Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer, arxiv
PaddlePaddle training/validation code and pretrained models for Shuffle Transformer.
The official pytorch implementation is here.
This implementation is developed by PaddleViT.
- Update (2022-03-24): Code is refactored and bugs are fixed.
- Update (2021-08-11): Model FLOPs and # params are uploaded.
- Update (2021-08-11): Code is released and ported weights are uploaded.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
shuffle_vit_tiny | 82.39 | 96.05 | 28.5M | 4.6G | 224 | 0.875 | bicubic | google/baidu |
shuffle_vit_small | 83.53 | 96.57 | 50.1M | 8.8G | 224 | 0.875 | bicubic | google/baidu |
shuffle_vit_base | 83.95 | 96.91 | 88.4M | 15.5G | 224 | 0.875 | bicubic | google/baidu |
*The results are evaluated on ImageNet2012 validation set.
ImageNet2012 dataset is used in the following file structure:
│imagenet/
├──train_list.txt
├──val_list.txt
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
train_list.txt
: list of relative paths and labels of training images. You can download it from: google/baiduval_list.txt
: list of relative paths and labels of validation images. You can download it from: google/baidu
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume weight file is downloaded in ./shuffle_vit_tiny_patch4_window7_224.pdparams
, to use the shuffle_vit_tiny_patch4_window7_224
model in python:
from config import get_config
from shuffle_transformer import build_shuffle_transformer as build_model
# config files in ./configs/
config = get_config('./configs/shuffle_vit_tiny_patch4_window7_224.yaml')
# build model
model = build_model(config)
# load pretrained weights
model_state_dict = paddle.load('./shuffle_vit_tiny_patch4_window7_224.pdparams')
model.set_state_dict(model_state_dict)
To evaluate model performance on ImageNet2012, run the following script using command line:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/shuffle_vit_tiny_patch4_window7_224.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./shuffle_vit_tiny_patch4_window7_224.pdparams' \
-amp
Note: if you have only 1 GPU, change device number to
CUDA_VISIBLE_DEVICES=0
would run the evaluation on single GPU.
To train the model on ImageNet2012, run the following script using command line:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/shuffle_vit_tiny_patch4_window7_224.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-amp
Note: it is highly recommanded to run the training using multiple GPUs / multi-node GPUs.
@article{huang2021shuffle,
title={Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer},
author={Huang, Zilong and Ben, Youcheng and Luo, Guozhong and Cheng, Pei and Yu, Gang and Fu, Bin},
journal={arXiv preprint arXiv:2106.03650},
year={2021}
}