018. Use <code>DE-AT-LU</code> for timestamps prior to this date.</p>
<div id="tbl:eic">
<table>
<caption>Table 5: Bidding zones in the North Sea region and their corresponding EICs.</caption>
<thead>
<tr class="header">
<th><strong>Bidding zone</strong></th>
<th><strong>EIC</strong></th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>BE</td>
<td>10YBE———-2</td>
</tr>
<tr class="even">
<td>DE-LU</td>
<td>10Y1001A1001A82H</td>
</tr>
<tr class="odd">
<td>DK-1</td>
<td>10YDK-1——–W</td>
</tr>
<tr class="even">
<td>DK-2</td>
<td>10YDK-2——–M</td>
</tr>
<tr class="odd">
<td>FR</td>
<td>10YFR-RTE——C</td>
</tr>
<tr class="even">
<td>GB</td>
<td>10YGB———-A</td>
</tr>
<tr class="odd">
<td>IE-SEM</td>
<td>10Y1001A1001A59C</td>
</tr>
<tr class="even">
<td>NL</td>
<td>10YNL———-L</td>
</tr>
<tr class="odd">
<td>NO-1</td>
<td>10YNO-1——–2</td>
</tr>
<tr class="even">
<td>NO-2</td>
<td>10YNO-2——–T</td>
</tr>
<tr class="odd">
<td>NO-3</td>
<td>10YNO-3——–J</td>
</tr>
<tr class="even">
<td>NO-4</td>
<td>10YNO-4——–9</td>
</tr>
<tr class="odd">
<td>NO-5</td>
<td>10Y1001A1001A48H</td>
</tr>
<tr class="even">
<td>SE-1</td>
<td>10Y1001A1001A44P</td>
</tr>
<tr class="odd">
<td>SE-2</td>
<td>10Y1001A1001A45N</td>
</tr>
<tr class="even">
<td>SE-3</td>
<td>10Y1001A1001A46L</td>
</tr>
<tr class="odd">
<td>SE-4</td>
<td>10Y1001A1001A47</td>
</tr>
</tbody>
</table>
</div>
<h2 id="sec:market-data">Market data</h2>
<p><a href="https://www.nordpoolgroup.com/historical-market-data/">Nord Pool</a></p>
<p>Historical market data from Nord Pool is stored as <code>.xls</code> files can be accessed using the following URL:</p>
<pre><code>https://www.nordpoolgroup.com/globalassets/marketdata-excel-files/FILENAME.xls</code></pre>
<ul>
<li><a href="https://www.nordpoolgroup.com/trading/join-our-markets/membership/">Membership list - Nord Pool</a></li>
<li><a href="https://www.nordpoolgroup.com/About-us/Terms-and-conditions-for-use/">Terms and conditions for use</a></li>
</ul>
<p><a href="https://www.epexspot.com/en/extras/download-center/market_data">EPEX Spot</a></p>
<ul>
<li><a href="https://www.epexspot.com/en/membership/list_of_members">EPEX SPOT Exchange Members</a></li>
</ul>
<h3 id="sec:remit-umm">REMIT UMM</h3>
<p>REMIT Urgent Market Messaging (UMM) is used by market operators and companies involved in balancing and settlements, including Nord Pool and ELEXON, for market members and participants to publish information on outages in production, consumption and transmission and other relevant market information according to European transparency regulations <span class="citation" data-cites="REMIT16">[<a href="#ref-REMIT16">41</a>]</span>, <span class="citation" data-cites="NordP">[<a href="#ref-NordP">42</a>]</span>, <span class="citation" data-cites="Abouta">[<a href="#ref-Abouta">43</a>]</span>, <span class="citation" data-cites="Aboutb">[<a href="#ref-Aboutb">44</a>]</span>, <span class="citation" data-cites="Publi">[<a href="#ref-Publi">45</a>]</span>. The information is publicly available and is classified as follows:</p>
<ul>
<li>Event
<ul>
<li>Unavailability of electrical facilities (production, consumption, transmission)</li>
<li>Market information</li>
</ul></li>
<li>Infrastructure (the electrical facility(ies) that are affected)</li>
<li>Areas (bidding zone and/or country and/or control area)</li>
<li>Types of unavailability (planned or unplanned)</li>
<li>Stations (production and consumption units)</li>
<li>Fuel types (same as the production units used by ENTSO-E)</li>
<li>Connections (between control areas and/or bidding zone)</li>
<li>Status (active or cancelled)</li>
<li>Publishers (companies that publish the information)</li>
<li>Market participants</li>
<li>Publication time</li>
<li>Event start and stop time</li>
<li>Duration of event</li>
<li>Unavailable capacity (MW)</li>
<li>Available capacity (MW)</li>
<li>Assets (grid components, e.g., AC link, DC link, transformer, substation)</li>
<li>Remarks</li>
</ul>
<h2 id="sec:meteorological-data">Meteorological data</h2>
<h4 id="sec:belgium">Belgium</h4>
<p><a href="https://opendata.meteo.be/">The Royal Meteorological Institute of Belgium</a></p>
<h4 id="sec:germany">Germany</h4>
<p>Weather data for Germany is extracted from Deutscher Wetterdienst’s Climate Data Center (CDC) OpenData <span class="citation" data-cites="Wette">[<a href="#ref-Wette">46</a>]</span>. <a href="https://github.com/ENSYSTRA/short-term-forecasting/blob/master/scripts/windHourly_de.py"><code>windHourly_de.py</code></a> and <a href="https://github.com/ENSYSTRA/short-term-forecasting/blob/master/scripts/solarHourly_de.py"><code>solarHourly_de.py</code></a> are the script used to extract hourly wind and solar data respectively.</p>
<!-- [Hourly wind data](https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourly/wind/) -->
<!-- * [CDC (Climate Data Center) portal](https://cdc.dwd.de/portal/)
* [CDC OpenData](https://opendata.dwd.de/climate_environment/CDC/)
* Data set descriptions
* [Hourly station observations of air temperature at 2 m above ground in °C for Germany](https://cdc.dwd.de/sdi/pid/TT_TU_MN009/DESCRIPTION_TT_TU_MN009_en.pdf)
* [Hourly station observations of relative humidity in % for Germany](https://cdc.dwd.de/sdi/pid/RF_TU_MN009/DESCRIPTION_RF_TU_MN009_en.pdf)
* [Hourly station observations of precipitation amount in mm for Germany](https://cdc.dwd.de/sdi/pid/R1_MN008/DESCRIPTION_R1_MN008_en.pdf)
* [Hourly station observations of form of precipitation (WR code) for Germany](https://cdc.dwd.de/sdi/pid/WRTR_MN008/DESCRIPTION_WRTR_MN008_en.pdf)
* [Hourly station observations of index whether precipitation has fallen for Germany](https://cdc.dwd.de/sdi/pid/RS_IND_MN008/DESCRIPTION_RS_IND_MN008_en.pdf)
* [Hourly mean of station observations of wind speed ca. 10 m above ground in m/s for Germany](https://cdc.dwd.de/sdi/pid/F_MN003/DESCRIPTION_F_MN003_en.pdf)
* [Hourly mean of station observations of wind direction at ca. 10 m above ground in degree for Germany](https://cdc.dwd.de/sdi/pid/D_MN003/DESCRIPTION_D_MN003_en.pdf)
* [Hourly station observations of air pressure at station level in hpa for Germany](https://cdc.dwd.de/sdi/pid/P0_MN008/DESCRIPTION_P0_MN008_en.pdf)
* [Hourly station observations of air pressure at mean sea level in hpa for Germany](https://cdc.dwd.de/sdi/pid/P_MN008/DESCRIPTION_P_MN008_en.pdf)
* [Hourly station observations of cloud coverage in eighths for Germany](https://cdc.dwd.de/sdi/pid/N_MN008/DESCRIPTION_N_MN008_en.pdf)
-->
<h4 id="sec:denmark">Denmark</h4>
<p><a href="http://research.dmi.dk/data/">Danish Meteorological Institute</a></p>
<h4 id="sec:france">France</h4>
<p><a href="https://donneespubliques.meteofrance.fr/">Météo-France</a></p>
<h4 id="sec:netherlands">Netherlands</h4>
<p><a href="https://data.knmi.nl/datasets">Royal Netherlands Meteorological Institute</a></p>
<h4 id="sec:norway">Norway</h4>
<p><a href="https://www.met.no/en/free-meteorological-data">Norwegian Meteorological Institute</a></p>
<h4 id="sec:sweden">Sweden</h4>
<p><a href="https://www.smhi.se/en/services/professional-services/data-and-statistics">Swedish Meteorological and Hydrological Institute</a></p>
<h4 id="sec:united-kingdom">United Kingdom</h4>
<p><a href="https://www.metoffice.gov.uk/datapoint">Met Office</a></p>
<h2 id="sec:territorial-units">Territorial units</h2>
<p><a href="https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts">NUTS (Nomenclature of territorial units for statistics)</a></p>
<h2 id="sec:terms-of-use">Terms of use</h2>
<h4 id="sec:deutscher-wetterdienst">Deutscher Wetterdienst</h4>
<ul>
<li><a href="https://opendata.dwd.de/climate_environment/CDC/Terms_of_use.pdf">Terms of use for data on the CDC ftp server</a></li>
</ul>
<h4 id="sec:entso-e-transparency-platform">ENTSO-E Transparency Platform</h4>
<ul>
<li><a href="https://docstore.entsoe.eu/Documents/MC%20documents/Transparency%20Platform/ENTSOE_Transparency_Terms_Conditions.pdf">GENERAL TERMS AND CONDITIONS FOR THE USE OF THE ENTSO-E TRANSPARENCY PLATFORM</a></li>
<li><a href="https://docstore.entsoe.eu/Documents/MC%20documents/Transparency%20Platform/List_of_Data_available_for_reuse.pdf">LIST OF DATA AVAILABLE FOR FREE RE-USE</a></li>
</ul>
<!--
- [Methodology](#Methodology)
-->
<h1 id="sec:methodology">Methodology</h1>
<p>In progress</p>
<!-- ## Modelling framework -->
<!-- ![Modelling framework. License: CC BY-SA 4.0.](images/model_framework.png "Modelling framework. License: CC BY-SA 4.0.") -->
<!-- ## Data management -->
<!-- ## Time series forecasting -->
<!-- * Variable renewable energy generators
* Installed capacity
* Capacity factor
* Available capacity (installed capacity * capacity factor)
* Conventional generators
* Installed capacity
* Fuel efficiency
* Availability (either available or unavailable)
* Fuel cost
* Fuel consumption
* Fuel price
* Fuel energy value -->
<!-- ## Market optimisation -->
<!-- ## Translating inputs and outputs into operational strategies -->
<!-- ## Standardisation and publication of model -->
<!-- ## Integrating operational time scales with long-term energy systems models -->
<p><!-- - [Market optimisation](../wiki/Methodology#market-optimisation)
- [Translating inputs and outputs into operational strategies](../wiki/Methodology#translating-inputs-and-outputs-into-operational-strategies)
- [Standardisation and publication of model](../wiki/Methodology#standardisation-and-publication-of-model)
- [Integrating operational time scales with long-term energy systems models](../wiki/Methodology#integrating-operational-time-scales-with-long-term-energy-systems-models) --></p>
<!--
- [Abbreviations](#abbreviations)
-->
<h1 id="sec:abbreviations">Abbreviations</h1>
<p>API - application programming interface<br />
BRP - balance responsible party<br />
CAPEX - capital expenditure<br />
CO<sub>2</sub> - carbon dioxide<br />
DNO - distribution network operator<br />
DSM - demand-side management<br />
EIC - Energy Identification Code<br />
ENSYSTRA - ENergy SYStems in TRAnsition<br />
ENTSO-E - European Network of Transmission Systems Operators for Electricity<br />
ESR - early-stage researcher<br />
EU - European Union<br />
GHG - greenhouse gas<br />
NUTS - Nomenclature of territorial units for statistics<br />
O&M - operation and maintenance<br />
OPEX - operational expenditure<br />
PCR - Price Coupling of Regions<br />
TSO - transmission system operator<br />
VRE - variable renewable energy<br />
WP - work package</p>
<!-- COMPETES - COmprehensive Market Power in Electricity Transmission and Energy Simulator \
AI - artificial intelligence \
DC - direct current \
EMMA - The European Electricity Market Model \
ETSAP - Energy Technology Systems Analysis Program \
GAMS - General Algebraic Modeling System \
IEA - International Energy Agency \
IRENA - International Renewable Energy Agency \
MARKAL - MARKet ALlocation \
NREL - National Renewable Energy Laboratory \
openmod - Open Energy Modelling Initiative \
PhD - Doctor of Philosophy \
renpass - Renewable Energy Pathways Simulation System \
stELMOD - Stochastic Electricity Market Model \
TIMES - The Integrated MARKAL-EFOM System \
UiS - University of Stavanger \ -->
<h1 id="sec:references">References</h1>
<div id="refs">
<div id="ref-Paris15">
<p>[1] “Paris Agreement.” United Nations Framework Convention on Climate Change, 2015 [Online]. Available: <a href="https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement" class="uri">https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement</a>. [Accessed: 23 April 2018]</p>
</div>
<div id="ref-Energ12">
<p>[2] “Energy roadmap 2050,” Publications Office of the European Union, Luxembourg, 2012 [Online]. Available: <a href="https://doi.org/10.2833/10759" class="uri">https://doi.org/10.2833/10759</a></p>
</div>
<div id="ref-Globa18">
<p>[3] “Global Energy Transformation: A Roadmap to 2050,” International Renewable Energy Agency, 2018 [Online]. Available: <a href="http://www.irena.org/publications/2018/Apr/Global-Energy-Transition-A-Roadmap-to-2050" class="uri">http://www.irena.org/publications/2018/Apr/Global-Energy-Transition-A-Roadmap-to-2050</a>. [Accessed: 14 November 2018]</p>
</div>
<div id="ref-Renew">
<p>[4] “Renewable energy - Energy - European Commission.” [Online]. Available: <a href="https://ec.europa.eu/energy/en/topics/renewable-energy" class="uri">https://ec.europa.eu/energy/en/topics/renewable-energy</a>. [Accessed: 12 October 2018]</p>
</div>
<div id="ref-World17">
<p>[5] “World Energy Outlook 2017,” International Energy Agency, Paris, France, 2017 [Online]. Available: <a href="https://www.iea.org/weo2017/" class="uri">https://www.iea.org/weo2017/</a>. [Accessed: 20 May 2018]</p>
</div>
<div id="ref-Lund17">
<p>[6] H. Lund, P. A. Østergaard, D. Connolly, and B. V. Mathiesen, “Smart energy and smart energy systems,” <em>Energy</em>, vol. 137, pp. 556–565, October 2017 [Online]. Available: <a href="https://doi.org/10.1016/j.energy.2017.05.123" class="uri">https://doi.org/10.1016/j.energy.2017.05.123</a></p>
</div>
<div id="ref-Towar18">
<p>[7] “Towards a consumer-centric system,” Elia Group, Brussels, Belgium, 2018 [Online]. Available: <a href="http://www.elia.be/~/media/files/Elia/StakeholderDay/Elia-Vision-paper-2018_Front-Spreads-Back.pdf" class="uri">http://www.elia.be/~/media/files/Elia/StakeholderDay/Elia-Vision-paper-2018_Front-Spreads-Back.pdf</a></p>
</div>
<div id="ref-About">
<p>[8] “About the project | ENSYSTRA.” [Online]. Available: <a href="https://ensystra.eu/about-the-project/" class="uri">https://ensystra.eu/about-the-project/</a>. [Accessed: 23 April 2018]</p>
</div>
<div id="ref-Herbs12">
<p>[9] A. Herbst, F. Toro, F. Reitze, and E. Jochem, “Introduction to Energy Systems Modelling,” <em>Swiss Journal of Economics and Statistics</em>, vol. 148, no. 2, pp. 111–135, April 2012 [Online]. Available: <a href="https://doi.org/10.1007/BF03399363" class="uri">https://doi.org/10.1007/BF03399363</a></p>
</div>
<div id="ref-Krook15">
<p>[10] A. Krook-Riekkola, “National Energy System Modelling for Supporting Energy and Climate Policy Decision-making : The Case of Sweden,” Chalmers University of Technology, Göteborg, Sweden, 2015 [Online]. Available: <a href="http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-17594" class="uri">http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-17594</a>. [Accessed: 24 September 2018]</p>
</div>
<div id="ref-Manag12">
<p>[11] “Managing big data for smart grids and smart meters,” IBM Corporation, Somers, NY, USA, 2012 [Online]. Available: <a href="http://www.ibmbigdatahub.com/whitepaper/managing-big-data-smart-grids-and-smart-meters" class="uri">http://www.ibmbigdatahub.com/whitepaper/managing-big-data-smart-grids-and-smart-meters</a>. [Accessed: 18 June 2018]</p>
</div>
<div id="ref-Erbac16">
<p>[12] G. Erbach, “Understanding electricity markets in the EU,” European Union, Briefing, November 2016 [Online]. Available: <a href="http://www.europarl.europa.eu/RegData/etudes/BRIE/2016/593519/EPRS_BRI(2016)593519_EN.pdf" class="uri">http://www.europarl.europa.eu/RegData/etudes/BRIE/2016/593519/EPRS_BRI(2016)593519_EN.pdf</a>. [Accessed: 22 November 2018]</p>
</div>
<div id="ref-Glism18">
<p>[13] S. Glismann, “Modelling from a TSO Perspective - TenneT NL,” 6 September 2018. </p>
</div>
<div id="ref-Pfenn14">
<p>[14] S. Pfenninger, A. Hawkes, and J. Keirstead, “Energy systems modeling for twenty-first century energy challenges,” <em>Renewable and Sustainable Energy Reviews</em>, vol. 33, pp. 74–86, May 2014 [Online]. Available: <a href="https://doi.org/10.1016/j.rser.2014.02.003" class="uri">https://doi.org/10.1016/j.rser.2014.02.003</a></p>
</div>
<div id="ref-Energ">
<p>[15] “Energy modelling - EU Reference Scenario 2016.” [Online]. Available: <a href="https://data.europa.eu/euodp/data/dataset/energy-modelling" class="uri">https://data.europa.eu/euodp/data/dataset/energy-modelling</a>. [Accessed: 1 November 2018]</p>
</div>
<div id="ref-Josko11">
<p>[16] P. L. Joskow, “Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies,” <em>American Economic Review</em>, vol. 101, no. 3, pp. 238–241, May 2011 [Online]. Available: <a href="https://doi.org/10.1257/aer.101.3.238" class="uri">https://doi.org/10.1257/aer.101.3.238</a></p>
</div>
<div id="ref-Tidba10">
<p>[17] R. Tidball, J. Bluestein, N. Rodriguez, S. Knoke, and J. Macknick, “Cost and Performance Assumptions for Modeling Electricity Generation Technologies,” National Renewable Energy Laboratory, Subcontract Report NREL/SR-6A20-48595, 2010 [Online]. Available: <a href="https://www.nrel.gov/docs/fy11osti/48595.pdf" class="uri">https://www.nrel.gov/docs/fy11osti/48595.pdf</a></p>
</div>
<div id="ref-Pinso">
<p>[18] P. Pinson, “Renewables in Electricity Markets « Pierre Pinson.” [Online]. Available: <a href="http://pierrepinson.com/?page_id=913" class="uri">http://pierrepinson.com/?page_id=913</a>. [Accessed: 9 December 2018]</p>
</div>
<div id="ref-Thec15">
<p>[19] “The current electricity market design in Europe,” KU Leuven Energy Institute, Heverlee, Belgium, January 2015 [Online]. Available: <a href="https://set.kuleuven.be/ei/factsheets" class="uri">https://set.kuleuven.be/ei/factsheets</a>. [Accessed: 29 November 2018]</p>
</div>
<div id="ref-Overv16">
<p>[20] “Overview of European Electricity Markets,” European Union, Brussels, Belgium, February 2016 [Online]. Available: <a href="https://ec.europa.eu/energy/sites/ener/files/documents/overview_of_european_electricity_markets.pdf" class="uri">https://ec.europa.eu/energy/sites/ener/files/documents/overview_of_european_electricity_markets.pdf</a>. [Accessed: 26 November 2018]</p>
</div>
<div id="ref-North">
<p>[21] “North Sea | European MSP Platform.” [Online]. Available: <a href="https://www.msp-platform.eu/sea-basins/north-sea-0" class="uri">https://www.msp-platform.eu/sea-basins/north-sea-0</a>. [Accessed: 1 June 2018]</p>
</div>
<div id="ref-Membe15">
<p>[22] “Member Directory & Map – CPMR North Sea Commission,” 21 October 2015. [Online]. Available: <a href="https://cpmr-northsea.org/who-we-are/member-directory-map/" class="uri">https://cpmr-northsea.org/who-we-are/member-directory-map/</a>. [Accessed: 3 March 2019]</p>
</div>
<div id="ref-NUTS">
<p>[23] “NUTS - Nomenclature of territorial units for statistics - Eurostat.” [Online]. Available: <a href="https://ec.europa.eu/eurostat/web/nuts/background" class="uri">https://ec.europa.eu/eurostat/web/nuts/background</a>. [Accessed: 11 June 2019]</p>
</div>
<div id="ref-Biddi14">
<p>[24] “Bidding Zones Literature Review,” Ofgem, July 2014 [Online]. Available: <a href="https://www.ofgem.gov.uk/sites/default/files/docs/2014/10/fta_bidding_zone_configuration_literature_review_1.pdf" class="uri">https://www.ofgem.gov.uk/sites/default/files/docs/2014/10/fta_bidding_zone_configuration_literature_review_1.pdf</a></p>
</div>
<div id="ref-Nordw15">
<p>[25] of derivative work: Nordwestern, <em>English: A blank Map of Europe in SVG format without disputed areas and conflict regions.</em> 2015 [Online]. Available: <a href="https://commons.wikimedia.org/wiki/File:Blank_map_of_Europe_(without_disputed_regions).svg" class="uri">https://commons.wikimedia.org/wiki/File:Blank_map_of_Europe_(without_disputed_regions).svg</a>. [Accessed: 8 July 2019]</p>
</div>
<div id="ref-Power">
<p>[26] “Power | Statkraft.” [Online]. Available: <a href="https://www.statkraft.com/market-operations/standard-energy-products/power-electricity/" class="uri">https://www.statkraft.com/market-operations/standard-energy-products/power-electricity/</a>. [Accessed: 26 July 2019]</p>
</div>
<div id="ref-Seem">
<p>[27] “See market data for all areas | Nord Pool.” [Online]. Available: <a href="http://www.nordpoolspot.com/Market-data1/" class="uri">http://www.nordpoolspot.com/Market-data1/</a>. [Accessed: 23 November 2018]</p>
</div>
<div id="ref-EPEX">
<p>[28] “EPEX SPOT SE: About EPEX SPOT.” [Online]. Available: <a href="http://www.epexspot.com/en/company-info/about_epex_spot" class="uri">http://www.epexspot.com/en/company-info/about_epex_spot</a>. [Accessed: 23 November 2018]</p>
</div>
<div id="ref-PCRE17">
<p>[29] “PCR & EUPHEMIA algorithm, the European Power Exchanges project to couple electricity market!” <em>N-SIDE</em>, 9 September 2017. [Online]. Available: <a href="https://www.n-side.com/pcr-euphemia-algorithm-european-power-exchanges-price-coupling-electricity-market/" class="uri">https://www.n-side.com/pcr-euphemia-algorithm-european-power-exchanges-price-coupling-electricity-market/</a>. [Accessed: 29 January 2019]</p>
</div>
<div id="ref-DEATL">
<p>[30] “DE-AT-LU Bidding zone split - News - ENTSO-E Transparency Platform.” [Online]. Available: <a href="https://transparency.entsoe.eu/news/widget?id=5b7c1e9b5092e75a10bab903" class="uri">https://transparency.entsoe.eu/news/widget?id=5b7c1e9b5092e75a10bab903</a>. [Accessed: 18 September 2019]</p>
</div>
<div id="ref-Europ10">
<p>[31] “European Commission - PRESS RELEASES - Press release - Antitrust: Commission increases electricity trading capacity on the Swedish borders,” 14 April 2010. [Online]. Available: <a href="http://europa.eu/rapid/press-release_IP-10-425_en.htm?locale=en" class="uri">http://europa.eu/rapid/press-release_IP-10-425_en.htm?locale=en</a>. [Accessed: 25 June 2019]</p>
</div>
<div id="ref-List">
<p>[32] “List of changes in day-ahead and intraday areas,” Nord Pool [Online]. Available: <a href="https://www.nordpoolspot.com/globalassets/download-center/day-ahead/elspot-area-change-log.pdf" class="uri">https://www.nordpoolspot.com/globalassets/download-center/day-ahead/elspot-area-change-log.pdf</a>. [Accessed: 24 June 2019]</p>
</div>
<div id="ref-Count19">
<p>[33] “Counties of Norway,” <em>Wikipedia</em>. 2 April 2019 [Online]. Available: <a href="https://en.wikipedia.org/w/index.php?title=Counties_of_Norway&oldid=890663009" class="uri">https://en.wikipedia.org/w/index.php?title=Counties_of_Norway&oldid=890663009</a>. [Accessed: 11 June 2019]</p>
</div>
<div id="ref-Count19a">
<p>[34] “Counties of Sweden,” <em>Wikipedia</em>. 11 February 2019 [Online]. Available: <a href="https://en.wikipedia.org/w/index.php?title=Counties_of_Sweden&oldid=882806371" class="uri">https://en.wikipedia.org/w/index.php?title=Counties_of_Sweden&oldid=882806371</a>. [Accessed: 11 June 2019]</p>
</div>
<div id="ref-ENTSO">
<p>[35] “ENTSO-E Transparency Platform.” [Online]. Available: <a href="https://transparency.entsoe.eu/" class="uri">https://transparency.entsoe.eu/</a>. [Accessed: 7 November 2018]</p>
</div>
<div id="ref-Regio">
<p>[36] “Regional Security Coordinators FAQ.” [Online]. Available: <a href="https://www.entsoe.eu/major-projects/rscis/" class="uri">https://www.entsoe.eu/major-projects/rscis/</a>. [Accessed: 18 November 2018]</p>
</div>
<div id="ref-Help">
<p>[37] “Help Page - ENTSO-E Transparency Platform.” [Online]. Available: <a href="https://transparency.entsoe.eu/content/static_content/Static%20content/knowledge%20base/knowledge%20base.html">https://transparency.entsoe.eu/content/static_content/Static%20content/knowledge%20base/knowledge%20base.html</a>. [Accessed: 12 August 2019]</p>
</div>
<div id="ref-ENTSO16">
<p>[38] “ENTSO-E Transparency Platform Data Extraction Process Implementation Guide,” ENTSO-E AISBL, Brussels, Belgium, July 2016 [Online]. Available: <a href="https://transparency.entsoe.eu/content/static_content/download?path=/Static%20content/web%20api/RestfulAPI_IG.pdf">https://transparency.entsoe.eu/content/static_content/download?path=/Static%20content/web%20api/RestfulAPI_IG.pdf</a></p>
</div>
<div id="ref-Trans">
<p>[39] “Transparency Platform restful API - user guide.” [Online]. Available: <a href="https://transparency.entsoe.eu/content/static_content/Static%20content/web%20api/Guide.html">https://transparency.entsoe.eu/content/static_content/Static%20content/web%20api/Guide.html</a>. [Accessed: 13 September 2019]</p>
</div>
<div id="ref-Energ19">
<p>[40] <em>EnergieID/entsoe-py</em>. EnergieID cvba-so, 2019 [Online]. Available: <a href="https://github.com/EnergieID/entsoe-py" class="uri">https://github.com/EnergieID/entsoe-py</a>. [Accessed: 18 September 2019]</p>
</div>
<div id="ref-REMIT16">