-
Notifications
You must be signed in to change notification settings - Fork 13
/
predict_model_3_roberte_wwm_ext_att_drop_42.py
445 lines (383 loc) · 17.8 KB
/
predict_model_3_roberte_wwm_ext_att_drop_42.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
#!/usr/bin/python
# -*- coding: utf-8 -*-
import random
import torch
import numpy as np
from tqdm import tqdm
import time
import logging
from sklearn.model_selection import StratifiedKFold
import os
import pandas as pd
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from sklearn.metrics import accuracy_score, f1_score
from pytorch_transformers.modeling_bert import BertModel, BertConfig
from pytorch_transformers import AdamW
from pytorch_transformers.tokenization_bert import BertTokenizer
import torch.nn as nn
import torch.nn.functional as F
"""
该执行文件主要用于训练基于Roberta-ext-wwm的预训练模型-model_3_roberte_wwm_ext_att_drop_42,并生成测试集的预测概率文件
"""
# 设置参数及文件路径
# os.environ['CUDA_VISIBLE_DEVICES'] = '0' # 程序可调用的GPU的ID
max_seq_length = 512 # 输入文本最大长度
learning_rate = 1e-5 # 模型学习率
num_epochs = 10 # 训练最大迭代次数
batch_size = 8 # 训练时每个batch中的样本数
patience = 5 # 早停轮数
file_name = 'model_3_roberta_wwm_ext' # 指定输出文件的名字
model_name_or_path = './pretrain_weight/roberta_wwm_ext/' # 预训练模型权重载入路径
train_input = './datasets/preprocess_round_1_2_train_data.csv' # 完成预处理的训练集载入路径
test_input = './datasets/preprocess_round2_test.csv' # 完成预处理的测试集载入路径
raw_train = './datasets/round_1_2_train_data.csv' # 原始训练集载入路径
raw_test = './datasets/round2_test.csv' # 原始测试集载入路径
random_seed = 42 # 随机种子
def seed_everything(seed=random_seed):
'''
固定随机种子
:param random_seed: 随机种子数目
:return:
'''
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
seed_everything()
# 创建一个logger
file_path = './log/'
logger = logging.getLogger('mylogger')
logger.setLevel(logging.DEBUG)
timestamp = time.strftime("%Y.%m.%d_%H.%M.%S", time.localtime())
fh = logging.FileHandler(file_path + 'log_model1.txt')
fh.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
formatter = logging.Formatter('[%(asctime)s][%(levelname)s] ## %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
logger.addHandler(fh)
logger.addHandler(ch)
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, id, text, entity=None, label=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.id = id
self.text = text
self.entity = entity
self.label = label
class InputFeatures(object):
def __init__(self,
example_id,
choices_features,
label
):
self.example_id = example_id
_, input_ids, input_mask, segment_ids = choices_features[0]
self.choices_features = {
'input_ids': input_ids,
'input_mask': input_mask,
'segment_ids': segment_ids
}
self.label = label
def read_examples(input_file, is_training):
df = pd.read_csv(input_file)
if not is_training:
df['negative'] = np.zeros(len(df), dtype=np.int64)
examples = []
for val in df[['id', 'text', 'clean_entity', 'negative']].values:
if type(val[2]) == float:
print(val[0])
examples.append(InputExample(id=val[0], text=val[1], entity=val[2], label=val[3]))
return examples, df
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def convert_examples_to_features(examples, tokenizer, max_seq_length,
is_training):
# 将文本输入样例,转换为数字特征,用于模型计算
features = []
for example_index, example in enumerate(examples):
text = tokenizer.tokenize(example.text)
entity = tokenizer.tokenize(example.entity)
MAX_TEXT_LEN = max_seq_length - len(entity) - 3
text = text[:MAX_TEXT_LEN]
choices_features = []
tokens = ["[CLS]"] + text + ["[SEP]"] + entity + ["[SEP]"]
segment_ids = [0] * (len(text) + 2) + [1] * (len(entity) + 1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
padding_length = max_seq_length - len(input_ids)
input_ids += ([0] * padding_length)
input_mask += ([0] * padding_length)
segment_ids += ([0] * padding_length)
choices_features.append((tokens, input_ids, input_mask, segment_ids))
label = example.label
if example_index < 1 and is_training:
logger.info("*** Example ***")
logger.info("idx: {}".format(example_index))
logger.info("id: {}".format(example.id))
logger.info("tokens: {}".format(' '.join(tokens).replace('\u2581', '_')))
logger.info("input_ids: {}".format(' '.join(map(str, input_ids))))
logger.info("input_mask: {}".format(len(input_mask)))
logger.info("segment_ids: {}".format(len(segment_ids)))
logger.info("label: {}".format(label))
features.append(
InputFeatures(
example_id=example.id,
choices_features=choices_features,
label=label
)
)
return features
def select_field(features, field):
return [
feature.choices_features[field] for feature in features
]
class NeuralNet(nn.Module):
def __init__(self, model_name_or_path, hidden_size=768, num_class=2):
super(NeuralNet, self).__init__()
self.config = BertConfig.from_pretrained(model_name_or_path, num_labels=4)
self.config.output_hidden_states = True
self.bert = BertModel.from_pretrained(model_name_or_path, config=self.config)
for param in self.bert.parameters():
param.requires_grad = True
self.weights = nn.Parameter(torch.rand(13, 1))
self.dropouts = nn.ModuleList([
nn.Dropout(0.5) for _ in range(5)
])
self.fc = nn.Linear(hidden_size, num_class)
def forward(self, input_ids, input_mask, segment_ids):
last_hidden_states, pool, all_hidden_states = self.bert(input_ids, token_type_ids=segment_ids,
attention_mask=input_mask)
batch_size = input_ids.shape[0]
ht_cls = torch.cat(all_hidden_states)[:, :1, :].view(
13, batch_size, 1, 768)
atten = torch.sum(ht_cls * self.weights.view(
13, 1, 1, 1), dim=[1, 3])
atten = F.softmax(atten.view(-1), dim=0)
feature = torch.sum(ht_cls * atten.view(13, 1, 1, 1), dim=[0, 2])
for i, dropout in enumerate(self.dropouts):
if i == 0:
h = self.fc(dropout(feature))
else:
h += self.fc(dropout(feature))
h = h / len(self.dropouts)
return h
def metric(y_true, y_pred):
acc = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred, average='macro')
return acc, f1
def postprocess(raw, df, prefix=''):
# 初步的后处理。包括:相同ID结果合并,取最长实体,去除重复实体
negatives = []
key_entities = []
for raw_id in tqdm(raw['id'].tolist()):
result = df[df['id'] == raw_id]
if len(result) > 0:
negative = 0
key_entity = []
for n, e in zip(result[prefix + 'negative'].tolist(), result['entity']):
if len(e) < 2:
continue
if '?' in e:
n = 1
if n == 1:
negative = 1
repeat = False
for k_e in key_entity.copy():
if e in k_e:
repeat = True
break
elif k_e in e:
key_entity.remove(k_e)
key_entity.append(e)
repeat = True
break
if not repeat:
key_entity.append(e)
negatives.append(negative)
key_entities.append(';'.join(key_entity))
else:
negatives.append(0)
key_entities.append('')
raw[prefix + 'negative'] = negatives
raw[prefix + 'key_entity'] = key_entities
return raw
def metric_weight(train):
# 计算情感和实体的带权重F1值
negative_true = train['negative'].tolist()
negative_pred = train['pred_negative'].tolist()
negative_f1 = f1_score(negative_true, negative_pred)
key_entities_true = train['key_entity'].tolist()
key_entities_pred = train['pred_key_entity'].tolist()
A, B, C = 1e-10, 1e-10, 1e-10
for e_true, e_pred in zip(key_entities_true, key_entities_pred):
if type(e_true) == float:
e_true = ''
if type(e_pred) == float:
e_pred = ''
e_true = set(e_true.split(';'))
e_pred = set(e_pred.split(';'))
A += len(e_true & e_pred)
B += len(e_pred)
C += len(e_true)
entities_f1 = 2 * A / (B + C)
return 0.4 * negative_f1, 0.6 * entities_f1, 0.4 * negative_f1 + 0.6 * entities_f1
# 加载数据
tokenizer = BertTokenizer.from_pretrained(model_name_or_path, do_lower_case=True)
train_examples, train_df = read_examples(train_input, is_training=True)
labels = train_df['negative'].astype(int).values
train_features = convert_examples_to_features(
train_examples, tokenizer, max_seq_length, True)
all_input_ids = np.array(select_field(train_features, 'input_ids'))
logger.info('shape: {}'.format(all_input_ids.shape))
all_input_mask = np.array(select_field(train_features, 'input_mask'))
all_segment_ids = np.array(select_field(train_features, 'segment_ids'))
all_label = np.array([f.label for f in train_features])
test_examples, test_df = read_examples(test_input, is_training=False)
test_features = convert_examples_to_features(
test_examples, tokenizer, max_seq_length, True)
test_input_ids = torch.tensor(select_field(test_features, 'input_ids'), dtype=torch.long)
test_input_mask = torch.tensor(select_field(test_features, 'input_mask'), dtype=torch.long)
test_segment_ids = torch.tensor(select_field(test_features, 'segment_ids'), dtype=torch.long)
# 七折交叉训练
skf = StratifiedKFold(n_splits=7, shuffle=True, random_state=random_seed)
oof_train = np.zeros((len(train_df), 2), dtype=np.float32)
oof_test = np.zeros((len(test_df), 2), dtype=np.float32)
for fold, (train_index, valid_index) in enumerate(skf.split(all_label, all_label)):
logger.info('================ fold {} ==============='.format(fold))
# 处理模型输入数据
train_input_ids = torch.tensor(all_input_ids[train_index], dtype=torch.long)
train_input_mask = torch.tensor(all_input_mask[train_index], dtype=torch.long)
train_segment_ids = torch.tensor(all_segment_ids[train_index], dtype=torch.long)
train_label = torch.tensor(all_label[train_index], dtype=torch.long)
valid_input_ids = torch.tensor(all_input_ids[valid_index], dtype=torch.long)
valid_input_mask = torch.tensor(all_input_mask[valid_index], dtype=torch.long)
valid_segment_ids = torch.tensor(all_segment_ids[valid_index], dtype=torch.long)
valid_label = torch.tensor(all_label[valid_index], dtype=torch.long)
train = torch.utils.data.TensorDataset(train_input_ids, train_input_mask, train_segment_ids, train_label)
valid = torch.utils.data.TensorDataset(valid_input_ids, valid_input_mask, valid_segment_ids, valid_label)
test = torch.utils.data.TensorDataset(test_input_ids, test_input_mask, test_segment_ids)
train_loader = torch.utils.data.DataLoader(train, batch_size=batch_size, shuffle=True)
valid_loader = torch.utils.data.DataLoader(valid, batch_size=batch_size, shuffle=False)
test_loader = torch.utils.data.DataLoader(test, batch_size=batch_size, shuffle=False)
model = NeuralNet(model_name_or_path)
model.cuda()
loss_fn = torch.nn.CrossEntropyLoss()
# 优化器定义
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}]
optimizer = AdamW(optimizer_grouped_parameters, lr=learning_rate, eps=1e-6)
model.train()
best_f1 = 0.
valid_best = np.zeros((valid_label.size(0), 2))
early_stop = 0
# for epoch in range(num_epochs):
# train_loss = 0.
# for batch in tqdm(train_loader):
# batch = tuple(t.cuda() for t in batch)
# x_ids, x_mask, x_sids, y_truth = batch
# y_pred = model(x_ids, x_mask, x_sids)
# loss = loss_fn(y_pred, y_truth)
# optimizer.zero_grad()
# loss.backward()
# optimizer.step()
# train_loss += loss.item() / len(train_loader)
#
# # 计算在验证集上的结果
# model.eval()
# val_loss = 0.
# valid_preds_fold = np.zeros((valid_label.size(0), 2))
# with torch.no_grad():
# for i, batch in tqdm(enumerate(valid_loader)):
# batch = tuple(t.cuda() for t in batch)
# x_ids, x_mask, x_sids, y_truth = batch
# y_pred = model(x_ids, x_mask, x_sids).detach()
# val_loss += loss_fn(y_pred, y_truth).item() / len(valid_loader)
# valid_preds_fold[i * batch_size:(i + 1) * batch_size] = F.softmax(y_pred, dim=1).cpu().numpy()
#
# acc, f1 = metric(all_label[valid_index], np.argmax(valid_preds_fold, axis=1))
# if best_f1 < f1:
# early_stop = 0
# best_f1 = f1
# valid_best = valid_preds_fold
# torch.save(model.state_dict(), './model_save/bert_cv_ ' + file_name + '_{}.bin'.format(fold))
# else:
# early_stop += 1
# logger.info(
# 'epoch: %d, train loss: %.8f, valid loss: %.8f, acc: %.8f, f1: %.8f, best_f1: %.8f\n' %
# (epoch, train_loss, val_loss, acc, f1, best_f1))
# torch.cuda.empty_cache() # 每个epoch结束之后清空显存,防止显存不足
#
# # 检测早停
# if early_stop >= patience:
# break
# 得到一折模型对测试集的预测结果
test_preds_fold = np.zeros((len(test_df), 2))
valid_preds_fold = np.zeros((valid_label.size(0), 2))
model.load_state_dict(torch.load('./best_model_save/bert_cv_ ' + file_name + '_{}.bin'.format(fold)))
model.eval()
with torch.no_grad():
for i, batch in tqdm(enumerate(valid_loader)):
batch = tuple(t.cuda() for t in batch)
x_ids, x_mask, x_sids, y_truth = batch
y_pred = model(x_ids, x_mask, x_sids).detach()
valid_preds_fold[i * batch_size:(i + 1) * batch_size] = F.softmax(y_pred, dim=1).cpu().numpy()
with torch.no_grad():
for i, batch in tqdm(enumerate(test_loader)):
batch = tuple(t.cuda() for t in batch)
x_ids, x_mask, x_sids = batch
y_pred = model(x_ids, x_mask, x_sids).detach()
test_preds_fold[i * batch_size:(i + 1) * batch_size] = F.softmax(y_pred, dim=1).cpu().numpy()
valid_best = valid_preds_fold
oof_train[valid_index] = valid_best
acc, f1 = metric(all_label[valid_index], np.argmax(valid_best, axis=1))
logger.info('epoch: best, acc: %.8f, f1: %.8f, best_f1: %.8f\n' %
(acc, f1, best_f1))
oof_test += test_preds_fold / 7
# 保存概率文件
np.savetxt('./submit/train_prob/train_bert_' + file_name + '.txt', oof_train)
np.savetxt('./submit/test_prob/test_bert_' + file_name + '.txt', oof_test)
f1 = f1_score(labels, np.argmax(oof_train, axis=1))
logger.info(f1_score(labels, np.argmax(oof_train, axis=1)))
train_df['pred_negative'] = np.argmax(oof_train, axis=1)
test_df['negative'] = np.argmax(oof_test, axis=1)
logger.info(test_df['negative'].value_counts())
# 后处理
raw_train = pd.read_csv(raw_train)
pred_train = postprocess(raw_train, train_df, prefix='pred_')
negative_f1, entity_f1, weight_f1 = metric_weight(pred_train)
pred_train.to_csv('./submit/train_' + file_name + '.csv', index=False)
logger.info('negative_f1: %.8f, entity_f1: %.8f, weight_f1: %.8f\n' %
(negative_f1, entity_f1, weight_f1))
submit = pd.read_csv(raw_test)
submit = postprocess(submit, test_df)
submit[['id', 'negative', 'key_entity']].to_csv('./submit/' + file_name + '_test_predict_{}.csv'.format(weight_f1),
index=False)