forked from HuguesTHOMAS/KPConv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_any_model.py
executable file
·284 lines (226 loc) · 8.73 KB
/
test_any_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#
#
# 0=================================0
# | Kernel Point Convolutions |
# 0=================================0
#
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Callable script to test any model on any dataset
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Hugues THOMAS - 11/06/2018
#
# ----------------------------------------------------------------------------------------------------------------------
#
# Imports and global variables
# \**********************************/
#
# Common libs
import time
import os
import numpy as np
# My libs
from utils.config import Config
from utils.tester import ModelTester
from models.KPCNN_model import KernelPointCNN
from models.KPFCNN_model import KernelPointFCNN
# Datasets
from datasets.ModelNet40 import ModelNet40Dataset
from datasets.ShapeNetPart import ShapeNetPartDataset
from datasets.S3DIS import S3DISDataset
from datasets.Scannet import ScannetDataset
from datasets.NPM3D import NPM3DDataset
from datasets.Semantic3D import Semantic3DDataset
# ----------------------------------------------------------------------------------------------------------------------
#
# Utility functions
# \***********************/
#
def test_caller(path, step_ind, on_val):
##########################
# Initiate the environment
##########################
# Choose which gpu to use
GPU_ID = '0'
# Set GPU visible device
os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID
# Disable warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '0'
###########################
# Load the model parameters
###########################
# Load model parameters
config = Config()
config.load(path)
##################################
# Change model parameters for test
##################################
# Change parameters for the test here. For example, you can stop augmenting the input data.
#config.augment_noise = 0.0001
#config.augment_color = 1.0
config.validation_size = 500
#config.batch_num = 10
##############
# Prepare Data
##############
print()
print('Dataset Preparation')
print('*******************')
# Initiate dataset configuration
if config.dataset.startswith('ModelNet40'):
dataset = ModelNet40Dataset(config.input_threads)
elif config.dataset == 'S3DIS':
dataset = S3DISDataset(config.input_threads)
on_val = True
elif config.dataset == 'Scannet':
dataset = ScannetDataset(config.input_threads, load_test=(not on_val))
elif config.dataset.startswith('ShapeNetPart'):
dataset = ShapeNetPartDataset(config.dataset.split('_')[1], config.input_threads)
elif config.dataset == 'NPM3D':
dataset = NPM3DDataset(config.input_threads, load_test=(not on_val))
elif config.dataset == 'Semantic3D':
dataset = Semantic3DDataset(config.input_threads)
else:
raise ValueError('Unsupported dataset : ' + config.dataset)
# Create subsample clouds of the models
dl0 = config.first_subsampling_dl
dataset.load_subsampled_clouds(dl0)
# Initialize input pipelines
if on_val:
dataset.init_input_pipeline(config)
else:
dataset.init_test_input_pipeline(config)
##############
# Define Model
##############
print('Creating Model')
print('**************\n')
t1 = time.time()
if config.dataset.startswith('ShapeNetPart'):
model = KernelPointFCNN(dataset.flat_inputs, config)
elif config.dataset.startswith('S3DIS'):
model = KernelPointFCNN(dataset.flat_inputs, config)
elif config.dataset.startswith('Scannet'):
model = KernelPointFCNN(dataset.flat_inputs, config)
elif config.dataset.startswith('NPM3D'):
model = KernelPointFCNN(dataset.flat_inputs, config)
elif config.dataset.startswith('ModelNet40'):
model = KernelPointCNN(dataset.flat_inputs, config)
elif config.dataset.startswith('Semantic3D'):
model = KernelPointFCNN(dataset.flat_inputs, config)
else:
raise ValueError('Unsupported dataset : ' + config.dataset)
# Find all snapshot in the chosen training folder
snap_path = os.path.join(path, 'snapshots')
snap_steps = [int(f[:-5].split('-')[-1]) for f in os.listdir(snap_path) if f[-5:] == '.meta']
# Find which snapshot to restore
chosen_step = np.sort(snap_steps)[step_ind]
chosen_snap = os.path.join(path, 'snapshots', 'snap-{:d}'.format(chosen_step))
# Create a tester class
tester = ModelTester(model, restore_snap=chosen_snap)
t2 = time.time()
print('\n----------------')
print('Done in {:.1f} s'.format(t2 - t1))
print('----------------\n')
############
# Start test
############
print('Start Test')
print('**********\n')
if config.dataset.startswith('ShapeNetPart'):
if config.dataset.split('_')[1] == 'multi':
tester.test_multi_segmentation(model, dataset)
else:
tester.test_segmentation(model, dataset)
elif config.dataset.startswith('S3DIS'):
tester.test_cloud_segmentation_on_val(model, dataset)
elif config.dataset.startswith('Scannet'):
if on_val:
tester.test_cloud_segmentation_on_val(model, dataset)
else:
tester.test_cloud_segmentation(model, dataset)
elif config.dataset.startswith('Semantic3D'):
if on_val:
tester.test_cloud_segmentation_on_val(model, dataset)
else:
tester.test_cloud_segmentation(model, dataset)
elif config.dataset.startswith('NPM3D'):
if on_val:
tester.test_cloud_segmentation_on_val(model, dataset)
else:
tester.test_cloud_segmentation(model, dataset)
elif config.dataset.startswith('ModelNet40'):
tester.test_classification(model, dataset)
else:
raise ValueError('Unsupported dataset')
# ----------------------------------------------------------------------------------------------------------------------
#
# Main Call
# \***************/
#
if __name__ == '__main__':
##########################
# Choose the model to test
##########################
#
# Here you can choose which model you want to test with the variable test_model. Here are the possible values :
#
# > 'last_ModelNet40': Automatically retrieve the last trained model on ModelNet40
#
# > 'last_ShapeNetPart': Automatically retrieve the last trained model on ShapeNetPart
#
# > 'last_S3DIS': Automatically retrieve the last trained model on S3DIS
#
# > 'last_Scannet': Automatically retrieve the last trained model on Scannet
#
# > 'last_NPM3D': Automatically retrieve the last trained model on NPM3D
#
# > 'last_Semantic3D': Automatically retrieve the last trained model on Semantic3D
#
# > 'results/Log_YYYY-MM-DD_HH-MM-SS': Directly provide the path of a trained model
#
chosen_log = 'last_ModelNet40'
#
# You can also choose the index of the snapshot to load (last by default)
#
chosen_snapshot = -1
#
# Eventually, you can choose to test your model on the validation set
#
on_val = False
#
# If you want to modify certain parameters in the Config class, for example, to stop augmenting the input data,
# there is a section for it in the function "test_caller" defined above.
#
###########################
# Call the test initializer
###########################
handled_logs = ['last_ModelNet40',
'last_ShapeNetPart',
'last_S3DIS',
'last_Scannet',
'last_NPM3D',
'last_Semantic3D']
# Automatically retrieve the last trained model
if chosen_log in handled_logs:
# Dataset name
test_dataset = '_'.join(chosen_log.split('_')[1:])
# List all training logs
logs = np.sort([os.path.join('results', f) for f in os.listdir('results') if f.startswith('Log')])
# Find the last log of asked dataset
for log in logs[::-1]:
log_config = Config()
log_config.load(log)
if log_config.dataset.startswith(test_dataset):
chosen_log = log
break
if chosen_log in handled_logs:
raise ValueError('No log of the dataset "' + test_dataset + '" found')
# Check if log exists
if not os.path.exists(chosen_log):
raise ValueError('The given log does not exists: ' + chosen_log)
# Let's go
test_caller(chosen_log, chosen_snapshot, on_val)