jupyter | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
In this tutorial, we will implement the ReSTIR-GI algorithm in Mitsuba3, published in 2021. The ReSTIR algorithm and its derivatives have become very popular especially for real time rendering applications. However, as most implementations are focused on performance, it can be hard to understand the most common implementations. The goal of this tutorial is to provide an Implementation for most of the features provided in the original ReSTIR-GI paper while being easy to understand.
Unfortunately some aspects of my implementation do not work yet, including Jacobean bias correction.
The Original paper can be found under: Ouyang, Y., Liu, S., Kettunen, M., Pharr, M., & Pantaleoni, J. (2021). ReSTIR GI.
%pip install mitsuba tqdm matplotlib
First we need to import Mitsuba3 and Dr.Jit We also have to specify a variant for Mitsuba3.
import mitsuba as mi
import drjit as dr
from tqdm import tqdm
import matplotlib.pyplot as plt
mi.set_variant("cuda_ad_rgb")
Dr.Jit supports creating custom structs, which allow us to zero-initialize members as
well as gathering/scattering them from/into arrays.
By declaring a DRJIT_STRUCT
dictionary in the class we can specify the names and types of our
struct members.
The RestirReservoir
and RestirSample
both use this feature.
To avoid having to repeat the type specification we can write a decorator that takes the
type hints and automatically constructs the DRJIT_STRUCT
dict.
def drjitstruct(cls):
from typing import get_type_hints
drjit_struct = {}
type_hints = get_type_hints(cls)
for name, ty in type_hints.items():
drjit_struct[name] = ty
cls.DRJIT_STRUCT = drjit_struct
return cls
The ReSTIR-GI paper has several bias correction steps, one of which is Jacobean
bias correction.
To quote the paper, "If a visible point
def J(
xr1: mi.Vector3f, xq1: mi.Vector3f, xq2: mi.Vector3f, nq2: mi.Vector3f
) -> mi.Float:
v_rq = xr1 - xq2
norm_rq = dr.norm(v_rq)
cos_phi_r = dr.clamp(dr.abs(dr.dot(v_rq, nq2) / norm_rq), 0, 1)
v_qq = xq1 - xq2
nrom_qq = dr.norm(v_qq)
cos_phi_q = dr.clamp(dr.abs(dr.dot(v_qq, nq2) / nrom_qq), 0, 1)
div = cos_phi_q * dr.sqr(norm_rq)
jacobian = dr.select(div > 0, cos_phi_r * dr.sqr(nrom_qq) / div, 0)
return jacobian
The ReSTIR algorithm samples initial samples from a source pdf
The original paper proposed two different probability density functions for
def p_hat(f):
return dr.norm(f)
In Algorithm 4 of the ReSTIR-GI paper a set Q is described which is used for
spatial bias correction at the end.
It saves the count M
, the position and the normal of the visible points for a
visibility test.
This class implements a put
method that can be called at every iteration of a loop.
Since the lists in this class are Python lists we have to use a Python loop to
access the variables at their indices as well.
One could also save these variables in a buffer and recall them later, however
since the loop has at most 9 iterations this would be an unnecessary
performance penalty.
class ReuseSet:
def __init__(self):
self.M = []
self.active = []
self.p = []
self.n = []
def put(self, M: mi.UInt, pos: mi.Vector3f, n: mi.Vector3f, active: mi.Bool = True):
self.M.append(M)
self.p.append(pos)
self.n.append(n)
self.active.append(mi.Bool(active))
def __len__(self) -> int:
assert len(self.M) == len(self.p) == len(self.active) == len(self.n)
return len(self.M)
Now we can implement the RestirSample
and RestirReservoir
classes
corresponding to the "SAMPLE" and "RESERVOIR" struct from the paper.
The update and merge functions can be ported directly from the paper and
require just minor adaptions such as using dr.select
instead of an if-clause.
One point that caused me some headaches is that we have to construct a new
mi.UInt
to copy the M
value in the merge
function as we would otherwise overwrite the old one.
Here we can also utilize the drjitstruct
decorator specified earlier,
therefore we have to annotate the class members with their correct Mitsuba3
types.
@drjitstruct
class RestirSample:
x_v: mi.Vector3f
n_v: mi.Vector3f
x_s: mi.Vector3f
n_s: mi.Vector3f
L_o: mi.Color3f
p_q: mi.Float
valid: mi.Bool
@drjitstruct
class RestirReservoir:
z: RestirSample
w: mi.Float
W: mi.Float
M: mi.UInt
def update(
self,
sampler: mi.Sampler,
snew: RestirSample,
wnew: mi.Float,
active: mi.Bool = True,
):
active = mi.Bool(active)
if dr.shape(active)[-1] == 1:
dr.make_opaque(active)
self.w += dr.select(active, wnew, 0)
self.M += dr.select(active, 1, 0)
self.z: RestirSample = dr.select(
active & (sampler.next_1d() < wnew / self.w), snew, self.z
)
def merge(
self, sampler: mi.Sampler, r: "RestirReservoir", p, active: mi.Bool = True
):
active = mi.Bool(active)
M0 = mi.UInt(
self.M
) # We have to construct a new UInt so we don't overwrite `self.M`
self.update(sampler, r.z, p * r.W * r.M, active)
self.M = dr.select(active, M0 + r.M, M0)
Finally, we can implement our Integrator. In this tutorial we will use monkey patching to split up the integrator class over multiple cells.
In the render
function which we overwrite from mi.SamplingIntegrator
,
we first seed the sampler with self.n
and calculate the pixel and sample position similar to the
default integrator.
We also sample in multiple layers if more than 1 sample per pixel was requested.
Since the ReSTIR integrator reuses samples from previous frames
(invocations of mi.render
) we keep an internal counter self.n
to seed the sampler and avoid biased results.
This variable is then also used to zero-initialize the reservoirs in the first frame.
For each frame we also keep a copy of the previous sensor around to reproject temporal samples to new pixels in the temporal resampling step.
We then perform the main Sampling/Resampling algorithm by successively calling:
- sample_initial
for generating initial samples
- temporal_resampling
for resampling from previous frames
- spatial_resampling
for resampling from neighboring pixels
- render_final
for rendering the final image\
To get the rendering time down we also split this part into multiple kernels by evaluating the changed state variables in between.
In the end we update self.n
the sensor parameters.
This is used for seeding the sampler.
class RestirIntegrator(mi.SamplingIntegrator):
dist_threshold = 0.1
angle_threshold = 25 * dr.pi / 180
def __init__(self, props: mi.Properties):
super().__init__(props)
self.max_depth: int = props.get("max_depth", 8)
self.rr_depth: int = props.get("rr_depth", 2)
self.bias_correction = props.get("bias_correction", True)
self.jacobian = props.get("jacobian", True)
self.spatial_spatial_reuse = props.get("spatial_spatial_reuse", False)
self.bsdf_sampling = props.get("bsdf_sampling", True)
self.max_M_temporal = props.get("max_M_temporal", None)
self.max_M_spatial = props.get("max_M_spatial", None)
self.initial_search_radius = props.get("initial_search_radius", 10.0)
self.minimal_search_radius = props.get("minimal_search_radius", 3.00)
self.n = 0
self.film_size: None | mi.Vector2u = None
def render(
self,
scene: mi.Scene,
sensor: mi.Sensor,
seed: int = 0,
spp: int = 1,
develop: bool = True,
evaluate: bool = True,
):
"""Renders the scene using the ReSTIR-GI algorithm.
It is better to call `mi.render` instead of calling this funciton manually.
Args:
scene: Mitsuba3 Scene to render
sensor: Sensor position to render from
seed: per frame seed
spp: samples per pixel
develop: Has no effect for this integrator
evaluate: Has no effect
Returns:
The rendered image in the form of a Mitsuba3 TensorXf
"""
film = sensor.film()
film_size = film.crop_size()
if self.film_size is None:
self.film_size = film_size
wavefront_size = film_size.x * film_size.y * spp
sampler = sensor.sampler()
sampler.set_sample_count(spp)
sampler.set_samples_per_wavefront(spp)
sampler.seed(self.n, wavefront_size)
idx = dr.arange(mi.UInt, wavefront_size)
pos = mi.Vector2u()
pos.x = idx // spp % film_size.x
pos.y = idx // film_size.x // spp
self.layer = idx % spp
self.spp = spp
sample_pos = (mi.Point2f(pos) + sampler.next_2d()) / mi.Point2f(
film.crop_size()
)
if self.n == 0:
self.temporal_reservoir: RestirReservoir = dr.zeros(
RestirReservoir, wavefront_size
)
self.spatial_reservoir: RestirReservoir = dr.zeros(
RestirReservoir, wavefront_size
)
self.search_radius = dr.full(
mi.Float, self.initial_search_radius, wavefront_size
)
self.prev_sensor: mi.Sensor = mi.load_dict({"type": "perspective"})
mi.traverse(self.prev_sensor).update(mi.traverse(sensor))
"""
Main ReSTIR-GI algorithm:
- Generate Initial Samples
- Termporal Resampling
- Spatial Resampling
- Final Image Generation
"""
self.sample_initial(scene, sampler, sensor, sample_pos)
dr.eval(self.sample) # important to evaluate state to avoid cache misses
if self.n == 0:
self.prev_sample = self.sample
self.temporal_resampling(sampler, mi.Vector2f(pos))
dr.eval(self.temporal_reservoir)
self.spatial_resampling(scene, sampler, pos)
dr.eval(self.spatial_reservoir, self.search_radius)
res = self.render_final()
film.prepare(self.aov_names())
block: mi.ImageBlock = film.create_block()
aovs = [res.x, res.y, res.z, mi.Float(1)]
block.put(pos, aovs)
film.put_block(block)
img = film.develop()
dr.eval(img)
# Update n, prev_sensor and prev_sample
self.n += 1
mi.traverse(self.prev_sensor).update(mi.traverse(sensor))
self.prev_sample = self.sample
return img
To get the index of a pixel coordinate we define a helper function. It returns the index of the reservoir in the same layer.
def to_idx(self, pos: mi.Vector2u) -> mi.UInt:
"""Converts a screen space image position to a reservoir index depending on the sample layer.
Args:
pos: Position in image space between 0 and width, 0 and height
Returns:
Reservoir Index for this pixel and layer.
"""
pos = dr.clamp(mi.Point2u(pos), mi.Point2u(0), self.film_size)
assert self.film_size is not None
return (pos.y * self.film_size.x + pos.x) * self.spp + self.layer
RestirIntegrator.to_idx = to_idx
In the paper, a similarity test is proposed that is used to tell if two reservoirs should be merged when performing spatial resampling. This function implements that test with Mitsuba3.
def similar(self, s1: RestirSample, s2: RestirSample) -> mi.Bool:
"""Similarity test from the paper, testing if two points are similar enough.
Args:
s1: first RestirSample
s2: second RestirSample
Returns:
`True` if the two samples are similar enough
"""
dist = dr.norm(s1.x_v - s2.x_v)
similar = dist < self.dist_threshold
similar &= dr.dot(s1.n_v, s2.n_v) > dr.cos(self.angle_threshold)
return similar
RestirIntegrator.similar = similar
The first step in the ReSTIR-GI pipeline is to generate initial samples.
This function is relatively straight forward.
After generating an initial ray we acquire the corresponding visible
point and normal (render_final
function.
The next step is to either sample the BSDF pdf or the hemisphere uniformly
to get a new direction.
Both options where described in the paper, however BSDF sampling seems to work better
with Mitsuba3.
We then save the probability density function into the sample and spawn a new ray
to acquire the sample position and normal (
The incoming radiance sample_ray
function.
To this end we ported the sampling function from Mitsuba's path integrator to Python.
def sample_initial(
self,
scene: mi.Scene,
sampler: mi.Sampler,
sensor: mi.Sensor,
sample_pos: mi.Point2f,
) -> RestirSample:
"""Samples the initial RestirSample per frame.
Args:
scene: Scene to render
sampler: Sampler used to generate the samples
sensor: Camera from which to render
sample_pos: Position of the sample in image space
Returns:
The initial sample, which can be used for resampling
"""
S = RestirSample()
ray, ray_weight = sensor.sample_ray(0.0, 0.0, sample_pos, mi.Point2f(0.5))
si: mi.SurfaceInteraction3f = scene.ray_intersect(ray)
bsdf: mi.BSDF = si.bsdf()
ds = mi.DirectionSample3f(scene, si, dr.zeros(mi.SurfaceInteraction3f))
emitter: mi.Emitter = ds.emitter
self.emittance = emitter.eval(si)
S.x_v = si.p
S.n_v = si.n
S.valid = si.is_valid()
self.si_v = si
if self.bsdf_sampling:
bsdf_sample, bsdf_weight = bsdf.sample(
mi.BSDFContext(), si, sampler.next_1d(), sampler.next_2d()
)
wo = bsdf_sample.wo
pdf = bsdf_sample.pdf
else:
wo = mi.warp.square_to_uniform_hemisphere(sampler.next_2d())
pdf = mi.warp.square_to_uniform_hemisphere_pdf(wo)
S.p_q = pdf
ray = si.spawn_ray(si.to_world(wo))
S.L_o = self.sample_ray(scene, sampler, ray)
si: mi.SurfaceInteraction3f = scene.ray_intersect(ray)
S.x_s = si.p
S.n_s = si.n
self.sample = S
RestirIntegrator.sample_initial = sample_initial
def sample_ray(
self,
scene: mi.Scene,
sampler: mi.Sampler,
ray: mi.Ray3f,
active: bool = True,
) -> mi.Color3f:
"""Estimate the radiance along a ray using standard path tracing with one path.
This is a port of the Mitsuba3 PathIntegrator from C++.
Args:
scene: Scene tor ender
sampler: Sampler used for generating random numbers to sample the scene.
ray: Ray along which the Radiance should be estimated.
active: Boolean controlling weather the ray tracing and sampling operations should be performed
Returns:
The estimated radiance along the path.
"""
from mitsuba.python.ad.integrators.common import mis_weight
# --------------------- Configure loop state ----------------------
ray = mi.Ray3f(ray)
active = mi.Bool(active)
throughput = mi.Spectrum(1.0)
result = mi.Spectrum(0.0)
eta = mi.Float(1.0)
depth = mi.UInt32(0)
valid_ray = mi.Bool(scene.environment() is not None)
# Variables caching information from the previous bounce
prev_si: mi.SurfaceInteraction3f = dr.zeros(mi.SurfaceInteraction3f)
prev_bsdf_pdf = mi.Float(1.0)
prev_bsdf_delta = mi.Bool(True)
bsdf_ctx = mi.BSDFContext()
loop = mi.Loop(
"Path Tracer",
state=lambda: (
sampler,
ray,
throughput,
result,
eta,
depth,
valid_ray,
prev_si,
prev_bsdf_pdf,
prev_bsdf_delta,
active,
),
)
loop.set_max_iterations(self.max_depth)
while loop(active):
# TODO: not necesarry in first interaction
si = scene.ray_intersect(ray)
# ---------------------- Direct emission ----------------------
ds = mi.DirectionSample3f(scene, si, prev_si)
em_pdf = mi.Float(0.0)
em_pdf = scene.pdf_emitter_direction(prev_si, ds, ~prev_bsdf_delta)
mis_bsdf = mis_weight(prev_bsdf_pdf, em_pdf)
result = dr.fma(
throughput,
ds.emitter.eval(si, prev_bsdf_pdf > 0.0) * mis_bsdf,
result,
)
active_next = ((depth + 1) < self.max_depth) & si.is_valid()
bsdf: mi.BSDF = si.bsdf(ray)
# ---------------------- Emitter sampling ----------------------
active_em = active_next & mi.has_flag(bsdf.flags(), mi.BSDFFlags.Smooth)
ds, em_weight = scene.sample_emitter_direction(
si, sampler.next_2d(), True, active_em
)
wo = si.to_local(ds.d)
# ------ Evaluate BSDF * cos(theta) and sample direction -------
sample1 = sampler.next_1d()
sample2 = sampler.next_2d()
bsdf_val, bsdf_pdf, bsdf_sample, bsdf_weight = bsdf.eval_pdf_sample(
bsdf_ctx, si, wo, sample1, sample2
)
# --------------- Emitter sampling contribution ----------------
bsdf_val = si.to_world_mueller(bsdf_val, -wo, si.wi)
mi_em = dr.select(ds.delta, 1.0, mis_weight(ds.pdf, bsdf_pdf))
result[active_em] = dr.fma(throughput, bsdf_val * em_weight * mi_em, result)
# ---------------------- BSDF sampling ----------------------
bsdf_weight = si.to_world_mueller(bsdf_weight, -bsdf_sample.wo, si.wi)
ray = si.spawn_ray(si.to_world(bsdf_sample.wo))
# ------ Update loop variables based on current interaction ------
throughput *= bsdf_weight
eta *= bsdf_sample.eta
valid_ray |= (
active
& si.is_valid()
& ~mi.has_flag(bsdf_sample.sampled_type, mi.BSDFFlags.Null)
)
prev_si = si
prev_bsdf_pdf = bsdf_sample.pdf
prev_bsdf_delta = mi.has_flag(bsdf_sample.sampled_type, mi.BSDFFlags.Delta)
# -------------------- Stopping criterion ---------------------
depth[si.is_valid()] += 1
throughput_max = dr.max(throughput)
rr_prop = dr.minimum(throughput_max * dr.sqr(eta), 0.95)
rr_active = depth >= self.rr_depth
rr_continue = sampler.next_1d() < rr_prop
throughput[rr_active] *= dr.rcp(rr_prop)
active = (
active_next & (~rr_active | rr_continue) & (dr.neq(throughput_max, 0.0))
)
return dr.select(valid_ray, result, 0.0)
RestirIntegrator.sample_ray = sample_ray
The next step is to perform temporal resampling.
Here we first test if the sample in the temporal reservoir at the current pixel is valid i.e. if the sample is similar enough to the sample that previously corresponding to this pixel.
To reproject the position of the current sample from the previous sensor position we
somewhat abuse the sample_direction
function of that sensor by constructing a
SurfaceInteraction3f
and populating it with the position of the current sample.
Depending on the result of that test we either construct a new reservoir or
reuse the old one.
Clamping the parameter M
of the reservoir to prevent
stale samples is mentioned.
This does not work if we simply where to limit that parameter and not merge the
reservoir.
Therefore, we construct a new reservoir Rnew
and merge the old one into it.
We also update this new reservoir with the new sample generated in this frame and
then clamp M
of the new reservoir and overwrite the old one.
def temporal_resampling(
self,
sampler: mi.Sampler,
pos: mi.Vector2f,
):
"""Implements temporal resampling from the paper.
Args:
sampler: Sampler used to generate the random numbers, which are required for merging/updating reservoirs
pos: Image space position of the pixel
"""
S = self.sample
si: mi.SurfaceInteraction3f = dr.zeros(mi.SurfaceInteraction3f)
si.p = S.x_v
ds, _ = self.prev_sensor.sample_direction(
si, mi.Point2f(0.0)
) # type: tuple[mi.DirectionSample3f, mi.Color3f]
ds: mi.DirectionSample3f = ds
valid = ds.pdf > 0
Sprev: RestirSample = dr.gather(
RestirSample, self.prev_sample, self.to_idx(mi.Point2u(ds.uv)), valid
)
valid &= self.similar(S, Sprev)
R = dr.select(valid, self.temporal_reservoir, dr.zeros(RestirReservoir))
"""
Create a new reservoir to update with the new sample and merge the old temporal reservoir into.
This is necesarry to limit the samples in the old temporal reservoir (M-clamping).
"""
Rnew: RestirReservoir = dr.zeros(RestirReservoir)
phat = p_hat(S.L_o)
w = dr.select(S.p_q > 0, phat / S.p_q, 0.0) # Weight for new sample
Rnew.update(sampler, S, w) # Add new sample to Rnew
# add min(R.M, CLAMP) samples from R
Rnew.merge(sampler, R, p_hat(R.z.L_o))
phat = p_hat(Rnew.z.L_o)
Rnew.W = dr.select(
phat * Rnew.M > 0, Rnew.w / (Rnew.M * phat), 0
) # Update Contribution Weight W in Rnew
if self.max_M_temporal is not None:
Rnew.M = dr.minimum(Rnew.M, self.max_M_temporal)
self.temporal_reservoir = Rnew
RestirIntegrator.temporal_resampling = temporal_resampling
Similarly to temporal resampling, spatial resampling reuses samples from nearby pixels.
The first step is again to construct a new reservoir Rnew
to allow for clamping M
.
Depending on whether we want to enable reuse from previous spatial reservoirs,
the old spatial reservoir is merged into the new one.
We then calculate the maximum number of iterations according to the criterion outlined
in the paper.
To determine if the search radius should be decreased (if no samples could be reused) we also initialize the
boolean any_reused
.
The main spatial resampling loop cannot be a Dr.Jit loop because we have to calculate
the spatial bias correction factor at the end using values added to the set Q
.
Since a Dr.Jit loop is only run once in Python to record the computations, it
is not easily possible to access the elements in the list of Q
.
Note, that for Dr.Jit the list looks like any other set of variables which
correspond to CUDA registers on the GPU.
def spatial_resampling(
self,
scene: mi.Scene,
sampler: mi.Sampler,
pos: mi.Vector2u,
):
"""Implements Spatial resampling from the paper.
Args:
scene: Scene to render
sampler: Generates random numbers for merging reservoirs
pos: Image space position of the pixel
"""
Rs = self.spatial_reservoir
Rnew: RestirReservoir = dr.zeros(RestirReservoir)
Q = ReuseSet()
q: RestirSample = self.sample
Z = mi.UInt(0)
if self.spatial_spatial_reuse:
Rnew.merge(sampler, Rs, p_hat(Rs.z.L_o))
Z += Rs.M
max_iter = dr.select(Rs.M < self.max_M_spatial / 2, 9, 3)
any_reused = dr.full(mi.Bool, False, len(pos.x))
for s in range(9):
active = s < max_iter
offset = mi.warp.square_to_uniform_disk(sampler.next_2d()) * self.search_radius
p = dr.clamp(pos + mi.Vector2i(offset), mi.Point2u(0), self.film_size)
qn: RestirSample = dr.gather(RestirSample, self.sample, self.to_idx(p))
active &= self.similar(qn, q)
Rn: RestirReservoir = dr.gather(
RestirReservoir, self.temporal_reservoir, self.to_idx(p), active
) # l.9
si: mi.SurfaceInteraction3f = dr.zeros(mi.SurfaceInteraction3f)
si.p = q.x_v
si.n = q.n_v
shadowed = scene.ray_test(si.spawn_ray_to(Rn.z.x_s), active)
phat = dr.select(
~active | shadowed,
0,
p_hat(Rn.z.L_o)
* (
dr.clamp(J(q.x_v, Rn.z.x_v, Rn.z.x_s, Rn.z.n_s), 0, 1000)
if self.jacobian
else 1.0
),
) # l.11 - 13
Rnew.merge(sampler, Rn, phat, active)
Q.put(Rn.M, Rn.z.x_v, Rn.z.n_v, active)
any_reused |= active
phat = p_hat(Rnew.z.L_o)
if self.bias_correction:
for i in range(len(Q)):
active = Q.active[i]
si: mi.SurfaceInteraction3f = dr.zeros(mi.SurfaceInteraction3f)
si.p = Rnew.z.x_s
si.n = Rnew.z.n_s
ray = si.spawn_ray_to(Q.p[i])
# active &= dr.dot(ray.d, Q.n[i]) < 0
active &= ~scene.ray_test(ray, active)
Z += dr.select(active, Q.M[i], 0)
Rnew.W = dr.select(Z * phat > 0, Rnew.w / (Z * phat), 0.0)
else:
Rnew.W = dr.select(phat * Rnew.M > 0, Rnew.w / (Rnew.M * phat), 0)
# Decrease search radius:
self.search_radius = dr.maximum(
dr.select(any_reused, self.search_radius, self.search_radius / 2),
self.minimal_search_radius,
)
if self.max_M_spatial is not None:
Rnew.M = dr.minimum(Rnew.M, self.max_M_spatial)
self.spatial_reservoir = Rnew
RestirIntegrator.spatial_resampling = spatial_resampling
Finally, we can implement the function, that calculates the image for this frame.
According to the ReSTIR algorithm the target integral is equal to
def render_final(self) -> mi.Color3f:
"""Render the final image after spatio-temporal resampling.
Args:
Returns:
The estimated color for the pixel
"""
assert self.film_size is not None
R = self.spatial_reservoir
S = R.z
si = self.si_v
bsdf: mi.BSDF = self.si_v.bsdf()
β = bsdf.eval(mi.BSDFContext(), si, si.to_local(dr.normalize(S.x_s - si.p)))
result = β * S.L_o * R.W + self.emittance
return result
RestirIntegrator.render_final = render_final
Now we can register the RestirIntegrator
with Mitsuba3 and render some images.
We use the default Cornell Box scene and modify its resolution as well as the reconstruction filter.
Note, that we do not have to set the seed as we use an internal variable that
is incremented every time the render
function gets called.
One could also conceive more elaborate setups such as a moving camera or a more
complex scene to test the Integrator.
We render the scene for 200 frames with 1spp for every frame.
The images are written to a out/
directory and in the notebook only the last
frame is shown.
mi.register_integrator("restirgi", lambda props: RestirIntegrator(props))
with dr.suspend_grad():
scene = mi.cornell_box()
scene["sensor"]["film"]["width"] = 1024
scene["sensor"]["film"]["height"] = 1024
scene["sensor"]["film"]["rfilter"] = mi.load_dict({"type": "box"})
scene: mi.Scene = mi.load_dict(scene)
print("Rendering Reference Image:")
ref = mi.render(scene, spp=256)
mi.util.write_bitmap("out/ref.jpg", ref)
integrator: RestirIntegrator = mi.load_dict(
{
"type": "restirgi",
"jacobian": False,
"bias_correction": True,
"bsdf_sampling": True,
"max_M_spatial": 500,
"max_M_temporal": 30,
"initial_search_radius": 10,
}
)
print("ReSTIRGI:")
imgs = []
for i in tqdm(range(200)):
img = mi.render(scene, integrator=integrator, spp=1)
mi.util.write_bitmap(f"out/{i}.jpg", img)
if (i + 1) % 50 == 0:
imgs.append((i, img))
fig, ax = plt.subplots(1, len(imgs), figsize=(10, 40))
for i in range(len(imgs)):
ax[i].axis("off")
ax[i].imshow(mi.util.convert_to_bitmap(imgs[i][1]))
ax[i].set_title(f"Frame {imgs[i][0]}")