XCiT: Cross-Covariance Image Transformer, arxiv
PaddlePaddle training/validation code and pretrained models for XCiT.
The official pytorch implementation is here.
This implementation is developed by PaddleViT.
- Update (2022-03-31): Code is refactored and more ported weights are uploaded.
- Update (2021-12-8): Code is updated and ported weights are uploaded.
- Update (2021-11-7): Code is released
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
xcit_nano_12_p16_224 | 69.96 | 89.76 | 3.1M | 0.6G | 224 | 1.0 | bicubic | google/baidu |
xcit_nano_12_p16_224_distill | 72.32 | 90.86 | 3.1M | 0.6G | 224 | 1.0 | bicubic | google/baidu |
xcit_nano_12_p16_384_distill | 75.46 | 92.70 | 3.1M | 1.6G | 384 | 1.0 | bicubic | google/baidu |
xcit_nano_12_p8_224 | 73.91 | 92.17 | 3.0M | 2.2G | 224 | 1.0 | bicubic | google/baidu |
xcit_nano_12_p8_224_distill | 76.32 | 93.09 | 3.0M | 2.2G | 224 | 1.0 | bicubic | google/baidu |
xcit_nano_12_p8_384_distill | 77.66 | 93.92 | 3.0M | 6.3G | 384 | 1.0 | bicubic | google/baidu |
xcit_tiny_12_p16_224 | 77.14 | 93.71 | 6.7M | 1.2G | 224 | 1.0 | bicubic | google/baidu |
xcit_tiny_12_p16_224_distill | 78.58 | 94.29 | 6.7M | 1.2G | 224 | 1.0 | bicubic | google/baidu |
xcit_tiny_12_p16_384_distill | 80.94 | 95.41 | 6.7M | 3.6G | 384 | 1.0 | bicubic | google/baidu |
xcit_tiny_12_p8_224 | 79.69 | 95.05 | 6.7M | 4.8G | 224 | 1.0 | bicubic | google/baidu |
xcit_tiny_12_p8_224_distill | 81.21 | 95.61 | 6.7M | 4.8G | 224 | 1.0 | bicubic | google/baidu |
xcit_tiny_12_p8_384_distill | 82.30 | 96.20 | 6.7M | 14.0G | 384 | 1.0 | bicubic | google/baidu |
xcit_tiny_24_p16_224 | 79.45 | 94.88 | 12.1M | 2.3G | 224 | 1.0 | bicubic | google/baidu |
xcit_tiny_24_p16_224_distill | 80.46 | 95.22 | 12.1M | 2.3G | 224 | 1.0 | bicubic | google/baidu |
xcit_tiny_24_p16_384_distill | 82.56 | 96.28 | 12.1M | 6.8G | 384 | 1.0 | bicubic | google/baidu |
xcit_tiny_24_p8_224 | 81.89 | 95.97 | 12.1M | 9.1G | 224 | 1.0 | bicubic | google/baidu |
xcit_tiny_24_p8_224_distill | 82.57 | 96.17 | 12.1M | 9.1G | 224 | 1.0 | bicubic | google/baidu |
xcit_tiny_24_p8_384_distill | 83.62 | 96.67 | 12.1M | 26.7G | 384 | 1.0 | bicubic | google/baidu |
xcit_small_12_p16_224 | 81.97 | 95.81 | 26.2M | 4.8G | 224 | 1.0 | bicubic | google/baidu |
xcit_small_12_p16_224_distill | 83.33 | 96.41 | 26.2M | 4.8G | 224 | 1.0 | bicubic | google/baidu |
xcit_small_12_p16_384_distill | 84.71 | 97.12 | 26.2M | 14.2G | 384 | 1.0 | bicubic | google/baidu |
xcit_small_12_p8_224 | 83.33 | 96.49 | 26.2M | 18.7G | 224 | 1.0 | bicubic | google/baidu |
xcit_small_12_p8_224_distill | 84.24 | 96.87 | 26.2M | 18.7G | 224 | 1.0 | bicubic | google/baidu |
xcit_small_12_p8_384_distill | 85.05 | 97.27 | 26.2M | 55.1G | 384 | 1.0 | bicubic | google/baidu |
xcit_small_24_p16_224 | 82.58 | 96.01 | 47.7M | 9.1G | 224 | 1.0 | bicubic | google/baidu |
xcit_small_24_p16_224_distill | 83.88 | 96.73 | 47.7M | 9.1G | 224 | 1.0 | bicubic | google/baidu |
xcit_small_24_p16_384_distill | 85.10 | 97.31 | 47.7M | 26.6G | 384 | 1.0 | bicubic | google/baidu |
xcit_small_24_p8_224 | 83.83 | 96.63 | 47.6M | 35.7G | 224 | 1.0 | bicubic | google/baidu |
xcit_small_24_p8_224_distill | 84.86 | 97.19 | 47.6M | 35.7G | 224 | 1.0 | bicubic | google/baidu |
xcit_small_24_p8_384_distill | 85.52 | 97.56 | 47.6M | 104.8G | 384 | 1.0 | bicubic | google/baidu |
xcit_medium_24_p16_224 | 82.64 | 95.98 | 84.4M | 16.0G | 224 | 1.0 | bicubic | google/baidu |
xcit_medium_24_p16_224_distill | 83.88 | 96.73 | 84.4M | 16.0G | 224 | 1.0 | bicubic | google/baidu |
xcit_medium_24_p16_384_distill | 85.82 | 97.59 | 84.4M | 47.1G | 384 | 1.0 | bicubic | google/baidu |
xcit_medium_24_p8_224 | 83.74 | 96.40 | 84.3M | 63.1G | 224 | 1.0 | bicubic | google/baidu |
xcit_medium_24_p8_224_distill | 85.07 | 97.27 | 84.3M | 63.1G | 224 | 1.0 | bicubic | google/baidu |
xcit_medium_24_p8_384_distill | 85.82 | 97.59 | 84.3M | 185.5G | 384 | 1.0 | bicubic | google/baidu |
xcit_large_24_p16_224 | 82.90 | 95.89 | 189.1M | 35.9G | 224 | 1.0 | bicubic | google/baidu |
xcit_large_24_p16_224_distill | 84.92 | 97.13 | 189.1M | 35.9G | 224 | 1.0 | bicubic | google/baidu |
xcit_large_24_p16_384_distill | 85.67 | 97.54 | 189.1M | 105.5G | 384 | 1.0 | bicubic | google/baidu |
xcit_large_24_p8_224 | 84.39 | 96.66 | 188.9M | 141.4G | 224 | 1.0 | bicubic | google/baidu |
xcit_large_24_p8_224_distill | 85.40 | 97.40 | 188.9M | 141.4G | 224 | 1.0 | bicubic | google/baidu |
xcit_large_24_p8_384_distill | 85.99 | 97.69 | 188.9M | 415.5G | 384 | 1.0 | bicubic | google/baidu |
*The results are evaluated on ImageNet2012 validation set.
ImageNet2012 dataset is used in the following file structure:
│imagenet/
├──train_list.txt
├──val_list.txt
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
train_list.txt
: list of relative paths and labels of training images. You can download it from: google/baiduval_list.txt
: list of relative paths and labels of validation images. You can download it from: google/baidu
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume weight file is downloaded in ./xcit_nano_12_p16_224.pdparams
, to use the xcit_nano_12_p16_224
model in python:
from config import get_config
from xcit import build_xcit as build_model
# config files in ./configs/
config = get_config('./configs/xcit_nano_12_p16_224.yaml')
# build model
model = build_model(config)
# load pretrained weights
model_state_dict = paddle.load('./xcit_nano_12_p16_224.pdparams')
model.set_state_dict(model_state_dict)
To evaluate model performance on ImageNet2012, run the following script using command line:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/xcit_nano_12_p16_224.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./xcit_nano_12_p16_224.pdparams' \
-amp
Note: if you have only 1 GPU, change device number to
CUDA_VISIBLE_DEVICES=0
would run the evaluation on single GPU.
To train the model on ImageNet2012, run the following script using command line:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/xcit_nano_12_p16_224.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-amp
Note: it is highly recommanded to run the training using multiple GPUs / multi-node GPUs.
@article{el2021xcit,
title={XCiT: Cross-Covariance Image Transformers},
author={El-Nouby, Alaaeldin and Touvron, Hugo and Caron, Mathilde and Bojanowski, Piotr and Douze, Matthijs and Joulin, Armand and Laptev, Ivan and Neverova, Natalia and Synnaeve, Gabriel and Verbeek, Jakob and others},
journal={arXiv preprint arXiv:2106.09681},
year={2021}
}