forked from stanleyfok/content-based-recommender
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.d.ts
180 lines (172 loc) · 4.5 KB
/
index.d.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
declare class ContentBasedRecommender {
/**
* @type {Data}
* @public
*/
public data: Data
/**
* @type {Options}
* @public
*/
public options: Options
/**
* @param {Options} [options={}] - default {}
*/
constructor(options?: Options)
/**
* @param {Options} [options={}]
* @throws an error if the maxVectorSize is not an integer or if it is lower than 0, or if maxSimilarDocs is not an integer or if it is lower than 0, or if minScore is not between 0 and 1
*/
public setOptions(options?: Options): void
/**
* @param {Document[]} documents
*/
public train(documents: Document[]): void
/**
* @param {Document[]} documents
* @param {Document[]} targetDocuments
*/
public trainBidirectional(
documents : Document[],
targetDocuments: Document[]
): void
/**
* @param {Document[]} documents
* @throws an error if the param is not an array or if properties from the elements of the array are missing or are wrong
*/
public validateDocuments(documents: Document[]): void
/**
* @param {string} id - document id
* @param {number} [start=0] - default 0
* @param {number} [size=undefined] - default undefined
* @return {DocumentScore[]}
*/
public getSimilarDocuments(
id : string,
start?: number,
size? : number
): DocumentScore[]
/**
* @return {Export}
*/
public export(): Export
/**
* @param {Export} object
*/
public import(object: Export): void
/**
* @param {Document[]} documents
* @param {Options[]} [options]
* @returns {ProcessedDocument[]}
*/
private _processDocuments(
documents: Document[],
options? : Options[]
): ProcessedDocument[]
/**
* @param {string} content - Content from a document
* @returns {string[]} - Tokens from the content of a document (keywords)
*/
private _getTokensFromString(content: string): string[]
/**
* @param {ProcessedDocument[]} processedDocuments - Processed documents
* @param {Options} options
* @returns {DocumentVector[]} - Document id with its vector
*/
private _produceWordVectors(
processedDocuments: ProcessedDocument[],
options : Options
): DocumentVector[]
/**
* @param {DocumentVector[]} documentVectors
* @param {DocumentVector[]} targetDocumentVectors
* @param {Options} options
* @returns {Data}
*/
private _calculateSimilaritiesBetweenTwoVectors(
documentVectors : DocumentVector[],
targetDocumentVectors: DocumentVector[],
options : Options
): Data
/**
* @param {DocumentVector[]} documentVectors
* @returns {Data} - object which keys are every document id and its value is an empty array
*/
public initializeDataHash(documentVectors: DocumentVector[]): Data
/**
* @param {DocumentVector[]} documentVectors
* @param {Options} options
* @returns {Data}
*/
private _calculateSimilarities(
documentVectors: DocumentVector[],
options : Options
): Data
/**
* @param {DocumentScore[]} data
* @param {Options} options
*/
public orderDocuments(data: DocumentVector[], options: Options): void
}
declare namespace ContentBasedRecommender {
export {
ProcessedDocument,
Options,
Document,
DocumentVector,
DocumentScore,
Data,
Export
}
}
type Data = {
[x: string]: DocumentScore
}
/**
* - Options to create a ContentBasedRecommender
*/
type Options = {
/**
* - Max vector size to control the max size of word vector after tf-idf processing. A smaller vector size will help training performance while not affecting recommendation quality. Defaults to be 100
*/
maxVectorSize: number
/**
* - The minimum score required to meet to consider it is a similar document. It will save more memory by filtering out documents having low scores. Allowed values range from 0 to 1. Default is 0
*/
minScore: number
/**
* - The maximum number of similar documents to keep for each document. Default is the max safe integer in javascript
*/
maxSimilarDocs: number
/**
* - Show progress messages so can monitor the training progress
*/
debug: boolean
}
type Document = {
id : string
content: string
}
type DocumentScore = {
id : string
score: number
}
type Export = {
data : Data
options: Options
}
type ProcessedDocument = {
/**
* - document id
*/
id: string
/**
* - tokens from the content of the document (keywords)
*/
tokens: string[]
}
type DocumentVector = {
id : string
vector: any
}
export = ContentBasedRecommender