-
Notifications
You must be signed in to change notification settings - Fork 24
/
sketchback.py
314 lines (254 loc) · 9.98 KB
/
sketchback.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
from __future__ import print_function
import numpy as np
import cv2 as cv
import os
import matplotlib.pyplot as plt
from copy import deepcopy
from scipy.misc import imresize
from keras.models import Sequential, Model
from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.layers.core import Activation, Dropout, Flatten, Lambda
from keras.layers.normalization import BatchNormalization
from keras.optimizers import SGD, Adam, Nadam
from keras.utils import np_utils, plot_model
from keras import objectives, layers
from keras.applications import vgg16
from keras.applications.vgg16 import preprocess_input
from keras import backend as K
np.random.seed(1337) # for reproducibility
# CelebA Faces: 72x88 200K Images
# ZuBuD Buildings: 120x160 3K Images
# CUHK Faces: 80x112 88 Images
m = 205
n = 282
sketch_dim = (m,n)
img_dim = (m,n,3)
num_images = 3000
num_epochs = 20
batch_size = 5
file_names = []
CelebA_SKETCH_PATH = '~/Project/CelebA_Sketch'
CelebA_IMAGE_PATH = '~/Project/img_align_celeba'
BUILDING_SKETCH_PATH = '~/Project/ZuBuD_Sketch_Aug'
BUILDING_IMAGE_PATH = '~/Project/ZuBuD_Aug'
CUHK_SKETCH_PATH = '~/Project/CUHK_Sketch'
CUHK_IMAGE_PATH = '~/Project/CUHK'
base_model = vgg16.VGG16(weights='imagenet', include_top=False)
vgg = Model(input=base_model.input, output=base_model.get_layer('block2_conv2').output)
def load_file_names(path):
return os.listdir(path)
def sub_plot(x,y,z):
fig = plt.figure()
a = fig.add_subplot(1,3,1)
imgplot = plt.imshow(x, cmap='gray')
a.set_title('Sketch')
plt.axis("off")
a = fig.add_subplot(1,3,2)
imgplot = plt.imshow(z)
a.set_title('Prediction')
plt.axis("off")
a = fig.add_subplot(1,3,3)
imgplot = plt.imshow(y)
a.set_title('Ground Truth')
plt.axis("off")
plt.show()
def imshow(x, gray=False):
plt.imshow(x, cmap='gray' if gray else None)
plt.show()
def get_batch(idx, X = True, Y = True, W = True, dataset='zubud'):
global file_names
X_train = np.zeros((batch_size, m, n), dtype='float32')
Y_train = np.zeros((batch_size, m, n, 3), dtype='float32')
F_train = None
if dataset == 'zubud':
x_path = BUILDING_SKETCH_PATH
y_path = BUILDING_IMAGE_PATH
elif dataset == 'cuhk':
x_path = CUHK_SKETCH_PATH
y_path = CUHK_IMAGE_PATH
else:
x_path = CelebA_SKETCH_PATH
y_path = CelebA_IMAGE_PATH
if len(file_names) == 0:
file_names = load_file_names(x_path)
if X:
# Load Sketches
for i in range(batch_size):
file = os.path.join(x_path, file_names[i+batch_size*idx])
img = cv.imread(file,0)
img = imresize(img, sketch_dim)
img = img.astype('float32')
X_train[i] = img / 255.
if Y:
# Load Ground-truth Images
for i in range(batch_size):
file = os.path.join(y_path, file_names[i+batch_size*idx])
img = cv.imread(file)
img = imresize(img, img_dim)
if dataset != 'zubud':
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
img = img.astype('float32')
Y_train[i] = img / 255.
if W:
F_train = get_features(Y_train)
X_train = np.reshape(X_train, (batch_size, m, n, 1))
return X_train, Y_train, F_train
def get_features(Y):
Z = deepcopy(Y)
Z = preprocess_vgg(Z)
features = vgg.predict(Z, batch_size = 5, verbose = 0)
return features
def preprocess_vgg(x, data_format=None):
if data_format is None:
data_format = K.image_data_format()
assert data_format in {'channels_last', 'channels_first'}
x = 255. * x
if data_format == 'channels_first':
# 'RGB'->'BGR'
x = x[:, ::-1, :, :]
# Zero-center by mean pixel
x[:, 0, :, :] = x[:, 0, :, :] - 103.939
x[:, 1, :, :] = x[:, 1, :, :] - 116.779
x[:, 2, :, :] = x[:, 2, :, :] - 123.68
else:
# 'RGB'->'BGR'
x = x[:, :, :, ::-1]
# Zero-center by mean pixel
x[:, :, :, 0] = x[:, :, :, 0] - 103.939
x[:, :, :, 1] = x[:, :, :, 1] - 116.779
x[:, :, :, 2] = x[:, :, :, 2] - 123.68
return x
def preprocess_VGG(x, dim_ordering='default'):
if dim_ordering == 'default':
dim_ordering = K.image_dim_ordering()
assert dim_ordering in {'tf', 'th'}
# x has pixels intensities between 0 and 1
x = 255. * x
norm_vec = K.variable([103.939, 116.779, 123.68])
if dim_ordering == 'th':
norm_vec = K.reshape(norm_vec, (1,3,1,1))
x = x - norm_vec
# 'RGB'->'BGR'
x = x[:, ::-1, :, :]
else:
norm_vec = K.reshape(norm_vec, (1,1,1,3))
x = x - norm_vec
# 'RGB'->'BGR'
x = x[:, :, :, ::-1]
return x
def feature_loss(y_true, y_pred):
return K.sqrt(K.mean(K.square(y_true - y_pred)))
def pixel_loss(y_true, y_pred):
return K.sqrt(K.mean(K.square(y_true - y_pred))) + 0.00001*total_variation_loss(y_pred)
def total_variation_loss(y_pred):
if K.image_data_format() == 'channels_first':
a = K.square(y_pred[:, :, :m - 1, :n - 1] - y_pred[:, :, 1:, :n - 1])
b = K.square(y_pred[:, :, :m - 1, :n - 1] - y_pred[:, :, :m - 1, 1:])
else:
a = K.square(y_pred[:, :m - 1, :n - 1, :] - y_pred[:, 1:, :n - 1, :])
b = K.square(y_pred[:, :m - 1, :n - 1, :] - y_pred[:, :m - 1, 1:, :])
return K.sum(K.pow(a + b, 1.25))
def generator_model(input_img):
# Encoder
x = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)
x = Conv2D(32, (2, 2), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block2_conv1')(x)
x = Conv2D(64, (2, 2), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block3_conv1')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block4_conv1')(x)
res = Conv2D(256, (3, 3), activation='relu', padding='same')(x)
x = layers.add([x, res])
res = Conv2D(256, (3, 3), activation='relu', padding='same')(x)
encoded = layers.add([x, res])
# Decoder
res = Conv2D(256, (3, 3), activation='relu', padding='same', name='block5_conv1')(encoded)
x = layers.add([encoded, res])
res = Conv2D(256, (3, 3), activation='relu', padding='same')(x)
x = layers.add([x, res])
res = Conv2D(256, (3, 3), activation='relu', padding='same')(x)
x = layers.add([x, res])
x = Conv2D(128, (2, 2), activation='relu', padding='same', name='block6_conv1')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block7_conv1')(x)
res = Conv2D(128, (3, 3), activation='relu', padding='same')(x)
x = layers.add([x, res])
res = Conv2D(128, (3, 3), activation='relu', padding='same')(x)
x = layers.add([x, res])
x = Conv2D(64, (2, 2), activation='relu', padding='same', name='block8_conv1')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block9_conv1')(x)
res = Conv2D(64, (3, 3), activation='relu', padding='same')(x)
x = layers.add([x, res])
res = Conv2D(64, (3, 3), activation='relu', padding='same')(x)
x = layers.add([x, res])
x = Conv2D(32, (2, 2), activation='relu', padding='same', name='block10_conv1')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(32, (3, 3), activation='relu', padding='same', name='block11_conv1')(x)
res = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = layers.add([x, res])
decoded = Conv2D(3, (3, 3), activation='sigmoid', padding='same')(x)
return decoded
def feat_model(img_input):
# extract vgg feature
vgg_16 = vgg16.VGG16(include_top=False, weights='imagenet', input_tensor=None)
# freeze VGG_16 when training
for layer in vgg_16.layers:
layer.trainable = False
vgg_first2 = Model(input=vgg_16.input, output=vgg_16.get_layer('block2_conv2').output)
Norm_layer = Lambda(preprocess_VGG)
x_VGG = Norm_layer(img_input)
feat = vgg_first2(x_VGG)
return feat
def full_model(summary = True):
input_img = Input(shape=(m, n, 1))
generator = generator_model(input_img)
feat = feat_model(generator)
model = Model(input=input_img, output=[generator, feat], name='architect')
model.summary()
return model
def train_faces(weights=None):
model = full_model()
optim = Adam(lr=1e-4,beta_1=0.9, beta_2=0.999, epsilon=1e-8)
model.compile(loss=[pixel_loss, feature_loss], loss_weights=[1, 0.01], optimizer=optim)
if weights is not None:
model.load_weights(weights)
for epoch in range(num_epochs):
num_batches = num_images // batch_size
for batch in range(num_batches):
X,Y,W = get_batch(batch, dataset='zubud')
loss = model.train_on_batch(X, [Y, W])
print("Loss in Epoch # ",epoch,"| Batch #", batch, ":", loss)
model.save_weights("weights_%d" % epoch)
def predict(batch, i, weights):
model = full_model()
model.load_weights(weights)
X, T, _ = get_batch(batch, Y = True, W = False, dataset='zubud')
Y, W = model.predict(X[:i])
x = X[i].reshape(m,n)
y = Y[i]
sub_plot(x, T[i], y)
def sketchback(image, weights):
model = full_model()
model.load_weights(weights)
sketch = cv.imread(image, 0)
sketch = imresize(sketch, sketch_dim)
sketch = sketch / 255.
sketch = sketch.reshape(1,m,n,1)
result, _ = model.predict(sketch)
imshow(result[0])
fig = plt.figure()
a = fig.add_subplot(1,2,1)
imgplot = plt.imshow(sketch[0].reshape(m,n), cmap='gray')
a.set_title('Sketch')
plt.axis("off")
a = fig.add_subplot(1,2,2)
imgplot = plt.imshow(result[0])
a.set_title('Prediction')
plt.axis("off")
plt.show()
if __name__ == "__main__":
sketchback("face7.jpg", "weights_faces")