forked from lkwq007/stablediffusion-infinity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
process.py
395 lines (342 loc) · 12.2 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
"""
https://github.com/Trinkle23897/Fast-Poisson-Image-Editing
MIT License
Copyright (c) 2022 Jiayi Weng
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import os
from abc import ABC, abstractmethod
from typing import Any, Optional, Tuple
import numpy as np
from fpie import np_solver
import scipy
import scipy.signal
CPU_COUNT = os.cpu_count() or 1
DEFAULT_BACKEND = "numpy"
ALL_BACKEND = ["numpy"]
try:
from fpie import numba_solver
ALL_BACKEND += ["numba"]
DEFAULT_BACKEND = "numba"
except ImportError:
numba_solver = None # type: ignore
try:
from fpie import taichi_solver
ALL_BACKEND += ["taichi-cpu", "taichi-gpu"]
DEFAULT_BACKEND = "taichi-cpu"
except ImportError:
taichi_solver = None # type: ignore
# try:
# from fpie import core_gcc # type: ignore
# DEFAULT_BACKEND = "gcc"
# ALL_BACKEND.append("gcc")
# except ImportError:
# core_gcc = None
# try:
# from fpie import core_openmp # type: ignore
# DEFAULT_BACKEND = "openmp"
# ALL_BACKEND.append("openmp")
# except ImportError:
# core_openmp = None
# try:
# from mpi4py import MPI
# from fpie import core_mpi # type: ignore
# ALL_BACKEND.append("mpi")
# except ImportError:
# MPI = None # type: ignore
# core_mpi = None
try:
from fpie import core_cuda # type: ignore
DEFAULT_BACKEND = "cuda"
ALL_BACKEND.append("cuda")
except ImportError:
core_cuda = None
class BaseProcessor(ABC):
"""API definition for processor class."""
def __init__(
self, gradient: str, rank: int, backend: str, core: Optional[Any]
):
if core is None:
error_msg = {
"numpy":
"Please run `pip install numpy`.",
"numba":
"Please run `pip install numba`.",
"gcc":
"Please install cmake and gcc in your operating system.",
"openmp":
"Please make sure your gcc is compatible with `-fopenmp` option.",
"mpi":
"Please install MPI and run `pip install mpi4py`.",
"cuda":
"Please make sure nvcc and cuda-related libraries are available.",
"taichi":
"Please run `pip install taichi`.",
}
print(error_msg[backend.split("-")[0]])
raise AssertionError(f"Invalid backend {backend}.")
self.gradient = gradient
self.rank = rank
self.backend = backend
self.core = core
self.root = rank == 0
def mixgrad(self, a: np.ndarray, b: np.ndarray) -> np.ndarray:
if self.gradient == "src":
return a
if self.gradient == "avg":
return (a + b) / 2
# mix gradient, see Equ. 12 in PIE paper
mask = np.abs(a) < np.abs(b)
a[mask] = b[mask]
return a
@abstractmethod
def reset(
self,
src: np.ndarray,
mask: np.ndarray,
tgt: np.ndarray,
mask_on_src: Tuple[int, int],
mask_on_tgt: Tuple[int, int],
) -> int:
pass
def sync(self) -> None:
self.core.sync()
@abstractmethod
def step(self, iteration: int) -> Optional[Tuple[np.ndarray, np.ndarray]]:
pass
class EquProcessor(BaseProcessor):
"""PIE Jacobi equation processor."""
def __init__(
self,
gradient: str = "max",
backend: str = DEFAULT_BACKEND,
n_cpu: int = CPU_COUNT,
min_interval: int = 100,
block_size: int = 1024,
):
core: Optional[Any] = None
rank = 0
if backend == "numpy":
core = np_solver.EquSolver()
elif backend == "numba" and numba_solver is not None:
core = numba_solver.EquSolver()
elif backend == "gcc":
core = core_gcc.EquSolver()
elif backend == "openmp" and core_openmp is not None:
core = core_openmp.EquSolver(n_cpu)
elif backend == "mpi" and core_mpi is not None:
core = core_mpi.EquSolver(min_interval)
rank = MPI.COMM_WORLD.Get_rank()
elif backend == "cuda" and core_cuda is not None:
core = core_cuda.EquSolver(block_size)
elif backend.startswith("taichi") and taichi_solver is not None:
core = taichi_solver.EquSolver(backend, n_cpu, block_size)
super().__init__(gradient, rank, backend, core)
def mask2index(
self, mask: np.ndarray
) -> Tuple[np.ndarray, int, np.ndarray, np.ndarray]:
x, y = np.nonzero(mask)
max_id = x.shape[0] + 1
index = np.zeros((max_id, 3))
ids = self.core.partition(mask)
ids[mask == 0] = 0 # reserve id=0 for constant
index = ids[x, y].argsort()
return ids, max_id, x[index], y[index]
def reset(
self,
src: np.ndarray,
mask: np.ndarray,
tgt: np.ndarray,
mask_on_src: Tuple[int, int],
mask_on_tgt: Tuple[int, int],
) -> int:
assert self.root
# check validity
# assert 0 <= mask_on_src[0] and 0 <= mask_on_src[1]
# assert mask_on_src[0] + mask.shape[0] <= src.shape[0]
# assert mask_on_src[1] + mask.shape[1] <= src.shape[1]
# assert mask_on_tgt[0] + mask.shape[0] <= tgt.shape[0]
# assert mask_on_tgt[1] + mask.shape[1] <= tgt.shape[1]
if len(mask.shape) == 3:
mask = mask.mean(-1)
mask = (mask >= 128).astype(np.int32)
# zero-out edge
mask[0] = 0
mask[-1] = 0
mask[:, 0] = 0
mask[:, -1] = 0
x, y = np.nonzero(mask)
x0, x1 = x.min() - 1, x.max() + 2
y0, y1 = y.min() - 1, y.max() + 2
mask_on_src = (x0 + mask_on_src[0], y0 + mask_on_src[1])
mask_on_tgt = (x0 + mask_on_tgt[0], y0 + mask_on_tgt[1])
mask = mask[x0:x1, y0:y1]
ids, max_id, index_x, index_y = self.mask2index(mask)
src_x, src_y = index_x + mask_on_src[0], index_y + mask_on_src[1]
tgt_x, tgt_y = index_x + mask_on_tgt[0], index_y + mask_on_tgt[1]
src_C = src[src_x, src_y].astype(np.float32)
src_U = src[src_x - 1, src_y].astype(np.float32)
src_D = src[src_x + 1, src_y].astype(np.float32)
src_L = src[src_x, src_y - 1].astype(np.float32)
src_R = src[src_x, src_y + 1].astype(np.float32)
tgt_C = tgt[tgt_x, tgt_y].astype(np.float32)
tgt_U = tgt[tgt_x - 1, tgt_y].astype(np.float32)
tgt_D = tgt[tgt_x + 1, tgt_y].astype(np.float32)
tgt_L = tgt[tgt_x, tgt_y - 1].astype(np.float32)
tgt_R = tgt[tgt_x, tgt_y + 1].astype(np.float32)
grad = self.mixgrad(src_C - src_L, tgt_C - tgt_L) \
+ self.mixgrad(src_C - src_R, tgt_C - tgt_R) \
+ self.mixgrad(src_C - src_U, tgt_C - tgt_U) \
+ self.mixgrad(src_C - src_D, tgt_C - tgt_D)
A = np.zeros((max_id, 4), np.int32)
X = np.zeros((max_id, 3), np.float32)
B = np.zeros((max_id, 3), np.float32)
X[1:] = tgt[index_x + mask_on_tgt[0], index_y + mask_on_tgt[1]]
# four-way
A[1:, 0] = ids[index_x - 1, index_y]
A[1:, 1] = ids[index_x + 1, index_y]
A[1:, 2] = ids[index_x, index_y - 1]
A[1:, 3] = ids[index_x, index_y + 1]
B[1:] = grad
m = (mask[index_x - 1, index_y] == 0).astype(float).reshape(-1, 1)
B[1:] += m * tgt[index_x + mask_on_tgt[0] - 1, index_y + mask_on_tgt[1]]
m = (mask[index_x, index_y - 1] == 0).astype(float).reshape(-1, 1)
B[1:] += m * tgt[index_x + mask_on_tgt[0], index_y + mask_on_tgt[1] - 1]
m = (mask[index_x, index_y + 1] == 0).astype(float).reshape(-1, 1)
B[1:] += m * tgt[index_x + mask_on_tgt[0], index_y + mask_on_tgt[1] + 1]
m = (mask[index_x + 1, index_y] == 0).astype(float).reshape(-1, 1)
B[1:] += m * tgt[index_x + mask_on_tgt[0] + 1, index_y + mask_on_tgt[1]]
self.tgt = tgt.copy()
self.tgt_index = (index_x + mask_on_tgt[0], index_y + mask_on_tgt[1])
self.core.reset(max_id, A, X, B)
return max_id
def step(self, iteration: int) -> Optional[Tuple[np.ndarray, np.ndarray]]:
result = self.core.step(iteration)
if self.root:
x, err = result
self.tgt[self.tgt_index] = x[1:]
return self.tgt, err
return None
class GridProcessor(BaseProcessor):
"""PIE grid processor."""
def __init__(
self,
gradient: str = "max",
backend: str = DEFAULT_BACKEND,
n_cpu: int = CPU_COUNT,
min_interval: int = 100,
block_size: int = 1024,
grid_x: int = 8,
grid_y: int = 8,
):
core: Optional[Any] = None
rank = 0
if backend == "numpy":
core = np_solver.GridSolver()
elif backend == "numba" and numba_solver is not None:
core = numba_solver.GridSolver()
elif backend == "gcc":
core = core_gcc.GridSolver(grid_x, grid_y)
elif backend == "openmp" and core_openmp is not None:
core = core_openmp.GridSolver(grid_x, grid_y, n_cpu)
elif backend == "mpi" and core_mpi is not None:
core = core_mpi.GridSolver(min_interval)
rank = MPI.COMM_WORLD.Get_rank()
elif backend == "cuda" and core_cuda is not None:
core = core_cuda.GridSolver(grid_x, grid_y)
elif backend.startswith("taichi") and taichi_solver is not None:
core = taichi_solver.GridSolver(
grid_x, grid_y, backend, n_cpu, block_size
)
super().__init__(gradient, rank, backend, core)
def reset(
self,
src: np.ndarray,
mask: np.ndarray,
tgt: np.ndarray,
mask_on_src: Tuple[int, int],
mask_on_tgt: Tuple[int, int],
) -> int:
assert self.root
# check validity
# assert 0 <= mask_on_src[0] and 0 <= mask_on_src[1]
# assert mask_on_src[0] + mask.shape[0] <= src.shape[0]
# assert mask_on_src[1] + mask.shape[1] <= src.shape[1]
# assert mask_on_tgt[0] + mask.shape[0] <= tgt.shape[0]
# assert mask_on_tgt[1] + mask.shape[1] <= tgt.shape[1]
if len(mask.shape) == 3:
mask = mask.mean(-1)
mask = (mask >= 128).astype(np.int32)
# zero-out edge
mask[0] = 0
mask[-1] = 0
mask[:, 0] = 0
mask[:, -1] = 0
x, y = np.nonzero(mask)
x0, x1 = x.min() - 1, x.max() + 2
y0, y1 = y.min() - 1, y.max() + 2
mask = mask[x0:x1, y0:y1]
max_id = np.prod(mask.shape)
src_crop = src[mask_on_src[0] + x0:mask_on_src[0] + x1,
mask_on_src[1] + y0:mask_on_src[1] + y1].astype(np.float32)
tgt_crop = tgt[mask_on_tgt[0] + x0:mask_on_tgt[0] + x1,
mask_on_tgt[1] + y0:mask_on_tgt[1] + y1].astype(np.float32)
grad = np.zeros([*mask.shape, 3], np.float32)
grad[1:] += self.mixgrad(
src_crop[1:] - src_crop[:-1], tgt_crop[1:] - tgt_crop[:-1]
)
grad[:-1] += self.mixgrad(
src_crop[:-1] - src_crop[1:], tgt_crop[:-1] - tgt_crop[1:]
)
grad[:, 1:] += self.mixgrad(
src_crop[:, 1:] - src_crop[:, :-1], tgt_crop[:, 1:] - tgt_crop[:, :-1]
)
grad[:, :-1] += self.mixgrad(
src_crop[:, :-1] - src_crop[:, 1:], tgt_crop[:, :-1] - tgt_crop[:, 1:]
)
grad[mask == 0] = 0
if True:
kernel = [[1] * 3 for _ in range(3)]
nmask = mask.copy()
nmask[nmask > 0] = 1
res = scipy.signal.convolve2d(
nmask, kernel, mode="same", boundary="fill", fillvalue=1
)
res[nmask < 1] = 0
res[res == 9] = 0
res[res > 0] = 1
grad[res>0]=0
# ylst, xlst = res.nonzero()
# for y, x in zip(ylst, xlst):
# grad[y,x]=0
# for yi in range(-1,2):
# for xi in range(-1,2):
# grad[y+yi,x+xi]=0
self.x0 = mask_on_tgt[0] + x0
self.x1 = mask_on_tgt[0] + x1
self.y0 = mask_on_tgt[1] + y0
self.y1 = mask_on_tgt[1] + y1
self.tgt = tgt.copy()
self.core.reset(max_id, mask, tgt_crop, grad)
return max_id
def step(self, iteration: int) -> Optional[Tuple[np.ndarray, np.ndarray]]:
result = self.core.step(iteration)
if self.root:
tgt, err = result
self.tgt[self.x0:self.x1, self.y0:self.y1] = tgt
return self.tgt, err
return None