-
Notifications
You must be signed in to change notification settings - Fork 0
/
metrics.py
64 lines (48 loc) · 2.13 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
import torch.nn as nn
import torch.nn.functional as F
from scipy.spatial.distance import directed_hausdorff
""" Loss Functions -------------------------------------- """
class DiceLoss(nn.Module):
def __init__(self, weight=None, size_average=True):
super(DiceLoss, self).__init__()
def forward(self, inputs, targets, smooth=1):
inputs = torch.sigmoid(inputs)
inputs = inputs.view(-1)
targets = targets.view(-1)
intersection = (inputs * targets).sum()
dice = (2.*intersection + smooth)/(inputs.sum() + targets.sum() + smooth)
return 1 - dice
class DiceBCELoss(nn.Module):
def __init__(self, weight=None, size_average=True):
super(DiceBCELoss, self).__init__()
def forward(self, inputs, targets, smooth=1):
inputs = torch.sigmoid(inputs)
inputs = inputs.view(-1)
targets = targets.view(-1)
intersection = (inputs * targets).sum()
dice_loss = 1 - (2.*intersection + smooth)/(inputs.sum() + targets.sum() + smooth)
BCE = F.binary_cross_entropy(inputs, targets, reduction='mean')
Dice_BCE = BCE + dice_loss
return Dice_BCE
""" Metrics ------------------------------------------ """
def precision(y_true, y_pred):
intersection = (y_true * y_pred).sum()
return (intersection + 1e-15) / (y_pred.sum() + 1e-15)
def recall(y_true, y_pred):
intersection = (y_true * y_pred).sum()
return (intersection + 1e-15) / (y_true.sum() + 1e-15)
def F2(y_true, y_pred, beta=2):
p = precision(y_true,y_pred)
r = recall(y_true, y_pred)
return (1+beta**2.) *(p*r) / float(beta**2*p + r + 1e-15)
def dice_score(y_true, y_pred):
return (2 * (y_true * y_pred).sum() + 1e-15) / (y_true.sum() + y_pred.sum() + 1e-15)
def jac_score(y_true, y_pred):
intersection = (y_true * y_pred).sum()
union = y_true.sum() + y_pred.sum() - intersection
return (intersection + 1e-15) / (union + 1e-15)
## https://www.kaggle.com/competitions/uw-madison-gi-tract-image-segmentation/discussion/319452
def hd_dist(preds, targets):
haussdorf_dist = directed_hausdorff(preds, targets)[0]
return haussdorf_dist