forked from openPMD/openPMD-validator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
createExamples_h5.py
executable file
·563 lines (481 loc) · 22.8 KB
/
createExamples_h5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
#!/usr/bin/env python
#
# Copyright (c) 2015, Axel Huebl, Remi Lehe
#
# Permission to use, copy, modify, and/or distribute this software for any
# purpose with or without fee is hereby granted, provided that the above
# copyright notice and this permission notice appear in all copies.
#
# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
import h5py as h5
import numpy as np
import datetime
from dateutil.tz import tzlocal
def get_basePath(f, iteration):
"""
Get the basePath for a certain iteration
Parameter
---------
f : an h5py.File object
The file in which to write the data
iteration : an iteration number
Returns
-------
A string with a in-file path.
"""
iteration_str = np.string_(str(iteration))
return np.string_(f.attrs["basePath"]).replace(b"%T", iteration_str)
def setup_base_path(f, iteration):
"""
Write the basePath group for `iteration`
Parameters
----------
f : an h5py.File object
The file in which to write the data
iteration : int
The iteration number for this output
"""
# Create the corresponding group
base_path = get_basePath(f, iteration)
f.create_group( base_path )
bp = f[ base_path ]
# Required attributes
bp.attrs["time"] = 0. # Value expressed in femtoseconds
bp.attrs["dt"] = 0.5 # Value expressed in femtoseconds
bp.attrs["timeUnitSI"] = np.float64(1.e-15) # Conversion factor
def setup_root_attr(f):
"""
Write the root metadata for this file
Parameter
---------
f : an h5py.File object
The file in which to write the data
"""
# extensions list
ext_list = [["ED-PIC", np.uint32(1)]]
# Required attributes
f.attrs["openPMD"] = np.string_("1.0.0")
f.attrs["openPMDextension"] = ext_list[0][1] # ED-PIC extension is used
f.attrs["basePath"] = np.string_("/data/%T/")
f.attrs["meshesPath"] = np.string_("meshes/")
f.attrs["particlesPath"] = np.string_("particles/")
f.attrs["iterationEncoding"] = np.string_("groupBased")
f.attrs["iterationFormat"] = np.string_("/data/%T/")
# Recommended attributes
f.attrs["author"] = np.string_("Axel Huebl <[email protected]>")
f.attrs["software"] = np.string_("openPMD Example Script")
f.attrs["softwareVersion"] = np.string_("1.0.0")
f.attrs["date"] = np.string_(
datetime.datetime.now(tzlocal()).strftime('%Y-%m-%d %H:%M:%S %z'))
# Optional
f.attrs["comment"] = np.string_("This is a dummy file for test purposes.")
def write_rho_cylindrical(meshes, mode0, mode1):
"""
Write the metadata and the data associated with the scalar field rho,
using the cylindrical representation (with azimuthal decomposition
going up to m=1)
Parameters
----------
meshes : an h5py.Group object
Group of the meshes in basePath + meshesPath
mode0 : a 2darray of reals
The values of rho in the azimuthal mode 0, on the r-z grid
(The first axis corresponds to r, and the second axis corresponds to z)
mode1 : a 2darray of complexs
The values of rho in the azimuthal mode 1, on the r-z grid
(The first axis corresponds to r, and the second axis corresponds to z)
"""
# Path to the rho meshes, within the h5py file
full_rho_path = np.string_("rho")
meshes.create_dataset( full_rho_path, (3, mode0.shape[0], mode0.shape[1]), \
dtype=np.float32)
rho = meshes[full_rho_path]
rho.attrs["comment"] = np.string_(
"Density of electrons in azimuthal decomposition")
# Create the dataset (cylindrical with azimuthal modes up to m=1)
# The first axis has size 2m+1
rho.attrs["geometry"] = np.string_("cylindrical")
rho.attrs["geometryParameters"] = np.string_("m=1; imag=+")
# Add information on the units of the data
rho.attrs["unitSI"] = np.float64(1.0)
rho.attrs["unitDimension"] = \
np.array([-3.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0 ], dtype=np.float64)
# L M T I theta N J
# rho is in Coulomb per meter cube: C / m^3 = A * s / m^3 -> L^-3 * T * I
# Add time information
rho.attrs["timeOffset"] = 0. # Time offset with basePath's time
# Add information on the r-z grid
rho.attrs["gridSpacing"] = np.array([1.0, 1.0], dtype=np.float32) # dr, dz
rho.attrs["gridGlobalOffset"] = np.array([0.0, 0.0], dtype=np.float32)
rho.attrs["position"] = np.array([0.0, 0.0], dtype=np.float32)
rho.attrs["gridUnitSI"] = np.float64(1.0)
rho.attrs["dataOrder"] = np.string_("C")
rho.attrs["axisLabels"] = np.array([b"r",b"z"])
# Add specific information for PIC simulations
add_EDPIC_attr_meshes(rho)
# Fill the array with the field data
if mode0.shape != mode1.shape :
raise ValueError("`mode0` and `mode1` should have the same shape")
rho[0,:,:] = mode0[:,:] # Store the mode 0 first
rho[1,:,:] = mode1[:,:].real # Then store the real part of mode 1
rho[2,:,:] = mode1[:,:].imag # Then store the imaginary part of mode 1
def write_b_2d_cartesian(meshes, data_ez):
"""
Write the metadata and the data associated with the vector field B,
using a 2d Cartesian representation.
In this special case, the components of the vector field B.x and B.y
shall be constant.
Parameters
----------
meshes : an h5py.Group object
Group of the meshes in basePath + meshesPath
data_ez : 2darray of reals
The values of the component B.z on the 2d x-y grid
(The first axis corresponds to x, and the second axis corresponds to y)
"""
# Path to the E field, within the h5py file
full_b_path_name = b"B"
meshes.create_group(full_b_path_name)
B = meshes[full_b_path_name]
# Create the dataset (2d cartesian grid)
B.create_group(b"x")
B.create_group(b"y")
B.create_dataset(b"z", data_ez.shape, dtype=np.float32)
# Write the common metadata for the group
B.attrs["geometry"] = np.string_("cartesian")
B.attrs["gridSpacing"] = np.array([1.0, 1.0], dtype=np.float32) # dx, dy
B.attrs["gridGlobalOffset"] = np.array([0.0, 0.0], dtype=np.float32)
B.attrs["gridUnitSI"] = np.float64(1.0)
B.attrs["dataOrder"] = np.string_("C")
B.attrs["axisLabels"] = np.array([b"x",b"y"])
B.attrs["unitDimension"] = \
np.array([0.0, 1.0, -2.0, -1.0, 0.0, 0.0, 0.0 ], dtype=np.float64)
# L M T I theta N J
# B is in Tesla : kg / (A * s^2) -> M * T^-2 * I^-1
# Add specific information for PIC simulations at the group level
add_EDPIC_attr_meshes(B)
# Add time information
B.attrs["timeOffset"] = 0.25 # Time offset with basePath's time
# Write attribute that is specific to each dataset:
# - Staggered position within a cell
B["x"].attrs["position"] = np.array([0.0, 0.0], dtype=np.float32)
B["y"].attrs["position"] = np.array([0.0, 0.0], dtype=np.float32)
B["z"].attrs["position"] = np.array([0.5, 0.5], dtype=np.float32)
# - Conversion factor to SI units
B["x"].attrs["unitSI"] = np.float64(3.3)
B["y"].attrs["unitSI"] = np.float64(3.3)
B["z"].attrs["unitSI"] = np.float64(3.3)
# Fill the array with the field data
# the constant record components B.x and B.y have the same shape
# (== same mesh discretization) as the non-constant record
# component B.z
B["x"].attrs["value"] = np.float(0.0)
B["x"].attrs["shape"] = np.array(data_ez.shape, dtype=np.uint64)
B["y"].attrs["value"] = np.float(0.0)
B["y"].attrs["shape"] = np.array(data_ez.shape, dtype=np.uint64)
B["z"][:,:] = data_ez[:,:]
def write_e_2d_cartesian(meshes, data_ex, data_ey, data_ez ):
"""
Write the metadata and the data associated with the vector field E,
using a 2d Cartesian representation
Parameters
----------
meshes : an h5py.Group object
Group of the meshes in basePath + meshesPath
data_ex, data_ey, data_ez : 2darray of reals
The values of the components E.x, E.y, E.z on the 2d x-y grid
(The first axis corresponds to x, and the second axis corresponds to y)
"""
# Path to the E field, within the h5py file
full_e_path_name = b"E"
meshes.create_group(full_e_path_name)
E = meshes[full_e_path_name]
# Create the dataset (2d cartesian grid)
E.create_dataset(b"x", data_ex.shape, dtype=np.float32)
E.create_dataset(b"y", data_ey.shape, dtype=np.float32)
E.create_dataset(b"z", data_ez.shape, dtype=np.float32)
# Write the common metadata for the group
E.attrs["geometry"] = np.string_("cartesian")
E.attrs["gridSpacing"] = np.array([1.0, 1.0], dtype=np.float32) # dx, dy
E.attrs["gridGlobalOffset"] = np.array([0.0, 0.0], dtype=np.float32)
E.attrs["gridUnitSI"] = np.float64(1.0)
E.attrs["dataOrder"] = np.string_("C")
E.attrs["axisLabels"] = np.array([b"x",b"y"])
E.attrs["unitDimension"] = \
np.array([1.0, 1.0, -3.0, -1.0, 0.0, 0.0, 0.0 ], dtype=np.float64)
# L M T I theta N J
# E is in volts per meters: V / m = kg * m / (A * s^3)
# -> L * M * T^-3 * I^-1
# Add specific information for PIC simulations at the group level
add_EDPIC_attr_meshes(E)
# Add time information
E.attrs["timeOffset"] = 0. # Time offset with respect to basePath's time
# Write attribute that is specific to each dataset:
# - Staggered position within a cell
E["x"].attrs["position"] = np.array([0.0, 0.5], dtype=np.float32)
E["y"].attrs["position"] = np.array([0.5, 0.0], dtype=np.float32)
E["z"].attrs["position"] = np.array([0.0, 0.0], dtype=np.float32)
# - Conversion factor to SI units
E["x"].attrs["unitSI"] = np.float64(1.0e9)
E["y"].attrs["unitSI"] = np.float64(1.0e9)
E["z"].attrs["unitSI"] = np.float64(1.0e9)
# Fill the array with the field data
E["x"][:,:] = data_ex[:,:]
E["y"][:,:] = data_ey[:,:]
E["z"][:,:] = data_ez[:,:]
def add_EDPIC_attr_meshes(field):
"""
Write the metadata which is specific to PIC algorithm
for a given field
Parameters
----------
field : an h5py.Group or h5py.Dataset object
The record of the field (Group for vector mesh
and Dataset for scalar meshes)
"""
field.attrs["fieldSmoothing"] = np.string_("none")
# field.attrs["fieldSmoothingParameters"] = \
# np.string_("period=10;numPasses=4;compensator=true")
def add_EDPIC_attr_particles(particle):
"""
Write the metadata which is specific to the PIC algorithm
for a given species.
Parameters
----------
particle : an h5py.Group object
The group of the particle that gets additional attributes.
"""
particle.attrs["particleShape"] = 3.0
particle.attrs["currentDeposition"] = np.string_("Esirkepov")
# particle.attrs["currentDepositionParameters"] = np.string_("")
particle.attrs["particlePush"] = np.string_("Boris")
particle.attrs["particleInterpolation"] = np.string_("uniform")
particle.attrs["particleSmoothing"] = np.string_("none")
# particle.attrs["particleSmoothingParameters"] = \
# np.string_("period=1;numPasses=2;compensator=false")
def write_meshes(f, iteration):
full_meshes_path = get_basePath(f, iteration) + f.attrs["meshesPath"]
f.create_group(full_meshes_path)
meshes = f[full_meshes_path]
# Extension: Additional attributes for ED-PIC
meshes.attrs["fieldSolver"] = np.string_("Yee")
meshes.attrs["fieldBoundary"] = np.array(
[b"periodic", b"periodic", b"open", b"open"])
meshes.attrs["particleBoundary"] = np.array(
[b"periodic", b"periodic", b"absorbing", b"absorbing"])
meshes.attrs["currentSmoothing"] = np.string_("Binomial")
meshes.attrs["currentSmoothingParameters"] = \
np.string_("period=1;numPasses=2;compensator=false")
meshes.attrs["chargeCorrection"] = np.string_("none")
# (Here the data is randomly generated, but in an actual simulation,
# this would be replaced by the simulation data.)
# - Write rho
# Mode 0 : real values, mode 1 : complex values
data_rho0 = np.random.rand(32,64)
data_rho1 = np.random.rand(32,64) + 1.j*np.random.rand(32,64)
write_rho_cylindrical(meshes, data_rho0, data_rho1)
# - Write E
data_ex = np.random.rand(32,64)
data_ey = np.random.rand(32,64)
data_ez = np.random.rand(32,64)
write_e_2d_cartesian( meshes, data_ex, data_ey, data_ez )
# - Write B
data_bz = np.random.rand(32,64)
write_b_2d_cartesian( meshes, data_bz )
def write_particles(f, iteration):
fullParticlesPath = get_basePath(f, iteration) + f.attrs["particlesPath"]
f.create_group(fullParticlesPath + b"electrons")
electrons = f[fullParticlesPath + b"electrons"]
globalNumParticles = 128 # example number of all particles
electrons.attrs["comment"] = np.string_("My first electron species")
# Extension: ED-PIC Attributes
# required
add_EDPIC_attr_particles(electrons)
# recommended
# currently none
# constant scalar particle records (that could also be variable records)
electrons.create_group(b"charge")
charge = electrons["charge"]
charge.attrs["value"] = -1.0
charge.attrs["shape"] = np.array([globalNumParticles], dtype=np.uint64)
# macroWeighted: False(0) the charge value is given for an underlying,
# real particle
# weightingPower == 1: the charge of the macro particle scales linearly
# with the number of underlying real particles
# it represents
charge.attrs["macroWeighted"] = np.uint32(0)
charge.attrs["weightingPower"] = np.float64(1.0)
# attributes from the base standard
charge.attrs["timeOffset"] = 0.
charge.attrs["unitSI"] = np.float64(1.60217657e-19)
charge.attrs["unitDimension"] = \
np.array([0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0 ], dtype=np.float64)
# L M T I theta N J
# C = A * s
electrons.create_group(b"mass")
mass = electrons["mass"]
mass.attrs["value"] = 1.0
mass.attrs["shape"] = np.array([globalNumParticles], dtype=np.uint64)
# macroWeighted: False(0) the mass value is given for an underlying,
# real particle
# weightingPower == 1: the mass of the macro particle scales linearly
# with the number of underlying real particles
# it represents
mass.attrs["macroWeighted"] = np.uint32(0)
mass.attrs["weightingPower"] = np.float64(1.0)
# attributes from the base standard
mass.attrs["timeOffset"] = 0.
mass.attrs["unitSI"] = np.float64(9.10938291e-31)
mass.attrs["unitDimension"] = \
np.array([0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], dtype=np.float64)
# L M T I theta N J
# scalar particle records (non-const/individual per particle)
electrons.create_dataset(b"weighting", (globalNumParticles,),
dtype=np.float32)
weighting = electrons["weighting"]
# macroWeighted: True(1) by definition
# weightingPower == 1: since this is the identity of weighting,
# it scales linearly with itself
weighting.attrs["macroWeighted"] = np.uint32(1)
weighting.attrs["weightingPower"] = np.float64(1.0)
# attributes from the base standard
weighting.attrs["timeOffset"] = 0.
weighting.attrs["unitSI"] = np.float64(1.0)
weighting.attrs["unitDimension"] = \
np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], dtype=np.float64)
# plain floating point number
# Position of each particle
electrons.create_group(b"position")
position = electrons["position"]
position.create_dataset("x", (globalNumParticles,), dtype=np.float32)
position.create_dataset("y", (globalNumParticles,), dtype=np.float32)
position.create_dataset("z", (globalNumParticles,), dtype=np.float32)
# Conversion factor to SI units
position["x"].attrs["unitSI"] = np.float64(1.e-9)
position["y"].attrs["unitSI"] = np.float64(1.e-9)
position["z"].attrs["unitSI"] = np.float64(1.e-9)
# macroWeighted: can be 1 or 0 in this case, since it's the same for macro
# particles and representing underlying particles
# weightingPower == 0: the position does not scale with the weighting
position.attrs["macroWeighted"] = np.uint32(1)
position.attrs["weightingPower"] = np.float64(0.0)
# attributes from the base standard
position.attrs["timeOffset"] = 0.
position.attrs["unitDimension"] = \
np.array([1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], dtype=np.float64)
# L M T I theta N J
# Dimension of Length per component
# Position offset of each particle
electrons.create_group(b"positionOffset")
offset = electrons["positionOffset"]
# Constant components here (typical of a moving window along z)
offset.create_group(b"x")
offset["x"].attrs["value"] = np.float32(0.)
offset["x"].attrs["shape"] = np.array([globalNumParticles], dtype=np.uint64)
offset.create_group(b"y")
offset["y"].attrs["value"] = np.float32(0.)
offset["y"].attrs["shape"] = np.array([globalNumParticles], dtype=np.uint64)
offset.create_group(b"z")
offset["z"].attrs["value"] = np.float32(100.)
offset["z"].attrs["shape"] = np.array([globalNumParticles], dtype=np.uint64)
# Conversion factor to SI units
offset["x"].attrs["unitSI"] = np.float64(1.e-9)
offset["y"].attrs["unitSI"] = np.float64(1.e-9)
offset["z"].attrs["unitSI"] = np.float64(1.e-9)
# macroWeighted: can be 1 or 0 in this case, since it's the same for macro
# particles and representing underlying particles
# weightingPower == 0: the positionOffset does not scale with the weighting
offset.attrs["macroWeighted"] = np.uint32(1)
offset.attrs["weightingPower"] = np.float64(0.0)
# attributes from the base standard
offset.attrs["timeOffset"] = 0.
offset.attrs["unitDimension"] = \
np.array([1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], dtype=np.float64)
# L M T I theta N J
# Dimension of Length per component
# Momentum of each particle
electrons.create_group(b"momentum")
momentum = electrons["momentum"]
momentum.create_dataset("x", (globalNumParticles,), dtype=np.float32)
momentum.create_dataset("y", (globalNumParticles,), dtype=np.float32)
momentum.create_dataset("z", (globalNumParticles,), dtype=np.float32)
# Conversion factor to SI units
momentum["x"].attrs["unitSI"] = np.float64(1.60217657e-19)
momentum["y"].attrs["unitSI"] = np.float64(1.60217657e-19)
momentum["z"].attrs["unitSI"] = np.float64(1.60217657e-19)
# macroWeighted: True(1) in this example we store the momentum
# of the macro particle
# weightingPower == 1: each underlying particle contributes linearly
# to the total momentum
momentum.attrs["macroWeighted"] = np.uint32(1)
momentum.attrs["weightingPower"] = np.float64(1.0)
# attributes from the base standard
momentum.attrs["timeOffset"] = 0.25
momentum.attrs["unitDimension"] = \
np.array([1.0, 1.0, -1.0, 0.0, 0.0, 0.0, 0.0 ], dtype=np.float64)
# L M T I theta N J
# Dimension of Length * Mass / Time
# Sub-Group `particlePatches`
# recommended
mpi_size = 4 # "emulate" example MPI run with 4 ranks
# 2 + 2 * Dimensionality of position record
grid_layout = np.array( [512, 128, 1] ) # global grid in cells
electrons.create_group(b"particlePatches")
particlePatches = electrons["particlePatches"]
particlePatches.create_dataset("numParticles", (mpi_size,), dtype=np.uint64)
particlePatches.create_dataset("numParticlesOffset", (mpi_size,), dtype=np.uint64)
particlePatches.create_dataset("offset/x", (mpi_size,), dtype=np.float32)
particlePatches.create_group(b"offset/y")
particlePatches.create_group(b"offset/z")
particlePatches["offset/x"].attrs["unitSI"] = offset["x"].attrs["unitSI"]
particlePatches["offset/y"].attrs["unitSI"] = offset["y"].attrs["unitSI"]
particlePatches["offset/z"].attrs["unitSI"] = offset["z"].attrs["unitSI"]
particlePatches.create_dataset("extent/x", (mpi_size,), dtype=np.float32)
particlePatches.create_group(b"extent/y")
particlePatches.create_group(b"extent/z")
particlePatches["extent/x"].attrs["unitSI"] = offset["x"].attrs["unitSI"]
particlePatches["extent/y"].attrs["unitSI"] = offset["y"].attrs["unitSI"]
particlePatches["extent/z"].attrs["unitSI"] = offset["z"].attrs["unitSI"]
# domain decomposition shall be 1D along x (but positions are still 3D)
# we can therefor make the other components constant
particlePatches["offset/y"].attrs["value"] = np.float32(0.0) # full size
particlePatches["offset/z"].attrs["value"] = np.float32(0.0) # full size
particlePatches["offset/y"].attrs["shape"] = np.array([mpi_size], dtype=np.uint64)
particlePatches["offset/z"].attrs["shape"] = np.array([mpi_size], dtype=np.uint64)
particlePatches["extent/y"].attrs["value"] = np.float32(128.0) # full size
particlePatches["extent/z"].attrs["value"] = np.float32(1.0) # full size
particlePatches["extent/y"].attrs["shape"] = np.array([mpi_size], dtype=np.uint64)
particlePatches["extent/z"].attrs["shape"] = np.array([mpi_size], dtype=np.uint64)
for rank in np.arange(mpi_size):
# each MPI rank would write its part independently
# numParticles: number of particles in this patch
particlePatches['numParticles'][rank] = globalNumParticles / mpi_size
# numParticlesOffset: offset within the one-dimensional records where
# the first particle in this patch is stored
particlePatches['numParticlesOffset'][rank] = rank*globalNumParticles / mpi_size
# offset and extent in the grid
# example: 1D domain decompositon of 3D simulation along the first axis
# 1st dimension spatial offset
particlePatches['offset/x'][rank] = rank * grid_layout[0] / mpi_size
particlePatches['extent/x'][rank] = grid_layout[0] / mpi_size
if __name__ == "__main__":
# Open an exemple file
f = h5.File("example.h5", "w")
# Setup the root attributes for iteration 0
setup_root_attr(f)
# Setup basepath
setup_base_path(f, iteration=0)
# Write the field records
write_meshes(f, iteration=0)
# Write the particle records
write_particles(f, iteration=0)
# Close the file
f.close()
print("File example.h5 created!")