diff --git a/docs/README.md b/docs/README.md
index c40654f..f05545f 100644
--- a/docs/README.md
+++ b/docs/README.md
@@ -1,29 +1,9 @@
-
-
-![Logo](/docs/logo_light.png)
-
-
-
-
-
-
-
-ALpy is a light-weight automata learning library written in Python.
+AALpy is a light-weight automata learning library written in Python.
You can start learning models of black-box systems with a few lines of code.
AALpy supports both **active** and **passive** automata learning algorithms that can be used to learn a variety of modeling formalisms, including
**deterministic**, **non-deterministic**, and **stochastic automata**, as well as **deterministic context-free grammars/pushdown automata**.
-
-
-| **Automata Type** | **Supported Formalisms** | **Algorithms** | **Features** |
-|-------------------|:-----------------------------------------------------------------:|-----------------------|-------------------------------------------------------------------:|
-| Deterministic | DFAs
Mealy Machines
Moore Machines | L*
KV
RPNI | Seamless Caching
Counterexample Processing
13 Equivalence Oracles |
-| Non-Deterministic | ONFSM
Abstracted ONFSM | L*ONFSM | Size Reduction Trough Abstraction |
-| Stochastic | Markov Decision Processes
Stochastic Mealy Machines
Markov Chains | L*MDP
L*SMM
ALERGIA | Counterexample Processing
Exportable to PRISM format
Bindings to jALERGIA|
-| Pushdown | VPDA/SEVPA | KVVPA | Specification of exclusive
call-return pairs
-
-
## Installation
Use the package manager [pip](https://pip.pypa.io/en/stable/) to install the latest release of AALpy:
@@ -56,60 +36,6 @@ All active automata learning procedures follow this high-level approach:
Passive learning algorithm simply require you to provide data in the appropriate format (check Wiki and Examples) and run the learning function.
-
-
- Code snipped demonstrating some of AALpy's functionalities
-
-The following snippet demonstrates a short example in which an automaton is either [loaded](https://github.com/DES-Lab/AALpy/wiki/Loading,Saving,-Syntax-and-Visualization-of-Automata) or [randomly generated](https://github.com/DES-Lab/AALpy/wiki/Generation-of-Random-Automata) and then [learned](https://github.com/DES-Lab/AALpy/wiki/Setting-Up-Learning).
-```python
-from aalpy.utils import load_automaton_from_file, generate_random_deterministic_automata
-from aalpy.SULs import AutomatonSUL
-from aalpy.oracles import RandomWalkEqOracle
-from aalpy.learning_algs import run_Lstar, run_KV
-
-# load an automaton
-# automaton = load_automaton_from_file('path_to_the_file.dot', automaton_type='dfa')
-
-# or randomly generate one
-random_dfa = generate_random_deterministic_automata(automaton_type='dfa', num_states=8,
- input_alphabet_size=5, output_alphabet_size=2)
-
-# get input alphabet of the automaton
-alphabet = random_dfa.get_input_alphabet()
-
-# loaded or randomly generated automata are considered as BLACK-BOX that is queried
-# learning algorithm has no knowledge about its structure
-# create a SUL instance for the automaton/system under learning
-sul = AutomatonSUL(random_dfa)
-
-# define the equivalence oracle
-eq_oracle = RandomWalkEqOracle(alphabet, sul, num_steps=5000, reset_prob=0.09)
-
-# start learning
-# run_KV is for the most part reacquires much fewer interactions with the system under learning
-learned_dfa = run_KV(alphabet, sul, eq_oracle, automaton_type='dfa')
-# or run L*
-# learned_dfa_lstar = run_Lstar(alphabet, sul, eq_oracle, automaton_type='dfa')
-
-# save automaton to file and visualize it
-# save_automaton_to_file(learned_dfa, path='Learned_Automaton', file_type='dot')
-# or
-learned_dfa.save()
-
-# visualize automaton
-# visualize_automaton(learned_dfa)
-learned_dfa.visualize()
-# or just print its DOT representation
-print(learned_dfa)
-```
-
-
-To make experiments reproducible, define a random seed at the beginning of your program.
-```Python
-from random import seed
-seed(2) # all experiments will be reproducible
-```
-
## Selected Applications
AALpy has been used to:
- [Learn Models of Bluetooth Low-Energy](https://github.com/apferscher/ble-learning)