ResT: An Efficient Transformer for Visual Recognition. NeurIPS 2021 arxiv
ResT V2: Simpler, Faster and Stronger. arXiv 2022. arxiv
PaddlePaddle training/validation code and pretrained models for the model released: ResT and ResTV2.
The official PyTorch implementation is here.
This implementation is developed by PaddleViT.
- Update (2022-05-26): Code is released and ported weights are uploaded.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
ResT_lite | 77.18 | 93.70 | 10.5M | 1.5G | 224 | 0.9 | bicubic | google/baidu |
ResT_small | 79.55 | 94.92 | 13.7M | 2.0G | 224 | 0.9 | bicubic | google/baidu |
ResT_base | 81.60 | 95.65 | 30.3M | 4.6G | 224 | 0.9 | bicubic | google/baidu |
ResT_large | 83.57 | 96.26 | 51.7M | 8.2G | 224 | 0.9 | bicubic | google/baidu |
ResTV2_lite | 82.32 | 95.48 | 30.4M | 4.0G | 224 | 0.9 | bicubic | google/baidu |
ResTV2_small | 83.18 | 96.06 | 41.2M | 5.9G | 224 | 0.9 | bicubic | google/baidu |
ResTV2_base | 83.70 | 96.25 | 56.0M | 7.8G | 224 | 0.9 | bicubic | google/baidu |
ResTV2_large | 84.24 | 96.51 | 86.5M | 13.7G | 224 | 0.9 | bicubic | google/baidu |
*The results are evaluated on ImageNet2012 validation set.
ImageNet2012 dataset is used in the following file structure:
│imagenet/
├──train_list.txt
├──val_list.txt
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
train_list.txt
: list of relative paths and labels of training images. You can download it from: google/baiduval_list.txt
: list of relative paths and labels of validation images. You can download it from: google/baidu
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume weight file is downloaded in ./restv2_tiny.pdparams
, to use the restv2_tiny
model in python:
from config import get_config
from rest_v2 import build_restv2 as build_model
# config files in ./configs/
config = get_config('./configs/restv2_tiny.yaml')
# build model
model = build_model(config)
# load pretrained weights
model_state_dict = paddle.load('./restv2_tiny.pdparams')
model.set_state_dict(model_state_dict)
To evaluate model performance on ImageNet2012, run the following script using command line:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/restv2_tiny.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./restv2_tiny.pdparams' \
-amp
Note: if you have only 1 GPU, change device number to
CUDA_VISIBLE_DEVICES=0
would run the evaluation on single GPU.
To train the model on ImageNet2012, run the following script using command line:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/restv2_tiny.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-amp
Note: it is highly recommanded to run the training using multiple GPUs / multi-node GPUs.
@inproceedings{zhang2021rest,
title={ResT: An Efficient Transformer for Visual Recognition},
author={Qinglong Zhang and Yu-bin Yang},
booktitle={Advances in Neural Information Processing Systems},
year={2021},
url={https://openreview.net/forum?id=6Ab68Ip4Mu}
}
@article{zhang2022rest,
title={ResT V2: Simpler, Faster and Stronger},
author={Zhang, Qing-Long and Yang, Yu-Bin},
journal={arXiv preprint arXiv:2204.07366},
year={2022}
}