Training data-efficient image transformers & distillation through attention, arxiv
PaddlePaddle training/validation code and pretrained models for DeiT.
The official pytorch implementation is here.
This implementation is developed by PaddleViT.
- Update (2022-04-02): Add model weights trained from scratch using PaddleViT.
- Update (2022-03-16): Code is refactored.
- Update (2021-09-27): More weights are uploaded.
- Update (2021-08-11): Code is released and ported weights are uploaded.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
deit_tiny_distilled_224 | 74.52 | 91.90 | 5.9M | 1.1G | 224 | 0.875 | bicubic | google/baidu |
deit_small_distilled_224 | 81.17 | 95.41 | 22.4M | 4.3G | 224 | 0.875 | bicubic | google/baidu |
deit_base_distilled_224 | 83.32 | 96.49 | 87.2M | 17.0G | 224 | 0.875 | bicubic | google/baidu |
deit_base_distilled_384 | 85.43 | 97.33 | 87.2M | 49.9G | 384 | 1.0 | bicubic | google/baidu |
Teacher Model | Link |
---|---|
RegNet_Y_160 | google/baidu |
*The results are evaluated on ImageNet2012 validation set.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link | Log |
---|---|---|---|---|---|---|---|---|---|
deit_tiny_distilled_224 | 74.26 | 91.85 | 5.9M | 1.1G | 224 | 0.875 | bicubic | google/baidu | baidu |
ImageNet2012 dataset is used in the following file structure:
│imagenet/
├──train_list.txt
├──val_list.txt
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
train_list.txt
: list of relative paths and labels of training images. You can download it from: google/baiduval_list.txt
: list of relative paths and labels of validation images. You can download it from: google/baidu
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume weight file is downloaded in ./deit_base_patch16_224.pdparams
, to use the deit_base_patch16_224
model in python:
from config import get_config
from deit import build_vit as build_model
# config files in ./configs/
config = get_config('./configs/deit_base_patch16_224.yaml')
# build model
model = build_model(config)
# load pretrained weights
model_state_dict = paddle.load('./deit_base_patch16_224.pdparams')
model.set_state_dict(model_state_dict)
To evaluate DeiT model performance on ImageNet2012, run the following script using command line:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/deit_tiny_patch16_224.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./deit_tiny_patch16_224.pdparams' \
-amp
Note: if you have only 1 GPU, change device number to
CUDA_VISIBLE_DEVICES=0
would run the evaluation on single GPU.
To train the DeiT model on ImageNet2012 with distillation, run the following script using command line:
sh run_train_multi_distill.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu_distill.py \
-cfg='./configs/deit_tiny_distilled_patch16_224.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-amp
Note: it is highly recommanded to run the training using multiple GPUs / multi-node GPUs.
To finetune the DeiT model on ImageNet2012, run the following script using command line:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu_distill.py \
-cfg='./configs/deit_base_distilled_patch16_384.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-pretrained='./deit_base_distilled_patch16_224.pdparams' \
-amp
Note: use
-pretrained
argument to set the pretrained model path, you may also need to modify the hyperparams defined in config file.
@inproceedings{touvron2021training,
title={Training data-efficient image transformers \& distillation through attention},
author={Touvron, Hugo and Cord, Matthieu and Douze, Matthijs and Massa, Francisco and Sablayrolles, Alexandre and J{\'e}gou, Herv{\'e}},
booktitle={International Conference on Machine Learning},
pages={10347--10357},
year={2021},
organization={PMLR}
}