forked from tech-srl/code2seq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocess.sh
72 lines (64 loc) · 4.11 KB
/
preprocess.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#!/usr/bin/env bash
###########################################################
# Change the following values to preprocess a new dataset.
# TRAIN_DIR, VAL_DIR and TEST_DIR should be paths to
# directories containing sub-directories with .java files
# DATASET_NAME is just a name for the currently extracted
# dataset.
# MAX_DATA_CONTEXTS is the number of contexts to keep in the dataset for each
# method (by default 1000). At training time, these contexts
# will be downsampled dynamically to MAX_CONTEXTS.
# MAX_CONTEXTS - the number of actual contexts (by default 200)
# that are taken into consideration (out of MAX_DATA_CONTEXTS)
# every training iteration. To avoid randomness at test time,
# for the test and validation sets only MAX_CONTEXTS contexts are kept
# (while for training, MAX_DATA_CONTEXTS are kept and MAX_CONTEXTS are
# selected dynamically during training).
# SUBTOKEN_VOCAB_SIZE, TARGET_VOCAB_SIZE -
# - the number of subtokens and target words to keep
# in the vocabulary (the top occurring words and paths will be kept).
# NUM_THREADS - the number of parallel threads to use. It is
# recommended to use a multi-core machine for the preprocessing
# step and set this value to the number of cores.
# PYTHON - python3 interpreter alias.
TRAIN_DIR=my_training_dir
VAL_DIR=my_val_dir
TEST_DIR=my_test_dir
DATASET_NAME=my_dataset
MAX_DATA_CONTEXTS=1000
MAX_CONTEXTS=200
SUBTOKEN_VOCAB_SIZE=186277
TARGET_VOCAB_SIZE=26347
NUM_THREADS=64
PYTHON=python3
###########################################################
TRAIN_DATA_FILE=${DATASET_NAME}.train.raw.txt
VAL_DATA_FILE=${DATASET_NAME}.val.raw.txt
TEST_DATA_FILE=${DATASET_NAME}.test.raw.txt
EXTRACTOR_JAR=JavaExtractor/JPredict/target/JavaExtractor-0.0.1-SNAPSHOT.jar
mkdir -p data
mkdir -p data/${DATASET_NAME}
echo "Extracting paths from validation set..."
${PYTHON} JavaExtractor/extract.py --dir ${VAL_DIR} --max_path_length 8 --max_path_width 2 --num_threads ${NUM_THREADS} --jar ${EXTRACTOR_JAR} > ${VAL_DATA_FILE} 2>> error_log.txt
echo "Finished extracting paths from validation set"
echo "Extracting paths from test set..."
${PYTHON} JavaExtractor/extract.py --dir ${TEST_DIR} --max_path_length 8 --max_path_width 2 --num_threads ${NUM_THREADS} --jar ${EXTRACTOR_JAR} > ${TEST_DATA_FILE} 2>> error_log.txt
echo "Finished extracting paths from test set"
echo "Extracting paths from training set..."
${PYTHON} JavaExtractor/extract.py --dir ${TRAIN_DIR} --max_path_length 8 --max_path_width 2 --num_threads ${NUM_THREADS} --jar ${EXTRACTOR_JAR} | shuf > ${TRAIN_DATA_FILE} 2>> error_log.txt
echo "Finished extracting paths from training set"
TARGET_HISTOGRAM_FILE=data/${DATASET_NAME}/${DATASET_NAME}.histo.tgt.c2s
SOURCE_SUBTOKEN_HISTOGRAM=data/${DATASET_NAME}/${DATASET_NAME}.histo.ori.c2s
NODE_HISTOGRAM_FILE=data/${DATASET_NAME}/${DATASET_NAME}.histo.node.c2s
echo "Creating histograms from the training data"
cat ${TRAIN_DATA_FILE} | cut -d' ' -f1 | tr '|' '\n' | awk '{n[$0]++} END {for (i in n) print i,n[i]}' > ${TARGET_HISTOGRAM_FILE}
cat ${TRAIN_DATA_FILE} | cut -d' ' -f2- | tr ' ' '\n' | cut -d',' -f1,3 | tr ',|' '\n' | awk '{n[$0]++} END {for (i in n) print i,n[i]}' > ${SOURCE_SUBTOKEN_HISTOGRAM}
cat ${TRAIN_DATA_FILE} | cut -d' ' -f2- | tr ' ' '\n' | cut -d',' -f2 | tr '|' '\n' | awk '{n[$0]++} END {for (i in n) print i,n[i]}' > ${NODE_HISTOGRAM_FILE}
${PYTHON} preprocess.py --train_data ${TRAIN_DATA_FILE} --test_data ${TEST_DATA_FILE} --val_data ${VAL_DATA_FILE} \
--max_contexts ${MAX_CONTEXTS} --max_data_contexts ${MAX_DATA_CONTEXTS} --subtoken_vocab_size ${SUBTOKEN_VOCAB_SIZE} \
--target_vocab_size ${TARGET_VOCAB_SIZE} --subtoken_histogram ${SOURCE_SUBTOKEN_HISTOGRAM} \
--node_histogram ${NODE_HISTOGRAM_FILE} --target_histogram ${TARGET_HISTOGRAM_FILE} --output_name data/${DATASET_NAME}/${DATASET_NAME}
# If all went well, the raw data files can be deleted, because preprocess.py creates new files
# with truncated and padded number of paths for each example.
rm ${TRAIN_DATA_FILE} ${VAL_DATA_FILE} ${TEST_DATA_FILE} ${TARGET_HISTOGRAM_FILE} ${SOURCE_SUBTOKEN_HISTOGRAM} \
${NODE_HISTOGRAM_FILE}