-
Notifications
You must be signed in to change notification settings - Fork 166
/
notes-v1.cu
649 lines (601 loc) · 24.7 KB
/
notes-v1.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <vector>
#include <algorithm>
#include <cuda_runtime.h>
#define WARP_SIZE 32
#define INT4(value) (reinterpret_cast<int4*>(&(value))[0])
#define FLOAT4(value) (reinterpret_cast<float4*>(&(value))[0])
// SGEMM: Block Tile + K Tile, with smem
// Block Tile (BM, BN) + K Tile (BK=32)
// grid((N + BN - 1) / BN, (M + BM - 1) / BM), block(BN, BM)
// a: MxK, b: KxN, c: MxN, compute: c = a * b, all row major
__global__ void sgemm(float* a, float* b, float* c, int M, int N, int K) {
// [1] Block Tile: 32x32的block处理c上一块32x32的元素计算
// [2] K Tile: 使用共享内存,并将K分块为BK大小的块
constexpr int BM = 32;
constexpr int BN = 32;
constexpr int BK = 32;
__shared__ float s_a[BM][BK], s_b[BK][BN];
int bx = blockIdx.x;
int by = blockIdx.y;
int tx = threadIdx.x;
int ty = threadIdx.y;
int tid = threadIdx.y * blockDim.x + tx; // tid within the block
// load values to shared memory, 32x32 threads working together
// to fetch data along the row direction of a and b both for s_a
// and s_b 32x32x4x2=8KB, we use 32x32 threads within block to
// load 32x32 elements from global memory to shared memory, namely,
// each thread will load 1 element.
int load_smem_a_m = tid / 32; // 0~31, tid / 32, tid / BM, threadIdx.y
int load_smem_a_k = tid % 32; // 0~31, tid % 32, tid % BK, threadIdx.x
int load_smem_b_k = tid / 32; // 0~31, tid / 32, tid / BK, threadIdx.y
int load_smem_b_n = tid % 32; // 0~31, tid % 32, tid % BN, threadIdx.x
int load_gmem_a_m = by * BM + load_smem_a_m; // global row of a and c
int load_gmem_b_n = bx * BN + load_smem_b_n; // global col of b and c
// if (load_gmem_a_m >= M || load_gmem_b_n >= N) return;
float sum = 0.f;
for (int bk = 0; bk < (K + BK - 1) / BK; ++bk) {
int load_gmem_a_k = bk * BK + load_smem_a_k;
int load_gmem_a_addr = load_gmem_a_m * K + load_gmem_a_k;
s_a[load_smem_a_m][load_smem_a_k] = a[load_gmem_a_addr];
int load_gmem_b_k = bk * BK + load_smem_b_k;
int load_gmem_b_addr = load_gmem_b_k * N + load_gmem_b_n;
s_b[load_smem_b_k][load_smem_b_n] = b[load_gmem_b_addr];
__syncthreads();
#pragma unroll
for (int k = 0; k < BK; ++k) {
int comp_smem_a_m = load_smem_a_m;
int comp_smem_b_n = load_smem_b_n;
sum += s_a[comp_smem_a_m][k] * s_b[k][comp_smem_b_n];
}
__syncthreads();
}
int store_gmem_c_m = load_gmem_a_m;
int store_gmem_c_n = load_gmem_b_n;
int store_gmem_c_addr = store_gmem_c_m * N + store_gmem_c_n;
c[store_gmem_c_addr] = sum;
}
// SGEMM: Block Tile + Thread Tile + K Tile + Vec4, with smem
// BK:TILE_K=8 BM=BN=128
// TM=TN=8 增加计算密度 BM/TM=16 BN/TN=16
// dim3 blockDim(BN/TN, BM/TM);
// dim3 gridDim((N + BN - 1) / BN, (M + BM - 1) / BM)
__global__ void sgemm_thread_tile_vec4(
float* a, float* b, float* c, int M, int N, int K) {
// [1] Block Tile: 一个16x16的block处理C上大小为128X128的一个目标块
// [2] Thread Tile: 每个thread负责计算TM*TN(8*8)个元素,增加计算密度
// [3] K Tile: 将K分块,每块BK大小,迭代(K+BK-1/BK)次,
// 每次计算TM*TN个元素各自的部分乘累加
// [4] Vectorize: 减少load和store指令,使用float4
constexpr int BM = 128;
constexpr int BN = 128;
constexpr int BK = 8;
constexpr int TM = 8;
constexpr int TN = 8;
int bx = blockIdx.x;
int by = blockIdx.y;
int tx = threadIdx.x;
int ty = threadIdx.y;
int tid = threadIdx.y * blockDim.x + tx; // tid within the block
__shared__ float s_a[BM][BK], s_b[BK][BN]; // 2*128*8*4=8KB
// 0. 先计算shared memory中的索引
// tid和需要加载的smem s_a[BM][BK] 之间的索引关系 BM=128 BK=8 按行读取 A行主序
// 对于s_a每行8个数据,每个线程读取4个,需要2个线程;总共128行,需要128x2刚好256线程
int load_smem_a_m = tid / 2; // tid/2 (128/8)*(128/8)=256 threads per block, tid/2->[0,128), BM=128 0~127
int load_smem_a_k = (tid % 2 == 0) ? 0 : 4; // (tid%2 == 0) ? 0 : 4, col of s_a 0,4
// tid和需要加载的smem s_b[BK][BN] 之间的索引关系 BK=8 BN=128 按行读取 B行主序
// 对于s_b每行128个数据,每个线程读4个数据,需要32个线程;总共8行,需要32x8=256个线程
int load_smem_b_k = tid / 32; // tid/32, row of s_b 256/32=8 行 0~7
int load_smem_b_n = (tid % 32) * 4; // (tid % 32) * 4, col of s_b 0,4,...,124
// 1. 再计算全局内存中的索引
// 要加载到s_a中的元素对应到A全局内存中的行数 每个block负责出C中大小为BM*BN的块
int load_gmem_a_m = by * BM + load_smem_a_m; // global row of a and c
int load_gmem_b_n = bx * BN + load_smem_b_n; // global col of b and c
float r_c[TM][TN] = {0.0}; // 8x8
// 2. 先对K进行分块,每块BK大小
for (int bk = 0; bk < (K + BK - 1) / BK; ++bk) {
// 加载数据到共享内存smem s_a BM*BK 128*8 vectorize float4
int load_gmem_a_k = bk * BK + load_smem_a_k; // global col of a
int load_gmem_a_addr = load_gmem_a_m * K + load_gmem_a_k;
FLOAT4(s_a[load_smem_a_m][load_smem_a_k]) = FLOAT4(a[load_gmem_a_addr]);
// 加载数据到共享内存smem s_b BK*BN 8*128 vectorize float4
int load_gmem_b_k = bk * BK + load_smem_b_k; // global row of b
int load_gmem_b_addr = load_gmem_b_k * N + load_gmem_b_n;
FLOAT4(s_b[load_smem_b_k][load_smem_b_n]) = FLOAT4(b[load_gmem_b_addr]);
__syncthreads();
#pragma unroll
for (int k = 0; k < BK; k++) {
// 3. 每个线程负责计算BM*BN(12x128)中的TM*TN(8x8)个元素
#pragma unroll
for (int m = 0; m < TM; m++) {
#pragma unroll
for (int n = 0; n < TN; n++) {
// k from 0~7,0 ~ BK, ty and tx range from 0 to 15, 16x8=128
int comp_smem_a_m = ty * TM + m; // 128*8 128/TM(8)=16 M方向 16线程
int comp_smem_b_n = tx * TN + n; // 8*128 128/TN(8)=16 N方向 16线程
r_c[m][n] += s_a[comp_smem_a_m][k] * s_b[k][comp_smem_b_n];
}
}
}
__syncthreads();
}
#pragma unroll
for (int m = 0; m < TM; ++m) {
int store_gmem_c_m = by * BM + ty * TM + m;
#pragma unroll
for (int n = 0; n < TN; n += 4) {
int store_gmem_c_n = bx * BN + tx * TN + n;
int store_gmem_c_addr = store_gmem_c_m * N + store_gmem_c_n;
FLOAT4(c[store_gmem_c_addr]) = FLOAT4(r_c[m][n]);
}
}
}
// Warp Reduce Sum
template<const int kWarpSize = WARP_SIZE>
__device__ __forceinline__ float warp_reduce_sum(float val) {
#pragma unroll
for (int mask = kWarpSize >> 1; mask >= 1; mask >>= 1) {
val += __shfl_xor_sync(0xffffffff, val, mask);
}
return val;
}
// Warp Reduce Max
template<const int kWarpSize = WARP_SIZE>
__device__ __forceinline__ float warp_reduce_max(float val) {
#pragma unroll
for (int mask = kWarpSize >> 1; mask >= 1; mask >>= 1) {
val = fmaxf(val, __shfl_xor_sync(0xffffffff, val, mask));
}
return val;
}
// Block reduce sum/max/min device helper for Layer/RMS Norm/Softmax etc.
// grid 1D block 1D, grid(N/128), block(128)
template<const int NUM_THREADS=128>
__device__ __forceinline__ float block_reduce_sum(float val) {
// always <= 32 warps per block (limited by 1024 threads per block)
constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
int warp = threadIdx.x / WARP_SIZE;
int lane = threadIdx.x % WARP_SIZE;
static __shared__ float shared[NUM_WARPS];
val = warp_reduce_sum<WARP_SIZE>(val);
if (lane == 0) shared[warp] = val;
__syncthreads();
val = (lane < NUM_WARPS) ? shared[lane] : 0.0f;
val = warp_reduce_sum<NUM_WARPS>(val);
return val;
}
template<const int NUM_THREADS=128>
__device__ __forceinline__ float block_reduce_max(float val) {
// always <= 32 warps per block (limited by 1024 threads per block)
constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
int warp = threadIdx.x / WARP_SIZE;
int lane = threadIdx.x % WARP_SIZE;
static __shared__ float shared[NUM_WARPS];
val = warp_reduce_max<WARP_SIZE>(val);
if (lane == 0) shared[warp] = val;
__syncthreads();
val = (lane < NUM_WARPS) ? shared[lane] : -FLT_MAX;
val = warp_reduce_max<NUM_WARPS>(val);
return val;
}
// SGEMV: Warp SGEMV K32
// 假设K为32的倍数,每个warp负责一行
// grid(M/4), block(32,4) blockDim.x=32=K, blockDim.y=4
// a: MxK, x: Kx1, y: Mx1, compute: y = a * x
__global__ void sgemv_k32(float* a, float* x, float* y, int M, int K) {
int tx = threadIdx.x; // 0~31
int ty = threadIdx.y; // 0~4
int bx = blockIdx.x; // 0~M/4
int lane = tx % WARP_SIZE; // 0~31
int m = bx * blockDim.y + ty; // (0~M/4) * 4 + (0~3)
if (m < M) {
float sum = 0.0f;
int NUM_WARPS = (K + WARP_SIZE - 1) / WARP_SIZE;
#pragma unroll
for (int w = 0; w < NUM_WARPS; ++w) {
// 若NUM_WARPS>=2,先将当前行的数据累加到第一个warp中
int k = w * WARP_SIZE + lane;
sum += a[m * K + k] * x[k];
}
sum = warp_reduce_sum<WARP_SIZE>(sum);
if (lane == 0) y[m] = sum;
}
}
// SGEMV: Warp SGEMV K128 + Vec4
// 假设K为128的倍数 float4
// grid(M/4), block(32,4) blockDim.x=32=K, blockDim.y=4
// a: MxK, x: Kx1, y: Mx1, compute: y = a * x
__global__ void sgemv_k128(float* a, float* x, float* y, int M, int K) {
// 每个线程负责4个元素,一个warp覆盖128个元素
int tx = threadIdx.x; // 0~31
int ty = threadIdx.y; // 0~3
int bx = blockIdx.x; // 0~M/4
int lane = tx % WARP_SIZE; // 0~31
int m = blockDim.y * bx + ty; // (0~M/4) * 4 + (0~3)
if (m < M) {
float sum = 0.0f;
// process 4*WARP_SIZE elements per warp.
int NUM_WARPS = (((K + WARP_SIZE - 1) / WARP_SIZE) + 4 - 1) / 4;
#pragma unroll
for (int w = 0; w < NUM_WARPS; ++w) {
int k = (w * WARP_SIZE + lane) * 4;
float4 reg_x = FLOAT4(x[k]);
float4 reg_a = FLOAT4(a[m * K + k]);
sum += (reg_a.x * reg_x.x + reg_a.y * reg_x.y
+ reg_a.z * reg_x.z + reg_a.w * reg_x.w);
}
sum = warp_reduce_sum<WARP_SIZE>(sum);
if(lane == 0) y[m] = sum;
}
}
// SGEMV: Warp SGEMV K16
// 假设K为16 < 32,每个warp负责2行,每行有16个元素
// NUM_THREADS=128, NUM_WARPS=NUM_THREADS/WARP_SIZE;
// NUM_ROWS=NUM_WARPS * ROW_PER_WARP, grid(M/NUM_ROWS), block(32,NUM_WARPS)
// a: MxK, x: Kx1, y: Mx1, compute: y = a * x
template<const int ROW_PER_WARP = 2>
__global__ void sgemv_k16(float* A, float* x, float* y, int M, int K) {
constexpr int K_WARP_SIZE = (WARP_SIZE + ROW_PER_WARP - 1) / ROW_PER_WARP;
int tx = threadIdx.x; // 0~31
int ty = threadIdx.y; // 0~NUM_WARPS
int bx = blockIdx.x; // 0~M/NUM_ROWS (NUM_ROWS=NUM_WARPS * ROW_PER_WARP)
int lane = tx % WARP_SIZE; // 0~31
int k = lane % K_WARP_SIZE; // 0~15
// gloabl row of a: MxK and y:Mx1, blockDim.y=NUM_WARPS
int m = (blockDim.y * bx + ty) * ROW_PER_WARP + lane / K_WARP_SIZE;
if (m < M) {
float sum = A[m * K + k] * x[k];
sum = warp_reduce_sum<K_WARP_SIZE>(sum);
// 注意是k == 0,而不是lane == 0
if(k == 0) y[m] = sum;
}
}
// Block All Reduce Sum
// grid(N/128), block(128)
// a: Nx1, y=sum(a)
template<const int NUM_THREADS = 128>
__global__ void block_all_reduce_sum(float* a, float* y, int N) {
int tid = threadIdx.x;
int idx = blockIdx.x * NUM_THREADS + tid;
constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
__shared__ float reduce_smem[NUM_WARPS];
// keep the data in register is enougth for warp operaion.
float sum = (idx < N) ? a[idx] : 0.0f;
int warp = tid / WARP_SIZE;
int lane = tid % WARP_SIZE;
// perform warp sync reduce.
sum = warp_reduce_sum<WARP_SIZE>(sum);
// warp leaders store the data to shared memory.
if (lane == 0) reduce_smem[warp] = sum;
__syncthreads(); // make sure the data is in shared memory.
// the first warp compute the final sum.
sum = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f;
if (warp == 0) sum = warp_reduce_sum<NUM_WARPS>(sum);
if (tid == 0) atomicAdd(y, sum);
}
// Block All Reduce Sum + float4
// grid(N/128), block(128/4)
// a: Nx1, y=sum(a)
template<const int NUM_THREADS = 128/4>
__global__ void block_all_reduce_sum_vec4(float* a, float* y, int N) {
int tid = threadIdx.x;
int idx = (blockIdx.x * NUM_THREADS + tid) * 4;
constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
__shared__ float reduce_smem[NUM_WARPS];
float4 reg_a = FLOAT4(a[idx]);
// keep the data in register is enougth for warp operaion.
float sum = (idx < N) ? (reg_a.x + reg_a.y + reg_a.z + reg_a.w) : 0.0f;
int warp = tid / WARP_SIZE;
int lane = tid % WARP_SIZE;
// perform warp sync reduce.
sum = warp_reduce_sum<WARP_SIZE>(sum);
// warp leaders store the data to shared memory.
if (lane == 0) reduce_smem[warp] = sum;
__syncthreads(); // make sure the data is in shared memory.
// the first warp compute the final sum.
sum = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f;
if (warp == 0) sum = warp_reduce_sum<NUM_WARPS>(sum);
if (tid == 0) atomicAdd(y, sum);
}
// Dot Product
// grid(N/128), block(128)
// a: Nx1, b: Nx1, y=sum(elementwise_mul(a,b))
template<const int NUM_THREADS = 128>
__global__ void dot(float* a, float* b, float* y, int N) {
int tid = threadIdx.x;
int idx = blockIdx.x * NUM_THREADS + tid;
constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
__shared__ float reduce_smem[NUM_WARPS];
// keep the data in register is enougth for warp operaion.
float prod = (idx < N) ? a[idx] * b[idx] : 0.0f;
int warp = tid / WARP_SIZE;
int lane = tid % WARP_SIZE;
// perform warp sync reduce.
prod = warp_reduce_sum<WARP_SIZE>(prod);
// warp leaders store the data to shared memory.
if (lane == 0) reduce_smem[warp] = prod;
__syncthreads(); // make sure the data is in shared memory.
// the first warp compute the final sum.
prod = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f;
if (warp == 0) prod = warp_reduce_sum<NUM_WARPS>(prod);
if (tid == 0) atomicAdd(y, prod);
}
// Dot Product + Vec4
// grid(N/128), block(128/4)
// a: Nx1, b: Nx1, y=sum(elementwise_mul(a,b))
template<const int NUM_THREADS = 128/4>
__global__ void dot_vec4(float* a, float* b, float* y, int N) {
int tid = threadIdx.x;
int idx = (blockIdx.x * NUM_THREADS + tid) * 4;
constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
__shared__ float reduce_smem[NUM_WARPS];
float4 reg_a = FLOAT4(a[idx]);
float4 reg_b = FLOAT4(b[idx]);
float prod = (idx < N) ? (reg_a.x * reg_b.x + reg_a.y * reg_b.y
+ reg_a.z * reg_b.z + reg_a.w * reg_b.w) : 0.0f;
int warp = tid / WARP_SIZE;
int lane = tid % WARP_SIZE;
// perform warp sync reduce.
prod = warp_reduce_sum<WARP_SIZE>(prod);
// warp leaders store the data to shared memory.
if (lane == 0) reduce_smem[warp] = prod;
__syncthreads(); // make sure the data is in shared memory.
// the first warp compute the final sum.
prod = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f;
if (warp == 0) prod = warp_reduce_sum<NUM_WARPS>(prod);
if (tid == 0) atomicAdd(y, prod);
}
// Histogram
// grid(N/128), block(128)
// a: Nx1, y: count histogram
__global__ void histogram(int* a, int* y, int N) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < N) atomicAdd(&(y[a[idx]]), 1);
}
// Histogram + Vec4
// grid(N/128), block(128/4)
// a: Nx1, y: count histogram
__global__ void histogram_vec4(int* a, int* y, int N) {
int idx = 4 * (blockIdx.x * blockDim.x + threadIdx.x);
if (idx < N) {
int4 reg_a = INT4(a[idx]);
atomicAdd(&(y[reg_a.x]), 1);
atomicAdd(&(y[reg_a.y]), 1);
atomicAdd(&(y[reg_a.z]), 1);
atomicAdd(&(y[reg_a.w]), 1);
}
}
// ElementWise Add
// grid(N/128), block(128)
// a: Nx1, b: Nx1, c: Nx1, c = elementwise_add(a, b)
__global__ void elementwise_add(float* a, float* b, float* c, int N) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < N) c[idx] = a[idx] + b[idx];
}
// ElementWise Add + Vec4
// grid(N/128), block(128/4)
// a: Nx1, b: Nx1, c: Nx1, c = elementwise_add(a, b)
__global__ void elementwise_add_vec4(float* a, float* b, float* c, int N) {
int idx = 4 * (blockIdx.x * blockDim.x + threadIdx.x);
if (idx < N) {
float4 reg_a = FLOAT4(a[idx]);
float4 reg_b = FLOAT4(b[idx]);
float4 reg_c;
reg_c.x = reg_a.x + reg_b.x;
reg_c.y = reg_a.y + reg_b.y;
reg_c.z = reg_a.z + reg_b.z;
reg_c.w = reg_a.w + reg_b.w;
FLOAT4(c[idx]) = reg_c;
}
}
// Softmax x: N, y: N
// grid(N/128), block(K=128)
template<const int NUM_THREADS = 128>
__global__ void softmax(float* x, float* y, float* total, int N) {
const int tid = threadIdx.x;
const int idx = blockIdx.x * blockDim.x + tid;
constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE;
__shared__ float reduce_smem[NUM_WARPS];
float sum = (idx < N) ? expf(x[idx]) : 0.0f;
int warp = tid / WARP_SIZE;
int lane = tid % WARP_SIZE;
sum = warp_reduce_sum<WARP_SIZE>(sum);
if (lane == 0) reduce_smem[warp] = sum;
__syncthreads();
// compute the final sum in each warp
sum = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f;
sum = warp_reduce_sum<NUM_WARPS>(sum); // sum(e^x_0,...,e^x_n-1)
// get the total sum of all blocks.
if (tid == 0) atomicAdd(total, sum);
__threadfence(); // grid level memory fence
// e^x_i/sum(e^x_0,...,e^x_n-1)
if (idx < N) y[idx] = block_smem[tid] / (*total);
}
// Softmax x: N, y: N
// grid(N/128), block(K=128)
template<const int NUM_THREADS = 128>
__global__ void softmax_v2(float* x, float* y, float* total, int N) {
const int tid = threadIdx.x;
const int idx = blockIdx.x * blockDim.x + tid;
float exp_val = (idx < N) ? expf(x[idx]) : 0.0f;
float sum = block_reduce_sum<NUM_THREADS>(exp_val);
// get the total sum of all blocks.
if (tid == 0) atomicAdd(total, sum);
__threadfence(); // grid level memory fence
// e^x_i/sum(e^x_0,...,e^x_n-1)
if (idx < N) y[idx] = exp_val / (*total);
}
// Softmax Vec4 x: N, y: N
// grid(N/128), block(128/4)
template<const int NUM_THREADS = 128/4>
__global__ void softmax_v2_vec4(float* x, float* y, float* total, int N) {
const int tid = threadIdx.x;
const int idx = (blockIdx.x * blockDim.x + tid) * 4;
float4 reg_x = FLOAT4(x[idx]);
float4 reg_exp;
reg_exp.x = (idx < N) ? expf(reg_x.x) : 0.0f;
reg_exp.y = (idx < N) ? expf(reg_x.y) : 0.0f;
reg_exp.z = (idx < N) ? expf(reg_x.z) : 0.0f;
reg_exp.w = (idx < N) ? expf(reg_x.w) : 0.0f;
float exp_val = (reg_exp.x + reg_exp.y + reg_exp.z + reg_exp.w);
float sum = block_reduce_sum<NUM_THREADS>(exp_val);
// get the total sum of all blocks.
if (tid == 0) atomicAdd(total, sum);
__threadfence(); // grid level memory fence
// e^x_i/sum(e^x_0,...,e^x_n-1)
if (idx < N) {
float4 reg_y;
reg_y.x = reg_exp.x / (*total);
reg_y.y = reg_exp.y / (*total);
reg_y.z = reg_exp.z / (*total);
reg_y.w = reg_exp.w / (*total);
FLOAT4(y[idx]) = reg_y;
}
}
// Sigmoid x: N, y: N y=1/(1+exp(-x))
// grid(N/128), block(K=128)
__global__ void sigmoid(float* x, float* y, int N) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < N) y[idx] = 1.0f / (1.0f + expf(-x[idx]));
}
// Sigmoid x: N, y: N y=1/(1+exp(-x)) Vec4
// grid(N/128), block(128/4)
__global__ void sigmoid_vec4(float* x, float* y, int N) {
int idx = (blockIdx.x * blockDim.x + threadIdx.x) * 4;
if (idx < N) {
float4 reg_x = FLOAT4(x[idx]);
float4 reg_y;
reg_y.x = 1.0f / (1.0f + expf(-reg_x.x));
reg_y.y = 1.0f / (1.0f + expf(-reg_x.y));
reg_y.z = 1.0f / (1.0f + expf(-reg_x.z));
reg_y.w = 1.0f / (1.0f + expf(-reg_x.w));
FLOAT4(y[idx]) = reg_y;
}
}
// Relu x: N, y: N y=max(0,x)
// grid(N/128), block(K=128)
__global__ void relu(float* x, float* y, int N) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < N) y[idx] = fmaxf(0.0f, x[idx]);
}
// Relu x: N, y: N y=max(0,x) Vec4
// grid(N/128/4), block(128/4)
__global__ void relu_vec4(float* x, float* y, int N) {
int idx = (blockIdx.x * blockDim.x + threadIdx.x) * 4;
if (idx < N) {
float4 reg_x = FLOAT4(x[idx]);
float4 reg_y;
reg_y.x = fmaxf(0.0f, reg_x.x);
reg_y.y = fmaxf(0.0f, reg_x.y);
reg_y.z = fmaxf(0.0f, reg_x.z);
reg_y.w = fmaxf(0.0f, reg_x.w);
FLOAT4(y[idx]) = reg_y;
}
}
// RMS Norm: x: NxK(K=128<1024), y': NxK, y'=x/rms(x) each row
// 1/rms(x) = rsqrtf( sum(x^2)/K ) each row
// grid(N*K/K), block(K<1024) N=batch_size*seq_len, K=hidden_size
// y=y'*g (g: scale)
template<const int NUM_THREADS=128>
__global__ void rms_norm(float* x, float* y, float g, int N, int K) {
int tid = threadIdx.x; // 0..K-1
int bid = blockIdx.x; // 0..N-1
int idx = bid * blockDim.x + threadIdx.x;
const float epsilon = 1e-5f;
__shared__ float s_variance; // shared within block
float value = (idx < N * K) ? x[idx] : 0.0f; // load once only
float variance = value * value;
variance = block_reduce_sum<NUM_THREADS>(variance);
if (tid == 0) s_variance = rsqrtf(variance / (float) K + epsilon);
// wait for s_variance in shared memory to be ready for all threads
__syncthreads();
if (idx < N * K) y[idx] = (value * s_variance) * g;
}
// RMS Norm Vec4: x: NxK(K=128<1024), y': NxK, y'=x/rms(x) each row
// 1/rms(x) = rsqrtf( sum(x^2)/K ) each row
// grid(N*K/K), block(K/4<1024) N=batch_size*seq_len, K=hidden_size
// y=y'*g (g: scale)
template<const int NUM_THREADS=128/4>
__global__ void rms_norm_vec4(float* x, float* y, float g, int N, int K) {
int tid = threadIdx.x; // 0..K-1
int bid = blockIdx.x; // 0..N-1
int idx = (bid * blockDim.x + threadIdx.x) * 4;
const float epsilon = 1e-5f;
__shared__ float s_variance; // shared within block
float4 reg_x = FLOAT4(x[idx]);
float variance = (idx < N * K) ? (reg_x.x * reg_x.x + reg_x.y * reg_x.y
+ reg_x.z * reg_x.z + reg_x.w * reg_x.w) : 0.0f;
variance = block_reduce_sum<NUM_THREADS>(variance);
if (tid == 0) s_variance = rsqrtf(variance / (float) K + epsilon);
// wait for s_variance in shared memory to be ready for all threads
__syncthreads();
float4 reg_y;
reg_y.x = reg_x.x * s_variance * g;
reg_y.y = reg_x.y * s_variance * g;
reg_y.z = reg_x.z * s_variance * g;
reg_y.w = reg_x.w * s_variance * g;
if (idx < N * K) FLOAT4(y[idx]) = reg_y;
}
// Layer Norm: x: NxK(K=128<1024), y': NxK, y'=x-mean(x)/std(x) each row
// mean(x) = sum(x)/K, 1/std(x) = rsqrtf( sum( (x-mean(x))^2 )/K ) each row
// grid(N*K/K), block(K<1024) N=batch_size*seq_len, K=hidden_size
// y=y'*g + b (g: scale, b: bias)
template<const int NUM_THREADS=128>
__global__ void layer_norm(float* x, float* y, float g, float b, int N, int K) {
int tid = threadIdx.x; // 0..K-1
int bid = blockIdx.x; // 0..N-1
int idx = bid * blockDim.x + threadIdx.x;
const float epsilon = 1e-5f;
__shared__ float s_mean; // shared within block
__shared__ float s_variance; // shared within block
float value = (idx < N * K) ? x[idx] : 0.0f; // load once only
float sum = block_reduce_sum<NUM_THREADS>(value);
if (tid == 0) s_mean = sum / (float) K;
// wait for s_mean in shared memory to be ready for all threads
__syncthreads();
float variance = (value - s_mean) * (value - s_mean);
variance = block_reduce_sum<NUM_THREADS>(variance);
if (tid == 0) s_variance = rsqrtf(variance / (float) K + epsilon);
// wait for s_variance in shared memory to be ready for all threads
__syncthreads();
if (idx < N * K) y[idx] = ((value - s_mean) * s_variance) * g + b;
}
// Layer Norm Vec4: x: NxK(K=128<1024), y': NxK, y'=x-mean(x)/std(x) each row
// mean(x) = sum(x)/K, 1/std(x) = rsqrtf( sum( (x-mean(x))^2 )/K ) each row
// grid(N*K/K), block(K/4<1024) N=batch_size*seq_len, K=hidden_size
// y=y'*g + b (g: scale, b: bias)
template<const int NUM_THREADS=128/4>
__global__ void layer_norm_vec4(float* x, float* y, float g, float b, int N, int K) {
int tid = threadIdx.x; // 0..K-1
int bid = blockIdx.x; // 0..N-1
int idx = (bid * blockDim.x + threadIdx.x) * 4;
const float epsilon = 1e-5f;
__shared__ float s_mean; // shared within block
__shared__ float s_variance; // shared within block
float4 reg_x = FLOAT4(x[idx])
float value = (idx < N * K) ? (reg_x.x + reg_x.y
+ reg_x.z + reg_x.w) : 0.0f;
float sum = block_reduce_sum<NUM_THREADS>(value);
if (tid == 0) s_mean = sum / (float) K;
// wait for s_mean in shared memory to be ready for all threads
__syncthreads();
float4 reg_x_hat;
reg_x_hat.x = reg_x.x - s_mean;
reg_x_hat.y = reg_x.y - s_mean;
reg_x_hat.z = reg_x.z - s_mean;
reg_x_hat.w = reg_x.w - s_mean;
float variance = reg_x_hat.x * reg_x_hat.x + reg_x_hat.y * reg_x_hat.y
+ reg_x_hat.z * reg_x_hat.z + reg_x_hat.w * reg_x_hat.w;
variance = block_reduce_sum<NUM_THREADS>(variance);
if (tid == 0) s_variance = rsqrtf(variance / (float) K + epsilon);
// wait for s_variance in shared memory to be ready for all threads
__syncthreads();
float4 reg_y;
reg_y.x = reg_x_hat.x * s_variance * g + b;
reg_y.y = reg_x_hat.y * s_variance * g + b;
reg_y.z = reg_x_hat.z * s_variance * g + b;
reg_y.w = reg_x_hat.w * s_variance * g + b;
if (idx < N * K) FLOAT4(y[idx]) = reg_y;
}