diff --git a/.cache/clangd/index/dummy.cpp.DD0D404C08096709.idx b/.cache/clangd/index/dummy.cpp.DD0D404C08096709.idx
new file mode 100644
index 0000000..9d5333b
Binary files /dev/null and b/.cache/clangd/index/dummy.cpp.DD0D404C08096709.idx differ
diff --git a/.cache/clangd/index/ego_motion_model.cpp.63DD27C0574C7AF4.idx b/.cache/clangd/index/ego_motion_model.cpp.63DD27C0574C7AF4.idx
new file mode 100644
index 0000000..9219db4
Binary files /dev/null and b/.cache/clangd/index/ego_motion_model.cpp.63DD27C0574C7AF4.idx differ
diff --git a/.cache/clangd/index/ego_motion_model.h.F36EF4DDAAFC5176.idx b/.cache/clangd/index/ego_motion_model.h.F36EF4DDAAFC5176.idx
new file mode 100644
index 0000000..c3c837c
Binary files /dev/null and b/.cache/clangd/index/ego_motion_model.h.F36EF4DDAAFC5176.idx differ
diff --git a/.cache/clangd/index/ego_motion_model_test.cpp.0A429AF5AC57FB16.idx b/.cache/clangd/index/ego_motion_model_test.cpp.0A429AF5AC57FB16.idx
new file mode 100644
index 0000000..0e2e46c
Binary files /dev/null and b/.cache/clangd/index/ego_motion_model_test.cpp.0A429AF5AC57FB16.idx differ
diff --git a/.cache/clangd/index/gmock-actions.h.A1B5FD9C1B310806.idx b/.cache/clangd/index/gmock-actions.h.A1B5FD9C1B310806.idx
new file mode 100644
index 0000000..6555a1f
Binary files /dev/null and b/.cache/clangd/index/gmock-actions.h.A1B5FD9C1B310806.idx differ
diff --git a/.cache/clangd/index/gmock-all.cc.DAE0DE9DFAF88F71.idx b/.cache/clangd/index/gmock-all.cc.DAE0DE9DFAF88F71.idx
new file mode 100644
index 0000000..497fd1e
Binary files /dev/null and b/.cache/clangd/index/gmock-all.cc.DAE0DE9DFAF88F71.idx differ
diff --git a/.cache/clangd/index/gmock-cardinalities.cc.9398110F6196350C.idx b/.cache/clangd/index/gmock-cardinalities.cc.9398110F6196350C.idx
new file mode 100644
index 0000000..f9b0c21
Binary files /dev/null and b/.cache/clangd/index/gmock-cardinalities.cc.9398110F6196350C.idx differ
diff --git a/.cache/clangd/index/gmock-cardinalities.h.ED3558AECFBF2B7C.idx b/.cache/clangd/index/gmock-cardinalities.h.ED3558AECFBF2B7C.idx
new file mode 100644
index 0000000..dc048ff
Binary files /dev/null and b/.cache/clangd/index/gmock-cardinalities.h.ED3558AECFBF2B7C.idx differ
diff --git a/.cache/clangd/index/gmock-function-mocker.h.57CF012C1D3B97F0.idx b/.cache/clangd/index/gmock-function-mocker.h.57CF012C1D3B97F0.idx
new file mode 100644
index 0000000..393dd02
Binary files /dev/null and b/.cache/clangd/index/gmock-function-mocker.h.57CF012C1D3B97F0.idx differ
diff --git a/.cache/clangd/index/gmock-generated-actions.h.E651FC2A9AF1082D.idx b/.cache/clangd/index/gmock-generated-actions.h.E651FC2A9AF1082D.idx
new file mode 100644
index 0000000..7c5512e
Binary files /dev/null and b/.cache/clangd/index/gmock-generated-actions.h.E651FC2A9AF1082D.idx differ
diff --git a/.cache/clangd/index/gmock-internal-utils.cc.BE92E28AD8FD89AC.idx b/.cache/clangd/index/gmock-internal-utils.cc.BE92E28AD8FD89AC.idx
new file mode 100644
index 0000000..d37f1f4
Binary files /dev/null and b/.cache/clangd/index/gmock-internal-utils.cc.BE92E28AD8FD89AC.idx differ
diff --git a/.cache/clangd/index/gmock-internal-utils.h.BE7D8CA3C42CAF7C.idx b/.cache/clangd/index/gmock-internal-utils.h.BE7D8CA3C42CAF7C.idx
new file mode 100644
index 0000000..efbf582
Binary files /dev/null and b/.cache/clangd/index/gmock-internal-utils.h.BE7D8CA3C42CAF7C.idx differ
diff --git a/.cache/clangd/index/gmock-matchers.cc.2B9172100AF3A489.idx b/.cache/clangd/index/gmock-matchers.cc.2B9172100AF3A489.idx
new file mode 100644
index 0000000..f5d53fb
Binary files /dev/null and b/.cache/clangd/index/gmock-matchers.cc.2B9172100AF3A489.idx differ
diff --git a/.cache/clangd/index/gmock-matchers.h.A08104D8EE1E0970.idx b/.cache/clangd/index/gmock-matchers.h.A08104D8EE1E0970.idx
new file mode 100644
index 0000000..d23f5a9
Binary files /dev/null and b/.cache/clangd/index/gmock-matchers.h.A08104D8EE1E0970.idx differ
diff --git a/.cache/clangd/index/gmock-matchers.h.CFDFE4B7126A5CC7.idx b/.cache/clangd/index/gmock-matchers.h.CFDFE4B7126A5CC7.idx
new file mode 100644
index 0000000..feb1611
Binary files /dev/null and b/.cache/clangd/index/gmock-matchers.h.CFDFE4B7126A5CC7.idx differ
diff --git a/.cache/clangd/index/gmock-more-actions.h.EE6976BD6B89BDBF.idx b/.cache/clangd/index/gmock-more-actions.h.EE6976BD6B89BDBF.idx
new file mode 100644
index 0000000..c35da46
Binary files /dev/null and b/.cache/clangd/index/gmock-more-actions.h.EE6976BD6B89BDBF.idx differ
diff --git a/.cache/clangd/index/gmock-more-matchers.h.C7B9B96B37B751A8.idx b/.cache/clangd/index/gmock-more-matchers.h.C7B9B96B37B751A8.idx
new file mode 100644
index 0000000..afeb330
Binary files /dev/null and b/.cache/clangd/index/gmock-more-matchers.h.C7B9B96B37B751A8.idx differ
diff --git a/.cache/clangd/index/gmock-nice-strict.h.6B9501FC982ED17C.idx b/.cache/clangd/index/gmock-nice-strict.h.6B9501FC982ED17C.idx
new file mode 100644
index 0000000..8008930
Binary files /dev/null and b/.cache/clangd/index/gmock-nice-strict.h.6B9501FC982ED17C.idx differ
diff --git a/.cache/clangd/index/gmock-port.h.23026FD70E701932.idx b/.cache/clangd/index/gmock-port.h.23026FD70E701932.idx
new file mode 100644
index 0000000..7e10a96
Binary files /dev/null and b/.cache/clangd/index/gmock-port.h.23026FD70E701932.idx differ
diff --git a/.cache/clangd/index/gmock-port.h.C552C1B69EA8E24A.idx b/.cache/clangd/index/gmock-port.h.C552C1B69EA8E24A.idx
new file mode 100644
index 0000000..303b9ff
Binary files /dev/null and b/.cache/clangd/index/gmock-port.h.C552C1B69EA8E24A.idx differ
diff --git a/.cache/clangd/index/gmock-pp.h.8D19053357DF7501.idx b/.cache/clangd/index/gmock-pp.h.8D19053357DF7501.idx
new file mode 100644
index 0000000..ef06cbf
Binary files /dev/null and b/.cache/clangd/index/gmock-pp.h.8D19053357DF7501.idx differ
diff --git a/.cache/clangd/index/gmock.cc.7B7156E1C8F7DCB6.idx b/.cache/clangd/index/gmock.cc.7B7156E1C8F7DCB6.idx
new file mode 100644
index 0000000..1d912f2
Binary files /dev/null and b/.cache/clangd/index/gmock.cc.7B7156E1C8F7DCB6.idx differ
diff --git a/.cache/clangd/index/gmock.h.FC554658E402349F.idx b/.cache/clangd/index/gmock.h.FC554658E402349F.idx
new file mode 100644
index 0000000..034acf3
Binary files /dev/null and b/.cache/clangd/index/gmock.h.FC554658E402349F.idx differ
diff --git a/.cache/clangd/index/gmock_main.cc.2E567EB749DF7F3E.idx b/.cache/clangd/index/gmock_main.cc.2E567EB749DF7F3E.idx
new file mode 100644
index 0000000..2c9b559
Binary files /dev/null and b/.cache/clangd/index/gmock_main.cc.2E567EB749DF7F3E.idx differ
diff --git a/.cache/clangd/index/gtest-all.cc.D6DC331409B44F81.idx b/.cache/clangd/index/gtest-all.cc.D6DC331409B44F81.idx
new file mode 100644
index 0000000..46eb1e8
Binary files /dev/null and b/.cache/clangd/index/gtest-all.cc.D6DC331409B44F81.idx differ
diff --git a/.cache/clangd/index/gtest-assertion-result.cc.75D8811B5801C31C.idx b/.cache/clangd/index/gtest-assertion-result.cc.75D8811B5801C31C.idx
new file mode 100644
index 0000000..4957a19
Binary files /dev/null and b/.cache/clangd/index/gtest-assertion-result.cc.75D8811B5801C31C.idx differ
diff --git a/.cache/clangd/index/gtest-assertion-result.h.55DC7C7D4CCCB717.idx b/.cache/clangd/index/gtest-assertion-result.h.55DC7C7D4CCCB717.idx
new file mode 100644
index 0000000..e8f311a
Binary files /dev/null and b/.cache/clangd/index/gtest-assertion-result.h.55DC7C7D4CCCB717.idx differ
diff --git a/.cache/clangd/index/gtest-death-test-internal.h.73F3E41D219ECDDB.idx b/.cache/clangd/index/gtest-death-test-internal.h.73F3E41D219ECDDB.idx
new file mode 100644
index 0000000..845fe2e
Binary files /dev/null and b/.cache/clangd/index/gtest-death-test-internal.h.73F3E41D219ECDDB.idx differ
diff --git a/.cache/clangd/index/gtest-death-test.cc.5AA9E8D97919BB1F.idx b/.cache/clangd/index/gtest-death-test.cc.5AA9E8D97919BB1F.idx
new file mode 100644
index 0000000..d94d223
Binary files /dev/null and b/.cache/clangd/index/gtest-death-test.cc.5AA9E8D97919BB1F.idx differ
diff --git a/.cache/clangd/index/gtest-death-test.h.CB2BDE5FC2D78197.idx b/.cache/clangd/index/gtest-death-test.h.CB2BDE5FC2D78197.idx
new file mode 100644
index 0000000..699bf05
Binary files /dev/null and b/.cache/clangd/index/gtest-death-test.h.CB2BDE5FC2D78197.idx differ
diff --git a/.cache/clangd/index/gtest-filepath.cc.1F9D140D76DE95CF.idx b/.cache/clangd/index/gtest-filepath.cc.1F9D140D76DE95CF.idx
new file mode 100644
index 0000000..c57fa43
Binary files /dev/null and b/.cache/clangd/index/gtest-filepath.cc.1F9D140D76DE95CF.idx differ
diff --git a/.cache/clangd/index/gtest-filepath.h.E4EBDB820A3B9704.idx b/.cache/clangd/index/gtest-filepath.h.E4EBDB820A3B9704.idx
new file mode 100644
index 0000000..3d99b0b
Binary files /dev/null and b/.cache/clangd/index/gtest-filepath.h.E4EBDB820A3B9704.idx differ
diff --git a/.cache/clangd/index/gtest-internal-inl.h.E5C56A78B3876931.idx b/.cache/clangd/index/gtest-internal-inl.h.E5C56A78B3876931.idx
new file mode 100644
index 0000000..0021cf4
Binary files /dev/null and b/.cache/clangd/index/gtest-internal-inl.h.E5C56A78B3876931.idx differ
diff --git a/.cache/clangd/index/gtest-internal.h.CA3120BE5D332688.idx b/.cache/clangd/index/gtest-internal.h.CA3120BE5D332688.idx
new file mode 100644
index 0000000..345a115
Binary files /dev/null and b/.cache/clangd/index/gtest-internal.h.CA3120BE5D332688.idx differ
diff --git a/.cache/clangd/index/gtest-matchers.cc.E5E80D35B891B4F9.idx b/.cache/clangd/index/gtest-matchers.cc.E5E80D35B891B4F9.idx
new file mode 100644
index 0000000..e1355e5
Binary files /dev/null and b/.cache/clangd/index/gtest-matchers.cc.E5E80D35B891B4F9.idx differ
diff --git a/.cache/clangd/index/gtest-matchers.h.B7FD35F660BEAE40.idx b/.cache/clangd/index/gtest-matchers.h.B7FD35F660BEAE40.idx
new file mode 100644
index 0000000..d539b32
Binary files /dev/null and b/.cache/clangd/index/gtest-matchers.h.B7FD35F660BEAE40.idx differ
diff --git a/.cache/clangd/index/gtest-message.h.C5BF209B2B1B8DB4.idx b/.cache/clangd/index/gtest-message.h.C5BF209B2B1B8DB4.idx
new file mode 100644
index 0000000..e52139a
Binary files /dev/null and b/.cache/clangd/index/gtest-message.h.C5BF209B2B1B8DB4.idx differ
diff --git a/.cache/clangd/index/gtest-param-test.h.E1BE1EC6065448CE.idx b/.cache/clangd/index/gtest-param-test.h.E1BE1EC6065448CE.idx
new file mode 100644
index 0000000..2c0e275
Binary files /dev/null and b/.cache/clangd/index/gtest-param-test.h.E1BE1EC6065448CE.idx differ
diff --git a/.cache/clangd/index/gtest-param-util.h.3A2E3987DCB070FA.idx b/.cache/clangd/index/gtest-param-util.h.3A2E3987DCB070FA.idx
new file mode 100644
index 0000000..efdcdb7
Binary files /dev/null and b/.cache/clangd/index/gtest-param-util.h.3A2E3987DCB070FA.idx differ
diff --git a/.cache/clangd/index/gtest-port-arch.h.D4703C239FC5F49E.idx b/.cache/clangd/index/gtest-port-arch.h.D4703C239FC5F49E.idx
new file mode 100644
index 0000000..376c428
Binary files /dev/null and b/.cache/clangd/index/gtest-port-arch.h.D4703C239FC5F49E.idx differ
diff --git a/.cache/clangd/index/gtest-port.cc.1F350422A53D6E18.idx b/.cache/clangd/index/gtest-port.cc.1F350422A53D6E18.idx
new file mode 100644
index 0000000..5fffd6f
Binary files /dev/null and b/.cache/clangd/index/gtest-port.cc.1F350422A53D6E18.idx differ
diff --git a/.cache/clangd/index/gtest-port.h.0E2D4341D663A1F3.idx b/.cache/clangd/index/gtest-port.h.0E2D4341D663A1F3.idx
new file mode 100644
index 0000000..b866ca6
Binary files /dev/null and b/.cache/clangd/index/gtest-port.h.0E2D4341D663A1F3.idx differ
diff --git a/.cache/clangd/index/gtest-port.h.92846D57A72AEC67.idx b/.cache/clangd/index/gtest-port.h.92846D57A72AEC67.idx
new file mode 100644
index 0000000..0c88b7d
Binary files /dev/null and b/.cache/clangd/index/gtest-port.h.92846D57A72AEC67.idx differ
diff --git a/.cache/clangd/index/gtest-printers.cc.5744E5127C01438E.idx b/.cache/clangd/index/gtest-printers.cc.5744E5127C01438E.idx
new file mode 100644
index 0000000..c1455f6
Binary files /dev/null and b/.cache/clangd/index/gtest-printers.cc.5744E5127C01438E.idx differ
diff --git a/.cache/clangd/index/gtest-printers.h.D11908A9982C45AA.idx b/.cache/clangd/index/gtest-printers.h.D11908A9982C45AA.idx
new file mode 100644
index 0000000..7cbff8f
Binary files /dev/null and b/.cache/clangd/index/gtest-printers.h.D11908A9982C45AA.idx differ
diff --git a/.cache/clangd/index/gtest-printers.h.F2CE017AD1C43CF7.idx b/.cache/clangd/index/gtest-printers.h.F2CE017AD1C43CF7.idx
new file mode 100644
index 0000000..bf08214
Binary files /dev/null and b/.cache/clangd/index/gtest-printers.h.F2CE017AD1C43CF7.idx differ
diff --git a/.cache/clangd/index/gtest-spi.h.45E18DF547B30CF0.idx b/.cache/clangd/index/gtest-spi.h.45E18DF547B30CF0.idx
new file mode 100644
index 0000000..8266ade
Binary files /dev/null and b/.cache/clangd/index/gtest-spi.h.45E18DF547B30CF0.idx differ
diff --git a/.cache/clangd/index/gtest-string.h.445673D32809D302.idx b/.cache/clangd/index/gtest-string.h.445673D32809D302.idx
new file mode 100644
index 0000000..9b36e4f
Binary files /dev/null and b/.cache/clangd/index/gtest-string.h.445673D32809D302.idx differ
diff --git a/.cache/clangd/index/gtest-test-part.cc.9C5B78643F51480D.idx b/.cache/clangd/index/gtest-test-part.cc.9C5B78643F51480D.idx
new file mode 100644
index 0000000..490287c
Binary files /dev/null and b/.cache/clangd/index/gtest-test-part.cc.9C5B78643F51480D.idx differ
diff --git a/.cache/clangd/index/gtest-test-part.h.8E4D598695E9B78F.idx b/.cache/clangd/index/gtest-test-part.h.8E4D598695E9B78F.idx
new file mode 100644
index 0000000..c87aff5
Binary files /dev/null and b/.cache/clangd/index/gtest-test-part.h.8E4D598695E9B78F.idx differ
diff --git a/.cache/clangd/index/gtest-type-util.h.80BFEC9FF19642A6.idx b/.cache/clangd/index/gtest-type-util.h.80BFEC9FF19642A6.idx
new file mode 100644
index 0000000..5ea3c5b
Binary files /dev/null and b/.cache/clangd/index/gtest-type-util.h.80BFEC9FF19642A6.idx differ
diff --git a/.cache/clangd/index/gtest-typed-test.cc.D32EAB2ACF18E1E0.idx b/.cache/clangd/index/gtest-typed-test.cc.D32EAB2ACF18E1E0.idx
new file mode 100644
index 0000000..ff4f311
Binary files /dev/null and b/.cache/clangd/index/gtest-typed-test.cc.D32EAB2ACF18E1E0.idx differ
diff --git a/.cache/clangd/index/gtest-typed-test.h.D547384F5A0BDFED.idx b/.cache/clangd/index/gtest-typed-test.h.D547384F5A0BDFED.idx
new file mode 100644
index 0000000..0a68d66
Binary files /dev/null and b/.cache/clangd/index/gtest-typed-test.h.D547384F5A0BDFED.idx differ
diff --git a/.cache/clangd/index/gtest.cc.1D16E0D04D9E6416.idx b/.cache/clangd/index/gtest.cc.1D16E0D04D9E6416.idx
new file mode 100644
index 0000000..40dc091
Binary files /dev/null and b/.cache/clangd/index/gtest.cc.1D16E0D04D9E6416.idx differ
diff --git a/.cache/clangd/index/gtest.h.2E26582C5003B303.idx b/.cache/clangd/index/gtest.h.2E26582C5003B303.idx
new file mode 100644
index 0000000..dd04b07
Binary files /dev/null and b/.cache/clangd/index/gtest.h.2E26582C5003B303.idx differ
diff --git a/.cache/clangd/index/gtest.h.7834C5D7F7E0551B.idx b/.cache/clangd/index/gtest.h.7834C5D7F7E0551B.idx
new file mode 100644
index 0000000..c8c75b2
Binary files /dev/null and b/.cache/clangd/index/gtest.h.7834C5D7F7E0551B.idx differ
diff --git a/.cache/clangd/index/gtest_main.cc.D32C4E6E58904CC0.idx b/.cache/clangd/index/gtest_main.cc.D32C4E6E58904CC0.idx
new file mode 100644
index 0000000..5bf447a
Binary files /dev/null and b/.cache/clangd/index/gtest_main.cc.D32C4E6E58904CC0.idx differ
diff --git a/.cache/clangd/index/gtest_pred_impl.h.8ABE648A5F46FD71.idx b/.cache/clangd/index/gtest_pred_impl.h.8ABE648A5F46FD71.idx
new file mode 100644
index 0000000..eb2db74
Binary files /dev/null and b/.cache/clangd/index/gtest_pred_impl.h.8ABE648A5F46FD71.idx differ
diff --git a/.cache/clangd/index/gtest_prod.h.AAF2F44EC3A03F6C.idx b/.cache/clangd/index/gtest_prod.h.AAF2F44EC3A03F6C.idx
new file mode 100644
index 0000000..4e899ad
Binary files /dev/null and b/.cache/clangd/index/gtest_prod.h.AAF2F44EC3A03F6C.idx differ
diff --git a/.cache/clangd/index/kalman_filter.h.83077C3AE8316A8F.idx b/.cache/clangd/index/kalman_filter.h.83077C3AE8316A8F.idx
new file mode 100644
index 0000000..302bcf3
Binary files /dev/null and b/.cache/clangd/index/kalman_filter.h.83077C3AE8316A8F.idx differ
diff --git a/.cache/clangd/index/kalman_filter_test.cpp.DB7505B57195E780.idx b/.cache/clangd/index/kalman_filter_test.cpp.DB7505B57195E780.idx
new file mode 100644
index 0000000..8d7d1a2
Binary files /dev/null and b/.cache/clangd/index/kalman_filter_test.cpp.DB7505B57195E780.idx differ
diff --git a/.cache/clangd/index/main.cpp.5F2804F330A1C1B7.idx b/.cache/clangd/index/main.cpp.5F2804F330A1C1B7.idx
new file mode 100644
index 0000000..4021ff1
Binary files /dev/null and b/.cache/clangd/index/main.cpp.5F2804F330A1C1B7.idx differ
diff --git a/.cache/clangd/index/main.cpp.5FF86FFF8A25C09C.idx b/.cache/clangd/index/main.cpp.5FF86FFF8A25C09C.idx
new file mode 100644
index 0000000..e08d17a
Binary files /dev/null and b/.cache/clangd/index/main.cpp.5FF86FFF8A25C09C.idx differ
diff --git a/.cache/clangd/index/main.cpp.99565457C9CA84A0.idx b/.cache/clangd/index/main.cpp.99565457C9CA84A0.idx
new file mode 100644
index 0000000..904ee03
Binary files /dev/null and b/.cache/clangd/index/main.cpp.99565457C9CA84A0.idx differ
diff --git a/.cache/clangd/index/main.cpp.9CFEC1DC50344A7B.idx b/.cache/clangd/index/main.cpp.9CFEC1DC50344A7B.idx
new file mode 100644
index 0000000..0b56432
Binary files /dev/null and b/.cache/clangd/index/main.cpp.9CFEC1DC50344A7B.idx differ
diff --git a/.cache/clangd/index/main.cpp.CE0178E342F2D9F0.idx b/.cache/clangd/index/main.cpp.CE0178E342F2D9F0.idx
new file mode 100644
index 0000000..53c57d2
Binary files /dev/null and b/.cache/clangd/index/main.cpp.CE0178E342F2D9F0.idx differ
diff --git a/.cache/clangd/index/main.cpp.CF0695BBBA04BD32.idx b/.cache/clangd/index/main.cpp.CF0695BBBA04BD32.idx
new file mode 100644
index 0000000..4bdb422
Binary files /dev/null and b/.cache/clangd/index/main.cpp.CF0695BBBA04BD32.idx differ
diff --git a/.cache/clangd/index/main.cpp.FE3523E093B38467.idx b/.cache/clangd/index/main.cpp.FE3523E093B38467.idx
new file mode 100644
index 0000000..ab82688
Binary files /dev/null and b/.cache/clangd/index/main.cpp.FE3523E093B38467.idx differ
diff --git a/.cache/clangd/index/motion_model.h.E8859D989EB5BBEB.idx b/.cache/clangd/index/motion_model.h.E8859D989EB5BBEB.idx
new file mode 100644
index 0000000..73fbe38
Binary files /dev/null and b/.cache/clangd/index/motion_model.h.E8859D989EB5BBEB.idx differ
diff --git a/.cache/clangd/index/square_root_ukf.h.C7BCF9BE0B150548.idx b/.cache/clangd/index/square_root_ukf.h.C7BCF9BE0B150548.idx
new file mode 100644
index 0000000..40b62fb
Binary files /dev/null and b/.cache/clangd/index/square_root_ukf.h.C7BCF9BE0B150548.idx differ
diff --git a/.cache/clangd/index/square_root_ukf_test.cpp.51937690C7260A46.idx b/.cache/clangd/index/square_root_ukf_test.cpp.51937690C7260A46.idx
new file mode 100644
index 0000000..cb0bf66
Binary files /dev/null and b/.cache/clangd/index/square_root_ukf_test.cpp.51937690C7260A46.idx differ
diff --git a/.cache/clangd/index/types.h.12680B071987E97B.idx b/.cache/clangd/index/types.h.12680B071987E97B.idx
new file mode 100644
index 0000000..07e850d
Binary files /dev/null and b/.cache/clangd/index/types.h.12680B071987E97B.idx differ
diff --git a/.cache/clangd/index/unit_tests.cpp.677E3B3FE9A2698F.idx b/.cache/clangd/index/unit_tests.cpp.677E3B3FE9A2698F.idx
new file mode 100644
index 0000000..aa2f2fe
Binary files /dev/null and b/.cache/clangd/index/unit_tests.cpp.677E3B3FE9A2698F.idx differ
diff --git a/.cache/clangd/index/unscented_kalman_filter.h.CBE99E27D27BA82E.idx b/.cache/clangd/index/unscented_kalman_filter.h.CBE99E27D27BA82E.idx
new file mode 100644
index 0000000..eb41d47
Binary files /dev/null and b/.cache/clangd/index/unscented_kalman_filter.h.CBE99E27D27BA82E.idx differ
diff --git a/.cache/clangd/index/unscented_kalman_filter_test.cpp.630095EB22B849B7.idx b/.cache/clangd/index/unscented_kalman_filter_test.cpp.630095EB22B849B7.idx
new file mode 100644
index 0000000..c72e17c
Binary files /dev/null and b/.cache/clangd/index/unscented_kalman_filter_test.cpp.630095EB22B849B7.idx differ
diff --git a/.cache/clangd/index/unscented_transform.h.858000815B924B56.idx b/.cache/clangd/index/unscented_transform.h.858000815B924B56.idx
new file mode 100644
index 0000000..50eb4c3
Binary files /dev/null and b/.cache/clangd/index/unscented_transform.h.858000815B924B56.idx differ
diff --git a/.cache/clangd/index/unscented_trasform_test.cpp.860939D280D115E4.idx b/.cache/clangd/index/unscented_trasform_test.cpp.860939D280D115E4.idx
new file mode 100644
index 0000000..906e166
Binary files /dev/null and b/.cache/clangd/index/unscented_trasform_test.cpp.860939D280D115E4.idx differ
diff --git a/.cache/clangd/index/util.h.5FC91D830C8CFE03.idx b/.cache/clangd/index/util.h.5FC91D830C8CFE03.idx
new file mode 100644
index 0000000..1817db6
Binary files /dev/null and b/.cache/clangd/index/util.h.5FC91D830C8CFE03.idx differ
diff --git a/.clang-format b/.clang-format
new file mode 100644
index 0000000..8e747e4
--- /dev/null
+++ b/.clang-format
@@ -0,0 +1,28 @@
+---
+BasedOnStyle: Microsoft
+AccessModifierOffset: '-1'
+AlignAfterOpenBracket: Align
+AllowShortFunctionsOnASingleLine: Inline
+AllowShortIfStatementsOnASingleLine: Never
+AllowShortLambdasOnASingleLine: Inline
+AlwaysBreakAfterReturnType: None
+AlwaysBreakTemplateDeclarations: 'Yes'
+BreakBeforeBinaryOperators: None
+BreakBeforeBraces: Custom
+BreakConstructorInitializers: BeforeColon
+BreakInheritanceList: BeforeColon
+ColumnLimit: '80'
+ContinuationIndentWidth: '4'
+IncludeBlocks: Preserve
+IndentPPDirectives: None
+IndentWidth: '2'
+Language: Cpp
+MaxEmptyLinesToKeep: '1'
+NamespaceIndentation: None
+PointerAlignment: Left
+SpaceBeforeParens: ControlStatements
+SpacesBeforeTrailingComments: '2'
+TabWidth: '4'
+UseTab: Never
+
+...
diff --git a/.github/workflows/clang-format-check.yml b/.github/workflows/clang-format-check.yml
new file mode 100644
index 0000000..a69528f
--- /dev/null
+++ b/.github/workflows/clang-format-check.yml
@@ -0,0 +1,22 @@
+name: clang-format Check
+on: [push, pull_request]
+jobs:
+ formatting-check:
+ name: Formatting Check
+ runs-on: ubuntu-latest
+ strategy:
+ matrix:
+ path:
+ - check: 'src'
+ exclude: 'third_party' # Exclude file paths containing "hello" or "world"
+ - check: 'tests'
+ exclude: '' # Nothing to exclude
+ steps:
+ - uses: actions/checkout@v3
+ - name: Run clang-format style check for C/C++/Protobuf programs.
+ uses: jidicula/clang-format-action@v4.11.0
+ with:
+ clang-format-version: '13'
+ check-path: ${{ matrix.path['check'] }}
+ exclude-regex: ${{ matrix.path['exclude'] }}
+ fallback-style: 'Microsoft' # optional
\ No newline at end of file
diff --git a/.github/workflows/cmake-single-platform.yml b/.github/workflows/cmake-single-platform.yml
new file mode 100644
index 0000000..eadf52c
--- /dev/null
+++ b/.github/workflows/cmake-single-platform.yml
@@ -0,0 +1,46 @@
+# This starter workflow is for a CMake project running on a single platform. There is a different starter workflow if you need cross-platform coverage.
+# See: https://github.com/actions/starter-workflows/blob/main/ci/cmake-multi-platform.yml
+name: CMake on a single platform
+
+on:
+ push:
+ branches: [ "main" ]
+ pull_request:
+ branches: [ "main" ]
+
+env:
+ # Customize the CMake build type here (Release, Debug, RelWithDebInfo, etc.)
+ BUILD_TYPE: Release
+
+jobs:
+ build:
+ # The CMake configure and build commands are platform agnostic and should work equally well on Windows or Mac.
+ # You can convert this to a matrix build if you need cross-platform coverage.
+ # See: https://docs.github.com/en/free-pro-team@latest/actions/learn-github-actions/managing-complex-workflows#using-a-build-matrix
+ runs-on: ubuntu-latest
+
+ steps:
+ - uses: actions/checkout@v4
+
+ - name: Install Eigen3
+ uses: kupns-aka-kupa/setup-eigen3@v1
+ with:
+ version: 3.4.0
+ env:
+ CMAKE_GENERATOR: ${{ matrix.gen }}
+
+ - name: Configure CMake
+ # Configure CMake in a 'build' subdirectory. `CMAKE_BUILD_TYPE` is only required if you are using a single-configuration generator such as make.
+ # See https://cmake.org/cmake/help/latest/variable/CMAKE_BUILD_TYPE.html?highlight=cmake_build_type
+ run: cmake -B ${{github.workspace}}/build -DCMAKE_BUILD_TYPE=${{env.BUILD_TYPE}}
+
+ - name: Build
+ # Build your program with the given configuration
+ run: cmake --build ${{github.workspace}}/build --config ${{env.BUILD_TYPE}}
+
+ - name: Test
+ working-directory: ${{github.workspace}}/build
+ # Execute tests defined by the CMake configuration.
+ # See https://cmake.org/cmake/help/latest/manual/ctest.1.html for more detail
+ run: ctest -C ${{env.BUILD_TYPE}}
+
diff --git a/.github/workflows/cppcheck.yml b/.github/workflows/cppcheck.yml
new file mode 100644
index 0000000..1cd2c05
--- /dev/null
+++ b/.github/workflows/cppcheck.yml
@@ -0,0 +1,32 @@
+name: cppcheck-action
+on: [push]
+
+jobs:
+ build:
+ name: cppcheck
+ runs-on: ubuntu-latest
+ steps:
+ - uses: actions/checkout@v2
+ - name: cppcheck
+ uses: deep5050/cppcheck-action@main
+ with:
+ github_token: ${{ secrets.GITHUB_TOKEN}}
+ # check_library:
+ # skip_preprocessor:
+ # enable:
+ exclude_check: src/third_party
+ # inconclusive:
+ # inline_suppression:
+ # force_language:
+ # force:
+ # max_ctu_depth:
+ # platform:
+ # std:
+ # output_file:
+ # other_options:
+
+ - name: publish report
+ uses: mikeal/publish-to-github-action@master
+ env:
+ GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
+ BRANCH_NAME: 'main' # your branch name goes here
\ No newline at end of file
diff --git a/.gitignore b/.gitignore
index fcb6a2f..bbce190 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1 +1 @@
-build
+*build*
diff --git a/.vscode/c_cpp_properties.json b/.vscode/c_cpp_properties.json
new file mode 100644
index 0000000..dab69e4
--- /dev/null
+++ b/.vscode/c_cpp_properties.json
@@ -0,0 +1,17 @@
+{
+ "configurations": [
+ {
+ "name": "Linux",
+ "includePath": [
+ "${workspaceFolder}/**"
+ ],
+ "defines": [],
+ "compilerPath": "/usr/bin/clang-14",
+ "compileCommands": "${workspaceFolder}/build/compile_commands.json",
+ "cStandard": "c17",
+ "cppStandard": "c++14",
+ "intelliSenseMode": "linux-clang-x64"
+ }
+ ],
+ "version": 4
+}
\ No newline at end of file
diff --git a/.vscode/settings.json b/.vscode/settings.json
new file mode 100644
index 0000000..12a9567
--- /dev/null
+++ b/.vscode/settings.json
@@ -0,0 +1,8 @@
+{
+ "editor.formatOnSave": true,
+ "editor.formatOnType": true,
+ "clang-format.executable": "${workspaceFolder}/.clang-format",
+ "clang-format.style": "file",
+ "clang-format.fallbackStyle": "Google",
+ "clang-format.language.cpp.enable": true,
+}
\ No newline at end of file
diff --git a/CMakeLists.txt b/CMakeLists.txt
index e69de29..6cf27d8 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -0,0 +1,52 @@
+cmake_minimum_required(VERSION 3.4)
+
+# ============================================================================================
+# VCPKG Toolchain
+# ============================================================================================
+if(WIN32)
+ # use vcpkg as packages manager in windows platform
+ # environment variable needs to be added for the path to vcpkg installation "VCPKG_ROOT"
+ set(CMAKE_TOOLCHAIN_FILE "$ENV{VCPKG_ROOT}/scripts/buildsystems/vcpkg.cmake")
+endif(WIN32)
+
+# ============================================================================================
+# ============================================================================================
+set(CMAKE_FIND_PACKAGE_PREFER_CONFIG ON)
+set(CMAKE_INCLUDE_CURRENT_DIR ON)
+set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
+#set(CMAKE_INSTALL_PREFIX ${CMAKE_CURRENT_SOURCE_DIR}/build/package)
+set(CMAKE_CXX_STANDARD 14)
+set(CMAKE_CXX_STANDARD_REQUIRED ON)
+
+set(BUILD_GMOCK OFF CACHE BOOL "" FORCE)
+set(BUILD_GTEST ON CACHE BOOL "" FORCE)
+
+project(OpenKF)
+
+set(INCLUDE_FOLDER "include")
+set(LIBRARY_INSTALL_DIR "lib")
+set(INCLUDE_INSTALL_DIR "${INCLUDE_FOLDER}/${PROJECT_NAME}")
+set(CONFIG_INSTALL_DIR "${LIBRARY_INSTALL_DIR}/cmake/${PROJECT_NAME}")
+set(namespace "%{PROJECT_NAME}::")
+set(TARGETS_EXPORT_NAME "${PROJECT_NAME}Targets")
+
+enable_language(C CXX)
+
+if (NOT MSVC)
+ set(CMAKE_CXX_FLAGS "-O3 -Wall -Wextra")
+ set(CMAKE_CXX_FLAGS_DEBUG "-g -Wall -Wextra")
+endif(NOT MSVC)
+
+if (MSVC)
+ # https://stackoverflow.com/a/18635749
+ add_compile_options(-MTd)
+endif (MSVC)
+
+find_package(Eigen3 3.3 REQUIRED NO_MODULE)
+
+include(CTest)
+
+add_subdirectory(src/third_party/googletest)
+add_subdirectory(src/openkf)
+add_subdirectory(src/examples)
+add_subdirectory(tests)
diff --git a/LICENSE b/LICENSE
deleted file mode 100644
index b89b682..0000000
--- a/LICENSE
+++ /dev/null
@@ -1,21 +0,0 @@
-MIT License
-
-Copyright (c) 2022 mohanadhammad
-
-Permission is hereby granted, free of charge, to any person obtaining a copy
-of this software and associated documentation files (the "Software"), to deal
-in the Software without restriction, including without limitation the rights
-to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all
-copies or substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-SOFTWARE.
diff --git a/LICENSE.md b/LICENSE.md
new file mode 100644
index 0000000..f288702
--- /dev/null
+++ b/LICENSE.md
@@ -0,0 +1,674 @@
+ GNU GENERAL PUBLIC LICENSE
+ Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+ Preamble
+
+ The GNU General Public License is a free, copyleft license for
+software and other kinds of works.
+
+ The licenses for most software and other practical works are designed
+to take away your freedom to share and change the works. By contrast,
+the GNU General Public License is intended to guarantee your freedom to
+share and change all versions of a program--to make sure it remains free
+software for all its users. We, the Free Software Foundation, use the
+GNU General Public License for most of our software; it applies also to
+any other work released this way by its authors. You can apply it to
+your programs, too.
+
+ When we speak of free software, we are referring to freedom, not
+price. Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+them if you wish), that you receive source code or can get it if you
+want it, that you can change the software or use pieces of it in new
+free programs, and that you know you can do these things.
+
+ To protect your rights, we need to prevent others from denying you
+these rights or asking you to surrender the rights. Therefore, you have
+certain responsibilities if you distribute copies of the software, or if
+you modify it: responsibilities to respect the freedom of others.
+
+ For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must pass on to the recipients the same
+freedoms that you received. You must make sure that they, too, receive
+or can get the source code. And you must show them these terms so they
+know their rights.
+
+ Developers that use the GNU GPL protect your rights with two steps:
+(1) assert copyright on the software, and (2) offer you this License
+giving you legal permission to copy, distribute and/or modify it.
+
+ For the developers' and authors' protection, the GPL clearly explains
+that there is no warranty for this free software. For both users' and
+authors' sake, the GPL requires that modified versions be marked as
+changed, so that their problems will not be attributed erroneously to
+authors of previous versions.
+
+ Some devices are designed to deny users access to install or run
+modified versions of the software inside them, although the manufacturer
+can do so. This is fundamentally incompatible with the aim of
+protecting users' freedom to change the software. The systematic
+pattern of such abuse occurs in the area of products for individuals to
+use, which is precisely where it is most unacceptable. Therefore, we
+have designed this version of the GPL to prohibit the practice for those
+products. If such problems arise substantially in other domains, we
+stand ready to extend this provision to those domains in future versions
+of the GPL, as needed to protect the freedom of users.
+
+ Finally, every program is threatened constantly by software patents.
+States should not allow patents to restrict development and use of
+software on general-purpose computers, but in those that do, we wish to
+avoid the special danger that patents applied to a free program could
+make it effectively proprietary. To prevent this, the GPL assures that
+patents cannot be used to render the program non-free.
+
+ The precise terms and conditions for copying, distribution and
+modification follow.
+
+ TERMS AND CONDITIONS
+
+ 0. Definitions.
+
+ "This License" refers to version 3 of the GNU General Public License.
+
+ "Copyright" also means copyright-like laws that apply to other kinds of
+works, such as semiconductor masks.
+
+ "The Program" refers to any copyrightable work licensed under this
+License. Each licensee is addressed as "you". "Licensees" and
+"recipients" may be individuals or organizations.
+
+ To "modify" a work means to copy from or adapt all or part of the work
+in a fashion requiring copyright permission, other than the making of an
+exact copy. The resulting work is called a "modified version" of the
+earlier work or a work "based on" the earlier work.
+
+ A "covered work" means either the unmodified Program or a work based
+on the Program.
+
+ To "propagate" a work means to do anything with it that, without
+permission, would make you directly or secondarily liable for
+infringement under applicable copyright law, except executing it on a
+computer or modifying a private copy. Propagation includes copying,
+distribution (with or without modification), making available to the
+public, and in some countries other activities as well.
+
+ To "convey" a work means any kind of propagation that enables other
+parties to make or receive copies. Mere interaction with a user through
+a computer network, with no transfer of a copy, is not conveying.
+
+ An interactive user interface displays "Appropriate Legal Notices"
+to the extent that it includes a convenient and prominently visible
+feature that (1) displays an appropriate copyright notice, and (2)
+tells the user that there is no warranty for the work (except to the
+extent that warranties are provided), that licensees may convey the
+work under this License, and how to view a copy of this License. If
+the interface presents a list of user commands or options, such as a
+menu, a prominent item in the list meets this criterion.
+
+ 1. Source Code.
+
+ The "source code" for a work means the preferred form of the work
+for making modifications to it. "Object code" means any non-source
+form of a work.
+
+ A "Standard Interface" means an interface that either is an official
+standard defined by a recognized standards body, or, in the case of
+interfaces specified for a particular programming language, one that
+is widely used among developers working in that language.
+
+ The "System Libraries" of an executable work include anything, other
+than the work as a whole, that (a) is included in the normal form of
+packaging a Major Component, but which is not part of that Major
+Component, and (b) serves only to enable use of the work with that
+Major Component, or to implement a Standard Interface for which an
+implementation is available to the public in source code form. A
+"Major Component", in this context, means a major essential component
+(kernel, window system, and so on) of the specific operating system
+(if any) on which the executable work runs, or a compiler used to
+produce the work, or an object code interpreter used to run it.
+
+ The "Corresponding Source" for a work in object code form means all
+the source code needed to generate, install, and (for an executable
+work) run the object code and to modify the work, including scripts to
+control those activities. However, it does not include the work's
+System Libraries, or general-purpose tools or generally available free
+programs which are used unmodified in performing those activities but
+which are not part of the work. For example, Corresponding Source
+includes interface definition files associated with source files for
+the work, and the source code for shared libraries and dynamically
+linked subprograms that the work is specifically designed to require,
+such as by intimate data communication or control flow between those
+subprograms and other parts of the work.
+
+ The Corresponding Source need not include anything that users
+can regenerate automatically from other parts of the Corresponding
+Source.
+
+ The Corresponding Source for a work in source code form is that
+same work.
+
+ 2. Basic Permissions.
+
+ All rights granted under this License are granted for the term of
+copyright on the Program, and are irrevocable provided the stated
+conditions are met. This License explicitly affirms your unlimited
+permission to run the unmodified Program. The output from running a
+covered work is covered by this License only if the output, given its
+content, constitutes a covered work. This License acknowledges your
+rights of fair use or other equivalent, as provided by copyright law.
+
+ You may make, run and propagate covered works that you do not
+convey, without conditions so long as your license otherwise remains
+in force. You may convey covered works to others for the sole purpose
+of having them make modifications exclusively for you, or provide you
+with facilities for running those works, provided that you comply with
+the terms of this License in conveying all material for which you do
+not control copyright. Those thus making or running the covered works
+for you must do so exclusively on your behalf, under your direction
+and control, on terms that prohibit them from making any copies of
+your copyrighted material outside their relationship with you.
+
+ Conveying under any other circumstances is permitted solely under
+the conditions stated below. Sublicensing is not allowed; section 10
+makes it unnecessary.
+
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
+
+ No covered work shall be deemed part of an effective technological
+measure under any applicable law fulfilling obligations under article
+11 of the WIPO copyright treaty adopted on 20 December 1996, or
+similar laws prohibiting or restricting circumvention of such
+measures.
+
+ When you convey a covered work, you waive any legal power to forbid
+circumvention of technological measures to the extent such circumvention
+is effected by exercising rights under this License with respect to
+the covered work, and you disclaim any intention to limit operation or
+modification of the work as a means of enforcing, against the work's
+users, your or third parties' legal rights to forbid circumvention of
+technological measures.
+
+ 4. Conveying Verbatim Copies.
+
+ You may convey verbatim copies of the Program's source code as you
+receive it, in any medium, provided that you conspicuously and
+appropriately publish on each copy an appropriate copyright notice;
+keep intact all notices stating that this License and any
+non-permissive terms added in accord with section 7 apply to the code;
+keep intact all notices of the absence of any warranty; and give all
+recipients a copy of this License along with the Program.
+
+ You may charge any price or no price for each copy that you convey,
+and you may offer support or warranty protection for a fee.
+
+ 5. Conveying Modified Source Versions.
+
+ You may convey a work based on the Program, or the modifications to
+produce it from the Program, in the form of source code under the
+terms of section 4, provided that you also meet all of these conditions:
+
+ a) The work must carry prominent notices stating that you modified
+ it, and giving a relevant date.
+
+ b) The work must carry prominent notices stating that it is
+ released under this License and any conditions added under section
+ 7. This requirement modifies the requirement in section 4 to
+ "keep intact all notices".
+
+ c) You must license the entire work, as a whole, under this
+ License to anyone who comes into possession of a copy. This
+ License will therefore apply, along with any applicable section 7
+ additional terms, to the whole of the work, and all its parts,
+ regardless of how they are packaged. This License gives no
+ permission to license the work in any other way, but it does not
+ invalidate such permission if you have separately received it.
+
+ d) If the work has interactive user interfaces, each must display
+ Appropriate Legal Notices; however, if the Program has interactive
+ interfaces that do not display Appropriate Legal Notices, your
+ work need not make them do so.
+
+ A compilation of a covered work with other separate and independent
+works, which are not by their nature extensions of the covered work,
+and which are not combined with it such as to form a larger program,
+in or on a volume of a storage or distribution medium, is called an
+"aggregate" if the compilation and its resulting copyright are not
+used to limit the access or legal rights of the compilation's users
+beyond what the individual works permit. Inclusion of a covered work
+in an aggregate does not cause this License to apply to the other
+parts of the aggregate.
+
+ 6. Conveying Non-Source Forms.
+
+ You may convey a covered work in object code form under the terms
+of sections 4 and 5, provided that you also convey the
+machine-readable Corresponding Source under the terms of this License,
+in one of these ways:
+
+ a) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by the
+ Corresponding Source fixed on a durable physical medium
+ customarily used for software interchange.
+
+ b) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by a
+ written offer, valid for at least three years and valid for as
+ long as you offer spare parts or customer support for that product
+ model, to give anyone who possesses the object code either (1) a
+ copy of the Corresponding Source for all the software in the
+ product that is covered by this License, on a durable physical
+ medium customarily used for software interchange, for a price no
+ more than your reasonable cost of physically performing this
+ conveying of source, or (2) access to copy the
+ Corresponding Source from a network server at no charge.
+
+ c) Convey individual copies of the object code with a copy of the
+ written offer to provide the Corresponding Source. This
+ alternative is allowed only occasionally and noncommercially, and
+ only if you received the object code with such an offer, in accord
+ with subsection 6b.
+
+ d) Convey the object code by offering access from a designated
+ place (gratis or for a charge), and offer equivalent access to the
+ Corresponding Source in the same way through the same place at no
+ further charge. You need not require recipients to copy the
+ Corresponding Source along with the object code. If the place to
+ copy the object code is a network server, the Corresponding Source
+ may be on a different server (operated by you or a third party)
+ that supports equivalent copying facilities, provided you maintain
+ clear directions next to the object code saying where to find the
+ Corresponding Source. Regardless of what server hosts the
+ Corresponding Source, you remain obligated to ensure that it is
+ available for as long as needed to satisfy these requirements.
+
+ e) Convey the object code using peer-to-peer transmission, provided
+ you inform other peers where the object code and Corresponding
+ Source of the work are being offered to the general public at no
+ charge under subsection 6d.
+
+ A separable portion of the object code, whose source code is excluded
+from the Corresponding Source as a System Library, need not be
+included in conveying the object code work.
+
+ A "User Product" is either (1) a "consumer product", which means any
+tangible personal property which is normally used for personal, family,
+or household purposes, or (2) anything designed or sold for incorporation
+into a dwelling. In determining whether a product is a consumer product,
+doubtful cases shall be resolved in favor of coverage. For a particular
+product received by a particular user, "normally used" refers to a
+typical or common use of that class of product, regardless of the status
+of the particular user or of the way in which the particular user
+actually uses, or expects or is expected to use, the product. A product
+is a consumer product regardless of whether the product has substantial
+commercial, industrial or non-consumer uses, unless such uses represent
+the only significant mode of use of the product.
+
+ "Installation Information" for a User Product means any methods,
+procedures, authorization keys, or other information required to install
+and execute modified versions of a covered work in that User Product from
+a modified version of its Corresponding Source. The information must
+suffice to ensure that the continued functioning of the modified object
+code is in no case prevented or interfered with solely because
+modification has been made.
+
+ If you convey an object code work under this section in, or with, or
+specifically for use in, a User Product, and the conveying occurs as
+part of a transaction in which the right of possession and use of the
+User Product is transferred to the recipient in perpetuity or for a
+fixed term (regardless of how the transaction is characterized), the
+Corresponding Source conveyed under this section must be accompanied
+by the Installation Information. But this requirement does not apply
+if neither you nor any third party retains the ability to install
+modified object code on the User Product (for example, the work has
+been installed in ROM).
+
+ The requirement to provide Installation Information does not include a
+requirement to continue to provide support service, warranty, or updates
+for a work that has been modified or installed by the recipient, or for
+the User Product in which it has been modified or installed. Access to a
+network may be denied when the modification itself materially and
+adversely affects the operation of the network or violates the rules and
+protocols for communication across the network.
+
+ Corresponding Source conveyed, and Installation Information provided,
+in accord with this section must be in a format that is publicly
+documented (and with an implementation available to the public in
+source code form), and must require no special password or key for
+unpacking, reading or copying.
+
+ 7. Additional Terms.
+
+ "Additional permissions" are terms that supplement the terms of this
+License by making exceptions from one or more of its conditions.
+Additional permissions that are applicable to the entire Program shall
+be treated as though they were included in this License, to the extent
+that they are valid under applicable law. If additional permissions
+apply only to part of the Program, that part may be used separately
+under those permissions, but the entire Program remains governed by
+this License without regard to the additional permissions.
+
+ When you convey a copy of a covered work, you may at your option
+remove any additional permissions from that copy, or from any part of
+it. (Additional permissions may be written to require their own
+removal in certain cases when you modify the work.) You may place
+additional permissions on material, added by you to a covered work,
+for which you have or can give appropriate copyright permission.
+
+ Notwithstanding any other provision of this License, for material you
+add to a covered work, you may (if authorized by the copyright holders of
+that material) supplement the terms of this License with terms:
+
+ a) Disclaiming warranty or limiting liability differently from the
+ terms of sections 15 and 16 of this License; or
+
+ b) Requiring preservation of specified reasonable legal notices or
+ author attributions in that material or in the Appropriate Legal
+ Notices displayed by works containing it; or
+
+ c) Prohibiting misrepresentation of the origin of that material, or
+ requiring that modified versions of such material be marked in
+ reasonable ways as different from the original version; or
+
+ d) Limiting the use for publicity purposes of names of licensors or
+ authors of the material; or
+
+ e) Declining to grant rights under trademark law for use of some
+ trade names, trademarks, or service marks; or
+
+ f) Requiring indemnification of licensors and authors of that
+ material by anyone who conveys the material (or modified versions of
+ it) with contractual assumptions of liability to the recipient, for
+ any liability that these contractual assumptions directly impose on
+ those licensors and authors.
+
+ All other non-permissive additional terms are considered "further
+restrictions" within the meaning of section 10. If the Program as you
+received it, or any part of it, contains a notice stating that it is
+governed by this License along with a term that is a further
+restriction, you may remove that term. If a license document contains
+a further restriction but permits relicensing or conveying under this
+License, you may add to a covered work material governed by the terms
+of that license document, provided that the further restriction does
+not survive such relicensing or conveying.
+
+ If you add terms to a covered work in accord with this section, you
+must place, in the relevant source files, a statement of the
+additional terms that apply to those files, or a notice indicating
+where to find the applicable terms.
+
+ Additional terms, permissive or non-permissive, may be stated in the
+form of a separately written license, or stated as exceptions;
+the above requirements apply either way.
+
+ 8. Termination.
+
+ You may not propagate or modify a covered work except as expressly
+provided under this License. Any attempt otherwise to propagate or
+modify it is void, and will automatically terminate your rights under
+this License (including any patent licenses granted under the third
+paragraph of section 11).
+
+ However, if you cease all violation of this License, then your
+license from a particular copyright holder is reinstated (a)
+provisionally, unless and until the copyright holder explicitly and
+finally terminates your license, and (b) permanently, if the copyright
+holder fails to notify you of the violation by some reasonable means
+prior to 60 days after the cessation.
+
+ Moreover, your license from a particular copyright holder is
+reinstated permanently if the copyright holder notifies you of the
+violation by some reasonable means, this is the first time you have
+received notice of violation of this License (for any work) from that
+copyright holder, and you cure the violation prior to 30 days after
+your receipt of the notice.
+
+ Termination of your rights under this section does not terminate the
+licenses of parties who have received copies or rights from you under
+this License. If your rights have been terminated and not permanently
+reinstated, you do not qualify to receive new licenses for the same
+material under section 10.
+
+ 9. Acceptance Not Required for Having Copies.
+
+ You are not required to accept this License in order to receive or
+run a copy of the Program. Ancillary propagation of a covered work
+occurring solely as a consequence of using peer-to-peer transmission
+to receive a copy likewise does not require acceptance. However,
+nothing other than this License grants you permission to propagate or
+modify any covered work. These actions infringe copyright if you do
+not accept this License. Therefore, by modifying or propagating a
+covered work, you indicate your acceptance of this License to do so.
+
+ 10. Automatic Licensing of Downstream Recipients.
+
+ Each time you convey a covered work, the recipient automatically
+receives a license from the original licensors, to run, modify and
+propagate that work, subject to this License. You are not responsible
+for enforcing compliance by third parties with this License.
+
+ An "entity transaction" is a transaction transferring control of an
+organization, or substantially all assets of one, or subdividing an
+organization, or merging organizations. If propagation of a covered
+work results from an entity transaction, each party to that
+transaction who receives a copy of the work also receives whatever
+licenses to the work the party's predecessor in interest had or could
+give under the previous paragraph, plus a right to possession of the
+Corresponding Source of the work from the predecessor in interest, if
+the predecessor has it or can get it with reasonable efforts.
+
+ You may not impose any further restrictions on the exercise of the
+rights granted or affirmed under this License. For example, you may
+not impose a license fee, royalty, or other charge for exercise of
+rights granted under this License, and you may not initiate litigation
+(including a cross-claim or counterclaim in a lawsuit) alleging that
+any patent claim is infringed by making, using, selling, offering for
+sale, or importing the Program or any portion of it.
+
+ 11. Patents.
+
+ A "contributor" is a copyright holder who authorizes use under this
+License of the Program or a work on which the Program is based. The
+work thus licensed is called the contributor's "contributor version".
+
+ A contributor's "essential patent claims" are all patent claims
+owned or controlled by the contributor, whether already acquired or
+hereafter acquired, that would be infringed by some manner, permitted
+by this License, of making, using, or selling its contributor version,
+but do not include claims that would be infringed only as a
+consequence of further modification of the contributor version. For
+purposes of this definition, "control" includes the right to grant
+patent sublicenses in a manner consistent with the requirements of
+this License.
+
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
+patent license under the contributor's essential patent claims, to
+make, use, sell, offer for sale, import and otherwise run, modify and
+propagate the contents of its contributor version.
+
+ In the following three paragraphs, a "patent license" is any express
+agreement or commitment, however denominated, not to enforce a patent
+(such as an express permission to practice a patent or covenant not to
+sue for patent infringement). To "grant" such a patent license to a
+party means to make such an agreement or commitment not to enforce a
+patent against the party.
+
+ If you convey a covered work, knowingly relying on a patent license,
+and the Corresponding Source of the work is not available for anyone
+to copy, free of charge and under the terms of this License, through a
+publicly available network server or other readily accessible means,
+then you must either (1) cause the Corresponding Source to be so
+available, or (2) arrange to deprive yourself of the benefit of the
+patent license for this particular work, or (3) arrange, in a manner
+consistent with the requirements of this License, to extend the patent
+license to downstream recipients. "Knowingly relying" means you have
+actual knowledge that, but for the patent license, your conveying the
+covered work in a country, or your recipient's use of the covered work
+in a country, would infringe one or more identifiable patents in that
+country that you have reason to believe are valid.
+
+ If, pursuant to or in connection with a single transaction or
+arrangement, you convey, or propagate by procuring conveyance of, a
+covered work, and grant a patent license to some of the parties
+receiving the covered work authorizing them to use, propagate, modify
+or convey a specific copy of the covered work, then the patent license
+you grant is automatically extended to all recipients of the covered
+work and works based on it.
+
+ A patent license is "discriminatory" if it does not include within
+the scope of its coverage, prohibits the exercise of, or is
+conditioned on the non-exercise of one or more of the rights that are
+specifically granted under this License. You may not convey a covered
+work if you are a party to an arrangement with a third party that is
+in the business of distributing software, under which you make payment
+to the third party based on the extent of your activity of conveying
+the work, and under which the third party grants, to any of the
+parties who would receive the covered work from you, a discriminatory
+patent license (a) in connection with copies of the covered work
+conveyed by you (or copies made from those copies), or (b) primarily
+for and in connection with specific products or compilations that
+contain the covered work, unless you entered into that arrangement,
+or that patent license was granted, prior to 28 March 2007.
+
+ Nothing in this License shall be construed as excluding or limiting
+any implied license or other defenses to infringement that may
+otherwise be available to you under applicable patent law.
+
+ 12. No Surrender of Others' Freedom.
+
+ If conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License. If you cannot convey a
+covered work so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you may
+not convey it at all. For example, if you agree to terms that obligate you
+to collect a royalty for further conveying from those to whom you convey
+the Program, the only way you could satisfy both those terms and this
+License would be to refrain entirely from conveying the Program.
+
+ 13. Use with the GNU Affero General Public License.
+
+ Notwithstanding any other provision of this License, you have
+permission to link or combine any covered work with a work licensed
+under version 3 of the GNU Affero General Public License into a single
+combined work, and to convey the resulting work. The terms of this
+License will continue to apply to the part which is the covered work,
+but the special requirements of the GNU Affero General Public License,
+section 13, concerning interaction through a network will apply to the
+combination as such.
+
+ 14. Revised Versions of this License.
+
+ The Free Software Foundation may publish revised and/or new versions of
+the GNU General Public License from time to time. Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+ Each version is given a distinguishing version number. If the
+Program specifies that a certain numbered version of the GNU General
+Public License "or any later version" applies to it, you have the
+option of following the terms and conditions either of that numbered
+version or of any later version published by the Free Software
+Foundation. If the Program does not specify a version number of the
+GNU General Public License, you may choose any version ever published
+by the Free Software Foundation.
+
+ If the Program specifies that a proxy can decide which future
+versions of the GNU General Public License can be used, that proxy's
+public statement of acceptance of a version permanently authorizes you
+to choose that version for the Program.
+
+ Later license versions may give you additional or different
+permissions. However, no additional obligations are imposed on any
+author or copyright holder as a result of your choosing to follow a
+later version.
+
+ 15. Disclaimer of Warranty.
+
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
+APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
+HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
+OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
+THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
+IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
+ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+ 16. Limitation of Liability.
+
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
+THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
+GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
+USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
+DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
+PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
+EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGES.
+
+ 17. Interpretation of Sections 15 and 16.
+
+ If the disclaimer of warranty and limitation of liability provided
+above cannot be given local legal effect according to their terms,
+reviewing courts shall apply local law that most closely approximates
+an absolute waiver of all civil liability in connection with the
+Program, unless a warranty or assumption of liability accompanies a
+copy of the Program in return for a fee.
+
+ END OF TERMS AND CONDITIONS
+
+ How to Apply These Terms to Your New Programs
+
+ If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+ To do so, attach the following notices to the program. It is safest
+to attach them to the start of each source file to most effectively
+state the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+
+ Copyright (C)
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see .
+
+Also add information on how to contact you by electronic and paper mail.
+
+ If the program does terminal interaction, make it output a short
+notice like this when it starts in an interactive mode:
+
+ Copyright (C)
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+ This is free software, and you are welcome to redistribute it
+ under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License. Of course, your program's commands
+might be different; for a GUI interface, you would use an "about box".
+
+ You should also get your employer (if you work as a programmer) or school,
+if any, to sign a "copyright disclaimer" for the program, if necessary.
+For more information on this, and how to apply and follow the GNU GPL, see
+ .
+
+ The GNU General Public License does not permit incorporating your program
+into proprietary programs. If your program is a subroutine library, you
+may consider it more useful to permit linking proprietary applications with
+the library. If this is what you want to do, use the GNU Lesser General
+Public License instead of this License. But first, please read
+.
diff --git a/README.md b/README.md
index f11a896..276d419 100644
--- a/README.md
+++ b/README.md
@@ -1 +1,40 @@
-# KalmanFilter
\ No newline at end of file
+# OpenKF (The Kalman Filter Library)
+
+This is an open source C++ Kalman filter library based on Eigen3 library for matrix operations.
+
+The library has generic template based classes for most of Kalman filter variants including:
+
+1. Kalman Filter
+2. Extended Kalman Filter
+3. Unscented Kalman Filter
+4. Square-root Unscented Kalman Filter
+
+**LICENSE**: [GPL-3.0 license](LICENSE.md)
+
+**Author**: Mohanad Youssef ([codingcorner.org](https://codingcorner.org/))
+
+**YouTube Channel**: [https://www.youtube.com/@al-khwarizmi](https://www.youtube.com/@al-khwarizmi)
+
+![](res/images/codingcorner_cover_image.png)
+
+## Getting Started
+
+One can build the library and install the files in the system to be used in different external projects.
+
+You just need to execute the batch file ``bootstrap-openkf.bat`` from a PowerShell Terminal (in Administrator Mode).
+
+```batch
+>> ./bootstrap-openkf.bat
+```
+
+This batch file will execute cmake commands to generate meta files, build, and install the library files in the system.
+
+After that, the OpenKF library is ready to be used in external project.
+
+In the **_CMakeLists.txt_** you must include these three lines of code:
+
+````cmake
+find_package(OpenKF REQUIRED)
+target_link_libraries( PUBLIC OpenKF)
+target_include_directories( PUBLIC ${OPENKF_INCLUDE_DIR})
+````
diff --git a/bootstrap-openkf.bat b/bootstrap-openkf.bat
new file mode 100644
index 0000000..a5399dc
--- /dev/null
+++ b/bootstrap-openkf.bat
@@ -0,0 +1,20 @@
+@echo off
+
+if not exist ".\cpp\build" (
+ echo Creating ./cpp/build Folder
+ md ./cpp/build
+) else (
+ echo ./cpp/build folder already exists
+)
+
+echo generating meta files
+cmake -S ./cpp -B ./cpp/build
+
+echo building ...
+cmake --build ./cpp/build
+
+echo installing ...
+cmake --install ./cpp/build --config Debug
+::runas /user:Administrator "cmake --install .\cpp\build --config Debug"
+
+pause
diff --git a/cpp/CMakeLists.txt b/cpp/CMakeLists.txt
deleted file mode 100644
index 2269733..0000000
--- a/cpp/CMakeLists.txt
+++ /dev/null
@@ -1,27 +0,0 @@
-cmake_minimum_required(VERSION 3.4)
-
-# ============================================================================================
-# VCPKG Toolchain
-# ============================================================================================
-if(WIN32)
- # use vcpkg as packages manager in windows platform
- # environment variable needs to be added for the path to vcpkg installation "VCPKG_ROOT"
- set(CMAKE_TOOLCHAIN_FILE "$ENV{VCPKG_ROOT}/scripts/buildsystems/vcpkg.cmake")
-endif(WIN32)
-
-# ============================================================================================
-# ============================================================================================
-set(CMAKE_FIND_PACKAGE_PREFER_CONFIG ON)
-set(CMAKE_INCLUDE_CURRENT_DIR ON)
-set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
-set(CMAKE_INSTALL_PREFIX ${CMAKE_CURRENT_SOURCE_DIR}/build/package)
-set(CMAKE_CXX_STANDARD 11)
-
-project(kalman_filter)
-
-enable_language(C CXX)
-
-find_package(Eigen3 3.3 REQUIRED NO_MODULE)
-
-add_subdirectory(KalmanFilter)
-add_subdirectory(Examples)
diff --git a/cpp/Examples/CMakeLists.txt b/cpp/Examples/CMakeLists.txt
deleted file mode 100644
index 475bc03..0000000
--- a/cpp/Examples/CMakeLists.txt
+++ /dev/null
@@ -1,2 +0,0 @@
-add_subdirectory(StateEstimation1D)
-add_subdirectory(EkfRangeSensor)
diff --git a/cpp/Examples/EkfRangeSensor/CMakeLists.txt b/cpp/Examples/EkfRangeSensor/CMakeLists.txt
deleted file mode 100644
index 9cf4161..0000000
--- a/cpp/Examples/EkfRangeSensor/CMakeLists.txt
+++ /dev/null
@@ -1,20 +0,0 @@
-##
-## @author Mohanad Youssef
-## @file KalmanFilterExercise/Examples/StateEstimate1D/CMakeLists.txt
-##
-
-file(GLOB PROJECT_FILES
- "${CMAKE_CURRENT_SOURCE_DIR}/*.h"
- "${CMAKE_CURRENT_SOURCE_DIR}/*.cpp"
-)
-
-set(APPLICATION_NAME ${CMAKE_PROJECT_NAME}_ekf_range_sensor_example)
-
-add_executable(${APPLICATION_NAME} ${PROJECT_FILES})
-
-set_target_properties(${APPLICATION_NAME} PROPERTIES LINKER_LANGUAGE CXX)
-target_link_libraries(${APPLICATION_NAME} PUBLIC Eigen3::Eigen)
-
-target_include_directories(${APPLICATION_NAME} PUBLIC
- $
-)
diff --git a/cpp/Examples/EkfRangeSensor/main.cpp b/cpp/Examples/EkfRangeSensor/main.cpp
deleted file mode 100644
index 37a9ba8..0000000
--- a/cpp/Examples/EkfRangeSensor/main.cpp
+++ /dev/null
@@ -1,67 +0,0 @@
-///
-/// @author Mohanad Youssef
-/// @file main.cpp
-///
-
-#include
-#include
-
-#include "KalmanFilter/Types.h"
-#include "KalmanFilter/KalmanFilter.h"
-
-static constexpr size_t DIM_X{ 2 };
-static constexpr size_t DIM_Z{ 2 };
-
-static kf::KalmanFilter kalmanfilter;
-
-kf::Vector<2> covertCartesian2Polar(const kf::Vector<2> & cartesian);
-kf::Matrix calculateJacobianMatrix(const kf::Vector & vecX);
-void executeCorrectionStep();
-
-int main(int argc, char ** argv)
-{
- executeCorrectionStep();
-
- return 0;
-}
-
-kf::Vector<2> covertCartesian2Polar(const kf::Vector<2> & cartesian)
-{
- const kf::Vector<2> polar{
- std::sqrt(cartesian[0] * cartesian[0] + cartesian[1] * cartesian[1]),
- std::atan2(cartesian[1], cartesian[0])
- };
- return polar;
-}
-
-kf::Matrix calculateJacobianMatrix(const kf::Vector & vecX)
-{
- const kf::float32_t valX2PlusY2{ (vecX[0] * vecX[0]) + (vecX[1] * vecX[1]) };
- const kf::float32_t valSqrtX2PlusY2{ std::sqrt(valX2PlusY2) };
-
- kf::Matrix matHj;
- matHj <<
- (vecX[0] / valSqrtX2PlusY2), (vecX[1] / valSqrtX2PlusY2),
- (-vecX[1] / valX2PlusY2), (vecX[0] / valX2PlusY2);
-
- return matHj;
-}
-
-void executeCorrectionStep()
-{
- kalmanfilter.vecX() << 10.0F, 5.0F;
- kalmanfilter.matP() << 0.3F, 0.0F, 0.0F, 0.3F;
-
- const kf::Vector<2> measPosCart{ 10.4F, 5.2F };
- const kf::Vector vecZ{ covertCartesian2Polar(measPosCart) };
-
- kf::Matrix matR;
- matR << 0.1F, 0.0F, 0.0F, 0.0008F;
-
- kf::Matrix matHj{ calculateJacobianMatrix(kalmanfilter.vecX()) }; // jacobian matrix Hj
-
- kalmanfilter.correctEkf(covertCartesian2Polar, vecZ, matR, matHj);
-
- std::cout << "\ncorrected state vector = \n" << kalmanfilter.vecX() << "\n";
- std::cout << "\ncorrected state covariance = \n" << kalmanfilter.matP() << "\n";
-}
diff --git a/cpp/Examples/StateEstimation1D/CMakeLists.txt b/cpp/Examples/StateEstimation1D/CMakeLists.txt
deleted file mode 100644
index 8df0c14..0000000
--- a/cpp/Examples/StateEstimation1D/CMakeLists.txt
+++ /dev/null
@@ -1,20 +0,0 @@
-##
-## @author Mohanad Youssef
-## @file KalmanFilterExercise/Examples/StateEstimate1D/CMakeLists.txt
-##
-
-file(GLOB PROJECT_FILES
- "${CMAKE_CURRENT_SOURCE_DIR}/*.h"
- "${CMAKE_CURRENT_SOURCE_DIR}/*.cpp"
-)
-
-set(APPLICATION_NAME ${CMAKE_PROJECT_NAME}_estimate_1D)
-
-add_executable(${APPLICATION_NAME} ${PROJECT_FILES})
-
-set_target_properties(${APPLICATION_NAME} PROPERTIES LINKER_LANGUAGE CXX)
-target_link_libraries(${APPLICATION_NAME} PUBLIC Eigen3::Eigen)
-
-target_include_directories(${APPLICATION_NAME} PUBLIC
- $
-)
diff --git a/cpp/Examples/StateEstimation1D/main.cpp b/cpp/Examples/StateEstimation1D/main.cpp
deleted file mode 100644
index da244c7..0000000
--- a/cpp/Examples/StateEstimation1D/main.cpp
+++ /dev/null
@@ -1,64 +0,0 @@
-///
-/// @author Mohanad Youssef
-/// @file main.cpp
-///
-
-#include
-#include
-
-#include "KalmanFilter/Types.h"
-#include "KalmanFilter/KalmanFilter.h"
-
-static constexpr size_t DIM_X{ 2 };
-static constexpr size_t DIM_Z{ 1 };
-static constexpr kf::float32_t T{ 1.0F };
-static constexpr kf::float32_t Q11{ 0.1F }, Q22{ 0.1F };
-
-static kf::KalmanFilter kalmanfilter;
-
-void executePredictionStep();
-void executeCorrectionStep();
-
-int main(int argc, char ** argv)
-{
- executePredictionStep();
- executeCorrectionStep();
-
- return 0;
-}
-
-void executePredictionStep()
-{
- kalmanfilter.vecX() << 0.0F, 2.0F;
- kalmanfilter.matP() << 0.1F, 0.0F, 0.0F, 0.1F;
-
- kf::Matrix F; // state transition matrix
- F << 1.0F, T, 0.0F, 1.0F;
-
- kf::Matrix Q; // process noise covariance
- Q(0, 0) = (Q11 * T) + (Q22 * (std::pow(T, 3) / 3.0F));
- Q(0, 1) = Q(1, 0) = Q22 * (std::pow(T, 2) / 2.0F);
- Q(1, 1) = Q22 * T;
-
- kalmanfilter.predict(F, Q); // execute prediction step
-
- std::cout << "\npredicted state vector = \n" << kalmanfilter.vecX() << "\n";
- std::cout << "\npredicted state covariance = \n" << kalmanfilter.matP() << "\n";
-}
-
-void executeCorrectionStep()
-{
- kf::Vector vecZ;
- vecZ << 2.25F;
-
- kf::Matrix matR;
- matR << 0.01F;
-
- kf::Matrix matH;
- matH << 1.0F, 0.0F;
-
- kalmanfilter.correct(vecZ, matR, matH);
-
- std::cout << "\ncorrected state vector = \n" << kalmanfilter.vecX() << "\n";
- std::cout << "\ncorrected state covariance = \n" << kalmanfilter.matP() << "\n";
-}
diff --git a/cpp/KalmanFilter/CMakeLists.txt b/cpp/KalmanFilter/CMakeLists.txt
deleted file mode 100644
index 6669aab..0000000
--- a/cpp/KalmanFilter/CMakeLists.txt
+++ /dev/null
@@ -1,17 +0,0 @@
-##
-## @author Mohanad Youssef
-## @file CMakeLists.txt
-##
-
-file(GLOB LIBRARY_FILES "${CMAKE_CURRENT_SOURCE_DIR}/*.h")
-
-set(LIBRARY_NAME ${CMAKE_PROJECT_NAME}_lib)
-
-add_library(${LIBRARY_NAME} ${LIBRARY_FILES})
-
-set_target_properties(${LIBRARY_NAME} PROPERTIES LINKER_LANGUAGE CXX)
-target_link_libraries(${LIBRARY_NAME} PUBLIC Eigen3::Eigen)
-
-target_include_directories(${LIBRARY_NAME} PUBLIC
- $
-)
diff --git a/cpp/KalmanFilter/KalmanFilter.h b/cpp/KalmanFilter/KalmanFilter.h
deleted file mode 100644
index d815219..0000000
--- a/cpp/KalmanFilter/KalmanFilter.h
+++ /dev/null
@@ -1,98 +0,0 @@
-///
-/// @author Mohanad Youssef
-/// @file KalmanFilter.h
-///
-
-#ifndef __KALMAN_FILTER_LIB_H__
-#define __KALMAN_FILTER_LIB_H__
-
-#include "Types.h"
-
-namespace kf
-{
- template
- class KalmanFilter
- {
- public:
-
- KalmanFilter()
- {
-
- }
-
- ~KalmanFilter()
- {
-
- }
-
- Vector & vecX() { return m_vecX; }
- const Vector & vecX() const { return m_vecX; }
-
- Matrix & matP() { return m_matP; }
- const Matrix & matP() const { return m_matP; }
-
- ///
- /// @brief predict state with a linear process model.
- /// @param matF state transition matrix
- /// @param matQ process noise covariance matrix
- ///
- void predict(const Matrix & matF, const Matrix & matQ)
- {
- m_vecX = matF * m_vecX;
- m_matP = matF * m_matP * matF.transpose() + matQ;
- }
-
- ///
- /// @brief correct state of with a linear measurement model.
- /// @param matZ measurement vector
- /// @param matR measurement noise covariance matrix
- /// @param matH measurement transition matrix (measurement model)
- ///
- void correct(const Vector & vecZ, const Matrix & matR, const Matrix & matH)
- {
- const Matrix matI{ Matrix::Identity() }; // Identity matrix
- const Matrix matSk{ matH * m_matP * matH.transpose() + matR }; // Innovation covariance
- const Matrix matKk{ m_matP * matH.transpose() * matSk.inverse() }; // Kalman Gain
-
- m_vecX = m_vecX + matKk * (vecZ - (matH * m_vecX));
- m_matP = (matI - matKk * matH) * m_matP;
- }
-
- ///
- /// @brief predict state with a linear process model.
- /// @param predictionModel prediction model function callback
- /// @param matJacobF state jacobian matrix
- /// @param matQ process noise covariance matrix
- ///
- template
- void predictEkf(PredictionModelCallback predictionModel, const Matrix & matJacobF, const Matrix & matQ)
- {
- m_vecX = predictionModel(m_vecX);
- m_matP = matJacobF * m_matP * matJacobF.transpose() + matQ;
- }
-
- ///
- /// @brief correct state of with a linear measurement model.
- /// @param measurementModel measurement model function callback
- /// @param matZ measurement vector
- /// @param matR measurement noise covariance matrix
- /// @param matJcobH measurement jacobian matrix
- ///
- template
- void correctEkf(MeasurementModelCallback measurementModel,const Vector & vecZ, const Matrix & matR, const Matrix & matJcobH)
- {
- const Matrix matI{ Matrix::Identity() }; // Identity matrix
- const Matrix matSk{ matJcobH * m_matP * matJcobH.transpose() + matR }; // Innovation covariance
- const Matrix matKk{ m_matP * matJcobH.transpose() * matSk.inverse() }; // Kalman Gain
-
- m_vecX = m_vecX + matKk * (vecZ - measurementModel(m_vecX));
- m_matP = (matI - matKk * matJcobH) * m_matP;
- }
-
- private:
- Vector m_vecX{ Vector::Zero() }; /// @brief estimated state vector
- Matrix m_matP{ Matrix::Zero() }; /// @brief state covariance matrix
- };
-}
-
-#endif // __KALMAN_FILTER_LIB_H__
\ No newline at end of file
diff --git a/cpp/KalmanFilter/Types.h b/cpp/KalmanFilter/Types.h
deleted file mode 100644
index 42c12c8..0000000
--- a/cpp/KalmanFilter/Types.h
+++ /dev/null
@@ -1,24 +0,0 @@
-///
-/// @author Mohanad Youssef
-/// @file KalmanFilterExercise/KalmanFilter/Types.h
-///
-
-#ifndef __KALMAN_FILTER_TYPES_H__
-#define __KALMAN_FILTER_TYPES_H__
-
-#include
-#include
-
-namespace kf
-{
- using float32_t = float;
-
- template
- using Matrix = Eigen::Matrix;
-
- template
- using Vector = Eigen::Matrix;
-
-}
-
-#endif // __KALMAN_FILTER_TYPES_H__
diff --git a/python/examples/Introduction_Unscented_Kalman_Filter.ipynb b/python/examples/Introduction_Unscented_Kalman_Filter.ipynb
new file mode 100644
index 0000000..55df282
--- /dev/null
+++ b/python/examples/Introduction_Unscented_Kalman_Filter.ipynb
@@ -0,0 +1,1821 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "183e6446",
+ "metadata": {},
+ "source": [
+ "# Unscented Kalman Filter"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d47e226b",
+ "metadata": {},
+ "source": [
+ "The Unscented Kalman filter (UKF) algorithm is basically:"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "61db0d92",
+ "metadata": {},
+ "source": [
+ "## Step 1: Create Joint State Vector ($\\vec{x}^a$)\n",
+ "---\n",
+ "\n",
+ "$$\n",
+ "\\vec{x}^a_k =\n",
+ "\\begin{bmatrix}\n",
+ "\\vec{x}_k \\\\\n",
+ "\\vec{v}_k \\\\\n",
+ "\\vec{n}_k\n",
+ "\\end{bmatrix}\n",
+ "$$\n",
+ "\n",
+ "where $\\vec{v}_k$ and $\\vec{n}_k$ are vectors of process and measurement noises, respectively and since they are white Gaussian noise then this means that the mean of the noise overy time is always zero, which makes:\n",
+ "\n",
+ "$$\n",
+ "\\begin{align}\n",
+ "\\vec{v}_k &= \\begin{bmatrix} 0_{q \\times 1} \\end{bmatrix} \\\\\n",
+ "\\vec{n}_k &= \\begin{bmatrix} 0_{m \\times 1} \\end{bmatrix}\n",
+ "\\end{align}\n",
+ "$$\n",
+ "\n",
+ "where subscription $q$ and $m$ are the process and measurement noise vectors dimensions, respectively.\n",
+ "\n",
+ "$$\n",
+ "\\vec{x}^a_k =\n",
+ "\\begin{bmatrix} \n",
+ "\\vec{x}_k \\\\\n",
+ "0_{q \\times 1} \\\\\n",
+ "0_{m \\times 1}\n",
+ "\\end{bmatrix}\n",
+ "$$"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "34a2809b",
+ "metadata": {},
+ "source": [
+ "## Step 2: Create Joint State Covariance ($P^a$)\n",
+ "---\n",
+ "\n",
+ "$$\n",
+ "P^a_{k-1|k-1} =\n",
+ "\\begin{bmatrix}\n",
+ "P_{k-1|k-1} & 0_{n \\times q} & 0_{n \\times m} \\\\\n",
+ "0_{q \\times n} & Q_{k} & 0_{q \\times m} \\\\\n",
+ "0_{m \\times n} & 0_{m \\times q} & R_{k}\n",
+ "\\end{bmatrix}\n",
+ "$$\n",
+ "\n",
+ "where $Q_k$ and $R_k$ are the process and measurement noise covariances, respectively. And $n$ is the state vector dimension."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "adc8070a",
+ "metadata": {},
+ "source": [
+ "## Step 3: Calculating UT Weights\n",
+ "---\n",
+ "\n",
+ "Now the dimension $n_a$ of the augmented state shall be used instead of just $n$:\n",
+ "\n",
+ "$$\n",
+ "n^a = n + q + m\n",
+ "$$\n",
+ "\n",
+ "then; \n",
+ "\n",
+ "$$\n",
+ "\\begin{align}\n",
+ " W_0 &= \\frac{\\kappa}{n^a + \\kappa} \\\\\n",
+ " W_i &= \\frac{0.5}{n^a + \\kappa} \\\\\n",
+ " W_{i+n^a} &= \\frac{0.5}{n^a + \\kappa}\n",
+ "\\end{align}\n",
+ "$$\n",
+ "\n",
+ "where $\\kappa$ is a design parameter and usually set to:\n",
+ "\n",
+ "$$\n",
+ "\\kappa = 3 - n^a\n",
+ "$$"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a8693ff7",
+ "metadata": {},
+ "source": [
+ "## Step 4: Calculating UT Sigma Points\n",
+ "---\n",
+ "\n",
+ "$$\n",
+ "\\begin{align}\n",
+ " X_0^a &= \\bar{x}^a \\\\\n",
+ " X_i^a &= \\bar{x}^a + \\left( \\sqrt{(n^a+\\kappa) P^a_{k-1|k-1}} \\right)_i \\\\\n",
+ " X_{i+n^a}^a &= \\bar{x}^a - \\left( \\sqrt{(n^a+\\kappa) P^a_{k-1|k-1}} \\right)_i\n",
+ "\\end{align}\n",
+ "$$\n",
+ "\n",
+ "then $X^a$ would actually consists of three parts, which are:\n",
+ "\n",
+ "$$\n",
+ "X^a =\n",
+ "\\begin{bmatrix} \n",
+ "X^{xx} \\\\ X^{vv} \\\\ X^{nn}\n",
+ "\\end{bmatrix}\n",
+ "= \n",
+ "\\begin{bmatrix} \n",
+ "X^{xx}_0 & X^{xx}_1 & \\dots & X^{xx}_{2n^a} \\\\\n",
+ "X^{vv}_0 & X^{vv}_1 & \\dots & X^{vv}_{2n^a}\\\\\n",
+ "X^{nn}_0 & X^{nn}_1 & \\dots & X^{nn}_{2n^a}\n",
+ "\\end{bmatrix}\n",
+ "$$"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b0f3865c",
+ "metadata": {},
+ "source": [
+ "## Step 5: Propagate joint sigma points ($X^a_{k-1|k-1}$) through Nonlinear Prediction Model ($F[...]$)\n",
+ "---\n",
+ "\n",
+ "$$\n",
+ "X^{xx}_{k|k-1} = F[X^{xx}_{k-1|k-1}, X^{vv}_{k-1}]\n",
+ "$$"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "17372d1d",
+ "metadata": {},
+ "source": [
+ "## Step 6: Calculate Predicted State Mean and Covariance\n",
+ "---\n",
+ "\n",
+ "$$\n",
+ "\\hat{x}_{k|k-1} = \\sum_{i=0}^{2n^a} W_i X^{xx}_{k|k-1}\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "P_{k|k-1} = \\sum_{i=0}^{2n^a} W_i \\left( X^{xx}_{i, k|k-1} - \\hat{x}_{k|k-1} \\right) \\left( X^{xx}_{i, k|k-1} - \\hat{x}_{k|k-1} \\right)^T\n",
+ "$$\n",
+ "\n",
+ "$i$th index stands for the column index."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "971baf7a",
+ "metadata": {},
+ "source": [
+ "## Step 7: Propagate Predicted Sigma Points ($X^x_{k|k-1}$) through Nonlinear Measurement Model ($H[...]$)\n",
+ "---\n",
+ "\n",
+ "$$\n",
+ "Y_{k|k-1} = H[X^{xx}_{k|k-1}, X^{nn}_{k-1}]\n",
+ "$$\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1ede07a5",
+ "metadata": {},
+ "source": [
+ "## Step 8: Calculate Predicted Measurement Mean and Covariance\n",
+ "---\n",
+ "\n",
+ "$$\n",
+ "\\hat{y}_{k|k-1} = \\sum_{i=0}^{2n^a} W_i Y_{k|k-1}\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "S_{k|k-1} = \\sum_{i=0}^{2n^a} W_i \\left( Y_{i,k|k-1} - \\hat{y}_{k|k-1} \\right) \\left( Y_{i, k|k-1} - \\hat{y}_{k|k-1} \\right)^T\n",
+ "$$"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "19549a01",
+ "metadata": {},
+ "source": [
+ "## Step 9: Calculate the Cross-Correlation Matrix ($P_xy$) :\n",
+ "---\n",
+ "\n",
+ "$$\n",
+ "P_{xy, k|k-1} = \\sum_{i=0}^{2n^a} W_i \\left( X^x_{i, k|k-1} - \\hat{x}_{k|k-1} \\right) \\left( Y_{i, k|k-1} - \\hat{y}_{k|k-1} \\right)^T\n",
+ "$$\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4206e66a",
+ "metadata": {},
+ "source": [
+ "## Step 10: Calculate Kalman Gain\n",
+ "---\n",
+ "\n",
+ "$$\n",
+ "K = P_{xy, k|k-1} S_{k|k-1}^{-1}\n",
+ "$$\n",
+ "\n",
+ "Can be optimized more by solving $K$ for the equation:\n",
+ "\n",
+ "$$\n",
+ "S_{k|k-1} K = P_{xy, k|k-1}\n",
+ "$$"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1503b512",
+ "metadata": {},
+ "source": [
+ "## Step 11: Update State Vector and Covariance\n",
+ "\n",
+ "$$\n",
+ "\\hat{x}_{k|k} = \\hat{x}_{k|k-1} + K \\left( y_k - \\hat{y}_{k|k-1} \\right)\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "P_{k|k} = P_{k|k-1} - K P_{xy, k|k-1} K^T\n",
+ "$$"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8f473285",
+ "metadata": {},
+ "source": [
+ "# Implementation"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "2aa5bdf8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import scipy.stats as stats\n",
+ "import math\n",
+ "import sys"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e8af85c9",
+ "metadata": {},
+ "source": [
+ "## Joint State Vector and Covaraince Matrix"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "37eec130",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def augment_vectors(x, v):\n",
+ " return np.row_stack((x, v))\n",
+ "\n",
+ "def augment_covariances(P, Q):\n",
+ " prows, pcols = np.shape(P)[0], np.shape(P)[1]\n",
+ " qrows, qcols = np.shape(Q)[0], np.shape(Q)[1]\n",
+ " \n",
+ " nrows = prows + qrows\n",
+ " ncols = pcols + qcols\n",
+ " \n",
+ " Pa = np.zeros((nrows, ncols))\n",
+ " Pa[0:prows, 0:pcols] = P\n",
+ " Pa[prows:nrows, pcols:ncols] = Q\n",
+ " \n",
+ " return Pa"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "8e921b79",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[1.]\n",
+ " [2.]\n",
+ " [3.]\n",
+ " [4.]]\n",
+ "[[1. 1. 0. 0.]\n",
+ " [1. 1. 0. 0.]\n",
+ " [0. 0. 2. 2.]\n",
+ " [0. 0. 2. 2.]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "x = np.array([[1.], [2.]])\n",
+ "v = np.array([[3.], [4.]])\n",
+ "\n",
+ "P = np.array([[1., 1.], [1., 1.]])\n",
+ "Q = np.array([[2., 2.], [2., 2.]])\n",
+ "\n",
+ "xa = augment_vectors(x, v)\n",
+ "Pa = augment_covariances(P, Q)\n",
+ "\n",
+ "print(xa)\n",
+ "print(Pa)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a77b6353",
+ "metadata": {},
+ "source": [
+ "## Unscented Kalman Filter (UKF)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "9aeddf21",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class UKF(object):\n",
+ " def __init__(self, dim_x, dim_z, Q, R, kappa=0.0):\n",
+ " \n",
+ " '''\n",
+ " UKF class constructor\n",
+ " inputs:\n",
+ " dim_x : state vector x dimension\n",
+ " dim_z : measurement vector z dimension\n",
+ " \n",
+ " - step 1: setting dimensions\n",
+ " - step 2: setting number of sigma points to be generated\n",
+ " - step 3: setting scaling parameters\n",
+ " - step 4: calculate scaling coefficient for selecting sigma points\n",
+ " - step 5: calculate weights\n",
+ " '''\n",
+ " \n",
+ " # setting dimensions\n",
+ " self.dim_x = dim_x # state dimension\n",
+ " self.dim_z = dim_z # measurement dimension\n",
+ " self.dim_v = np.shape(Q)[0]\n",
+ " self.dim_n = np.shape(R)[0]\n",
+ " self.dim_a = self.dim_x + self.dim_v + self.dim_n # assuming noise dimension is same as x dimension\n",
+ " \n",
+ " # setting number of sigma points to be generated\n",
+ " self.n_sigma = (2 * self.dim_a) + 1\n",
+ " \n",
+ " # setting scaling parameters\n",
+ " self.kappa = 3 - self.dim_a #kappa\n",
+ " self.alpha = 0.001\n",
+ " self.beta = 2.0\n",
+ "\n",
+ " alpha_2 = self.alpha**2\n",
+ " self.lambda_ = alpha_2 * (self.dim_a + self.kappa) - self.dim_a\n",
+ " \n",
+ " # setting scale coefficient for selecting sigma points\n",
+ " # self.sigma_scale = np.sqrt(self.dim_a + self.lambda_)\n",
+ " self.sigma_scale = np.sqrt(self.dim_a + self.kappa)\n",
+ " \n",
+ " # calculate unscented weights\n",
+ " # self.W0m = self.W0c = self.lambda_ / (self.dim_a + self.lambda_)\n",
+ " # self.W0c = self.W0c + (1.0 - alpha_2 + self.beta)\n",
+ " # self.Wi = 0.5 / (self.dim_a + self.lambda_)\n",
+ " \n",
+ " self.W0 = self.kappa / (self.dim_a + self.kappa)\n",
+ " self.Wi = 0.5 / (self.dim_a + self.kappa)\n",
+ " \n",
+ " # initializing augmented state x_a and augmented covariance P_a\n",
+ " self.x_a = np.zeros((self.dim_a, ))\n",
+ " self.P_a = np.zeros((self.dim_a, self.dim_a))\n",
+ " \n",
+ " self.idx1, self.idx2 = self.dim_x, self.dim_x + self.dim_v\n",
+ " \n",
+ " self.P_a[self.idx1:self.idx2, self.idx1:self.idx2] = Q\n",
+ " self.P_a[self.idx2:, self.idx2:] = R\n",
+ " \n",
+ " print(f'P_a = \\n{self.P_a}\\n')\n",
+ " \n",
+ " def predict(self, f, x, P): \n",
+ " self.x_a[:self.dim_x] = x\n",
+ " self.P_a[:self.dim_x, :self.dim_x] = P\n",
+ " \n",
+ " xa_sigmas = self.sigma_points(self.x_a, self.P_a)\n",
+ " \n",
+ " xx_sigmas = xa_sigmas[:self.dim_x, :]\n",
+ " xv_sigmas = xa_sigmas[self.idx1:self.idx2, :]\n",
+ " \n",
+ " y_sigmas = np.zeros((self.dim_x, self.n_sigma)) \n",
+ " for i in range(self.n_sigma):\n",
+ " y_sigmas[:, i] = f(xx_sigmas[:, i], xv_sigmas[:, i])\n",
+ " \n",
+ " y, Pyy = self.calculate_mean_and_covariance(y_sigmas)\n",
+ " \n",
+ " self.x_a[:self.dim_x] = y\n",
+ " self.P_a[:self.dim_x, :self.dim_x] = Pyy\n",
+ " \n",
+ " return y, Pyy, xx_sigmas\n",
+ " \n",
+ " def correct(self, h, x, P, z):\n",
+ " self.x_a[:self.dim_x] = x\n",
+ " self.P_a[:self.dim_x, :self.dim_x] = P\n",
+ " \n",
+ " xa_sigmas = self.sigma_points(self.x_a, self.P_a)\n",
+ " \n",
+ " xx_sigmas = xa_sigmas[:self.dim_x, :]\n",
+ " xn_sigmas = xa_sigmas[self.idx2:, :]\n",
+ " \n",
+ " y_sigmas = np.zeros((self.dim_z, self.n_sigma))\n",
+ " for i in range(self.n_sigma):\n",
+ " y_sigmas[:, i] = h(xx_sigmas[:, i], xn_sigmas[:, i])\n",
+ " \n",
+ " y, Pyy = self.calculate_mean_and_covariance(y_sigmas)\n",
+ " \n",
+ " Pxy = self.calculate_cross_correlation(x, xx_sigmas, y, y_sigmas)\n",
+ "\n",
+ " K = Pxy @ np.linalg.pinv(Pyy)\n",
+ " \n",
+ " x = x + (K @ (z - y))\n",
+ " P = P - (K @ Pyy @ K.T)\n",
+ " \n",
+ " return x, P, xx_sigmas\n",
+ " \n",
+ " \n",
+ " def sigma_points(self, x, P):\n",
+ " \n",
+ " '''\n",
+ " generating sigma points matrix x_sigma given mean 'x' and covariance 'P'\n",
+ " '''\n",
+ " \n",
+ " nx = np.shape(x)[0]\n",
+ " \n",
+ " x_sigma = np.zeros((nx, self.n_sigma)) \n",
+ " x_sigma[:, 0] = x\n",
+ " \n",
+ " S = np.linalg.cholesky(P)\n",
+ " \n",
+ " for i in range(nx):\n",
+ " x_sigma[:, i + 1] = x + (self.sigma_scale * S[:, i])\n",
+ " x_sigma[:, i + nx + 1] = x - (self.sigma_scale * S[:, i])\n",
+ " \n",
+ " return x_sigma\n",
+ " \n",
+ " \n",
+ " def calculate_mean_and_covariance(self, y_sigmas):\n",
+ " ydim = np.shape(y_sigmas)[0]\n",
+ " \n",
+ " # mean calculation\n",
+ " y = self.W0 * y_sigmas[:, 0]\n",
+ " for i in range(1, self.n_sigma):\n",
+ " y += self.Wi * y_sigmas[:, i]\n",
+ " \n",
+ " # covariance calculation\n",
+ " d = (y_sigmas[:, 0] - y).reshape([-1, 1])\n",
+ " Pyy = self.W0 * (d @ d.T)\n",
+ " for i in range(1, self.n_sigma):\n",
+ " d = (y_sigmas[:, i] - y).reshape([-1, 1])\n",
+ " Pyy += self.Wi * (d @ d.T)\n",
+ " \n",
+ " return y, Pyy\n",
+ " \n",
+ " def calculate_cross_correlation(self, x, x_sigmas, y, y_sigmas):\n",
+ " xdim = np.shape(x)[0]\n",
+ " ydim = np.shape(y)[0]\n",
+ " \n",
+ " n_sigmas = np.shape(x_sigmas)[1]\n",
+ " \n",
+ " dx = (x_sigmas[:, 0] - x).reshape([-1, 1])\n",
+ " dy = (y_sigmas[:, 0] - y).reshape([-1, 1])\n",
+ " Pxy = self.W0 * (dx @ dy.T)\n",
+ " for i in range(1, n_sigmas):\n",
+ " dx = (x_sigmas[:, i] - x).reshape([-1, 1])\n",
+ " dy = (y_sigmas[:, i] - y).reshape([-1, 1])\n",
+ " Pxy += self.Wi * (dx @ dy.T)\n",
+ " \n",
+ " return Pxy"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4a1e773e",
+ "metadata": {},
+ "source": [
+ "First we want to compare UKF and KF on linear problem which we expect that both should provide the same estimate.\n",
+ "\n",
+ "This is the first check to evaluate that the implementation of UKF is correct and if they gave different outputs then this could be indication that something wrong with the implementation of UKF.\n",
+ "\n",
+ "The problem is a very simple linear problem:\n",
+ "\n",
+ "$$\n",
+ "\\begin{align}\n",
+ "x_{k}\n",
+ "&= f(x_{k-1}, v) \\\\\n",
+ "&= x_{k-1} + v_k\n",
+ "\\end{align}\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "\\begin{align}\n",
+ "y_{k}\n",
+ "&= h(x_{k}, n) \\\\\n",
+ "&= x_{k} + n_k\n",
+ "\\end{align}\n",
+ "$$\n",
+ "\n",
+ "And the problem initializations would be:\n",
+ "\n",
+ "$$\n",
+ "\\vec{x}_0 = \\begin{bmatrix} 1 & 2 \\end{bmatrix}^T\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "P_0 = \\begin{bmatrix} 1 & 0 \\\\ 0 & 1 \\end{bmatrix}\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "Q = \\begin{bmatrix} 0.5 & 0 \\\\ 0 & 0.5 \\end{bmatrix}\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "\\vec{z} = \\begin{bmatrix} 1.2 & 1.8 \\end{bmatrix}^T\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "R = \\begin{bmatrix} 0.3 & 0 \\\\ 0 & 0.3 \\end{bmatrix}\n",
+ "$$"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "91e23cf6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "x0 = np.array([1.0, 2.0])\n",
+ "P0 = np.array([[1.0, 0.0], [0.0, 1.0]])\n",
+ "Q = np.array([[0.5, 0.0], [0.0, 0.5]])\n",
+ "\n",
+ "z = np.array([1.2, 1.8])\n",
+ "R = np.array([[0.3, 0.0], [0.0, 0.3]])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "1da0a648",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "P_a = \n",
+ "[[0. 0. 0. 0. 0. 0. ]\n",
+ " [0. 0. 0. 0. 0. 0. ]\n",
+ " [0. 0. 0.5 0. 0. 0. ]\n",
+ " [0. 0. 0. 0.5 0. 0. ]\n",
+ " [0. 0. 0. 0. 0.3 0. ]\n",
+ " [0. 0. 0. 0. 0. 0.3]]\n",
+ "\n",
+ "x = \n",
+ "[1. 2.]\n",
+ "\n",
+ "P = \n",
+ "[[1.5 0. ]\n",
+ " [0. 1.5]]\n",
+ "\n",
+ "x = \n",
+ "[1.16667 1.83333]\n",
+ "\n",
+ "P = \n",
+ "[[ 0.25 -0. ]\n",
+ " [-0. 0.25]]\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "def f(x, v):\n",
+ " return (x + v)\n",
+ "\n",
+ "def h(x, n):\n",
+ " return (x + n)\n",
+ "\n",
+ "nx = np.shape(x)[0]\n",
+ "nz = np.shape(z)[0]\n",
+ "nv = np.shape(x)[0]\n",
+ "nn = np.shape(z)[0]\n",
+ "\n",
+ "ukf = UKF(dim_x=nx, dim_z=nz, Q=Q, R=R, kappa=(3 - nx))\n",
+ "\n",
+ "x1, P1, _ = ukf.predict(f, x0, P0)\n",
+ "\n",
+ "print(f'x = \\n{x1.round(5)}\\n')\n",
+ "print(f'P = \\n{P1.round(5)}\\n')\n",
+ "\n",
+ "x2, P2, _ = ukf.correct(h, x1, P1, z)\n",
+ "\n",
+ "print(f'x = \\n{x2.round(5)}\\n')\n",
+ "print(f'P = \\n{P2.round(5)}\\n')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "8d371939",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "x = \n",
+ "[1. 2.]\n",
+ "\n",
+ "P = \n",
+ "[[1.5 0. ]\n",
+ " [0. 1.5]]\n",
+ "\n",
+ "x = \n",
+ "[1.16667 1.83333]\n",
+ "\n",
+ "P = \n",
+ "[[0.25 0. ]\n",
+ " [0. 0.25]]\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "def KF_predict(F, x, P, Q):\n",
+ " x = (F @ x)\n",
+ " P = F @ P @ F.T + Q\n",
+ " return x, P\n",
+ "\n",
+ "def KF_correct(H, z, R, x, P):\n",
+ " Pxz = P @ H.T \n",
+ " S = H @ P @ H.T + R\n",
+ " \n",
+ " K = Pxz @ np.linalg.pinv(S)\n",
+ " \n",
+ " x = x + K @ (z - H @ x)\n",
+ " I = np.eye(P.shape[0])\n",
+ " P = (I - K @ H) @ P\n",
+ " return x, P\n",
+ "\n",
+ "F = np.array([[1.0, 0.0], [0.0, 1.0]])\n",
+ "H = np.array([[1.0, 0.0], [0.0, 1.0]])\n",
+ "\n",
+ "x1, P1 = KF_predict(F, x0, P0, Q)\n",
+ "\n",
+ "print(f'x = \\n{x1.round(5)}\\n')\n",
+ "print(f'P = \\n{P1.round(5)}\\n')\n",
+ "\n",
+ "x2, P2 = KF_correct(H, x1, P1, z, R)\n",
+ "\n",
+ "print(f'x = \\n{x2.round(5)}\\n')\n",
+ "print(f'P = \\n{P2.round(5)}\\n')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8fc48263",
+ "metadata": {},
+ "source": [
+ "Next step is to check with a 2-Dimensional nonlinear problem and visualize the uncertainty ellipses and sigma points and compare against Monto-carlo.\n",
+ "\n",
+ "Lets assume the same example we demonstrated in the Extended Kalman filter article:\n",
+ "\n",
+ "## Example: Target Tracking in 2D\n",
+ "\n",
+ "Lets practice an example of a tracking application and see how the equations are formulated.\n",
+ "\n",
+ "Assume that we want to track a single target moving in the surrounding, and the states to track are x- and y-positions, and x-, and y-velocities.\n",
+ "\n",
+ "$$\n",
+ "\\vec{x} = \\begin{bmatrix} p_x \\\\ p_y \\\\ v_x \\\\ v_y \\end{bmatrix}\n",
+ "$$\n",
+ "\n",
+ "Hence, the prediction model would be a linear **constant velocity model** (CV-model):\n",
+ "\n",
+ "$$\n",
+ "\\begin{bmatrix} p_{x, k|k-1} \\\\ p_{y, k|k-1} \\\\ v_{x, k|k-1} \\\\ v_{y, k|k-1} \\end{bmatrix} = \n",
+ "\\begin{bmatrix} p_{x, k-1|k-1} + T \\space (v_{x, k-1|k-1} + \\nu_{vx, k}) \\\\ p_{y, k-1|k-1} + T \\space (v_{y, k-1|k-1} + \\nu_{vy, k}) \\\\ v_{x, k-1|k-1} \\\\ v_{y, k-1|k-1} \\end{bmatrix}\n",
+ "$$\n",
+ "\n",
+ "We assumed that we only know the process noise with respect to velocity x and y $\\nu_{vx, k}$ and $\\nu_{vy, k}$, respectively."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "458845ec",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def f_2(x, nu):\n",
+ " xo = np.zeros((np.shape(x)[0],))\n",
+ " xo[0] = x[0] + x[2] + nu[0]\n",
+ " xo[1] = x[1] + x[3] + nu[1]\n",
+ " xo[2] = x[2] + nu[2]\n",
+ " xo[3] = x[3] + nu[3]\n",
+ " return xo"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c928c953",
+ "metadata": {},
+ "source": [
+ "Now for the most important part, assuming we have a range sensor that measures for the range $r$ and bearing angle $\\beta$ of a target. The state that we are estimating is the cartesian coordinates of the target in $x$ and $y$ components.\n",
+ "\n",
+ "![](images/sensorA_and_sensorB.PNG)\n",
+ "\n",
+ "The measurement model will be the trignometric equations used to convert from cartesian to polar coordinates:\n",
+ "\n",
+ "$$\n",
+ "\\vec{z}_{k|k-1} = h(\\vec{x}_{k|k-1}, n_k)\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "\\begin{bmatrix} r \\\\ \\beta \\end{bmatrix} = \\begin{bmatrix} h_1 \\\\ h_2 \\end{bmatrix} =\n",
+ "\\begin{bmatrix} \\sqrt{p_{x,{k|k-1}}^2 + p_{y,{k|k-1}}^2} + n^r_k \\\\ \\tan^{-1} \\left( \\frac{p_{y,{k|k-1}}}{p_{x,{k|k-1}}} \\right) + n^{\\beta}_k \\end{bmatrix}\n",
+ "$$\n",
+ "\n",
+ "\n",
+ "However, this time I would introduce a small difference compared to the EKF example in order to demonstrate the power of UKF and assume that the measurement noise is known with respect to cartesian position error, which means we know the position errorness from the sensor $n_x$ and $n_y$.\n",
+ "\n",
+ "So noises will be added directly to the cartesian position states and the measurement model for UKF would be:\n",
+ "\n",
+ "$$\n",
+ "\\begin{bmatrix} r \\\\ \\beta \\end{bmatrix} = \\begin{bmatrix} h_1 \\\\ h_2 \\end{bmatrix} =\n",
+ "\\begin{bmatrix} \\sqrt{(p_{x,{k|k-1}} + n^x_k)^2 + (p_{y,{k|k-1}} + n^y_k)^2} \\\\ \\tan^{-1} \\left( \\frac{p_{y,{k|k-1}} + n^y_k}{p_{x,{k|k-1}} + n^x_k} \\right) \\end{bmatrix}\n",
+ "$$\n",
+ "\n",
+ "Lets assume that our predicted state and covariance are:\n",
+ "\n",
+ "$$\n",
+ " \\vec{x}_{k|k-1} = \\begin{bmatrix} p_{x,k|k-1} \\\\ p_{y, k|k-1}\\end{bmatrix} = \\begin{bmatrix} 10 \\\\ 5\\end{bmatrix}\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ " P_{k|k-1} = \\begin{bmatrix} q_{11} & q_{12} \\\\ q_{21} & q_{22}\\end{bmatrix} = \\begin{bmatrix} 0.3 & 0.0 \\\\ 0.0 & 0.3\\end{bmatrix}\n",
+ "$$\n",
+ "\n",
+ "And the received measurement is:\n",
+ "\n",
+ "$$\n",
+ " \\vec{z}_{k} = \\begin{bmatrix} r_{k} \\\\ \\beta_{k}\\end{bmatrix} = \\begin{bmatrix} 12.0 \\\\ 0.55\\end{bmatrix}\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ " R = \\begin{bmatrix} r_{11} & r_{12} \\\\ r_{21} & r_{22}\\end{bmatrix} = \\begin{bmatrix} 0.1 & 0 \\\\ 0 & 0.1\\end{bmatrix}\n",
+ "$$"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "35b2885c",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "range: 12.076837334335508\n",
+ "bearing: 0.4821640110688151\n"
+ ]
+ }
+ ],
+ "source": [
+ "class RangeMeasurement:\n",
+ " def __init__(self, position):\n",
+ " self.range = np.sqrt(position[0]**2 + position[1]**2)\n",
+ " self.bearing = np.arctan(position[1] / (position[0] + sys.float_info.epsilon))\n",
+ " self.position = np.array([position[0],position[1]])\n",
+ "\n",
+ " def actual_position(self):\n",
+ " return self.position\n",
+ " \n",
+ " def asArray(self):\n",
+ " return np.array([self.range,self.bearing])\n",
+ " \n",
+ " def show(self):\n",
+ " print(f'range: {self.range}')\n",
+ " print(f'bearing: {self.bearing}')\n",
+ " \n",
+ "measurement = RangeMeasurement((10.7, 5.6)) # ground-truth\n",
+ "measurement.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "7bf9823b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def h_2(x, n):\n",
+ " '''\n",
+ " nonlinear measurement model for range sensor\n",
+ " x : input state vector [2 x 1] ([0]: p_x, [1]: p_y)\n",
+ " z : output measurement vector [2 x 1] ([0]: range, [1]: bearing )\n",
+ " '''\n",
+ " z = np.zeros((2,))\n",
+ " px = x[0] + n[0]\n",
+ " py = x[1] + n[1]\n",
+ " \n",
+ " z[0] = np.sqrt(px**2 + py**2)\n",
+ " z[1] = np.arctan(py / (px + sys.float_info.epsilon))\n",
+ " return z"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "14f64538",
+ "metadata": {},
+ "source": [
+ "##"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "194f373a",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "P_a = \n",
+ "[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]\n",
+ " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]\n",
+ " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]\n",
+ " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]\n",
+ " [0. 0. 0. 0. 0.05 0. 0. 0. 0. 0. ]\n",
+ " [0. 0. 0. 0. 0. 0.05 0. 0. 0. 0. ]\n",
+ " [0. 0. 0. 0. 0. 0. 0.1 0. 0. 0. ]\n",
+ " [0. 0. 0. 0. 0. 0. 0. 0.1 0. 0. ]\n",
+ " [0. 0. 0. 0. 0. 0. 0. 0. 0.01 0. ]\n",
+ " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.01]]\n",
+ "\n",
+ "x = \n",
+ " [2. 1. 0. 0.]\n",
+ "P = \n",
+ " [[ 0.11 0. 0.05 -0. ]\n",
+ " [ 0. 0.11 -0. 0.05]\n",
+ " [ 0.05 -0. 0.15 0. ]\n",
+ " [-0. 0.05 0. 0.15]]\n",
+ "x = \n",
+ " [ 2.554 0.356 0.252 -0.293]\n",
+ "P = \n",
+ " [[ 0.01 -0.001 0.005 -0. ]\n",
+ " [-0.001 0.01 -0. 0.005]\n",
+ " [ 0.005 -0. 0.129 -0. ]\n",
+ " [-0. 0.005 -0. 0.129]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "x0 = np.array([2.0, 1.0, 0., 0.])\n",
+ "\n",
+ "P0 = np.array([[0.01, 0.0, 0.0, 0.0],\n",
+ " [0.0, 0.01, 0.0, 0.0],\n",
+ " [0.0, 0.0, 0.05, 0.0],\n",
+ " [0.0, 0.0, 0.0, 0.05]])\n",
+ "\n",
+ "Q = np.array([[0.05, 0.0, 0.0, 0.0],\n",
+ " [0.0, 0.05, 0.0, 0.0],\n",
+ " [0.0, 0.0, 0.1, 0.0],\n",
+ " [0.0, 0.0, 0.0, 0.1]])\n",
+ "\n",
+ "R = np.array([[0.01, 0.0],\n",
+ " [0.0, 0.01]])\n",
+ "\n",
+ "z = np.array([2.5, 0.05])\n",
+ "\n",
+ "nx = np.shape(x0)[0]\n",
+ "nz = np.shape(R)[0]\n",
+ "nv = np.shape(x0)[0]\n",
+ "nn = np.shape(R)[0]\n",
+ "\n",
+ "ukf = UKF(dim_x=nx, dim_z=nz, Q=Q, R=R, kappa=(3 - nx))\n",
+ "\n",
+ "x, P, _ = ukf.predict(f_2, x0, P0)\n",
+ "\n",
+ "print(f'x = \\n {x.round(3)}')\n",
+ "print(f'P = \\n {P.round(3)}')\n",
+ "\n",
+ "x, P, _ = ukf.correct(h_2, x, P, z)\n",
+ "\n",
+ "print(f'x = \\n {x.round(3)}')\n",
+ "print(f'P = \\n {P.round(3)}')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "aad87119",
+ "metadata": {},
+ "source": [
+ "## Visualize 2D State Ellipse and Sigma Points"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "c4c05b70",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# prepare helper functions for visualizing the ellipses\n",
+ "from matplotlib.patches import Ellipse\n",
+ "\n",
+ "def create_covariance_ellipse(pos, cov):\n",
+ " # https://www.visiondummy.com/2014/04/draw-error-ellipse-representing-covariance-matrix\n",
+ " eig_values, eig_vectors = np.linalg.eig(cov)\n",
+ " \n",
+ " scale_95 = np.sqrt(5.991)\n",
+ " radius_1 = scale_95 * eig_values[0]\n",
+ " radius_2 = scale_95 * eig_values[1]\n",
+ " angle = np.arctan2(eig_vectors[1, 1], eig_vectors[0, 1])\n",
+ " \n",
+ " return radius_1, radius_2, angle\n",
+ "\n",
+ "def draw_ellipse(ax, mu, radius_1, radius_2, angle, color):\n",
+ " # https://matplotlib.org/stable/gallery/shapes_and_collections/ellipse_demo.html\n",
+ " ellipse = Ellipse(\n",
+ " mu,\n",
+ " width=radius_1 * 2,\n",
+ " height=radius_2 * 2,\n",
+ " angle=np.rad2deg(angle) + 90,\n",
+ " facecolor=color,\n",
+ " alpha=0.4)\n",
+ " ax.add_artist(ellipse)\n",
+ " return ax\n",
+ "\n",
+ "def plot_ellipse(ax, x, P, color):\n",
+ " x = x[0:2].reshape(2,)\n",
+ " P = P[0:2, 0:2]\n",
+ " r1, r2, angle = create_covariance_ellipse(x, P)\n",
+ " draw_ellipse(ax, x, r1, r2, angle, color)\n",
+ " \n",
+ "def get_correlated_dataset(n, cov, mu, scale):\n",
+ " # https://carstenschelp.github.io/2018/09/14/Plot_Confidence_Ellipse_001.html\n",
+ " latent = np.random.randn(n, 2)\n",
+ " cov = latent.dot(cov)\n",
+ " scaled = cov * scale\n",
+ " scaled_with_offset = scaled + mu\n",
+ " # return x and y of the new, correlated dataset\n",
+ " return scaled_with_offset[:, 0], scaled_with_offset[:, 1]\n",
+ "\n",
+ "def plot_samples(ax, samples_num, x, P, color, markersize, label):\n",
+ " scale = 1, 1\n",
+ " x, y = get_correlated_dataset(samples_num, P, x, scale)\n",
+ " ax.scatter(x, y, s=markersize, marker='x', c=color, label=label)\n",
+ " \n",
+ "def plot_mean(ax, x, size, color, label):\n",
+ " ax.scatter(x[0], x[1], s=size, marker='o', c=color, label=label)\n",
+ " \n",
+ "def plot_state(ax, x, P, samples_num, markersize, color, label):\n",
+ " x = x[0:2].reshape(2,)\n",
+ " P = P[0:2, 0:2]\n",
+ " \n",
+ " plot_ellipse(ax, x, P, color)\n",
+ " plot_samples(ax, samples_num, x, P, color, markersize, label+'_possibilities')\n",
+ " plot_mean(ax, x, 100, color, label+'_mean')\n",
+ " \n",
+ "def create_viewer(title, xlabel, ylabel, xlim=None, ylim=None):\n",
+ " fig, viewer = plt.subplots(figsize=(20, 10))\n",
+ " \n",
+ " viewer.set_title(title, fontsize=20, color='green', fontweight='bold')\n",
+ " \n",
+ " viewer.axvline(c='grey', lw=2)\n",
+ " viewer.axhline(c='grey', lw=2)\n",
+ "\n",
+ " viewer.set_xlabel(xlabel, fontsize=20, fontweight ='bold')\n",
+ " viewer.set_ylabel(ylabel, fontsize=20, fontweight ='bold')\n",
+ " \n",
+ " if (xlim != None):\n",
+ " viewer.set_xlim(xlim[0], xlim[1])\n",
+ " \n",
+ " if (ylim != None):\n",
+ " viewer.set_ylim(ylim[0], ylim[1])\n",
+ " \n",
+ " return viewer\n",
+ "\n",
+ "def visualize_estimate(viewer, label, color, x, P):\n",
+ " plot_state(viewer, x=x, P=P, samples_num=500, markersize=1, color=color, label=label)\n",
+ " \n",
+ "def update_plotter():\n",
+ " plt.grid(visible=True)\n",
+ " plt.legend(loc='upper right')\n",
+ " plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "c752a547",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "P_a = \n",
+ "[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]\n",
+ " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]\n",
+ " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]\n",
+ " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]\n",
+ " [0. 0. 0. 0. 0.05 0. 0. 0. 0. 0. ]\n",
+ " [0. 0. 0. 0. 0. 0.05 0. 0. 0. 0. ]\n",
+ " [0. 0. 0. 0. 0. 0. 0.1 0. 0. 0. ]\n",
+ " [0. 0. 0. 0. 0. 0. 0. 0.1 0. 0. ]\n",
+ " [0. 0. 0. 0. 0. 0. 0. 0. 0.1 0. ]\n",
+ " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.1 ]]\n",
+ "\n",
+ "=====Iteration 1====\n",
+ "x = \n",
+ "[10.548 5.476 0. 0. ]\n",
+ "\n",
+ "P = \n",
+ "[[0.073 0.007 0. 0. ]\n",
+ " [0.007 0.073 0. 0. ]\n",
+ " [0. 0. 0.1 0. ]\n",
+ " [0. 0. 0. 0.1 ]]\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "x0 = np.array([10., 5., 0., 0.])\n",
+ "\n",
+ "P0 = np.array([[0.3, 0.1, 0.0, 0.0],\n",
+ " [0.1, 0.3, 0.0, 0.0],\n",
+ " [0.0, 0.0, 0.1, 0.0],\n",
+ " [0.0, 0.0, 0.0, 0.1]])\n",
+ "\n",
+ "Q = np.array([[0.05, 0.0, 0.0, 0.0],\n",
+ " [0.0, 0.05, 0.0, 0.0],\n",
+ " [0.0, 0.0, 0.1, 0.0],\n",
+ " [0.0, 0.0, 0.0, 0.1]])\n",
+ "\n",
+ "z = measurement.asArray()\n",
+ "R = np.array([[0.1, 0.0],[0.0, 0.1]])\n",
+ "\n",
+ "nx = np.shape(x0)[0]\n",
+ "nz = np.shape(z)[0]\n",
+ "nv = np.shape(x0)[0]\n",
+ "nn = np.shape(z)[0]\n",
+ "\n",
+ "ukf = UKF(dim_x=nx, dim_z=nz, Q=Q, R=R, kappa=(3 - nx))\n",
+ "\n",
+ "\n",
+ "print('=====Iteration 1====')\n",
+ "x, P, x_sigmas = ukf.correct(h_2, x0, P0, z)\n",
+ "print(f'x = \\n{x.round(3)}\\n')\n",
+ "print(f'P = \\n{P.round(3)}\\n')\n",
+ "print('\\n\\n')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "d8c90468",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[10. 10.9486833 10. 10. 10. ]\n",
+ " [ 5. 5.31622777 5.89442719 5. 5. ]]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABnsAAANtCAYAAABYFc4nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zN1/8H8NfNvtlDJCFXhhhBJEHNIkoFpbSKqtKg9la0WlurVNVov1UtFVWlWqNqz1ixQmIlshcS2Xvd5H5+f+SXWzf3Zsm4Ca9nHx43n/M5430/934uve+cc0SCIAggIiIiIiIiIiIiIiKiBklD3QEQERERERERERERERHRi2Oyh4iIiIiIiIiIiIiIqAFjsoeIiIiIiIiIiIiIiKgBY7KHiIiIiIiIiIiIiIioAWOyh4iIiIiIiIiIiIiIqAFjsoeIiIiIiIiIiIiIiKgBY7KHiIiIiIiIiIiIiIioAWOyh4iIiIiIiIiIiIiIqAFjsoeIiIiIiIiIiIiIiKgB01J3AEREREREREQNif0me0SnRyuUCcsFNUVTNp8oH/TZ1Ueh7CPXj+A9zFs9ARERERFRrWGyh4iIiIiqxSfKB3vu7cGNJzfwOOMxMgsyYahjCDM9M5iLzeFg5gB3a3e4W7ujU5NOsDSwVHfIDV5BUQEOBB7AwUcH4R/nj4TsBOQV5sFEzwTmYnOYi83RulFruFu7o4NNB3Sw6QB9bX11h/1Si0qLgsNmB6XyyDmRsDe1V9lGVcJg59Cd8HLzqoUIiYiIiIjoZcZkDxERERG9kJTcFIw9NBbHQ48rnUvLS0NaXhoi0yJxO+42/g78GwAw3Hk4/h75t1J9df/2ubrHr4q78Xfx/oH38SjpkdK5pJwkJOUkAQCuP74Ob3gDAL4f+D1mdp5Zl2ES1aoVPiuw8uJKhbKXPVGmKqHY2643fLx81BMQEREREdUrTPYQERERUZUVygoxaM8g3HhyQ92hvFKi0qLQb3c/eUKHiNRjgvsEpOSmqDuMCtka22JOlzkKZZ2bdlZTNERERERUm5jsISIiIqIq235nu8pETwebDmhj2QbGOsbIKMhAaHIo7j27h9zCXDVE+fL57OxnSokebQ1t9LLrhWYmzaCnpYfk3GQ8THiIR0mPUCQUqSlSopfbst7L1B1CpTiZO2HTgE3qDoOIiIiI6gCTPURERERUZXsf7FU41hRp4tgHx+Dp5KlUN78wHxeiLuCP+39AQP3bwLyhyJXm4p/gfxTKbI1tcXn8ZZV7wqTkpuB46HF4B3hDQ6RRR1ESERERERGROogEQeD/cRMRERFRlZivM0dqXqr8uL1Ve9yderfCdkWyImhqaMqPvQ57YdfdXZUe9/l9dAqKCnAh8gL8nvrBL84PEakRSMlNQUpuCqRFUhjrGsPe1B6dmnTC6Haj0du+t1J/1Rn/eYnZidjhvwPnIs8hMDEQyTnJ0NHUgY2RDXo264mPXD9CT7uelR5HlXvP7sH1J1eFstmdZ2PzwM0Vti193UvYb7JHdHq0QpmwXEB2QTY239iMvwL/QnhKOACgVaNW+NDlQ0x/bTq0NbVVjnP/2X34xvri1tNbeJDwAEk5SUjJTUFmQSb0tfVhqW+J9lbtMdBpIEa7jIahjmGFsRcUFeDPB3/iRNgJ+D31Q0J2AnKkObA0sEQToybobtsd/Zv3x8AWA8tMal1/fB2/3/sdV2Ku4HHGY2TkZ8BUzxRO5k7wbO6JqZ2mwsrQqsJYyqNqPxUAiJwTqTIZB6i+/qr2nfHw9sDF6ItK/UqMJdjhvwO/3/sdDxMfIkeag2YmzfBO63fw2eufwVTPtMK4z0eex18P/8K1x9fwJPMJ0vPSYaJnAmtDa7hZu6G/Y38MbT0UxrrGKttHp0Vjh/8O+ET5IDQlFCm5KRBriSExkcDDzgOTOk5Ce6v2ZY6v6h688NEF9GzWE9tub8Mf9//Ao6RHSM5NxkeuH8EnykfpmpXn+euZnJOMC1HFnxm3427jScYTpOalIiU3BZoiTZjomaCVRSt0l3SHl5sXWlq0LLPfsu6d55W3F9ijpEfYeG0jTkecRlxmHAx0DNC5aWfM6zoP/Zv3V2ijan+i8jy/j8+L7EcWmBiInf47cSnmEqLSopCamwojXSPYm9qjr0NfTOs0DQ5myu/1592Nv4udATvhG+uLiNQIZORnQFtTG430G8FS3xKtG7VGR5uO6G3fGx1sOlT6uRERERFR2Tizh4iIiIiqLKsgS+H4ccZjpOSmwFxsXm47VQmHFxWSHIIBewaUeT45NxnJucm4HXcb225vw+CWg/H7O7/DRM+kxmIAgE3XN+Hzc58rLVWXX5SPzORMhCSHYIf/Dgx3Hg7vYd6VSnCoUvqaA8D9hPsQBAEikajctlW57qHJoRiwZwAiUiMUyv2e+sHvqR9239uN02NPq3ytx/8zHrfjbqvsNyM/Axn5GQhPDcehR4ew8uJK/DH8D/Sy61VmLMdDj+PjIx8jLitO6dzTzKd4mvkUfk/9sOXmFqR+mqqU3EjKScL4f8bjaMhRpfaJOYlIzEnEtcfXsN53PTYN2ISPO3xcZiz1TXxWPEb8NQJ+T/0UykOSQ7Du6jocenQIl7wulZnECkkOwdhDY3HzyU2lc0k5SUjKScKDhAf4/d7vODTqEIa1HqZQp1BWiCXnl2DDtQ0olBUqnCsoKkB6QjoeJDzA/279D9M6TcOmAZvKTBKWlpmfiV7eveAb61up+pW198FezDoxq8zzuVm5iM+Kx8Xoi1h3dR0+6/EZvur7VY3GAAA/3voR807NQ0FRgbwsPzcfJ8NO4mTYSXzX/zvM6zavxsetSI40BzOPz4R3gLfSLMySRPqduDvYdH0TlvZaiqW9l6rsZ9XFVVjhs0KpD6lMipj0GMSkx+B23G3sub8HmiJNFC4rVNkPEREREVUN13MgIiIioiqzNLBUOE7JTUH7re2xwmcFrsRcQa60/u3RczTkKMYcHFOjfc49ORfzTs2r1J5EB4IOoO9vfZFfmP9CY1nqWyqVXYi6gNd+eQ1bbmzB/Wf3USSr/h49/Xb3U0r0PO923G28vfdtyARZtcZ5kvkEQ/YOkc8cKm37ne0Y/MdglYmeykjKSUK3Hd1UJnpKy5ZmY9K/k7Dx2sYXGksdhu4bqpToeV5IcgjmnVKdMAiID0CnnzupTPRUhiAIGPnXSKy7uk4p0aNUFwJ+9PsRI/8eicouKjH9+PQaT/RUlUyQYc2VNfjW99sa7fd46HHMOD5DIdFT2qKzi/Aw4WGNjluRvMI89P2tL3YG7KxwuU2pTIplPssw58QcpXMXIi9guc9yLtlJREREpAac2UNEREREVfaGwxv4/d7vCmVPMp9g5cWVWHlxJTRFmmjbuC1el7yON5u/iYFOA6GrpavUT//m/WGqZ4rHGY9xIOiAwjnnRs5Kyxl1btpZqQ89LT24WbvBUt8SjfQbwVDHEJkFmQhMDMStJ7cUvnQ8FnoMl6IvyWeTVGf8vwP/xuYbykuodbPthraWbZFRkIGTYSeRkZ8hP3fzyU18fu5zbPDcoNSuIi0sWkBiLEFsRqxC+e242/LZNPra+uhg0wE9m/XEWy3eQndJ9wpn/ZQWkx4DQx1DDGoxCKa6prgUcwmPkh4p1LkaexXb/LZh2mvTVPbRyqIV7EztYCG2gLnYHIWyQjzOeIzLMZcVrkdGfga+uvwVfh36q0J7/zh/TDs2TeUXxl1tu8KlsQuA4oTGtcfXVH5x7nXYC2EpYQplBtoG6N+8PxobNEZwcjB8onwUzi86u6jBLCuVkJ0ADZEGBjgNgMRYgtPhpxGZFqlQ56/Av7BpwCY0NmgsL8uR5uDtvW8jsyBTqc8W5i3QXdId+tr68tcrLS9Nqd6Gaxtw6NEhhTINkQY87D3gZOaEhJwEnAg9gfyi/xKbhx8dxg83f8CsLmXPrCnxOOMxAKCZSTP0se8DTZEmHiQ+gEgkwgT3CUjJTcH1x9dx48kNhXZvOr6JNpZtFMpKHwOAudgcLo1dYKFvAQuxBXQ0dZCSmwK/p34ITQlVqPvlpS8xuePkMpexq6rEnET5c+vv2B/Juck4/Oiwwnu9UFaIbbe3YcvALQCK3/NzusxBRn4GdgbsVOivqVFTvNfmPYUyJ3OnKse14PQCXH98XaFMW0MbbzZ/ExJjCaLTo3Em/AyKhP8SyltubkE/x34Y0mqIvGzP/T1KfbtauaKjTUfoaekhLT8NwUnBuJ9wv9yEFxERERFVHZM9RERERFRli7ovwl8P/1L4Mvd5RUIR7j27h3vP7uFHvx9hLjbH4tcXY363+Qr7qnzg8gE+cPkAPlE+SsmWzk07Y9OATWXG0MSoCU59eAo9m/WEWFusss6hoEN4d/+7SmUlyZ7qjL/0guISRjqaOjg06hAGtRgkL0vMTkSPX3sofIH8o9+PWNhjIawNrcvsuyxLei3BlKNTyjyfI83BlZgruBJzBV9f+RqtG7XG+jfXY3DLwZUew8rACr4TfeFo5gigeL8fr3+8lJJ7m25sUkr2rOm7Bm0t26KpcVOVfSdmJ6Lbjm4IT/1vNs/hR4ex4+0dCkmppReWKs0YsTKwwqFRh9BN0k2h/FnWM6z3XQ9N0X9L1d14fAPHQo8p1HO1csXZcWfRSL+RvOxQ0CEM3z9c/kV7oawQqy+txqFRiomM+khTpImjHxzFAKfipQxTclPQdXtXhfdaoawQvrG+Ckuw/XjrR6WEoaZIEz8N/gkT3ScqvA55hXnY6b9TYcm+HGkOvr7ytUJ7E10TnB13Fp2adJKXhaWEoduObkjKSZKXrbmyBpM7TlaZ+C1tcofJ+GHQDwpLv2UVZMmXQVzhs0Ip2fOBywdK+x097w2HN3Dz45vo2KSjyv2dBEHAvFPzFJK46fnpuBB5AUNbD60w5srq59gPR94/Iv/c+uHmD0rLy12KviT/eYDTAAxwGoCotCilZI+TuVO5n1OVEZsei59v/6xQJjGWwMfLR/45ABTvfdVnVx/kFebJy5b5LFNI9sSkxyj0M6LNCOwfsV9pzFxpLi7HXMbfgX9XK3YiIiIi+g+TPURERERUZS5WLvhj+B8Ye2gscqQ5FdZPyU3BwjML4Rvri79H/q3yi9aqMheby2feBCYGwj/OH5FpkcgqyEJ+YT4ECCqXjboTf6faYwcmBirNdhnVdpRCogcoXu5uXtd5mH58urwsrzAPx0KOYWKHiVUed3LHyYhIjcC6q+sqVf9R0iMM2TukSnuALOm1ROELXk0NTWwZsEUpuReSHILwlHA0N28uLyt5PVJyU+Ab64uQ5BCk5KYgR5ojX/at9L4tqXmpiEqLkm/4npmfidPhp5Xi2jl0p1KiBwCsDK3wbX/FpbZKJ+4A4DvP7xQSPQDwjvM7eK3pawrLmR0PPY4caQ70tfWV+qhPhrUeJk/0AMX3w8i2I/HVZcU9ZqLSohSOVX25/km3T1TuV6SnpaeU0POJ8kFKbopC2ewusxUSPUBxEmKC2wR84/uNvCw+Kx5XYq6gr2Pfcp9bS4uW+N9b/4OWhuL/rr7oflclSmb5FMmK4PvYFw8THuJJ5hNkF2RDKpMCgFIiDADuxN2p0WTPd/2/U0hQT+owCXNPzlWYNVP6datN/4b8K3/+JVZ4rFD4HACKZxi93ept7H/4X/ImID5A4XPASNdIoU3J/V/6fhJri9G/eX+l2ZNERERE9OKY7CEiIiKiF/Ku87vo1KQTvrr0FfY+2KtyWajSDj06hJ3+O18o0aHK34F/Y8n5JQhODq50m+dnGryoG49vKJXtvrcbu+/trlT7a4+vvfA1WNtvLd5u9TbWXF6Dk2EnFb4gLsvCMwvxVsu30NKiZYV1BzoNVCozE5uhc9POuBxzWaE8ID5AIdkTkRqBhWcW4p9H/1QqrhJJOUnyZM+duDtKXzw3M2mGgS2U4ypL6RkfAND3t/ITDCUKigpwJ+4OXm/2eqXHU4cPXD5QKrMxtFEqe37ZvCJZkcp9fqZ2mlrpcVW991dfWo3Vl1ZXqv21x9cqTPaMcRmjlOipCYWyQqy7sg4br29Ecm5ypdvVxGdGCZfGLnCxclEo09XShZnYTGGc51+32qbqfpl4ZCImHqncZ9S1x9fknwN9HfriYNBB+blzkedgud4S7Rq3QyuLVmhl0QrtGrdDj2Y9lJKvRERERFQ9TPYQERER0QtrZtIM24YU7y1x7fE1XIq+hGuPr8E31rfMLyu973rXSLLn+xvfY/bJ2VVuV5mZSBUp2XfjRT3Lflat9t0l3XH0g6NIy0vDhcgLuBp7Fb6xvvB76qeUKAGKl9XbfXc3Vr9R8RfyEhOJynJbY1ulsue/nI5IjUDX7V1f6No8/5qoujatG7WuUn+J2dV8fbKq/vq8SHJC1Z5Ele3HzsROqUxPS0+prGRGFQAk5yYrJeF0NHXkibbKqPZ7vxLXtr1V+2qNUZb3/35f5ayviuQUVv8zo4SdqfLrBii/dqreG7WlJu+XCe4T8Nvd3xQSSDnSHNx8clNhBp0IIvRx6IOv3vgKXW27Vmt8IiIiIirGZA8RERERVZuuli487D3gYe8BoPg36E+Hn8ack3MQlhKmUPf+s/vVHi8pJwmfnv30hdqqWtqtrmUVZNVIP6Z6pnjH+R284/wOgOIl0Pbc34MFpxcgW5qtUPd+QvWuu6ovn5/f3+XTs5++cCKgoi+2RRCVe76mvcjrY6JrorK8vOSiqnNmemaVGs9C30KpTFNDU0XN8tX5tZVWfG3LupbVcSzk2AsleoCa/cywECu/bgAU9pxqaJ6/X/S09HDR6yI239iMX/1/LXPWpQAB5yPPo7d3b5wfdx49mvWoq3CJiIiIXlpM9hARERFRjdPS0MKgFoNgqmeKHr8qfomXW5hb7f5Ph59W6qexQWP8MPAHeNh7wELfAhoiDeQX5kPvK+XZDtXV2KCxUll3SXe81uS1SrV3Mneq6ZAAFO+XMbXTVKTkpuCL818onKvsdY9Nj1VYmq3Ek4wnSmUlX1wXygpxLOSY0vlF3RdhUsdJkBhLoKulCwAYfWA09j3YV+b4qq5tUFJQpWJ/vo/SbT52/xgGOgaVau9s6Vyl8YDia2+gbaCUZItNj5XvFfO8HGkOknOUlxKzNrSu8tiVZSG2gKZIU2F2T35RPiJTIys9u0fV6zPAaQBaWbSqVPvOTTtXWOf5JGJN+Sf4H6WyrrZdsa7fOrhaucJErzjBdCrsFAbsGaBU92Wm6jUd2XakymUBVeli20XhWFdLF4t6LMKiHovwJOMJ7j27h9CUUAQnBeNi9EU8THwor1tQVIBVl1bh1IenqvckiIiIiIjJHiIiIiKquh9v/YjhzsNhZWhVbj1VXyKai82VylT9Vnt5e77EpMcolS3qvggj2o5QKFO1F4UqVR1fVVLHVM8UmwZsqnAsQRBeaImmzPxM/Hb3N3zc4WN54qQslb3uqpwMO4kZnWcolKXlpSkswVTCzdoNQPFMq9LJpHaN22Hdm+sUymSCTOWeMc/raNMRWhpaKJQVysti0mNwMuwkBjhV7kv415q8hovRFxXK+jfvr/T+UKVIVvRCM2SA4i+9z0eeVyg7F3kOnk6eSnXPRZxTeh+ItcS1toQZUDzzp2OTjkqv5bbb27C239pK9aHqve9o6lip9351rm1pKu9ZWdU+M34Y+AM6NumoUFbZzwx1qOrnVGW91uQ17Lq7S6Gsk00nLOyxsMK2Fb2mTY2boqlxUwxE8Z5bgiCgl3cvXIm5Iq+jah8oIiIiIqo6DXUHQEREREQNz4+3foTDZgdM/GciLkZdVPklq7RIii8vfalU3tGmo1KZoY6hUllgYmCZ4+to6iiV3X12V+E4Jj0GU49WbuP5qo7ftnFbpZkMx0OP4+vLX0NapLxnDgCEJodi/dX1aP2/1iq/eK5IflE+Zp6YCYfNDvji3BdlxpeUk4Qfbv6gVK7ququy+tJqRKRGyI+LZEWYe3Iu8ovyFeq1MG8hnwGk6vV4mvlUYU+fQlkh5p+ar7SsX2lGukbwbK6cHPE67IVrsdeUylNyU/DpmU+RmZ8pL3vX+V2lejNPzCwz0SQtkuJC5AVM/ncyhv05rNz4yjO01VClsp/8foJ/nL9CWXJOMj4//7lS3UEtBkFbU/uFx6+MEW2UE17f+n6LHXd2KC1XVlBUgO13tuNi1H+JMw97D6Wl5rbd3oZdAbvKXO7s3rN7WH5hOew2qd6v5kXUxmfGxaiLWHd1nVK9+kLVcw5LCSvzM6eyhrQaorRX1MqLK3Ey7KTK+jJBhuuPr+OTU5+gy3bFWT2/3P4FX1/+GqHJoSrb5hflIz0vXamMiIiIiKqPM3uIiIiI6IXkFubi14Bf8WvArzDUMUSnJp0gMZbASMcIiTmJuBh9EQnZCUrtRrcbrVTmZO4EEUQKMx3uxN1Bj197wNXKVf5F7SfdPoHERKIycbH73m48SnqEDjYdEJ8VjzMRZ8rdL6U64wPAqj6rMOrvUQr9fH7+c3x/83t0k3SDtYE18grzEJcVh/sJ9/E443GlYqlIXFYc1lxZgzVX1sDa0BodbTrCysAK2praeJzxGOcjzyvNstHW0MZw5+GV6v9Z9jO4/uSKt1q8BVM9U1yKvqRyGbU5XebIfzYXm8Pe1B5RaVHyspTcFLT9sS0GOA2ACCJcibmC8NTwSsWwqs8qnAw7qTBr4Vn2M3T/tTu62XZDe6v2EAQB4anhuBp7FXmFeVjcc7G8bjdJNwx0GogTYSfkZQnZCXjtl9fwWpPX0KpRK5jomiA9Px3hKeG4n3Bfvu9Ib7velYpRlQnuE/DlpS8V9i7KLMhE5+2d0b95f9ib2CM5Nxmnwk8hLS9Noa2GSAOLeix64bEra/pr07Hp+iY8yfxvWb4ioQgf//sx1l1dhx7NekBfSx9Ps57iSswVJOUk4dCoQ/K6BjoG+Oz1zxT2zCoSiuD1jxdWXVqFjjYdYalvidzCXMRmxOLes3sqPweqq4VFC6WyLTe3IDw1HM1MmkFDpAFdTV357LKONh3xb8i/CvUn/zsZB4IOQGIsQUhyCHyifF5o1l1dMROboZF+I4UkanxWPF775TV0te0KPa3iJSvHu42Hq7VrpfttZtIMkzpMwla/rfKybGk2Bu4ZiLaWbeFi5QILsQWyCrIQlRaFe8/uITUvFQBgZ6KYwItOj8ZXl7/C5+c/h62xLdpatkVTo6bQ19ZHal4qLkZfVPosbGnRssrXgoiIiIiUMdlDRERERNWWVZAFnyifCut52HtgtItyssdI1wivN3sdl2MuK5T7xvrCN9ZXfvxh+w8hMZGgl10vuFq5Kv1m/q2nt3Dr6S35sWdzT5wKr3gviKqODxTvaXE15iq23Nyi0CYuKw4Hgw5WOGZNiM+Kx7FQ5b1ySlv8+uJK78nSxrINAhMD8efDP8us09W2K6Z2Upw1NavzLHxy+hOFsoTsBPx29zf5sbGuMdpatsW1x8ozdJ7XwaYD/jfof5h6THlm1rXH1ypsDwC7hu1Ctx3dlBJMpd8jNclQxxB7h+/FgD0DFJahK5QV4njo8XLbrvJYVan9bKpLX1sf/7z/Dzx2ecgTXCVCU0IRmqJ6RsbzFnRfgGuPr+Hwo8MK5RGpEQqzwmpTb7ve0NfWV0joFsoKFfbmMdA2kCd7JnaYiHVX1ykkQouEIqXXpbKfGeoy0Gkgdt/brVB299ldhc/C15u9XqVkDwBs6L8Bd+LuKC1j9zDxocIeO1XxOONxpZLc0zpNe6H+iYiIiEgRl3EjIiIioirrYNNBadmfirzX5j388/4/0BCp/ifoun7r5L+ZXhGRSIT9I/ajqVHTMut0s+2Gfe/tq3R8VRm/xOaBm7F5wGYYaBtUuk1X264w1jWu0jgAoKupW+X9XLQ1tLHSYyVW9llZ6TYnx5xEG8s2ZZ53t3bHv6P/VdqnY27XuRjVdlQZrYoTPX+N+KvSv8U/pdMUHHn/CKwMyt8XqiyWBpa4/vF1DGs9rNJt9LX10bNZzxcar0Rfx7648NEFpRkPZTHUMcS2wdvwRa8vqjVuVXRs0hE3P75Z6aX9StMQaeCvEX/h89c/h7ZG5Zad0xBpoK9D3xcaTxUjXSN82Ud5mciy2Brb4vd3f4euZtn7XU3rNA2fvf5ZTYRXa5b3Xq60jF5NEGuLcW7cOXzs/nGZn9GlaWto4w2HNxTKRBBVekwRRJjfdT6mdJxSpViJiIiISDXO7CEiIiKiKvvtnd+wZeAW+ET54FrsNdxPuI/w1HA8y3qGbGk2NEQaMNE1gZO5E7o07YIPXD7Aa02VN3Z/XjdJN9z8+CbW+67H5ZjLiMuMK3cvh5YWLeE/xR/fXP0G/wT/g+j0aBhoG6ClRUt84PIBpnWaVqX9T6o6fonZXWZjbPux2HV3F85FnsO9Z/eQnJOM/KJ8GOoYwtbYFm0s26Bns54Y6DRQvs9NVRnpGuHu1LuISY/BhcgLuPHkBgITAxGZFomU3BTkSnOhq6ULMz0ztLFsg152vTDOdRyamTSr0jgSEwn8Jvlhy40t+PPhnwhLCYMAAS0tWuJDlw8xs/NMlddVQ6SBvcP3YlCLQdh+ZzsC4gMglUnR1KgpBjgNwPxu8+Fo5og/7v9R6ViGtBqC6ObR2PdgH06EnYDfUz8k5iQiV5qLRvqN0MSoCbrZdoOnk6fKBFoj/UY4NOoQAuIDsPvublyNvYrItEik5aVBQ6QBUz1TNDdrDlcrV/R17Iv+zfur3Belql5v9jrCZofhQOABHAs9hltPb+FZ1jNkFmRCrCWGhb4FXK1c8YbDG/jI9SOY6JlUe8yqcrZ0ht9kP5wJP4O/A//GtcfX8CTzCTLyM2CiawJrQ2u4WrvCs7mn0hf6AKCloYWv+n6FmZ1nYmfATvhE+SAwMRApuSkolBXCWNcYzUyaoW3jtvCw88DAFgPRxKhJjT6Hed3mwcncCT/d/gl+T/3kY5flXed34TfZD2uvrMX5yPNIykmCudgcHWw6YGqnqXi71duVmqGoTs3Nm+POlDv45uo3OBtxFo8zHist2/iiDHQM8Mvbv+DT1z+Fd4A3LsdcRkhyCFJzUyFAgImuCRzMHODS2AV97PtggNMAWOhbKPSx3GM5+jfvD58oH/jF+SEmPQaJ2YlIykmS99HcvDl6SHrgI9eP4GLlUiOxExEREREgEsraRZOIiIiIiF5q9pvsEZ0erVAmLOf/HhARERERETU0XMaNiIiIiIiIiIiIiIioAWOyh4iIiIiIiIiIiIiIqAFjsoeIiIiIiIiIiIiIiKgBa7DJnidPnuDDDz+EhYUF9PX14ebmhtu3b5fb5uLFi+jYsSP09PTg6OiIn376SanOgQMH0KZNG+jq6qJNmzY4dOhQbT0FIiIiIiIiIiIiIiKiamuQyZ7U1FT06NED2traOHHiBAIDA7FhwwaYmpqW2SYyMhKDBg1Cz5494e/vj88//xyzZ8/GgQMH5HWuXbuGUaNGYezYsbh79y7Gjh2LkSNH4saNG3XwrIiIiIiIiIiIiIiIiKpOJAiCoO4gquqzzz7D1atXcfny5Uq3+fTTT3HkyBEEBQXJy6ZOnYq7d+/i2rVrAIBRo0YhIyMDJ06ckNcZMGAAzMzMsHfv3pp7AkRERERERERERERERDVES90BvIgjR47A09MTI0aMwMWLF9G0aVNMnz4dkyZNKrPNtWvX0L9/f4UyT09P7NixA1KpFNra2rh27RrmzZunVGfTpk0q+8zPz0d+fr78WCaTISUlBRYWFhCJRC/+BImIiIiIiIiIiIiIqMETBAGZmZlo0qQJNDRqb7G1BpnsiYiIwNatWzF//nx8/vnnuHnzJmbPng1dXV2MGzdOZZv4+HhYWVkplFlZWaGwsBBJSUmwsbEps058fLzKPr/++musXLmyZp4UERERERERERERERG9lGJjY2Fra1tr/TfIZI9MJkOnTp2wZs0aAIC7uzsePnyIrVu3lpnsAaA026ZkBbvny1XVKWuWzuLFizF//nz5cXp6Opo1a4aQkBCYm5tX7UkRvSSkUikuXLiAPn36QFtbW93hEKkF7wMi3gdEvAeIeB8QAbwPiADeB0QpKSlo2bIljIyManWcBpnssbGxQZs2bRTKnJ2dceDAgTLbWFtbK83QSUhIgJaWFiwsLMqtU3q2TwldXV3o6uoqlZubm8v7JHrVSKVS6Ovrw8LCgn+B0yuL9wER7wMi3gNEvA+IAN4HRADvA6IStb31S+0tEFeLevTogeDgYIWykJAQ2NnZldmmW7duOHPmjELZ6dOn0alTJ/mHTFl1unfvXkORExERERERERERERER1awGmeyZN28erl+/jjVr1iAsLAx//PEHfv75Z8yYMUNeZ/HixQpLuk2dOhXR0dGYP38+goKC8Ouvv2LHjh1YsGCBvM6cOXNw+vRprFu3Do8ePcK6detw9uxZzJ07ty6fHhERERERERERERERUaU1yGTPa6+9hkOHDmHv3r1o164dVq9ejU2bNmHMmDHyOnFxcYiJiZEfOzg44Pjx4/Dx8YGbmxtWr16NLVu2YPjw4fI63bt3x759+7Bz5060b98e3t7e+PPPP9GlS5c6fX5ERERERERERERERESV1SD37AGAwYMHY/DgwWWe9/b2Virr3bs37ty5U26/7733Ht57773qhkdERERERERERET1kCAIKCwsRFFRkbpDeSVIpVJoaWkhLy+P15xeWtra2tDU1FRrDA022UNERERERERERERUFQUFBYiLi0NOTo66Q3llCIIAa2trxMbG1voG9UTqIhKJYGtrC0NDQ7XFwGQPERERERERERERvfRkMhkiIyOhqamJJk2aQEdHh8mHOiCTyZCVlQVDQ0NoaDTIXUWIyiUIAhITE/H48WO0aNFCbTN8mOwhIiIiIiIiIiKil15BQQFkMhkkEgn09fXVHc4rQyaToaCgAHp6ekz20EvL0tISUVFRkEqlakv28O4iIiIiIiIiIiKiVwYTDkRU0+rDLEF+shERERERERERERERETVgTPYQERERERERERERERE1YEz2EBEREREREREREZUhPh6Ija1c3djY4vp1xcvLC8OGDau7AdVAJBLh8OHD6g6jxly9ehUuLi7Q1tauF6+dt7c3TE1Nq9TGw8MDc+fOrfF+7e3tsWnTpiq1of8w2UNERERERERERESkQnw88MYbgIdHxQmf2Njiem+8UXcJn82bN8Pb27tuBlOTuLg4DBw4sNL1XyTJUNqPP/4IU1NTxJZ60WfOnImWLVsiJyfnhfueP38+3NzcEBkZWS9eu1GjRiEkJKRKbQ4ePIjVq1fLj1UlaV6k3+pYsWIF3NzcqtyuJt4v9QWTPUREREREREREREQqSKVAfj4QEVF+wqck0RMRUVxfKq2b+ExMTF6aL6rLYm1tDV1d3Todc9q0aejcuTMmTpwoLzt//jy2bdsGb29v6Ovrv3Df4eHheOONN2Bra6vytRMEAYWFhS/cf1WJxWI0bty4Sm3Mzc1hZGRU4/1S9TDZQ0RERERERERERKSCRAL4+ACOjmUnfJ5P9Dg6FteXSGouhr///hsuLi4Qi8WwsLBAv379kJ2dDUB5GbfMzEyMGTMGBgYGsLGxwcaNG5WW3LK3t8eXX36JcePGwdDQEHZ2dvjnn3+QmJiIoUOHwtDQEC4uLvDz85O3SU5OxujRo2Frawt9fX24uLhg79695cZdMmPi8OHD6NSpE/T19fHmm28qzZbZunUrmjdvDh0dHbRq1Qq7d+9WOP/8Mm5RUVEQiUQ4ePAg+vTpA319fbi6uuLatWsAAB8fH4wfPx7p6ekQiUQQiURYsWIFgOLZOi1atICenh6srKzw3nvvlRm7SCTCjh07cPPmTfz000/IyMjA+PHjMW/ePHTv3h0A8OjRI+jr6+OPP/6Qtzt48CD09PRw//59pT5LYk9OTsaECRMgEong7e0NHx8fiEQinDp1Cp06dYKuri4uX76M/Px8zJ49G40bN4aenh5ef/113Lp1S97f8+3c3d0hFovxxhtvICEhASdOnICzszOMjY0xevTocmcilZ7ZUjJDZvfu3bC3t4eJiQnef/99ZGZmyus8/57y8PBAdHQ05s2bJ7/mqvoNDw/H0KFDYWVlBUNDQ7z22ms4e/ZsmXGp4uPjg86dO8PAwACmpqbo0aMHoqOj4e3tjZUrV+Lu3bvyGEpmTX333XdwcXGBgYEBJBIJpk+fjqysLHl/Zb1fCgoKsGjRIjRt2hQGBgbo0qULfHx8qhRvXWOyh4iIiIiIiIiIiKgM5SV8ajvRExcXh9GjR2PChAkICgqCj48P3n33XQiCoLL+/PnzcfXqVRw5cgRnzpzB5cuXcefOHaV6GzduRI8ePeDv74+33noLY8eOxbhx4/Dhhx/izp07cHJywrhx4+Tj5OXloWPHjjh69CgePHiAyZMnY+zYsbhx40a58efk5ODrr7/Gjz/+iMuXLyMjIwPvv/++/PyhQ4cwZ84cfPLJJ3jw4AGmTJmC8ePH48KFC+X2+8UXX2DBggUICAhAy5YtMXr0aBQWFqJ79+7YtGkTjI2NERcXh7i4OCxYsAB+fn6YPXs2Vq1aheDgYJw8eRK9evUqdwyJRIKNGzdi4cKF+PDDD2FoaKiwdFnr1q3x7bffYvr06YiOjsbTp08xadIkrF27Fi4uLir7i4uLg7GxMTZt2oS4uDiMGjVKfn7RokX4+uuvERQUhPbt22PRokU4cOAAdu3aJX9NPD09kZKSotDvihUr8MMPP8DX1xexsbEYOXIkNm3ahD/++APHjh3DmTNn8P3335f7XEsLDw/H4cOHcfToURw9ehQXL17E2rVrVdY9ePAgbG1tsWrVKvk1VyUrKwuDBg3C2bNn4e/vD09PTwwZMgQxMTGViqmwsBDDhg1D7969ce/ePVy7dg2TJ0+GSCTCqFGj8Mknn6Bt27byGEqurYaGBrZs2YIHDx5g165dOH/+PBYtWgQAZb5fAGD8+PG4evUq9u3bh3v37mHEiBEYMGAAQkNDq3Qt65RANSY9PV0AICQlJak7FCK1KSgoEA4fPiwUFBSoOxQiteF9QMT7gIj3ABHvAyJB4H1Q3+Tm5gqBgYFCbm7uC7WPiREER0dBAIofr15VPI6JqeGABUG4ffu2AECIiopSef6jjz4Shg4dKgiCIGRkZAja2trCX3/9JT+flpYm6OvrC3PmzJGX2dnZCR9++KH8OC4uTgAgLF26VF527do1AYAQFxdXZmyDBg0SPvnkkzLP79y5UwAg+Pr6CqmpqUJRUZEQFBQkABBu3LghCIIgdO/eXZg0aZJCuxEjRgiDBg2SHwMQDh06JAiCIERGRgoAhO3bt8vPP3z4UAAgBAUFycc1MTFR6PPAgQOCsbGxkJGRUWa8ZenatatCzKW99dZbQs+ePYW+ffsKb775piCTycrtz8TERNi5c6f8+MKFCwIA4fDhw/KyrKwsQVtbW9izZ4+8rKCgQGjSpInwzTffKLQ7e/asvM7XX38tABDCw8PlZVOmTBE8PT3LjKf09Vq+fLmgr6+vcK0WLlwodOnSRX7cu3dvpffUxo0by+1XlTZt2gjff/99uf2USE5OFgAIPj4+Ks8vX75ccHV1LXc8QRCE/fv3CxYWFuXGGRYWJohEIuHJkycK5X379hUWL16sst/yPl+SkpIEAEJ6enqF8VUHZ/YQERERERERERERVaD0DJ8ePWpvRk8JV1dX9O3bFy4uLhgxYgR++eUXpKamqqwbEREBqVSKzp07y8tMTEzQqlUrpbrt27eX/2xlZQUACrNRSsoSEhIAAEVFRfjqq6/Qvn17WFhYwNDQEKdPn65wVoaWlhY6deokP27dujVMTU0RFBQEAAgKCkKPHj0U2vTo0UN+vizPx29jY6MQqypvvvkm7Ozs4OjoiLFjx2LPnj3lLm1W4u7du7h9+zb09fVx+fJllXV+/fVX3Lt3D3fu3IG3t7d8GbOqev46hYeHQyqVKlwbbW1tdO7cWenalH4t9fX14ejoqFBW3rVRxd7eXmFPHhsbmyr3UVp2djYWLVqENm3awNTUFIaGhnj06FGlZ/aYm5vDy8tLPiNo8+bNZc4iet6FCxfw5ptvomnTpjAyMsK4ceOQnJwsXwpRlTt37kAQBLRs2RKGhobyPxcvXkR4eHiln3NdY7KHiIiIiIiIiIiIqBIkEqDUljLYvbt2Ej0AoKmpiTNnzuDEiRNo06YNvv/+e7Rq1QqRkZFKdYX/X3KtdLJBULHkm7a2tvznkvqqymQyGQBgw4YN2LhxIxYtWoTz588jICAAnp6eKCgoqPA5qEp+PF+mKt6KEiblxaqKkZER7ty5g71798LGxgbLli2Dq6sr0tLSymxTUFCAcePGYfTo0di2bRuWLFmCkJAQpXp3795FdnY2srOzER8fX27c5TEwMJD/XN5rWbqs9LV4/rikrLxro0pN9FHawoULceDAAXz11Ve4fPkyAgIC4OLiUqn3UImdO3fi2rVr6N69O/7880+0bNkS169fL7N+dHQ0Bg0ahHbt2uHAgQO4ffs2/ve//wEApFJpme1kMhk0NTVx+/ZtBAQEyP8EBQVh8+bNlX/SdYzJHiIiIiIiIiIiIqJKiI0Fxo5VLBs79r89fGqDSCRCjx49sHLlSvj7+0NHRweHDh1Sqte8eXNoa2vj5s2b8rKMjIwa2WPk8uXLGDp0KD788EO4urrC0dGxUv0WFhbCz89PfhwcHIy0tDS0bt0aAODs7IwrV64otPH19YWzs/MLx6qjo4OioiKlci0tLfTr1w/ffPMN7t27h6ioKJw/f77MflatWoXk5GRs3rwZH374ITw9PTF+/HiFpEdKSgq8vLzwxRdfYPz48RgzZgxyc3NfOPYSTk5O0NHRUbg2UqkUfn5+1bo2taWsa/68y5cvw8vLC++88w5cXFxgbW2NqKioKo/l7u6OxYsXw9fXF+3atcMff/xRZgx+fn4oLCzEhg0b0LVrV7Rs2RJPnz6tMHZ3d3cUFRUhISEBTk5OCn+sra2rHHNdYbKHiIiIiIiIiIiIqAKxsYCHx39Lt129+t+Sbh4etZPwuXHjBtasWQM/Pz/ExMTg4MGDSExMVPmFv5GRET766CMsXLgQFy5cwMOHDzFhwgRoaGi88NJiJZycnHDmzBn4+voiKCgIU6ZMqdQsFm1tbcyZMwd+fn64c+cOxo8fj65du8qXmlu4cCG8vb3x008/ITQ0FN999x0OHjyIBQsWvHCs9vb2yMrKwrlz55CUlIScnBwcPXoUW7ZsQUBAAKKjo/Hbb79BJpOpXOIOKE4SrFu3Dtu3b4epqSkA4KeffsKjR4+wceNGeb2pU6dCIpFgyZIl+O677yAIQrViL2FgYIBp06Zh4cKFOHnyJAIDAzFp0iTk5ORg4sSJ1e6/ptnb2+PSpUt48uQJkpKSVNZxcnLCwYMHERAQgLt37+KDDz6o0myhyMhILF68GNeuXUN0dDROnz6NkJAQ+b1gb2+PyMhIBAQEICkpCfn5+WjevDkKCwvx/fffIyIiArt378ZPP/2kFHvp90vLli0xZswYjBs3DgcPHkRkZCRu3bqFdevW4fjx4y9+oWoZkz1ERERERERERERE5Sid6PHxAbp3V9zDpzYSPsbGxrh06RIGDRqEli1bYsmSJdiwYQMGDhyosv53332Hbt26YfDgwejXrx969OgBZ2dn6OnpVSuOpUuXokOHDvD09ISHhwesra0xbNiwCtvp6+tj4cKFmDRpEnr06AGxWIx9+/bJzw8bNgybN2/G+vXr0bZtW2zbtg07d+6Eh4fHC8favXt3TJ06FaNGjYKlpSW++eYbmJqa4uDBg3jjjTfg7OyMn376CXv37kXbtm2V2ufn5+Ojjz7C+PHjMWDAAHm5tbU1vv/+eyxZsgTBwcH47bffcPz4cezevRtaWlrQ19fHnj17sH379hpJCKxduxbDhw/H2LFj0aFDB4SFheHUqVMwMzOrdt81bdWqVYiKikLz5s1haWmpss7GjRthZmaG7t27Y8iQIfD09ESHDh0qPYa+vj4ePXqE4cOHo2XLlpg8eTJmzpyJKVOmAACGDx+OAQMGoE+fPrC0tMTevXvh5uaG7777DuvWrUO7du2wZ88efP311wr9qnq/AMVLxo0bNw6ffPIJWrVqhbfffhs3btyApLbWbKwBIkHVoo30QjIyMmBiYoKkpCRYWFioOxwitZBKpTh+/DgGDRqktL4n0auC9wER7wMi3gNEvA+IAN4H9U1eXh4iIyPh4OBQpeSHqkTP89/3VnRenbKzs9G0aVNs2LChzmeEeHt7Y+7cuUhJSUFGRgaMjY2hocG5B/RyKu/zJTk5GY0aNUJ6ejqMjY1rLQbeXUREREREREREREQqVCaRI5HU/gyfyvL398fevXsRHh6OO3fuYMyYMQCAoUOHqicgIqozWuoOgIiIiIiIiIiIiKg+0tYGdHUrnrFTkvDx8Ciur86JXN9++y2Cg4Oho6ODjh074vLly2jUqJH6AiKiOsFkDxEREREREREREZEK1tbA+fOAVFrx0mwlCR9t7eJ26uDu7o7bt2+rZ/BSvLy84OXlBZlMpu5QiF4JTPYQERERERERERERlaEqiZv6slcPEb16uGcPERERERERERERERFRA8ZkDxERERERERERERERUQPGZA8REREREREREREREVEDxmQPERERERERERERERFRA8ZkDxERERERUTXExwOxsZWrGxtbXJ+IiIiIiKgmMdlDRERERET0guLjgTfeADw8Kk74xMYW13vjDSZ8iIiIqPI8PDwwd+7cStePioqCSCRCQEBAjfbr4+MDkUiEtLS0SrchZaVfn8pcV29vb5iamsqPV6xYATc3N/mxl5cXhg0bVu64fP1efkz2EBERERERvSCpFMjPByIiyk/4lCR6IiKK60uldRklERERNWQHDx7E6tWrK11fIpEgLi4O7dq1A1D2l/xV7be6HB0dsWnTpiq3q2pSqr4r/fpUxqhRoxASElLm+c2bN8Pb21t+rOqade/eHXFxcTAxMalqyNRAaKk7ACIiIiIiooZKIgF8fP5L5Hh4FB9bW/9X5/lEj6Nj8XmJRB3REhERUUNkbm5epfqampqwfv4fIzXUL9WMyr4+zxOLxRCLxWWer0wCR0dHp8rjUsPCmT1ERERERETVUJLwcXT8L+Hz5EnxuSdPmOghIiKi6ik9S8Pe3h5r1qzBhAkTYGRkhGbNmuHnn3+Wn39+mbCoqCj06dMHAGBmZgaRSAQvLy+V/f7+++/o1KkTjIyMYG1tjQ8++AAJCQlVinXFihVo1qwZdHV10aRJE8yePRsAMHjwYERHR2PevHkQiUQQiUQAgOTkZIwePRq2trbQ19eHi4sL9u7dK+/Py8sLFy9exObNm+XtoqKiAACBgYEYNGgQDA0NYWVlhbFjxyIpKanS13TmzJmYOXMmTE1NYWFhgSVLlkAQBHmd1NRUjBs3DmZmZtDX18fAgQMRGhoqPx8dHY0hQ4bAzMwMBgYGaNu2LY4fPy5vO2bMGFhaWkIsFqNFixbYuXMngLKX2bt69SpcXV2hp6eHLl264P79+/JzpZdxK+35ZdzKumaqZnj5+vqiV69eEIvFkEgkmD17NrKzs+Xnf/zxR7Ro0QJ6enqwsrLCe++9V6nrS+rBZA8REREREVE1lU74DBpUXD5oEBM9REREVPM2bNiATp06wd/fH9OnT8e0adPw6NEjpXoSiQQHDhwAAAQHByMuLg6bN29W2WdBQQFWr16Nu3fv4vDhw4iMjJQnhirj77//xsaNG7Ft2zaEhobi8OHDcHFxAQDs3r0btra2WLVqFeLi4hAXFwcAyMvLQ8eOHXH06FE8ePAAkydPxtixY3Hjxg0AxcuTdevWDZMmTZK3K1kGrXfv3nBzc4Ofnx9OnjyJZ8+eYeTIkZWOd9euXdDS0sKNGzewZcsWbNy4Edu3b5ef9/Lygp+fH44cOYJr165BEAQMGjQI0v9fj3fGjBnIz8/HpUuXcP/+faxbtw6GhoYAgKVLlyIwMBAnTpxAUFAQtm7dikaNGpUbz8KFC/Htt9/i1q1baNy4Md5++235WFVR1jUr7f79+/D09MS7776Le/fu4c8//8SVK1cwc+ZMAICfnx9mz56NVatWITg4GCdPnkSvXr2qHA/VHS7jRkREREREVAOeX9Lt/3/hFFFRTPQQERFRzRs0aBCmT58OAPj000+xceNG+Pj4oHXr1gr1NDU15cu1NW7cuNzZIRMmTJD/7OjoiC1btqBz587IysqSJzHKExMTA2tra/Tr1w/a2tpo1qwZOnfuDJlMBjMzM2hqaspnDZVo2rQpFixYID+eNWsWTp48ib/++gtdunSBiYkJdHR0oK+vr9Bu69at6NChA9asWSMv+/XXXyGRSBASEoKWLVtWGK9EIsHGjRshEonQqlUr3L9/Hxs3bsSkSZMQGhqKI0eO4OrVq+jevTsAYM+ePZBIJDh8+DBGjBiBmJgYDB8+XJ7QcnR0VLgW7u7u6NSpE4Di2VgVWb58Od58800AxYkoW1tbHDp0qEoJLABlXrPS1q9fjw8++EA+u6tFixbYsmULevfuja1btyImJgYGBgYYPHgwjIyMYGdnB3d39yrFQnWLM3uIiIiIiIhqiEQC7N6tWLZ7NxM9REREL5uA+ACIVooQEB+glvHbt28v/1kkEsHa2rrKS66V5u/vj6FDh8LOzg5GRkbw8PAAUJy4qIwRI0YgNzcXjo6OmDRpEg4dOoTCwsJy2xQVFeGrr75C+/btYWFhAUNDQ5w+fbrCMW/fvo0LFy7A0NBQ/qck0RUeHl6peLt27SpfTg4AunXrhtDQUBQVFSEoKAhaWlro0qWL/LyFhQVatWqFoKAgAMDs2bPx5ZdfokePHli+fDnu3bsnrztt2jTs27cPbm5uWLRoEXx9fSuMp1u3bvKfzc3NFcaqDbdv34a3t7fCNfT09IRMJkNkZCTefPNN2NnZwdHREWPHjsWePXuQk5NTa/FQ9THZQ0REREREVENiY4GxYxXLxo4tLiciIqKXh/s2d4XHuqatra1wLBKJIJPJXri/7Oxs9O/fH4aGhvj9999x69YtHDp0CEDx8m6VIZFIEBwcjP/9738Qi8WYPn06evXqVe5SZBs2bMDGjRuxaNEinD9/HgEBAfD09KxwTJlMhiFDhiAgIEDhT2hoaI0sNfb83j2ly0sSRB9//DEiIiIwduxY3L9/H506dcL3338PABg4cCCio6Mxd+5cPH36FH379lWYwVRZzyejappMJsOUKVMUrt/du3cRGhqK5s2bw8jICHfu3MHevXthY2ODZcuWwdXVVWHPH6pfmOwhIiIiIiKqAbGxxUu4RUQAJSt12NsXH3t4MOFDRET0MvGf4q/wWJ/p6OgAKJ5FU5ZHjx4hKSkJa9euRc+ePdG6desXmikkFovx9ttvY8uWLfDx8cG1a9dw//59eRylY7h8+TKGDh2KDz/8EK6urnB0dERoaKhS/KXbdejQAQ8fPoS9vT2cnJwU/hgYGFQq1uvXrysdt2jRApqammjTpg0KCwvlewcBQHJyMkJCQuDs7Cwvk0gkmDp1Kg4ePIhPPvkEv/zyi/ycpaUlvLy88Pvvv2PTpk34+eefKx1PamoqQkJClJblqyxV16y0kmtY+vo5OTnJ3zNaWlro168fvvnmG9y7dw9RUVE4f/78C8VEtY/JHiIiIiIiomp6PtHj6AgcP15cfvx48TETPkRERC8XN2s3CMsFuFm7qTuUCtnZ2UEkEuHo0aNITExEVlaWUp1mzZpBR0cH33//PSIiInDkyBGsXr26SuN4e3tjx44dePDgASIiIrB7926IxWLY2dnJ47h06RKePHmCpKQkAICTkxPOnDkDX19fBAUFYcqUKYiPj1fo197eHjdu3EBUVBSSkpIgk8kwY8YMpKSkYPTo0bh58yYiIiJw+vRpTJgwocIkR4nY2FjMnz8fwcHB2Lt3L77//nvMmTMHQPH+NUOHDsWkSZNw5coV3L17Fx9++CGaNm2KoUOHAgDmzp2LU6dOITIyEnfu3MH58+fliaBly5bhn3/+QVhYGB4+fIijR48qJIlUWbVqFc6dO4cHDx7Ay8sLjRo1wrBhwyp9/Su6ZqV9+umnuHbtGmbMmCGfFXXkyBHMmjULAHD06FFs2bIFAQEBiI6Oxm+//QaZTIZWrVq9UExU+5jsISIiIiIiqobSiR4fH6Bp0+JzTZsWHzPhQ0REROrStGlTrFy5Ep999hmsrKwwc+ZMpTqWlpbw9vbGX3/9hTZt2mDt2rX49ttvqzSOqakpfvnlF/To0QPt27fHuXPn8O+//8LCwgIAsHLlSkRFRaF58+awtLQEACxduhQdOnSAp6cnPDw8YG1trZTgWLBggXy2jaWlJWJiYtCkSRNcvXoVRUVF8PT0RLt27TBnzhyYmJhAQ6NyX3mPGzcOubm56Ny5M2bMmIFZs2Zh8uTJ8vM7d+5Ex44dMXjwYHTr1g2CIOD48ePyJfSKioowY8YMODs7Y8CAAWjVqhV+/PFHAMUzaxYvXoz27dujV69e0NTUxL59+8qNZ+3atZgzZw46duyIuLg4HDlyRD7DpqpUXbPS2rdvj4sXLyI0NBQ9e/aEu7s7li5dChsbGwDFr+fBgwfxxhtvwNnZGT/99BP27t2Ltm3bvlBMVPtEQlkLEFKVZWRkwMTEBElJSfIPMaJXjVQqxfHjxzFo0CCl9WOJXhW8D4h4H9CrQ1WiRyJRvgfKqkf0MuPfBUS8D+qbvLw8REZGwsHBAXp6euoO55Uhk8mQkZEBY2PjSidiapuHhwfc3NywadMmdYdCL4nyPl+Sk5PRqFEjpKenw9jYuNZiqB93FxERERERUQOkrQ3o6lacwJFI/pvho6tb3I6IiIiIiKimaKk7ACIiIiIioobK2ho4fx6QSiueqVOS8NHWLm5HRERERDUvJiYGbdq0KfN8YGBgHUZDVHeY7CEiIiIiIqqGqiRuuHQbERERUe1q0qQJAgICyj3v4+NTZ/EQ1RUme4iIiIiIiIiIiIjopaClpQUnJyd1h0FU57hnDxERERERERG9sgLiAyBaKUJAfIC6QyEiIiJ6YUz2EBEREREREdEry32bu8IjERERUUPEZA8RERERERERvbL8p/grPBIRERE1RNyzh4iIiIiIiIheWW7WbhCWC+oOg4iIiKhamOwhIiIiIiIiIiIiqiRBEJCcm4ysgiwY6hjCQmwBkUik7rCI6BXHZdyIiIiIiIiIiIiIKpCWl4bN1zejxfctYLneEg6bHWC53hItvm+Bzdc3Iy0vrVbG9fDwwNy5cytdPyoqCiKRCAEBATXar4+PD0QiEdLS0irdhojqDpM9REREREREREREROU4FXYKtt/ZYt6peYhIjVA4F5EagXmn5sH2O1ucCjtV42MfPHgQq1evrnR9iUSCuLg4tGvXDkDZSZqq9ltdjo6O2LRpU5XbVTUpRfSqYrKHiIiIiIiIiIiIqAynwk7hrT/eQq40F8L///e8krJcaS7e+uOtGk/4mJubw8jIqNL1NTU1YW1tDS2t8nfwqGq/RFS/MdlDREREREREREREpEJaXhqG7x8OQRAgg6zcujLIIAgChu8fXqNLupWe2WJvb481a9ZgwoQJMDIyQrNmzfDzzz/Lzz+/jFtUVBT69OkDADAzM4NIJIKXl5fKfn///Xd06tQJRkZGsLa2xgcffICEhIQqxbpixQo0a9YMurq6aNKkCWbPng0AGDx4MKKjozFv3jyIRCL5HkfJyckYPXo0bG1toa+vDxcXF+zdu1fen5eXFy5evIjNmzfL20VFRQEAAgMDMWjQIBgaGsLKygpjx45FUlJSpa/prFmzMHfuXJiZmcHKygo///wzsrOzMX78eBgZGaF58+Y4ceKEQruKxjx58iRef/11mJqawsLCAoMHD0Z4eLj8fMlrc/DgQfTp0wf6+vpwdXXFtWvXqnSdiVRhsoeIiIiIiIiIiIhIhV0Bu5Ajzakw0VNCBhlypDn47e5vtRrXhg0b0KlTJ/j7+2P69OmYNm0aHj16pFRPIpHgwIEDAIDg4GDExcVh8+bNKvssKCjA6tWrcffuXRw+fBiRkZHyxFBl/P3339i4cSO2bduG0NBQHD58GC4uLgCA3bt3w9bWFqtWrUJcXBzi4uIAAHl5eejYsSOOHj2KBw8eYPLkyRg7dixu3LgBANi8eTO6deuGSZMmyduVLFPXu3dvuLm5wc/PDydPnsSzZ88wcuTISse7a9cuNGrUCDdv3sSsWbMwbdo0jBgxAt27d8edO3fg6emJsWPHIicnBwAqNWZ2djbmz5+PW7du4dy5c9DQ0MA777wDmUzx/fPFF19gwYIFCAgIQMuWLTF69GgUFhZWOnYiVcqfy0dERERERERERET0ChIEAd/f/P6F2m65sQWzOs+Sz2CpaYMGDcL06dMBAJ9++ik2btwIHx8ftG7dWqGepqYmzM3NAQCNGzeGqalpmX1OmDBB/rOjoyO2bNmCzp07IysrC4aGhhXGFBMTA2tra/Tr1w/a2tpo1qwZOnfuDJlMBjMzM2hqaspnDZVo2rQpFixYID+eNWsWTp48ib/++gtdunSBiYkJdHR0oK+vr9Bu69at6NChA9asWSMv+/XXXyGRSBASEoKWLVtWGK+rqyuWLFkCAFi8eDHWrl2LRo0aYdKkSQCAZcuWYevWrbh37x66du1aqTGHDx+uMMaOHTvQuHFjBAYGyvdQAoAFCxbgrbfeAgCsXLkSbdu2RVhYmNLrR1QVnNlDREREREREREREVEpybjLCU8OV9uipiAAB4anhSMlNqaXIgPbt28t/FolEsLa2rvKSa6X5+/tj6NChsLOzg5GRETw8PAAUJ3EqY8SIEcjNzYWjoyMmTZqEQ4cOVThbpaioCF999RXat28PCwsLGBoa4vTp0xWOefv2bVy4cAGGhobyPyWJkueXTSvP89dQU1MTFhYW8plIAGBlZQUA8utamTHDw8PxwQcfwNHREcbGxnBwcACgfA2fH9vGxkZhHKIXxZk9RERERERERERERKVkFWRVq31mQSYs9C1qKBpF2traCscikUhpqbCqyM7ORv/+/dG/f3/8/vvvsLS0RExMDDw9PVFQUFCpPiQSCYKDg3HmzBmcPXsW06dPx/r163HhwoUy22zYsAEbN27Epk2b4OLiAgMDA8ydO7fCMWUyGYYMGYJ169YpnStJnlRE1TV8vqxkVlbJda3MmEOGDIFEIsEvv/yCJk2aQCaToV27dkrPp7xxiF4Ukz1EREREREREREREpRjqVLx0WXmMdIxqKJLq0dHRAVA8i6Ysjx49QlJSEtauXQuJRAIA8PPzq/JYYrEYb7/9Nt5++23MmDEDrVu3xv379+Hk5AQdHR2lGC5fvoyhQ4fiww8/BFCc8AgNDYWzs7NC/KXbdejQAQcOHIC9vT20tOrmK+6KxkxOTkZQUBC2bduGnj17AgCuXLlSJ7ERAVzGjYiIiIiIiIiIiEiJhdgCzc2aQ4Sq7bsjggjNzZrDXGxeS5FVjZ2dHUQiEY4ePYrExERkZSnPWGrWrBl0dHTw/fffIyIiAkeOHMHq1aurNI63tzd27NiBBw8eICIiArt374ZYLIadnZ08jkuXLuHJkydISkoCADg5OeHMmTPw9fVFUFAQpkyZgvj4eIV+7e3tcePGDURFRSEpKQkymQwzZsxASkoKRo8ejZs3byIiIgKnT5/GhAkTyk1qVUdFY5qZmcHCwgI///wzwsLCcP78ecyfP79WYiFShckeIiIiIiIiIiIiolJEIhFmdZ71Qm1nd5ktX55L3Zo2bYqVK1fis88+g5WVFWbOnKlUx9LSEt7e3vjrr7/Qpk0brF27Ft9++22VxjE1NcUvv/yCHj16oH379jh37hz+/fdfWFgUL2W3cuVKREVFoXnz5rC0tAQALF26FB06dICnpyc8PDxgbW2NYcOGKfS7YMECaGpqok2bNvLl5Zo0aYKrV6+iqKgInp6eaNeuHebMmQMTExNoaNTOV94VjamhoYF9+/bh9u3baNeuHebNm4f169fXSixEqogEQajaDmNUpoyMDJiYmCApKUn+IUb0qpFKpTh+/DgGDRqktPYp0auC9wER7wMi3gNEvA9eVgHxAXDf5g7/Kf5ws3ZTdzj1Hu+D+iUvLw+RkZFwcHCAnp5epdqk5aXB9jtb5EpzIUPFe6poiDQg1hLj8fzHMNUzrWbELweZTIaMjAwYGxvXWiKGSN3K+3xJTk5Go0aNkJ6eDmNj41qLgXcXERERERERERFVivs2d4VHopedqZ4pDow8AJFIBI0KvkrVgAZEEOHgqINM9BBRnWOyh4iIiIiIiIiIKsV/ir/CI9GrwNPJE8c+OAaxthii///veSVlYm0xjo85jv7N+6spUgKAmJgYGBoalvknJiZG3SES1QotdQdAREREREREREQNg5u1G4Tl3BGAXj2eTp54PP8xfrv7G7bc2ILw1HD5OUczR8zuMhsfuX4EEz0TNUZJQPHeOgEBAeWeJ3oZMdlDREREREREREREVAFTPVPM7jIbszrPQkpuCjILMmGkYwRzsTlEIlHFHVCd0NLSgpOTk7rDIKpzTPYQERERERERERERVZJIJIKFvgUs9C3UHQoRkRz37CEiIiIiIiIiIiIiImrAmOwhIiIiIiIiIiIiIiJqwJjsISIiIiIiIiIiIiIiasCY7CEiIiIiIiIiIiIiImrAmOwhIiIiIiIiIiIieoV4eXlh2LBh6g6jShpizPXRihUr4ObmJj+uzHX18PDA3Llz5cf29vbYtGmT/FgkEuHw4cPl9sHXr/Yx2UNERERERERERET0EoqKioJIJEJAQIBC+ebNm+Ht7V3r43t5eeGdd96p9XEq4uPjA5FIhLS0tCq1K+v6NWQLFizAuXPnqtTm4MGDWL16dZnn4+LiMHDgQADqf8+9ypjsISIiIiIiIqIyBcQHQLRShID4AHWHQkRENcTExASmpqbqDoPUwNDQEBYWFlVqY25uDiMjozLPW1tbQ1dXt9w++J6rfUz2EBEREREREVGZ3Le5KzwSEVHdEgQB33zzDRwdHSEWi+Hq6oq///5bfj41NRVjxoyBpaUlxGIxWrRogZ07dwIAHBwcAADu7u4QiUTw8PAAoLykloeHB2bNmoW5c+fCzMwMVlZW+Pnnn5GdnY3x48fDyMgIzZs3x4kTJ+RtioqKMHHiRDg4OEAsFqNVq1bYvHmz/PyKFSuwa9cuHDlyBGZmZtDU1ISPjw8A4MmTJxg1ahTMzMxgYWGBoUOHIioqSqHv+fPnw9TUFBYWFli0aBEEQSj3OkVHR2PIkCEwMzODgYEB2rZti+PHjyMqKgp9+vQBAJiZmUEkEsHLywsAcPLkSbz++uvycQYPHozw8HB5n2VdPwDYuXMnnJ2doaenh9atW+PHH38sN74SJTNf9u3bh+7du0NPTw9t27aVX5sSFy9eROfOnaGrqwsbGxt89tlnKCwslJ//+++/4eLiArFYDAsLC/Tr1w/Z2dkAimcyde7cGQYGBjA1NUWPHj0QHR0tf12eX8atxMqVK9G4cWMYGxtjypQpKCgokJ8rvYxbac8v41bZ91x13tekGpM9RERERERERFQm/yn+Co9ERFS3lixZgp07d2Lr1q14+PAh5s2bhw8//BAXL14EACxduhSBgYE4ceIEgoKCsHXrVjRq1AgAcPPmTQDA2bNnERcXh4MHD5Y5zq5du9CoUSPcvHkTs2bNwrRp0zBixAh0794dd+7cgaenJ8aOHYucnBwAgEwmg62tLfbv34/AwEAsW7YMn3/+Ofbv3w+geLmwkSNHwtPTE48ePcKTJ0/QvXt35OTkoE+fPjA0NMSlS5dw5coVGBoaYsCAAfIEw4YNG/Drr79ix44duHLlClJSUnDo0KFyr9OMGTOQn5+PS5cu4f79+1i3bh0MDQ0hkUhw4MABAEBwcDDi4uLkSans7GzMnz8ft27dwrlz56ChoYF33nkHMpms3Ov3yy+/4IsvvsBXX32FoKAgrFmzBkuXLsWuXbsq/bouXLgQn3zyCfz9/dG9e3e8/fbbSE5OBlCcDBs0aBBee+013L17F1u3bsWOHTvw5ZdfAiheNm306NGYMGECgoKC4OPjg3fffReCIKCwsBDDhg1D7969ce/ePVy7dg2TJ0+GSCQqM5Zz584hKCgIFy5cwN69e3Ho0CGsXLmy0s/leZV9z1XnfU2qaak7ACIiIiIiIiKqv9ys3SAsL/+3qYmIqHZkZ2fju+++w/nz59GtWzcAgKOjI65cuYJt27ahd+/eiImJgbu7Ozp16gQAsLe3l7e3tLQEAFhYWMDa2rrcsVxdXbFkyRIAwOLFi7F27Vo0atQIkyZNAgAsW7YMW7duxb1799C1a1doa2srJAQcHBzg6+uL/fv3Y+TIkTA0NIRYLEZeXh6srKxgbGwMDQ0N/P7779DQ0MD27dvlCYidO3fC1NQUPj4+6N+/PzZt2oTFixdj+PDhAICffvoJp06dKjf+mJgYDB8+HC4uLvLrVMLc3BwA0LhxY4WlxEr6L7Fjxw40btwYgYGBaNeuXZnXb/Xq1diwYQPeffdd+XMPDAzEtm3b8NFHH5UbZ4mZM2fKx9+6dStOnjyJHTt2YNGiRfjxxx8hkUjwww8/QCQSoXXr1nj69Ck+/fRTLFu2DHFxcSgsLMS7774LOzs7AJA/75SUFKSnp2Pw4MFo3rw5AMDZ2bncWHR0dPDrr79CX18fbdu2xapVq7Bw4UKsXr0aGhpVmy9Smfdcdd/XpBqTPURERERERERERERVERAAuLsD/v6AiiWxakpgYCDy8vLw5ptvKpQXFBTA3b14ec1p06Zh+PDhuHPnDvr3749hw4ahe/fuVR6rffv28p81NTVhYWEhTyAAgJWVFQAgISFBXvbTTz9h+/btiI6ORm5uLgoKClQuEfa827dvIywsTGkPmLy8PISHhyM9PR1xcXHyJAAAaGlpoVOnTuUu5TZ79mxMmzYNp0+fRr9+/TB8+HCF56RKeHg4li5diuvXryMpKUk+oycmJgbt2rVT2SYxMRGxsbGYOHGiPBEGAIWFhTAxMSl3vOepen5BQUEAgKCgIHTr1k1hNk6PHj2QlZWFx48fw9XVFX379oWLiws8PT3Rv39/vPfeezAzM4O5uTm8vLzg6emJN998E/369cPIkSNhY2NTZiyurq7Q19dXiC0rKwuxsbHyZFJNqsv39auEyR4iIiIiIiIiIiKiqvj/L6Th7g5UsJdMdZQkH44dO4amTZsqnNPV1QUADBw4ENHR0Th27BjOnj2Lvn37YsaMGfj222+rNJa2trbCsUgkUigrSTyUxLR//37MmzcPGzZsQLdu3WBkZIT169fjxo0bFT6njh07Ys+ePUrnSmaFvIiPP/4Ynp6eOHbsGE6fPo2vv/4aGzZswKxZs8psM2TIEEgkEvzyyy9o0qQJZDIZ2rVrp7Bfjar4geKl3Lp06aJwTlNT84XjB/67xoIgKC27VpLoEolE0NTUxJkzZ+Dr64vTp0/j+++/xxdffIEbN27AwcEBO3fuxOzZs3Hy5En8+eefWLJkCc6cOYOuXbu+UDw1rS7f168S7tlDREREREREREREVBX+/oqPtaRNmzbQ1dVFTEwMnJycFP5IJBJ5PUtLS3h5eeH333/Hpk2b8PPPPwMoXp4LAIqKimo8tsuXL6N79+6YPn063N3d4eTkhPDwcIU6Ojo6SmN36NABoaGhaNy4sdJzMjExgYmJCWxsbHD9+nV5m8LCQty+fbvCmCQSCaZOnYqDBw/ik08+wS+//CKPA1C8DsnJyQgKCsKSJUvQt29fODs7IzU1VSn+0u2srKzQtGlTREREKMXv4OBQmUsHACqfX+vWrQEUv+6+vr4KM5l8fX1hZGQkT46IRCL06NEDK1euhL+/P3R0dBT2NXJ3d8fixYvh6+uLdu3a4Y8//igzlrt37yI3N1chNkNDQ9ja2lb6+ZSozHuuuu9rUo0ze4iIiIiIiIjqoYD4ALhvc4f/FH+4WbupOxwiInqem1utzugpYWRkhAULFmDevHmQyWR4/fXXkZGRAV9fXxgaGuKjjz7CsmXL0LFjR7Rt2xb5+fk4evSofI+Wxo0bQywW4+TJk7C1tYWenl6Vlhorj5OTE3777TecOnUKDg4O2L17N27duqWQ8LC3t8epU6cQGhoKOzs7mJmZYcyYMVi/fj2GDh2KVatWwdbWFjExMTh48CAWLlwIW1tbzJkzB2vXrkWLFi3g7OyM7777DmlpaeXGM3fuXAwcOBAtW7ZEamoqzp8/L78OdnZ2EIlEOHr0KAYNGgSxWAwzMzNYWFjg559/ho2NDWJiYvDZZ58p9FnW9VuxYgVmz54NY2NjDBw4EPn5+fDz80Nqairmz59fqev3v//9T/78Nm7ciNTUVEyYMAEAMH36dGzatAmzZs3CzJkzERwcjOXLl2P+/PnQ0NDAjRs3cO7cOfTv3x+NGzfGjRs3kJiYCGdnZ0RGRuLnn3/G22+/jSZNmiA4OBghISEYN25cmbEUFBRg4sSJWLJkCaKjo7F8+XLMnDmzyvv1lHfNnlfd9zWpxpk9RERERERERPWQ+zZ3hcfaUigrRH5hPnKkOcjIz0BqbiqScpIQnxWPJxlPEJMeg8cZj/E08ymeZT1DUk4SUnNTkZGfgayCLORKc1FQVIAiWc3/1jgREQGrV6/GsmXL8PXXX8PZ2Rmenp74999/5UkVHR0dLF68GO3bt0evXr2gqamJffv2ASjeC2bLli3Ytm0bmjRpgqFDh9ZYXFOnTsW7776LUaNGoUuXLkhOTsb06dMV6kyaNAktW7bEG2+8ASsrK1y9ehX6+vq4dOkSmjVrhnfffRfOzs6YMGECcnNzYWxsDAD45JNPMG7cOHh5ecmXiHvnnXfKjaeoqAgzZsyAs7MzBgwYgFatWuHHH38EADRt2hQrV67EZ599BisrK3kiY9++fbh9+zbatWuHefPmYf369Qp9lnX9Pv74Y2zfvh3e3t5wcXFB79694e3tXaWZPWvXrsW6devg6uqKy5cv459//kGjRo3k8R4/fhw3b96Eq6srpk6dKk/GAICxsTEuXbqEQYMGoWXLlliyZAk2bNiAgQMHQl9fH48ePcLw4cPRsmVLTJ48GTNnzsSUKVPKjKVv375o0aIFevXqhZEjR2LIkCFYsWJFpZ9LZa5ZadV5X5NqIqG8Xa2oSjIyMmBiYoKkpCRYWFioOxwitZBKpTh+/DgGDRqktNYr0auC9wER7wMi3gNUE6o6s0cQBOQW5iKvMA850hzkSnORW5ir8lEqk6JQVgiZIKvxuLU0tKCvrQ+xSAyEAWbtzWCoZwixlri4XLv4UV9bHxoi/g4qvdz490H9kpeXh8jISDg4OEBPT0/d4bwyZDIZMjIyYGxs/EIzRV42UVFRcHBwgL+/P9zc3NQdDtWQ8j5fkpOT0ahRI6Snp8sTmrWBy7gRERERERER1UNu1m4Qlv/3+5mCICBbmo30vHSk56cjIz8D6XnpyCzIRI40B/mF+RCg/t/nLJQVIiM/A5myTDRGYwQnBUPQUB2XWEsMUz1TmInNYKZnBjOxGUz1TKGvrV/HURMRERE1bEz2EBEREREREdUTgiAgqyBLIZmTkZ+B9Px0ZOZnokh4uZZKyy3MRW5WLuKy4hTKdTV15Ykfc7E5zPTMYGlgCR1NHTVFSkREVDlr1qzBmjVrVJ7r2bMntm7dWscR0auCyR4iIiIiIiIiNSiSFSElNwVJOUlIyklCcm4yUnJTUCgrVHdoapdflI/4rHjEZ8XLy0QQwVxsDhsjG1gbWsPG0AZibbEaoyQiIlI2depUjBw5UuU5sViMpk2bgjurUG1gsoeIiIiIiIiolhUUFSA5J1me1EnKSUJaXlqt7JnzshIgIDk3Gcm5yXiQ8AAAYKpnKk/82BjZwFDHUM1REhHRq87c3Bzm5ubqDoNeQQ0y2bNixQqsXLlSoczKygrx8fEq63t5eWHXrl1K5W3atMHDhw8BAN7e3hg/frxSndzcXG7YRkRERERERJUmE2RIyE5AfFa8fNZORn6GusN6KaXlpSEtLw2Pkh4BAIx0jCAxkcDRzBE2hjYQiURqjpCIiIiobjTIZA8AtG3bFmfPnpUfa2pqlll38+bNWLt2rfy4sLAQrq6uGDFihEI9Y2NjBAcHK5Qx0UNERERERETlkRZJ8Sz7GeKz4hGXGYeE7ISXbm+dhiKzIBOBiYEITAyEWEsMe1N7OJg5oIlRE2iINNQdHhEREVGtabDJHi0tLVhbW1eqromJCUxMTOTHhw8fRmpqqtJMHpFIVOk+iYiIiIiI6NWUV5gn308mLjMOybnJXI6tHsotzEVQUhCCkoKgp6UHOxM7OJo5oqlxUyZ+iIiI6KXTYJM9oaGhaNKkCXR1ddGlSxesWbMGjo6OlWq7Y8cO9OvXD3Z2dgrlWVlZsLOzQ1FREdzc3LB69Wq4u7uX2U9+fj7y8/PlxxkZxdPypVIppFLpCzwrooav5L3Pe4BeZbwPiHgfEPEeeLnkSfPwNOspnmU/w7OsZ0jLS1OqIwKXCytNJBMpPKpTfkE+QhJDEJIYAm1Nbdib2KO1ZWtYiC3UHRq95Pj3Qf0ilUohCAJkMhlkMibp64ogCPJHXnd6WclkMgiCAKlUqrQKWV39HSASSu62BuTEiRPIyclBy5Yt8ezZM3z55Zd49OgRHj58CAuL8v+hFhcXB4lEgj/++AMjR46Ul1+/fh1hYWFwcXFBRkYGNm/ejOPHj+Pu3bto0aKFyr5U7R0EAH/88Qf09fWr9ySJiIiIiIiIiIioxpSsFCSRSKCjo/PiHQkCRCkpEGVnQzAwgGBuDnCPMKJXWkFBAWJjYxEfH4/CwkKFczk5Ofjggw+Qnp4OY2PjWouhQSZ7SsvOzkbz5s2xaNEizJ8/v9y6X3/9NTZs2ICnT5+W+6Euk8nQoUMH9OrVC1u2bFFZR9XMHolEgri4uAqTTkQvK6lUijNnzuDNN9+Etra2usMhUgveB0S8D4h4DzQ8edI8PM58jCcZT/Ak8wkKigrUHVKDJ5KJYBlviUTrRAga9furB7G2GK0sWqGVRSuItcXqDodeIvz7oH7Jy8tDbGws7O3tX2yf7rQ04LffIPrhB4jCw+XFQvPmEGbOBMaNA0xNayze2jR+/HikpaXh0KFDtT6WIAjIzMyEkZERRNVIitVlzERVlZeXh6ioKEgkEqXPl+TkZNjY2NR6sqfBLuP2PAMDA7i4uCA0NLTceoIg4Ndff8XYsWMrzN5raGjgtddeK7dPXV1d6OrqKpVra2vzL3B65fE+IOJ9QATwPiDiPVB/CYKAhOwExGbEIjY9Fok5iYoVuKVLjRE0hHqf7MkpyoF/gj/uJt6Fo5kj2jVuh8YGjdUdFr1E+PdB/VBUVASRSAQNDQ1oaFTxg/7UKWD4cCAnR+mUKCICovnzgSVLgAMHAE/PGoq4+qKiouDg4AB/f3+4ubnJy7ds2QJBEKp+HarIy8sLqamp2LVrl/zavyiRSPTCffj4+KBPnz5ITU2FaRUScmVdP6LSNDQ0IBKJVH7e19Xn/0uR7MnPz0dQUBB69uxZbr2LFy8iLCwMEydOrLBPQRAQEBAAFxeXmgqTiIiIiIiI1Ci/MB8x6TGIzYjF44zHyCvMU3dIVM/IBBnCUsIQlhKGxgaN0blpZzQxalJr4wXEB8B9mzv8p/jDzdqt1sYhomo6dQp46y1AEIr/lFZSlptbXO/YsXqV8FHFxMRE3SEQUQ1rkL+rtGDBAly8eBGRkZG4ceMG3nvvPWRkZOCjjz4CACxevBjjxo1Tardjxw506dIF7dq1Uzq3cuVKnDp1ChEREQgICMDEiRMREBCAqVOn1vrzISIiIiIiotqRK81FUGIQjocex+57u3Eh6gLCUsKY6KEKJWQn4GjIURwPPY7knORaGcN9m7vCIxHVQ2lpxTN6BAGQycqvK5MV1xs+vLhdDREEAd988w0cHR0hFovh6uqKv//+W34+NTUVY8aMgaWlJcRiMVq0aIGdO3cCABwcHAAA7u7uEIlE8PDwAFA842bYsGHyPjw8PDBr1izMnTsXZmZmsLKyws8//4zs7GyMHz8eRkZGaN68OU6cOCFvU1RUhIkTJ8LBwQFisRitWrXC5s2b5edXrFiBXbt24ciRIzAzM4OmpiZ8fHwAAE+ePMGoUaNgZmYGCwsLDB06FFFRUQp9z58/H6amprCwsMCiRYtQ0W4k0dHRGDJkCMzMzGBgYIC2bdvi+PHjiIqKQp8+fQAAZmZmEIlE8PLyAgCcPHkSr7/+unycwYMHI/y5JfrKun4AsHPnTjg7O0NPTw+tW7fGjz/+WG58JaKioiASibB//3707NkTYrEYr732GkJCQnDr1i106tQJhoaGGDBgABITFWceVzTmp59+ipYtW0JfXx+Ojo5YunQppFKpwmvi5uaG3bt3w97eHiYmJnj//feRmZlZqdipfmuQM3seP36M0aNHIykpCZaWlujatSuuX78OOzs7AEBcXBxiYmIU2qSnp+PAgQMKHzjPS0tLw+TJkxEfHw8TExO4u7vj0qVL6Ny5c60/HyIiIiIiIqo52QXZiEyLRGRqJOKz4iGgfi8hRvXb44zHeJzxGE7mTujUpBOMdWturX3/Kf7ymT1EVE/t2lW8dFtltz2XyYrr//YbMHt2jYSwZMkSHDx4EFu3bkWLFi1w6dIlfPjhh7C0tETv3r2xdOlSBAYG4sSJE2jUqBHCwsKQm5sLALh58yY6d+6Ms2fPom3btuVubbFr1y4sWrQIN2/exJ9//olp06bh8OHDeOedd/D5559j48aNGDt2LGJiYqCvrw+ZTAZbW1vs378fjRo1gq+vLyZPngwbGxuMHDkSCxYsQFBQENLT07F582YYGRmhUaNGyMnJQZ8+fdCzZ09cunQJWlpa+PLLLzFgwADcu3cPOjo62LBhA3799Vfs2LEDbdq0wYYNG3Do0CG88cYbZcY/Y8YMFBQU4NKlSzAwMEBgYCAMDQ0hkUhw4MABDB8+HMHBwTA2NoZYXLw/W3Z2NubPnw8XFxdkZ2dj2bJleOeddxAQEAANDY0yr98vv/yC5cuX44cffoC7uzv8/f0xadIkGBgYyCckVGT58uXYtGkTmjVrhgkTJmD06NEwNjbG5s2boa+vj5EjR2LZsmXYunVrpcc0MjKCt7c3mjRpgvv372PSpEkwMjLCokWL5OOGh4fj8OHDOHr0KFJTUzFy5EisXbsWX331VaXipvqrQSZ79u3bV+55b29vpTITExPkqFhTs8TGjRuxcePG6oZGREREREREapAjzUFEagTCU8LxLPuZusOhl1BYShgiUiPg3MgZHWw6QKwtrnafbtZuEJYzGUlUbwkC8P33L9Z2yxZg1ixAJKpWCNnZ2fjuu+9w/vx5dOvWDQDg6OiIK1euYNu2bejduzdiYmLg7u6OTp06AQDs7e3l7S0tLQEAFhYWsLa2LncsV1dXLFmyBEDxyklr165Fo0aNMGnSJACQJx7u3buHrl27QltbGytXrpS3d3BwgK+vL/bv34+RI0fC0NAQYrEYeXl5sLKygrGxMTQ0NPD7779DQ0MD27dvh+j/r8/OnTthamoKHx8f9O/fH5s2bcLixYsxfPhwAMBPP/2EU6dOlRt/TEwMhg8fLt+Ww9HRUX7O3NwcANC4cWOFPXtK+i+xY8cONG7cGIGBgWjXrl2Z12/16tXYsGED3n33XflzDwwMxLZt2yqd7FmwYAE8/3+5vzlz5mD06NE4d+4cevToAQCYOHGiwvfclRmz5PUDit8Hn3zyCf7880+FZI9MJoO3tzeMjIwAAGPHjsW5c+eY7HkJNMhkDxEREREREVGuNBcRqRGISI3gDB6qEzJBhoeJDxGSHIL2Vu3hau0KLQ1+tUL00kpOBp5b0qvSBKG4XUoKYGFRrRACAwORl5eHN998U6G8oKAA7u7FS0BOmzYNw4cPx507d9C/f38MGzYM3bt3r/JY7du3l/+sqakJCwsLhf3MraysAAAJCQnysp9++gnbt29HdHQ0cnNzUVBQADc3t3LHuX37NsLCwuTJhhJ5eXkIDw9Heno64uLi5MktANDS0kKnTp3KXcpt9uzZmDZtGk6fPo1+/fph+PDhCs9JlfDwcCxduhTXr19HUlISZP+/VF9MTIzKrUAAIDExEbGxsZg4caI8EQYAhYWFVdoL6fnYSq5t6etdcq0rO+bff/+NTZs2ISwsDFlZWSgsLISxseKMVHt7e4Vrb2Njo/CaUsPFf5EQERERERFRgyEtkiIiNQKhKaGIy4xjgofUQiqT4nbcbYSmhMLD3gPWhuX/tjwRNVBZWdVrn5lZ7WRPSfLh2LFjaNq0qcI5XV1dAMDAgQMRHR2NY8eO4ezZs+jbty9mzJiBb7/9tkpjaWtrKxyLRCKFspJZOCUx7d+/H/PmzcOGDRvQrVs3GBkZYf369bhx40aFz6ljx47Ys2eP0rmSmTQv4uOPP4anpyeOHTuG06dP4+uvv8aGDRswa9asMtsMGTIEEokEv/zyC5o0aQKZTIZ27dqhoKCg3PiB4mXVunTponBOU1Oz0vGquraly0rGqsyY169fx/vvv4+VK1fC09MTJiYm2LdvHzZs2FDmuKXHoYaNyR4iIiIiIiKq955kPEFIcggi0yJRKCtUdzjUQMWmx+LLy19iSc8lkJhIqt1fRn4GjgQfQbvG7dC5aWfO8iF62RgaVq99qZkrL6JNmzbQ1dVFTEwMevfuXWY9S0tLeHl5wcvLCz179sTChQvx7bffyveYKSoqqnYspV2+fBndu3fH9OnT5WXhpWZC6ejoKI3doUMH/Pnnn2jcuLHSrJMSNjY2uH79Onr16gWgeAbL7du30aFDh3JjkkgkmDp1KqZOnYrFixfjl19+waxZs1Reh+TkZAQFBWHbtm3o2bMnAODKlStK8ZduZ2VlhaZNmyIiIgJjxowpN56aUpkxr169Cjs7O3zxxRfysujo6DqJj+oH/iuEiIiIiIiI6qWM/AyEJIcgJDkEWQXV/O1qIgBfXv5S/rht8LYa6/dBwgPEpMegt11v2BjZ1Fi/RKRmFhZA8+ZARETx0myVJRIBjo7A/+8TUx1GRkZYsGAB5s2bB5lMhtdffx0ZGRnw9fWFoaEhPvroIyxbtgwdO3ZE27ZtkZ+fj6NHj8LZ2RlA8R41YrEYJ0+ehK2tLfT09Kq01Fh5nJyc8Ntvv+HUqVNwcHDA7t27cevWLTg4OMjr2Nvb49SpUwgNDYWdnR3MzMwwZswYrF+/HkOHDsWqVatga2uLmJgYHDx4EAsXLoStrS3mzJmDtWvXokWLFnB2dsZ3332HtLS0cuOZO3cuBg4ciJYtWyI1NRXnz5+XXwc7OzuIRCIcPXoUgwYNglgshpmZGSwsLPDzzz/DxsYGMTEx+OyzzxT6LOv6rVixArNnz4axsTEGDhyI/Px8+Pn5ITU1FfPnz6+R61taRWM6OTkhJiYG+/btw2uvvYZjx47h0KFDtRIL1U8a6g6AiIiIiIiIqIS0SIpHSY9wJPgI9j3Yhztxd5jooRqzpOcShcealJGfgX9D/sXVmKucfUb0shCJgHKWACvX7NnF7WvA6tWrsWzZMnz99ddwdnaGp6cn/v33X3lSRUdHB4sXL0b79u3Rq1cvaGpqYt++fQCK97rZsmULtm3bhiZNmmDo0KE1EhMATJ06Fe+++y5GjRqFLl26IDk5WWGWDwBMmjQJLVu2xBtvvAErKytcvXoV+vr6uHTpEpo1a4Z3330Xzs7OmDBhAnJzc+UzfT755BOMGzcOXl5e8iXi3nnnnXLjKSoqwowZM+Ds7IwBAwagVatW+PHHHwEATZs2xcqVK/HZZ5/BysoKM2fOhIaGBvbt24fbt2+jXbt2mDdvHtavX6/QZ1nX7+OPP8b27dvh7e0NFxcX9O7dG97e3gqJrppW0ZhDhw7FvHnzMHPmTLi5ucHX1xdLly6ttXio/hEJ5e1qRVWSkZEBExMTJCUlwaKa63ESNVRSqRTHjx/HoEGDlNYAJXpV8D4g4n1AxHugagRBwNPMpwhODkZUWhS/KH9JiGQiNH7aGAlNEiBovFpfPRjpGKG3fW80MWpSuwMFBADu7oC/P1DBhuikHvz7oH7Jy8tDZGQkHBwcoKenV7lGaWmArS2QmwtUZl8TDQ1ALAYePwZMTasT7ktDJpMhIyMDxsbG0NDg3AN6OZX3+ZKcnIxGjRohPT29zKULawKXcSMiIiIiIiK1yMjPQHBSMEJTQjl7h14qmQWZOBpyFJ2adEIHm/L3l6gWd/f/Hvm7vES1w9QUOHAAeOut4kROeQkfDY3i2TwHDzLRQ0R1jqlUIiIiIiIiqjOCICA6LRonQk9g34N98I/3Z6KHXlp+T/1wNuJs7c1W8/dXfCSi2uHpCRw7VjxjRyRSXp6tpEwsBo4fB/r3V0+cVC+sWbMGhoaGKv8MHDhQ3eHRS4wze4iIiIiIiKjW5RXm4VHSIwQlBiGzIFPd4RDVmYjUCKTnpaN/8/4w0jWq2c7d3Dijh6iueHoWL83222/Ali1AePh/5xwdi/fo+egjwMREfTFSvTB16lSMHDlS5TmxWFzH0dCrhMkeIiIiIiIiqjUJ2Ql4mPAQEakRKBKK1B0OqcHjjMdYdWUVlvRcAomJRN3hqEVybjIOPTqEfo79an8fHyKqPaamxUmdWbOAlBQgMxMwMgLMzZVn+9Ary9zcHObm5uoOg15BTPYQERERERFRjSqUFSIsJQyBiYFIyklSdzikZut91wMAvrz8JbYN3qbmaNQnrzAPx0OPo5ttN7Rt3Fbd4RC90oTqzogTiQALi+I/RESogc+VGsA9e4iIiIiIiKhGpOel41rsNey5tweXoi8x0UMAgIXdFwIAlvRcouZI1E8myHA19iouRV+CTChnk3ciqhXa2toAgJycHDVHQkQvm4KCAgCApqam2mLgzB4iIiIiIiJ6YYIgICY9Bg8TH+JxxmN1h0P1kK2x7Ss9o0eVR0mPkF2Qjf7N+0NTQ31fChG9ajQ1NWFqaoqEhAQAgL6+PkRcfq3WyWQyFBQUIC8vDxoanHtALx+ZTIbExETo6+tDS0t9KRcme4iIiIiIiKjKimRFCEkOwb1n95Cen67ucIganNiMWJwIO4EBTgOgpcGvZ4jqirW1NQDIEz5U+wRBQG5uLsRiMZNr9NLS0NBAs2bN1Poe578miIiIiIiIqNLyC/PxMPEhHiY8RG5hrrrDIWrQnmY+xfHQ4xjgNAA6mjrqDofolSASiWBjY4PGjRtDKpWqO5xXglQqxaVLl9CrVy/5UnpELxsdHR21z1xjsoeIiIiIiIgqlJmfiXvP7iE4ORiFskJ1h0P00ojPisfx0OMY1GIQEz5EdUhTU1Ote2u8SjQ1NVFYWAg9PT0me4hqEZM9REREREREVKbE7ETcfXYXkamRECCoOxyil1JCdgJOhJ7AoBaDoK3JL0KJiIio6pjsISIiIiIiIiUx6TG49+wenmY+VXcoRK+EZ9nPcDLsJAa2GMg9fIiIiKjK+K8HIiIiIiIiAgDIBBnCUsJwN/4uUvNS1R0O0SsnLisOp8JOYWCLgdAQqXfdfyIiImpYmOwhIiIiIiJ6xRXKChGYGIh7z+4hR5qj7nCIXmlPMp/gasxV9LTrqe5QiIiIqAFhsoeIiIiIiOgVVSgrxMOEh7j37B5yC3PVHQ4R/b+gpCCYic3QrnE7dYdCREREDQSTPURERERERK8YaZEUDxOLkzx5hXnqDoeIVLgWew1memZoatxU3aEQERFRA8BkDxERERER0SuCSR6ihkOAgLMRZzGs9TCY6JmoOxwiIiKq57jbHxERERER0UtOWiSFf5w/9j7Yi5tPbjLRQ1SLYtNjMeXoFMSmx1a7r/yifJwKP4WCooIaiIyIiIheZkz2EBERERERvaQKigpwJ+4O/rj/B249vcUkD1Eti02PxZeXvwQA+WN1peWl4VzEOQiCUCP9ERER0cuJy7gRERERERG9ZAqKCvAg4QHuP7uP/KJ8dYdD9Mp4PsGzpOeSGus3NiMWN57cQFfbrjXWJxEREb1cOLOHiIiIiIjoJSEtkspn8vg99WOi5yVVk8uEvcosgmMxudMUWATX3HUsSfAs6bkEEhNJjfULAPee3cPjjMc12icRERG9PJjsISIiIiIiauBkggwPEh5g74O98Hvqx/09XnI1vUzYq2r4mC8VHmuCxESCbYO31Xiip8Sl6Eu8v4mIiEglJnuIiIiIiIgaKEEQEJocij8f/AnfWF/uyfOKeH72CL24A3uWKDw2BFkFWbgWe03dYRAREVE9xD17iIiIiIiIGqCY9BjcfHITKbkp6g6F6ljJ7JFXkWa+FDqZOdDOzYdWbj60cwugWSCFZr4UmgVSaBTJAACCSPRfI5EIggiQaWtBKtZFoVgXUrEO8kwMsOvsBkj1ddX0bF5McHIwHM0ca232EBERETVMTPYQERERERE1IAnZCbjx+AbisuLUHQpRrdLOyoVeWhb00rOhm178qJVbO/tQSfX1kGtuhFxzY+SaGyHP1BDQqL+LoVyKvoQRbUdAR1NH3aEQERFRPcFkDxERERERUQOQlpeGm09uIiotSt2hEKlkERyL4WO+xIE9S5DcquqzTrRy82HwLBWG8SkwSEyDhrSwFqJUTTsnD9o5eTB+nAgAEDQ0kGdqiGwrM2TYWqLASL/OYqmMbGk2rsZcRR+HPuoOhYiIiOoJJnuIiIiIiIjqseyCbNyOu43gpGAIENQdDlGZho/5Uv74s18llpmTyaCfnFGc3HmWCt2M7FqOsPJEMhnEKRkQp2SgUVA08o0NkGFricymjepN4ic0JRSOZo6wM7VTdyhERERUDzDZQ0REREREVA/lF+YjID4ADxIeoEgoUnc4RBU6sGeJfGZPeXTTsmAaFQ/jx4nQLJDWUXTVo5uRDcvAbFgGRiHf2ABp9tZIs7eGoKWp1rgux1yGjZENl3MjIiIiJnuIiIiIiIjqE5kgw/1n9+Ef74+CogJ1h0NUacmtJGXO6NHMl8I4NgGm0c+gm55Vx5HVLN2MbFjdC0ejRzFIbd4EqY5NUKSrrZZYcqQ58I/zRxfbLmoZn4iIiOoPJnuIiIiIiIjqiai0KFx/fB0Z+RnqDoWoxtjcegSjuESIZDJ1h1KjNAukaBQUDYuQx0izs0JKC1tIDfTqPI4HCQ/QtnFbGOoY1vnYREREVH9oqDsAIiIiIiKiV11KbgqOhhzF6fDTTPTQS8HgWSokV+4DAIzikl+qRE9qbip+v7cHqbmpAABRURHMIp7C8YwfLB9EQlRYt8suFglF8HvqV6djEhERUf3DZA8REREREZGa5BXm4UrMFRwIPICnmU/VHQ5RtRk+TYL9BX9Irt6HOOXlTFweCz2u8FhCJJPBIiQWjmdvw/BpUp3GFJocipTclDodk4iIiOoXJnuIiIiIiIjqWMm+PPse7ENgYiAECOoOiahajB4nwuHsbdheD4Reaqa6w6lVb7UYpPBYmnZOHmyvB8LW9wG0s/PqJCYBAm48vlEnYxEREVH9xD17iIiIiIiI6lBMegyuP76OtLw0dYdCVG266dmwuhsG/aR0dYdSZ8zEZviw/ZgK6xnGp8AgwQ/P2jsizbFJrccVmxGLp5lP0cSo9sciIiKi+ocze4iIiIiIiOpAWl4aToSewMmwk0z0UIOnIS2EVUAYHM7feaUSPaUZPEtBrzV7YPBM9RJqIpkM1gFhsPELrpO9fDi7h4iI6NXFZA8REREREVEtyi/Mh2+sL/4O/BuxGbHqDueVE5seiylHpyA2nde+RggCTKLi0fzULZhFPAUE9S1BWFGipS503HFC4bEsJjHPYH/xLrSzcms1nsScRISnhNfqGERERFQ/MdlDRERERERUSx4lPcKfD//Eg4QHkAkydYfzSvry8pcKj/TidDKyYe8TAJs7IdAskKo7HJWJlrpOAN2eOFDhsTy66VlwuOAPg/jaje1O3J1a7Z+IiIjqJyZ7iIiIiIiIalhiTiIA4Prj68grrJsN2km1JT2XKDzSizELfwqHCwHQS80EUHZSRVW5fmJqrSRgVCVaKjvTpqZkW5nj0udjkG1lXqn6GtJCSHwfwP78HUzuNAUWwTU/4yw1LxVPMp7UeL9ERERUvzHZQ0REREREVEPyC/NxOfoyjoccV3co9P8kJhJsG7wNEhOJukNpkDTzCmDr+wBWd8MgKvpvz5mykiqqyt1+O6OybnWpSrRUZaaNOvVftA0AMHxM7cw4e5DwoFb6JSIiovqLyR4iIiIiIqIaEJIcgv0P9yMoKQgC1LePCVFNMYhPgeO5OzBUsexYWUkVVeUB495UWbc2lDXTpj7s7/O8kmtx9quJtdJ/THoMMvIzaqVvIiIiqp+Y7CEiIiIiIqqG1NxU/Bv8L3yifJBbWLubr9OrzSI4ttaW/lIgk8EqIAwS3wfQzC9QOm3wLAUdd5zA7YkDlZIqqpItOZZmVVrqrDbU9fJuFSm5TjrZeTAPqfnXU4CAhwkPa7xfIiIiqr+Y7CEiIiIiInoBhbJC3HxyEweCDiAuK07d4dBLIjY9FlOOTkFsunICoGTJr9pa+gsANPOlsLt8H2YRT8usU98SJ88rawZPfV7erfGDSJhG1vxnSHByMKRF0hrvl4iIiOonJnuIiIiIiKhBCogPgGilCAHxAXU+dnRaNP56+BcC4gMgE2R1Pj69vL68/KXC4/MO7Fmi8FjTdDJzYO8TAHFyern16nPipKxEVFnLu1WGqgRSTS8LZ3U3HOKk8q97VRUUFSAkOaRG+yQiIqL6i8keIiIiIiJqkNy3uSs81oWsgiycDj+NU+GnkFmQWWfjUvnKmw3T0CzpuUTh8XnJrST42W8bkltJanxcg2epsPcJgHZ2xUsRVidxUtueT0TVVEJGVQKppmc3iWQy2N4IglZufo30V+JBwoMa7Y+IiIjqLyZ7iIiIiIioQfKf4q/wWJtkggx34+9i/8P9iEqLqvXxqGrKmw3T0EhMJNg2eBskJjWf0CmLacRTtDp0GR4rd9XYTBV1eT4R9SIJmZIEUaPAKHmiSNVMptqY3aSZX4CmN4IAWc3NFkzPT0dMekyN9UdERET1F5M9RERERETUILlZu0FYLsDN2q1Wx4nPisfBoIO48eQGCmWFtToW8HLNUqkr5c2GofI1vhcO64AwdNp+DED93IenPOXN3nmRhEzJ829z+Kr8WNVMptqa3SROyYD13fAa7ZNLuREREb0amOwhIiIiIiJSQVokxZWYKzgSfAQpuXU32+FlmqVSV9QxG6bBEwRY3wmBedgTALWz/FldKG/2Tk0kZNSxL5FpZByMY57BIjgWkztNgUVw9RK/MekxdZKoJiIiIvVisoeIiIiIiKiU2PRY/BX4FwITA+t8bM5Socp64WSAIMDmdghMo+LlRdVd/kxdano5tdJLtalrXyKrexEYPqY44Vvy+KIKZYVcyo2IiOgVwGQPERERERHR/8svzIdPlA9OhJ1AVkGWWmLgLBWqrBdKBggCmvgFwyTmWZlVamM/mtpS1uydF52d9Hw/HXecUNssJ80CKXyWjgUAHNhT/cRvRGpEtfsgIiKi+o3JHiIiIiIiIgCRqZHY/3A/97egBqMkCVDpZMD/z+gxjk0ot1pt7UdTnppOqlRndtLzyS51znLSKJJh98lvkNyq+olfLuVGRET08mOyh4iIiIiIXmm50lycCT+DMxFnkFuYq+5wqJ6KTY/FlKNTEJtevf1TalJyKwl+9ttW6WSAtX9ouTN61KmmkyrVmZ30fLJL3bOcrAPCAJms2v1wKTciIqKXH5M9RERERET0ygpNDsX+h/sRmRap7lConvvy8pcKjw1No8AohT16XlRtLWtW00mVmpqdpI5ZTs/TzciGediTGumLS7kRERG93JjsISIiIiKiV05WQRZOhJ7AhagLyC/KV3c41AAs6blE4bEhMY5NQKNHNTOro6wZONVNAlU3qVIyvqoY1LXvTk2xCHkMUWFRtfvhUm5EREQvNyZ7iIiIiIjolRKYGIi/Hv6F2Iz6sxwX1X8SEwm2Dd4GiUn190+pS+KkdNjcrrl9qMqagVNXe9s8n7h5/ufnxy0dg6rY6nsC6Pn4NAukNTIri0u5ERERvdyY7CEiIiIioldCRn4G/g3+F1dirkAqk6o7nDpRH/eZobqjnZUL2+uBENXAni8lypqBU9t725QkP55P3Dz/8/Pj3p44UCFZ8nxsqvqpTS+aVCodn3nYkxrZuycylUtWEhERvayY7CEiov9j787Dq6zv/P+/TvaNhBASEiCssoVFEAREQRRxt7Zq22+12lqd0pnpNba19hodOqOVseM4XtVOv98pVjq2Vmv7G7W2bhWrCIq4MERUFpE1gYSdhJA95/z+oCeec3L27XPf93k+rivXTU7uc9/v+77PCcn9yvvzAQDA8T48+KH+Z8v/qKmtyXQpaWX3eWYQv6yeXtW+/bGyu+MLNmMNKZIxt03gPn2HZgsMZTbectmAYGntXTf01+AblvjWFmw7qRRvqBQYnuW2d6qs4XDC9Rw4eSDhbQAAAGsi7AEAAADgWG3dbXr+k+f1duPbGTlXhZ3nmUECPB6NeGer8k62x72JdHW+hNtnsH1vvOWy/uDGN1gKFeIEhjm+jycaTkUjmo6nYMFasPCs4pPEO/Q6ejt0ovNEwtsBAADWQ9gDAAAAwJF2HN2h/9nyPxn9l+x2nWcGian4pFHFh44ntI1kDstWdPh40Hl2Iu0z2L5nr3rJ77mh1vWGJZL89hcsREnl/D3RdDxFG6zlnWxXcXPiNTadzKwORwAAMgVhDwAAAABH6ezt1Oqdq/X6ntfV3ddtuhwgrQqOn9TQrXsT3k5gSJFIIDLz16slDZxnJ9I+vZ8HBjm+z40UpvjuL1T9vuukIvCJJJZgrazhUML7y7ThLAEAyBSEPQAAAAAcY1/LPv3Plv/R7hNMQo7M4+rt04h3t8nldid924kM61Z/01JJ/vPsBAs2QgVKgaFPLN1G4YKiYOukc9g6r1jmOyppOipXX2LXN5O7HQEAcDLCHgAAAAC21+vu1bq96/Typy+rvSf+eUoAO6uu/1S5pzpSsu1EhnVrryz3m2cnVLARqQsn1NBssQisv/jgMc1e9ZK2fP7coF+3mqzePpUkOJRbe0+7Wrtak1QRAACwCsIeAAAAALZ2sO2g/mfL/2jrka2mSwGMGdR4WGX7Dsb8vGiHZ4ul+yQe4YZXC/V4NMOu+W4jWFDk/XrdH95K6fFFK5rrUdp4OOH90N0DAIDzEPYAAAAAsCW3x61397+rP27/I3+l7hANLQ1a9vwyNbQ0mC7FVrI7u1WzaUdcz01keLZk8t1/pC6iWIZd83bseJeBx5tIx1IqRHM9SpqPydXbl9B+mtuaE3o+AACwHsIeAAAAwCbqm+vlusel+uZ606UYd7zjuP6w7Q+qb66XRx7T5SBJVqxb4bdEdIZ9uEtZPb1xPTeWsCPaLqB4nu9bR6QuolPDhgStO9j26/7wlt8y8HmR9pXoMUcSuP1oroerr08lB48ntF86ewAAcB7CHgAAAMAmZq2c5bfMVJsPbtYzW5/RkfYjpkuJ6LaXb6NLJQbLFy73WyKywiMtKm04FPfzYxmeLZYuoOKDx7Tgwd9H/fxI8/EEhiKBdXvn3gncfqRwx7vdUIFOuJp9a4o3FArcfrTXo/BYYt2Mbd1tautuS2gbAADAWgh7AAAAAJvYtGyT3zLTnOo+pec/eV4bGjeoz5PYEEbpRJdK9GrLarXyypWqLasNuQ5Dvflwu1Vd/2lUqyajQyWWLiDfcGTBg79X8cFjUT0/cD4eb82BjwceT7CAR4ocnvg+L1igE65m35riHQ4v3mHkCo8mPnTlsY7UdCsBAAAzCHsAAAAAm5hZPVOef/FoZvVM06Wk3d4Te/X01qdtOfQQXSrJxVBvnynf1aT81lNRrZuMuXli6QIKDC9mr3ppQPdOsPDJd46dUDVHCleiqS9YncECl1DH7Fv3xlsuizu0ieWc+io40Sa53TE9J9DxjsSGggMAANZC2AMAAADAsvrcfXpr31v6884/q7O303Q5MXv40ofDdqkgdgz1dlp2Z7cqt+6Nev14w4hIjncc1282PzEgODg1bIjW3/6lAfuXwnfT+M6xE6rWYOGKb0jkK7ADKNRwcJECl3CdRN7PvfMNpUNJ0xF9c+7fqmJ7/B1uxzsJewAAcBLCHgAAAACWdKLzhP6w7Q/6+PDHpkuBhUQz1FsmqPpot7J6ekN+PdIcN8nywo4X/ZbBbLtyvmaveklDt+yRFLqbJrBbxluzb7DjPYbA4/ENibzbWnTfEwM6gOLtcAp8nm9NyeiaipV3X9feEH+HG509AAA4C2EPAAAAAMvZfmS7ntn6jI52HDVdCjKMHeYEyjvZruHvbQs7B0+6AogrJlzutww2N9Dk5zdI+iyI8e2mkTRgXh7vOr7/9l136JY9A/YR2OkTeNzBOpuimb/IezzejiHv833DplR1TUVTz9NPxN/hdqLzRJKqAgAAVkDYAwAAAMAyuvu69dru1/TG3jfU6w7dtQCkih3mBKrY3qDZq0530oQKc5IVQAQLb3yVF5Zr2bDLdPVPXtTQLXuChkzbrpwvaeAQa77reYdBC1ezd11vaBQYDvl2+gTrBvKu57u9SMfnu89QnVGp6pqKVM8rD3xLRyfF3+HW4+5RW3dbskoDAACGEfYAAAAAsITDpw7rma3P6NNjn5ouBRnM6nMC5bZ1qKzhUMRgJJEAwjcAiaZDKDCE8dZVdPj0MGGdQwZp7V036EjdmAHb9z0Ob5eMN4QJFDg/T7xBVixDsCUSmkUKkuLhW09OR1fC22MoNwAAnIOwBwAAAIBxmw9u1nPbn1NrV6vpUpDhrD4nUMUnDZLHk9JukkjdNoEhRrAQ5tSwIZr569WSpJm/Xu0XePhu37sP73GEC1+8x3ykbkzYUCja7UQags0bdvnWF4tUDKXnW3tOZ7fkdie0veOd8Yc99c31ct3jUn1zfUI1AACA5CDsAQAAAGBMR0+HXtrxkjY0bpDbk9hNS8Dpcto7VbbvUMr3E6nbxjfEWHTfE5LUH8L4BlDe4du86waGQ75fk/zn0Ak25Fuw5yTakRMYmsXa1RROOubyye3oTuj5iXT2zFo5y28JAADMIuwBAAAAYERja6Oe3vq0GlobTJcCB2hoadCy55epocW5r6eKTxrlSrCTIxqBAUhg6BEqrPFVfPCYJj+/YcB6viHKzsVn+q3vux3fIeGCidRx5D0GSVp03xMaumVPVEOqxTKHUCTpmMsn0aHcEuns2bRsk98SAACYRdgDAAAAIK3cHrfe3f+uXtzxotp72k2XA4dYsW6F39Jpsrp7NHhPc9zPT2T+mMDQwxtihAtDfIMbb4eP7xw5kjR+zQd+6/tuJ5qOnHAdR4F1eMOjSF06gV1NkcKaVMzLE4vcBMOeRIbOnFk9U55/8Whm9cyEagAAAMlB2AMAAAAgbU51n9Kftv+JOR6QdMsXLvdbOk1Zw+GEunoSGZIsVOgRLgzxDWuOTRo1YI4cyb+zxzdcCbbNYKFKqI6jYKGR73xCgbzbXnTfEyo82jpg/+ECnVTMyxOL7K6ehJ7f2dvJEJoAADgEYQ8AAACAtDhw8oCe2fqMDp46GPVzMmFoLiRHbVmtVl65UrVltaZLSYlEunqk9Mwf4+vUsCFaf/uXgj7uNX7NByHDHSny/DmhOo58t+V9LHA+IV/hho+LNHdPqPOaro4fl8eT8DY6ejqSUAkAADCNsAcAAABAytU31+uFT15QR29sNxWdPjQXEI38E23Kb2lLaBvRzh+TaEgRzfOjCZ6GbtkTcf6cZM2J47vNLZ8/N2jIFKreUDWECoiSfn6TEPYwnCYAAM5gy7Dn7rvvlsvl8vuorq4Ouf6aNWsGrO9yubRt2za/9Z5++mnV1dUpPz9fdXV1evbZZ1N9KAAAAICjdfd168+f/lnv7n9XHsV+U9LpQ3MB0Ui0qycWgSGF7xBn0QQUsQ5rFir8COyw8QY+iQY7wfbnO3zckboxIUOmWObuCRVoJTrsW+DzXYlnPTGH8AAAwJpsGfZI0tSpU9XU1NT/8eGHH0Z8zvbt2/2eM2HChP6vvf322/ryl7+sG2+8UR988IFuvPFGfelLX9I777yTysMAAAAAHOtI+xE9s/UZ7W3ZG/c2nD40FxCJq8+t0sbDadtfYEjhG0rMXvVSxM4U79w43mUwvoFFqPAj2PNnr3rJb9/Bahm6ZY8W3feERqz/KGid0YQtgQFPNN1DgdsN9bxEh9Mb8Hw6ewAAwF/ZNuzJyclRdXV1/0dlZWXE51RVVfk9Jzs7u/9rDz30kJYuXao777xTkydP1p133qklS5booYceSuFRAAAAAM607cg2PbftObV2tZouBTbB/EzBlTQdVXZ3T9r2FxhS+IYSG2+5zC/UCBb4eDtyAjtzfPkGFqHCD+8cO8FCkcBgJdicO+PXfND/NW/oM3TLHr/t+NbvGxwFC2oihVzRhjiJDj2XrKHrfBH2AADgDDmmC4jXjh07NHz4cOXn52vevHm67777NG7cuLDPmTVrljo7O1VXV6fly5frggsu6P/a22+/re9+97t+619yySVhw56uri51dXX1f97aevoX2Z6eHvX0pO+HccBKvK993gPIZLwPAN4HmazP3acNjRu049gOSZJLLsMVmeFyu/yWVtPY2qgH1j+gOxbcoZGlI02XI0l68K0HVZhVqAffelAPX/qw6XLSasiORn3u1gf0x0fv0LEJ/tdj0IHj8mTF9qt70eHjmvnr1aq/aanaK8vjXkeS2mqq9Mbyr/U/p6ewsP9rM55co/qblvZvR1L/1+tvWtpfd2D9vtuU5PfvSPv37suTlaP3ln3O7/PA+nzNeHKNX33ex9bf/qX+f/cUFvo95ru/YF8Pd0zp4nK7Ev4+09bZxv/XKcTPRADvAyBdr32Xx5OEnt80e+mll9Te3q6JEyfq4MGDWrFihbZt26aPP/5YFRUVA9bfvn271q5dq9mzZ6urq0uPP/64fv7zn2vNmjVatGiRJCkvL0+PPfaYrr/++v7nPfnkk7r55pv9Ah1fd999t+65554Bjz/55JMqKipK0tECAAAAAAAAAAA7am9v1/XXX6+WlhaVlpambD+2DHsCnTp1SuPHj9cPfvADfe9734vqOVdddZVcLpf++Mc/Sjod9vzqV7/SV77ylf51nnjiCd1yyy3q7OwMuo1gnT21tbVqamoKGjoBmaCnp0erV6/W0qVLlZuba7ocwAjeBwDvg0zU0NKgtfvWqqfP/F9s3vbybf3/NtUh4nK7VNlcqcPVh+XJst6vXFbs7PFl9fqS7evnf/aafeyNz16zBUdbNeqtyPPTBvLtSJn569X9j/t2pCx48PdBH/f63cefff3LUwd2uni7gXwfk+T3dU9WjlrOukpLv/ENffzF89ReWe6331D7D1ZbpE4k79claduV8zX5+Q1+64Y73mA1+Qq1zyHb92ny8xu07cr5OjZpVNhtpErzzDPUOmpYQtuoKqrS5RMvT1JFCMTPRADvA+Do0aOqqalJedhj22HcfBUXF2v69OnasWNH1M+ZP3++fvOb3/R/Xl1drebmZr91Dh06pGHDQv/QlJ+fr/z8/AGP5+bm8o0LGY/3AcD7AJB4H2QCj8ej9w68p/rm+tMPWGBW0NvPvV0r1q3Q8oXLjQctniyP8RqCGTF4hB66/CFJkkfWq+9Hb/6of7nyypWGq0m9Pz56u669YYWefsL/NVty6Khc7t6Yt9dRMUhvf/caSdLm6xdr9qqXtPGWy/y2Fepxr0vGXKAXdryoKyZc3v913+0Ge6z44DHldnQoq7fHb5u5HR06e+UftfauG/r3u3Pxmf3z6py/4lfaeMtl/fPQDKjN49HZK0//oebZK/+otXdeL7n8hy7zfl2Sjk8Yrs3XL9bZK//Yv91wx+v9mvTZnDvedb01eZ9TfPBY/9em/3+vS5Km/3+va+1dN0S8LqH4btO7v2CPBePOzUr4e0yHp4P/q9OAn4kA3gfIXOl63VvgV7HEdXV1aevWraqpqYn6OZs2bfJb/5xzztHq1av91nnllVe0YMGCpNUJAAAAOElHT4de2PHCZ0GPRdSW1WrllStVW1ZruhTEafnC5X5Lpzs6qVaPvL9SRyf5v2ZLmo8lvO1Tw4Zo7V03DAgMQj3uVV5Yrq/OuEHlhaHn85FOhxKL7nuiP5yQ1L/05Q1RvPvdv2Ca39d9n+Ndp7OsRMPf3aaz/+uPfuue/V9/1PB3tym7s7u/hsD9BNYS7ni9X/N+3fu5pP5jC6xz9qqXtOXz50pS/zJewc5buHPpqzc/8ZtHXb3Bh64HAAD2Ysuw5/vf/77eeOMN7d69W++8846uu+46tba26mtfOz0Z4p133qmbbrqpf/2HHnpIf/jDH7Rjxw59/PHHuvPOO/X000/r29/+dv86t912m1555RXdf//92rZtm+6//369+uqr+s53vpPuwwMAAAAs7/Cpw3pm6zM6cPKA6VLgQAR2UnZnt/Jb2tK2P9/QJhahwo9F9z2hosPHJZ0eNi1YyOINZoIp33VA8//zWY1/daMKTvifh4ITbRr/6kbN/+kzWnTfEwMCkUX3PaGdi8/sryVQuGONFF751txRUaq1d92gI3VjQh5HNLzb9N124GOhau4tyEto35LU5+lLeBsAAMA8W4Y9jY2N+spXvqJJkybpmmuuUV5enjZs2KDRo0dLkpqamrRv377+9bu7u/X9739fM2bM0MKFC/Xmm2/qhRde0DXXXNO/zoIFC/TUU0/pv//7vzVjxgw99thj+t3vfqd58+al/fgAAAAAK9txdIf+uP2POtVzynQpgGOVHDwecZ1IAU0sAU60nSSBfAOKuj+85bf0zqFTdPh40DpODRsSNOgo33VA0363Rlk9vXJJ8h+wTf2PZff6hxQbb7msv37vEHHeWnyFO1bfrwWrLdi6iQrWdRT4WKiaewsHDi0fK7fHnfA2AACAebYMe5566ikdOHBA3d3d2r9/v55++mnV1dX1f/2xxx7TmjVr+j//wQ9+oE8//VQdHR06duyY1q1bp8svHzj54HXXXadt27apu7tbW7du9QuDAAAAgEzn8Xi0oXGDXt/zOn8JDiRZxfYGfXPOMlVsb5AkFRw/GfE5kQKaWAKcSMGGFDw88g1sAm27cr6kz0Kf2ateUvHBY37bCQw1sju7Vff0OsnjGRDyRMNbi7ejJ1ht4Y7V92vBQphQXT6JihTMBau5Ly9XnuzEb+u4PW55PNabuwsAAMTGlmEPAAAAgPTq7uvWS5++pM0HN5suBXCka29Y4bcsaIncORcpoIkmwPGKNIePFDo88j43cD+Tn98QdBu+2wkMOIZt3tXf0ROr2ate6g+f6v7wVn9gIylswBR4LN4OoWDBS6RzmYzh8II9N1jN3YOKYtpHOAT4AADYH2EPAAAAgLBOdJ7Qs1ufVWNro+lSAMd6+onlfsv81shhT6SAJpoAJ5zjHcf1m81P6HjH6SHlQoVHQ7fs0aL7ntDgnaHn8Ao2d45Xf3jk8WjE+9tjrtPbk7Ll6gV+c/j4hlKxdDmFCqN85/EJta1kDIcX7XM7y4pj2kc4fW7CHgAA7I6wBwAAAEBIe0/s1bNbn1VLV4vpUgDbaGhp0LLnl6mhpSHq5xydVKtH3l+po5NqldvWoaye3hRWGJ0XdrzYv/QGHb7dMl7eeXG88+RIAwOhjorS/sBny+fP9Qt/vOvmdHSp8ERbzF093vXrnls/4GveoCZSl5NvR07gOqECnI23XDagkyeWbipfoeYvCqdzcElM+wiHzh4AAOyPsAcAAABAUJuaNunPO/+sHneP6VIAW/CGPCvWnR6KzbuMVTRDuMUi3qHFrphwef8yXMeKN7hpmD2x//NTw4Zo/e1f6l9n9qqX+kOhuj+81f9vSZ/N19OdWMC1d94UScG7ZCJ1OfkeX+A8RIEhzMZbLuvfVuB5SaSbKtbnJjXsobMHAADbI+wBAAAA4KfX3atXd72q9w68Z7oUwFYCw53lC5fHtZ38lraYnxMu0AkMJKINf8oLy/XVGTeovLA8bNfJkboxWnvXDard+Ikk+QU5XhtvucxvG8G2F89x+xr9ztb+sCTWLpnA9b3Bi2/4Emw+n1j3E2/wFsiTlcWcPQAAwA9hDwAAAIB+bd1tem7bc9p1fJfpUgDb8YY7yxcu18orV6q2rDau7eS3tsf8nGCdN945d16/4TxJnwUS8cwrE03XSajgw9vh47s/3+DEG37MfOIvUdcTTb2BwUw0Iq0fSydPsGAn3jl9AnWXFMqTnbxbOm6PO2nbAgAAZhD2AAAAAJAkNZ1s0jNbn9HRjqOmS4GDxDN/jV3VltUmFPJ45bZ3xvycYEGLd86d37a86RdIxDOvTKiOFN/HA4OPosPH+5e+4UawwCOR8MPz12W0c+341uz9d7S1xDL3T7D9xzunT6BkDuEmMYwbAABOQNgDAAAAQB8f+lgv7HhBnb2x32QGwkl0/ppMlNvRHfNzgnWY+M65E2ndSEIFJ+E6VWb+enX/MtgcOL58h3bry8nuD3Ai8Uhy5+bore99ccDxeOcS8i6D1Rys7nBBjO+5i9S5EyzYSWROH786qgYn9PxAdPYAAGB/hD0AAABABnN73Fq3d53eaniLm31ICd+hzRAFt1utJw7qN5uf0PGO4wltynfOnUSF6kgJ16lSf9NSv6Xveovue6I/hNl4y2U6NWxI/9Br2b19kkvRBT4ul7Zcu0gFLW1+wUvxwWP9cwcFziEUau6gWLttInXuJCvYCSbZ28zOyk7q9gAAQPoR9gAAAAAZqruvWy/ueFFbj2w1XQocLFlDm2WK7O7e/uHXvEsrCAwuvF0tkkIGGu2V5f3LYN00gSGM9+uS5PKc7tjxaGDo4/28LydbH335Ah0fVzMgeAkWwAQ7Ft9/B3tuqOHrfLcbTedOuO3EqrN8kPrycxPejq9sF2EPAAB2R9gDAAAAZKCTXSf1h21/0IGTB0yXAsBHTldPyOHXrCLUfDRDt+zRovue0NAtewY8J1zXTKg5crJ7enVw+li5Ah7vHFyiT5fO1oZ/uEbHx9VIGjhkW2CHjW/tkcIb73q+tQWrMZbOnXDbiVXbsMQ7tQLR2QMAgP0R9gAAAAAZ5mDbQT277Vmd6DxhuhQgJRpaGrTs+WVqaGkwXUrMsnp6kzr8WqBkdJiE6poJNWya9FkwEi70CVZT9Ye7+//9zt9drfXfuU7v/e3ndODsyeoryAu571CdSJHCG99jDBxqLhG+4VOi16CtOvnDwuVk5SR9mwAAIL0IewAAAIAMsvPYTj3/yfPq7O00XQqQMivWrfBb2klWb19Kt5+MDpNQXTOB3TXBBAt9vP8OFiL5hi05Xd1a8ND/qPjQwLmMws0dFLht73rBQpfA59f94S1tvOUyzV71UkIBmXc+It9h7OK5Bn15ueosHxR3HaEwjBsAAPZH2AMAAABEUN9cL9c9LtU315suJSGbmjbpL7v/oj5Pam8mA6YtX7jcb4nPRApFohGqa6ajolRr77pBR+rGRL0N3+34hkXerx+pGxN0Tp3AkCbSkGq+21571w392/Fd+m7H9zwlawi2YIFTrNqqh0iuwIHtEscwbgAA2B9hDwAAABDBrJWz/JZ24/a4tWbPGr134D3TpTied/iwxtZG06VktNqyWq28cqVqy2pNl2I5scwz4yvc0GPRhiHh5vSRwg8DJw0MR7zdNtEMiRa4bd9a37tspn6z+Qkd7/isY8j3PAUGZPEOw+a7nXiugSS1jB4W83OiwTBuAADYH2EPAAAAEMGmZZv8lnbS1dulFz55QZ8c/cR0KRnBO2zYA+sfMFwJUsF3LqCUzQuU5K4NbzCRrHl6ggU6kbqFig4f16L7nvALXIIFJoHDwAWuEywcibfrxrfWs1+qlyS9sOPFoOsGBmTx7jPeoM2rp7hQ7ZWD43puOAzhBgCAMxD2AAAAABHMrJ4pz794NLN6pulSYtLa1ao/bPuDmtqaTJeSMbzDht2x4I6kbjdlwYJNWOX4fecCStW8QJ4kj9DlG0gka56eQJFCjJm/Xu33+c7FZwYNTEJ13wSby8f772iHpQtcz7dj5/UbzpMkXTHh8rDbCLWtdDmRoq4ehnADAMAZCHsAAAAAB2pua9Yftv1BLV0tpkvJKN7hw0aWjkzqdlMVLNiFVY7fdy6glM0LlOTOnsBwJF2KDx7Tggd/L0mqv2lp//7X3nWDxq/5IGx93mVgp480cK4f7+eFR1vDDhEXLJDyPpY9erS+OuMGlReWR3VsiXToBOu0impYOJdLLaOqYt5fNOjsAQDAGQh7AAAAAIf59NineuGTF9TZ22m6FCRJyoIFm7DK8fvOBZSqeYE8SQ57fMMRSRFDhVDBg2+XjTdUCbct326c9spyv3DEN9QJDF823nKZZq96SUO37Ak7h4+3Tm8dkeb7sYpgnVbRDAt3qqpcvUUFKamJ+XoAAHAGwh4AAADAQTYe2KjXdr+mPk+f6VIissrQXHaQqmDBLjLp+N25qbvxHk2oEBjqeMOcwK6gwKHWAoXrIgrXGePdnm9o492WbxAVbD3Jvwso8DlWEK6TKdw5S9UQbpKUm52bsm0DAID0IewBAAAAHMDtcev13a9rY9NG06VEzSpDc6UDwRai1VOYl7JtRxMqBH5t9qqX+sMV3zlyIjk1bIjW3/4lSdKCB38fMWzxhjI7F58pSf3LLZ8/168Gb02BQ715h4g7UjdmQP2+y3gkMzAKHIbO97Fg4Zd333lt7QnvO5SCnNR0DAEAgPQi7AEAAABsrqevRy9/+rJ2HNthupSYWGVornTIpGALiXHn5cqTnZo5VKKZa8a7jm8wFCww8Q1ZfEUaBi4U79e98/mMX/OB1t51g18HkW8A5K3zSN2YsMcUTcAVSeDxp7NbyLvPa796X8r2UZRblLJtAwCA9CHsAQAAAGyso6dDf/rkT2psbTRdSswyaWiuTAq2kLieonzTJfgFQ8GCn7o/vBU0ZAnVSRMpbAns1JFOhyq+z/MGQbHMyxNNwBUoMMwJDIyS0S0UrXf/9nOSpKefSN33jsKcwpRtGwAApA9hDwAAAGBTrV2tem77czrSfsR0KYggk4ItJK6n0HzY4ytU8BOM79eLDh+XJNXftLQ/bAnVFePdR0dFaf9jgWFKqG6iWETTleMb5niHj/MdTi4Z3ULR2nv+TD3y/kodnZS67x2FuYQ9AAA4AWEPAAAAYEOHTx3Wc9ueU2tXq+lSkCGYdyh9ei0W9viK1Cnj/bokzfz16v6lN2CJ1BXj+7hvJ5GkiEO2RSOarpxQnUze58XTLRSPvvw8nRhTndJ9SHT2AADgFIQ9AAAAgM00tjbq+U+eV0dvh+lSkEGYdyh9uosLQn4tnfPFBNtftPsPFqbMXvVS1J1BgZ/H20UTaUi2YBpLXfrmlaeXgcPLpaObx+vohBHy5KRm/iZfzNkDAIAzEPYAAAAANrLj6A69/OnL6nH3mC4FCbJbpwzzDqVP5+CSkF9LxXwx4QKcwP1F2r93W77qb1oq6XRQEqwrZuiWPVp03xMaumWP3+OhumhiCbwC642mK+eFHS/2L4MNL5cOffl5Oj5ueFr2xTBuAAA4A2EPAAAAkAT1zfVy3eNSfXN9yvax+eBmvb7ndbk97pTtw2msHKjYrVOGeYfSJ1ywEK4zJd6un3ABTuD+InXGBNtGe2V52IDFO0SadxnpGGMJvOLpDPpK2Xl65PnTS69YQ7ZEO7AOTRublq4eiWHcAABwCsIeAAAAIAlmrZzlt0y2DY0btKFxQ0q27WRWDlTolEEo7twcdQ+KfWitaAKJYCFEuEAksBPGd06eRfc9ETbQ8Hb0ROIdIs27DNd9EzinTyTxzK9zwRNv+i199xVtaJRIB1bHkFK1jB4W8/PiRWcPAADOQNgDAAAAJMGmZZv8lsni9rj12u7XtPng5qRuN1NYOVChUwbhdAwJ3t0TSxdOtM+PJxDxff7sVS/1D8XmO7dNe2V5VNs6UjdGa++6QUfqxkRc1/cYY6k3FsHOY2DIFaljJ+65hlwuNc88I7bnJCA/O19ZLm4NAQDgBPyPDgAAACTBzOqZ8vyLRzOrZyZtmz19PXppx0v69NinSdtmpiFQgV21Bwzl5u3I8Q1TAkUTSASGEPEONxa4f9+h2GINjiLxrTGeYCrSdr1BlfccRNNZFKljJ946j4+tUVeYOZuSja4eAACcg7AHAAAAsKCOng796ZM/af/J/aZLQQaz8pxHTtcxZJDf595wIZowJVwgERhCxDvcmHc73tAnXAiVqFA1BgZVsQZXvuc02PaDibtjJwp9ebk6XDc66dsNpyg39uECAQCANRH2AAAAABbT2tWq57Y/pyPtR0yXggxn5TmPnK67tFg9RQX9n8cSMqRq3WC8oU9HRfBh5wJFCmRimVMoMASKNbiKJ6hKZmdRoEPTxsqdl5v07YZTmh/ddQMAANZH2AMAAABYyLGOY3pu23Nq7Wo1XQpg6TmPMkHryMr+f58aNkQbb7lMs1e9FLFzJZZAwnfdeId0k6ILWo53HI+4XixzCgWGQL7LaI7Fu13vnEGpmgMoGm3VQ9Qypjrt+yXsAQDAOQh7AAAAAIs4dOqQ/rT9T+ro7TBdCiCJOY9M8w17pPiHXItWpO2HC1Ci6RB6YceL+tHC0//e8vlzgw7BlkiXje/nqT5XydRbkKem2ZOM7Lssv8zIfgEAQPIR9gAAAAAWcODkAb3wyQvq6usyXQoshnlzMlfX4BJ1lxT2f57K+WJ8txsYxHgFC1C8IY2kiN0xV0y4XI1l0nPfvdxvnpzig8eimpMoVNgUy9BvoSTS1ZSoptmT1Jef3uHbvMoKCHsAAHAKwh4AAADAsH0t+/TSjpfU4+4xXQosiHlzMlvgUG6pHG7Mu33fIMZXsAAllg6a8sJyfXXGDSovLO/v4Nny+XP9nhtuCLZQ+4pl6LdQTHUCHTtjhE4NK0/rPn0xjBsAAM5B2AMAAAAYtPPYTr2y8xX1efpMlwKLMjVvDh1F1hA4lJtXKjtRQnXFBJs3KHDdaOvyBkp1f3jLb+i2cEOw+daTSBdPMMnYRjTH7rtOV1mJDk0bG/f+ElWcW6ycrBxj+wcAAMlF2AMAAAAYsu3INr22+zW5PW7TpcDCTM2bQ0eRNXSXFqu9cvCAx011ogTu19tBI0mL7nsiZF2BQYhvqBI4dJtv8OL7PN8unUS6eIJJxjaiuSa+6+yfO1nKMndbhiHcAABwFsIeAAAAwIAPD36otXvXyiOP6VKAoEx1FGGgoxMHBn2pnL8nXGgRar/hunCi3aaXb/AS+LxUz1uUiGhq837txYf+Xt2DitJSVygM4QYAgLMQ9gAAAABptvHARr3d+LbpMmyL4cVCS+a5MdVRhIFODStX5+CSgMeSO3+PbwdNuNAi1H59nxNNXYGdOaHq8R3iLdz+rSCa2k4NG6L/+e0P1XjejDRWFlxZPp09AAA4CWEPAAAAkEYbGjdoY9NG02XYGsOLhca5ca5g3T3J5NtBE0+gEuk5gQFSqKHaAusJHOItmFTOX5RsJ8bW6NiEkabLkMQwbgAAOA1hDwAAAJAGHo9Ha/eu1eaDm02XYnsMLxYa58a5To4Yqu6SwpRtP9XDowWGQeGGagusY9F9T4QNcxKZvyidQdGpqnI1nzk+5fuJFsO4AQDgLIQ9AAAAQIq5PW69tvs1bTuyzXQpSWdiSDWGFwuNc5N+aXsPuFw6OmlUyjZvcni0YEFTsDpChTmhgqpogpxEgqJYdA8q0v55U6Qs69yGIewBAMBZrPNTBgAAAOBAfe4+rd65WjuP7zRdSkTx3LRm2DBkunS+B1pGD1PHEGvfoI+nUybSPEChPo/0/GiCnFR3NElSb0GeGhZMkzs3J2X7iNWgvEHKybJOPQAAIHGEPQAAAECK9Lp79dKnL2lvy17TpUQlnpvWDBuGTJfu90DzrAnyWKg7JFAyO2W8IY73I1LXUWDQFE2Qc2rYEG285TLNXvVSSoZy68vP076FM9RTXJD0bSdiaNFQ0yUAAIAks+5PiAAAAICN9fT16MUdL+rAyQOmS4laPDetGTYMmS7d74GusmIdHz88LfuKR7I6ZeLpEAoMmkJ1/Hi37d1+qoZy68vL1d6F09U9qCip200Gwh4AAJyHsAcAAABIsu6+br2440U1tzWbLiUmBDeAPRyeMlo9RdbqFPFK1tw/8QQw0QZNvtucveqllAzl5u3o6S4tTto2k6miqMJ0CQAAIMkIewAAAIAk8gY9B08dNF0KgATEM4dVKlVsb9A35yxTxfYGeXKydfDM8cZqiafrJlbxBDDRBk2+29x4y2VJC6i8egvytHfRDHWVWTPokaTKokrTJQAAgCQj7AEAAACSpKu3Sy988oIOnTpkuhQACYpnDqtUuvaGFX7LtpoKHR+X2HBuxzuO6zebn9DxjuMxPS9Vw5758g1gkh0u+c4FFEvAE00dPUUF2rvoTEsO3eZVlFukwtxC02UAAIAkI+wBAAAAkqCrt0sv7HhBh9sPmy4FQBLEM4dVKj39xHK/pSQdnDFOHRVlcW/zhR0v+i2jlYphz8JJR7iUjDo6hpRqz+KZ6imxdpDCfD0AADgTYQ8AAACQoM7eTj3/yfM60n7EdCkAksRqc1gdnVSrR95fqaOTfOrJylL7kEFxd71cMeFyv2W0kj3sWSTpDpfiqaN1ZKX2LZyhvoK8dJcVM8IeAACcibAHAAAASIA36DnacdR0KZZjtTlPACf6ws33S4qv66W8sFxfnXGDygvLk11WUqU7XPIO1xYYooWq48iU0Towd4o82fa4xULYAwCAM9njJxEAAADAgrxBz7GO1E1SbmdWm/MEcCLvsG5/fuBbhitxDt/gLFyI5snK0v65U3Rkyuh0lJU0hD0AADgTYQ8AAAAQB4KeyKw25wngRN7h3fZeMEuHp441XU5cvJ008QxFlwq+w7SFGjqup6hAexfN0MmRlekqKykKcgpUkldiugwAAJAChD0AAABAjAh6omO1OU+QOVI1hKDVhyY8OqnWdl0m0mfdM/EMRZcK3uHaQg0dd3JEpXYvOUudQ0oNVJcYunoAAHAuwh4AAAAgBgQ9gPWlagjBZG03laHRkSmjdbhuTNK3KyXegRPq+d7umVBdNFbhzslW0+xJ2j9vity5OabLiQthDwAAzkXYAwAAAESJoAdOZfWOlVilagjBZG031fNZHZ08SgdnjB/weKJhTaIdOKGe7+2kCdZFI1ljmLeOIaXafeFZahk9zFgNyVBZZK9h51KtuVlqiPLbXkPD6fUBALAqwh4AAAAgCgQ9sJNYw5tUhw/pFssQgrGcq2QNTZiO+ayOnzFC++dOkSc7u/+xRMOaRDtwonl+sGDHt+5wwU8qQiFPVpaOTBmtveefqZ6SwqRt15TqkmrTJVhGc7N04YXS4sWRA5+GhtPrXXghgQ8AwLoIewAAAIAIuvu69cInLxD0wDZiDW/SET4kUzI7kUwEXemaz+rkyErtWTxT3X8NKRINayJ14ETz/I23XNYf2gQTLJDyrTtcYJXsuX9OVZVr95KzTs+D5HIlZZsmDS4YrMJc+wdWydLTI3V1Sbt2hQ98vEHPrl2n1+/pSWeVAABEj7AHAAAACKOnr0cv7nhRRzuOmi4FiFqs4U26wodkSWZAY7egK1ZdZcXac8EsnRw+NOGwJhkiBTLBAinfusMFVsma+6enqED7505Rw3nT1T2oKKFtWUlNSY3pEiyltlZas0YaNy504OMb9Iwbd3r9Wnt8mwQAZCDCHgAAACCEXnevXv70ZR06dch0KXFz2lwsiI7dwptYeYOZW2fdmvDr227nKp73tDs3R/vn1+nw1LHGO1QiBTKRAqlwX080zPJkZenI5FHaddFsnRzpvLltagYR9gQKF/gQ9AAA7IawBwAAAAjC7XHrlZ2vqKmtyXQpCXHaXCyA9FlA8+imRyVl1us7kff00Um12rN4pjrLB4Vd73jHcf1m8xM63nE8rhrDsUJ30QAul06OqNSui2brSN0YeXKyIz/HhujsCS5Y4LN+PUEPAMB+CHsAAACAAG6PW6/uelWNrY2mS0mY04eoQmbLxNd3osfcWT5IexbPVPPMM+TOzQm6zgs7XvRbOpUnK0sto4Zp10WztX/eFPWUOHc+m0F5g1ScV2y6DMsKDHzOPZegBwBgP4Q9AAAAgA+Px6PXd7+uPSf2mC4lKew2RBUQC9Ov74rtDfrmnGXq2fievYZLdLl0Ytxw7Vw6Ry2jhg348hUTLvdbOo0nK0snxtZo10Wz1TRnkqPm5QmFIdwiq62VHn/c/7HHHyfoAQDYB2EPAAAA4GPt3rXaeXyn6TJgEcx5hHCuveH0UGp/vyx9w8klc2jGvoI8Nc2ZpL3nz1Rb9WfDqpUXluurM25QeWF5wvtItViGnHPn5uj4+BHaecnZap41wdGdPIEYwi2yhgbpxhv9H7vxxs/m8AEAwOoIewAAAIC/emvfW9p+dLvpMhzBKSEJcx4hnKefOD2U2v9deauk9Awnl4qh6zoqStW4YJp2XTRbLaOGyZMV+lZBKufziUc0Q861Vw7WgbMna8dl83TwzPHqLcxPV3mWQWdPeA0N/nP0vPWW/xw+BD4AADsg7AEAAAAkvdP4jj4+/LHpMhzDKSFJJs4Jg+gdnVSrR95fqdzZZ6dtOLlUDl3XXVqspjmTtPOSs3Vswsigc/pYbT6fUEPO9RQV6MiU0dp5yVztWzhDrbVV8uRkmyjRuOLcYpXml5ouw7ICg541a6QFC/zn8CHwAQDYAWEPAAAAMt7/Nv2vPjj4gekyHMUpIYnpOWGQPk7pRouVd96hiu2fHXdvYb4OTR+nHZfPV+P8OrXWVsn916AkHfP5FB88pkX3PaHig8cirus75FxXabGOTqzV3kVnauelc3Vkymj1FBekrE67oKsntGBBj3eOntpaAh8AgL0Q9gAAACCjbT64We8feN90GY5DSALTYg1vnNKNFivvvEPepS9Pdpbahg89PQTaFeeocX6dsidO0vWzv5bS+Xxmr3rJbxmKOzdHJ4cPVdNZE/XpZfO0+6LZOjxtrDqGlqWsNjuqLqk2XYIlhQt6vAh8AAB2QtgDAACAjLXl8BZtaNxgugwAKRBreGOlbrR0dhl55x3yLkPxDX4+ufIc7V4yW01nTVTL6Gp1lRYntaaNt1zmtzy9/2x1DCnV8XHD1TxrgvYsnqlPrpiv/fPr1DKmOiPn4YnW8EHDTZdgSbm5Un5+6KDHyzfwyc8//TwAAKxo4AC8AAAAQAb45OgnenPfm6bLAJAiyxcu14p1K6IOb7zdaFbgG1SluibvvEMxcbnUVVasrrJitYw53TWS1dOrghNtyj3VqdyOLuV0dCmno1fS6Q6c7K7esJv0ZGerLy9HfXm5aqseoj/+4vvqKcxXd0mhOgeXqLTxsK796r/q6SeW68RYhiWLVkleiQYXDDZdhiVVV0uvvSb19IQOery8gU9u7unnAQBgRYQ9AAAAyDi7ju/SG3veMF0GgBQKF940tDT0B0FWHGow1qDKlMDz2F45WKr87Osut0tVB6RPL5snj/rk8kjyeE5/7a9LeTwq/3S/rr3px3r6ieU6Oin49bj2q/96ennDitjDqQxWW2q917eVxBLcRAqEAAAwjWHcAAAAkFH2t+7Xa7tfk0ce06UAUUvnsF6ZwOrz89hlzquYzmNWljzZWfLkZMuTky13bs7pj7xcXXvTjyUFnzfIK9rh5uBvVNko0yUAAIA0IewBAABAxjjSfkSv7HxFbo/bdClATKweTtiNlebnCcUOAV+yzmNgkBPs2L3DzYXq/MFA2a5sjSgdYboMAACQJoQ9AAAAyAgtnS16cceL6nH3mC4FiJkdwgk7sUPnjB0CvmSdx8Agxw7Hbgc1g2qUk8Xo/QAAZArCHgAAADhee0+7Xtzxojp7O02XAsTFDuEEkiuTA75MPvZkYgg3AAAyC3/iAQAAAEfr7uvWizte1Mnuk6ZLAYCoeQO+TJTJx55MhD0AAGQWOnsAAADgWL3uXr386cs61nHMdCkZxQ5zjQCAk5Xll6k0v9R0GQAAII0IewAAAOBIHo9Hf9n1FzW3NZsuJeMw30Z6xBuqEcYBzkdXDwAAmYewBwAAAI60du9a7W3Za7qMjMR8G+kRb6hGGAc4H/N7AQCQeQh7AAAA4Djv7n9X249uN11GxvLOt8HNxtSKN1QjjAOcLTcrV8MHDTddBgAASLMc0wUAAAAAyfThwQ9V31xvugwg5eKdxD7e5wGwhxGlI5Tl4m97AQDINPzvDwAAAMfYcXSH3m5823QZAAAYU1tKVyUAAJmIsAcAAACO0NDSoDf2vmG6DEShoaVBy55fpoaWBtOlAIDjjCobZboEAABgAGEPAAAAbO/QqUNavWu13B636VIQhRXrVvgtASAZ0hUkWzmwriquUnFesekyAACAAbYMe+6++265XC6/j+rq6pDrP/PMM1q6dKkqKytVWlqqc845R3/+85/91nnssccGbNPlcqmzszPVhwMAAIAEnOg8oZc/fVm97l7TpSBKyxcu91vCOqx8ExuIJF1BspUD63Hl40yXAAAADLFl2CNJU6dOVVNTU//Hhx9+GHLdtWvXaunSpXrxxRe1ceNGXXDBBbrqqqu0adMmv/VKS0v9ttnU1KSCgoJUHwoAAADi1NnbqZc/fVmdvfb8Ax2r3lhPdV21ZbVaeeVK1ZYxr4TVWPkmNqzHat/D0hUkWzmwJuwBACBz5ZguIF45OTlhu3l8PfTQQ36f33fffXruuef0pz/9SbNmzep/PFKHUKCuri51dXX1f97a2ipJ6unpUU9PT9TbAZzE+9rnPYBMxvsASM/7oM/dp5c/fVknO07KJVfK9pNKD771oAqzCvXgWw/q4UsfNl1OP6vWZScut8tvmQqNrY16YP0DumPBHRpZOjIp2/zn8/65f5uprB3OEOl7RTreB75GDRqlRy5/5PQnKRzVM137idXQwqHKd+XzM6jF8LsBwPsASNdr3+XxeDxp2VMS3X333XrggQdUVlam/Px8zZs3T/fdd5/GjYvuL1jcbrfGjBmjH/zgB/r2t78t6fQwbrfeeqtGjBihvr4+zZw5U/fee69fGBSsjnvuuWfA408++aSKioriOzgAAAAAAAAAAOAI7e3tuv7669XS0qLS0tKU7ceWYc9LL72k9vZ2TZw4UQcPHtSKFSu0bds2ffzxx6qoqIj4/AceeED/9m//pq1bt6qqqkqStGHDBn366aeaPn26Wltb9fDDD+vFF1/UBx98oAkTJgTdTrDOntraWjU1NUVVB+BEPT09Wr16tZYuXarc3FzT5QBG8D4AUv8+eO/Ae/r40MdJ3y6QLC63S5XNlfrGR99Qh7sjJR1SqejsgXPd9vJt/f9OV8ee931wuPqwPFm2u/VgO9fWXatBeYNMl4EA/G4A8D4Ajh49qpqampSHPbYcxu2yyy7r//f06dN1zjnnaPz48frVr36l733ve2Gf+9vf/lZ33323nnvuuf6gR5Lmz5+v+fPn939+7rnn6qyzztJ//ud/6qc//WnQbeXn5ys/P3/A47m5uXzjQsbjfQDwPgCk1LwPthzeoo+OfGTj2SeRSTrcHbr93NtTcqN7xOAReujyhyRJHnEjHeHdfu7tWrFuhZYvXJ724MWT5bFE2NPQ0tB/Dpw2Z1hFYYWGFA8xXQbC4HcDgPcBMle6XveO+BW5uLhY06dP144dO8Ku97vf/U633HKLfv/73+uiiy4Ku25WVpbOPvvsiNsEAABA+uxr2ae39r1lugwgag9f+rDjbirDnmrLarXyypUZ/XpcsW6F39JJxg8Zb7oEAABgmCPCnq6uLm3dulU1NTUh1/ntb3+rr3/963ryySd1xRVXRNymx+NRfX192G0CAAAgfY60H9Gru15NSQdDQ0uDlj2/TA0tDUnfNszi2gLwWr5wud/SScaXE/YAAJDpbBn2fP/739cbb7yh3bt365133tF1112n1tZWfe1rX5Mk3Xnnnbrpppv61//tb3+rm266SQ8++KDmz5+v5uZmNTc3q6WlpX+de+65R3/+85+1a9cu1dfX65ZbblF9fb2+9a1vpf34AAAA4K+tu00vf/qyet29Kdm+k//aO9NxbQF4ObW7qaq4SoPymasHAIBMZ8uwp7GxUV/5ylc0adIkXXPNNcrLy9OGDRs0evRoSVJTU5P27dvXv/7KlSvV29urv//7v1dNTU3/x223fTZB5YkTJ/TNb35TU6ZM0cUXX6z9+/dr7dq1mjt3btqPDwAAAJ/p7uvWy5++rPae9pTtw8l/7Z3puLYAnI6uHgAAIEk5pguIx1NPPRX264899pjf52vWrIm4zZ/85Cf6yU9+kkBVAAAASDa3x61Xd72qYx3HUrof7197w3mccG2dPKl8OnD+4GQuuZivBwAASLJpZw8AAAAyw5v73lRja6PpMgCjGIouMZy/1GJeLLOqS6pVlFtkugwAAGABhD0AAACwpE1Nm7TtyDbTZQDGMRRdYjh/qUWYZhZdPQAAwIuwBwAAAJbz6bFP9d6B90yXAViCUyeVTxfOX2oRppmT7crWGUPOMF0GAACwCMIeAAAAWMrBtoN6Y88bpssAbIthtZBOhGnmjBk8RnnZeabLAAAAFkHYAwAAAMto627TKztfUZ+nz3QpsDDCjPAYVgvIDJOGTjJdAgAAsBDCHgAAAFhCr7tXf/70z+ro7TBdCiyOMCM83+G0Mi0QS1YQSKAIqyvJK9GIQSNMlwEAACyEsAcAAACWsGbPGh3tOGq6jKhxM9gc5ggJz3c4rUwLxJIVBBIowuomDJkgl8tlugwAAGAhhD0AAAAwbuOBjdp1fJfpMmLCzWBznDBHSLRhYbyhYqRAzKlhZbKCQAJFWB1DuAEAgECEPQAAADBq1/Fd2ti00XQZMeNmMBIRbVgYb6gYKRBLR1hpIlBKVhDohEARzlVTUqPS/FLTZQAAAIsh7AEAAIAxR9uPas2eNabLiAs3g5GIaMPCVIWK6Qgr6X4DUoOuHgAAEAxhDwAAAIzo6OnQn3f+Wb3uXtOlwAKcOqxYKNGGhXYOFU11v2XaawmZJTcrV+PKx5kuAwAAWBBhDwAAANLO7XFr9a7VautuM10KLIIukPRKx/lOZlAVS4DDawlONq58nHKyckyXAQAALIiwBwAAAGm3bu86Nbc1my4DFsIcSOElu1vFbuc7lgDHbscGxIIh3AAAQCiEPQAAAEirDw9+qO1Ht5suAxZj5+HK0iHZ3SqRzrfVhkKLJcDJlNeS1a5Ropx2PKlQml+q6pJq02UAAACLIuwBAABA2jS2NmpD4wbTZSAD2f1Gcrq7Vaw2FFqmBDixsNo1SpSVjseq3y8mVdDVAwAAQiPsAQAAQFqc6DyhV3e9Ko88pktBBrLSjeR4pDvsYCg063PaNbLS8Vjx+4VLLk2omGC6DAAAYGGEPQAAAEi57r5u/fnTP6u7r9t0KUgTq/1lvJVuJNsBnTTW57RrZKXjseL3i1Flo1SSV2K6DAAAYGGEPQAAAEgpj8ejv+z6i1q6WkyXgjSy2l/GW+lGMgBrs+L3i6lVU02XAAAALI6wBwAAACm1sWmjGlqt0d2B9LHiX8YDgB0NLhiskaUjTZcBAAAsjrAHAAAAKdPY2qj/bfpf02XAACv+ZTysK13D/llteEEgGnWVdaZLAAAANkDYAwAAgJR5Y+8bpksAkCSpDErSNeyf1YYXBCLJzcrVpIpJpssAAAA2QNgDAACApOt190qSevp6DFcCIFlSGZSka9g/hheE3UyomKDc7FzTZQAAABsg7AEAAEDSvd3wtukSEAOGtkI0UhmUpGvYP4YXhN1MrZxqugQAAGAThD0AAABIqo8Pfaydx3eaLgMxYGgrRIOgBEiv4YOGq7yw3HQZAADAJgh7AAAAkDQH2w7q7Ua6euyGoa1gdXSfIRPR1QMAAGJB2AMAAICk6Ojp0Ku7XpXb4zZdCmJEx0ZiCCJSj+4zZJqSvBKNGTzGdBkAAMBGCHsAAACQMI/Ho7/s/otO9ZwyXQqQdgQRqUf3GTLNlKFT5HK5TJcBAABshLAHAAAACXtn/zs6cPKA6TKApIi1U4cgIvXoPkMmyXZla0rlFNNlAAAAmyHsAQAAQEJ2Hd+lzQc3my4DSJpYO3UyJYhguDogPcaVj1NBToHpMgAAgM0Q9gAAACBuJzpP6I09b5guA0gqOnWCY7g6ID2mVk01XQIAALAhwh4AAADEpaevR6/sfEU97h7TpSAOyerScGK3R6Z06sSKEAxIvWHFw1RVXGW6DAAAYEOEPQAAAIjLG3vf0InOE6bLQJyS1aVBt0fmIAQDUu/M6jNNlwAAAGyKsAcAAAAx23J4i3Yd32W6DCQgWV0amdbtkY5OJid2SwWTKccJRGtwwWCNGTzGdBkAAMCmCHsAAAAQk6PtR/V2w9umy0CCktWlkWndHunoZMqUbqlMOc5gCLoQzJnD6OoBAADxI+wBAABA1Hr6evTqrlfV5+lL6365Mepcdru26ehkypRuqXiP026vmWAyOehCcEW5RZpQMcF0GQAAwMYIewAAABC1N/e9qZaulpiek4wbs3a+MeqEG9OpFO7axnvuAp+XzGuQjk6mTOmWivc47fz9wCtTAr1MkKzvL9OrpivLxS0aAAAQP36SAAAAQFS2H9muHcd2xPy8ZNyYtfONUSfcmE6lcNc23nMX+Dyugf353lC38/cDr0wJ9DJBMr6/5GXnaUrllGSVBAAAMhRhDwAAACI60XlCbzW8Fddzk3Fj1s43Rp1wYzqVwl3beM9d4PO4BpFZvQPN94a6nb8fwHmS8f2lrrJOedl5ySoJAABkKMIeAAAAhNXr7tWru15Vr7s3rudn+o3ZTD/+RMR77gKf57RrEGswE836Vut+CqyZwA5Wlej3l2xXtqZVTUtyVQAAIBMR9gAAACCs9Q3rdazjmOkyAPxVrMFMNOtbLUwJrNlpgR3gNaFigopyi0yXAQAAHICwBwAAACHtPLZT245sM10GAB+xBjPRrG+1MCVYzVYfag6IlUsuzRg2w3QZAADAIQh7AAAAEFRrV6vW7l1rugwAAWINZqwW5EQjWM1WG2oOSNTowaM1uGCw6TIAAIBDEPYAAABgALfHrVd3vaoed4/pUgA/dHdkLqsNNQckamb1TNMlAAAAByHsAQAAwAAbGjfoSPsR02UAA6S6uyNSmETYZI4dO5ScjvdD/KpLqlVVXGW6DAAA4CCEPQAAAPCz58QefXToI9NlAEGlursjUpjEUGLAZ3g/xI+uHgAAkGyEPQAAAOjX1t2mN/a8YboMIKRUd3dECpMYSiw0ujwyT7j3Q0NLg257+bZ0l2QLVcVVGlU2ynQZAADAYQh7AAAAIEnyeDx6fffr6urrMl0KYEykMImhxEKjyyPzhHs/8DoIbXbNbNMlAAAAByLsAQAAgCTpg4MfqKmtyXQZgKXRvRKaia6nVF0PrnPi6H4Lrqq4irAYAACkBGEPAAAAdLT9qN4/8L7pMgDLo3slNBNdT6m6HlznxNWW1erhSx82XYbl0NUDAABShbAHAAAgw/W5+/Ta7tfk9rhNlwJYTmCHB3P2WEuqrgfXGamQqq6e+uZ6ue5xqb65PunbBgAA9kHYAwAAkOHe2f+OjnceN11G2mXiME1OP+ZUHF9ghwdz9lhLqq4H1xmpMGf4nJRsd9bKWX5LAACQmRIOe/bs2aNf/epX+ta3vqXPfe5zmj9/viZPnqz58+frqquu0rJly/TYY49p9+7dyagXAAAASdTY2qiPDn1kugwjMnGYJqcfcyqOjw4PAMkwrHiYRpaOTMm2Ny3b5LcEAACZKSeeJ+3cuVOrVq3SU089pb179/p9zePx9P/b5XJJkh599FFJUm1tra6//nrdfPPNmjBhQrw1AwAAIAm6eru0Zs8a02UYs3zhcq1YtyKjbuI7/ZhTcXzeDg8naWhp6D9PqepcScc+ADtJVVePJM2sninPv3girwgAABwtps6ejRs36vOf/7wmTZqk+++/X3v27JHH4/H7cLlc/R+BX9u3b5/uv/9+TZkyRVdffbU2btyYquMCAABABOv2rVN7T7vpMozJxGGanH7M6T4+uw6Ll44OL6d3kQGxqC6p1ojSEabLAAAADhdV2LN371598Ytf1Ny5c/WnP/1Jbrd7QLDj/ZA+6+4J9nWPxyO3263nn39ec+fO1Re/+EXt2bMnZQcIAACAgT45+ol2Hd8Vdh273sgG0sWugUY6hqZj+DvgM6ns6gEAAPCKKuyZPHmynnnmmQEhjm/XTl5enmpqajRt2jSde+65mjp1qmpqapSXlxe080c6HQo9/fTTmjp1auqOEAAAAH5Odp3U+ob1Edez641sIF1SHWikKnBNRweU07vIgGjVlNRo+KDhpssAAAAZIKqwp6urS5L8Ap5hw4bpm9/8pn75y1/qo48+Unt7uxobG/XBBx9o3bp12rx5sxobG9Xe3q4PP/xQjz76qP7mb/5GVVVVfsGPJHV2dqbuCAEAANDP4/Ho9T2vq7uvO+K6/GU+opWpXWCpDjSCBa6Zeq4Bu5o9fLbpEgAAQIaIes4ej8ejwsJC/c3f/I3+8pe/aP/+/fr5z3+ur3/966qrq+sPbgK5XC5NnTpV3/jGN7Ry5Urt379fq1ev1je+8Q0VFhYm7UAAAAAQ2QcHP1BzW3NU6/KX+YgWXWCpESxw5VybR+CGaNHVAwAA0imqsKe8vFz//M//rL1792rlypW64IILQoY7EXeYlaUlS5bo0Ucf1d69e/VP//RPGjx4cFzbAgAAQPSOtB/R+wfeN10GHIgusNQIFrhyrs0jcEO0mKsHAACkU1Rhz969e3X33XeroqIiqTuvqKjQvffeq3379iV1uwAAAPDX6+7Va7tfk9vjNl0KHIgusPThXJtH4IZojCwdqZpBNabLAAAAGSSqsKekpCSlRRQXF6d0+wAAAJnu3f3v6kTnCdNlAMYw9Jb12eUaEbghGvNGzDNdAgAAyDBRz9kDAAAAe2pua9ZHhz4yXQZgFENvWR/XCE4xYcgEVRQld2QUAACASAh7AAAAHKzX3as39rxhugzEKR2dDnbppkgUQ2+lX6yvLa4RnCDbla2zR5xtugwAAJCBcpK5sZaWFu3du1etra1yuyOPB79o0aJk7h4AAAAB3j/wvlq6WkyXgTj5djqsvHKlbfeRiIaWBq1Yt0LLFy5PaNgs79BbSJ9YX1tcIzjB1KqpKslL7VD4AAAAwSSls+eXv/ylZs2apSFDhmjWrFk6//zzdcEFF4T9uPDCC5OxawAAAIRwsO2gPjz4oekykIB0dDpYvZvCSUN7ZUoXlZfVX1vplGnXPlPlZedpVvUs02UAAIAMlVDY4/F49H/+z//R3/zN32jz5s3yeDwxfQAAACA1+tx9emPvG/KIn7nsLB0TwYfbh4kb1IH7dFJg4KTgKhrpeP3aRaZd+0w1s3qm8nPyTZcBAAAyVEJhz6pVq/T73/++P7xxuVxRfQAAACC13j/wvk50njBdBmzOxA3qwH06KTBwUnCF2HDtna84t1jTq6abLgMAAGSwhMKeX/7yl5LkF+LQ0QMAAGDWoVOHtPngZtNlwAFM3KB28k1xJwVXiA3X3vnmDJ+j7Kxs02UAAIAMlpPIkz/++GO/kCcvL08LFixQTU2N8vLyklIgAAAAouf2uPXGHoZvQ3J4b1A7fZ8AkIghhUM0sWKi6TIAAECGSyjs8fJ4PBoxYoQ2bNigESNGJGOTAAAAiMPGAxt1vPO46TIS0tDSoBXrVmj5wuX8FTyCstNrpLG1UT9680cprzWZ58RO5xewgrkj5jJkPQAAMC6hYdwmTZrUP1fPpZdeStADAABg0JH2I/rg4Aemy0gYE5kjEju9Rh5Y/4Ck1NeazHNihfPb0NKgZc8vU0NLg7EagGjUlNRoVNko02UAAAAkFvbcfPPN/f9uampKuBgAAADEx+1xa82eNXJ73KZLSZiT52xBctjpNXLHgjskpb7WZJ4TK5xfKwROEqETIps3cp7pEgAAACQlGPZ885vf1HnnnSePx6OXX35ZTzzxRLLqAgAAQAw2NW3SsY5jpstICqdPZM7N48TF+xoxce5Hlo5My+s52nMSzTnw3Vaw9dNxHq0QOEnWCZ1gTePKx6mquMp0GQAAAJISDHuys7P13HPP6aKLLpLb7dZNN92kefPm6Yc//KEeeeQR/frXvw77AQAAgMQdbT+qTc2bTJeBKHHzODGJBA1OPfexnJNYz0Gw9dNxHq0S6FkldIL1ZLmyNHfEXNNlAAAA9Eso7JGk3NxcjR8/XpLk8Xj03nvv6b777tPf/u3f6uabbw77AQAAgMS4PW69sfcNRwzflim4eZyYRIKGVJz7ZIULqQ6xvNu/ddatkqI/B77nLN5tpFOygyiTnYZ0AVrb9KrpKs0vNV0GAABAv4TCnq6uLl166aV65JFH5HK55HK5JJ0OfSJ9AAAAIHEfHvxQR9qPmC4DMXD6MHWplkhgk4pzn6xwIdUhlne7j256NKZz4HvO4t1GOjkpTHVqJ5oTFOUW6ayas0yXAQAA4CehsOc///M/tX79er8Axxv6hPsAAABA4tq627SxaaPpMoC0slpYFilcuO3l26LqzEh1iJWMEMQOQYrVXh+JsMP5zlRzR8xVbnau6TIAAAD85CTy5Mcff1yS/AIcunYAAADS4819b6rX3Wu6DCCjecOFcFasWxFxnWi2k4hkbD/VNcIf59uaqoqrNLFioukyAAAABkgo7Nm5c6dcLld/wDNmzBgtWrRI1dXVKigooIsHAAAgRXYf3619LftMlwEgCnRmAM6xoHaB6RIAAACCSijsKSkpUUdHhyRp2rRpevfdd1VQUJCUwgAAABBcT1+P1jesN10GgCg8fOnD8mQx+gHi19DSoBXrVmj5wuWOGJ7OziZWTFRVcZXpMgAAAIJKaM6ec845Rx6PRy6XSwsWLCDoAQAASIP3DrynUz2nTJcBJF1DS4OWPb8sqjlugEyxYt0KvyXMyM3K1dwRc02XAQAAEFJCYc9tt93WP1Tb//7v/yalIAAAAIR2pP2IPj70sekygIjiCW6cclPb4/GorbtNktTW3ca8pkgoyPQOA8hwgGadVXOWinKLTJcBAAAQUkJhz+LFi7V8+XJ5PB5t3LhR3/rWt9TS0pKs2gAAAODD4/Fo7d618ogbx5nA7l0u8QQ3dr2pfffd0j/+o9Te066/7PqLfvj6D/VPr/2TJOmfXvsn/fD1H+ovu/6i9p52/eM/nl4fmSWRILO2rFYrr1zJEG4GleWXafqw6abLAAAACCuhOXu+8Y1vSJIqKip09OhR/eIXv9CvfvUrzZkzR7W1tWGHdXO5XFq1alUiuwcAAMgoHx/+WEfaj5guA2nie3N45ZUrDVdzWixzhyxfuLx/3Wh5b2rbyd13S01Nkio/1ndfXClld0mSCrMK+9c53H5Yv9/ye/3+w+eknGVS01TdfXfmhj5On4Mm2PHF836AdZxTe46yXAn9rSwAAEDKJRT2PPbYY/3DuLlcLnk8HnV1dWn9+vATBnvn+SHsAQAAiM6p7lN6b/97pstICaff+I2XFW8OxxJA2TG4iUdnp6TKj6W5P5NcEbrusrpPr/fut9XZOTUt9VmRFYPMZAp2fJnyfnCi2tJajSobZboMAACAiJLypykej6c/wPGGPuE+EnX33Xf378v7UV1dHfY5b7zxhmbPnq2CggKNGzdOP//5zwes8/TTT6uurk75+fmqq6vTs88+m3CtAAAAybC+Yb163D2my0iJWIc3svvwZtGy4tBNqRxmza7X9Z/vbZfOXnk66IkU9njXOXvl6edlKLsO1xctpx9fJslyZemc2nNMlwEAABCVpIQ93sAl8PNQH8kwdepUNTU19X98+OGHIdfdvXu3Lr/8ci1cuFCbNm3SXXfdpX/4h3/Q008/3b/O22+/rS9/+cu68cYb9cEHH+jGG2/Ul770Jb3zzjtJqRcAACBe+1r2afeJ3abLSJlYb4wmMvcFEpPKAMqu1/XthrdPD90WKejxcnmk7C5taNyQ2sIszIpBZiwiBZN2Pz58ZlrVNA0uGGy6DAAAgKgkHPZE6uJJRWePJOXk5Ki6urr/o7KyMuS6P//5zzVq1Cg99NBDmjJlim699VZ94xvf0H/8x3/0r/PQQw9p6dKluvPOOzV58mTdeeedWrJkiR566KGk1AsAABCPXnev3tz3pukyUirWG6P81bwz2fG6ejwevb7n9bie+9ru15L2u5FV2LU7K1Z2DSYRm8KcQp1Vc5bpMgAAAKKW0Jw9r78e3y82ybBjxw4NHz5c+fn5mjdvnu677z6NGzcu6Lpvv/22Lr74Yr/HLrnkEq1atUo9PT3Kzc3V22+/re9+97sD1gkX9nR1damrq6v/89bWVklST0+PenqcOcwKEIn3tc97AJmM9wGS6f0D7+tU5ym5lJzu6HRxuV1+y2QaNWiUHrn8kdOfuJO+eRiS7uva2NqoB9Y/oDsW3KGRpSPj2sap7lNq62xTYVbhgK95Hwv2NUlq62xTe1e7SvJK4tq3FT341oMqzCrUg289qIcvfdh0OSnzz+f9c/9rJxXf45wklf8XpNqc6jlyuV2OHUIV6cPvBgDvAyBdr32Xx4Z/TvbSSy+pvb1dEydO1MGDB7VixQpt27ZNH3/8sSoqKgasP3HiRH3961/XXXfd1f/Y+vXrde655+rAgQOqqalRXl6eHnvsMV1//fX96zz55JO6+eab/QIdX3fffbfuueeeAY8/+eSTKioqSsKRAgAAAAAAAAAAu2pvb9f111+vlpYWlZaWpmw/CXX2mHLZZZf1/3v69Ok655xzNH78eP3qV7/S9773vaDPCZwryJtxBc41FLhOuDmG7rzzTr/9tba2qra2VhdccEHQ0AnIBD09PVq9erWWLl2q3Nxc0+UARvA+QLK8/OnLam5rNl1GXP7xlX/UL6f9Ut/46Bv6t4v/zXQ5SLJkdMWYloxjaOtu0z+99k9Bv1aYVdj/HuhwdwRd518v/FdLdvbc9vJt/f8O7NAJ9zUgkMvtUmVzpQ5XH5Ynyx5/Z5rlytLVk69WWX6Z6VLgEPxuAPA+AI4ePZqW/dgy7AlUXFys6dOna8eOHUG/Xl1dreZm/xslhw4dUk5OTn8oE2qdYcOGhdxvfn6+8vPzBzyem5vLNy5kPN4HAO8DJGb38d1qam9KwgyLZnx7/relttNLu9zgQ/R+9OaP+pcrr1wZ03MbWhq0Yt0KLV+43OgE9iMGj9BDlz8kSfIovtdoUX6RSgpKdLj9cMh1OtwdQcOeyqJKFeUXyeOy3vvj9nNv779Gge/fcF8DQvFkeWzzejmz5kwNLRlqugw4EL8bALwPkLnS9bqP6vZBe3t7SotIdPtdXV3aunWrampqgn79nHPO0erVq/0ee+WVVzRnzpz+Ex1qnQULFiRUGwAAQKz63H3a0LjBdBkJ8XZK2LXrA+EtX7jcbxkLJ01u73K5dMGYC+J67oVjLww7ioBJtWW1WnnlyqBhXLivAXZXll+mWdWzTJcBAAAQl6jCnlGjRulHP/qRjh8/ntSdHz9+XHfffbdGjRoV0/O+//3v64033tDu3bv1zjvv6LrrrlNra6u+9rWvSTo9vNpNN93Uv/63vvUt7d27V9/73ve0detW/fKXv9SqVav0/e9/v3+d2267Ta+88oruv/9+bdu2Tffff79effVVfec730nKsQIAAETrg4Mf6GT3SdNlACElcsM/kaDIis6pPUfqy5c8UQY3HpfUl6/5I+entjAAMTtv1HnKzso2XQYAAEBcogp7jh07pnvuuUejR4/W3/3d32ndunUJ7XTdunX6u7/7O40ePVr33ntvzCFSY2OjvvKVr2jSpEm65pprlJeXpw0bNmj06NGSpKamJu3bt69//bFjx+rFF1/UmjVrNHPmTN1777366U9/qmuvvbZ/nQULFuipp57Sf//3f2vGjBl67LHH9Lvf/U7z5s1L6FgBAABi0dbdpvrmetNlACnjtM6QH/2wSHpv2ekQJ1Lg413nvW+dfp4NNLQ0aNnzy9TQ0mC6lLTK1OPOZBOGTNCI0hGmywAAAIhbTHP2tLW1aeXKlVq5cqVGjBihq6++WvPnz9fZZ5+tiRMnhnze9u3b9d5772nDhg167rnndODAAUmSx3N6zN5Yhy946qmnwn79scceG/DY+eefr//93/8N+7zrrrtO1113XUy1AAAAJNM7je+o191rugwAUSookNQ0VXr329LZK6XsrtAru/Ok974lHa5TQfARqPtZZW4j32H3Yp2fySriOZdOOG5ELz+bbjsAAGB/UXX25OXlSTodyng8Hnk8HjU2Nur//b//p5tuuklTpkxRcXGxRo8erVmzZmnRokWaOXOmRo0apeLiYtXV1elrX/ua/uu//kv79+/v34Y35MnPz0/dEQIAANhEc1uzdh7faboMOAwdCql1991STY1U3jtVP7n83/TlqV9WZVGl3zqVRZX68tQv66HL71d5b51qak4/LxyrzG3khGH3YjmX3vfLrbNulWTv40b05o2cp8LcQtNlAAAAJCSqsGfr1q26+uqr/TpxfIMfj8ejjo4ONTQ06IMPPtBbb72lzZs3q7GxUR0dHX7reZ8rne7s+fznP6+PP/44dUcIAABgAx6PR2/te8t0GXAgq4QGTnb33dK//ZtUlFukC8deqHsvuFf/euG/SpL+9cJ/1b0X3KsLx16owtxC/du/RQ56JOuELCaG3Ut2QBnLufS+Tx7d9KijhhuUCH5DqS6p1uShk02XAQAAkLCowp6xY8fqmWee0TvvvKMrrrhCkvyCm8APSSG/5g2MLrvsMm3YsEHPPPOMxo4dm6LDAwAAsIdtR7bpaMdR02XAgawSGmQSl8ulkrwSSVJJXknMw1ZLzpvbKBbJDihjOZdOfr8Q/A6U5crSeaPOM10GAABAUkQV9nidffbZ+tOf/qTt27frjjvuUG1trV/XjvdDUtDHa2pq9N3vflcff/yxXnjhBc2dOzclBwUAAGAn3X3deu/Ae6bLgENlcmgAezIZuDj5/eLkICteM4bN0JDCIabLAAAASIqceJ50xhln6P7779f999+vXbt26Y033tDbb7+tAwcO6NChQzpx4oQGDx6soUOHavjw4Zo/f74WLVqkiRMnJrt+AAAA23v/wPvq7O00XQYAWII3cEFycV79DcobpLNqzjJdBgAAQNLEFfb4GjdunMaNG6ebb745GfUAAABklOMdx7Xl8BbTZQBA0jS0NGjFuhVavnC5Iztk4AznjTpPOVkJ3xIBAACwjJiGcQMAAEByrW9YL7fHbboMADbW0NKgZc8vU0NLg+lSJDE3DKxvXPk4gkgAAOA4hD0AAACG7DmxR/tP7jddBgCbs1q4wtwwsLKCnAKdW3uu6TIAAACSjrAHAADAALfHrXca3zFdBmzEat0bqZAJxxhO4PFHez6sFq5454axQ+eEFV9zVqzJSRbULlBhbqHpMgAAAJKOsAcAAMCAbUe2qaWrxXQZsBGrdW+kQiYcYziBxx/t+bBTuGI1VnzNWbEmpxgzeIzOGHKG6TIAAABSgrAHAAAgzXr6erTxwEbTZcBmrNa9kQqpPkard0wEHn8mXHPTrHiOrViTE+Rn5+u8UeeZLgMAACBlCHsAAADSbPPBzero7TBdBmwmE7o3Un2MVu+YCDx+u19zq4ZrvnVZ8RxbsSYnWFC7QEW5RabLAAAASBnCHgAAgDTq6OnQ5oObTZcBZCS7dUxYNSyJllXDNavWhdQZVTZKEyommC4DAAAgpQh7AAAA0mhj00b1uHtMl2FMojev7X7zG2bZrWPC7qGEVcO1cHVl6vcYJx93XnaeFo1eZLoMAACAlCPsAQAASJOWzhZtO7LNdBlGJXrz2u43v4FYWDUsiZZVw7VwdWXq9xgnH/c5I89h+DYAAJARCHsAAADS5N3978rtcZsuw6hEb17b/eY30sMpXQpWDUusLpHrn6nfY5x63LWltZo0dJLpMgAAANKCsAcAACANDp06pN0ndpsuw7hYbl4Hu2FrhZvfTgkSUsUK58fJXQqILJHrb4XvMSY48bjzsvO0cPRC02UAAACkTUJhzy9/+Uu1tbUlqxYAAADH2tC4wXQJtpOuG/axhhMECeFZ4bols0vBCuEVYuPULhXEZv7I+SrJKzFdBgAAQNokFPbceuutqq6u1o033qjVq1fL4/Ekqy4AAADH2Htir5rbmk2XYTvpumEbaziRqTeSow09rHDdktml4Lsfgh97cGKXCmIzYtAITR462XQZAAAAaZXwMG7t7e168skndemll6q2tlZ33nmntmzZkozaAAAAbM/j8ejd/e+aLsOW0nXDNtZwIlNvJEcbiqXy/PiGLekKlXz3Q1cXYH25Wbk6f8z5pssAAABIu4TDHpfLJY/HI4/HowMHDujf//3fNX36dM2dO1f/9//+Xx09ejQZdQIAANjS9qPbdbzzuOkyEEamhjexskJHk2/Ykq7r5rsfK5wDAOHNGzmP4dsAAEBGSjjskU4HPt4Pb/Dz/vvv6x/+4R80YsQIXXPNNXruuefU29ubjN0BAADYQq+7VxsPbDRdBpAUVgjFUhm2RDNEmxXOQaowRF1ycB7NGjFohOoq60yXAQAAYERCYc8DDzygefPmSVJ/yBMY/HR3d+u5557TNddco5qaGt12223auJGbHgAAwPk+OvSRTvWcMl0GbIgbxsGlMmxJxxBtVr6uDFGXHJxHc/Kz87V4zGLTZQAAABiTUNhz++23a/369WpoaNBDDz2k8847z6+7J7Db5+jRo/rZz36muXPnatq0aXrggQfU1NSUrGMBAACwjJ6+Hn3Q/IHpMlLGyjetnYAbxumXjiHarHJdg71/GaIuOTiP5iwcvVDFecWmywAAADAmKcO4DR8+XP/wD/+gtWvXav/+/frZz36mxYsXKysrSx6PR5IGBD9btmzRP/7jP2rMmDG6/vrrtWPHjmSUAgAAYAkfHfpIXX1dpstIGavctHaqaG8YE7olTzqGaLPKdQ32/nXKEHWm3xNOOY92M2HIBI0rH5e07dU318t1j0v1zfVJ2yYAAECqJSXs8TVs2DD93d/9nV577TU1NTXp5z//uUaOHDkg9JFOD/3W09Oj3/3udzrzzDP161//OtnlAAAApF13X7c2H9xsuoyU4q/XUyvaG8aRQjfTN77hL1nXNVFOfv8SRGeekrwSnTvq3KRuc9bKWX5LAAAAO0h62ON15MgRPf744/rpT3+q/fv393f1eAXO7dPZ2alvfOMbWr9+fapKAgAASAund/VI/PV6MiQjiIl0054b39YU6dqnOozxff86LRB0cpCFgVxy6cKxFyovOy+p2920bJPfEgAAwA6SGvZ4PB699NJLuu666zRy5Eh9//vf19atW/26erzreTweZWdn98/tI0lut1v//u//nsySAAAA0qq7r1sfHvzQdBmwgWQEMZFCN258W1Okax/puiYroGloaXBcIFhbVqvlC5drxboVjgmwENqZ1WequqQ66dudWT1Tnn/xaGb1zKRvGwAAIFWSEvbs3r1bP/zhDzVq1ChdeeWVevbZZ9Xd3R005CkoKNDNN9+sjRs36tChQ7rrrrv8Ah86ewAAgJ1lQlcPkiMdQQwdWNaU6LVPVkDj+3wnBYJOC7AQ3NCioZozfI7pMgAAACwjobDnySef1JIlSzRhwgTdd9992r9/f3/Xju8QbR6PR2PHjtUDDzygxsZGrVq1SrNmzdLgwYO1YsUKnX/++f3B0LFjx5JyYAAAAOmWCXP1IHkIYjJXotc+WUGh73ac9Dqko835sl3ZumDMBcpypWxkegAAANtJ6Cejr371q1qzZo3cbrdfwOM7P89ll12mF154QTt27NDtt9+u8vLyAdupq6vr/7fvvD4AAAB28uHBD9Xd1226DCDjxDqsmXd9q8xVE2v9yQoKnRo4OvW48Jl5I+epvHDgvQUAAIBMlpQ/gwns4ikvL9ftt9+uHTt26IUXXtBll13WP0xbMHl5yZ1MEQAAIN26+7r14SHm6gFMCBy2K1J44ju8lxWG+sqUYceSNdcQMtvI0pGaVjXNdBkAAACWk5SwxxvynHXWWVq1apUaGxv1wAMPaNy4cVE9/9vf/rZef/11vf7663rttdeSURIAAEBabT64ma4e2IITb7gHDtsVKTzxHd4r2FBf6T5HmTLsWKaEWkid/Ox8LR6z2HQZAAAAlpRw2JObm6sbbrhB69ev1/vvv6+bb75ZBQUFMW1j/PjxOv/88/s/AAAA7KSrt0sfHfrIdBlwgHSEDE684R44bFek8MS7fqihvtJ9jpw27Fio13GmhFpOYNVQeNHoRSrKLTJdBgAAgCUlFPasWLFCDQ0NevzxxzV//vxk1QQAAGArHx5irh4kRzpCBivfcE/WDeZEwxMrnyM7CPU6dlqo5WRWDIUnVkzU2PKxpssAAACwrITCnrvuukuVlZXJqgUAAMB2unq79OFB5upBYrwhx62zbpWU2pDByjfcrXKD2crnyA4Iy+zPatdwUN4gLahdYLoMAAAAS0vKnD0AAACZavPBzepx95guAzbnDTce3fSobUOGZHTlmLrBbNUhq+zKNyzj3NqTlQLPLFeWLhp3kfKy80yXAgAAYGmEPQAAAHHq7uvWx4c/Nl0GHMBqf0Ufj2R05Zi6wZzOjqJowo9Q69gxOLFKtxbsa+6IuaosZkQRAACASAh7AAAA4rTl8Bbm6kHcfG/cRwo5rHKTP1wddu7KSWft0YQfodaxY3BihSDTKu8fxG5U2SjNGDbDdBkAAAC2QNgDAAAQB7fHrY8OfWS6DNhYLDfurXKTP1wddu7KSWft0YQfodaxQnASKysMB2aV9w9iU5xbrMVjFpsuAwAAwDYIewAAAOLwydFP1N7TbroM2FgsN+6tcpPfKnX4smJN4UQTfoRaxwrBiR3Z7TUCySWXloxbooKcAtOlAAAA2AZhDwAAQBw2H9xsugSkSLqGfIrlxr1VbvJbpQ5f0dTEMF6ZLRmvW15D6TVn+BxVl1SbLgMAAMBWCHsAAABitOfEHp3oPGG6DKQIQz45D9cUieI1lD4jBo3QzOqZpssAAACwHcIeAACAGNU315suASnEkE/B2bmzgWuKRPEaSo/CnEJdOPZCuVwu06UAAADYDmEPAABADJrbmnXo1CHTZWSsdAQOkYZ8snPokQg7dzYka/i5TL32sOYQhk7jkksXjr1QhbmFpksBAACwJcIeAACAGNDVY5YVAgcr1GACnQ2Ze+2BdJhZPVMjSkeYLgMAAMC2CHsAAACidLzjuPa17DNdRkazQuBghRpMoLMhc689IKW2s626pFpzhs9J+nYBAAAyCWEPAABAlD44+IHpEjKeFQIHK9QAM7j2yGSp6mwryCnQkrFLmKcHAAAgQYQ9AAAAUTjVfUqfHvvUdBkA0oC5eYCBUtXZtnjMYhXnFSd1mwAAAJmIsAcAACAKHx76UG6P23QZjsNNdQSywmuCuXmAgVLR2Ta9arpGlY1K2vYAAAAyGWEPAABABN193dp6eKvpMhwp1pvqVggCMoWpc22FoIW5eeLHexTRqi6p1ryR80yXAQAA4BiEPQAAABFsObxFPe4e02U4Uqw31a0QBGQKU+faCkELc/PEj/coolGUW6SLxl2kLBe3JAAAAJKFn6wAAADC8Hg82nJ4i+kyHCvWm+pWCAIyhalzbaWghS6V2PEeRSRZriwtGbtERblFpksBAABwFMIeAACAMPa27FVbd5vpMvBXVgoCrC7RoIJzTZdKNAJfZ7xuUsNJwePcEXNVM6jGdBkAAACOQ9gDAAAQxkeHPjJdAhAXgorEmehSsdtNfV5n6eGU8zyufJxmDJthugwAAABHIuwBAAAI4UTnCR04ecB0GcgQsdzkj2ZdhtNKnIkuFbvd1Od1lh5OOM/lBeU6f/T5pssAAABwLMIeAACAEOjqQTrFcpM/mnUZTsue7HZTn9dZetj9POdm52rp+KXKzc41XQoAAIBjEfYAAAAE0dPXox1Hd5guIyPYbdiqVInlJr/dAoFIeA18xu439VOB14f9LRy1UIMLBpsuAwAAwNEIewAAAIL45Ogn6nH3mC4jI9ht2KpUieUmv9MCAV4DCCfc64MgyB5GlY0yXQIAAIDjEfYAAAAE8fHhj02XYCuJ3HB1WpcKYn89WO01QIBgLeFeHwSF1lZdUm26BAAAgIxB2AMAABBgf+t+neg8YboMW0nkhqvTulQQ++sh8DVgOmwhQEi/cNc83PcIqwWF+ExxbrEuGHOB6TIAAAAyBmEPAABAALp6gMQkegM+lWFLNEFSugIE06GWlcR7zQmLrSnLlaWl45cqPyffdCkAAAAZg7AHAADAR1t3m/ae2Gu6DNvhr+vtKzBwSEYAkegN+GS/nnyPKZpQIV0BAh1En+F7iLMsqF2gquIq02UAAABkFMIeAAAAH1sOb5FHHtNl2I7d/rqejorPBAYOVgggkv168j2mVIUK8bymCDg+Y7fvIVZkle9rEysmqq6yzmgNAAAAmYiwBwAA4K/63H3admSb6TKQBiYDDavckPUKDBycGED4HlOqQoV4XlMEHEgmKwS1lUWVWjhqobH9AwAAZDLCHgAAgL/aeXynOns7TZeBNDAZaCT7hmyi4VFg4ODEACIdx2SljiFkJtNBbVFukS454xJlZ2Ub2T8AAECmI+wBAAD4K7p6MofJQCPZN2St8Nf8TpFIsGKljiHEx+7Bmsnva9mubF08/mIV5Ralfd8AAAA4jbAHAABAUktni5rbmk2XgQyQ7Buy3tDo1lm32vpGtRVYMVgJDAftHkhYmRWvv12cP+Z8VRVXmS4DAAAgoxH2AAAASPrk6CemSwDi4g2PHt30qKTTN6oJBOJjehisYALDQd9AguubXFa8/nYws3qmzhhyhukyAAAAMh5hDwAAyHgej4ewB7bne6OaDoX42GG+It8gItj1JeiLnx2uv9WMKhuls4efbboMAAAAiLAHAABA+0/u16meU6bLABLie6OaDoXks0qIEun6EvQhXcoLyrVk7BK5XC7TpQAAAECEPQAAANp+ZLvpEpAkVrkhbxodCskXGKKYfK2Fu74EfUiHgpwCXXLGJcrNzjVdCgAAAP6KsAcAAGS0rt4u7TmxJ+37JZRIDboakCqBIYpVX2sEfUi1LFeWLhp3kUrzS02XAgAAAB+EPQAAIKPtPL5TfZ6+tO/XqjeK7Y6uBmewYhgaGKLwWkOmWlC7QMMHDTddBgAAAAIQ9gAAgIxmagg3bhSnRrCuBisGBwjPDmForB00ga9DXpewo7rKOtVV1pkuAwAAAEEQ9gAAgIx1rOOYDrcfNrJvhlpKHzsEB6lmt2DBiWFo4OvQ7q9Lu72mkLjhg4ZrQe0C02UAAAAgBMIeAACQsUx19SC9nBgcxMpuwYITw9DA16HdX5fRvqYIhZyhNL9UF427SFkubiEAAABYFT+pAQCAjOT2uLXj2I607pObnmY4MTiIVazBQrSvVV7T0Qt8Hdr9dRnta8puQSMGys3K1SXjL1FBToHpUgAAABAGYQ8AAMhI+1r2qbO3M6375Kan/TglzPAGC5KiOp5oX6u8pu0lma/naMMqu3cwZTqXXFoybonKC8tNlwIAAIAICHsAAEBGMjGEGzc97cdpYUa0x+P7Gg0XDPCathcTr2e7dzBlunNHnatRZaNMlwEAAIAoEPYAAICM09XbpYbW9HdqcNPTfpwWZkR7PL6v0XDBAK9pe3Ha6xmpNWPYDNVV1pkuAwAAAFEi7AEAABln94ndcnvcpsuADTgtzIjleAgGnMdpr2ekztjBYzV/5HzTZQAAACAGOaYLAAAASLedx3aaLgGwPN95fgBkjqriKl0w9gLTZQAAACBGdPYAAICM0tHToQMnD5guAwAAyynNL9WlZ1yqnCz+LhQAAMBuCHsAAEBG2XV8lzzymC4DAABLyc/O16VnXKqCnALTpQAAACAOtg97fvzjH8vlcuk73/lOyHW+/vWvy+VyDfiYOnVq/zqPPfZY0HU6OzvTcBQAACBddh5nCDfAahpaGrTs+WVqaGkwXUrSNLY2+i0BK8t2ZeuSMy7R4ILBpksBAABAnGwd9rz33nt65JFHNGPGjLDrPfzww2pqaur/aGho0JAhQ/TFL37Rb73S0lK/9ZqamlRQwF81AQDgFKe6T6m5rdl0GQACrFi3wm/pBA+sf8BvCVjZ+WPOV3VJtekyAAAAkADbhj1tbW264YYb9Itf/ELl5eVh1y0rK1N1dXX/x/vvv6/jx4/r5ptv9lvP5XL5rVddzQ+7AAA4ya7ju0yXgAzkxK6VZFu+cLnf0gnuWHCH3xKwqjnD5+iMIWeYLgMAAAAJsu2si3//93+vK664QhdddJFWrIjtLwBXrVqliy66SKNHj/Z7vK2tTaNHj1ZfX59mzpype++9V7NmzQq5na6uLnV1dfV/3traKknq6elRT09PTDUBTuF97fMeQCbjfWBdu47sksvtMl1GRvCeZ8639OBbD6owq1APvvWgHr70YdPlWNKoQaP0yOWPnP7EbbaWZKktqZXaTi89buYJgzVNGDJB04dOT9nPLPxMBPA+ACTeB0C6Xvsuj8dju988nnrqKa1YsULvv/++CgoKtHjxYs2cOVMPPfRQxOc2NTWptrZWTz75pL70pS/1P75hwwZ9+umnmj59ulpbW/Xwww/rxRdf1AcffKAJEyYE3dbdd9+te+65Z8DjTz75pIqKiuI+PgAAAAAAAAAAYH/t7e26/vrr1dLSotLS0pTtx3ZhT0NDg+bMmaNXXnlFZ555piTFFPb8+Mc/1oMPPqgDBw4oLy8v5Hput1tnnXWWFi1apJ/+9KdB1wnW2VNbW6umpiZVVFTEdmCAQ/T09Gj16tVaunSpcnNzTZcDGMH7wJq2Ht6qd/a/Y7qMjOFyu1TZXKnD1YflybLVj5sp0djaqAfWP6A7FtyhkaUj07bf216+rf/fdBWll8n3ANcdkZQXlOuyCZcpLzv078TJwM9EAO8DQOJ9ABw9elQ1NTUpD3tsN4zbxo0bdejQIc2ePbv/sb6+Pq1du1Y/+9nP1NXVpezs7KDP9Xg8+uUvf6kbb7wxbNAjSVlZWTr77LO1Y8eOkOvk5+crPz9/wOO5ubl840LG430A8D6wmr0n9xI6GODJ8nDeJf3ozR/1L1deuTJt+7393Nu1Yt0KLV+4PCXXoaGloX/7tWW1Sd++E5h4D6T6usPeinKLdOmkS1WcV5y2ffIzEcD7AJB4HyBzpet1n5WWvSTRkiVL9OGHH6q+vr7/Y86cObrhhhtUX18fMuiRpDfeeEOffvqpbrnlloj78Xg8qq+vV01NTTLLBwAABnT0dKi5rdl0GUihhpYGLXt+mRpaGkyXEtTyhcv9lulSW1arlVeuTFkQs2LdCr8lrCHV1z1RVn+/mpCuc5KXnafLzrhMJXklKd0PAAAA0s92Yc+gQYM0bdo0v4/i4mJVVFRo2rRpkqQ777xTN91004Dnrlq1SvPmzetfz9c999yjP//5z9q1a5fq6+t1yy23qL6+Xt/61rdSfkwAACC1dp/YLY/463Yns3roYPWb7/EyFWLB3qz+fjUhHeck25Wti8dfrIoihhwHAABwItuFPdFoamrSvn37/B5raWnR008/HbKr58SJE/rmN7+pKVOm6OKLL9b+/fu1du1azZ07Nx0lAwCAFNp7Yq/pEpBiqQwd6EIIzakhFlKLkHCgVJ8Tl1y6cOyFGj5oeEq2DwAAAPNsN2dPMGvWrPH7/LHHHhuwTllZmdrb20Nu4yc/+Yl+8pOfJLkyAABgUn1zvWatnKV/XvTPGlE6wnQ5SCFv6JAKvn9xn875dgCnSuX7NdnSNS9Vqs/JeaPO09jysSnbPgAAAMxzZGcPAACAJM1aOUuS9KO1PzJcCeyMLgQgczlhyLk5w+doSuUU02UAAAAgxQh7AACAY21atkkSN+mRGCcPVcYQdZmJ6x49u4e9Uyun6qyas0yXAQAAgDQg7AEAAI41s3qmnrjmCUfepAc3rJPBCV0LicjU11CmX/dY2DnsHV8+XgtqF5guAwAAAGlC2AMAABzreMdxtXW3mS4jIzW2NvotU4Eb1omze9dCojL1NZTp1z0TjBg0QheMvUAul8t0KQAAAEgTwh4AAOBY+1r2mS4hYz2w/gG/ZSpwwzpxdu5aSIZMfQ1l+nWPl106wSqLKnXx+IuV5eLXfQAAgEzCT38AAMCxCHvMuWPBHX7LVOCGNRIV7DVklxv6SD87dIKV5ZfpsgmXKTc713QpAAAASDPCHgAA4Ejdfd06eOqg6TIy1sjSkX5LwC7scEMfZli9E6wot0hXTLxCBTkFpksBAACAAYQ9AADAkRpbG+X2uE2XAcBmrH5DH+ZYuZswLztPl0+4XCV5JaZLAQAAgCE5pgsAAABIBYZwAxAP7w19wC5ysnJ06RmXakjhENOlAAAAwCA6ewAAgCMx3wZSgflcAFhJlitLS8YuUXVJtelSAAAAYBhhDwAAcJzDpw6ro7fDdBlwIOZzsYZMDN0y8ZgRnksuLR6zWKMHjzZdCgAAACyAsAcAAAtpbpYaoryP19Bwen0M1NDKzVCkBvO5WEMmhm6ZeMwIb+HohTpjyBmmywAAAIBFEPYAAGARzc3ShRdKixdHDnwaGk6vd+GFBD7BHDh5wHQJcCgrT9CeSTIxdMvEY0ZoC2oXaPLQyabLAAAAgIUQ9gAAYBE9PVJXl7RrV/jAxxv07Np1ev2ennRWaX1uj1uHTh0yXUZUrDwsk5VrQ2rY6ZpnYuiWiceM4OaOmKtpVdNMlwEAAACLIewBAMAiamulNWukceNCBz6+Qc+4cafXr+W+n59Dpw6p191ruoyoWHlYJivXhtSwwzX3BlLv7X/PNsEUkExn1ZylmdUzTZcBAAAACyLsAQDAQsIFPgQ90Wk62WS6hKhZeVgmK9eG1LDDNfcGUY9uetTvcyATTK+arjnD55guAwAAABZF2AMAgMUEC3zWryfoiVZTm33CHisPy2Tl2pAadrjm3iDq1lm3+n0OOF1dZZ3OqT3HdBkAAACwsBzTBQAAgIG8gY834Dn33NOPE/SE5/F4dLDtoOkyAKSIN5CSpLNHnG24mug0tjbqR2/+SMsXLrd0kAbrmlgxUeeNOs90GQAAALA4OnsAALCo2lrp8cf9H3v8cYKecI60H1GPu8d0GQAS5J2bx8pz8kRb4wPrH5DEkHOIz7jycTp/9PmmywAAAIANEPYAAGBRDQ3SjTf6P3bjjZ/N4YOB7DSEG4DQvMGIlQOSaGu8Y8Edkk4POWeHEAvWMapslC4ce6FcLpfpUgAAAGADhD0AAFhQQ4P/HD1vveU/hw+BT3BNJwl7ACfwzsVj5Tl5oq1xZOnI/rmQ7BBiwRpGDBqhpeOWKsvFr+wAAACIDj85AgBgMYFBz5o10oIFp5cEPuE1tzWbLgFAEnjn5rHyHDfx1GiHEAvmVZdU65IzLlF2VrbpUgAAAGAjhD0AAFhIsKDHO0dPbS2BTzjHOo6pq6/LdBkAEJIdQiyYVVlUqUvPuFQ5WTmmSwEAAIDNEPYAAGAR4YIeLwKf0A6cPGC6BAAA4lZRWKHLJ1yuvOw806UAAADAhgh7AACwiNxcKT8/dNDj5Rv45Oeffh4Ywg0AYF8VhRW6YuIVys/JN10KAAAAbIrecAAALKK6WnrtNamnJ3TQ4+UNfHJzTz8P0sG2g6ZLAAAgZt6gpyCnwHQpAAAAsDE6ewAAsJDq6shBj1dtLUGPV0dPh071nDJdBuB4DS0NWvb8MjW0MH5kJuL6Jx9BDwAAAJKFsAcAANjekfYjpktIOW6ywgpWrFvht7Qq3i+pEez6c67jR9ADAACAZCLsAQAAtpcJYY9dbrKbwg3n9Fi+cLnf0qp4v6RGsOvPuY4s2PenIYVDCHoAAACQVIQ9AADA9jIh7LHLTXZTnHjD2YoBVm1ZrVZeuVK1ZVGON2mIXd8vVrzmvoJdf7ue63QK/P40pHCIrpx4JUEPAAAAkoqwBwAA2F4mhD12ucluihNvODsxwEoXu75f7HjN7Xqu08n3+1NFYQVBDwAAAFKCsAcAANhad1+3TnafNF0GDHPiDWcnBlj4TLAuHq65M3m/P82qmUXQAwAAgJQh7AEAALaWCV09yExODLCSwepDnUUrWBcP19y5KosqdeXEK5Wfk2+6FAAAADgUYQ8AALA1wh4gs9hxqLNg6OLJHFXFVbpi4hXKy84zXQoAAAAcjLAHAADYGmEPkFkISWAnw4qH6fIJlxP0AAAAIOUIewAAgK0R9gCZxSlDnTmlQwmhVZdUE/QAAAAgbQh7AACAbfW6e9XS2WK6DACIGR1KzjZ80HBdPuFy5Wbnmi4FAAAAGYKwBwAA2NaR9iPyyGO6DDhEQ0uDlj2/TA0tDaZLyRh2OOepqtEpHUoYaFTZKF16xqXKycoxXQoAAAAyCGEPAACwrWMdx0yXAAdhWK30i/WcmwiHrPa6sENAlsnGlY/TxeMvJugBAABA2hH2AAAA22rtajVdAhyEYbXSL9ZzbiJ4sdrrwmrhEz4zqWKSloxdoiwXv2YDAAAg/fgpFAAA2Bbz9SCZvMNqSaJzIk1iHcrMRPBiteHWrBY+4bRpVdN0/pjz5XK5TJcCAACADEXYAwAAbKuli7AHyUfnhHVZLXgxgXNgPbOqZ2lB7QLTZQAAACDDEfYAAABb8ng8DOOGlKBzAkC05o2Yp7NHnG26DAAAAEDMGgkAAGyprbtNbo/bdBlwIN/h3AAgGJdcOnfUuaqrrDNdCgAAACCJzh4AAGBTDOGGQA0tDcy1AyDlslxZumDsBQQ9AAAAsBTCHgAAYEsM4YZAVptrh/AJ4by3/z0te36Z3tv/nulSEINsV7YuGneRzhhyhulSAAAAAD+EPQAAwJZaOunsgT+rzbVjtfAJ1vLopkf9lrC+nKwcXXLGJRozeIzpUgAAAIABCHsAAIAtMYwbAnnn2qktqzVdiiTrhU+wlltn3eq3hLXlZefp8gmXa2TpSNOlAAAAAEER9gAAAFuiswexSvewalYLn2AtZ484WyuvXKmzR5ydku0zjGDyFOQU6MqJV6q6pNp0KQAAAEBIhD0AAMB2PB6PTnafNF0GbCZTh1Xjpn9qWfX8ZurrPdlK8kr0uUmf09CioaZLAQAAAMIi7AEAALZzsvuk3B636TJgM5k6rBo3/VMr3vOb6pAoU1/vyVReUK6rJ12twQWDhyQq7QAAPPxJREFUTZcCAAAARETYAwCAzdU318t1j0v1zfWmS0mbU92nTJcAG8rUYdW46Z9a8Z7fVIdwmfp6T5bqkmp9btLnVJxXbLqUtMvEnysAAACcgLAHAACbm7Vylt8yE3T0dpguAbANbvqnVrznlxDOusYMHqMrJlyh/Jx806UYkYk/VwAAADgBYQ8AADa3adkmv2Um6Ogh7EF6xDLUllXnboE1EcJZ05ShU7R03FJlZ2WbLsWYTPy5AgAAwAkIewAAsLmZ1TPl+RePZlbPNF1K2tDZg3SJZaitaNdNRyhE8ATEbs7wOVo4eqFcLpfpUozKxJ8rAAAAnICwBwAA2E57T7vpEpAhYhlqK9p1YwmQ4g1tUj0fDOAkLrm0aPQinVVzlulSAAAAgLgR9gAAANthGDekSyxDbfmuGy6kiSVAije0YT4YIDo5WTm6ePzFmjx0sulSAAAAgIQQ9gAAANthGDdYXbiQJpYAKd7QhvlggMjys/N1xYQrNHrwaNOlAAAAAAkj7AEAALbDMG6w+pw0yeqsIbQBUqMkr0Sfm/Q5DSsZZroUAAAAICkIewAAgO0wjBusPicNIY29WD08TJdMOQ9DCofo6klXq7yw3HQpAAAAQNIQ9gAAAFvp7utWn6fPdBkwjDlpkEypDA8bWxttE6BYPURNhuqSan1u0udUnFdsuhQAAAAgqQh7AACArdDVA8l+nTN27piwc+3h+B5XKsPDB9Y/IMkeAYrTQ9Qxg8foiglXKC87z3QpAAAAQNIR9gAAAFvp6CXsgf3YuWPCzrWH43tcqQwP71hwhyR7BCh2C1FjMWPYDC0dt1TZWdmmSwEAAABSgrAHAADYSldvl+kSgJjZuWPCzrWHk67jGlk60rEBih245NJ5o87T/JHz5XK5TJcDAAAApAxhDwAAsJVed6/pEoCYpapjIh1DrDm128Pqx2XV4fOsWlcwuVm5uvSMS1VXWWe6FAAAACDlCHsAAICt9Hn6TJcAWIZTh1iDda+tVesKVJJXoqsnX23ZMA8AAABINsIeAABgK31uwh7Ay6lDrMG67PCaqyyq1Ocnf15DCoeYLgUAAABIG8IeAABgKwzjFj87Db+E6Fh9KDLEz6qhitVfc2MHj9VVk65SUW6R6VIAAACAtCLsAQAAtsIwbvGzy/BLsAbCQbOsHqpY0YxhM7R0/FLlZOWYLgUAAABIO8IeAAAcor65Xq57XKpvrjddSkoxjFv8rNopAGuKJxwkILIXp1yvLFeWFo5aqPkj55suBQAAADCGsAcAAIeYtXKW39KpGMYtfnQKIBbxhIN0j9mLE65XXnaeLj3jUk2pnGK6FAAAAMAowh4AABxi07JNfkunYhg3ID3iCQfpHrMXu1+vQXmDdPWkqzWydKTpUgAAAADjGMwYAACHmFk9U55/8ZguI+UYxg2wLm9ABHuw8/WqKq7SJeMvUWFuoelSAAAAAEsg7AEAALbCMG4AkNnGlY/T4jGLlZPFr7MAAACAFz8dAwAAW2EYNwDIXLNrZmv28NmmywAAAAAshzl7AAAA4EgNLQ1a9vwyNbQ0mC4FQIJys3J18fiLCXoAAACAEAh7AACArWS7sk2XAENiDW9WrFvhtwRgT6X5pbp68tUaM3iM6VIAAAAAyyLsAQAAtpKdRdiTqWINb5YvXO63BGA/IwaN0Bcmf0FDCoeYLgUAAACwNMIeAABgK1kufnyxinQPkxZreFNbVquVV65UbVltKsvKSAyRh3SYVjVNl0+4XPk5+aZLAQAAACyPuyUAAMBWcrJyTJeAv0r3MGmEN9bBEHlIpWxXthaPWawFtQvkcrlMlwMAAADYAmEPAACwFTp7rINh0jK3w4Vrj1Qpyi3SVZOu0sSKiaZLAQAAAGyFuyUAAMBWsl3M2WMVdNpkbocL1x6pUFVcpWumXKOq4irTpQAAAAC2Q9gDAABsJTuLsAfWQYdLdDK1AwrRm1gxUVdNvEpFuUWmSwEAAABsibAHAADYil06e7i5nRnocIlOpnZAITKXXDpn5DlaPGYxYT4AAACQAMIeAABgK3a5GcjNbeAzdEAhmPzsfF0+4XJNHzbddCkAAACA7dk+7Pnxj38sl8ul73znOyHXWbNmjVwu14CPbdu2+a339NNPq66uTvn5+aqrq9Ozzz6b4uoBAECs7NLZw81t4DN0QCHQkMIh+sKUL2hE6QjTpQAAAACOkGO6gES89957euSRRzRjxoyo1t++fbtKS0v7P6+srOz/99tvv60vf/nLuvfee/WFL3xBzz77rL70pS/pzTff1Lx585JeOwAAiE9Olj1+fPHe3AYA+JtYMVHnjTrPNt/PAQAAADuwbWdPW1ubbrjhBv3iF79QeXl5VM+pqqpSdXV1/0d29md/GfzQQw9p6dKluvPOOzV58mTdeeedWrJkiR566KEUHQEAANZW31wv1z0u1TfXmy7FT2FuoekSAABxyHZla9HoRVo8ZjFBDwAAAJBktv0J++///u91xRVX6KKLLtKKFdGNhT9r1ix1dnaqrq5Oy5cv1wUXXND/tbffflvf/e53/da/5JJLwoY9XV1d6urq6v+8tbVVktTT06Oenp4YjgZwDu9rn/cAMplT3gcLfrFAhVmFWvCLBWr5xxbT5fTLVa5cbpfpMhCB9xpxrZCpeA/4K8kr0QVjL1BFYYXt/39E9JzyMxGQCN4HAO8DIF2vfVuGPU899ZQ2btyo999/P6r1a2pq9Mgjj2j27Nnq6urS448/riVLlmjNmjVatGiRJKm5uVnDhg3ze96wYcPU3Nwccrs//vGPdc899wx4/PXXX1dRUVEMRwQ4z+rVq02XABhn9/fBb2f8tv/fL774osFKBqpSlekSEKXK5srIKwEOxnvgM+/secd0CTDE7j8TAcnA+wDgfYDM1d7enpb92C7saWho0G233aZXXnlFBQUFUT1n0qRJmjRpUv/n55xzjhoaGvQf//Ef/WGPJLlc/n915/F4Bjzm684779T3vve9/s9bW1tVW1urCy64QBUVFdEeEuAoPT09Wr16tZYuXarc3FzT5QBG8D5Ivcc/eFx9nj7TZSAMl9ulyuZKHa4+LE+Wx3Q5QNrxHpBccmlWzSzNGBbdHKtwHn4mAngfABLvA+Do0aNp2Y/twp6NGzfq0KFDmj17dv9jfX19Wrt2rX72s5+pq6vLby6eUObPn6/f/OY3/Z9XV1cP6OI5dOjQgG4fX/n5+crPzx/weG5uLt+4kPF4HwC8D1KpIL9Abd1tpstAFDxZnoy90Q1ImfseKMgp0JKxSzSidITpUmAB/EwE8D4AJN4HyFzpet1npWUvSbRkyRJ9+OGHqq+v7/+YM2eObrjhBtXX10cV9EjSpk2bVFNT0//5OeecM6CV8JVXXtGCBQuSWj8AAEhcUS7DpQKAVVUVV+naKdcS9AAAAABpZLvOnkGDBmnatGl+jxUXF6uioqL/8TvvvFP79+/Xr3/9a0nSQw89pDFjxmjq1Knq7u7Wb37zGz399NN6+umn+7dx2223adGiRbr//vt19dVX67nnntOrr76qN998M30HBwAAolKYU2i6BGMaWhq0Yt0KLV+4XLVltabLAQA/06qmaf7I+cpy2e7vCgEAAABbc+RP4E1NTdq3b1//593d3fr+97+vGTNmaOHChXrzzTf1wgsv6JprrulfZ8GCBXrqqaf03//935oxY4Yee+wx/e53v9O8efNMHAIAAAgjkzt7Vqxb4bcEACvIzcrVkrFLtKB2AUEPAAAAYIDtOnuCWbNmjd/njz32mN/nP/jBD/SDH/wg4nauu+46XXfddUmsDAAApEJhbuZ29ixfuLy/swcArGBwwWBdPP5iDS4YbLoUAAAAIGPxJ1cAAMB2Mrmzp7asViuvXMkQbkCUGloatOz5ZWpoaTBdiiOdMeQMfWHyFwh6AAAAAMMIewAAgO0U5xabLgGATTD0YWrkZOVo8ZjFunDshcrNzjVdDgAAAJDxCHsAAIDtlBeWmy4BgE14hzxk6MPkqSis0DVTrtHEiommSwEAAADwV4Q9AADAdgblDVK2K9t0GUkV71BTDFEFhMfQh8k1rWqaPj/58wzbBgAAAFgMYQ8AALAdl8vluBuN8Q41xRBV8CL4QyoV5BTokvGXaEHtAmVnOStsBwAAAJyAsAcAANhSpKHc7HbjO96hphiiCl4Ef0iVmpIaXTvlWo0ePNp0KQAAAABCIOwBAAC2VF4QPuyx243veIeaYogqeBH8IdlccmnO8Dm6cuKVKs4rNl0OAAAAgDAIewAAgC1F6uzhxjcyDcEfkqkkr0RXTbpKZ9WcJZfLZbocAAAAABHkmC4AAAAgHkMKh4T9uvfGNwAgNmMGj9H5o89Xfk6+6VIAAAAARImwBwAA2NKgvEHKdmWrz9NnuhQAcIRsV7bmj5yvqVVTTZcCAAAAIEYM4wYAAGzJ5XJpcMFg02UgCg0tDVr2/DI1tDSYLgVACIMLBusLU74QU9BT31wv1z0u1TfXp64wAAAAAFEh7AEAALYVad4eWMOKdSv8lgCsZWrlVF0z5ZqIw2MGmrVylt8SAAAAgDmEPQAAwLaqiqtMl4AoLF+43G8JwBqKc4t1+YTLde6oc5WTFfsI35uWbfJbAgAAADCHOXsAAIBt1ZTUmC4BUagtq9XKK1eaLgOAj/Hl43XeqPOUn5Mf9zZmVs+U5188SawKAAAAQLwIewAAgG0NKRyi/Ox8dfV1mS4FAGwhPztf5406T+OHjDddCgAAAIAkIuwBAAC25XK5VF1Srb0te02XAgCWN7J0pM4ffb6K84pNlwIAAAAgyZizBwAA2FrNIIZys6LG1ka/JQBzcrJydG7tubp8wuUEPQAAAIBDEfYAAABbY94ea3pg/QN+SwBmVBVX6dop12pq1VTTpQAAAABIIcIeAABga0OLhiovO890GQhwx4I7/JZANBpaGrTs+WVqaGkwXYrtZbmyNGf4HH1u0udUVlBmuhwAAAAAKUbYAwAAbM3lcmlY8TDTZSDAyNKRfksgGivWrfBbIj6DCwbr6klX66yas5Tl4lc+AAAAIBPwkz8AALA95u0BnGH5wuV+S8RuWtU0XTPlGlUWV5ouBQAAAEAa5ZguAAAAIFHM2wM4Q21ZrVZeudJ0GbZUml+qRaMXafig4aZLAQAAAGAAYQ8AALC9quIqFeQUqLO303QpAJBWLrk0fdh0zRk+RzlZ/HoHAAAAZCp+GwAAALbncrk0dvBYbT2y1XQpAJA25QXlOn/M+aoqrjJdCgAAAADDmLMHAAA4wrjycaZLAIxraGnQsueXqaGlwXQpSKEsV5bOqjlL19ZdS9ADAAAAQBJhDwAAcIjhg4arIKfAdBmAUSvWrfBbwnmGFg3VFyZ/QXOGz1GWi1/nAAAAAJzGbwcAAMARvEO5ORUdG/aWruu3fOFyvyWcI9uVrbkj5urzkz+viqIK0+UAAAAAsBjCHgAA4BhOHsqNjg17S9f1qy2r1corV6q2rDal+0F6VZdU69q6azWzeibdPAAAAACC4jcFAADgGE4eyo2ODXvj+iEeOVk5WlC7QFdNvEqDCwabLgcAAACAhRH2AAAAx3DyUG50bNhbKq8fQ/w504hBI/TFui9qWtU0uVwu0+UAAAAAsDjCHgAA4ChOHsoNZlk1VGGIP2fJz87XotGLdMXEKzQof5DpcgAAAADYBGEPAABwlOGDhqsot8h0GXAgq4YqDBHnHBMrJurL076syUMnmy4FAAAAgM0Q9gAAAEdxuVyaMnSK6TLgQFYNVRjiz/7KC8p11cSrtHjMYsfOOwYAAAAgtXJMFwAAAJBsdZV12tS8SW6P23QpcBBvqAIkS05Wjs6qOUszhs1Qlou/wwMAAAAQP8IeAADgOIW5hRpfPl47ju0wXQoABDW6bLTOHXWuSvJKTJcCAAAAwAEIewAAgCNNq5pG2APAckrySnRu7bkaPXi06VIAAAAAOAhhDwAAcKTK4koNKx6mg6cOmi4FAJTlytL0qumaPXy2crL4NQwAAABAcvFbBgAAcKzpw6br4C7CHgBmVZdUa+GohSovLDddCgAAAACHYhZQAADgWGMGj1FxbrHpMiyjoaVBy55fpoaWBtOlABnjvFHn6XOTPkfQAwAAACClCHsAAIBjZbmyNLVqqukyLGPFuhV+SwDxiRScuuTSpIpJkqQzhpyRztIAAAAAZCjCHgAA4GiTh05Wblau6TIsYfnC5X5LAPEJF5zWlNTominX6Jzac9JdFgAAAIAMRtgDAAAcrSCnQGdWn2m6DEmJDaOWjCHYastqtfLKlaotq417GwCCB6eD8gZp6bilumrSVaooqjBVGgAAAIAMRdgDAAAcb8awGSrKLTJdRkLDqDEEG2AdvsFpblau5o6Yqy9N/ZLGlo81XRoAAACADEXYAwAAHC8nK0eza2abLiOhYdScPARbMrqWABMmVkzUl6d9WTOrZyo7K9t0OQAAAAAyGGHP/9/evUdXVZ75A39O7iGQQEIgXBIuity8gFobRPECYgu1Vm0RtWrVtnbVqVBXO5XWWdbRau3VUrRiV0eW1kGnCx17cS2lU5RSqfVCXE7rePmJNSIMKjcBwQDn9wcl44FwCznZOcnn05V13O95997Ppjx5yfpm7wMAdAnDew+PniU9E63hUB6j1pkfweauJXJN37K+cc6Ic+LUwad2iLsGAQAAhD0AQJeQl8qLEwackHQZtKAz37VE59K9qHucPuT0OHvE2VFdVp10OQAAAM0Kki4AAKC9DO45OPqW9Y3/3fS/SZfCh+y6awk6qoK8gjim7zFxTM0xUZDnRygAAKDjcWcPANCl1A+sT7oEIIccXnl4TBs9LY7rf5ygBwAA6LD8tAIAdCl9u/eNwT0Hx+vrXk+6FKAD69+jf5ww4IToU9Yn6VIAAAD2S9gDAHQ542vHx1vvvRUfbP8g6VKADqaqtCo+OvCjMbB8YNKlAAAAHDCPcQMAupyyorIYN3Bc0mVkXeP6xrjyt1dG4/rGpEuBDq+8uDxOH3J6nDfqPEEPAACQc4Q9AECXNLz38KirqEu6jKy66Y83ZbwCeyotKI3xteNj2uhpcXjl4UmXAwAA0CrCHgCgy5owaEIU5xcnXUbWXHfydRmvwP8pzCuM4/sfH9OPnB6j+4yOvJQfjQAAgNzlM3sAgC6rW2G3OLH2xFj0+qKkS8mK2oramPuJuUmXAR1KXiovRlWPimP7HRslBSVJlwMAANAmhD0AQJc2rGpYLF+3PF5f93rSpQBZlIpUHF55eBzf//joUdwj6XIAAADalLAHAOjyTq47OVZtXBVbtm1JuhQgC+oq6uKEASdEZWll0qUAAABkhQdTAwBdXmlhaZxUd1LSZXR6jesb48rfXhmN6xuTLoUuora8Nj414lPxscM/JugBAAA6NWEPAEBEDO01NI7pe0zSZXRqN/3xpozX9iBg6prqKurinBHnxMeHfTz6lPVJuhwAAICsE/YAAPzDCQNOiLqKuqTL6LSuO/m6jNf2kETARHIGVQyKc0acEx87/GNRXVaddDkAAADtRtgDAPAPqVQqTh9yevQq6ZV0KZ1SbUVtzP3E3KitqG23cyYRMNH+BlUMinNHnhtnHn6mkAcAAOiShD0AAB9SlF8UZx5+ZhTnFyddCm0giYBpF4+Qy77BPQc3hzy9u/VOuhwAAIDECHsAAHZTXlweZxx2RuSl/FOJ1vMIuewZ3HNwnDfyvJh82GQhDwAAQAh7AABa1L9H/zix9sSkyyCHeYRc2xvSc0h8etSnY/Jhk6OqW1XS5QAAAHQYBUkXAADQUY2qHhVr3l8Tf3v7b0mXQg7a9Qg5Dk1eKi+GVQ6Lo/seHb1KfZ4WAABAS4Q9AAD7ML52fGzZtiVeW/ta0qVAl1KUXxSjqkfFkX2OjG6F3ZIuBwAAoEMT9gAA7EMqlYrTh5weO9I74vV1ryddDnR63Yu6x1F9jooRvUdEYX5h0uUAAADkBJ/ZAwCwH3mpvJg0dFLUVdQlXQrtpHF9Y1z52yujcX1j0qV0GVWlVXH6kNNj+pHT46i+Rwl6AAAADoKwBwDgAOSl8uKMoWcIfLqIm/54U8Yr2TOwfGBMGTYlzht1XhxeeXjkpfyIAgAAcLD8JAUAcIDy8/Jj8mGTY0jPIUmX0m666h0u1518XcYrbSsvlRfDKofFeSPPiynDpsTA8oFJlwQAAJDThD0AAAdh1yPdDq88POlS2kVHu8OlvcKn2oramPuJuVFbUZvV83Q1RflFcXTfo2P6kdPjtCGnRVW3qqRLAgAA6BSEPQAABymVSsVpg0+LUdWjki4l6zraHS4dLXziwFSVVsWEQRPis0d/NuoH1kf3ou5JlwQAANCpFCRdAABALkqlUnFS3UlRWVoZTzY+GTvSO5IuKSt23eHSUVx38nVx0x9v6jDhE3uXl8qLob2Gxujq0dG3e9+kywEAAOjUhD0AAIdgVPWo6FXSKxa+tjC2bNuSdDmdXkcLn9hT96LuMbL3yBjRe0SUFpYmXQ4AAECXIOwBADhE/Xr0i3NHnhuPvvpovPv+u0mXA4kYWD4wRlWPikEVgyKVSiVdDgAAQJci7AEAaAPdi7rH2SPOjsdffzxeW/ta0uVAuyjKL4rhVcNjVPWoqCipSLocAACALkvYAwDQRgryCmLS0EmxbOWyePqtp5MuB7Kmult1jKweGYdXHh4FeX6kAAAASJqfzAAA2tjYfmOjqltVPPH6E/H+tveTLgfaRLfCbjGsclgcUXVE9CrtlXQ5AAAAfIiwBwAgC+oq6uIzoz8Tf3rjT/H/1v6/pMuBVslP5cegnoPiiKojora81mfxAAAAdFDCHgCALCkpKImJQyfGYesOiz/+/Y/u8iFn9CnrE0dUHRGH9TosiguKky4HAACA/RD2AABk2eCeg6Nf937xp8Y/xatrXk26HGjRrse0De89PHqW9Ey6HAAAAA6CsAcAoB0UFxTH6UNOj6G9hsaSN5bE5qbNSZcEkZ/Kj8E9B8cRVUfEwPKBHtMGAACQo4Q9AADtaNddPkvfXBovv/ty0uXQBeWl8mJg+cAY2mtoDO45OIryi5IuCQAAgEMk7AEAaGfFBcVx6uBT46g+R8VTK56KNze8mXRJdHJ5qbzo36N/HNbrsBjcc7DP4QEAAOhkhD0AAAmp6lYVU4ZNibfeeyueevOpeHvz20mXRCeyK+AZ0nNIDOk1JEoKSpIuCQAAgCwR9gAAJKx/j/5xzshz4rW1r8XTK56O9VvXJ10SOSo/lR8DywfGkF5DYlDFIHfwAAAAdBHCHgCADmLXZ6i89M5L8ezKZ2Nz0+akSyIHFOUX7Qx4eg6Juoq6KMwvTLokAAAA2lle0gUcqltuuSVSqVTMnDlzr3MefPDBOOOMM6K6ujrKy8tj3Lhx8eijj2bMmTdvXqRSqT2+tmzZkuUrAAD4P3mpvBhZPTKmHzk9xteOj54lPZMuiQ6osrQyxtSMibOOOCsuOeaSmDR0UhxWeZigBwAAoIvK6Tt7nn766bjrrrvi6KOP3ue8xYsXxxlnnBE333xz9OzZM+6+++4466yz4qmnnoqxY8c2zysvL4+XXnopY9+SEs82BwDaX0FeQYzuMzpG9xkdb254M/579X9H4/rGSEc66dJIQFF+UQzoMSBqK2qjtrw2yorKki4JAACADiRnw56NGzfGRRddFD//+c/jpptu2ufc2267LWP75ptvjocffjh+85vfZIQ9qVQqampqDriGrVu3xtatW5u3N2zYEBERTU1N0dTUdMDHgc5k1999PUBXpg9oa31L+0bfQX3jvQ/eixfffjFeWfNKNG3v2H+/UjtSGa8cvF4lvWJA+YAYWD4w+pT1ibzU/92U7/tLx2ctAH0AEfoAIvQBtNff/ZwNe6666qqYOnVqTJo0ab9hz+527NgR7733XlRWVmaMb9y4MQYNGhTbt2+PMWPGxI033pgRBu3ulltuiRtuuGGP8UWLFkW3bt0OqibobBYuXJh0CZA4fUC29IpeSZdwwKpXVSddQk5b/Y//kbusBaAPIEIfQIQ+oOvavLl9Po83J8Oe+++/P5599tl45plnWrX/D3/4w9i0aVNMmzateWzEiBExb968OOqoo2LDhg3xk5/8JMaPHx/PP/98DBs2rMXjzJo1K6655prm7Q0bNkRtbW2cdtppUVVV1araINc1NTXFwoUL44wzzojCQp8bQNekD2hPb29+O15f93r8fd3fY+MHG5Mup1lqRyqqV1XH2zVvRzrPo+daUlZUFn3L+kbfsr5R06MmKoorki6JNmQtAH0AEfoAIvQBvPvuu+1ynpwLexobG2PGjBnx2GOPterzdObPnx/f/va34+GHH44+ffo0j9fX10d9fX3z9vjx4+PYY4+Nn/70pzF79uwWj1VcXBzFxcV7jBcWFvrGRZenD0Af0D76V/SP/hX948RBJ8bbm96O5euWx2trX4sNWzckXVpERKTz0sKef6goroh+PfpFv+79oqZ7TfQo7pF0SbQDawHoA4jQBxChD+i62uvvfc6FPc8++2ysXr06jjvuuOax7du3x+LFi2POnDmxdevWyM/Pb3HfBx54IK644or41a9+FZMmTdrnefLy8uIjH/lIvPLKK21aPwBAtlSXVUd1WXWcMOCEeHfzu/Ha2tdi+brlsW7LuqRL63JSkYrK0sro12NnsNOve78oLSxNuiwAAAA6qZwLeyZOnBgvvPBCxthll10WI0aMiG984xt7DXrmz58fl19+ecyfPz+mTp263/Ok0+loaGiIo446qk3qBgBoT1XdqqKqW1V8ZMBHYu37a2PFeyti1cZVsfK9lfH+tveTLq9TyU/lR2VpZfTu1juqulVF7269o7K0Mgrycu6f2gAAAOSonPsJtEePHnHkkUdmjJWVlUVVVVXz+KxZs2LFihVxzz33RMTOoOeSSy6Jn/zkJ1FfXx+rVq2KiIjS0tKoqNj5bPQbbrgh6uvrY9iwYbFhw4aYPXt2NDQ0xO23396OVwcA0PZ6lfaKXqW94sg+O/+ttG7LuubgZ+XGlR3qs346uqL8oqgqrcoIdnqW9Iy8VF7SpQEAANCF5VzYcyBWrlwZb7zxRvP23LlzY9u2bXHVVVfFVVdd1Tx+6aWXxrx58yIiYt26dfHFL34xVq1aFRUVFTF27NhYvHhxnHDCCe1dPgBAVvUs6Rk9S3rGiN4jIiJi4wcbm4OfNe+vibXvr42mHU0JV5ms4vziqCipiPLi8qgorohepb2id7feUV5cnnRpAAAAsIdOEfY8/vjjGdu7Apy9vd+SH//4x/HjH/+47YoCAMgR3Yu6x7CqYTGsaljz2MYPNsa6LetizftrYt2WdbH2/bWxdsva+GD7BwlW2rZ2D3Q+/N/FBcVJlwcAAAAHrFOEPQAAtK3uRd2je1H3GFg+MGN8c9PmWPv+2li/dX1sbtoc7ze9v/N12/vN29vT2xOqeqei/KIoLSiN0sLS5tduhd2ipKAkuhV2i26F3QQ6AAAAdCrCHgCgU2hY1RBj546NZVcuizE1Y5Iup9PaFZYMiAF7nfPB9g9iw/sb4k9v/SlOGXRKNEVTbE9vj+07trf4uiO9I2MslUpFfio/CvIKIj8vf4//zs/7x/Y/xosLijPCnfy8/Hb8EwEAAIDkCXsAgE5h7Nyxza/p69MJV9O1FeUXRUVxRUREDOk1JAoLCxOuCAAAADq3vKQLAABoC8uuXJbxCgAAANBVuLMHAOgUxtSMcUcPAAAA0CW5swcAAAAAACCHCXsAAAAAAABymLAHAAAAAAAghwl7AAAAAAAAcpiwB4AD0rCqIVI3pKJhVUPSpQAAAAAAHyLsAeCAjJ07NuMVAAAAAOgYhD0AHJBlVy7LeAUAAAAAOoaCpAsAIDeMqRkT6evTSZcBAAAAAOzGnT0AwF75rCYAAACAjk/YAwDslc9qOjBCMQAAACBJwh4AYK98VtOBEYoBAAAASRL2AAB7teuzmsbUjEm6lA5NKAYAAAAkqSDpAgAAct2uUAwAAAAgCe7sAQAAAAAAyGHCHgAAAAAAgBwm7AEAAAAAAMhhwh4AAAAAAIAcJuwBAAAAAADIYcIeAAAAAACAHCbsAQAAAAAAyGHCHgAAAAAAgBwm7AEAAAAAAMhhwh4AAAAAAIAcJuwBAAAAAADIYcIeAAAAAACAHCbsAQAAAAAAyGHCHgAAAAAAgBwm7AEAAAAAAMhhwh4AAAAAAIAcJuwBAAAAAADIYcIeAAAAAACAHCbsAQAAAAAAyGHCHgAAAAAAgBwm7AGANtCwqiFSN6SiYVVD0qUAAAAA0MUIewCgDYydOzbjFQAAAADai7AHANrAsiuXZbwCAAAAQHspSLoAAOgMxtSMifT16YiIaGpqSrgaANrTqlURTU0RtbX7n9vYGFFYGFFTk/26AACArsOdPQAAAK20alXE6adHnHrqziBnXxobd847/fSd+wEAALQVYQ8AAEArNTVFbN0a8dpr+w58dgU9r722c76bQAEAgLYk7AEAAGil2tqIxx+PGDp074HPh4OeoUN3zj+QR74BAAAcKGEPAADAIWgp8FmxYud7K1YIegAAgOwT9gAAAByi3QOfKVN2jk+ZIugBAACyT9gDAADQBj4c+Lz++s6x118X9AAAANkn7AEAAGgjtbUR996bOXbvvYIeAAAgu4Q9AEBOaljVEKkbUtGwqiHpUgCaNTZGXHxx5tjFF+8cBwAAyBZhDwCQk8bOHZvxCpC0xsaIU0/d+Rk9gwfvHBs8eOf2qacKfAAAgOwR9gAAOWnZlcsyXgGS9OGgZ+jQiEce2Tn+yCM7twU+AABANgl7AICcNKZmTKSvT8eYmjFJlwJ0cbsHPY8/HjFgwM73BgzYuS3wAQAAsknYAwAA0EotBT21tZlzamsFPgAAQHYJewAAAFqpsDCiuHjvQc8uHw58iot37gcAANBWCpIuAAAAIFfV1ET84Q8RTU17D3p22RX4FBbu3A8AAKCtCHsAAAAOwcEEN/sLhAAAAFrDY9wAAAAAAABymLAHAAAAAAAghwl7AAAAAAAAcpiwBwAAAAAAIIcJewAAAAAAAHKYsAcAAAAAACCHCXsAAAAAAABymLAHAAAAAAAghwl7AAAAAAAAcpiwBwAAAAAAIIcJewAAAAAAAHKYsAcAAAAAACCHCXsAAAAAAABymLAHAAAAAAAghwl7AAAAAAAAcpiwBwAAAAAAIIcJewAAAAAAAHKYsAcAAAAAACCHCXsAAAAAAABymLAHAAAAAAAghwl7AAAAAAAAcpiwBwAAAAAAIIcJewAAAAAAAHKYsAcAAAAAACCHCXsAAAAAAABymLAHAAAAAAAghwl7AAAAAAAAcpiwBwAAAAAAIIflfNhzyy23RCqVipkzZ+5z3hNPPBHHHXdclJSUxNChQ+POO+/cY86CBQti1KhRUVxcHKNGjYqHHnooS1UDAAAAAAC0jZwOe55++um466674uijj97nvOXLl8eUKVPi5JNPjmXLlsU3v/nNuPrqq2PBggXNc5YuXRrnn39+XHzxxfH888/HxRdfHNOmTYunnnoq25cBAAAAAADQajkb9mzcuDEuuuii+PnPfx69evXa59w777wz6urq4rbbbouRI0fG5z//+bj88svjBz/4QfOc2267Lc4444yYNWtWjBgxImbNmhUTJ06M2267LctXAgAAAAAA0HoFSRfQWldddVVMnTo1Jk2aFDfddNM+5y5dujQmT56cMXbmmWfGL37xi2hqaorCwsJYunRpfPWrX91jzr7Cnq1bt8bWrVubt9evXx8REWvWrDnIq4HOo6mpKTZv3hzvvvtuFBYWJl0OJEIfgD4APQD6ACL0AUToA9iVF6TT6ayeJyfDnvvvvz+effbZeOaZZw5o/qpVq6Jv374ZY3379o1t27bFO++8E/369dvrnFWrVu31uLfcckvccMMNe4wfccQRB1QXAAAAAADQ+b377rtRUVGRtePnXNjT2NgYM2bMiMceeyxKSkoOeL9UKpWxvStF+/B4S3N2H/uwWbNmxTXXXNO8vW7duhg0aFC88cYbWf0/DTqyDRs2RG1tbTQ2NkZ5eXnS5UAi9AHoA9ADoA8gQh9AhD6A9evXR11dXVRWVmb1PDkX9jz77LOxevXqOO6445rHtm/fHosXL445c+bE1q1bIz8/P2OfmpqaPe7QWb16dRQUFERVVdU+5+x+t8+HFRcXR3Fx8R7jFRUVvnHR5ZWXl+sDujx9APoA9ADoA4jQBxChDyAvLy+7x8/q0bNg4sSJ8cILL0RDQ0Pz1/HHHx8XXXRRNDQ07BH0RESMGzcuFi5cmDH22GOPxfHHH9/8nMi9zTnxxBOzdzEAAAAAAACHKOfu7OnRo0cceeSRGWNlZWVRVVXVPD5r1qxYsWJF3HPPPRER8aUvfSnmzJkT11xzTXzhC1+IpUuXxi9+8YuYP39+8zFmzJgREyZMiFtvvTXOPvvsePjhh+P3v/99LFmypP0uDgAAAAAA4CDl3J09B2LlypXxxhtvNG8PGTIkHnnkkXj88cdjzJgxceONN8bs2bPjvPPOa55z4oknxv333x933313HH300TFv3rx44IEH4qMf/egBn7e4uDiuv/76Fh/tBl2FPgB9ABH6APQA6AOI0AcQoQ+gvXoglU6n01k9AwAAAAAAAFnTKe/sAQAAAAAA6CqEPQAAAAAAADlM2AMAAAAAAJDDhD0AAAAAAAA5TNhzgLZt2xbXXXddDBkyJEpLS2Po0KHxr//6r7Fjx4597vfEE0/EcccdFyUlJTF06NC4884726liaHut6YPHH388UqnUHl//8z//046VQ9t67733YubMmTFo0KAoLS2NE088MZ5++ul97mM9oDM52B6wFpDrFi9eHGeddVb0798/UqlU/Od//mfG++l0Or797W9H//79o7S0NE499dT461//ut/jLliwIEaNGhXFxcUxatSoeOihh7J0BXDostEH8+bNa3F92LJlSxavBFpvf33w4IMPxplnnhm9e/eOVCoVDQ0NB3Rc6wG5JBt9YD0gl+yrB5qamuIb3/hGHHXUUVFWVhb9+/ePSy65JN566639Hrct1gJhzwG69dZb484774w5c+bEiy++GN/73vfi+9//fvz0pz/d6z7Lly+PKVOmxMknnxzLli2Lb37zm3H11VfHggUL2rFyaDut6YNdXnrppVi5cmXz17Bhw9qhYsiOz3/+87Fw4cK4995744UXXojJkyfHpEmTYsWKFS3Otx7Q2RxsD+xiLSBXbdq0KY455piYM2dOi+9/73vfix/96EcxZ86cePrpp6OmpibOOOOMeO+99/Z6zKVLl8b5558fF198cTz//PNx8cUXx7Rp0+Kpp57K1mXAIclGH0RElJeXZ6wNK1eujJKSkmxcAhyy/fXBpk2bYvz48fHd7373gI9pPSDXZKMPIqwH5I599cDmzZvjueeei3/5l3+J5557Lh588MF4+eWX45Of/OQ+j9lma0GaAzJ16tT05ZdfnjF27rnnpj/72c/udZ9//ud/To8YMSJj7Morr0zX19dnpUbIttb0waJFi9IRkV67dm2Wq4P2sXnz5nR+fn76t7/9bcb4Mccck/7Wt77V4j7WAzqT1vSAtYDOJCLSDz30UPP2jh070jU1Nenvfve7zWNbtmxJV1RUpO+88869HmfatGnpj33sYxljZ555Znr69OltXjO0tbbqg7vvvjtdUVGRxUohe3bvgw9bvnx5OiLSy5Yt2+9xrAfksrbqA+sBuWpfPbDLX/7yl3REpP/+97/vdU5brQXu7DlAJ510UvzXf/1XvPzyyxER8fzzz8eSJUtiypQpe91n6dKlMXny5IyxM888M5555ploamrKar2QDa3pg13Gjh0b/fr1i4kTJ8aiRYuyXSpkzbZt22L79u17/IZRaWlpLFmypMV9rAd0Jq3pgV2sBXRGy5cvj1WrVmV8ny8uLo5TTjklnnzyyb3ut7e1YV/7QEfV2j6IiNi4cWMMGjQoBg4cGJ/4xCdi2bJl2S4XOhTrAexkPaCzWr9+faRSqejZs+de57TVWiDsOUDf+MY34oILLogRI0ZEYWFhjB07NmbOnBkXXHDBXvdZtWpV9O3bN2Osb9++sW3btnjnnXeyXTK0udb0Qb9+/eKuu+6KBQsWxIMPPhjDhw+PiRMnxuLFi9uxcmg7PXr0iHHjxsWNN94Yb731Vmzfvj1++ctfxlNPPRUrV65scR/rAZ1Ja3rAWkBntmrVqoiIFr/P73pvb/sd7D7QUbW2D0aMGBHz5s2LX//61zF//vwoKSmJ8ePHxyuvvJLVeqEjsR6A9YDOa8uWLXHttdfGhRdeGOXl5Xud11ZrQUGrquyCHnjggfjlL38Z//7v/x6jR4+OhoaGmDlzZvTv3z8uvfTSve6XSqUytnfe3bXnOOSC1vTB8OHDY/jw4c3b48aNi8bGxvjBD34QEyZMaK/SoU3de++9cfnll8eAAQMiPz8/jj322Ljwwgvjueee2+s+1gM6k4PtAWsBXUFL3+f39z2+NftAR3awf6fr6+ujvr6+eXv8+PFx7LHHxk9/+tOYPXt21uqEjsZ6QFdnPaAzampqiunTp8eOHTvijjvu2O/8tlgL3NlzgL7+9a/HtddeG9OnT4+jjjoqLr744vjqV78at9xyy173qamp2SN9W716dRQUFERVVVW2S4Y215o+aEl9fb3fziCnHXbYYfHEE0/Exo0bo7GxMf7yl79EU1NTDBkypMX51gM6m4PtgZZYC+gsampqIiJa/D6/+2/n7b7fwe4DHVVr+2B3eXl58ZGPfMT6QJdiPYA9WQ/IdU1NTTFt2rRYvnx5LFy4cJ939US03Vog7DlAmzdvjry8zD+u/Pz82LFjx173GTduXCxcuDBj7LHHHovjjz8+CgsLs1InZFNr+qAly5Yti379+rVlaZCIsrKy6NevX6xduzYeffTROPvss1ucZz2gszrQHmiJtYDOYsiQIVFTU5Pxff6DDz6IJ554Ik488cS97re3tWFf+0BH1do+2F06nY6GhgbrA12K9QD2ZD0gl+0Kel555ZX4/e9/f0C/5NtWa4HHuB2gs846K77zne9EXV1djB49OpYtWxY/+tGP4vLLL2+eM2vWrFixYkXcc889ERHxpS99KebMmRPXXHNNfOELX4ilS5fGL37xi5g/f35SlwGHpDV9cNttt8XgwYNj9OjR8cEHH8Qvf/nLWLBgQSxYsCCpy4BD9uijj0Y6nY7hw4fHq6++Gl//+tdj+PDhcdlll0WE9YDO72B7wFpArtu4cWO8+uqrzdvLly+PhoaGqKysjLq6upg5c2bcfPPNMWzYsBg2bFjcfPPN0a1bt7jwwgub97nkkktiwIABzXdEz5gxIyZMmBC33nprnH322fHwww/H73//+1iyZEm7Xx8ciGz0wQ033BD19fUxbNiw2LBhQ8yePTsaGhri9ttvb/frgwOxvz5Ys2ZNvPHGG/HWW29FRMRLL70UETt/Y3vXHXDWA3JdNvrAekAu2VcP9O/fPz796U/Hc889F7/97W9j+/btzXfsVFZWRlFRUURkcS1Ic0A2bNiQnjFjRrquri5dUlKSHjp0aPpb3/pWeuvWrc1zLr300vQpp5ySsd/jjz+eHjt2bLqoqCg9ePDg9M9+9rN2rhzaTmv64NZbb00fdthh6ZKSknSvXr3SJ510Uvp3v/tdAtVD23nggQfSQ4cOTRcVFaVramrSV111VXrdunXN71sP6OwOtgesBeS6RYsWpSNij69LL700nU6n0zt27Ehff/316ZqamnRxcXF6woQJ6RdeeCHjGKecckrz/F1+9atfpYcPH54uLCxMjxgxIr1gwYJ2uiI4eNnog5kzZ6br6urSRUVF6erq6vTkyZPTTz75ZDteFRyc/fXB3Xff3eL7119/ffMxrAfkumz0gfWAXLKvHli+fHmL70VEetGiRc3HyNZakEqn//EJ0QAAAAAAAOQcn9kDAAAAAACQw4Q9AAAAAAAAOUzYAwAAAAAAkMOEPQAAAAAAADlM2AMAAAAAAJDDhD0AAAAAAAA5TNgDAAAAAACQw4Q9AAAAAAAAOUzYAwAA0Ar33XdfpFKp5q/JkycnXVJERCxZsiSjrtGjR8e2bduSLgsAAMgiYQ8AAMBB2rx5c1x77bUZY7NmzUqomkwnnXRSnHzyyc3bf/vb3+JnP/tZghUBAADZJuwBAAA4SLfffnu8+eabzdsf/ehH47TTTkuwoky7B0833XRTbNq0KaFqAACAbBP2AAAAHIQtW7bE97///YyxGTNmJFRNyz7+8Y/HEUcc0by9evXqmDt3boIVAQAA2STsAQAAOAj33XdfvP32283bZWVl8clPfjLBilp2/vnnZ2zPnj07tm/fnlA1AABANgl7AAAADsJdd92Vsf3JT34yysrKEqpm76ZPn56x/fe//z0WLlyYUDUAAEA2CXsAAICcs2bNmhg4cGCkUqnmr6KionjhhRf2mLto0aLIy8vLmDt69OjYsmXLQZ93+fLl8Ze//CVj7Jxzztnr/G9/+9sZ502lUjFv3rxIp9Pxb//2bzF+/Pjo2bNn9OrVKyZMmBC/+tWvMvZ/55134lvf+lYMHz48SktLo7q6OqZOnRp/+MMf9lvrqFGjMh7lFhFx//33H8TVAgAAuULYAwAA5JzKysqYN29epFKp5rGmpqa4/PLLMx5VtmnTprjiiisinU43jxUVFcV9990XJSUlB33elkKW+vr6gzrGli1b4uMf/3hcccUV8eSTT8b69etj3bp18cc//jGmTZsW//RP/xQREcuWLYuxY8fGzTffHC+//HJs2bIl3nnnnXjkkUdi4sSJMWfOnP2ea/faDiQkAgAAco+wBwAAyEmTJk2Kq6++OmPsmWeeiR/+8IfN29dee20sX748Y86NN94YY8aMadU5n3jiiYztvn37Rm1t7UEd47rrrotHH310r+/ffvvtMXv27Jg6dWq8+eabe513zTXXxIsvvrjPc51wwgkZ242NjXv8eQAAALlP2AMAAOSs7373uzF69OiMseuvvz5efvnlWLx4cdx+++0Z751yyinxta99rdXnW7p0acZ2a0Kjd999N1KpVEyZMiUuu+yy6NOnzx5zZsyYEStXroyysrK44IIL4oILLtjjTqSmpqa4884793musWPH7vcaAACA3FeQdAEAAACtVVJSEvfdd1+ccMIJ8cEHH0TEzsekXXbZZbF69eqMx7dVVFTEPffcE3l5rf+dt7feeitju7q6ulXHueeee+Kzn/1sRES8+OKLMWrUqD3mdO/ePf785z83h1n/8R//Eeeff37GnN3vNNpdS/Xtfg0AAEDuc2cPAACQ04455pi48cYbM8aefPLJePXVVzPG7rjjjqirq2v1eTZv3hybN2/OGKusrDzo4xx//PHNQU9ExMiRI1us60tf+lLGXUvnnntuFBYWZsx5/fXX93muqqqqPcZWr159kBUDAAAdnbAHAADIeV/72tfilFNO2ev7F1xwQVx44YWHdI61a9fuMdajR4+DPs7kyZP3GKupqdnvvIKCgujdu3fG2IYNG/Z5rvLy8j3G1q1bdwBVAgAAuUTYAwAA5Ly8vLy45557olu3bnu8V11dHXfcccchn6Nnz557jO0vbGlJbW3tHmO7fx7P3uYVFRVlbH/4MXUtWb9+/R5jLV0HAACQ24Q9AABAp/D888/v8Zi1iIh33nknnnvuuUM+fllZWZSWlmaMrVmz5qCP01Kwk0qlDmjewWqpvtZ+zhAAANBxCXsAAICc97//+79xxRVXtPheOp2Oz33uc23y+LJ+/fplbL/99tuHfMxsaunzefr3759AJQAAQDYJewAAgJx3xRVX7DN4aWxsjC9/+cuHfJ76+vqM7YaGhkM+ZjYtW7Zsj7Fx48YlUAkAAJBNwh4AACCn3XHHHfG73/0uY2zmzJnxqU99KmNs/vz5MX/+/EM614QJEzK2V69eHW+88cYhHTObnnrqqYztgQMHxtChQxOqBgAAyBZhDwAAkLNeeuml+PrXv54xdvjhh8d3vvOdmDt3bvTu3TvjvS9/+cvR2NjY6vOddtppe4z9+c9/bvXxsm33sOf0009PqBIAACCbhD0AAEBOampqiosuuig2b97cPJaXlxd33313dOvWLfr06RN33HFHxj7r1q2Lz33uc5FOp1t1ziOOOCLGjh2bMfbQQw+16ljZ9te//jVeeeWVjLHp06cnVA0AAJBNwh4AACAnXX/99fHss89mjF199dVx0kknNW9/5jOfifPPPz9jzh/+8If48Y9/3OrzfvGLX8zY/s1vfpMROHUUuz+yrq6uLiZPnpxQNQAAQDYJewAAgJyzZMmSuPXWWzPGdj2+bXe333571NTUZIx985vfjBdeeKFV577kkksyHg+3adOm+PWvf92qY2XTAw88kLH9la98JfLz8xOqBgAAyKZUurXPLwAAAOiibr311rj22mubt+vr62Pp0qUJVpTpkUceialTpzZvV1dXx/Lly6OsrCzBqgAAgGxxZw8AAMBB+spXvhIDBgxo3v7zn/8cixYtSrCiTLfcckvG9nXXXSfoAQCATkzYAwAAcJC6deu2x2Pkbr755oSqyfSnP/0plixZ0rw9cuTI+PKXv5xgRQAAQLZ5jBsAAAAAAEAOc2cPAAAAAABADhP2AAAAAAAA5DBhDwAAAAAAQA4T9gAAAAAAAOQwYQ8AAAAAAEAOE/YAAAAAAADkMGEPAAAAAABADhP2AAAAAAAA5DBhDwAAAAAAQA4T9gAAAAAAAOQwYQ8AAAAAAEAO+/8CZf3vPV1WVwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "viewer = create_viewer('State Space Uncertainties', 'x (m)', 'y (m)', xlim=(8,12), ylim=(4,6))\n",
+ "\n",
+ "print(x_sigmas[:2, :5])\n",
+ "\n",
+ "sigma_xlist = x_sigmas[0, :]\n",
+ "sigma_ylist = x_sigmas[1, :]\n",
+ "\n",
+ "viewer.scatter(sigma_xlist, sigma_ylist, s=80, marker='x', c='blue', label='sigma points Xx from initial state')\n",
+ "\n",
+ "visualize_estimate(viewer, 'initial state', 'g', x0, P0)\n",
+ "visualize_estimate(viewer, 'estimated state', 'r', x, P)\n",
+ "\n",
+ "update_plotter()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1eb31fae",
+ "metadata": {},
+ "source": [
+ "## Example 2: Simulating Trajectory"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "94c129ee",
+ "metadata": {},
+ "source": [
+ "Lastly, we try another example similar to example 1 but with generating a trajectory of poses and execute both prediction and measurement update steps from the UKF.\n",
+ "\n",
+ "This time, we should how the velocity states are also learned by the UKF only using the position measurements from the range sensor."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "ae655b52",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[10. 11. 12. 13. 14. 15. 16.]\n",
+ "[5. 5. 5. 6. 6.5 7. 7. ]\n",
+ "P_a = \n",
+ "[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]\n",
+ " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]\n",
+ " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]\n",
+ " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]\n",
+ " [0. 0. 0. 0. 0.05 0. 0. 0. 0. 0. ]\n",
+ " [0. 0. 0. 0. 0. 0.05 0. 0. 0. 0. ]\n",
+ " [0. 0. 0. 0. 0. 0. 0.1 0. 0. 0. ]\n",
+ " [0. 0. 0. 0. 0. 0. 0. 0.1 0. 0. ]\n",
+ " [0. 0. 0. 0. 0. 0. 0. 0. 0.1 0. ]\n",
+ " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.1 ]]\n",
+ "\n",
+ "[[ 9.99002177e+00 1.07534723e+01 1.18187060e+01 1.29357641e+01\n",
+ " 1.39725527e+01 1.49855172e+01 1.59963238e+01]\n",
+ " [ 4.99492550e+00 5.02034824e+00 5.01847395e+00 5.77733437e+00\n",
+ " 6.43401214e+00 6.99288321e+00 7.10338182e+00]\n",
+ " [-3.99129308e-03 4.34381627e-01 7.92808821e-01 9.74963925e-01\n",
+ " 1.00964375e+00 1.01150534e+00 1.01105322e+00]\n",
+ " [-2.02979888e-03 1.37478208e-02 5.02139716e-03 4.28073680e-01\n",
+ " 5.56148927e-01 5.57674915e-01 3.07029381e-01]]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABmwAAANtCAYAAACdZ1S2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXiU5fn28XMm+w6ELCyBsKsIJrIoKCAuuOGC1g2rqEXjT321otjaxoqaWq3aotaWWBCoVBEXEBEQVEA2IUCCG4SdBEgIJJB9n3n/SJ9h1iwQGJJ8P8fhMZn72e7JDHPgc3Jdt8lqtVoFAAAAAAAAAAAArzF7ewIAAAAAAAAAAABtHYENAAAAAAAAAACAlxHYAAAAAAAAAAAAeBmBDQAAAAAAAAAAgJcR2AAAAAAAAAAAAHgZgQ0AAAAAAAAAAICXEdgAAAAAAAAAAAB4GYENAAAAAAAAAACAlxHYAAAAAAAAAAAAeJmvtycAAAAAnG0um3WZVu1f5TC294m9im8X36TzrNy3UqNnj3YYm3DBBM26edYpzhCAJN234D7N3jrbYWzFhBW6LP4y70wIAAAAOAUENgAAAJAkxU+N1/7C/ad8nlHdR2nlfStPfUJoEdzdMD9Z1uetzXIe1M9dkHiyZt40U/cl3Ncs5wIAAADaOlqiAQAAAMBZbMrKKTK9YHL4b1bGLG9PCydp5b6VLu/nfQvu8/a0AAAAcBagwgYAAAA4TbqGd9UTFz3hMDa0y1AvzQZofcb0GqN2ge0cxrqGd/XOZAAAAIBTRGADAAAASdIDiQ+ooLzAZbyoskgzM2a6jN+fcL/CA8Jdxnt36H1a5tcS9e7QW1OvmertaZxW7m6YG95Lf0/FVcUOY1f1vErnRZ13BmYGT9wFiYbvD3yvDQc3OIx1CeuiX533K7f7e/u9HD9gvMYPGO/VOQAAAADNhcAGAAAAkqQ/jfqT2/F9x/e5DWz+NOpPim8Xf5pnhbNdfTfMF2xf4BLYjB8wnjVPvKy+IHHKyikugU1bCB4BAACAswGBDQAAAJrVZbMu06r9qxzG9j6xVzEhMXpzw5v65JdPtPvYbh2vOK7nRz2vKZdNkST9ePhHrctep7RDafop7ycdLTuqgvICFVcVK9gvWFHBURoYM1DX9r5Wdw24S6H+oQ3Opaq2Sh/99JGW7FqiTYc2Ka80T2XVZYoKiVLnsM4a3nW4xvQao2v7XCuzqWnLO1bWVOqGD2/Q8j3LHcaHdB6iZfcsU7vAdm4Xd59wwQTNunmWw9h9C+7T7K2zHcZWTFihy+Iv07yf52lG+gyl56SrsLJQncM667re1+mPI/+ozmGd651j2sE0vb7+dX23/zsdKz+mmNAYjY4frUnDJmlgzMB6r3umbTiwQRsObtCmQ5v0y5FfVFBeoILyApVWlyrUP1QxITFKiE3QzefcrFvOvUX+Pv5uzzMrY5bu//x+hzHjc7Zk5xJN2zxNaQfTlFeap67hXbXvt/sc9j1UfEivrnlVi3Yu0sGig4oIjNCgToP08OCHdWO/G+s9vyffH/hec36YozVZa3Sg6ICKKovULrCdenforat7Xa2HBz+smNAYl+Pip8Zrf+F+t+e8//P7XeYx86aZZzQM23d8n3q82cNhbFT3UVp530r9cuQX/W393/TN3m+UU5yjytpK7X1ir+Lbxauqtkor9q7QpkObtClnk/Yc22N7v6trqxUeEK74dvEa3Hmw7jr/Lo2KH+VxDk39DFusFn227TMt2L5AGw9u1OHSw6qoqVDH4I66IOYC3djvRt2fcL8CfAMafP0Wq0ULMxdqYeZCbTi4QTnFOSqpKlGHoA7qFNZJQzoP0ZheY3RD3xsU4Bvgdq6G2Vtnu2xz910hSbkluZq+Zbq+3futth/droLyAvmafdUxuKMGdx6s6/pcp7sH3O3xNdT3vbQ+e73e2viW1mSt0eGSw6q2VGvOuDn69fxfO+z/0uiXlDwy2e35P/3lU/3qY8eKrD+O+KNSLk9xuz8AAABOILABAADAaXeo+JCumXONMvMzPe5z/+f3a3POZrfbiiqLVFRZpN3Hdmv+9vl6YdUL+uDWDzSy+0iP51u8c7EmLpyonJIct/M5VHxImw5t0lsb39Kx3x3z2NbLnRpLje745A6XsOaiLhfpq19/pYjAiEafy5OSqhJd+99rtXTXUofxfcf36Z+b/qlPt32qVfetUr+O/dwe//f1f9fTy5+WxWqxjWUVZmn21tn64McP9I/r/nHKc2xO139wvfLL891uO15xXMcrjiszP1Mf/fyRzul4jj657RP1j+7f6PM/vuRxvb3x7Xr3+W7/d7rxwxtVWFloG8srzdOSXUu0ZNcS3Z9wvy7tdmmjr3m07Kju//x+LdqxyGXbkbIjOlJ2ROsPrNdr617T1GumauKFExt97rPZBz9+oAc+f0CVtZVut+/I36Fr/nuNx+Pzy/OVX56vzTmblbo5VWP7jtWccXNO+c9VRm6G7vr0Lm0/ut1lm/GdsGTXEv1lzV8071fzdFHXizyea8OBDbp3wb3akb/DZdvh0sM6XHpYGbkZ+veWfys9KV0JsQmnNHdJslqtenXtq5qycorL77aytlKlhaXaX7hfn277VM+teE7vj3tfl/e4vNHnf23ta/r9N793+M6QpNv636ZJyyYprzTPNvZe+nv644g/ymQyuZznk22fuIzde8G9jZ4HAABAW9a0f0YIAAAAnIQ7Prmj3rCmqQ4WH9QNH96g3QW73W6fvmW6xn4w1m1Yc6osVovumX+PPs/83GF8WNdhWnbPsmYJayTpNwt/4xLW2DtcetilwsIw96e5mrRsksuNV0O1pVoPL3pYK/etbI6pnnHbj27Xtf+9VsfKjzVq/xnpMxoMa3YV7NL1H1zvENY4m5kxUynfNa5K4GjZUQ2bMcxtWOOstLpUD37xoP6+/u+NOvfZbNvRbbpvwX0ew5qTsWjHIt392d2ndI712es1fMZwt2GNs6zCLF02+zKtz17vdvvSXUs1YuYIt2HN6fTIl4/o2W+ebdTv9lDxIY15f0yjPn+S9PWer/XM18+4/c7w9/HXgxc+6DC29/herdi3wmXfyppKfbnjS4exYV2HqW9k30bNAwAAoK2jwgYAAACn3YGiA5KkfpH9NKLbCFVZqpSek+52336R/dS9XXdFBkWqQ1AH1VhqdKDogFZnrVZRZZFtv6LKIv159Z/13k3vORyfnpOu//vy/2SV1eXcF3e9WAOiB0iq+1f+6w+sV1VtVaNfh9Vq1UNfPKS5P811GL8k7hItuXuJwgLCGn2uhhj/mv2y+Mt0TuQ5WpO9Rj/l/eSwz/oD67UlZ4su7HShbay4sliPLX7M5XyBvoEa23esOgR20Ip9K7SzYKfHdlveYpJJA2IGqEtYF0UGR6pdQDtV1lZq3/F9Wp21WhU1FbZ9s4uy9fbGtz2uvWTP+PyFB4RrTK8xigyK1N7je7Xv+D7bPo8uflQlVSUux17R4wr16dBHPx/5WauzVmvv8b2Nei33LbhPuwp2OYyF+IVoTK8xig6JVmZ+pktg9szXz2hU/Cjb+/lA4gMqKC/Q9we+d1lX5qqeV+m8qPMcxpyfe4PxufU1++ryHperZ7ueyivLcxsOBvoGKiE2QVHBUeoY3FGh/qEqrirWL0d+UdrBNIc/w1/u/FLf7f+u3qo6T0qqSnTLvFtUXlPuMN41vKtGdBuhIN8gfX/we/1y5BfbtoqaCt3+ye3KfCxTwX7BtvFDxYd0+8e3q9pS7XKdgTEDNbjTYPn5+Gnv8b1ak7VGZdVltu1jeo1Ru8B2OlB0QJ9u+9Th2HM7nqsxvcY4jA3tMtT284c/fqhpm6e5XLNfZD+N6j5KpdWlWrxzsY5VnAgxa621Gv/peO38fzvdttyzd7D4oKS69+SqnlepS1gXHSw+qG/3fitJShqUpFfWvKJaa63tmBnpM1wqeJbuWuqybtWECybUe20AAACcQGADAACAM+LFy15U8shkhxY69jfIX77iZfWP6q8u4V3cHn+k9IiGzRim3cdOVNUs2L5AM26c4XDO51Y8pxpLjcOxMSExmn/HfA2LG+YwfrjksF5b95p8TD6Neg1PfvWkZqTPcBi7tNulWnL3kkatqdNU7459Vw8OqvuX7RU1FbryP1dqbfZah32+2/+dQ2Dz/g/vu7QWC/MP05oH1mhgzEBJUnVtte769C6Xm8beNPOmmRoWN0wdgzu63b732F4lpiY6VMDM3z6/UYGNVHfze9FdixQVEmUbMz5/vxz5Rct2L3M7J/s1Yf6+/u+atGxSg9facGCDvtzpWGVwQcwF+vrerx1e3/xt83XrvFttwUSNpUYvffeS5t8xX5Jsr23Kyikugc34AePP6Ho1TREZFKll9yxz+FxW1lTa1onqHNZZX/36q7qwxC/I7Tnmb5uvW+bd4jJ2MoHNOxvfUW5JrsPY/Qn3K3Vsqvx8/CTVhbFPL3taf/v+b7Z9DhQd0L83/1tPXPyEbezl1S+7BBIhfiH64NYPdGO/Gx3GCysK9Y+N/1CQb91rHD9gvMYPGK+V+1a6/Nkb2mWopl4z1eNrmLJqisvYAwkP6N0b3pWPue77K680z6Xyp7iqWG+sf0N/veqvHs9t6NW+l5bfs1w92p9Yl8j4MxIXEacb+92o+dvn27Z9tu0zHa847tBO0rkdWoBPgO44/44Grw0AAIA6BDYAAAA47UbHj9Zzo55zGbcPOYx/XV5QXqB12eu0I3+HCsoLVFZdZmvTY9xcNRyrOFa38Pn/bjAWVxZ7vPHuHNZIUkxojF4f83qjXsOfVvxJ7//wvsPYyO4jtXj8YoX4hzTqHE0xqNMgW1gj1f3L9/sS7nMJbOyrRKS6tXucPTToIVtYI9X9Hl8f87oWbF/g8C/mvemGfjdIknKKc/T9ge+1s2CnCisKVVZdZgs0QvxDHAKbHw//qBpLjXzN9f9vjY/JRx/e+qFDWCOd+Py5+50N6jTIJRB54uIn9M9N/3SpnHHmLgj729V/cwmjxp07TkO6DNHGgxttY4t3LlZZdZlDVUdL87er/+YQ1khSgG+A7ecOQR1sf95/OfKL0nPStff4XpVUlaiyplJWWWW1ulbIbcndclLzcX4/gv2C9da1bzl8n5hMJr0w+gVN3TDVoS3YJ9s+cQhs3L23r131mktYI0kRgRH648g/ntSc7f2U95NL+7Uw/zC9ee2btrBGkqJDovXXK/+qmz+62WHfBdsXNCqwee+m9xzCGsnxO/qxoY85BDYVNRX67w//1aNDH5UkVdVW6YvMLxyOv7HfjU1aHwwAAKCtI7ABAADAadeYSoA9x/Zo8vLJ+nz7500KEY6WHbXdZNySs8WlVVG3iG66ts+1TZqvO85hzej40Vo0ftFpu7E+fsB4l7FOoZ1cxuzbxEl1C6s7G3fOOJex+HbxSuyUqE2HNp38JJtRRm6Gnlr2lFbsXeG2nZ07tdZaHSs/5hLEOBvZfaR6tu9Z77WdufudmU1m3dzvZr2+vv6Qz7kaRpKu+M8V9R5jqKqt0pacLbq026WN2v9sE+gbqDv6N1xR8ckvnyj52+QmrW11tOxok+dTa6nV5pzNDmNl1WUK+0vj2hduPLhRFqtFZpNZ+4/vd6nUCfAJOO2VTmkH01zGRsWPclvVd3Xvq+Vj8nH4Dt1ZsNOlEsZZj3Y9GqxeurzH5Tq347nadnSbbWxG+gxbYLN893KXNaBohwYAANA0Zm9PAAAAAK2ffXWHO3uO7dHF0y/WZ9s+a3LFh/0aEYdLD7tsP6fjOU06X2OYZNLrY14/rVUQ3SO6u4wF+ga6jDkvEu7cDk2qa2fkTtfwric5u+a14cAGXfLeJfp277eNDmsM9u+/Jw19/pr7d3ak9EiD+9TncInr57il6BfZz6Gaxp23N7yt2z6+rUlhjdS499pZfnm+y5+RpqiqrdKx8rp1Ydx9v3Rv191jW7fmcqTM9fMUF+7+8xnoG+g2wGzoM9nQnxHDI0MecXienptuCzyd26HFhMTo6t5XN+q8AAAAqENgAwAAgNMuIiCi3u2/+/p3bm9KNkZDN/hNMtW7/WSvefPcm5VdmN3s5zZEBke6jNm3P2oKYw0NZ8aaIt722JLHTupmvNTw+y81/Plz137Lm78z+7WdWpqIwPp/10fLjup3X//upM7t7n06E+p7P07H94szd6+7ua/b0PtmmHDBBJfKnhlbZqjGUqOFmQsdxscPGN9gu0IAAAA44m9PAAAAOO1MJs83F2ssNfpyx5cu488Mf0YPDnpQceFxtn+xf9end2nuT3M9nis6JNplzL59z6kY1GmQQ2ul7KJsXfX+VVp9/+oGW3KdSR2DO+pA0QGHsYPFB93O8XQGTo11qPiQS1s2X7Ov/nz5n3Xn+XeqU2gn21ojw2YM0/cHvm/yNer7/Ely+7s5WHzQ7b7ZRQ3/zqJDol0+dxMTJzZ6raNzo85t1H5no4aChGW7l6m8ptxhLDokWv+49h+6LP4yRQZHymwyq7KmUoF/dq0oa6rIoLrz2VfZtAts16RWXWEBYbZ5Ott3fJ/Kq8tPa5WNu+tmFWW53beyptJtNU1D31GNDYDCAsJ0z8B79K9N/7KN/ffH/+rKnleqoLzAYV/aoQEAADQdgQ0AAAC86mjZUZcbuOdHn69Xr3rVYcxitTS43sqgToPka/ZVjaXGNpZVmKWlu5bqmt7XnNI8Z988W/d9fp/DHDLzM3Xtf6/VigkrbDd1vS0hNsElsFm+e7kSYhMcxrIKs7Ql5+QWcW9OWYWuN56v6X2NnrnkGYex0qpS/ZT302mZQ0JMguZojsPY8j3L9duLf+swZrVa9Xnm5w2eb0jnIVq1f5XD2JheY3Rb/9saPLbWUutSSeVjcq2sqrU0rXXg2cLd+/3M8Gdcfjfu1gE6GT5mH13Y6UKHP7dFlUX6/aW/V2xobIPH278f3SO6KzY01mEdm8raSs3eOlsPD3648XNy937W0wpySJchLmPf7f9OpVWlLiHgV7u/cjlXnw596l2/pqkeHfKoQ2BzrOKYHlvymMM+F8RcoAtiL2i2awIAALQVZ0cPBAAAALRZ/j7+LmOHig85LDBeY6nRpK8maVfBrnrPFRYQpqt7ua6ZcN+C+7Q+e73LeEF5gX63/HcqrixucJ4h/iH6cvyX6tW+l8P45pzNunHujaqsqWzwHGfCdb2vcxl7bd1rDr+7GkuNnl72dJPXCzod3L3/O/J3qLz6RIhXVl2m+z+//7S1Cruuj+vvbMnOJVqwfYHD2Nsb39aO/B0Nnu+Wc29xGXtsyWMeA8fq2mqt2LtCD33xkG7+6GaX7e4Wl//lyC8NzuNs5O793np4q8PzrMIsPbyo8QFIQ245x/H9sFgt+tW8XymnOMft/kWVRfr454819oOxenn1y7Zxk8mkW8+91WX/p5c9rS8yv3AZL60q1V/X/lWZRx3X6mnq+3l+9PnqG9nXZY5PLH3CIbjLK83T5OWTXY6/+ZybPZ77ZPSP7q/L4i9zGHMOiamuAQAAODlU2AAAAMCrOgR1UHy7eO07vs82VlBeoP7/7K9rel8jk0xak7VGu4/tbtT5Xhz9opbuWuoQRhwuPazh7w3XsK7DNDBmoKxWq3Yf26212WtVUVOhZ0c826hzR4dEa+mvl2r4jOEOa+6s3LdSd356pz657ZOTXmemufx64K/13IrnlF+ebxs7UnZECdMSNLbvWLULbKcV+1Y0Kng4E86LOk9BvkEOVVY78nfo3HfO1RU9rlBFbYVW7lupQ8WHTtsczo06V2N6jdGy3ctsY1ZZdctHt2hMrzHq2b6nfj7ys77b/12jzjcsbpiu7X2tluxaYhvLK83TkH8P0ZDOQ9SvYz9FBESosLJQuwt268e8H21h1Kjuo1zO1yeyj8vYWxvf0u5ju9UtopvMJrMCfAJcqtLORoM6DXIZe/+H97X96HZd2OlC5Zbkavme5Se9ppE7jw19TG9ueFOHSw/bxtZmr1X3qd01Kn6Uukd0l5/ZTwUVBdp+dLu2Hdmmaku1JGlw58EO53r20mc1e+tsh/CwtLpUN869URfEXKDBnQfLz+yn/YX7tSZrjYqrijWm1xiHc/Tu0FsmmRzWX9qSs0WXvHeJLoi5wBZqPTXsKcVFxEmSpoyaovGfjXc4z4z0GVqTtUajuo9SWU2ZvtzxpY5VHHPYJ8w/TE8Ne+pkf3UePTrkUa3ct9LtNl+zr8YPGO92GwAAAOpHYAMAAACv+39D/5+eWuZ4UzGvNE//2fof2/PwgHD1j+qv9QdcK2XsXdjpQr1z3Tt6+EvXf6G//sD6Bo9vSO8OvbVo/CKNnj3a4abygu0LNPGLiXrvxvcaXDPldAoLCNM/rvuH7vr0Lofx0upSffTzR7bnvmZf9Wzf0+vBTaBvoCZeOFFvb3zbYXx/4X69l/Ge7XnX8K6KCIjQz0d+Pi3zeOe6d5SYmuhwI94qq77a/ZXDfudFndeo6pbZN8/WsBnDXILGtENpSjuU1qS5jeo+SsF+wQ6ftxpLjUN7thC/kBYR2IzsPlIXxFzgUlXj/Hu5utfVLr/7kxUWEKbP7vhMV/znClXUVNjGqy3V+nrP1006V5fwLpp761zd/NHNDq0XpbpKIefX5Wk+l3a7VKuzVjuMr8tep3XZ62zPfz3w17bA5q4Bd+m7/d9p2uZpDsdk5mcqM9+xgsfgY/LRf2/5r2JCYxr12pri5nNuVpewLm7Xerq619Wn5ZoAAABtAS3RAAAA4HW/vfi3uqP/HR63hweE6+PbPnZpC+RJ0uAkLbxzoWJCTs9Nw6FdhmrurXNd1qKYlTHLbUuiM+3O8+/U38b8TWaT+7/uB/oGatZNszS0y1C32860V698VSO7j/S4vVNoJy28c6E6Bnc8bXPo3aG3vhz/pSICIjzu89iQx/TkxU+6jLv7nUWFROn7id83qR1VsF+wRnQb4TIeFhCmlNEpjT7P2cxkMmnebfPUJayLx32GdR2mub+a26zXHR43XOt/s179o/o3+pjY0FgNjBnoMn593+v13X3fqXeH3ic9n1evfLXJf9b+ef0/9fLlLyvAJ6DBfTuHddaye5bphn43nOwU6+Vr9tVDgx5yu412aAAAACePChsAAAB4ndlk1oe3fqjr+lyn6VumKyM3Q9WWanUJ66Jrel+jScMmqWf7nvrgxw8afc4b+t2g/b32a+5Pc7Vk1xJtOrRJR8qOqLy6XB2DO6pzWGcN6zpMV/e+WuEB4U2e8w39btA/r/+nkhYlOYy/sf4NRQZFNrrN2uny5LAndUm3S/T6ute1Omu1CsoLFBsaqyt6XKGnhj2l/tH9NSN9hstxpzMU8STIL0hf3/O1/rXpX3r/h/f1y5FfZJJJcRFxuqnfTZo0bJKiQ6JP+zxGdh+pXx79Ra+seUWLdizSoeJDigiM0ODOg/XokEd1XZ/r9OKqF12O8/Q76xjcUfPvmK+M3Ay9v/V9rc1eq73H9+p4xXGZTWa1C2ynXu176YKYC3RFzys0ptcYt+ubSHXvZ+8OvTVt8zRtOrRJBeUFLhUeLUXfyL5KT0rXX9f+VZ9nfq79hfsV4heivpF9NX7AeP3f4P+Tn49fo85lsVpcxpyDVENCbIJ+/L8ftXjnYn227TNtOLhBh4oPqaiySIG+geoY3FF9I/tqSOchuqrXVRrRbYTHFofD4oZp+6Pb9Xnm51qYuVAbDm5QbkmuSqpK1CGogzqFdtLgzoN1da+rdU7Hc9wev3HiRr227jWtzlqtnOIcVdbWvw6WyWTSsyOe1f2J92v6lun6Zu832n50uwrKC+Rr9lVUcJQGdR6k6/tcr7sH3K0A34aDnVPx0KCHlPJdiq19nCS1C2ynG/vdeFqvCwAA0JqZrFarteHdAAAAALQmh0sOK/7NeIcWUREBETr6zFH5mvl3XZ4MeneQtuRscRhLezDNZa0TnBnXf3C9Fu9c7DCWkZShC2Iv8NKM2o5aS606/62z8krzbGNJg5I0bey0eo4CAABAfWiJBgAAALQyOcU5enrZ0x7Xp8ktydXtn9zuENZI0rV9rm3TYc1TXz2lNVlr5O7ftFXWVOrxJY+7hDWdwzrrwk4Xnqkpwk5+Wb7Dmi9SXbVez/Y9vTSjtmVmxkyHsEaSHkh8wEuzAQAAaB2osAEAAABamX3H96nHmz0k1bWfSohNUFRwlKprq7X72G6tzlqtqtoqh2N8TD764f9+0HlR53ljymeF+Knx2l+4XzEhMRrcebC6hneVj8lHB4sP2trKOUsdm+pxLQ+cHi+uelG7CnZp+Z7lyi3Jddh2UZeL9P3E7700s9atoLxAL656UTWWGu05tkfLdi9TrbXWtn1ol6HaMHGDF2cIAADQ8rXdfz4HAAAAtAE78nd4rLSxN23stDYd1tg7XHpYX+78ssH97hl4jx688MEzMCPYey/9Pe0v3O9229PDnz7Ds2k7iiqL9OaGN91uM8mkV6989QzPCAAAoPVpkS3RampqlJycrB49eigoKEg9e/bUiy++KIvFdcFJe6tWrdKgQYMUGBionj17ato0eusCAACgbesc1llf3PWFJl440dtTaTECfQP1lyv+opk3zZTJZPL2dPA/jw99XL8671fenkab9Pyo53VZ/GXengYAAECL1yIrbF599VVNmzZNs2fPVv/+/bVp0ybdf//9ioiI0BNPPOH2mL179+q6667Tgw8+qDlz5mjt2rV65JFHFBUVpVtvvfUMvwIAAADg9Oke0V2bH9qspbuW6tu93yqrMEt5pXkqrS5VeEC4OoV20qDOg3Rt72t1y7m3yN/H39tTPiusum+VluxaomW7l2lH/g7llebpWMUxBfsFq2NwRw2MGajLul+mey64Rx2COnh7um2e2WRW+8D2GtJliB4e9LBuOucmb0+pTYkIiNCgzoP0+NDH+d0DAAA0kxa5hs3YsWMVExOjGTNm2MZuvfVWBQcH6/3333d7zO9+9zstXLhQ27Zts409/PDD2rp1q9avX3/a5wwAAAAAAAAAAOBJi6ywufTSSzVt2jTt2LFDffv21datW7VmzRpNnTrV4zHr16/XmDFjHMauvvpqzZgxQ9XV1fLz83PYVllZqcrKSttzi8WigoICRUZG0vYAAAAAAAAAAIA2zmq1qri4WJ07d5bZfOor0LTIwOZ3v/udCgsLdc4558jHx0e1tbX685//rLvuusvjMbm5uYqJiXEYi4mJUU1NjY4ePapOnTo5bPvLX/6iF1544bTMHwAAAAAAAAAAtA7Z2dnq2rXrKZ+nRQY2H330kebMmaMPPvhA/fv3V0ZGhn7729+qc+fOmjBhgsfjnCtjjG5w7ipmnn32WU2aNMn2vLCwUN26ddOOHTvUoQP9qoG2qrq6WitWrNDo0aNdKvMAtA18DwDgewCAxHcBAL4HAEgFBQXq27evwsLCmuV8LTKwmTx5sn7/+9/rzjvvlCQNGDBA+/fv11/+8hePgU1sbKxyc3MdxvLy8uTr66vIyEiX/QMCAhQQEOAy3qFDB7f7A2gbqqurFRwcrMjISP4yBrRRfA8A4HsAgMR3AQC+BwCc0FzLqJx6UzUvKCsrc+kH5+PjI4vF4vGYYcOGafny5Q5jy5Yt0+DBg/lCBQAAAAAAAAAAXtUiA5sbbrhBf/7zn/Xll19q3759mj9/vv72t79p3Lhxtn2effZZ3XvvvbbnDz/8sPbv369JkyZp27Zteu+99zRjxgw9/fTT3ngJAAAAAAAAAAAANi2yJdrbb7+t5557To888ojy8vLUuXNnJSUl6U9/+pNtn5ycHGVlZdme9+jRQ4sXL9aTTz6pd955R507d9Zbb72lW2+91RsvAQAAAAAAAAAAwKZFBjZhYWGaOnWqpk6d6nGfWbNmuYyNGjVKW7ZsOX0TAwAAAAAAAIA2ymq1qqamRrW1td6eCtBs/Pz85OPjc0au1SIDGwAAAAAAAADA2aOqqko5OTkqKyvz9lSAZmUymdS1a1eFhoae9msR2AAAAAAAAAAATprFYtHevXvl4+Ojzp07y9/fXyaTydvTAk6Z1WrVkSNHdODAAfXp0+e0V9oQ2AAAAAAAAAAATlpVVZUsFovi4uIUHBzs7ekAzSoqKkr79u1TdXX1aQ9szKf17AAAAAAAAACANsFs5nYzWp8zWS3GnyAAAAAAAAAAAAAvI7ABAAAAAAAAAADwMtawAQAAAAAAAACcFQ4fllaulIqLpbAw6bLLpJgYb8/KO+677z4dP35cCxYs8PZUcIZQYQMAAAAAAAAA8Koff5Tuukvq2lW6807pwQfrHrt2rRv/8Udvz9C9KVOmKCEhwSvXnjVrltq1a+eVa3tyNs6pJSGwAQAAAAAAAAB4zVdfSUOHSp98ItXUOG6rqakbHzq0bj80P6vVqhrnXzy8gsAGAAAAAAAAAOAVP/4o3XyzVFnpGtYYamrqtt98c/NX2ixdulSXXnqp2rVrp8jISI0dO1a7d+922OfAgQO688471aFDB4WEhGjw4MHasGGDZs2apRdeeEFbt26VyWSSyWTSrFmztG/fPplMJmVkZNjOcfz4cZlMJq1cuVKSVFtbq9/85jfq0aOHgoKC1K9fP7355puNnvfKlSt1//33q7Cw0HbtKVOmSJLmzJmjwYMHKywsTLGxsRo/frzy8vIcjjWZTPrqq680ePBgBQQEaPXq1SouLtbdd9+tkJAQderUSX//+9912WWX6be//a3t2KqqKj3zzDPq0qWLQkJCdNFFF9leU31zcmZUJqWmpiouLk7BwcG67bbbdPz4cds+FotFL774orp27aqAgAAlJCRo6dKlDnN57LHH1KlTJwUGBio+Pl5/+ctfbNsLCwv10EMPKTo6WuHh4br88su1detW2/atW7dq9OjRCgsLU3h4uAYNGqRNmzY1+j04HQhsAAAAAAAAAABe8fLLdYGM1Vr/flZr3X529+ObRWlpqSZNmqS0tDR98803MpvNGjdunCwWiySppKREo0aN0qFDh7Rw4UJt3bpVzzzzjCwWi+644w499dRT6t+/v3JycpSTk6M77rijUde1WCzq2rWr5s2bp19++UV/+tOf9Ic//EHz5s1r1PHDhw/X1KlTFR4ebrv2008/LakuyHjppZe0detWLViwQHv37tV9993nco5nnnlGf/nLX7Rt2zYNHDhQkyZN0tq1a7Vw4UItX75cq1ev1pYtWxyOuf/++7V27VrNnTtXP/zwg2677TZdc8012rlzZ71zcmfXrl2aN2+evvjiCy1dulQZGRl69NFHbdvffPNNvfHGG3r99df1ww8/6Oqrr9aNN96onTt3SpLeeustLVy4UPPmzVNmZqbmzJmj+Ph4SXVVQ9dff71yc3O1ePFibd68WRdeeKGuuOIKFRQUSJLuvvtude3aVWlpadq8ebN+//vfy8/Pr1G//9PF16tXBwAAAAAAAAC0SYcPu2+D5klNjfTxx9LUqVJ0dPPM4dZbb3V4PmPGDEVHR+uXX37R+eefrw8++EBHjhxRWlqaOnToIEnq3bu3bf/Q0FD5+voqNja2Sdf18/PTCy+8YHveo0cPrVu3TvPmzdPtt9/e4PH+/v6KiIiQyWRyufYDDzxg+7lnz5566623NHToUJWUlCg0NNS27cUXX9RVV10lSSouLtbs2bP1wQcf6IorrpAkzZw5U507d7btv3v3bn344Yc6cOCAbfzpp5/W0qVLNXPmTL388sse5+RORUWFZs+era5du0qS3n77bV1//fV64403FBsbq9dff12/+93vdOedd0qSXn31Va1YsUJTp07VO++8o6ysLPXp00eXXnqpTCaTunfvbjv3ihUr9OOPPyovL08BAQGSpNdff10LFizQJ598ooceekhZWVmaPHmyzjnnHElSnz59Gpzz6UaFDQAAAAAAAADgjFu5svFhjaGmpu645rJ7926NHz9ePXv2VHh4uHr06CFJysrKkiRlZGQoMTHRFtY0p2nTpmnw4MGKiopSaGio/v3vf9uueyrS09N10003qXv37goLC9Nll10mSS7nHjx4sO3nPXv2qLq6WkOHDrWNRUREqF+/frbnW7ZskdVqVd++fRUaGmr7b9WqVS5t5BqjW7dutrBGkoYNGyaLxaLMzEwVFRXp0KFDuuSSSxyOueSSS7Rt2zZJ0n333aeMjAz169dPjz/+uJYtW2bbb/PmzSopKVFkZKTDXPfu3Wub66RJkzRx4kRdeeWVeuWVV07qNTQ3KmwAAAAAAAAAAGdccfHJHVdU1HxzuOGGGxQXF6d///vf6ty5sywWi84//3xVVVVJkoKCgpp8TrO5rk7Catfnrbq62mGfefPm6cknn9Qbb7yhYcOGKSwsTK+99po2bNhwCq+mrsXbmDFjNGbMGM2ZM0dRUVHKysrS1VdfbXtNhpCQENvPxlxNJpPDPvavwWKxyMfHR5s3b5aPj4/DfvaVOyfLuLb9HNzNxxi78MILtXfvXi1ZskRff/21br/9dl155ZX65JNPZLFY1KlTJ9v6OvbatWsnqW4dnfHjx+vLL7/UkiVL9Pzzz2vu3LkaN27cKb+Wk0VgAwAAAAAAAAA448LCTu648PDmuX5+fr62bdum1NRUjRgxQpK0Zs0ah30GDhyo6dOnq6CgwG2Vjb+/v2prax3GoqKiJEk5OTlKTEyUVFepY2/16tUaPny4HnnkEdtYUys83F17+/btOnr0qF555RXFxcVJkjZt2tTguXr16iU/Pz9t3LjRdlxRUZF27typUaNGSZISExNVW1urvLw82++rMXPyJCsrS4cOHbK1V1u/fr3MZrP69u2r8PBwde7cWWvWrNHIkSNtx6xbt86hCig8PFx33HGH7rjjDv3qV7/SNddco4KCAl144YXKzc2Vr6+vbV0bd/r27au+ffvqySef1F133aWZM2d6NbChJRoAAAAAAAAA4Iy77DLJt4klBb6+dcc1h/bt2ysyMlLvvvuudu3apW+//VaTJk1y2Oeuu+5SbGysbr75Zq1du1Z79uzRp59+qvXr10uS4uPjtXfvXmVkZOjo0aOqrKxUUFCQLr74Yr3yyiv65Zdf9N133yk5OdnhvL1799amTZv01VdfaceOHXruueeUlpbWpPnHx8erpKRE33zzjY4ePaqysjJ169ZN/v7+evvtt7Vnzx4tXLhQL730UoPnCgsL04QJEzR58mStWLFCP//8sx544AGZzWZbRUvfvn119913695779Vnn32mvXv3Ki0tTa+++qoWL17scU6eBAYGasKECdq6datWr16txx9/XLfffrtt/ZvJkyfr1Vdf1UcffaTMzEz9/ve/V0ZGhp544glJ0t///nfNnTtX27dv144dO/Txxx8rNjZW7dq105VXXqlhw4bp5ptv1ldffaV9+/Zp3bp1Sk5O1qZNm1ReXq7HHntMK1eu1P79+7V27VqlpaXp3HPPbdJ70NwIbAAAAAAAAAAAZ1xMjPSrXzU+tPH1lW67TYqObp7rm81mzZ07V5s3b9b555+vJ598Uq+99prDPv7+/lq2bJmio6N13XXXacCAAXrllVdsLcFuvfVWXXPNNRo9erSioqL04YcfSpLee+89VVdXa/DgwXriiSeUkpLicN6HH35Yt9xyi+644w5ddNFFys/Pd6i2aYzhw4fr4Ycf1h133KGoqCj99a9/VVRUlGbNmqWPP/5Y5513nl555RW9/vrrjTrf3/72Nw0bNkxjx47VlVdeqUsuuUTnnnuuAgMDbfvMnDlT9957r5566in169dPN954ozZs2GCrynE3J0969+6tW265Rdddd53GjBmj888/X//85z9t2x9//HE99dRTeuqppzRgwAAtXbpUCxcuVJ8+fSTVtWF79dVXNXjwYA0ZMkT79u3T4sWLbSHT4sWLNXLkSD3wwAPq27ev7rzzTu3bt08xMTHy8fFRfn6+7r33XvXt21e33367rr32Wr3wwgtNeg+am8lq34QOHhUVFSkiIkJHjx5VZGSkt6cDwEuqq6u1ePFiXXfddfLz8/P2dAB4Ad8DAPgeACDxXQCA7wF7FRUV2rt3r3r06OFwc78xfvxRGjpUqqyU6rtTbTJJAQHSxo3SgAGnOGE0Smlpqbp06aI33nhDv/nNb5r13FOmTNGCBQtcWsWdjer7fOfn56tjx44qLCxUeDP06qPCBgAAAAAAAADgFQMGSAsW1IUxniptfH3rti9YQFhzOqWnp+vDDz/U7t27tWXLFt19992SpJtuusnLM2s7CGwAAAAAAAAAAF5z9dV1lTO33eYa2hht0DZurNsPp9frr7+uCy64QFdeeaVKS0u1evVqdezY0dvTajOauKQTAAAAAAAAAADNa8AA6YMPpKlTpZUrpaIiKTxcuuyy5luzBvVLTEzU5s2bz8i1pkyZoilTppyRa7UkBDYAAAAAAAAAgLNCdLR0++3engXgHbREAwAAAAAAAACcMqvV6u0pAM3uTH6uCWwAAAAAAAAAACfNz89PklRWVublmQDNr6qqSpLk4+Nz2q9FSzQAAAAAAAAAwEnz8fFRu3btlJeXJ0kKDg6WyWTy8qyAU2exWHTkyBEFBwfL1/f0xykENgAAAAAAAACAUxIbGytJttAGaC3MZrO6det2RkJIAhsAAAAAAAAAwCkxmUzq1KmToqOjVV1d7e3pAM3G399fZvOZWV2GwAYAAAAAAAAA0Cx8fHzOyFofQGt0ZmIhAAAAAAAAAAAAeERgAwAAAAAAAAAA4GUENgAAAAAAAAAAAF5GYAMAAAAAAAAAAOBlBDYAAAAAAAAAAABeRmADAAAAAAAAAADgZQQ2AAAAAAAAAAAAXkZgAwAAAAAAAAAA4GUENgAAAAAAAAAAAF5GYAMAAAAAAAAAAOBlBDYAAAAAAAAAAABeRmADAAAAAAAAAADgZQQ2AAAAAAAAAAAAXkZgAwAAAAAAAAAA4GUENgAAAAAAAAAAAF5GYAMAAAAAAAAAAOBlBDYAAAAAAAAAAABeRmADAAAAAAAAAADgZQQ2AAAAAAAAAAAAXkZgAwAAAAAAAAAA4GUENgAAAAAAAAAAAF5GYAMAAAAAAAAAAOBlBDYAAAAAAAAAAABeRmADAAAAAAAAAADgZQQ2AAAAAAAAAAAAXkZgAwAAAAAAAAAA4GUENgAAAAAAAAAAAF5GYAMAAAAAAAAAAOBlBDYAAAAAAAAAAABeRmADAAAAAAAAAADgZQQ2AAAAAAAAAAAAXkZgAwAAAAAAAAAA4GUENgAAAAAAAAAAAF5GYAMAAAAAAAAAAOBlBDYAAAAAAAAAAABeRmADAAAAAAAAAADgZQQ2AAAAAAAAAAAAXkZgAwAAAAAAAAAA4GUENgAAAAAAAAAAAF5GYAMAAAAAAAAAAOBlBDYAAAAAAAAAAABeRmADAAAAAAAAAADgZQQ2AAAAAAAAAAAAXkZgAwAAAAAAAAAA4GUENgAAAAAAAAAAAF5GYAMAAAAAAAAAAOBlBDYAAAAAAAAAAABeRmADAAAAAAAAAADgZQQ2AAAAAAAAAAAAXkZgAwAAAAAAAAAA4GUENgAAAAAAAAAAAF5GYAMAAAAAAAAAAOBlBDYAAAAAAAAAAABeRmADAAAAAAAAAADgZQQ2AAAAAAAAAAAAXkZgAwAAAAAAAAAA4GUENgAAAAAAAAAAAF7WIgOb+Ph4mUwml/8effRRt/uvXLnS7f7bt28/wzMHAAAAAAAAAABw5evtCZyMtLQ01dbW2p7/9NNPuuqqq3TbbbfVe1xmZqbCw8Ntz6Oiok7bHAEAAAAAAAAAABqrRQY2zkHLK6+8ol69emnUqFH1HhcdHa127dqdxpkBAAAAAAAAAAA0XYsMbOxVVVVpzpw5mjRpkkwmU737JiYmqqKiQuedd56Sk5M1evRoj/tWVlaqsrLS9ryoqEiSVF1drerq6uaZPIAWx/jzz/cA0HbxPQCA7wEAEt8FAPgeAND8f/5NVqvV2qxnPMPmzZun8ePHKysrS507d3a7T2Zmpr777jsNGjRIlZWVev/99zVt2jStXLlSI0eOdHvMlClT9MILL7iMf/DBBwoODm7W1wAAAAAAAAAAAFqWsrIyjR8/XoWFhQ7LsZysFh/YXH311fL399cXX3zRpONuuOEGmUwmLVy40O12dxU2cXFxysnJUWRk5CnNGUDLVV1dreXLl+uqq66Sn5+ft6cDwAv4HgDA9wAAie8CAHwPAJDy8/PVqVOnZgtsWnRLtP379+vrr7/WZ5991uRjL774Ys2ZM8fj9oCAAAUEBLiM+/n58QUMgO8CAHwPAOB7AIAkvgsA8D0AtGXN/Wff3KxnO8Nmzpyp6OhoXX/99U0+Nj09XZ06dToNswIAAAAAAAAAAGiaFlthY7FYNHPmTE2YMEG+vo4v49lnn9XBgwf1n//8R5I0depUxcfHq3///qqqqtKcOXP06aef6tNPP/XG1AEAAAAAAAAAABy02MDm66+/VlZWlh544AGXbTk5OcrKyrI9r6qq0tNPP62DBw8qKChI/fv315dffqnrrrvuTE4ZAAAAAAAAAADArRYb2IwZM0ZWq9XttlmzZjk8f+aZZ/TMM8+cgVkBAAAAAAAAAAA0XYtewwYAAAAAAAAAAKA1ILABAAAAAAAAAADwMgIbAAAAAAAAAAAALyOwAQAAAAAAAAAA8DICGwAAAAAAAAAAAC8jsAEAAAAAAAAAAPAyAhsAAAAAAAAAAAAvI7ABAAAAAAAAAADwMgIbAAAAAAAAAAAALyOwAQAAAAAAAAAA8DICGwAAAAAAAAAAAC8jsAEAAAAAAAAAAPAyAhsAAAAAAAAAAAAvI7ABAAAAAAAAAADwMgIbAAAAAAAAAAAALyOwAQAAAAAAAAAA8DICGwAAAAAAAAAAAC8jsAEAAAAAAAAAAPAyAhsAAAAAAIBGysjNkOkFk348/KO3pwIAAFoZAhsAAAAAAIBGSkxNlCRdOvNSL88EAAC0NgQ2AAAAAAAAjZSelC5JWnP/Gi/PBAAAtDYENgAAAAAAAI2UEJsg6/NWDYgZIEmKeCVCGbkZ3p0UAABoFQhsAAAAAAAAToHRJg0AAOBUENgAAAAAAAB4kJGbIdMLpnqraIw2aQAAAKeCwAYAAAAAAMADo3rGuYrmx8M/SqpbyyYhNuFMTwsAALRCBDYAAAAAAAAeGNUzzlU0l8681PbYUAUOAABAYxDYAAAAAAAAeJAQmyDr81aXKpo1969xeM46NgAA4FQR2AAAAAAAADTRgJgBkk4EN6xjAwAATpWvtycAAAAAAADQUg2IGSDr81ZvTwMAALQCVNgAAAAAAAAAAAB4GYENAAAAAAAAAACAl9ESDQAAAAAAoAFWq1Wl1aUqqixSSVWJ0g+mK1CB+mbPNxrRY4RC/EO8PUUAANDCEdgAAAAAAIA2LSM3Q4mpiUpPSldCbIJtvMZSox35O7TtyDYdqzgmi9Vi2/bbxb/VhwM/1C3zbtHU66YqxC9EncI6aWDMQHUM7uiFVwEAAFo6AhsAAAAAANCmJaYm2h6tz1tVVFmkn/N+VmZ+pqpqq9weM3n4ZKnkf4+SSqtLtatgl3YV7FLX8K5KjE1Up7BOHq/pKSQCAABtF2vYAAAAAACANi09KV2StPmhzVqXvU4f/fSRfsz70WNYI0ldw7vaHrMLs5W0KEnZhdmSpANFB/TFji+0MHOh8krz3B5vHxIBAABIBDYAAAAAAKCNS4hNUPGzxcoqzNKSnUv00KKHbOGLwTmUsZeyOsX2aL9PbkmuFmYuVObRTJdjjJDIeAQAACCwAQAAAAAAbVp2YbY+2/aZNh/a7BC+2LMfdw5tkkcku91XkixWi1btX6X12etltVpt4wmxCbI+b6UdGgAAsCGwAQAAAAAAbVZGboaW7lqqipoKh6DFOYSxf56yOkVPLH3C9jwuIk6pY1Nt+9jva1TmLN65WEt2Lam3zRoAAGjbCGwAAAAAAECb9HPez9p4cKOsqqt8sQ9c4iLiHPaNi4hzCXGcGcFNXEScLaixr8w5UHRAX2R+oRpLzWl4NQAAoKUjsAEAAAAAAG3O3mN7tS57XZOOcQ5x6uPcUs0Ie/LL87Vq36omXRcAALQNBDYAAAAAAKBNKSgv0Ip9K2yVNQZP69fYa6jKxnm/iYkTXbbtPrZbPxz+obHTBQAAbQSBDQAAAAAAaDOqaqu0bPcyt23J3K1B48xda7SlO5cqaVGSlu5c6tAKLXlEsqanT5fkGgJtOLBBB4sOnurLAQAArQiBDQAAAAAAaDPWZq1VUWWR221GGJOyOkXZhdlu98kuzFbK6hRNHj7ZNjY/c77t0T6YMUIbyTUEssqqb/Z+o5KqklN6PQAAoPUgsAEAAAAAAG1CXmmedhbstD03qmHswxn7tmhpB9McththjSS9tu41SdKWQ1tsx47rN84hmEkekay4iDiljk11WP/GuO7O/J1avX+127lm5GbI9IJJGbkZp/iqAQBAS0FgAwAAAACAHW6Ut17rs9c7PHe3Zo194OLczszd2jazf5ht+/maPtc4nMc+pPF03eyibGUVZrnsk5ia6PAIAABaPwIbAAAAAADscKO8ddpzbI8Olx52GHPXrsxTyJK0KEnj+o2z7W/fEs2eQxjzv0oa5yoe5+t+f+B7WawWh/OkJ6U7PAIAgNaPwAYAAAAAADuncqOc6pyzU62lVhsObHAZd9euTJImJk50e575mfPd7m9IWpTkcA7n9WykE23V7Ctwjlcc1878nQ7nSohNkPV5qxJiExp+gQAAoFUgsAEAAAAAwM6p3CinOufs9FPeTyquKm70/kYrNMk1vEk7mKbswmzbGjaNOYc9T+3V0nPTXapsAABA20JgAwAAAABAM/FUnUPljfdYrVb9lPfTSR/vHLxMT5/uELZMHj7ZoaWaJxMTJyppUZItAHI+pqiyyKXKBgAAtC0ENgAAAAAANBOjOkeSQ0BD5Y33HCw+qNLqUo/bjXVm0g6m2dabqc/ExIkuYYtztYw7RvAzPX26x7Zq249ub/A8AACg9SKwAQAAAACgmTkHNCwg7z078nd43GasJyO5b2Fm3w4teUSyJiZO1PT06cotydWb17wpSR5boyWPSLYFO84/e3K49LCKKxvfug0AALQuBDYAAAAAADQz54CGBeTPHPv2c9W11dp3fJ/Hfe0rY5zXqkkdm6ohXYYodWyqrSLGvkrmiaVPOOzvXHmTsjpFKatTlDwiWXERcYqLiHOprDGqe7ILs21ju4/tPqnXDQAAWj4CGwAAAAAAGqGqtkr5Zfk6WnZUlTWV9e5LQOM99tVNe47tUY2lxuO+9lUvQ7oMcVsFY98yrT7T06e7bXNWX7s0Y5v9PrsKdtl+Zu0jAADaFgIbAAAAAECb5u6meI2lRtuObNOy3cv0yS+f6MVVLyogJUBTv5+qz7Z9ptlbZ2tWxiwt3rlYmw5t0vGK49xcP0vYVzc5t0NzV9Fiz10VTH0t05x5Om9T5lBQXqDjFcclsfYRAABtDYENAAAAAKBNs78pXlxZrO8PfK///vBfrc5arX3H96mgvEDPr3xekmMlRFVtlQ4UHdCWnC2a9/M8bq6fJYzqpn6R/ZRTkuOwzbmixf7RCFGW7lyqpEVJWrpzqSTPa84Ya9g4n995f+fn7qpqnPcxqmxY+wgAgLaFwAYAAAAA0KbNvXWuJOkPl/5Bc3+aqx8O/6DKWseWZ41ZMN7Y9va1b+ubPd9QbeNleaV5LmPGOjXGo7swZX7mfEmyPbprc+a83o3zOewZxxuVNe7ERcQ5VN7sPbZXEq31AABoawhsAAAAAABt2p2f3ilJennNy7LK6nYfd62y3O2TPCJZ/2/J/9OV718piWobb3IX2BhtzYxH4z0zJI9I1rh+42zPjQDFOdiJDY3VE0ufaHAO9sc5BznOIaB95c3xiuP1rr0DAABaJwIbAAAAAECbtTV3q54b+Zyk+qtnGmJURzjflJ92/TRuvHvJ9we+d1krxj4kcfeepaxOUf/o/g7nSVmd4hLU2R8zYeAE28/2lTcTEyd6DPiSRyS7hID2c7PKqvyy/Ea/VtZPAgCgdSCwAQAAAAC0OdW11Vq2e5k2HNygruFdG6yeMXhaMN5d9UTq2FSZTCZ9kfmFSqtKm3X+aNjjSx+X5Pje2Ickzu+ZwXkdGiPcMYzuPtph/9k/zLb9PKTLENvPRhWPO+4+a84BztGyox6Pd8b6SQAAtA4ENgAAAACANsVitWjZ7mXad3xfk491t2C85Fgd4Rz+HCk7ovnb56uwovDkJ40mOV5xvMF1h+zHndekMUIbd+HOiv0r6j2f/Xntgx7n9XPcsQ8EmxLYpCelOzwCAICWicAGAAAAANDq2beMWrF3hQ4WHzyp83gKARpa46asukxf7f5K1bXVHueF5pNXmteodYcM7qphUlaneFzDRjrRCm3y8Mm266QdTHNpsZZ2MM3hGu6u5dyeLWV1SpMCm4TYBFmftyohNqHRxwAAgLMPgQ0AAAAAoNWzbxk196e5btuaNUZTQgDn9mnHK45rxT7H6gxaWZ0ejVn/xV1LtOQRyS7hTMrqFLf7BvgGSJK6hHWxjbkLY6anT1fSoiTbc3cVNu4qto5VHJPFamngVQAAgNaEwAYAAAAA0OrZt4oybqp7WsPE0zo1TZFdmO22fdq+4/uUnnNiLrSyaj721Uql1Q2vGeS8Tk3yiGSP4Yw77255t+7YFclKWpSknfk76213ZnAOdew/Z/Zt2CxWi45XHG/UXAAAQOtAYAMAAAAAaPX6dOijFy57QdKJCgdPa5t4WqemMZxbW7m7zqZDm2w36Wll1Xzsq5XKqsvq3ddoXTYxcaImJk5sUlDjrKSqRJL0+vrXFewX3OD+ySOSHUJB++s6V25V1FSc1JwAAEDLRGADAAAAAGj1Nh7cqNjQWCWPSNb09OlKHpHssa1ZQ4vV11eB4+6mv/N1rLLq273fcjO+mdlXKzUU2NivJ+OujdnJemvjWxredbjbbfbVM/ahYH2ft6raqmabGwAAOPsR2AAAAAAAWrUjpUe0s2CnpMZVz7hbp8ZdRUTK6hSX0Ma46e6pisc4z66CXdp8aPMpvjLYs69WaigMa0zrspO17sA628/j+o1T6thUl8+T8+fC07pIBDYAALQtBDYAAAAAgFZt/YH1tp8bqp5xxzmksT/WObQxwp4hXYYodWyqJDlU49ifZ9vRbTpWfuwkXxXqU11bLclzNdSQLkNO6rPQVPMz59t+tp+LfThTX3hIYAMAQNtCYAMAAAAAaLX2HNuj3JJc23N31TPSiZvpaQfTbDfVjZ+d16OJi4hzqNCo74a7c0WPfUhgsVr04Y8fyvSCSRm5Gaf8WlGnxlIjq6yS6q+oMj4Lp1t2YbZL6NdYBDYAALQtBDYAAAAAgFap1lKrDQc2uIy7q7owbqIb65mkrE5xWdvEWJw+uzDbYZsR3rg7r3MVh3Ng9OiSRyVJiamJp/ZiYWNU10juK6qc36dGBShWk3ws0QqsHayw6nGKrHpc7cv/rJz6l8qxnd859PM0N2cENgAAtC0ENgAAAACAVmlXwS4VVxU7jHmqdHC39ozx88TEiUodm+oQ5thX2NiPG49GKGDsGxcRZxuzDwuM66YnpTfvi2/DfMw+tp/tAzL790Q68X4Z7+W4fuMkq1m+ls4Kqr1I4dW3KbJqkmIrpiqu4mN1rXxPMVVT1KHmNwqtHSM/S1/llJkanM/ExIkO4YwR1nmq9rJHYAMAQNtCYAMAAAAAaJV25O9wGXOupjCCE+e1Z+Ii4mw/x4bGKmlRkktIM7r7aNvztINpDjfl7a/jHOjY/2xct1f7Xqf6cvE/fmY/t+MO773VV48l/lnbsgP18cZSdax6Rt9vvVzdKj5Vl8p3FV31nNrXTFBo7eUKsPaWWYGyqlpVpv0q9Vmt474fqDDg7+oVbm1wPtPTpzcqnHHHpIYDIQAA0HoQ2AAAAAAAWp3iymLllOS4jDu3n2pMOyz7dmn2lTgr9q+w7WPfIi1ldUpdtcb/2FfteJrH7mO7G5wHHGXkZrhd/8dkMtlCm+oak77J3KFJCz7U0PAURVX+QQNMHyu+cr6+WHeB5n8fqXY1dyukdqT8rT1kkp8sqlBMuyqV+KzQMd/ZyvP/sw4GJCkr8FblBD6qo/6vqtDvA1X6rlOEf+Pmal9dlXYwrdGv0d+nkRcAAACtgq+3JwAAAAAAQHPbWbDT7bhR6WC0Rqtv/RBJbm+up45NVdKiJIexcf3GOYQ/8zPn234e0mWI7drO1TeGXQW7lBCbUO9c4MhY9ycxNVFFv6vSrrwS7cwr0a68Eq3a1V6HC006XuojqbM6arQOH5aCJRX9b90Zf1+LOobXqGN4tVYd+EjV5ixVm7JVY8pT8lXTlF0YpJTVH5/yPI21jwzT06fbwr+GKm78fNxXCwEAgNaJChsAAAAAQKvjrh2awT6s8XTD3KiIsK+ckeqqZ5zDGskxoJFkq7AZ12+c2wXu7de5yS7MVkF5gY6VH2v8C2yjjpVWaePeAv13w3492m+Foitf1IU+izVgyjKN++c6PfPJD3r3uz3KPOSn46W+kkzy861ShfkndYnZq8H99umwf7JuHblZT92coysGb9EXh+9Qkd9nKvfZpBrzYSWP/GOzznl6+nSHdnoG47Ng/zlwRoUNAABtCxU2AAAAAIBWJbckV0WVRR6324cm9tU2Ul01hHNI01T2FThGkON8fvtKGyM86vDXDkpPSm/zlTZWq1VHiitt1TI784q183Ddz/mlVQ77BulC5ZdYJEnRYQHqExOq3lGhKrPukX9ggTqG1Sg4wCKTqb0k1b0vPtLf0jKUOjbVpdrJCFacQzmTTLKq4fVqPHH3mTKqu5w/jw6vzzfopK8JAABaHgIbAAAAAECrsqtgV73bjbDE+Ya55P7G+sTEiYoNja13vZtx/cZpfuZ8TUyc6FApYYy7O7/9PIxzJ6Ymyvr8yQcDLYnFYtWhwnLtMoKZwyXadaREOw8Xq6iixuNxXdoFqXd0qPpEh9YFNNFh6h0dqoigE+3DluzM1rrs3Zr0tWMllfN779yizt377/weniz7a9tXdjnPyV6wX/ApXxcAALQcBDYAAAAAgFYltyTX9rO79mfGOjYG+5v2RgWM/U164ya+MTa6+2it2L/C4ZrO+9qPp45NVdrBNIdtRjWFMQ9jDt/e+60kKSM3Q4mpia2i4qbWYlV2QZl2/q9aZtf/gpldeSUqq6p1e4zZJHXrEKze0WHqE1MXzvSODlWvqFCFBDR8KyPEP6TeSirpxGfDvqrKXYVVc4U1zp87g6dxicAGAIC2hsAGAAAAANBq1FhqHNaCqa/dlMG4YW5/Q9/dTXpj7JJul+jOAXe6XcvGmVE14RwCOFdTGHPIL8+X6QWTbbwlVdxU1Vi0P7+0Lpixq5bZc7RUVTUWt8f4mk3q0THEoVKmT3SoenQMUaCfz0nNIyM3Q6NmjXJoPyc5VlJ5qqo51XZ4DWnM+kkGk0wK8Q9xGW9NYR4AAHBEYAMAAAAAaDWOlB5xWGukvnZTBufqF3vu2mGlrE7RuH7j6t3XU9srd9vsb+I7h0Bzb53rcd7eUlFdq93/q5AxWpntzCvW/vwy1Vjch0sBvmb1igq1rTFjBDTdI4Pl52Nu1vklpiZKqgtfPFVSObdCM8YkeWx9lzwiWbkluScV6hiBYWMCREOHoA7yNbvetjFeX0sK8wAAQOMQ2AAAAAAAWo280jyH587tptxVONR3A95TO6z6KnAkeQxnjG32c7K/if/aVa9p8vLJtm13fnqn7jj/Do/zO51KKmtOhDL/a2W2M69E2cfKZPWQE4T4+6h3TJithVmf6FD1iQ5Tl/ZB8jGb3B/UzNKT0pWYmqjnRjwnybH1mXTiPTECtnH9xumaPtfYjnfXFk2q+yzVt45RfZJHJDusbdQY0SHRbseN15eelH5ScwEAAGcvAhsAAAAAQKthH9i4C2fswxGp7ka6pxv0zcG4fn03+u2rgNoFtlPNczX6Me/HM3ZT/nhZ1f9CmRPVMrvzSnSosMLjMRFBfuobUxfK9I4+EdB0igiUyXRmghlPEmITbKGG/e/eeI+NwMwI2Owfk0cke/wspB1Ma/JcPFXt1FfxZYgKiXI7nhCbQGUNAACtFIENAAAAAKDVsA9s3LWfcg5PPLVLO5kQx9MxDVVl2K+h8+AXD6pn+566vMflzXpT3mq16khJpUMbMyOkOVpS6fG4qLAAWwuzPtEn1pnpGOrv9WCmPkbbMPvfvf37k12Y7fBZMEKb+t6rpnwe7ENC5zZ3xuctaVFSvWvZeKqwAQAArVfzNooFAAAAAMBLyqvLVVpdantu3BifmDhRSYuSXG6cG9zdpD+Zihv7Be7rY7THSlqU5NAmy5jHFf+5osnXNlitVh06Xq5VO45o+uo9evazH/Srf61TwovLNfTP32j8vzfoT5//rPe/36/1e/JtYU3niECN7Bul31zaQ6/cMkCfPDxMGX+6Sml/vFIfPnSxXrzpfN0zLF7DekUqKizgrA5rJLmtTBrSZYjt55TVKYqLiLO1SXO3JpEz531Ghk+od3/j/bX/TBgBjXOll/Pnwc/sp/aB7RucEwAAaF1MVqunzrOwV1RUpIiICB09elSRkZHeng4AL6murtbixYt13XXXyc/Pz9vTAeAFfA8A4Hvg7PXt3m91xX+ucKlacA5qnCth7BeTH9xpsDblbHI5t3FM36OTtOP4T1LvZS77PNQvWe9mngh/RncfrRX7VzjsY1T62M/JGDNauL1343u6P/H+el9rrcWqA8fK/tfCrOR/lTPF2pVXotKqWrfHmExStw7BDpUyfaJD1Ss6VKEBra8Bx5HSI3prw1sObfHctcmzt3TnUs3PnO/yOXDX1i7oq3f14e+iddcPd6ncUu5xHqljU13eb+d5OG/vHNZZY/uOPZWXD+AM4O8EAPLz89WxY0cVFhYqPDz8lM/X+v5GBgAAAABok4zKFPs2Z8Zi80ZAY9wgjw2NddjP2O4urLm+9/V128vba0fHv0kdnXZY87RM1kC9qxRdEzVRS4/Uncs5rJHqQpm4iDiHdWsMRmu0LuFdbGPVtRbtzy91aGG2M69Ee46UqLLG4vb34Gs2Kb5jiG1dmbpgJkw9o0IU6OfTmF9lqxAVEqX+0f1dArH62pAZrdGcPwcpq1M0vP04rTs2/8Rg+AFJrm3L7uqcrF69HD+Hzu+38V4bnLd3Cu10ci8aAAC0aC2ywiY+Pl779+93GX/kkUf0zjvvuD1m1apVmjRpkn7++Wd17txZzzzzjB5++OFGX5MKGwAS/3oGAN8DAPgeOJu9vu51TV4+2e22+m7a21c3OFfFDO86XOsOrPN8Uaski5/kU20buqX7RH2237GCx746w/5GvaGmVsov9tXRIj9VVraXqaaTduWVaO/RUtVY3P9vu7+vWb2iQm2VMn2i69aa6R4ZIj8fOqBLUtrBNKXn1rVHc1fV5G7/xrbDCzIH6cOBH7pU2PguSdUf/iB16dK4kMidO8+/U+EBp/6vdAGcXvydAAAVNpLS0tJUW3uixPunn37SVVddpdtuu83t/nv37tV1112nBx98UHPmzNHatWv1yCOPKCoqSrfeeuuZmjYAAAAA4DSyD2vsK2zsq1js1w5xd9PePqwZGD2w/rBGkkxyCGskKXNzrEMVjn1Fze+G/Uk5BX46WlQXzhwt8tXRYj8dL/GRVfbrwuTafgr297G1LusTHWarnInrECwf89m9loy39erQyxbYOFexuAtThnQZ0rjAZlWy5G+WBkpaO1ka9qJtU21otl5MT1FyaHKDnzd3YkJiCGsAAGijWmRgExUV5fD8lVdeUa9evTRq1Ci3+0+bNk3dunXT1KlTJUnnnnuuNm3apNdff53ABgAAAABaidk3z9aEBRMcbsDb36TPLcl1e5y79Ukk6Ye8H05qHj93TJHZGiI/S5z8rN00Z025fK0JGmBaoLnfev7f8EA/izqGV6tTe5Ou7neB+sTUrTPTKTxQZoKZk9IhqIM6BHVQQXmBQ3Bm3ybPObTx9HmwWZUsFcVJ/v97T4q61o2NSpFWJcs66kRI4671XUP6Rva1/ZyRm6HE1ESlJ6UrITahaS8eAAC0OC0ysLFXVVWlOXPmaNKkSTKZ3P8Fdv369RozZozD2NVXX60ZM2aourrabcliZWWlKisrbc+Liook1ZU6VldXu+wPoG0w/vzzPQC0XXwPAOB74Ozy4+EfdenMS7Xm/jWKD4vXu9e9W7fhf8u7vLH2DQWZg/TG2jck1bWxkqTJwyfLZDHpQNEBvbHuDT2c8LBm/zBbI+NG6rvs7xp3catkUrh8LV3la+kqH+PR2lU+1va23bJyHA+z6LhqzAc0LL6HOoZXq2NYjTqG1ygkwCKTSQrwDdBd559on1VbWyO7JhNooh7hPXSs9JikE5+H/279r+2zYIy/ec2bkqRuYd307nXv6kDRAb227rW6HbbdIJ37RV01TUVXqeMBBY34h6T3FORvkiq6SV+9W7eujd15jXNJsn0m6+Nj8lG3sG6275fh/x6uIHOQhv97uAp/X3jqvwwAzYq/EwBo7j//LXING3vz5s3T+PHjlZWVpc6dO7vdp2/fvrrvvvv0hz/8wTa2bt06XXLJJTp06JA6dXJdzG/KlCl64YUXXMY/+OADBQcHN98LAAAAAAC0CDUWKe2ISVklJuWWm5RbLpXVeK58aedvVWyQVTHBqnsMsio2SAphmQMAAIBWoaysTOPHj2/ba9jYmzFjhq699lqPYY3BufrGyKk8VeU8++yzmjRpku15UVGR4uLiNHr0aEVGRp7irAG0VNXV1Vq+fLmuuuoqFhQE2ii+BwDwPXB2sa+wOVZxTHuO7bFte2LpEw0eP3n45BNVFJImDJyg2T/MdtnPZA1XRMUk+Vv6O4xbZZHFlKca8wHVmA+q1nRANXvOUW3f2cozlWvYeXXnm3z+ZCXbXcf++l3Du7qM3zPwHvmYfVxeoyTbzwNiBjT4+lDn273fKqswy2HMqKAx3gP7z8ub17zpWGHjRpA5SO+d/54e+PsRlV/xuOPGtZN14w3SwgLH440qHk+u6nmVuoR3aeSrAuBt/J0AQH5+frOer0UHNvv379fXX3+tzz77rN79YmNjlZvr2Ks4Ly9Pvr6+HsOXgIAABQQEuIz7+fnxBQyA7wIAfA8A4HvgLJCRm6FBMwbZ1veYmT5TDy1+yLYeyVOXPOWwFsm4fuM0P3O+7XFi4kS9uOZFh+eJXRLl6+erf6T9w3acnyVe0VXJ8rXGyqIyFfsuUpVpv6rNWaoxHZLVVOk4sT5LJKskqzQtY5ok6cU1L7pdG8UYN9ZPMfj4+sjPp+7zNWjGIIdH42fr8y26YcYZNbjrYO0v3u8wZjFZVG4pl8VkkdVsdfi8ZBVnSSap3FKu316YrDfflKwj6taoUUiuNHi67Tzlgdkqt5SfOPEXqTKbpY+OJjlcL3lEsqxmz+9ZdEi04iPjT/3FAjjj+DsB0HY19599c7Oe7QybOXOmoqOjdf3119e737Bhw7R8+XKHsWXLlmnw4MF8mQIAAABAC5WYmujw+MDCByTJdtPdOQSZnznf9pg6NtW26Lwxbjw/XnHcdkxQ7cWKrXxNvtZYVZsOKSdgko77/UdlvqtUbd7rGtY4GddvnCRpYuJEl/kY3C1wb4Q1kpSelG57tP8ZjRcZHKn4dvEOY8bv3d3nJWV1im186pYUDeodJ/OXqVJRnENYI0m65LW6IEeSViXLbJYGDaoLaKS6x9SxqR7ff8PwuOHKyM2Q6QWTMnIzTvKVAgCAlqzFBjYWi0UzZ87UhAkT5OvrWCj07LPP6t5777U9f/jhh7V//35NmjRJ27Zt03vvvacZM2bo6aefPtPTBgAAAAA0E/vQIiM3Qx/e8qGkEzfKpbqgRDoRnNhvt9/PkF2YrTk/zpGsUkT1HYquSpZZQSo3Zyg3YJJqzAcaPb/kEckOYVDawTSP+9nzMzv+w8KE2ARZn7cqITbB4Wc0TZBvkJIWJSm7MFuS+8+Bp8/Gpk5JMkXUHWcLZwxrJ9cFOV/UBTpms3TttXUBUGOCGknq1b6XDhUfcgkhAQBA29JiA5uvv/5aWVlZeuCBB1y25eTkKCvrRG/aHj16aPHixVq5cqUSEhL00ksv6a233tKtt956JqcMAAAAAGhG9qFFYmqiBsQMcLlB7lxFI52opDBuqNvfnE9ZnaL7ByapY/UzaldzjySpyGeh8vz/JIuppME5nRNysSS5bXNmzMWeu/3sq2vQfEbOGinJsaLG+fMSFxFna11nhH2G2ktT5OsrmUviHEOboro1iMxmyddXeuQRqYuHZWiyC7MdQiNJ8jH56KKuFzmENFRQAQDQNrXYwGbMmDGyWq3q27evy7ZZs2Zp5cqVDmOjRo3Sli1bVFlZqb179+rhhx8+QzMFAAAAAJwu9i3C/H38XbYbYYxx891dVY1xk16SnhzyojJ+Ga2Q2pGyqlr5fm/rmP+7ksnSqPmMHXipQwjg7npGiyxP1ReBvoGNuhaaxvisvHTZS5LchyfSiUBnevp0pY5Nddj2hz/UtTszl8RJS96sG7z2CemGJJ17Ubb+8Aepf3/Pc3BuwyZJA2IGKNQ/1OGzTAUVAABtU4sNbAAAAAAAsG8R5u/j73ATPrswWymrU5Q8IllDugxxCUjs942LiNNzw2bqqw0XqKA4VLUq1GH/ZJX4ftWk+by+/nWH585VPO4qapwF+wU36ZponITYBKUnpeu5lc/pQNEBt+GJ5NoWzf6xSxfp6tuyZbk+qS6osfNzxxRZQk+EP+4CIfsAL7swW6H+oUqMTbTNj3Z3AAC0bQQ2AAAAAIBWIcgvyOEmvLsb8sZN9LSDaQ7bJy2YpzkrIlVa6aP2oaXKCfitKn1+1vCuw5s0B+c2Wsb1cktyG30OApvTIyM3w9Z27KXvXvK4n3OrNOfnzgGPvZTVKbb33P7zZR8M2u/bKbQTLfAAAIANgQ0AAAAAoFVoH9hez414TlJdJYO7BeTt211Jkqxmta/+jTpWPymL1azoDoe0tWaCas1HJEnrDqxr0hymp093qfCxv159N/sNIX4hysjNkOkFkzJyM5p0fbgyfpfOa8QY7c7cta1zZl8t4xzKvXnNmw6fNU/vsRHm2Lv8P5c36bUAAIDWjcAGAAAAANAq+Pn46fyY823VEO4Wlbdf08ZkDdGFgf9WeM04SdJx3w+UVpYkq6nilOdiX+FjXM/++vacW2d1DO5oCxfsQwacHOffobFGzAOJD+iT2z5xaVFnvB/274l9tYwt7LNj/1mzD2+c2+E5hznGujUAAAASgQ0AAAAAoBWJDIps1H6l5SHqVPm68o/HyNfHopEDd6jQ7wONO+fmeo8b129ck+c0rt84TU+fromJE92uX+Pcui06JNphAXqcmrm3zrU92q8R42v21ZheYxTmH+awv32oYvxsH/QZJg+fLEk6UHTAIdypr6WacZ70pHTWqwEAAC4IbAAAAAAArUbH4I5ux+3XFQmsTdSa9GHys8apxpSnLN/fqntsgVLHpmp+5vx6z1/fduNmvnOoYxxjX5lhX1VjX4ER7BesEP8QFqBvRnd+eqfDo72wgDCNO3ecOoV2so3ZV0EZPxuhi/172DW8qyTptXWvSWpcu7vr+14vy58svK8AAMAtAhsAAAAAQKvhKbBJWZ0iWaWwmhsVXTVFZoWqwvyLcgImqdq8p1E3292xD2emp09X8ojkBkMf23z+92iEAZJ0z/x7WLemmTVUrRToG6jr+16vczueK+lEOOPcTk+S23WRjEqb+tbC8ffx15heY3Rx14tlMplO/sUAAIBWjcAGAAAAANBqeApsnr3kOUVWP6EO1Q/JJB+V+CzTYf8/6IELf2XbJ+1gWoPn91Q9Y6gv+JmYONFtVY3zsaxb07waU61kNpk1ovsIXRJ3icwmz7dK3K2L1DW8q9twxxAZFKlbzr1F8e3iT/YlAACANoLABgAAAADQagT4Big8INxhrKTCrO/SExRae5WsqlWB37vK93tLMtU4tLgyKmSkE8HMxMSJDqFK/+j+tmqYpjKuZV9VY3+T3359E3hH/+j++tV5v1KfDn3qDW4aw9/HXxfEXKCbz7nZ5TMJAADgDoENAAAAAKBV6dm+p+3n3GN+mvV1lA7kB8jft0Z5/lP0xOiBkoeuVCmrUxzamk1Pn+6yCH12YbbH9Wqc2VfSuKuqsde9XXdVJVexvomXtQtsp9E9RuuO/nfovKjz5GPyafLxl3a7VHcPuFsXdb1IPuamHQ8AANouX29PAAAAAACA5tSrfS9l5GZoW3agvkhrr5paszqEVeu2SwoUGfawpLrQxAhnJLmEMvUxjjMqbezbok1MnKjY0FjbPvbr00iqtzonLjxOfj5+TX/BOC3CAsJ0abdLdWGnC7Xv+D4dLjmsI2VHVFxZrFprrW2/doHtFBYUpvCAcHWL6Kau4V29OGsAANCSEdgAAAAAAFqV9oEdtDEzSl//4C9J6hlboZsvKlCgv9W2j32Qkl2YLamuWmZ+5nyH0MUTI5DJLcl1GJ+ePt22YL1xbvvwpj59I/s2/cXitAv2C9Z5UefpvKjzbGPl1eWqranVN4e+0c3n3Cw/P89BW0ZuhhJTE5WelE71FAAAqBct0QAAAAAArUZpZY0e+e8WW1hzUd9i3X5pvkNYY8guzFbSoiRbMGPfBq0xUlanuOzr3O7MOHdDVTsBPgHq3q57o64L7wvyC1KAb0Cj9k1MTXR4BAAA8ITABgAAAADQKmQXlOnWf63T0p9z5edj0tghx3TFBUU6WFQXzGQXZttCGqPyxZ6xLo3RLs0d+7VoGsPYd2LiRNt1Heb8v/lYrdZTXuQeZ6f0pHSHRwAAAE/42yAAAAAAoMXbuLdAN72zVttzi9UxNEBzHxqmy88LluRY5VJfxUtsaKxSx6YqLiLObShjtDWrr7WZ83mN1mtGJY7zduP5/Qvvb+xLRQuTEJsg6/NW2qEBAIAGEdgAAAAAAFq0Dzdmafy/v1dBaZXO7xKuL/7fJRrUvb3MMitpUZJD5Ux91TH2YYq70CZldYqtSseTplTf2O9P9QUAAAAIbAAAAAAALVJNrUXPf/6Tnv3sR9VYrBo7sJM+ThquThFBkqRx88ZJqluTxqicMSpejBBnYuJEl7ZlaQfTlLQoSZL7NWmcq2SSRyQrdWyq7RqSHFqv2Z/H/nxGW7bPbv+M6gsAAAAQ2AAAAAAAWp7jZVWaMHOjZq/fL0l6ekxfvX1XooL8fWz72FetOFfFGC3KjEd3YymrU1wCHntGUGOENEbQk3YwzaX1mnEe+3ZqxrZb5t1yMr8CAAAAtDIENgAAAACAFmXn4WLd9M5ard2Vr2B/H717zyA9dnkfmUwmh/3sq1bcVcUYj87b7FuoGeyDHWMf+/AluzDbIfCxr+Bxxz5Asg+WMnIzZHrBpIzcDLfHAQAAoPUisAEAAAAAtBjfbj+scf9cp/35ZeraPkifPTJcY/rHetzfCEOcW5vZV7zYhzepY1M1pMsQW5DjrqVZ8ohkTU+f7tDyzD70mZg40W0Fjz37/RNTE20BTWJqosMjAAAA2g4CGwAAAADAWc9qtWraqt36zexNKqms0UU9OmjhY5fqnNjweo9LiE2Q9XmrhscNb9L1nFuaudtm/7N9oDOkyxCHyhr7YMfw3MjnHJ7bhzaSY9UNAAAA2gYCGwAAAADAWa2iulaT5m3VK0u2y2qVxl/UTe//5iJ1CPFv8FijxVi7wHYK8g1yu49zOOMcrmQXZnsMcIygxnmNGufKGufjru19razPW23BTHpSukNVjX07NwAAALQNBDYAAAAAgLPW4aIK3fHu95qfflA+ZpNeuqm/Xh43QP6+jfvfWSMEGf7ecF3Z80qZTa7H2VfHSK7hirsqG0kOAY2nc7p73jG4o4Z2GSrpRAVQQmyCQ3gDAACAtofABgAAAABwVtqafVw3/mONtmYfV7tgP73/wFDdMyy+UccalTVzb50rqS4E6RTWSRd3vdhlX+fqGCNcsW9r5o59JU52YbZD6zPjnMZ/xrkDfQM1ptcY+Zh9XM5nH94AAACg7SGwAQAAAACcdT7POKjbUtfrcFGl+kSH6vNHL9Hw3h0bfbxRWXPnp3c6hCDnR5+vPh361HusEbYM6TJEqWNTXaplDO7WsvFUjSNJPiYfXdnzSoX6hzb6dQAAAKDtILABAAAAAJw1LBarXl26XU/MzVBVjUVXnhutzx4Zru6RIU06T33txUZ0H6Go4KhGn8sIcOprc9YQk0wa3WO0Ood1bvQxAAAAaFsIbAAAAAAAZ4Xiimo99P4m/WvlbknSI5f1Uuo9gxUW6Nfkc9XXXszX7Ksb+t2g+HbxTTpnXEScw3o39uvXOK+DY8/H5KNR8aPUs33PJl0PrZPRri8jN8PbUwEAAGcZAhsAAAAAgNftzy/VLf9cp6+35SnA16w370zQM9ecIx+z6bRcz9fsqzG9xigxNrFJxxmhTcrqFIc1bJzXwTGE+Yfpxn43qm9k32aZN1o+o12f8QgAAGAgsAEAAAAAeNW6XUd10ztrtTOvRDHhAZqXNEw3JXQ5I9ce0mWILu9xuXzNvo0+xn69muzCbCUtSnIIbyTZxnu176WokMa3X0PrV1+7PgAA0LYR2AAAAAAAvMJqter99ft0z3sbdbysWhfEtdPCxy7VBXHtztgcMnIz1OftPvrNwt+ourbaYwBjz779mX14Y/Ax+dieXzTjotM4e7RE9bXrAwAAbRuBDQAAAADgjKuqseiPC37Sc5//rFqLVeMSu+ijhy5WTHjgGZ2HfVuqx5Y85jaAqY99eBPqH6qhXYbq7oF3U0UBAACAJmt8zTcAAAAAAM2goLRK/zdnszbsLZDJJP3umnOUNLKnTKbTs15NfdKT0m2hjRGuJKYm6rv7vpPZZFZOSY6OlR+TVVbbMfahzuybZ2vRXYt0XtR5im8Xb3sNRhUFAAAA0FgENgAAAACAM2ZbTpEe/M8mHThWrtAAX711V4IuPyfGa/NxF6w4P6+urVZhZaGKK4tVUVOhxeMX67oPrtPGiRs1pMuQMzldAAAAtGIENgAAAACAM+Krn3P15EcZKquqVffIYM2YMFi9o8O8Pa0G+fn4qWNwR3UM7ihJOjfqXKpnAAAA0OwIbAAAAAAAp5XVatU/vt2lN5bvkCRd0jtS74y/UO2C/b08MwAAAODsQWADAAAAADhtyqtq9fQnW/XlDzmSpPuGx+uP158rPx+zl2cGAAAAnF0IbAAAAAAAp8Wh4+V66P1N+ulgkfx8THrxpvN119Bu3p4WAAAAcFYisAEAAAAANLvN+48p6f3NOlpSqQ4h/pr260Ea2qODt6cFAAAAnLUIbAAAAAAAzerjTdn64/yfVFVr0TmxYZo+YbC6tg/29rQAAACAsxqBDQAAAACgWdRarPrL4m2avmavJOnq/jH62+0JCgngfz0BAACAhrDKIwAAAADglBWWV+uBWWm2sOaJK/roX3cPatFhTUZuhkwvmJSRm9EizgsAAICWjcAGAAAAAHBK9hwp0bh/rtWqHUcU6GfWO+Mv1JNX9ZXZbPL21E5JYmqiw+PZfl4AAAC0bAQ2AAAAAICT9t2OI7rpnbXac6RUnSMC9cnDw3X9wE7enlazSE9Kd3g8288LAACAlq3l1qYDAAAAALzGarXqvbX79Ocvf5HFKg3q3l7Tfj1IUWEB3p5as0mITZD1eWuLOS8AAABaNgIbAAAAAECTVNbUKnn+T/p48wFJ0u2Du+qlm89XgK+Pl2cGAAAAtFwENgAAAACARjtSXKmH52zW5v3HZDZJf7z+PD1wSbxMppa9Xg0AAADgbQQ2AAAAAIBG+elgoR76zyYdKqxQeKCv/jH+Qo3sG+XtaQEAAACtAoENAAAAAKBBX/6Qo6c+zlBFtUU9o0I0/d7B6hkV6u1pAQAAAK0GgQ0AAAAAwCOLxaqp3+zUW9/slCSN6hult+5KVESQn5dnBgAAALQuBDYAAAAAALdKK2v01LytWvpzriTpwRE99Ptrz5WPmfVqAAAAgOZGYAMAAAAAcJFdUKYH/7NJ23OL5e9j1su3DNCvBnX19rQAAACAVsvs7QkAAAAAQEuRkZuhiFcivD2N027j3gLd9M5abc8tVsfQAH340MWENQAAAMBpRoUNAAAAADRSYmqigsxB3p7GafXhxiz96fOfVF1r1fldwvXuPYPVuV3rfs0AAADA2YAKGwAAAABopPSkdG9P4bSpqbXo+c9/0rOf/ajqWqvGDuykj5OGE9YAAAAAZwiBDQAAAAA0UkJsggp/X+jtaTS742VVmjBzo2av3y9JenpMX719V6KC/H28PDMAAACg7aAlGgAAAAC0YTsPF2vifzZpf36Zgv199Pc7EnR1/1hvTwsAAABocwhsAAAAAKCN+nb7YT3+YYZKKmvUtX2Qpk8YrHNiw709LQAAAKBNIrABAAAAgDbGarUq9bs9enXpdlmt0tAeHfSvuy9UZGiAt6cGAAAAtFkENgAAAADQhlRU1+rZz37U/PSDkqTxF3XTlBv6y9+XJU4BAAAAb+Jv5AAAAADQgIzcDJleMCkjN8Or5zhVh4sqdMe732t++kH5mE166ab+enncAMIaAAAA4CzA38oBAAAAwA37gCUxNVGSbI8noznOcSq2Zh/Xjf9Yo63Zx9Uu2E/vPzBU9wyL98pcAAAAALgisAEAAAAAN+wDlvSkdEmyPZ6M5jjHyfo846BuS12vw0WV6hMdqs8fvUTDe3c84/MAAAAA4Blr2AAAAABAAxJiE2R93ipJqq6uPuVznCkWi1WvLcvUv1buliRdeW60/n5HgsIC/c7oPAAAAAA0jAobAAAAAHDDmxUxzaG4oloPvb/JFtb832W9lHrPYMIaAAAA4CxFYAMAAACgRbJfY6a5lVSVKCYkRpmPZcpitei7/d/pmz3faMOBDco8milJ2np4a5Oufzrn62x/fqlu+ec6fb0tTwG+Zr15Z4J+d8058jGbTvu1AQAAAJwcWqIBAAAAaDEycjNsa8rYrzHTHK3GLFaL9hzbo5/yflJeaZ7H/UwWk6IVrZEzRzbp+s09X0/W7TqqRz7YouNl1YoJD9C79wzWBXHtTtv1AAAAADQPKmwAAAAAtBj2oUdztSwrqy7TpkOb9MGPH+jbvd8qrzRP2YXZSlqUpOzCbI/HTR4+WZKUPCJZS3Yu0eGSw/Ve53S3WLNarXp//T7d895GHS+r1gVx7bTwsUsJawAAAIAWgsAGAAAAQIthH3okxCbI+rxVCbEJJ32+vcf2at7P87QlZ4vKqsts4ymrUxwe3eka3lWpY1MVFxGn7KJsfZ75uRbtWKSiyiKH/YxWaJJOeb6eVNVY9McFP+m5z39WrcWqcYld9NFDFysmPLDZrwUAAADg9CCwAQAAANBiNEdII9W1P1ufvV7L9yxXVW2Vy/bkEckOj/YOFB1weLR3qPiQ5m+br0PFh2xj9lVBp0NBaZXumbFBH2zIkskk/f7ac/S32y9QoJ/PabkeAAAAgNODwAYAAABAm1JaVaovMr/Qj3k/ut2eXZitlNUpSh6RrLiIOJftr617zeHRWWVtpRbvXKzPtn0m0wsmzb11rqTT0wptW06RbvzHGm3YW6DQAF/NmDBYD4/qJZPJ1OzXAgAAAHB6EdgAAAAAaDMKygv06bZPdbj0sMd1ahpqh2asXWM8GuzPZ7FadOu8WyVJd35652lphfbVz7m69V/rdOBYubpHBmvBo8N1+TkxzXoNAAAAAGcOgQ0AAACANqGkqkT/SvuXJiyYYKuikeqCGfvgpr52aFLd2jX2jwbnoMc4fvoN05v1dVitVr39zU4lvb9ZZVW1uqR3pD5/9BL1jg5r1usAAAAAOLMIbAAAAAC0elW1VVq8c7GSV9SFKEbLM3tG0BIXEafUsalu26HVxznoMc5Ta63VtiPbTvUlSJLKq2r12IfpemP5DknSfcPjNev+oWoX7N8s5wcAAADgPQQ2AAAAAFqcjNwMmV4wKSM3o1H7f7v3Wx2vOO4QqhiBiv2YpzZpaQfTlLQoSWkH02xjB4oOOOxbX9CzNnut8krzTual2hw6Xq7bUtfpyx9y5Odj0l9uGaApN/aXnw//WwcAAAC0BvzNHgAAAECLk5ia6PBYn82HNiurMEuS+1DFGJM8r18zPX267fGJpU9Ikl5b95rbfQ3Oa9os371c5dXljX6NDq9h/zHd+I+1+ulgkTqE+Ou/Ey/WXUO7ndS5AAAAAJydCGwAAAAAtDjpSekOj54UlBdoS86WRp3TPnhxbpc2MXGix+M8rXXjvEbO9qPb9fWer2WxWho1H8PHm7J117vf62hJpc6JDdPnj16ioT06NOkcAAAAAM5+BDYAAAAAWpyE2ARZn7cqITbB4z4ZuRmK/GukrbrGmXP7M+d2acb2tINpmp4+Xckjkh3CmcnDJ9e71o27NXJySnIavZ5NrcWqlEW/aPInP6iq1qKr+8fo0/8brrgOwY06HgAAAEDLQmADAAAAoFUy2qV5alnm3P7MuV2aMW60QzOev3nNm5KkruFd672+uzVyJGlzzmZV1lTWe2xhebUemJWm6Wv2SpIev6KP/nX3IIUE+NZ7HAAAAICWi8AGAAAAQKtjsVr0yhWvSPLcssw5SDEYlTXu2qA5hz/GvvaVOs6cg6CKmop627TtOVKicf9cq1U7jijQz6x3xl+oSVf1ldls8ngMAAAAgJaPwAYAAABAq/Nz3s9qH9TepWWZfRs05yDF4FxZUx/7ACdldYpLaOPcds3wy5FfVFpV6nK+mRu+12VvfKk9R0rVOSJQnzw8XNcP7NTwCwYAAADQ4hHYAAAAAGhV0g6maeC0gW7DE+c2aO4CFaOyZmLiRJfqm3H9xumJpU/Ynrtbp8ZY9yZpUZLL9Qy11lptPbzV9txqtWrGmr2aMj9PZoWqwvyLPn/sUp3fJeKkfgcAAAAAWh4CGwAAAACtytDpQyU5hiT2YY10ImhxF6gYlTXT06crLiLOIZSZnznf7TXH9Rvn8NxddY5zgLTtyDaVVZepsqZWz3zyg15a9ItM8lGJz3J98ciVigoLaPjFAgAAAGg1CGwAAAAAtCp/v/rvkhyrX+wDmYmJE13aoEmyVcWM7j7atp8kl9DG8MTSJ2zn9RTk2K+D467KJi07U+P/vUEfbz4gs0l6bux5OpLydw3pmtio1woAAACg9SCwAQAAANBqFFUWKdgv2GVtGvvAxb76xRhPHpFsG1+xf4VtP+fWZg2xb6Nmf07nOUhS7jE/PfHfg9q8/5jCAn018/6h+s2lPWQymZrykgEAAAC0EgQ2AAAAAFqNHfk73I7bV8nYBydxEXFKHZuq3JJc25h9ezN3rc3qMz19ulJWpyh5RLLiIuIc1sOxD5C2ZQfqPys66nipSfEdg/T5o5doVN+oJl0LAAAAQOtCYAMAAACg1fAU2EgnwhlJSlqUZKueSVqU5BDM9I/u3/QLb5ro8NSoyLFfDye7MFtWq/Tdz2Ga/32kamrN6hlboZd+Fa6eUaFNvyYAAACAVqXFBjYHDx7Ur3/9a0VGRio4OFgJCQnavHmzx/1Xrlwpk8nk8t/27dvP4KwBAAAAnC6Hig+ppKqkwf2cwxR7o7uPdmh/1rPgf0HMquS6/9xZlSzlDJH5y1T1P+pYxWNfzfPn717Xf78L1JpfwiVJQ/sW6/ZL85VburfhFwcAAACg1WuRgc2xY8d0ySWXyM/PT0uWLNEvv/yiN954Q+3atWvw2MzMTOXk5Nj+69Onz+mfMAAAAIDTLqswq97t2YXZSlqU5NDyzF7yiGTb+jWGPYfzXXfcdoPj85Bc6YYkWUKz9cu2uqGU1SnKLsy2tWLzsUTrAt/ZysqLlFXVOur3d115QZHMJulYxTEVlBc0+nUCAAAAaJ18vT2Bk/Hqq68qLi5OM2fOtI3Fx8c36tjo6OhGBTuVlZWqrKy0PS8qKpIkVVdXq7q6uknzBdB6GH/++R4A2i6+B4Cz1+GiwzJZTLbnB4oO6LV1r2ny8MmSpDfWvaEgc5CW7lyqIHOQbb/Jwyera3hXSXIYlyT1XyopSBr9xv8GghTU/2tJ40/sO/S/LvtI0htr39Cb17wpVfZWX+u/dazER4H+VTpkfkFPjbjJYa578vcoLCbM4dI/Hv5Rl868VGvuX6MBMQNO5VcD4DTg7wQA+B4A0Nx//k1Wq9XarGc8A8477zxdffXVOnDggFatWqUuXbrokUce0YMPPujxmJUrV2r06NGKj49XRUWFzjvvPCUnJ2v06NFu958yZYpeeOEFl/EPPvhAwcHBzfZaAAAAALRe6w6b9Mles2qtJnUNsWpiv1q1D/D2rAAAAAA0h7KyMo0fP16FhYUKDw8/5fO1yMAmMDBQkjRp0iTddttt2rhxo377298qNTVV9957r9tjMjMz9d1332nQoEGqrKzU+++/r2nTpmnlypUaOXKky/7uKmzi4uKUk5OjyMjI0/PCAJz1qqurtXz5cl111VXy8/Pz9nQAeAHfA8DZKb88X19kfuEwZl9hk1eSp9k/zNaEgRN0YecLteXQFs3+Ybbbc715zZu2Y90JMgfpvfPf0wM/PaByS3nd4JI3pWufOLGT1azQqvsUXHOtJKnCZ52KAt6RTFV1VTdOQvxDdNt5tzmMUWEDnN34OwEAvgcA5Ofnq1OnTs0W2LTIlmgWi0WDBw/Wyy+/LElKTEzUzz//rH/9618eA5t+/fqpX79+tufDhg1Tdna2Xn/9dbeBTUBAgAICXP/pm5+fH1/AAPguAMD3AHCWKTheIKvZ8d+idWnXRVOvmypJenHNi5KkaRnTlByWrBpTjcot5RrXb5zmZ853OM5qtqpLuy4nwhgPyi3lJ/a5+iHJUvfjmG53KGPnAAVZEiRJx3z/oyLfeZJVmpgw0WWeklRSUyKLyaIA3xP/D3Jh1wtV9lxZY38FALyEvxMA4HsAaLua+8++uVnPdoZ06tRJ5513nsPYueeeq6ys+hcZdXbxxRdr586dzTk1AAAAAF6QV5rncVt2YbbD85TVKZqePl2SND9zvlLHpip5RLIk2R6dj2ksP0ucftpxhYIsCbKoXHn+KSrymyf9b7ma6enTPZ77aNnRk7omAAAAgNahRQY2l1xyiTIzMx3GduzYoe7duzfpPOnp6erUqVNzTg0AAACAFzgHNtmF2UpalKTswmylrE5x2X9097q1LMf1G+eyLe1gmttjPNpdd66g2sGKrXxDftbOigiu0fAL1qvc53uX3VNWp9jmZi+/PN9l34zcDJleMCkjN6Px8wEAAADQIrXIlmhPPvmkhg8frpdfflm33367Nm7cqHfffVfvvvuubZ9nn31WBw8e1H/+8x9J0tSpUxUfH6/+/furqqpKc+bM0aeffqpPP/3UWy8DAAAAQDOwWC0qrCh0GDMCF0/By4r9KyTVVdj0j+7f4P4ODiZIA+2e91yh8Opb1a5mgkwyK7p9ke4aUapJy/9W72lSVqcodWyq7bm7CpvE1ETbo/X5Frf8KAAAAIAmaJEVNkOGDNH8+fP14Ycf6vzzz9dLL72kqVOn6u6777btk5OT49AiraqqSk8//bQGDhyoESNGaM2aNfryyy91yy23eOMlAAAAAGgm5dXlssoxzLBvcTYxcaIk99U0Ul1wYlTcNEqXjBM/W/0UX/ovta+5XyaZ1SVmr9LK71VBxX7bHIzrTkyc6Lb9mqGgvMDlUulJ6Q6PAAAAAFqvFllhI0ljx47V2LFjPW6fNWuWw/NnnnlGzzzzzGmeFQAAAIAzray6zGUsLiJOySOSHSpm5mfO93gOo+LGntlklsVq8XiM2dJeA3xeU5FPhKyqVYFfqvYXLpZMJ6pnjAqaa/pcY2vTJtWFNymrU2yhTcrqFP159J9t587IzVBiaqLSk9KprAEAAADaiBZZYQMAAAAABneBjeS5vZlRcWPPucLGJFO9Yc3+Eql9xSsqKo1QrYqU5/+cSnzrwhqD8xo19vOZnj7dNmaM/3HFH23b7VuhAQAAAGgbCGwAAAAAtFgZuRmKfzPeJRxxfm7PCEukurZkySOSXSpsnFus2QuouVRv/eQjH2sHVZmydCToGVX4/KCJiRMd2pzZBzSe5mPfss0+SKIVGgAAAND2ENgAAAAAaLGMChTnahr75xMTJzqEIvY/x0XEeazEcWE1qV31BEVUPqEaq0mVPpuUG/CUKnVAUl0QZLRik+QxvLEXFxFnC5Cmp09XVW1V4+YCAAAAoNUhsAEAAADQqg3pMsQhFLH/2VhTpiEma5CiqpIVUXObJOnKzhYVBrwmq6ncYb/swmylrE6xrVFjVNbYhzjOgY79oxHY0BINAAAAaHsIbAAAAAC0WEbLMPtqFkkubcactzeFjzVSsZWvK9hykSyqVGHAm7qhu0Uyua5xY1TS2K9RY4Q4ySOSFRcRp7iIOKWOTZUkW2CUOjZVcRFxqq6tdnhdtEQDAAAA2g4CGwAAAAAtTkZuhkwvmCRJWx7aoriIOIft9lU0kmwhiRHgjOs3zravfdWLM19LrGIr/yp/a3fVKF+HA36vSt81TZqrEeJ4attmP25U2CTEJsj6vFUJsQlNuhYAAACAlovABgAAAECLY98yzN/H32W7c4WNwQhw5mfOV+rYVFtlS1xEnN4Y84bDvn6WboqpfFW+1hhVmw4pN+BpVZl3nvScG6oCkiSzif9FAwAAANoq/m8AAAAAQItj3zLMCGyyC7OVtChJ2YXZLhU2xnZ7zs8LygpsP/tbeium8hX5KlJVpr3KDXhGteYj9c7p5r43ux1PHpFsC4bsuZujn49fvdcAAAAA0HoR2AAAAABocexbhhkhh6fWY5Js68jYS1mdoqRFSbaQ589r/ixJCqjtr5jKl+WjcFWatutwwLOymI7XO5+B0QO1YMcCt9viIuIcwiSDfcWNMe6uWggAAABA20BgAwAAAKBFM0IOIwBJHpHs0m7MXYhjL2V1ipJHJCuwdpCiq16UWcGqMG/V4YDnZDGVNDiHH/J+8Lg+jv31jZAo7WCaQ8WNsZ3ABgAAAGi7CGwAAAAAtGhGyBEXEWdrPTakyxCljk3VkC5DJJ0IUcb1G2cLUZzXtykp6qNO1c/LrACVmTcqz/8FWU3ljZrDuH7jHNbHMc5vhDLO69cY+9qHTL5mX/mafZv24gEAAAC0GvzfAAAAAIAWrTFVKUaIMj9zvuZnzncIWCTpzp5vasH3HWSVSaU+3+mo3xuSqbbRczDOaVxHqgtlYkNjJblW+BhhkREySVKwX3CjrwcAAACg9SGwAQAAANCihfqHymwyy2K1eNxnYuJEh4DGPlgJq7lB63/uJUnq3eWwvsl/XTJ5Ppfh8aGPy8/PzxbG2J/T4K4VW/KIZId2aIYQv5AGrwkAAACg9aIlGgAAAIAWzWwyq31g+3r3GdJliENbsnH9xklWKaL6DnWoTpIkFfnO1zf5v2lUWCNJhRWFiouIc2l35syopkkekWxr2eZOWEBYo64LAAAAoHWiwgYAAABAi5WRm6HE1ET9+4Z/u92eXZitlNUptgobo7rFapX8ym7Xhh11Iclx3zkq9J0rmRp/7dk/zNa0jGmSZGuHljwiWbkluQ7VPPbXrU90SHTjLw4AAACg1aHCBgAAAECLlZiaKEl68IsH3W43WpIZAUrK6hRZrNLSLe1sYU2B379V6Oc5rEkekdxgFc38zPm26hn7sMZ5Hu5kF2YraVGS+v+zvzJyM+q9DgAAAIDWi8AGAAAAQIuVnpQuSVp+z3K3252DlgcueFDPzd+p9D0hkqy6btAxFft+Xu81Ulan2Kp0JGnCwAkOj4a0g2lKWpRk26++eTif32AEUAAAAADaHgIbAAAAAC1WQmyCrM9bNar7KJnclMg4tCGz+umLjTEKqb1MVtVoxMBd+tf/Z+/O46Oq7/2Pv2cyWYGwhCUQwr6ICCZCABdUalW0WMWtbnVrbGzvvdpateJNq9Rcu1D7s7a1RgPuqLWKCy5VKyCKQICkIpuILCEQdhLIOsmc3x/xDGfOnEkmC0yW1/PxSGfmrN/JLJXzzuf7Wf/D+n42kqYNntbgufIK8pQ7I1d9u9ZPXda3a9+AcMasrDGnQJOC+9aY1TRFpUX+/axhjhlAAQAAAOh8CGwAAAAAtHvRUdFKjE10XJeZnimXEaf02Fwl+KbIp2p9J/1rvbD555LqpzOTpEXbFyl3Rm5AgJI9NTsglMkvztecZXMkSXOWzVFeQZ4/8DG3M/vV5M7IlaSAgMasprFW1aR2T9WyW5fJeMBQWnJai38XAAAAANonAhsAAAAAHcLAxIGOy+eteUn9qnN0sLSvPFF1+uE5ZTp9RDfHbYtKi5TaPdUf2uQszQnoSePUn8bsX5ORkqHsqdnKWZrjD2msAU2oqhpJ6te1X9OeLAAAAIAOh8AGAAAAQIcwvNfwoGXlVW6Nj56nWOMk1emIijz3aHDfGknOfWXMYMVaAROKtYdN1sIs5RfnB+yXszQnYGq0UMd0yaXkrsmNng8AAABAx0ZgAwAAAKBDSO6arC7RXfyPyyqi9Pyi3jp0pIvqdEh7Yu9Tjfsrf6VLQH+bbzkFK9lTsx3DnWe/eDbgsVP1jTk1mrVqR5K/CidrYZaq6qqUEJ3QtCcLAAAAoMMhsAEAAADQYZhVNgePRum5Rb118Gi0al17VRL7S3nd2yUd6x9jnaJMOtZ7xh7O5CzNCavixs5+HKdjS9Id793R5GMDAAAA6HgIbAAAAAB0GMN7DtfeUo+eX9RHZRUe9erq1dVTd6rWvUuZ6ZmSFNCfxsqserFu48Q6FVr21GzNHD3T/9i8b4Y/dmbFjTkWScq/Lb+pTxMAAABAB0RgAwAAAKDDKD4YrRcX91V5VZT6dq/RDdP266R+/ZQ7I1cZKRn+6cmkY6GMNTyRjgU5uTNyG50KLWdpjhZsWuB/vGDTgoBzhGKOZcnNSzRxwMTmPVkAAAAAHQqBDQAAAIAO4fMtB3T9U8tVWeNStWujzj3tP+oa5wvYpqi0SFkLs1RUWuSvdjHDE3uPmeawHsN6rlDLRiWNatZ5AAAAAHQ8BDYAAAAA2r1FG/fq5qdXqrymTpXu/2hPbLbmLJ8dtJ0ZxDgFMtYeM6GmTWuIdRq0otIix3NZlyXGJiq5a3LYxwcAAADQsRHYAAAAAGjXFn6xS7c9t0rVtT59d0xfvf3Ti2S4qhynM7MHMtKxqpf84nzlLM3xr8tamBU0XVq4rCGN9RjW8zMVGgAAAAArAhsAAAAA7dYr+Tt0x0sFqvUZujRtgP5+wwRNGpiuyv+t1LCew8I6hhmu5BXk+R9blzUU2oSaRs263DyuJP80bBMHTNSIXiPCGh8AAACAzoHABgAAAEC7NPfTrfrla2vlM6RrJw3Sn65OU3RU/T9x4jxxSktOC9rHPk2Ztb+MKXtqtmPgYgY395xxjyTpz9P/7DiNmuQ8vZrV6amnN+3JAgAAAOjwCGwAAAAAtCuGYejPH23WQwvXS5J+fPYwPTzzFEW5XQHbje83Xl1jugYsa6xHjdmHJrV7alBlTV5BnnJn5Gpg4kBJ0s6yncpamCVJyp2RK6l+GrWshVkqKi3yV9OYfW1MI3qNUN8ufZv9/AEAAAB0TAQ2AAAAANoNwzD08Lsb9P8++kqS9IvzR2nWRSfJ5XIFbRvljtIZqWcELLOHKNbqFzOsMVmnMrNvK0lzls2RFFy1Y79v5XF7NCllUsNPEgAAAECnRGADAAAAoF2o8xm6f8FaPbV0qyTp1zNO1v+cN9IxrDEN6TFE4/uND7neGtA4VduYt06VMubUaJKUX5wfFP44Oa3/aUFVPwAAAAAgEdgAAAAAaAe8dT7d+XKBXlpZJLdL+sOV43XrWUPD2ndyymQN6DYgaHlRaZGyFmb5pz6zhyyhpjQzmRU2Un01jrl9qH0Gdx/s2FcHAAAAACQCGwAAAABtXJW3Trc/v1oLv9it6CiX/nLtabp6onOI4sTlcum7w74bVNliVtTkFeQFTYfWVPZ+NyYzFDpUeUjThk5r9vEBAAAAdHwENgAAAADarKPVtbrl6Xz9e+NexXrcevLGifre+P5NPk6cJ07nDztfUa4o/zJrRU2onjONmTl6piQpuWuy43rzuPf9+z7FRMU06xwAAAAAOgcCGwAAAABt0uGKGt2Qt0Kff3NAXWM9evbWSZo2um+zj9enSx+dN+w8edweSfVTnln71DTHgk0LJDU/8AEAAAAAE4ENAAAAgDZn75EqXfPkchUWHVaPhGi9mDlZU4Yltfi4Q3oM0fdHf19dortIarxPTWNC9b+RpMTYRH1848eSpIKsgmaOGAAAAEBn4Yn0AAAAAADAqvhwpW7IW6Gt+8vVp1usXvjRZI1O7tZqx++d0Fszx8zUB1s+0N7yvc0+zp+n/1mG21BGSkbQuiE9hujcIecqJipGxgNGS4YLAAAAoJOgwgYAAABAm/HNvqO66u/LtHV/uVJ6xOvVrNNbNawxJUQn6JJRl2hErxGtely3y63TB56uC4ZfQM8aAAAAAE1CYAMAAACgTdiwu0xX536uXaVVGtani/75k9M1pHeX43a+KHeUvjP0O/r+6O8rNbHhKdGKSouUtTBLRaVFIbdJ6Zai74/+vsb1G9faQwUAAADQCTAlGgAAAICIK9hxSDfNW6myqlqd3D9Rz/1oknp3jT0h507umqyLRl6k/RX7tWb3Gm07vC1om5ylOf7bJy9+0r882h2tUUmjNLbvWPWI63FCxgsAAACgYyKwAQAAABBRy7bsV+azq1RRU6cJg3tq3s0Z6h4ffcLH0Tuhty4YfoHKqsu068gu7Tm6RwcrD+pIzRFlT81WztIc/fH8P2pw98Gq3FWpM1LP0Kg+oxQddeLHCgAAAKDjIbABAAAAEDEfrd+jn85fo5pan84a0VtP3jhBCTGR/WdKYmyiEmMTdVLvk/zLDMPQQ995SJLk9Xr17oZ3NSqJsAYAAABA6yGwAQAAABARb/1nl+56pVC1PkPnn9xPf7k2XXHRUZEeliOXyxXpIQAAAADo4AhsAAAAAJxwL63cofsXrJVhSJelDdCcq05VdJQ70sMCAAAAgIghsAEAAABwQuUt/UY572yQJF0/eZAeuvQUud1UsAAAAADo3AhsAAAAAJwQhmHo/320WY/9e7MkKeucYbpv+klMNwYAAAAAIrABAAAAcAIYhqGHFm7QvM+2SpLuuXC0/mvaiAiPCgAAAADaDgIbAAAAAMdVnc/Q/a+v1SuriiRJs78/VjedMSSygwIAAACANobABgAAAMBxU1Pr08//Uah3vtgtt0v6w5Wn6soJAyM9LAAAAABoc1oc2Gzbtk1LlizR559/rl27dmnv3r06fPiwevTooT59+mjAgAE6/fTTdc4552jo0KGtMWYAAAAA7UCVt04/eWG1Fm3ap+golx67Jl0Xjesf6WEBAAAAQJvUrMBmy5Ytmjt3rl5++WVt3749YJ1hGP77ZvPQvLw8SVJqaqquu+463XLLLRo5cmRzxwwAAACgjTtS5VXms6u0YutBxUW79cQNE3Tu6L6RHhYAAAAAtFnupmy8evVqXXbZZRo9erR+//vfa9u2bTIMI+DH5XL5f+zrduzYod///vcaM2aMLr30Uq1evfp4PS8AAAAAEXKovEY35K3Qiq0H1S3Wo+dunUxYAwAAAACNCCuw2b59u6666ipNmjRJb7/9tnw+X1A4Y/5Ix6psnNYbhiGfz6eFCxdq0qRJuuqqq7Rt27bj9gQBAAAAnDh7y6p0zZPL9Z+dpeqZEK35t03RpKG9Ij0sAAAAAGjzwpoS7aSTTlJNTU1ASCMFTn8WGxurpKQkJSUlKTExUaWlpTp48KAOHDig6upq/3bmvub+r732mt59912Vl5e31nMCAAAAEAE7D1XohrwV2nagQn27xerFzMka2a9bpIcFAAAAAO1CWIFNdXV1QIWMJCUnJ+v73/++pkyZokmTJmnMmDEBYYzJMAytX79eK1as0IoVK/TWW29pz549kuQ/XlVVVSs+JQAAAAAn2pZ9R3VD3grtLq3SwJ7xmp85RYOSEiI9LAAAAABoN8IKbKT64CUhIUHXX3+9rrnmGp177rmOAY2dy+XS2LFjNXbsWN166636+9//rkWLFumll17Syy+/rIqKihY9AQAAAACRtW5XqW6cu1IHyms0om9XvfCjyUruHhfpYQEAAABAuxJWD5uePXvq17/+tbZv367c3FxNmzYtrLDG8YRut8477zzl5eVp+/bt+t///V/16NGjWccCAAAAEFmrtx/SNU8u14HyGo0dkKhXfjylQ4Q1hSWFcs12qbCkMNJDAQAAANBJhFVhs337dnXt2rXVT56UlKSHHnpI9913X6sfGwAAAMDx9dnX+3Xbc6tUUVOniYN7at4tGUqMi470sFpFem66/9Z4wGhkawAAAABoubAqbI5HWGPVpUuX43p8AAAAAK3rw/V7dMvT+aqoqdPUkb313I8mdZiwRpIKsgoCbgEAAADgeAu7hw0AAAAASNKbhcW66x//UZ3P0IVj++mxa9MV64mK9LBaVVpyGpU1AAAAAE4oAhsAAAAAYXtxxXZlv/GlDEO6PD1Ff7hyvDxRYRXuAwAAAAAa0KqBTWlpqbZv366ysjL5fL5Gtz/77LNb8/QAAAAAjqPcJVv02/c2SpJuPH2wHrxkrNxuV4RHBQAAAAAdQ6sENvPmzdNf/vIXffHFF2Hv43K5VFtb2xqnBwAAAHAcGYahP334lf7y8deSpJ+eO1z3XDhaLhdhDQAAAAC0lhYFNoZh6Nprr9Wrr77qfwwAAACg4/D5DP1m4Xo9s2ybJOne6aP103NHRHZQAAAAANABtSiwmTt3rv7xj3/4H4f7F3YEOwAAAEDbV1vn032vr9U/V++UJD106Vj98PQhkR0UAAAAAHRQLQps5s2bJykwqCGMAQAAANq/mlqffvZKgd5dW6Iot0tzrhyvy08bGOlhAQAAAECH1aLAZt26df6wxjAMxcTE6IwzzlD//v0VExPTKgMEAAAAcGJV1tTp9hdWa8lX+xQT5dZj16Zr+inJkR4WAAAAAHRoLQpsTIZhKCUlRcuXL1dKSkprHBIAAABABByp8upHz6zSym0HFRft1pM/nKizR/WJ9LAAAAAAoMNzt2Tn0aNHyzAMuVwuTZ8+nbAGAAAAaMcOldfo+rwVWrntoLrFevT8jyYT1gAAAADACdKiwOaWW27x39+9e3eLBwMAAAAgMvaUVenq3M/1xc5S9eoSo5d+PEUZQ3pFelgAAAAA0Gm0KLD58Y9/rLPOOkuGYej999/Xiy++2FrjAgAAAHCCFB2s0FVPfK7Ne4+qX2Ks/pE1RaekdI/0sAAAAACgU2lRD5uoqCi9+eab+sEPfqCPPvpIN954ox577DFdcMEFSk1NVVxcXIP733jjjS05PQAAAIAW+nrvUd2Qt0IlZVUa1CtBL2ZOVmqvhEgPCwAAAAA6nRYFNpIUHR2t4cOH66OPPpJhGMrPz9eqVavC2pfABgAAAIicL4tLdeO8lTpYXqORfbvqhczJ6pfY8B9dAQAAAACOjxYFNtXV1Zo+fbo+//xzuVwuSZJhGDIMo9F9ze0BAAAAnHirth3ULc/k60hVrcaldNezt05Sry4xkR4WAAAAAHRaLQps/vKXv2jZsmX+xy6XK6wgJpxABwAAAMDxsXTzPv34udWq9NYpY0hPzb05Q4lx0ZEeFgAAAAB0ai0KbJ5//nlJgdUyhDEAAABA2/X+lyW646UC1dT5dM6oPnrihgmKj4mK9LAAAAAAoNNrUWCzZcsWuVwuf0gzZMgQnX322UpOTlZcXBzTngEAAABtyIKCnbr71S9U5zN00SnJ+vM16YrxuCM9LAAAAACAWhjYdO3aVZWVlZKkU045RStXrlRcHE1KAQAAgLbm+eXb9as3vpQkXTlhoH53+Th5oghrAAAAAKCtaNG/0E4//XQZhiGXy6UzzjiDsAYAAABtUmFJoVyzXSosKYz0UCLi8cVf+8Oam88Yoj9cMZ6wBgAAAADamBb9K+3OO+/0T3u2Zs2aVhkQAAAA0NrSc9MDbjsLwzD0h/c36g/vb5Ik/fe0EXrgkpPldjN1MQAAAAC0NS0KbM4991xlZ2fLMAytXr1at99+u0pLS1trbAAAAECrKMgqCLi1akr1zZ490iuvSHl59bd79rT2SFuPz2fogbfW6fHFWyRJ9110ku6+cDR9JgEAAACgjWpRD5tbb71VkpSUlKQDBw7oqaee0rPPPquJEycqNTW1wSnSXC6X5s6d25LTAwAAAI4KSwqVnpuugqwCpSWnKS05TcYDhuO21uqbUNusXSs9/LD0z39KtbXHlns80pVXSvffL40b1+pPo9lq63y697Uv9PqaYrlc0kOXnqIbpgyO9LAAAAAAAA1oUWDzzDPP+P9Cz+VyyTAMVVdXa9myZQ3uZ/a9IbABAADA8RBOCGMqyCrwhztO/vUv6bLL6oMaa1gj1T/+5z+lN96o/7nwwpaPvaWqa+t050uFen9diaLcLj1y1am6LD0l0sMCAAAAADSiVTqNGobhD2HM4Kahn9ZQXFysG264QUlJSUpISFBaWppWr17d4D5LlizRhAkTFBcXp2HDhumJJ55olbEAAACgbWloCjQ7s/omLTktaN3atfVhTXV1cFhjqq2tX3/ZZfXbR1JFTa0yn12l99eVKCbKrb9ffxphDQAAAAC0E60S2JhBjf1xqJ+WOnTokM4880xFR0frvffe0/r16/XII4+oR48eIffZunWrLr74Yk2dOlUFBQW6//77dccdd+i1115r8XgAAADQtjQUwjTG2tPm4YfrA5nG/ubIMOq3++1vmzfe1lBW5dWNc1dq6eb9io+O0rybM3TB2OTIDQgAAAAA0CQtmhJNUqtVzDTF73//e6Wmpurpp5/2LxsyZEiD+zzxxBMaNGiQHn30UUnSmDFjtGrVKv3xj3/UFVdccRxHCwAAgPbEOp2a559GyMoau9pa6dVXpUcflfr2PX7jc3LgaLVuenqlviwuU7c4j565JUMTBvc6sYMAAAAAALRIiwKbRYsWtdY4muStt97ShRdeqKuuukpLlixRSkqKfvrTn+q2224Luc/nn3+uCy64IGDZhRdeqLlz58rr9So6OjpgXXV1taqrq/2Py8rKJEler1der7cVnw2A9sT8/PM9AHRefA90fKt/tFpnPX2WZg/6VA9Ee2X7z8RGLV4szZx5XIbmqKSsSjc/s1pb9pWrV5doPX3TBJ3cvxvv0eOI7wEAEt8FAPgeAND6n3+XEYkSmRaKi4uTJN1111266qqrtHLlSv3sZz9Tbm6ubrzxRsd9Ro0apZtvvln333+/f9myZct05plnateuXerfv3/A9g8++KBmz54ddJz58+crISGhFZ8NAAAA0Dz7q6TH10fpQLVLPWIM/fTkOvWLj/SoAAAAAKBzqKio0HXXXafS0lIlJia2+HgtnhItEnw+nyZOnKiHH35YkpSenq5169bp73//e8jARlJQ/xwzq3LqqzNr1izddddd/sdlZWVKTU3VtGnTlJSU1BpPA0A75PV69eGHH+r8888PqswD0DnwPdB5vP66dMstTd/vmWdOTIXN5r1H9fAzq3WgulqDesXr2ZsnamBP0poTge8BABLfBQD4HgAgHThwoFWP1y4Dm/79++vkk08OWDZmzBi99tprIfdJTk5WSUlJwLK9e/fK4/E4BjCxsbGKjY0NWh4dHc0XMAC+CwDwPdAJnHuu5PUq7B42kuTx1O93vN8aa3eW6sZ5+TpU4dWofl31wo8mq29i3PE9KYLwPQBA4rsAAN8DQGfW2p99dzgbVVRUtOpJW3r8M888U5s2bQpY9tVXX2nw4MEh9zn99NP14YcfBiz74IMPNHHiRL5QAQAAEKRfP+nKK+tDmHB4PNJVV0l9+0qFJYVyzXapsKSw1ce1cutBXffUch2q8Gr8wO565cenE9YAAAAAQAcQVmAzaNAg/eY3v9GhQ4da9eSHDh3Sgw8+qEGDBjVpv5///Odavny5Hn74YX399deaP3++nnzySf3Xf/2Xf5tZs2YFTI92++23a/v27brrrru0YcMGzZs3T3PnztXdd9/das8HAAAA7ZfP8Kmsuky7juzStsPbtK98n37xyyp5PJLDDLoBXK76wGbWrPrH6bnpAbetZclX+3TjvBU6Ul2rSUN76cXMyerZJaZVzwEAAAAAiIyw/l7w4MGDmj17tv74xz/qhhtu0LXXXqupU6c2+6RLly7VSy+9pBdeeEHl5eVN3j8jI0MLFizQrFmz9Jvf/EZDhw7Vo48+quuvv96/ze7du7Vjxw7/46FDh+rdd9/Vz3/+c/3tb3/TgAED9Nhjj+mKK65o9vMAAABA+1FYUqj03HQVZBUoLTlNtb5abT6wWZsPblZZdZkqvM5V33fmddWfHuon36FU1e0bIRmBf/Pk8dT/vPGGNG5c/bKCrAKl56br5Stelmu2y3/OpozP7v0vd+t/XiqQt87QuaP76O/XT1B8TFQzfhMAAAAAgLbIZRiG0dhGbrdbLpdLhmHI9e2fF6akpOjSSy/VlClTlJGRoVGjRoXcf9OmTcrPz9fy5cv15ptvateuXZIk89Qul0t1dXWt8XyOm7KyMnXv3l379+937HkDoHPwer169913dfHFFzOdItBJ8T3QfrlmHyuT+ezWz/TVga9UU1cT1r7FxdJ770mrP+8q3640af9oyYjyT4M2a9axsCbUOY0HGv7P7oa2/efqnbr3n/+Rz5C+N66//t8P0hTjCatYHscB3wMAJL4LAPA9AEA6cOCAevfurdLSUiUmJrb4eGFV2MTExMjr9fpDG0nauXOnHn/8cT3++OOSpLi4OPXu3Vu9evVSt27dVFZWpoMHD+rAgQOqqqryH8uaD5nHi42NbfETAQAAABqyMnOlJuVNUvbUbH2598sGty0qLVLO0hxlT81WavdUpaRImZnS1T84qq82fSpfdYFO6jFe119wsvonh65yMSttCrIKGh1fqG2fXbZND7y1TpJ01YSB+t0V4xXlbmSONgAAAABAuxNWYLNhwwb94he/0BtvvCFJ/ioba/hSWVmpoqIiFRUVBQQ7dtZ9DcPQZZddpkceeaQlzwEAAABo0P6K/dpyaItyZ+SGtX3O0hz/rXWfxG7SxImSVC7pc608/I0uSLpA8dHxjsdJS05rtLKmoW3/tuhrzfnXJknSLWcO0a++d7LchDUAAAAA0CGFNY/C0KFD9frrr2vFihX63ve+J0n+6dGcfiSFXGcGORdddJGWL1+u119/XUOHDj1OTw8AAACd3fp96/XmxjdVVl0W9j7ZU7MlSZnpmcpamKWi0iL/uqLSIv+yPeV7tGDjAh2sPNiqYzYMQ797b6M/rLnjvJH69QzCGgAAAADoyJo08XVGRobefvttbdq0Sffcc49SU1P9lTLWH0mOy/v376+f//znWrdund555x1NmjTpuDwpAAAAwGf49PHWj/Xpjk9VZzStX2Jq91TlzshVXkGepGMVN9b75u3RmqN6c+Ob2n54e+uM22foV29+qSeWbJEk3X/xSbrr/FH+P4wCAAAAAHRMYU2JZjdixAj9/ve/1+9//3t98803WrJkiT7//HPt2rVLe/fu1eHDh9WjRw/17t1bAwYM0JQpU3T22Wdr1KhRrT1+AAAAwNHibYv19cGvg5bb+9M0JHtqtn/bhnh9Xn2w5QOdNegsjekzptljrq3z6Z5/fqEFBcVyuaT/u2ycrps8qNnHAwAAAAC0H80KbKyGDRumYcOG6ZZbbmmN8QAAAAAt9nnR5/r64NeO4Uyo/jROzEobq1AhjiFDnxV9ph5xPdS/W/8mj7m6tk7/M79AH6zfoyi3S3+6+lRdmpbS5OMAAAAAANqnJk2JBgAAALR1G/dv1Nq9ayUFhjNm75nM9ExJarRqxtqrxsoMcZyqc3yGTx9985EqvBVNGnNFTa0yn12lD9bvUYzHrdwbJhDWAAAAAEAnQ2ADAACADmNv+V59tuMz/2MzlDGrYiQpryDPXzWTtTDLMZSRgnvVhKuytlIfbPlAPsMX1vallV79cO5KLd28XwkxUXrm5gx99+R+TTonAAAAAKD9I7ABAABAh1Dnq9O/v/m36ow6/zJrNYw1vJECgxhrBY4Z3ti3b4q95Xu1rGhZo9vtP1qta59crtXbDykxzqMXMifrjBG9m3w+AAAAAED7R2ADAACADuE/e/6jIzVHQq63T2VmDWKsFTjmbUNTn4Vj/b712npoa8j1u0srdXXu51q/u0y9u8bo5R+frtMG9WzWuQAAAAAA7R+BDQAAANq9Cm+FCksKg5bbq2bMx/nF+cpZmqPsqdlhhTKh+tmEWm5avnO56nx1Qcu3HyjXlX//XN/sK1f/7nF6Jet0nTwgMcxnCwAAAADoiAhsAAAA0O6tLF6pWl9t0HJ71Yy1j431sTVwyUzPDApiQvWzaazPzZGaI/py75cBy77ac0RXPfG5ig9XakhSgl69/XQN79O1Cc8WAAAAANAREdgAAACgXdtfsV9fHfgqaLk1hLH3o8lMzwx4bA1c8gryGg1iQh3XSUFJgWrqaiRJX+w8rKtzP9feI9U6Kbmb/nH76RrYM6HhJwgAAAAA6BQIbAAAANCuLSta5rjcGrbYpzxL7prsnwot1HRmpqyFWf779mDG7HNjbud0rJq6Gq3ds1Yrvjmg655aocMVXp2a2kMv/3iK+naL829XWFIo12yX49RuAAAAAICOj8AGAAAA7dbe8r0qOVriuM4arjhNbWYGLI1V0ViF6nXjVJFjnVbt9cJNunHeSh2trtUpA2P09r7zta1sfcAx0nPTA24BAAAAAJ0LgQ0AAADarVBToVmrYqRjQYq9QiZnaU7Q9Ggmp2nOikqL/MfPL87335pmjp4ZFAT9afEivbQ0UdW1Pn3npL56d/8MGa7KoGCmIKsg4BYAAAAA0LkQ2AAAAKBdqvPVacvBLZICq1ms1S72HjOp3VODgpi8gjzNHD0zqNLGqfImZ2mOf3leQV7ArSQt2LQg4Nxdar+rvjX3yWe4lD7EpydumKA1t6+QFBzMpCWnyXjAUFpyWtN/GQAAAACAdq9Fgc28efN09OjR1hoLAAAAELbtpdtVXVctSSFDGrPHjHUqM6cgxgxaTGbVTUOctrFW65TsPUm9vT+TIZfShpbrwom7VV1XTjADAAAAAHDUosAmMzNTycnJ+uEPf6gPP/xQhmG01rgAAACABlmnQ3MKaST5q25M1vtWE/tPDHhsrZoxj2utzJk2eFrQNrkzcpWRkqEnvper7cUn68PCHpKkSSOP6qIJh+V2SVsObWniswQAAAAAdBYtnhKtoqJC8+fP1/Tp05WamqpZs2Zp/fr1je8IAAAANFOFtyIgfHEKaaxVNyan6hpJWrV7lePy7KnZ/goda5XOou2LgrYtKi2SYUgff5GoT9YlSpKmnlym804tlctVv405hRsAAAAAAHYtDmxcLpcMw5BhGNq1a5f+8Ic/aNy4cZo0aZL+9re/6cCBA60xTgAAAMBv66GtMhRY3W0PaazTk5ns/WtMoaY3y1ma4w+ArAGR07FzPnlY76/poRVfdZMknXdqqaaOPeIPayTpQOUBHa463IRnCgAAAADoLFoc2Ej1oY35Y4Y3q1at0h133KGUlBRdfvnlevPNN1VbW9sapwMAAEAnt6d8T9Aye/VMXkFeUNWNtUrGKiMlIyjMsU55lrM0x7E6p+RoSf1+RpTO6TFPBd90kWRoyslbNO+r6/1Bj3Vqtm8OfdOk5woAAAAA6BxaFNjMmTNHkydPliR/UGMPb2pqavTmm2/q8ssvV//+/XXnnXdq9erVrTJ4AAAAdE57y/f675uBiL1KJntqdsip0eyyFmY1uF46VlWTmZ7pD3PyCvKU88nvNT7mMW0r6S1DtdoX/Qe9svVO/znt5999ZHdTnioAAAAAoJNoUWDzi1/8QsuWLVNRUZEeffRRnXXWWQFVNvaqmwMHDuivf/2rJk2apFNOOUVz5szR7t38gxUAAACNKywplGu2Syt2rlBZdZl/uRmE5BXk+atksqdmK7V7akAIY13XHNaQxuQy4tS35gGVlg2WoRrti8lRhWdpwDnt5z1QyZTBAAAAAIBgrTIl2oABA3THHXfok08+UXFxsf7617/q3HPPldvtlmHUzy1uD2/Wr1+v++67T0OGDNF1112nzZs3t8ZQAAAA0EGl56ZLkqbMnRKw3B7S5M7I9U99Zl+XX5wf0N+mJdxGF/WrzlG8L00+VWhPzAOqjFrlP585DvuYqmqrdLTmaIvPDwAAAADoWFolsLHq16+ffvrTn+rjjz/W7t279cQTT2jgwIFBwY1UP42a1+vVK6+8olNPPVXPPfdcaw8HAAAAHURBVoEk6YXLXwhYbg9ETNZwxlxnrZJprNJm5uiZIZf/6btPaXz0PMUaJ6lOR7QnNlvVUWuVOyNX2VOzlbM0J6Bvjd2BCqpsAAAAAACBWj2wMe3fv1/PP/+8HnvsMRUXF/ura0z2XjdVVVW69dZbtWzZsuM1JAAAALRjaclpMh4wdLDyYINhiFTf18ZpCjMzhJk5eqY/6HGqtsmemq0FmxY4HvutDUv1x4V1OnSki+p0SHtiZ6nG/ZVmjp4Z1AsnVF+c/RX7G3/CAAAAAIBOpVUDG8Mw9N577+nKK6/UwIEDdffdd2vDhg0B1TXmdoZhKCoqyt/rRpJ8Pp/+8Ic/tOaQAAAA0MHc8d4dkgLDkKLSooAQx7ouMz3Tv94MYRZsWqCshVnKL84PCHRM9qDFDHo8vv5KrvmDoo2BqnXtVUnsL+V1b/Mf0y5UFQ99bAAAAAAAdq0S2GzdulW/+tWvNGjQIM2YMUMLFixQTU2NY1ATFxenW265RatXr9bevXt1//33B4Q2VNgAAAAglDpfXUBfGpMZsJi39qAkVKVLXkFeWP1sFmxaoGjfYPWr/r08Rl95XcUqifmlat27/NuYxzH719inabOGSlTYAAAAAADsWhTYzJ8/X+edd55Gjhyphx9+WMXFxf7qGet0Z4ZhaOjQoZozZ4527typuXPnKj09XT169FBOTo7OOeccf7hz8ODBVnliAAAA6HjKveWOPWvsIY51nbWCximccaqwsZs24Bb1q/6dPOqlGtdWlcT+UnXufQHnz0jJcOylY7KGSuU15Y2eEwAAAADQubQosLnhhhu0ePFi+Xy+gJDG2q/moosu0jvvvKPNmzfrF7/4hXr27Bl0nJNPPtl/39rnBgAAALCq8Fb475sVK/nF+cpZmqPsqdkBYYkZzpjTmUnSgYqmT0UWWzdOX2+5SFHqpmrXRu2JvU8+1+GAbXKW5jTYU0cKDJUMGfLWeZs8FgAAAABAx9UqU6LZq2l69uypX/ziF9q8ebPeeecdXXTRRf4pz5zExMS0xjAAAADQwVXVVvnvmxUrZoWMfdozc7m1t4xTn5mGxNVNVN+aB+VWgird/9Ge2F/J53KujslZmqP84nx/iGRnrwyqqatp0lgAAAAAAB1bqwQ2ZlBz2mmnae7cudq5c6fmzJmjYcOGhbX/f//3f2vRokVatGiRPv7449YYEgAAADqghkIOe98aJ9Zqm8Yk1E5V35psuRWrCvcK7Y15UJ6o2qDtrL1rzJDIvLX2rbFbs3uNXLNdKiwpDHtMAAAAAICOq8WBTXR0tK6//notW7ZMq1at0i233KK4uLgmHWP48OE655xz/D8AAACAE2tgY51izKl3jFOAM33k9LCCna6156u39x655FF51GLti3lYcnnl9Xl1wbALAra19q6x9sgpKi0K6Ftjd/YzZ0uS0nPTGx0PAAAAAKDja1Fgk5OTo6KiIj3//POaMmVKa40JAAAAcGT2fTHDEHvfGifWChhriBJKt9rvK8l7p1xy60jU+9of/SfJVedfn78rcLozawVNctdk/3JzfOa57d6//n1JUkFWQYPjAQAAAAB0Di0KbO6//3716dOntcYCAAAANMjtqv/PV2vlinW6MesUZNYeN+ZUaI2GNd7L1Mv7Y0lSqed1HYz+q+TyBWxzqOpQ0H5OlTRmmORU/SNJo5JGyXjAUFpyWoNjAgAAAAB0Dq3SwwYAAAA4EaKjoiUFVqyYoU3WwqyA4MS6zYJNC8KqrOlVW1+Nc9jzkg575kmu8MZlr6RpqPLHHOvavWvDOzgAAAAAoFMgsAEAAEC7ERMVI0lK7Z4aEI7Yw5jM9MyAZdMGT2uwd0232hmWypqXVep5sdGwxuydY62gsVbUWKt9rMxxXfrypWE8YwAAAABAZ0FgAwAAgHYjJirGH4RI8ocj1vAme2q28gryAvZbtH1RyGN2rb1Yvby3S5JKPa/qsOeFsCprnCp2nKZks29njvVfN/yr8ZMAAAAAADoNAhsAAAC0GzFRMY5BiLWyxSlIcarCkaSutRcqyftTSVKp5zUd9jwb9jRokpS1MEvvb36/wZDGXtljjvW0/qeFfyIAAAAAQIdHYAMAAIB2Y+O+jf77memZjtuYyzPTMwOmLDODE3N919oLlOT9H0lSmWeBDnuebjSscbuC//N5waYFkpwrbiSF7GUT54lr+GQAAAAAgE6FwAYAAADtxrTnpvnvm9OemdOQmVUu5nL7tGhmZUtGSoauGfZn9fL+tySpLOpNHfLMDauyxmf4lDsjN2RYZJc9NTtkL5uE6ISwjgEAAAAA6BwIbAAAANBu5N+W779vhiHWypacpTkB/WxM1lDnxRVfa9m6oXLJrbKot3Qo+qkmTYOWX5yvvII8zRw907/MKcDJnpodMEWbdZxxnjjHah0AAAAAQOfFvxIBAADQbkwcMFGvXPlKg/1qJPnXSwoIdbrUnqttO6bKJbeORL2jQ9FP+sOaKSlTwhqDWbmzYNMC5c7IVfbU7KAARzo2FZpTgER1DQAAAADAjsAGAAAA7UpSfJL/vlMYkrM0J2AKMjOsSag9R0nen38b1ryng9FPBFTWLC9erie+94QeueAR/eDkHzQ6DjOgMY+/YNOCgP45koIqgEy94nuF/XwBAAAAAJ0DgQ0AAADalaSEY4GN2ZcmtXtqQGgjHQtSsqdmK6F2qvp675ZLUToS9S+dfcouyWVICpzO7PZ3btehykN6Zf0rjY5jwaYFQcsyUjKUOyNXkpS1MCtoujYzROrXpV+4TxcAAAAA0EkQ2AAAAKBd6Z3Q23G5Gd5Yq26KSov0p8WL1Nd7jwy5NKDvdh2M/qtO6Tc2YDozq1DTrNllpmcqa2GWP/CxBkb2Y9qP3bdL37DOAQAAAADoPAhsAAAA0K6ECmxM1qqbRxb/W71r7pEht45G/Vufl/2P5DL8wUm44YyVGdCYoUxeQZ6yp2YHVNBYp0azh0hRrqiAKiEAAAAAACQCGwAAALQzcZ44dYnu0uh2XxXHqZ93llzyqH+fIh2I/rNmnnSppMBp0Oyyp2b7+9M4rbNXz5hhjXQsADKnRstIyZAUGCL1Tugtt4v/DAcAAAAABOJfigAAAGh3+nVtuAfM5l1xev3zXjIMt05OrdBN57iVe8nf/X1nzNDFHtxMGzxNOUtzHPvTmOy9cqzHaSgIMjEdGgAAAADACYENAAAA2p1hPYcFPC4qLVLWwizlF+frzjef0mvLespnuDRmYIW+P+mQisvq19v3sVbLZKZnatH2RQ2eN2dpjlK7pwYts06PlrUwyz81mpPGwiYAAAAAQOdEYAMAAIB2Z1D3QfK4Pf7H5lRkL6xao741/yuf4dagvgf0/cmHVHykyLFXjXWZ01RnTjLTM4OCHyeheuN43B4NTBzY6P4AAAAAgM6HwAYAAADtjsft0eDug/2Ps6dmK64uTX1rsuVStCrcy7S07FZFuYODGacpzcx1VpnpmUHLGgt1zCnRQp1jSI8hiomKafAYAAAAAIDOicAGAAAAbV5hSaFcs10qLCn0Lxvea7j/fm3VCA2o/Y1cilGfXru1L+YPyj57lqRj4Un21Gyldk9VavfUoEAlZ2lOQLAzc/RMZaRkBGwbKuzJnpqt3Bm5yp2Rq4yUDOXOyA2aNs00KmlU834BAAAAAIAOz9P4JgAAAEBkpeem+2+NBwxJUmpiqmKiYvTVbukfn/ZUnc+tlN6HdMM5Pt3m/puk+j41OUtz/GGNKbV7qnJn5PrX2y3YtEDTR04P2NY8nqSg44WjS3QXpXRLaeIzBwAAAAB0FlTYAAAAoM0ryCoIuJWkKHeUqipS9eqnSarzRanCna9lR29RlOW/cM0wximUsYY5M0fPDFhnfxzO8RozMmmkXC5Xk/cDAAAAAHQOBDYAAABo89KS02Q8YCgtOc2/bOXWg/rzezXy1rk1IOmw9sU8rOyz7wvYzzqFmVkdY963hi8LNi0I2M+srrGzTo8WSlFpkbIWZun9ze8ra2GW8ovzJTEdGgAAAACgYQQ2AAAAaHdWbTuoW55eqUqvT2NSpOvPKVfuJX9tcJoya1WM9X5meqYy0zMDHmctzPIHPGYAYw18cpbmBDx2Oo8ZAuUV5Glg4kD1iOvR9CcKAAAAAOg0CGwAAADQrqzZcUg3P52v8po6nTE8Sbk/PE3RUc7bWoMZsyrGHrTkFeQpIyVDuTNylTsjV3kFeQH7Wm/toY9TaGOexzqtWpfoLk19mgAAAACATobABgAAAO1GYdFh3TR3pY5W12rKsF6ae1OGBvXoryE9hjhub5/CLGthlmP/mfc3vy8pMMwxK22sx7JPheZ0rNTuqcqdkRswrdq5z5577DmUFMo126XCksIGnysAAAAAoHPxRHoAAAAAQDi+2HlYP5y7QkeqazVpaC/NuzlD8TH1pTVTBk7RjtId8hk+//Zmn5rsqdlK7Z4aEL7YLdi0IKiPjVlpYzKnW8udkRtw7FCs4U9BVoH/fnpuuv/WeMBo7GkDAAAAADoJKmwAAADQ5n1ZXKob8lboSFWtMob01NM3Zygh5tjfHiXGJuqUvqcE7GOf0sxebdMQezWNfR+ziibcnjlpyWn++2Z4Yw1xAAAAAAAgsAEAAECbtm5Xqa7PW6GyqlpNGNxTT98ySV1igwvFJw6YqKT4JP9je0ATTsiSPTXbv425fWP7mIpKi5S1MMtfWfPb834rKTiYSUtOk/GAERDiAAAAAABAYAMAAIA2a8PuMt2Qt0KllV6lD+qhZ27JUFeHsEaSPG6PLhh+gWKjYiU1HNDYK2asQU1DrKFMfnG+shZmKb84X1JgRU/WwixNSplEMAMAAAAACBs9bAAAANAmbSo5ouvzVuhQhVenDuyuZ2+dpG5x0Q3u0y22m84bdp7e2/yeDIXuD2OGOeEye9aYrPfzCvKUkZKh7KnZAcvPe+48etQAAAAAAMJGhQ0AAADanM17jui6p5brYHmNxqV013M/mqzERsIa08DEgZowYEKrjSW/OD8giLHLTM+UdCwEmvf9eZLoUQMAAAAAaBoCGwAAALQpX+89qmufWqED5TUaOyBRz/9okrrHhxfWmE7rf5qG9hgatNzeZyYceQV5IddlT81WRkqG//GwnsN0c9rNTIUGAAAAAGgyAhsAAAC0GVv2HdW1Ty3X/qPVGtM/US/8aLJ6JMQ061jfHfZdndL3FEnHghprn5lwmRU0memZ/t43Tj1vBnUfpO8M/Y5cLlezxgsAAAAA6NzoYQMAAIA2Yev+cl375HLtO1Ktk5K76cXMyerZpXlhjSS5XC6dkXqGesb11MmPnxywLntqtr8vTfbU7IDgxS4jJSOgisbe+8YllyYMmKD05HTCGgAAAABAs1FhAwAAgIjb9m1Ys/dItUb3qw9rerUgrLEa02eM/nXDvyQFVsZYq23MCpz84vwmTZmWEJ2g7436nk7rfxphDQAAAACgRQhsAAAAEFE7DlTo2qeWq6SsSiP7dtWLt01WUtfYVj3HBcMvUOl9pTpnyDlyqT5YsU5vZoY3Zr+acKZMG9BtgC4fc7kGdBvQqmMFAAAAAHROTIkGAACAiCk6WB/W7C6t0vA+XTT/tinq3cphjembQ9/o/OfP1yc3f6JaX61ccvmnN7OGNuZjJy65NKTHEI3tO5agBgAAAADQqghsAAAAEBE7D9WHNcWHKzWsdxe9dNsU9el2fMIaSUrPTZcknf3M2TIeMDRhwAR9secLFZcVS90Dt7X3tEmITtDopNEa02eMusZ0PW5jBAAAAAB0XgQ2AAAAOOF2Ha7UtU8t185DlRqSlKD5t01R38S443rOgqwCpeemqyCrQJKUGJuoswadJUmqqq3SkB5DdOELF2r+5fN1avKp6hrT1f8TE9U6/XQAAAAAAAiFwAYAAAAn1O7S+rCm6GClBicl6KUfT1Fy9+Mb1khSWnKajAcMx3VxnjhdMPyCkOsBAAAAADje3JEeAAAAADqPPWVVuu6pFdp+oEKpveL10m1T1L97fKSHBQAAAABAxBHYAAAA4ITYW1ala59crq37yzWwZ31YM6AHYQ0AAAAAABKBDQAAAE6AvUeqdO1Ty/XN/nKl9KgPawb2TIj0sAAAAAAAaDMIbAAAAHBc7T9areufWqEt+8rVv3ucXrptilJ7EdYAAAAAAGBFYAMAAIDj5sC3Yc3mvUeVnFgf1gxKIqwBAAAAAMCOwAYAAADHxcHyGl2ft0Kb9hxR326xeunHUzSkd5dIDwsAAAAAgDaJwAYAAACt7nBFjW7IW6GNJUfU59uwZmgbDmsKSwrlmu1SYUlhpIcCAAAAAOikCGwAAADQqkorvLo+b4XW7y5T766xeum2yRrep2ukh9Wg9Nz0gFsAAAAAAE40AhsAAAC0mtJKr26Yu0LrdpUpqUuMXrptskb07RbpYTWqIKsg4BYAAAAAgBPNE+kBAAAAoGMoq/LqxrkrtLa4VL26xGj+bVM0sl/bD2skKS05TcYDRqSHAQAAAADoxNplhc2DDz4ol8sV8JOcnBxy+8WLFwdt73K5tHHjxhM4agAAgI7rSJVXN81bqf/sLFWPhGi9mDlZo5PbR1gDAAAAAEBb0G4rbMaOHauPPvrI/zgqKqrRfTZt2qTExET/4z59+hyXsQEAAHQmR6trdfPT+SrYcVjd4+vDmjH9ExvfEQAAAAAA+LXbwMbj8TRYVeOkb9++6tGjx/EZEAAAQCdUXl2rW55eqdXbDykxzqMXMydr7IDukR4WAAAAAADtTrsNbDZv3qwBAwYoNjZWkydP1sMPP6xhw4Y1uE96erqqqqp08sknKzs7W9OmTQu5bXV1taqrq/2Py8rKJEler1der7d1ngSAdsf8/PM9AHRefA8cU1FTq8znC5S/7ZC6xXn0zM0TNLpvAr8bdHh8DwCQ+C4AwPcAgNb//LsMw2h33VXfe+89VVRUaNSoUdqzZ49ycnK0ceNGrVu3TklJSUHbb9q0SZ988okmTJig6upqPf/883riiSe0ePFinX322Y7nePDBBzV79uyg5fPnz1dCQkKrPycAAID2pKZOenKjW5vL3IqLMvTTMXUaTMsaAAAAAEAnUlFRoeuuu06lpaUB7Viaq10GNnbl5eUaPny47r33Xt11111h7XPJJZfI5XLprbfeclzvVGGTmpqq3bt3O4ZCADoHr9erDz/8UOeff76io6MjPRwAEcD3gFTlrVPWCwVa9s1BdYmN0tM3TVB6ao9IDws4YfgeACDxXQCA7wEA0oEDB9S/f/9WC2za7ZRoVl26dNG4ceO0efPmsPeZMmWKXnjhhZDrY2NjFRsbG7Q8OjqaL2AAfBcA6LTfA1XeOv30pTX1YU1MlJ67dZImDO4V6WEBEdFZvwcABOK7AADfA0Dn1dqffXerHi1CqqurtWHDBvXv3z/sfQoKCpq0PQAAQGdX5a1T1vOrtXTzfiXEROkZwhoAAAAAAFpNu6ywufvuu3XJJZdo0KBB2rt3r3JyclRWVqabbrpJkjRr1iwVFxfrueeekyQ9+uijGjJkiMaOHauamhq98MILeu211/Taa69F8mkAAAC0G9W1dfrJC6u15Kt9io+O0rybM5QxhLAGAAAAAIDW0i4Dm507d+raa6/V/v371adPH02ZMkXLly/X4MGDJUm7d+/Wjh07/NvX1NTo7rvvVnFxseLj4zV27Fi98847uvjiiyP1FAAAANqNmlqf/uvFNVq0aZ/iot2ae/NETRlGTz8AAAAAAFpTuwxsXn755QbXP/PMMwGP7733Xt17773HcUQAAAAdU02tT/81f40+2rBXsR635t6UoTOG9470sAAAAAAA6HA6RA8bAAAAtD5vnU//89Iafbh+j2I8bj1140SdOYKwBgAAAACA44HABgAAAEG8dT7d+XKB/rVuj2Ki3HryhxN09qg+kR4WAAAAAAAdFoENAAAAAtTW+fTzVwr17toSxUS5lfvDCTp3dN9IDwsAAAAAgA6NwAYAAAB+dT5Dv3j1P1r4xW5FR7n0+PWnadpJhDUAAAAAABxvBDYAAACQVB/W3P3qf/Rm4S553C797brT9N2T+0V6WAAAAAAAdAoENgAAAFCdz9C9//xCCwqKFeV26a/XpeuCscmRHhYAAAAAAJ0GgQ0AAEAn5/MZuu+1L/Tamp2Kcrv0l2vTNf2U/pEeFgAAAAAAnQqBDQAAQCfm8xm6f8Favbp6p9wu6dEfpOnicYQ1AAAAAACcaAQ2AAAAnZTPZyj7zS/1cn6R3C7p//0gTZecOiDSwwIAAAAAoFMisAEAAOiEDMPQA2+t0/wVO+RySY9cfaouTUuJ9LAAAAAAAOi0CGwAAAA6GcMwNPvt9Xp++Xa5XNKcK0/VzPSBkR4WAAAAAACdGoENAABAJ2IYhh5auEHPLNsmSfr95eN15QTCGgAAAAAAIo3ABgAAoJMwDEMPv7tB8z7bKkn63eXjdHVGaoRHBQAAAAAAJAIbAACATsEwDP3u/Y16aml9WPN/M0/RNZMGRXhUAAAAAADARGADAADQwRmGoTn/2qTcJd9Ikh66dKyunzw4wqMCAAAAAABWBDYAAAAdmGEY+tOHX+nxxVskSbO/P1Y/PH1IZAcFAAAAAACCENgAAAB0YH/+92b95eOvJUm/nnGybjpjSGQHBAAAAAAAHBHYAAAAdFB/+fdmPfrRZklS9vfG6NazhkZ4RAAAAAAAIBQCGwAAgA7ob4u+1iMffiVJuu+ik5Q5dViERwQAAAAAABpCYAMAANDBPLFki+b8a5Mk6Z4LR+v2c4ZHeEQAAAAAAKAxBDYAAAAdyFOffKPfvbdRkvSL80fpv6aNiPCIAAAAAABAOAhsAAAAOoi8pd/o/97dIEn62XdH6n/OGxnhEQEAAAAAgHAR2AAAAHQAT3+2VTnv1Ic1d3xnhH723VERHhEAAAAAAGgKAhsAAIB27rnPt2n22+slSf81bbh+fj5hDQAAAAAA7Q2BDQAAQDv24ort+vWb6yRJt58zXHdfMFoulyvCowIAAAAAAE1FYAMAANBOvbRyh/53wZeSpNumDtUvpxPWAAAAAADQXhHYAAAAtEP/yC/SrNfXSpJuPXOo7r94DGENAAAAAADtGIENAABAO/PP1Tv1y9e/kCTdfMYQ/WoGYQ0AAAAAAO0dgQ0AAEA78vqanbrnn/+RYUg3nj5YD1xyMmENAAAAAAAdAIENAABAO/FmYbHufrU+rLl+8iDN/v5YwhoAAAAAADoIAhsAAIB24O3/7NLPXymUz5CunZSqhy49hbAGAAAAAIAOhMAGAACgjXvni9362bdhzdUTB+r/Lhsnt5uwBgAAAACAjoTABgAAoA17/8vduuPlAtX5DF1x2kD97vLxhDUAAAAAAHRABDYAAABt1L/Wlei/59eHNZenp+gPVxLWAAAAAADQURHYAAAAtEEfrd+j/56/RrU+Q5emDdCcq05VFGENAAAAAAAdFoENAABAG/Pxxj36yYur5a0zdMmpA/QIYQ0AAAAAAB0egQ0AAEAbsnjTXt3+/Bp56wx9b1x//b+rT5Univ9kAwAAAACgo+Nf/wAAoMMpLCmUa7ZLhSWFkR5Kk3zy1T79+PnVqqnz6aJTkvXoNWmENQAAAAAAdBJcAQAAAB1Oem66/7a9hDefbt6v255bpZpany44uZ8euzZd0YQ1AAAAAAB0GlwFAAC0O+3lAjxaT1Nf84KsAv+tNbxpq5Z9vV+Zz+Wrutan747pq79edxphDQAAAAAAnQxXAgAA7U57uACP1tXU1zwtOU3GA4bSktMCwpu2aPk3B3Trs/mq8vr0nZP66m/Xn6YYD/+JBgAAAABAZ8PVAABAu9PWL8Cj9bXkNbeGN23Nyq0HdcvT9WHNOaP66PHrT1OsJyrSwwIAAAAAABFAYAMAiKjmTG/Wli/A4/iwv+YdYVq8VdsO6uanV6rSW6epI3sr94cTFBdNWAMAAAAAQGdFYAMAiCimN0NztPf3zerth3TTvJWqqKnTWSN666kbJxLWAAAAAADQyRHYAAAiiunN0Bzt+X1TWHRYN89bqfKaOp0xPImwBgAAAAAASJI8kR4AAKBzM6e6Apqivb5vvth5WD+cu0JHqms1eWgv5d00UfExhDUAAAAAAIAKGwBAB9IR+pqg4/qyuFQ35K3QkapaTRrSS/NuzlBCDH87AwAAAAAA6hHYAAA6jPbe1wQt5zN8OlpzVCVHS1RytETlNeUyDCPiYd6XxaW6Pm+FyqpqNXFwT827JUNdYglrAAAAAADAMVwpAAC0WYUlhUrPTdeiGxdpRNIIVXgrVOmtVGVtpWKiYtQjrod6xfdSj7gekur7maTnpjfY18Q8ZkFWgdKS007ME8FxU+mt1Mb9G7WjdIeO1hxVhbdChgKnSvO4PfrRWz+SVB/mneip1NbvKtMNc1eotNKr0wb10NO3ZKgrYQ0AAAAAALDhagEAoE06XHXYXykz7blpyp2RG3LbhOgEpXRL0bh+4xq9GG+twmmPPVBwLHTLnZErt8stn+EL2qaotEg5S3OUPTVbqd1TlZmeqbyCPGWmZ+qDLR/otP6nqXdC7+M+1o0lZbo+b7kOV3h1amoPPXPrJHWLiz7u5wUAAAAAAO0PU6IBANqULQe36K1Nb+mRZY/4l2VPzW5wnwpvhTYf3KzXN7yuj775SIerDofc1qy+aagKB22D0zRm1iAva2GWY1gjSTlLc/y3RaVFyivIkyTlFeRp2+Ften3D63pv83vaW773uI3/qz1HdP1TK3SowqvxA7vruVsnKZGwBgAAAAAAhEBgAwCtJNI9Mtq76tpqfbDlA/17679VcrTEf8G9qb459I1eXfeqFm1dpKM1RyUFvjZpyWkyHjCYDq0dsPck+vrg13p9w+v+AK+hIM9cl5meGfBesu5TVFakNza+oTW717T62L/ee0TXPbVcB8prdEpKop6/dbK6xxPWAAAAAACA0AhsAKCV0PC++XYf2a1/rv+nth3e5l9mvbBuveBeVFqkrIVZKiotCnhsXWbI0OaDm7VgwwLtLd/La9PGmAFaYwGnWQW16rZV+mT7J/p468eq9dUqtXuqcmfkKrV7ash9zW3MyhpJ/unR7FbtWqWPt36sOl9d85+UxZZ9R3XtUyu0/2iNTu6fqBd+NFndEwhrAAAAAABAwwhsAKAJ1u5ZG3Br5TTVFlU3DTMMQ6t2rdLCrxaq3FsesC61e6pjJYV1qivrrf1+UWmRbnzjRj2e/7jeue4dSUyD1lZYg7OGQrS05DQdmXVE2w5v08b9G5t1rsz0TP9tQwHP1we/1ttfva0Kb0WzzmP6Zt9RXfvkcu07Uq2TkrvpxczJ6pEQ06JjAgAAAACAzoHABgCa4Kynzwq4tXKaaovKjoYt3bFUa3avkSHDcb1TJYU9xLGGOU7Bzuwls1VcVqy1P1nLNGhthDU4ayhEq6qt0rub39WBygOSgqurrEKts/ausW6XX5wftP3e8r16Y+MbKqsuCzp+OOHrtv3luvap5dp7pFqj+9WHNT27ENYAAAAAAIDwENgAQBN8esunAbeNocF9aMt3Lm9W1YQ9xDEfNxTsGDK0rGiZVu1a1TqDR4uY4WZDvYRqfbV6/+v3dbjqsH+ZU1WV07qi0iJ/MBNqOzPAsR/raM1RfbDlA9X6agNCmsbC1+0H6sOaPWXVGtm3q168bbKSusY28FsAAAAAAAAIRGADACHU+epUVFqkTfs3ad3edfpizxfyySdJSu6WLJ/ha/Sv7mlw78z8fdo1VEHRVNZgxzzumxvf1PbD21t8bBx/S7Yt0d7yvQHLnKqqTObUZ1J9CGMPYjLTM5W1MCtgO/NY9vfdwcqDWrJtSUBI01D4WnSwQtc+uVy7S6s0om9Xzb9tinoT1gAAAAAAgCbyRHoAANCW1PnqVFRWpG8OfaMdpTtUU1cTsN7lc6mv+uqdr96Rx+PRrW/dKqn+gq7xgPO0Xgi068gufb7zcxWVFilnaU5AI3h7BUWoJvFNZT3uiF4jdPmYy9UttluLj4vj44s9X2jLoS1By80QzolZMeMke2p2UGWN9ZhmJU7O0hz/8bcc2qJ/XPkPXf3Pq1WQVeAPXyXJ6/X69995qELXPLlcu0qrNKxPF82/bbL6dCOsAQAAAAAATUeFDQB866sDX+mFL17QB1s+0NcHvw4Ka+y8Pq//L/3/dMGftK98n39dOP0uOqOq2ip99M1H8hk+x+mt7JUT5vRW1uqH5lThWBvPV9dV+8fA69R2mK/Foq2LtGLniibta30vZKZnOr6PrNU5ofog2fcrrS7Vrrt2hayQ23W4Utc+tVzFhys1tHcXvXTbFPXtFteksQMAAAAAAJgIbAB0ekdrjuq9ze/p+f88r5vfvLnBhuY7y3ZKku58/04VlRb5/+K/S0wXLdi4QEu2LVGlt7LRfhedVX5xvqpqqyQ5XyQ3f5/WdfZgp6E+JlbWYMfaeL6otEiX/+Ny5SzJ4XVqQ8zX4DvPfUeGQlerOQV21vdCXkGe4/sotXtqwPvJrKQxq2vsPZAkyWf49NE3HzmGt4erpRvmrVLRwUoNTkrQS7dNUb9EwhoAAAAAANB8BDYA2rWWVkhs2r9J/1z/TxWVFYXV0HzOsjkBy+zhzkfffKSEhxP05IwnJTn3u+is9lfs18b9G8Pa1tp/JtxqCDvr6+kUAD2w5AH/trxOkWe+Bg29rvnF+WEHdlLg+8i6T1PCv68OfKXYnNiA75iSsir9ZX2Uig5ValCv+rAmuTthDQAAAAAAaBkCGwDtWksqJNbsXqMl25f4/3q+oSDAXHbT+JsCltsv9JqPf7zwx9r9i90hp1IKpSNP0fXZjs8CKicau1huVlJIx6ofnPreOO1TVFoU9DraAyBzmrQ1P17T5NcJrW9c33Gaf/n8BnsW2fvPmIGp+VpK9Z9V6/sg1HvC/ji/ON9xqj3z/Wl+x+wtq9KN81Zpf5VLA3vE6aUfT9GAHvHNfNYAAAAAAADHENgAaNfMv8p/+YqXmxR0rNq1Sqt2rfI/biwIMP9S/9kvng1Ybg8FrKHPu5vf9U+hFq6ONEWXNXz66sBX2lO+J2C9PSAzL6ybF86tgU5RaVFQdUVDF9dzluYEvI7WUMh8LTNSMvzT2SHyvtjzhY7UHGlwG2swIx17Xe1BjvV90NB7wvrYPIY9QDTPef9Z92vvkSpd89RybT1QoZ4xhp6/NUMphDUAAAAAAKCVENgAaNfSktNkPGDomteukRRe0LF+33qt2b1G0rGQINxplswKm5vG3xTQA8MMDqxTMNX6avWvr//l2BMnFDOA6ghTdFnDp5XFK4PWh5quyn7x3VwXarlVc6ZPW71rtXyGr9Hng+OnwlsRVthqhmxmiDJz9Ex/FZYp1GfY/l7ITM9U1sIs/7HMW/t7xXzf/W7p3/SD3GX6Zl+5+neP0/+MrdPAnoQ1AAAAAACg9RDYAOgQwg06dpTu0Gc7PvM/DvXX9KGYFTbPfvGsvyrH6TimOqNOi7YtUoW3ouEn8C0zgOoIU3RZX4tN+zc1ur15oXzm6JmS6l8L6+thXW6f2spkD4GsjeZDBWdHao5oy8Et4T4tHAcb9m2Q1+cNWGadyszODFEWbFrgeDz759haOWe+J8xj2IPAdXvX+Su9zH3dRqJOiXpKW/dXqn/3OD1/60Ql0bIGAAAAAAC0MgIbAB1COEFHTV2NPtn+SUAfFae/pm+oIuaeM+7x37c3sw+lqrZKi7ctbuQZdDzW18IMTEJdgJeOhS3mRfi8gryAi+kLNi1Q7oxcJXdNDgjIrGGMeQ7reayhmjndmnkx3mRWd3TkHkJtQajf71cHvgra1h6GWqfMa0hmeqYyUjIClpn9j8z3hVPAag+BzMdJcYN1WuyzKi1PUNe4Ot09I1rjn+wfxrMFAAAAAABoGgIbAB2a9QLx8p3LgypdzJDAGrhYL+baQ4aBiQP968y/2rdWdFhZw4GdZTv15d4vW/vptXmf3PyJJPmrXKTgC/D2gCUU8zVyuthu9rSxBznWKa8aqqo4VHVIu4/s7lA9hNoip9/v7iO7HXvX2MPQhqbMs1bUmOtD7d/YtIfWY369b7f+8Hal9pVGq0tcna4/d7+ufP2csPYHAAAAAABoKgIbAB2a9QLxxv0bQ25nTpMkyTG8MS/+7yzbKUn68/Q/O4Y0VvZwYGXxSh2qPNTMZ9I+RUdF+wMte+8Q+4XzhnqPWEOxhqqZnOQV5Pn3N6dVM2+tvjn0TYfqIdQW2X+/hSWFGvCnAY5hnT0Mtb5/rLdSYIhjbhfOdHhW1uNlT81Wz9gUPb+kh2KMYarTIV1/zn4ldavVnPPnNOk5AwAAAAAAhIvABkCHZl4Y/t15v/MvCzU1l1O1jD0cmLOs/mKtGdw0xH5hudZXq6U7ljbjWbRPPsOnzQc2+x/be4fYOQUxM0fPDJjOKmthlkqOljhuZ3LqX2Lub0535dT7ZOvhrR2qh1BbZP/9moGqdbo6++fSXJ6zNEeZ6ZnKK8hT9tRsZaRkOIY41mNZA1fr+8L+2bS/L3vHD9Lzi3so1hihOh3SZWfsUO/EWklSYmyidvx8hyRp7Z61TKEHAAAAAABaDYENgA4tLTlNBVkF6hnf07/MaWokpxDH7HVhDwCkY8FNQ31ZMlIylDsjN6CfRsnRkrDCnvausKRQUb+JCupNYv2dm5Uz5o9TBc2CTQuCeo7YA5/cGbmaPnJ6yPU5S3OCqnes5zBfw037NzmGQTh+3vjBG/775utm/1xaX0/7NmbIan7WQk15ZwY9Jutn014BdtO4n+h3bx1VrDFSdSrVpafv0LiU3gHH23poqyTprKfPksQUegAAAAAAoHUQ2ADo0HyGT+v2rmt0O/vUZ/nF+Y49M+454x7/fes24fbFkKTVu1aHvW17YW8mb62csLJOO2etZLI2lG9sqrRpg6f575vTqxWVFvmDNafpzqznNy/Qm+e0vobmhXicGLGe2KAqmVD9pOzMiqv84nz/axmKWZVjnidUhd1jFz6pf+UPV6wxSnUqVdYFVRo/sHdQMLv1cP375NNbPpXEFHoAAAAAAKB1ENgA6NC2Hd6mcm95wDKnXjX26bjyCvIaDQCc+maYGqq82VO+p8NVctibyZsXsO2/F6dp56SGG8qbMtMzlTsjV4u2L/Ivs1ZcmPcXbFqg3Bm5Aec293UKakzZU7P9F+JxYpQcLQmqkmloSkIneQV5jq+l9T1gTpVmnfrMvk+116VXliYp1jhJdSrT90/frr7dawO2NW9Lq0ol1VfYFGQVMIUeAAAAAABoFQQ2ADq0L/d+GbTMKTQwl1l7W1gDAJM5FZpdydGSgIAmVOWNGRa8seGNoKqU9szeTH5M7zGOwYyVNdRqqMrClFeQp/zi/LDGYw9krEFQQ1UbR2uOan/F/rDOgZY5XHVYNXU1juusFTP24M0uMz0zaBszmMtZmqOZo2c6hjTWfWpqXXrl0yTtPBCruGifvj9lmx4vvN//ebZX51inNWQ6NAAAAAAA0FoIbAB0WAcqDvgrWUL1qDGXmfetDc2dLg6HEuqv9u3M9T959ydBVSntmb2Z/J7yPY3u4xRqmb9/a08Rq4YqcBriVE1lP745DgKbE2Nv+d6Q65zeG+bn0ok1GDSDPXNfa+BqP0dRaVF9WLM0STv3xyo22qdrz9mvx/9zf8A29uoca3DLdGgAAAAAAKC1ENgA6LDW7TvWu8bpArB1mX25vdl5U9mb2tuXZ0/N1qtXvSqpY17w3XO08cDG+rtwel3MqqfcGbnNGoM5LVZDlT7WUM4cz4GKA806H5qmocDGWulm7y9lZ35OrVMXhvvZ/b9P5uj5xV1UtD9W0Z5aXXv2fvXv6Q15fvM9YvayKr2vlOnQAAAAAABAqyGwAdAhGYYR0EDeqarCeoHXet8eIEjHLiBfMvKSBs9rbmcNCMwAyFxuHn/30d0BVSkdSUM9eqzTXZlhijU4Me+b2zXUTN5JQyGNWS0hHet7YwY75vYHKw826XxonoYCGzNwMV+fcDhV0jRUJecyYtWn5tfac6i7fKrQjqh7NaCXN+T5zcqv3Bm5Gpg4UJLkM3xhjQ0AAAAAACAcBDYAOqQDlQdUXVfd4DbWC7zW+/YAYWL/if4LuG9vfrvBY+YV5PlDBusxnCpI7njvDnnrvGE8m/bFMAztq9jnf2yfjs4amFinojM1NL2c/eK9NWhzEurcVvZlBDatJ1SfplpfbdDv2amnkRmSNFdy12THCi2XEaM+NdmK950qnyq0N+bXqnF/FfL8oQLAQ1WHmj02AAAAAAAAOwIbAB1ScVlxwGOnKdGcqjrMC7XWAGHV7lX++2ennh32GPIK8vzHnTl6ZlAPHUkqPlLstGu7Vu4tV62v1v/Y/rsPNRWalT3wsh/L5FRVYe1LZD33+5vfdzyXPQSqrqtWeU2547ZomlB9mj7Z/olue/u2gM+D9bWyhySh+g6ZrCGLlf09J0kyotWn5n8V70uXT5WadMoqVUdtDNgnZ2mOfzo0+2fWiunzAAAAAABAayKwAdAh2YMQ84JtZnqm/4J+ctdk/zJrs3vr9nafFH0S9hjM40rHggV7YLT98PaAfUJVJLQn9rDDerHdDFHMi+ENTVnVkh5C9r5EUujm804OVHIhvjWY/ZnsfZrOe+48SYGfB6dQxmn6PKftnF5vSfrByT9Q1sKsY+81w6M+Nfcr3jdBPlVpb8yDem3LHxzH3lCll4lqLAAAAAAA0JoIbAB0OD7DF7KHivUirHkh1rrMnM4s1EXam8bfFPY4rBU20wZPc1x/7rPn6pUvX/GHNKEqEtqTcm9gYGOtlrD/zu09Qo4nc/q07KnZQRf77Q5XHT6uY+ks0pLTHPs0vXrVq/771v5O5vvEDGqsVTdm0Gp+thvqk2R6Zf0r/vt5a55Rn5r7leDL+Dasma3qqHVhPY9QVTZHa46GtT8AAAAAAEA4CGwAdDh7ju4JmJJLCr4o39xw4Nkvnm10G+v0amYwsWj7opDbX/PaNZLqQ5pQFQntSYW3IuxtG+sRIkkuuZo1jon9J0qqD2qyp2ZrwaYF/vPZKzXsvW5q6mqadU6EZ1D3Qf774fQVsi63hn1hMzzqU3OfEnyT5FO19sX8RtVRa0Nubq/8CjUe3icAAAAAAKA1EdgA6HCsDe9N1oDGvGgfTmjT1GBn2uBpAZU1dtYwxzz237/3d0n1IU2oioT25K1NbylrYZbyi/MDllurFLKnZgeENNapr+wMGc0ax/QR0yVJY/uODajUsFZ0mH107OvtgR9aV1VtleM0hSb757VFjCj1qblXCb4pMlSjfTEPqSrqC/9qs/LKPJc1aG1sDN46b8vGBgAAAAAAYEFgA6DDKasuC1pmDWhKjpaEDAfscpbm6LJRl4V9brOSJq8gL6hfjSQld032BxVmZcm5Q85t9yGN1f9+/L+S6n8H5oV4s3eNlfUifUN9QprLGsJYL8pbzxWqumP93vWOx9yzR3rlFSkvr/52z55WHnQnYa1MceoVY622atF7w4hS75p7leA7Q4ZqtDcmR1VRhQGbmJVXoc5n7W0lSWVl0ppvC+A+XV7DewAAAAAAALQaAhsAHU5pVanjcqeeNeF446s3WjSezPTMBs8ZarztUWFJYdAyp4bw1jDl5bUv+5c79fppDQs2LfDfd6resFdE/ejtHwU8XrtWuvZaaeBA6ZprpNtuq78dOLB++drQs2vBQU1dTaPTFDpVtdiXhapkkyQZbvX2/kJdfGfKkFd7Y/5PVVFrHDcNFe5Jx8Kj4mLpqaekX/5SevaZ+nVP5nl5DwAAAAAAgFbjifQAAKAlCksK/b1fzAqVIzVHgrYL1TTcZA1VWov5l/nWah6ni9Cl1R0nsEnPTfffN6cbM59zUFhlRMmteH2y9UtFa5Bcitfn3xxSvE6X24iXS/FyG/FyK04uI0FuxculOLmNeEnR5kG+/ZHl1r782LRqI3uN0Odr4/S5VN8Zx9VL3+35qrZvk87veaEqayu1af9GpSWn6fbnV8vlqq+iWbZM8vlc6nGx9RT1vXX+XSF9/CvpnHOkAf0ll8vSdcd1rAePyyX/cpd9uWUH875Lstx32fY/1tcn6FjW5d9u5/L/z7FjhTrHse1dAds0dg41cCz78i/31uryQX/Vh998oAuGXSBJ+vOif+mCYcnqGd/j2+1PUtfa78l8Lc9MPVOPLvpM01Nz9GnRp7p45MXyVPVU19oiWV9v83/j6zL8Yc2+mIdVFbVaVt1iujl+VziFe+vWSY8/Lvl89T9+M36i2h2n6p//TNMbb0hvvCFdeGHQIQEAAAAAAMLSLgObBx98ULNnzw5Y1q9fP5WUlITcZ8mSJbrrrru0bt06DRgwQPfee69uv/324z1UAMeZGRCk56bLeKD+Uq1T0/vGqmnMsGbm6JlasGmBXHI1u3eKVB8ApXZPDQqKzADDOsXS4arDzT7PiVRdW6fy6jqVV9eqvKa2/vbbx0era7Vp/3Yleq+SW/Ga1P9s/eerbrqg16v69D8u1dS6NDFmgY5U1ai8uvbb8CXmhD+H4v2NbRGvBJ2hr3ZJX+069v8pcSMbP/bKPZKYHitMUZKGqJd+rFWb6pf0Upb/vilJP/Hf3/iNlKQ0bfj2dsV6c5v/CXmW+rDmt6qMyg9ad6TmiO6acpcSohP8lTXWsEaq/7z+eHS25j2eqtpQbY1uT1ftg4bq6qTLLpNWrpTGjWvk6QMAAAAAADhol4GNJI0dO1YfffSR/3FUVFTIbbdu3aqLL75Yt912m1544QV99tln+ulPf6o+ffroiiuuOBHDBXCcvHzFy7rmtWv08hX102p567xBDePzi49drLVW0kwbPM3fc8ZkXrBtSVgj1QdAGSkZIXuk5M7I9T92CpicKoeawjAMVdf6/KHKUYeQxXx81CmEcbjvrWv8d9JTN0mSNoUsaIqW/dvakFc+VchwVcqnKvlclTJUKZ8qv13mcKtjr7GlnkXf1nNo+ojpev/r92WpBfHft/7vDeN/qBe+eMG/zfXjrteLa+f7H08s+ZsKCs2qCkOWXS3365dHRUnjT5VuuL7+/WMY5vOT5f6x5VL966Rv1/vrhIxj7z/rchlGo9tYlytgeRPHE2Ib63JZlzdxPMVlu1TuLfdvU+Gt0Lp963Ryn7FK8CT4z1XhrdSGfRtk/aW7LK+lueTYrXV5rY543g3qWWP1p+V/Uu6MXP/ncfrI6UH9rZ7clCO379jnVYlF0rRHJL1U//ip5f7nUVsr/fa30vz5AgAAAAAAaLJ2G9h4PB4lJyeHte0TTzyhQYMG6dFHH5UkjRkzRqtWrdIf//hHAhugnbvmtWv8tz845QeqrK30r3NqdJ/c9dj3hj2saW3vb37ff98aFNmnRfMZPhmGoSqvrz5Yqa7VpL9foVhjrE5//Db944o3VVFjCVb84Up9EBO0rrpW5TV1qvO1LHQKJdbjVtdYjxJio9QlxqOusR51ifXIaxzRB9+8rfNHnC2Xq0Yx0T7FeAzN/3LesRDGVSlDVQEBjVyhShea77VtH/v/H84pmJPqX5P0lAr1TjoWrPXpPVE/mzbB/3jpe4dVV5wW9nmXrZZefUjq27fFT6FD+3jrQX19cKdt6QhJ1d/+HFNU6gm731RzZC3MCqh6M6fyMz+zrqXZgdOgnZMjKb7+/nt/lnZP8K+qrZVefVV69FHeAwAAAAAAoOnabWCzefNmDRgwQLGxsZo8ebIefvhhDRs2zHHbzz//XBdccEHAsgsvvFBz586V1+tVdHR00D7V1dWqrj520aisrEyS5PV65fV6W/GZAGiJ1T9arbOePkuf3vKp//Pp8tX/lf0jnz2ieHe8f9ubxt8UtMyuR1yPBqcoM/eNdyXI5YqTy4iTS/GOt0vWe5Rk/FAuxWv/7vN0ce8LVFPr1icF9VOE1Xhdqqlzq8brUs4/3pU1Xxmgx/z3/+elgmb+dr4dc7RbXWI9SoipD1i6xFpuYz3qEhOlBNtj6/qEmKj6UCYmSgkxUfJEuRs429lau2etVu8+1i+kf++zNGfZHLkk3Tr+Jj37xbO654x7JElzls3RsX40re+eM+7RnGVzHF/zF//zoib1n6RB3Qb51z/y2SOSjr3OyjpD+u23PYb6rZVuPUua96m0J/ScV4sXSzNnhlwNSR7D4/+cNsb+mb1k5CV6e/PbrTqeRz57RPeccY8GJg6U23Ar3h2vAV0G6Pb+T+rZCilg9r7Pf634qX+VJMVHR0mxhqTA/y7gPQB0fOa/B/h3AdC58V0AgO8BAK39+XcZhnF8/gT7OHrvvfdUUVGhUaNGac+ePcrJydHGjRu1bt06JSUlBW0/atQo3Xzzzbr//vv9y5YtW6YzzzxTu3btUv/+/YP2ceqTI0nz589XQkJC6z4hAG3euzvcKjjgUlWdVF0n1fgkQ+FdcG6qWLeh2Cj5f+KipBi3oTjLsvrl327ntmwX9e12bvOx5D4+wwQAAAAAAAA6tYqKCl133XUqLS1VYmJii4/XLitsLrroIv/9cePG6fTTT9fw4cP17LPP6q677nLcx+UKvGJp5lT25aZZs2YFHKusrEypqamaNm2aYygEoG2oqKnQP9b/I2j5zrKd31ZzBDIrMBrTtTpTCbUXBi035JOhKhmuKhnf9lgxVKVhvVL09aEv/Y99rspvt6nSjWlXK8bjU+6ax77dt1Ib/ruwvpolOkrudp6wfH3wa32641NJ0p3v3xmwzqxisLJv01JmBUZgFU+gm8bfpNMGnBa03HyfPHXJU/Jsulq33GJZGWaFzTPPUF3RmC/2fKE1u9c0a981u9bo2S+e1dmpZ+uTok9aeWT17w2zCmzvloF69pngbeJjXJr38z669feVqiwMnlqV9wDQ8Xm9Xn344Yc6//zzHav1AXQOfBcA4HsAwIEDB1r1eO0ysLHr0qWLxo0bp82bNzuuT05OVklJScCyvXv3yuPxhAxfYmNjFRsbG7Q8OjqaL2CgDYtRjAx3cOHgbz79jeP2oZbbeaMWqMz9sWLcPv3ppN/qzq9uV6XvkAxVy6nQ5sFpucovPuDvW1PfD+P5b3tlVEiS7uh6kXKW5ih7arb690xQlDsqzGfZtnWN6+p/DX5x5i/8z9HsEWI2oTd7DFn7+7SGf2yqD+waem3TB6bLkOEfgzm+lB4pevTiR5Wekq6k/tHyeuv7kkiStp0m/bqiwXN7PNK550r830TDYmNiZbiNoPeA9X0SSvrAdKUPTFfWwqwWjSHU++6JwieUPTVbv1n6G113UqYqL8yTlnzbd+qcnPr7VYMkSZXl8aqsDHyxeQ8AnQv/NgAg8V0AgO8BoDNr7c9+Q40I2o3q6mpt2LDBcWozSTr99NP14YcfBiz74IMPNHHiRL5MgQ4mVNWcXfbU7CYdt9a9U9VR61QbtU194iXDVSrDZQlrvMd6bGRPzVZRaVHAxeDkrsnKnZEbcDE6tXuqf5kZYnQEveJ7+e9bn6Od2Ug+ryBPmemZjscyl/9w3A/DPn+oY5msr705BntT+64xXdWvn3TllfUX4MPh8UhXXUWz+XAkRNdPLWp9D5iPi0qLlLUwS0WlRSHvS03/DNuFet9lpmf6xzV/47ef4XNy6n/M+4k76+97A6dI5T0AAAAAAABaol0GNnfffbeWLFmirVu3asWKFbryyitVVlamm266SVL9dGY33nijf/vbb79d27dv11133aUNGzZo3rx5mjt3ru6+++5IPQUAx4nb5Q66sCsFXty13m/s4n7Yoiv9d3OW5gQFAPbHVm6XWx53cCpQWFIo12yXCksKW2eMJ0iXmC6K88QpvzhfWQuzlF+c77id9XVwqnTInpqtvII8zRw9U8+vfT7s82ekZPiPbb+obw+PzNff/j7oEt1FknT//fUX4RvLAV2u+u1mzQp7mJ1aUnx9dav5+pi//+yp2QEhWqj7+cX5IStxpqRMCXneG8ffGPDeyEjJCNrG6b0Y9Wn2sSobSTrz22n2LIEN7wEAAAAAANBS7TKw2blzp6699lqNHj1al19+uWJiYrR8+XINHjxYkrR7927t2LHDv/3QoUP17rvvavHixUpLS9NDDz2kxx57TFdcETzvPID2zeP2OFZNmJUe5gV7+1/2t9Sk7t9rdJtQAYZZbWCXnpsecNue9Irv5f/dhvodp3ZPDbpgb7JeuF+waUHY5zWrm6zTnIUKZaxjs47R7XKrR1wPSdK4cdIbb0ixsaErbTye+vVvvFG/PRrXPa67ot3R/s9lRkqG/7NpDVRCBW/WqQYlaeboYw1jvjvsu/pR2o8cz/vcF8+p5GiJcmfkSpKyFmZp2uBpkuS/tZ7XfPxfP0yVpyJVrqXfLv+svj+SqnpI4j0AAAAAAABah8swjI4zD89xVFZWpu7du2v//v0h+94AaBt+9+nvNOvfsxrsh2Fe1G+qeHe8Xhr/kq794lpV+iob3yEE84KxJPVJ6KOZY4I7lBeWFCo9N10FWQVKS05r9rkiYVnRMj1d8LR/2imnSgY7a0+S3Bm5jfYomTZ4mhZtXyRJAa+1/TgNsYc7ktS3S19ddtJlAdutXSv99rfSq69aetro2BRYs2Zxob6p3tz4pvaU7wm53v7aWD+zM0fP1PSR01vcx8auofdLcbH03nvS6tVSrMell37ZV9feerq8ZX15DwCdkNfr1bvvvquLL76YKZaBTozvAgB8DwA4cOCAevfurdLSUiUmJrb4eO2ywgYAGpKWnBY09ZV9mjTrX/I3l8cVZnMT1QcKoSo9usZ0ddwnLTlNxgNGuwtrpPoKG3NqsryCvIDp6Uzma2JWHlmnxbLehrJo+6KAqinzmCb7/vb3gFNYI9X3G7IbN06aP7/+ov0rr0hPPVV/W1xcv5wL9U3XO6F3g+utlXL2gHXBpgUB75nGmNUzTqzHcHqfmlJSpMxM6fd/kG6+uX7Z04/34D0AAAAAAABaDYENgA6ne2z3oGWhpklrruE9hqvWqG18Q8u5zGmf7NUmibEtT9/bml7xvSQF/96toYl9Wrq8gjx/+GINU5oSrFlfX/NCv3le+1ic3hOSc2Bj6ttXuvrq+gv3V19Nc/mWSEpouFrV+rqHqoYz3zONBTdmJZad/fNo9sexB3vWx4ndpPRvZym8/HIX7wEAAAAAANBqCGwAdDjd44IDm1BVG82tstlyeEvY2zZ2Dqfxtne9E3orJiom6PduDUmcGs6bnJrNO7FeSLf3BrIfx6qotCjke6Jfl37hPEW0kFOFjTUccQpUQ31+zWqupjLPZd3XDBDtlT3NmUIRAAAAAACgKQhsAHQ4ZsN4K7O5uf0icLhTo7Vk+rTGKnmcxtveuV1uDeo+yP/7NS9+W0MS8zUxlRwt8d93ajzvFOxI9RfSsxZm+S+0W4UKZcyL7/b3RGJsouKj45v3pNEkveJ7yeMOnFbQHo5YXzfzPTNzdH2/p5mjZwa8dub7yVxvF6oKJ2dpTsjvAWtI47R+7Z61cs12qbCk0PHYAAAAAAAATUFgA6DDKCwplGu2S9tLtzdpP/NCb+6M3Bb3tbELdfHY5HF71LdLx5xTaVjPYZKCq2XsPWOsU6KZnAK2vIK8oIv2jbFOr2a/YO9UMdHQdGhoXW6XW4O7Dw5YZg3nshZmBawzX6/pI6crd0aupo+cHtQHqai0SAs2LXA8n30qQvs5zfdcU74Dznr6LElSem562PsAAAAAAACEQmADoMMwL5qeMfeMJletmBd+rVUeJrNCJBz2UCDUxWNT/6795XYFfhWbwVN7/6v91MRURbujQ1a3mMzfmb35e9bCLGUtzArqS5O1MEtj+44N68K6dX+nChzruYpKizS85/DwnhxaxfBegb9vMzSxTksWqkrKXC8FTmNmZX1vmVPn2dc1JFQfnd7x9dO5fXrLp5KkgqyCRo8FAAAAAADQGAIbAB2GedG0IKtAg7oPCrmdvYm4FHzh18opxAkluWtywDRfjZ03JTElaDszeGrvf7Uf5Y5SavfUoMoF60XwotIi/+/cWt3SWEBmrdaxX8gPdSHerMqxT61mrQAamDgw7OeHpnEKIgd1H6SYqJigbRsKaST5K2pMoV5za/WW9T1lD4WsVTrW7axTpVnHMqLXCEnSuH7jZDxgKC05LeTzBgAAAAAACBeBDYAOIy05zX/x1B7YWMMSe58Ma4DidOE3VGWG07ZOvTfMi8FOzcsHdBsQdAxr8NTemdOiSQroWWN/LSTn18PKaboqM7ixbpORkuG47YJNCwLWm9Otmdu9cPkLcrlczX2qaIRTEOl2uTWkx5Cgba1T4jl9Xu2fSaep7LKnZjt+RhsLd6yKSouCpudzu9wq95ZLqu9hAwAAAAAA0FoIbAB0SMldk1VytCRkSCMFV1hI9X0uwu1hEaonhnmR18p6Mdg8fmxUrJLik4L2twZP7d2g7oMU7Y4OWGZ9LexN5a3rpeBqGHtz+JmjZwZVQNint7Mfwy61e6qenPGkLh19aTOfJcIRKohsbBo6+5R5TtVXOUtz/BVU2VOz/QGLUwiTV5AXEAo21A/Jfq6i0iLd9vZt+s5z35F0rIcNAAAAAABAayCwAdAhuV1uPbD4AUnBwYApZ2mOikqLAi7426s+rLKnZuum8TdJkv+2ob4aVtaLzuYUTFW1VR2+osPj9ujkPicHLLP+vs3qBaeKl+yp2f5qGOlYVY41DFuwaUFQBYR9eru8gryA9aGmpusa07XVnz+OCRVEpiSmKM4TF3I/6+sohZ4uzaygsr7OoVg/ow31mWqs/5LZwwYAAAAAAKA1ENgA6LDevOZNSYHBgNMFWKfpl+zMY5w24DRJ8t/aKz6k+lAma2FWQGWHGTxY/+L/9nduD+rp0RGN6zdOUa4o/2N7wGJnX2+vkMpamKVpg6dJCqyOMIMY+5RXoS66W1/rk3qf1NynhxZyu9xh//7N94L5ebS+1vbXvaHPsnVbax8kszrHHiKaHjr3IUnHgppx/caFNW4AAAAAAIBwENgA6LAuHnmxnr3s2YCLrvbgxqyqMSsuQk2bFerir31d9tTsoIoAK6fjW3t6dEQJ0QlBF+SdqlzszG2cfveLti+SFFgdYa+sMdkvuju99oerDof/hNDqxvcbHzR1nhN72GZ9ra1TFOYX5zvubwY91v1Su6c2GiKahvYc2ugYAQAAAAAAmovABkCH5XF7NKb3GP9ja0gQqqm5U8WMdOwi/86ynQG3dk77WwMH87wb/mtDyJ4eHdFp/U8LuCBvr5hxCm4aCslMTj1w7BUTdk6v/YQnJzTh2aC1xXnigqbOM5lVVE79ikK9zk5hqXTs/dZYXyMn8Z543bDgBkn0rgEAAAAAAMcHgQ2ADm1s37H+6bicpsKy/iV+Yz1sJGnOsjkBt+Z+1ltTqIvCsVGxGtFrRMieHh1RfHS8xvcb73/cWG8Qp20a6kNknyrLqWLCqarn79/7u6TOEZq1dacmn6qYqJig5WYVlVO/Iutj6+trfvasU+ZZmX2NJIVd6dU1pqv/fULvGgAAAAAAcDwQ2ADo0KzTcTkFK/apkUKFNebye864J+DW3C9U03unaZZG9x4tj9vToufVHp2afKoOVh5U1sIsSc7VMaE01ofIKYyzs2/jcXt0w/gbOk1o1tbFeeI0oX9wpVOoQNQewFlfX7Nn1PSR0x3PZR6rKe+by/9xuT9kpXcNAAAAAAA4HghsAHR4aclpinJFOf41vtm8XlJADxuz+bj9YvHAxIEBt00VGxWrU/ud2pKn02553B7N+vcsSYEhixTcZ8bcxr7eqQKqsSnQrNtZb9OT09U1pmvANoUlhXLNdqmwpDDcp4VWNLbvWHWP7R6wzJxmMGdpjvKL85W1MEv5xflBYYv1tbdXzkmBFW/m+8npfWMPgqzreF8AAAAAAIDjicAGQIfXJaaLTk0ODEnMi7xm83pzWbjNx0OxTq3kFB5MHjhZ8dHxzTp2R2BOKRVOyOK03hrWmKGaOQWaeVE/1PRW1tc2KT4pYIo2U3puesAtTiy3y61pQ6fJ7Qr8zxNr1Zr1Vjr2/rB+Zu2Vc7kzcv1VN9btnD7v9iBo6uCp/nW8LwAAAAAAwPFEYAOgUzit/2nqk9DH/9j+V/fWZdKxv7K3XrxtqM+FqaGqkQHdBvinZ+uszCmlpg2d1mg45rQ+VLhjrbxp7LWK88TpwhEXKsodFbTODJToaRM5u47s0m1v3+YYfpqfV6dqGelYzxqn3jVOPYwak7UwS91iuvG+AAAAAAAAJwSBDYBOwfzLfbN3jP2v7kP9lb1VQ30uTKGqRjxuj84efHZLnkKb1ZxpxKYOmqoecT0a3MbpAnuo18j+2tgfm8cqLivWBcMvCJoKzWQGSvS0iRyzisUeflo/r07VMpK0YNOCgFurcPrVSIEhriSdMe8M3hcAAAAAAOCEILAB0Gn0iOuhKQOnhLWtNXCxXsBds2tNs849of8EJcYmNmvftq4504hFR0Vr+ojpQb8Ta0gT6gK7Uyjm1KfEyjzGbz75jZK7Joc9Tpx4ZhXLqttWqXdC7ybt29A0e+H0OZICp1OzjgcAAAAAAOB4I7AB0Kmc3OdkDe4+uNHtQvXDePaLZyXVBzdO0ys5hQzDew4P6qHTkTR3uqjE2ER567z+JvJS4O8v1AV2p6nSGupTIkm/OvtXzRojTjyzmmXCgAm6YPgFiveE3/PJ3svIGgCG25/KfL8VZBVQVQMAAAAAAE4oAhsAnc55w87TwMSBTdrHPk2SGdw0Vv0xoNsATRs6rblDbRdaMl3UjW/cKOlYKGb9/VkvsDen/4ipW0w3/fek/+biezvUNaarLj3pUvWM6xn2PtbQL9xp0KwuHHEh7xUAAAAAABARBDYAOh2P26PpI6ZraI+hQevMYCBrYZZ/WfbUbGWkZARUelwy8hJJwUGONWQY0G2Apo+YLreLr1o7s+/N7877nSTppctf0vh+40NWQTTnwrtUX910xclXqG+Xvq0zcJxwibGJuvSkS5WaGF5wZw39wp0GTZKiXFGaOmiqzhp0VusMHAAAAAAAoIm4igigU3K73PrusO9qZK+RAcudAgEzPEjtnqo/T/+zJOntzW9LCu53YRrcfbCmj5guj9vTmsPuEApLCv39bu77930yHjB0zbhrNGXgFF0x5goN6j4oaJ+mXHiXpGh3tM4ZfI7OG3aeYqJiWm/wiIiYqBhNHzE9rODOGvrZp0gLJTE2UZeddJnG9BnT6mMHAAAAAAAIF4ENgE7L5XJp2tBpyhiQ4Q9W7IFAqIDgnjPucVwfExWjcwafowtHXEhYE4IZ1kjBPWWSEpI0fcR0XXbSZUrpluJfHm7/kaT4JJ2ZeqauH3+9Rvce3boDR0S5XC7/++X/vvN/Ye/XWMgzrOcwXT7mciUlJAUsN6vACksKmzdgAAAAAACAJuJqIoBOL71/ukYmjdSKnSskSbkzchvdZ2DiwKDtBncfrKmDpyohOuG4jLOjKMgqUHpuugqyCkL2Cenbpa++N+p72le+TzvLdmrXkV06UHlAVbVV/m12lu3UQ588pDnnz9GUgVN0Uu+T1Duh9wl6FogEs1+Sz/Bp84HNKigpUFl1WYP7mBU21nDVJZcG9xissX3GKiUxxXE/M1hMz02X8YDRek8CAAAAAAAgBAIbAFB9c/Pzhp2nsUfHamXxSpUcLQlrv11Hdmn2ktl657p3dOGIC4/zKDsG86J7OPp06aM+XfoovX+6fyq1JTct0aSBkxT/f/GSpHs+vIcL6u2Q+Xo2FNyF4na5Nbr3aI1KGqWvD36tdfvWaX/FfvkMX9C2ZnWWJMV74nVS75M0ps8YdY3p2uA5rMEiAAAAAADAiUBgAwAWyV2T9f3R31eFt0LbD2/XnvI92lu+V7W+WnncHkX5oiRJQ3sM1bDewzT8seGSpO/N/x6hwXFmVjyc8+w5Ksgq4IJ6O2etYAmn6sqJy+XSyKSRGpk0UrW+Wu0r36fDVYd1pOaIaupqlBCdoK4xXf0/Xx/8WhOenBDWeZoSLAIAAAAAALQGAhsAcJAQnaAxfcYENSH3er1695t3dc6QcxQdHR2h0XUe1ioM86K+dGyaKuMBw99rpDmVGogca0jT0PRj4VbieNwe9e/WX/279Q+5zYQnJ4Q8DwAAAAAAQKS5Iz0AAGjPzOoOqjyOD+uF/LTkNMfft3UbtB9mBUuo19UUzutrhnaFJYUNnpPPKwAAAAAAaMsIbACgBawXndH67BfYnX7fXIRv/xr6HIXz+oYb2vF5BQAAAAAAbRmBDYBOx+mv8cP9C32cWOFcYOcifMcWzutLaAcAAAAAADoCAhsAnY7TX+MzrRbQfhHaAQAAAACAjoDABkCn4/TX+PyFPgAAAAAAAIBI8kR6AABwopl/jd/YMgAAAAAAAAA4UaiwAQAAnRK9qwAAAAAAQFtCYAMAADolelcBAAAAAIC2hMAGAAB0SvSuAgAAAAAAbQmBDYBOj2mRgM7J7F2VlpwW6aEAAAAAAAAQ2AAA0yIBAAAAAAAAiDQCGwCdHtMiAQAAAAAAAIg0T6QHAACRZk6LBAAAAAAAAACRQoUNAKBNorcQAAAAAAAAOhMCGwBAm0RvIQAAAAAAAHQmBDYAgDaJ3kIAAAAAAADoTOhhAwBok+gtBAAAAAAAgM6EChsAAAAAAAAAAIAII7ABAAAAAAAAAACIMAIbAAAAAAAAAACACCOwAQAAAAAAAAAAiDACGwAAAAAAAAAAgAgjsAEAAAAAAAAAAIgwAhsAAAAAAAAAAIAII7ABAAAAAAAAAACIMAIbAAAAAAAAAACACCOwAQAAAAAAAAAAiDACGwAAAAAAAAAAgAgjsAEAAAAAAAAAAIgwAhsAAAAAAAAAAIAII7ABAAAAAAAAAACIMAIbAAAAAAAAAACACCOwAQAAAAAAAAAAiDACGwAAAAAAAAAAgAgjsAEAAAAAAAAAAIgwAhsAAAAAAAAAAIAII7ABAAAAAAAAAACIMAIbAAAAAAAAAACACCOwAQAAAAAAAAAAiDACGwAAAAAAAAAAgAgjsAEAAAAAAAAAAIgwAhsAAAAAAAAAAIAII7ABAAAAAAAAAACIMAIbAAAAAAAAAACACCOwAQAAAAAAAAAAiDACGwAAAAAAAAAAgAgjsAEAAAAAAAAAAIgwAhsAAAAAAAAAAIAII7ABAAAAAAAAAACIMAIbAAAAAAAAAACACCOwAQAAAAAAAAAAiDACGwAAAAAAAAAAgAgjsAEAAAAAAAAAAIgwAhsAAAAAAAAAAIAII7ABAAAAAAAAAACIMAIbAAAAAAAAAACACCOwAQAAAAAAAAAAiLB2H9j89re/lcvl0s9+9rOQ2yxevFgulyvoZ+PGjSduoAAAAAAAAAAAACF4Ij2AlsjPz9eTTz6p8ePHh7X9pk2blJiY6H/cp0+f4zU0AAAAAAAAAACAsLXbwObo0aO6/vrr9dRTTyknJyesffr27asePXqEtW11dbWqq6v9j8vKyiRJXq9XXq+3yeMF0DGYn3++B4DOi+8BAHwPAJD4LgDA9wCA1v/8uwzDMFr1iCfITTfdpF69eun//b//p3PPPVdpaWl69NFHHbddvHixpk2bpiFDhqiqqkonn3yysrOzNW3atJDHf/DBBzV79uyg5fPnz1dCQkJrPQ0AAAAAAAAAANAOVVRU6LrrrlNpaWnA7F7N1S4rbF5++WWtXr1aq1atCmv7/v3768knn9SECRNUXV2t559/Xuedd54WL16ss88+23GfWbNm6a677vI/LisrU2pqqqZNm6akpKRWeR4A2h+v16sPP/xQ559/vqKjoyM9HAARwPcAAL4HAEh8FwDgewCAdODAgVY9XrsLbIqKinTnnXfqgw8+UFxcXFj7jB49WqNHj/Y/Pv3001VUVKQ//vGPIQOb2NhYxcbGBi2Pjo7mCxgA3wUA+B4AwPcAAEl8FwDgewDozFr7s+9u1aOdAKtXr9bevXs1YcIEeTweeTweLVmyRI899pg8Ho/q6urCOs6UKVO0efPm4zxaAAAAAAAAAACAxrW7CpvzzjtPa9euDVh2yy236KSTTtIvf/lLRUVFhXWcgoIC9e/f/3gMEQAAAAAAAAAAoEnaXWDTrVs3nXLKKQHLunTpoqSkJP/yWbNmqbi4WM8995wk6dFHH9WQIUM0duxY1dTU6IUXXtBrr72m11577YSPHwAAAAAAAAAAwK7dBTbh2L17t3bs2OF/XFNTo7vvvlvFxcWKj4/X2LFj9c477+jiiy+O4CgBAAAAAAAAAADqdYjAZvHixQGPn3nmmYDH9957r+69994TNyAAAAAAAAAAAIAmcEd6AAAAAAAAAAAAAJ0dgQ0AAAAAAAAAAECEEdgAAAAAAAAAAABEGIENAAAAAAAAAABAhBHYAAAAAAAAAAAARBiBDQAAAAAAAAAAQIQR2AAAAAAAAAAAAEQYgQ0AAAAAAAAAAECEEdgAAAAAAAAAAABEGIENAAAAAAAAAABAhBHYAAAAAAAAAAAARBiBDQAAAAAAAAAAQIQR2AAAAAAAAAAAAEQYgQ0AAAAAAAAAAECEEdgAAAAAAAAAAABEGIENAAAAAAAAAABAhBHYAAAAAAAAAAAARBiBDQAAAAAAAAAAQIQR2AAAAAAAAAAAAEQYgQ0AAAAAAAAAAECEEdgAAAAAAAAAAABEGIENAAAAAAAAAABAhBHYAAAAAAAAAAAARBiBDQAAAAAAAAAAQIQR2AAAAAAAAAAAAEQYgQ0AAAAAAAAAAECEEdgAAAAAAAAAAABEGIENAAAAAAAAAABAhBHYAAAAAAAAAAAARBiBDQAAAAAAAAAAQIQR2AAAAAAAAAAAAEQYgQ0AAAAAAAAAAECEEdgAAAAAAAAAAABEGIENAAAAAAAAAABAhBHYAAAAAAAAAAAARBiBDQAAAAAAAAAAQIQR2AAAAAAAAAAAAEQYgQ0AAAAAAAAAAECEEdgAAAAAAAAAAABEGIENAAAAAAAAAABAhBHYAAAAAAAAAAAARBiBDQAAAAAAAAAAQIQR2AAAAAAAAAAAAEQYgQ0AAAAAAAAAAECEEdgAAAAAAAAAAABEGIENAAAAAAAAAABAhBHYAAAAAAAAAAAARBiBDQAAAAAAAAAAQIQR2AAAAAAAAAAAAEQYgQ0AAAAAAAAA/p4OkgAAFSxJREFUAECEEdgAAAAAAAAAAABEGIENAAAAAAAAAABAhBHYAAAAAAAAAAAARBiBDQAAAAAAAAAAQIQR2AAAAAAAAAAAAEQYgQ0AAAAAAAAAAECEEdgAAAAAAAAAAABEGIENAAAAAAAAAABAhBHYAAD+f3t3HlxVff4P/LnIFlJAQUhIMRSnooAb4wK2EaRaVKi4tQJaV1p1EDBQGcBK1S8KotZaCoh2XIaKSzsVxeootkCQAlZZ1LGMaCcKLjQigkIKBri/P1rz85JAFG5yAr5eM/nj89yTc95hhs9kzjv3XAAAAAAgYQobAAAAAACAhClsAAAAAAAAEqawAQAAAAAASJjCBgAAAAAAIGEKGwAAAAAAgIQpbAAAAAAAABKmsAEAAAAAAEiYwgYAAAAAACBhChsAAAAAAICEKWwAAAAAAAASprABAAAAAABImMIGAAAAAAAgYQobAAAAAACAhClsAAAAAAAAEqawAQAAAAAASJjCBgAAAAAAIGEKGwAAAAAAgIQpbAAAAAAAABKmsAEAAAAAAEiYwgYAAAAAACBhChsAAAAAAICEKWwAAAAAAAASprABAAAAAABImMIGAAAAAAAgYQobAAAAAACAhClsAAAAAAAAErbPFzYTJ06MVCoVxcXFuz2upKQkjjvuuGjatGkceuihMX369LoJCAAAAAAAUIN9urB5+eWX47777oujjz56t8eVlpZG37594+STT47ly5fH9ddfH8OHD48///nPdZQUAAAAAABg1/bZwmbTpk1x0UUXxe9///s46KCDdnvs9OnTo7CwMO6+++7o3Llz/OxnP4srrrgi7rzzzjpKCwAAAAAAsGsNkw6wp6655pro169fnHbaaXHLLbfs9tjFixdHnz59Mmann3563H///VFRURGNGjWq8j1bt26NrVu3Vq43btwYERHr16/PQnpgX1VRURHl5eXx8ccfV7t3APs/+wBgHwAi7AWAfQD4/31BOp3Oyvn2ycLmsccei6VLl8Yrr7zylY5fu3Zt5OXlZczy8vJi27ZtsW7dumjXrl2V75k4cWLcfPPNVeadOnXas9AAAAAAAMB+5+OPP46WLVvu9Xn2ucJmzZo1ce2118acOXOiadOmX/n7UqlUxvqLxmvn+RfGjh0bI0eOrFxv2LAhOnToEKtXr87KPzywb/r000/jkEMOiTVr1kSLFi2SjgMkwD4A2AeACHsBYB8A/vtkrsLCwmjVqlVWzrfPFTZLly6NsrKyOO644ypn27dvjwULFsSUKVNi69atccABB2R8T35+fqxduzZjVlZWFg0bNozWrVtXe50mTZpEkyZNqsxbtmxpAwaiRYsW9gL4hrMPAPYBIMJeANgHgIgGDRpk5Tz7XGFz6qmnxuuvv54xu/zyy+OII46I0aNHVylrIiJOOumkePrppzNmc+bMieOPP97zJQEAAAAAgMTtc4VN8+bN48gjj8yY5ebmRuvWrSvnY8eOjffffz9mzJgRERFXX311TJkyJUaOHBk///nPY/HixXH//ffHo48+Wuf5AQAAAAAAdpad9+nUMx9++GGsXr26ct2xY8d49tlnY/78+XHsscfG+PHjY/LkyXH++ed/5XM2adIkbrzxxmofkwZ8c9gLAPsAYB8AIuwFgH0AyP4+kEqn0+msnAkAAAAAAIA9sl++wwYAAAAAAGBforABAAAAAABImMIGAAAAAAAgYQobAAAAAACAhClsarBt27a44YYbomPHjpGTkxOHHnpo/N///V/s2LEj6WhALVmwYEGcddZZUVBQEKlUKp588smM19PpdNx0001RUFAQOTk5ccopp8Qbb7yRTFig1uxuL6ioqIjRo0fHUUcdFbm5uVFQUBCXXHJJfPDBB8kFBrKupt8Jvuyqq66KVCoVd999d53lA2rfV9kHVq5cGf3794+WLVtG8+bNo0ePHrF69eq6DwvUmpr2gk2bNsXQoUOjffv2kZOTE507d4577rknmbBArZg4cWKccMIJ0bx582jbtm2cc8458eabb2Yck417hgqbGkyaNCmmT58eU6ZMiZUrV8btt98ed9xxR/zud79LOhpQSzZv3hzHHHNMTJkypdrXb7/99rjrrrtiypQp8fLLL0d+fn788Ic/jM8++6yOkwK1aXd7QXl5eSxbtizGjRsXy5YtiyeeeCJWrVoV/fv3TyApUFtq+p3gC08++WS89NJLUVBQUEfJgLpS0z7wr3/9K4qKiuKII46I+fPnx6uvvhrjxo2Lpk2b1nFSoDbVtBeMGDEinnvuuXj44Ydj5cqVMWLEiBg2bFg89dRTdZwUqC0lJSVxzTXXxJIlS+KFF16Ibdu2RZ8+fWLz5s2Vx2TjnmEqnU6na+MH2F/86Ec/iry8vLj//vsrZ+eff340a9Ys/vCHPySYDKgLqVQqZs2aFeecc05E/LcpLygoiOLi4hg9enRERGzdujXy8vJi0qRJcdVVVyWYFqgtO+8F1Xn55ZfjxBNPjHfffTcKCwvrLhxQJ3a1D7z//vvRvXv3eP7556Nfv35RXFwcxcXFiWQEald1+8DAgQOjUaNG7g/AN0h1e8GRRx4ZAwYMiHHjxlXOjjvuuOjbt2+MHz8+gZRAbfvoo4+ibdu2UVJSEj179szaPUPvsKlBUVFR/O1vf4tVq1ZFRMSrr74aCxcujL59+yacDEhCaWlprF27Nvr06VM5a9KkSfTq1SsWLVqUYDIgaRs3boxUKhUHHnhg0lGAOrJjx464+OKLY9SoUdG1a9ek4wB1bMeOHfHMM89Ep06d4vTTT4+2bdtG9+7dd/v4RGD/VFRUFLNnz473338/0ul0zJs3L1atWhWnn3560tGAWrJx48aIiGjVqlVEZO+eocKmBqNHj45BgwbFEUccEY0aNYpu3bpFcXFxDBo0KOloQALWrl0bERF5eXkZ87y8vMrXgG+eLVu2xJgxY+LCCy+MFi1aJB0HqCOTJk2Khg0bxvDhw5OOAiSgrKwsNm3aFLfddlucccYZMWfOnDj33HPjvPPOi5KSkqTjAXVo8uTJ0aVLl2jfvn00btw4zjjjjJg2bVoUFRUlHQ2oBel0OkaOHBlFRUVx5JFHRkT27hk2zF7M/dPjjz8eDz/8cDzyyCPRtWvXWLFiRRQXF0dBQUFceumlSccDEpJKpTLW6XS6ygz4ZqioqIiBAwfGjh07Ytq0aUnHAerI0qVL47e//W0sW7bM7wDwDbVjx46IiDj77LNjxIgRERFx7LHHxqJFi2L69OnRq1evJOMBdWjy5MmxZMmSmD17dnTo0CEWLFgQQ4YMiXbt2sVpp52WdDwgy4YOHRqvvfZaLFy4sMpre3vPUGFTg1GjRsWYMWNi4MCBERFx1FFHxbvvvhsTJ05U2MA3UH5+fkT8tzVv165d5bysrKxKgw7s/yoqKuKCCy6I0tLSmDt3rnfXwDfIiy++GGVlZRmfWbV9+/b4xS9+EXfffXe88847yYUD6sTBBx8cDRs2jC5dumTMO3fuXO0NHGD/9J///Ceuv/76mDVrVvTr1y8iIo4++uhYsWJF3HnnnQob2M8MGzYsZs+eHQsWLIj27dtXzrN1z9Aj0WpQXl4eDRpk/jMdcMABlX9JA3yzdOzYMfLz8+OFF16onH3++edRUlIS3/ve9xJMBtS1L8qat956K/76179G69atk44E1KGLL744XnvttVixYkXlV0FBQYwaNSqef/75pOMBdaBx48ZxwgknxJtvvpkxX7VqVXTo0CGhVEBdq6ioiIqKCvcPYT+XTqdj6NCh8cQTT8TcuXOjY8eOGa9n656hd9jU4Kyzzopbb701CgsLo2vXrrF8+fK466674oorrkg6GlBLNm3aFG+//XblurS0NFasWBGtWrWKwsLCKC4ujgkTJsRhhx0Whx12WEyYMCGaNWsWF154YYKpgWzb3V5QUFAQP/7xj2PZsmXxl7/8JbZv3175TNpWrVpF48aNk4oNZFFNvxPsXNQ2atQo8vPz4/DDD6/rqEAtqWkfGDVqVAwYMCB69uwZvXv3jueeey6efvrpmD9/fnKhgayraS/o1atXjBo1KnJycqJDhw5RUlISM2bMiLvuuivB1EA2XXPNNfHII4/EU089Fc2bN6+8B9CyZcvIycmJVCqVlXuGqXQ6na6tH2J/8Nlnn8W4ceNi1qxZUVZWFgUFBTFo0KD41a9+5WYM7Kfmz58fvXv3rjK/9NJL46GHHop0Oh0333xz3HvvvfHJJ59E9+7dY+rUqZUfMgbsH3a3F9x0001V/prmC/PmzYtTTjmlltMBdaGm3wl29p3vfCeKi4ujuLi49sMBdeKr7AMPPPBATJw4Md577704/PDD4+abb46zzz67jpMCtammvWDt2rUxduzYmDNnTqxfvz46dOgQV155ZYwYMcJn3cF+Ylf/lx988MG47LLLIiKycs9QYQMAAAAAAJAwn2EDAAAAAACQMIUNAAAAAABAwhQ2AAAAAAAACVPYAAAAAAAAJExhAwAAAAAAkDCFDQAAAAAAQMIUNgAAAAAAAAlT2AAAAAAAACRMYQMAALCTmTNnRiqVqvzq06dP0pEiImLhwoUZubp27Rrbtm1LOhYAAJAFChsAAIAvKS8vjzFjxmTMxo4dm1CaTEVFRXHyySdXrv/5z3/GPffck2AiAAAgWxQ2AAAAXzJ16tR47733Ktfdu3eP3r17J5go087l0S233BKbN29OKA0AAJAtChsAAID/2bJlS9xxxx0Zs2uvvTahNNU788wzo1OnTpXrsrKyuPfeexNMBAAAZIPCBgAA4H9mzpwZH330UeU6Nzc3+vfvn2Ci6g0YMCBjPXny5Ni+fXtCaQAAgGxQ2AAAAPzPfffdl7Hu379/5ObmJpRm1wYOHJixfvfdd+OFF15IKA0AAJANChsAAKBeWb9+fbRv3z5SqVTlV+PGjeP111+vcuy8efOiQYMGGcd27do1tmzZ8rWvW1paGv/4xz8yZueee+4uj7/pppsyrptKpeKhhx6KdDodDzzwQHz/+9+PAw88MA466KDo2bNn/OlPf8r4/nXr1sUvf/nLOPzwwyMnJyfatGkT/fr1i7lz59aYtUuXLhmPRYuIeOyxx77GTwsAANQ3ChsAAKBeadWqVTz00EORSqUqZxUVFXHFFVdkPPZr8+bNMXjw4Ein05Wzxo0bx8yZM6Np06Zf+7rVFSU9evT4WufYsmVLnHnmmTF48OBYtGhRbNy4MTZs2BAvvvhiXHDBBTF06NCIiFi+fHl069YtJkyYEKtWrYotW7bEunXr4tlnn41TTz01pkyZUuO1ds72VYoeAACg/lLYAAAA9c5pp50Ww4cPz5i98sor8etf/7pyPWbMmCgtLc04Zvz48XHsscfu0TVLSkoy1nl5eXHIIYd8rXPccMMN8fzzz+/y9alTp8bkyZOjX79+8d577+3yuJEjR8bKlSt3e60TTzwxY71mzZoq/x4AAMC+Q2EDAADUS7fddlt07do1Y3bjjTfGqlWrYsGCBTF16tSM13r16hXXXXfdHl9v8eLFGes9KX4+/vjjSKVS0bdv37j88sujbdu2VY659tpr48MPP4zc3NwYNGhQDBo0qMo7gioqKmL69Om7vVa3bt1q/BkAAIB9R8OkAwAAAFSnadOmMXPmzDjxxBPj888/j4j/PnLs8ssvj7KysoxHobVs2TJmzJgRDRrs+d+kffDBBxnrNm3a7NF5ZsyYET/96U8jImLlypXRpUuXKsd861vfiiVLllQWUn/84x9jwIABGcfs/I6fnVWXb+efAQAA2Hd4hw0AAFBvHXPMMTF+/PiM2aJFi+Ltt9/OmE2bNi0KCwv3+Drl5eVRXl6eMWvVqtXXPs/xxx9fWdZERHTu3LnaXFdffXXGu4fOO++8aNSoUcYx77zzzm6v1bp16yqzsrKyr5kYAACoLxQ2AABAvXbddddFr169dvn6oEGD4sILL9yra3zyySdVZs2bN//a5+nTp0+VWX5+fo3HNWzYMA4++OCM2aeffrrba7Vo0aLKbMOGDV8hJQAAUB8pbAAAgHqtQYMGMWPGjGjWrFmV19q0aRPTpk3b62sceOCBVWY1FSbVOeSQQ6rMdv58ml0d17hx44z1lx/5Vp2NGzdWmVX3cwAAAPsGhQ0AAFDvvfrqq1UeWRYRsW7duli2bNlenz83NzdycnIyZuvXr//a56munEmlUl/puK+runx7+rk7AABA8hQ2AABAvfbvf/87Bg8eXO1r6XQ6Lrvssqw8Cqxdu3YZ648++mivz1mbqvu8moKCggSSAAAA2aCwAQAA6rXBgwfvtjxZs2ZNDBkyZK+v06NHj4z1ihUr9vqctWn58uVVZieddFICSQAAgGxQ2AAAAPXWtGnT4plnnsmYFRcXxznnnJMxe/TRR+PRRx/dq2v17NkzY11WVharV6/eq3PWppdeeilj3b59+zj00EMTSgMAAOwthQ0AAFAvvfnmmzFq1KiM2Xe/+9249dZb4957742DDz4447UhQ4bEmjVr9vh6vXv3rjJbsmTJHp+vtu1c2PzgBz9IKAkAAJANChsAAKDeqaioiIsuuijKy8srZw0aNIgHH3wwmjVrFm3bto1p06ZlfM+GDRvisssui3Q6vUfX7NSpU3Tr1i1jNmvWrD06V21744034q233sqYDRw4MKE0AABANihsAACAeufGG2+MpUuXZsyGDx8eRUVFleuf/OQnMWDAgIxj5s6dG7/5zW/2+LpXXnllxvrpp5/OKI3qi50f/1ZYWBh9+vRJKA0AAJANChsAAKBeWbhwYUyaNClj9sWj0HY2derUyM/Pz5hdf/318frrr+/RtS+55JKMR61t3rw5Zs+evUfnqk2PP/54xnrYsGFxwAEHJJQGAADIhlR6T58XAAAAsB+aNGlSjBkzpnLdo0ePWLx4cYKJMj377LPRr1+/ynWbNm2itLQ0cnNzE0wFAADsLe+wAQAA+JJhw4bFt7/97cr1kiVLYt68eQkmyjRx4sSM9Q033KCsAQCA/YDCBgAA4EuaNWtW5ZFsEyZMSChNpr///e+xcOHCynXnzp1jyJAhCSYCAACyxSPRAAAAAAAAEuYdNgAAAAAAAAlT2AAAAAAAACRMYQMAAAAAAJAwhQ0AAAAAAEDCFDYAAAAAAAAJU9gAAAAAAAAkTGEDAAAAAACQMIUNAAAAAABAwhQ2AAAAAAAACVPYAAAAAAAAJExhAwAAAAAAkLD/By9P4U01aljdAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# generate trajectory\n",
+ "\n",
+ "trajectory = [[10.0, 5.0], [11.0, 5.0], [12.0, 5.0], [13.0, 6.0], [14.0, 6.5], [15.0, 7.0], [16.0, 7.0]]\n",
+ "trajectory = np.asarray(trajectory)\n",
+ "\n",
+ "traj_xlist = trajectory[:, 0]\n",
+ "traj_ylist = trajectory[:, 1]\n",
+ "\n",
+ "print(traj_xlist)\n",
+ "print(traj_ylist)\n",
+ "\n",
+ "measurements = []\n",
+ "for pose in trajectory:\n",
+ " meas = RangeMeasurement(pose)\n",
+ " measurements.append(meas.asArray())\n",
+ "\n",
+ "measurements = np.asarray(measurements)\n",
+ "\n",
+ "\n",
+ "\n",
+ "x0 = np.array([10., 5., 0., 0.])\n",
+ "\n",
+ "P0 = np.array([[0.1, 0.0, 0.0, 0.0],\n",
+ " [0.0, 0.1, 0.0, 0.0],\n",
+ " [0.0, 0.0, 0.1, 0.0],\n",
+ " [0.0, 0.0, 0.0, 0.1]])\n",
+ "\n",
+ "Q = np.array([[0.05, 0.0, 0.0, 0.0],\n",
+ " [0.0, 0.05, 0.0, 0.0],\n",
+ " [0.0, 0.0, 0.1, 0.0],\n",
+ " [0.0, 0.0, 0.0, 0.1]])\n",
+ "\n",
+ "R = np.array([[0.1, 0.0],[0.0, 0.1]])\n",
+ "\n",
+ "nx = np.shape(x0)[0]\n",
+ "nz = np.shape(R)[0]\n",
+ "nv = np.shape(x0)[0]\n",
+ "nn = np.shape(R)[0]\n",
+ "\n",
+ "ukf = UKF(dim_x=nx, dim_z=nz, Q=Q, R=R, kappa=(3 - nx))\n",
+ "\n",
+ "viewer = create_viewer('Tracking Target Trajectory', 'x (m)', 'y (m)', xlim=(8,20), ylim=(4,8))\n",
+ "viewer.scatter(traj_xlist, traj_ylist, s=80, marker='o', c='blue', label='actual target poses')\n",
+ "\n",
+ "x, P = x0, P0\n",
+ "\n",
+ "estimates = []\n",
+ "\n",
+ "for iteration, z in enumerate(measurements):\n",
+ " x, P, _ = ukf.predict(f_2, x, P)\n",
+ " x, P, _ = ukf.correct(h_2, x, P, z)\n",
+ " visualize_estimate(viewer, f'', 'g', x, P)\n",
+ " \n",
+ " estimates.append(x)\n",
+ "\n",
+ "estimates = np.asarray(estimates).T\n",
+ "print(estimates)\n",
+ "\n",
+ "estimates_px = estimates[0, :]\n",
+ "estimates_py = estimates[1, :]\n",
+ "\n",
+ "estimates_vx = estimates[2, :]\n",
+ "estimates_vy = estimates[3, :]\n",
+ "\n",
+ "viewer.plot(estimates_px, estimates_py)\n",
+ "\n",
+ "update_plotter()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "5550245b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABmMAAANtCAYAAABsbA87AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD+A0lEQVR4nOzdd3QV1d6H8eckhEAgNOlSFQsKYi9YKAICNhAFwQIIiuC1K4IdG3K9+ir2jthAVIqK0iyAHREbCqLSew8EQsp5/ziXcwkJkBCSScLzWessZvbsmfmdhAlwvuy9Q+FwOIwkSZIkSZIkSZLyRUzQBUiSJEmSJEmSJBVnhjGSJEmSJEmSJEn5yDBGkiRJkiRJkiQpHxnGSJIkSZIkSZIk5SPDGEmSJEmSJEmSpHxkGCNJkiRJkiRJkpSPDGMkSZIkSZIkSZLykWGMJEmSJEmSJElSPjKMkSRJkiRJkiRJykclgi5AkiRJUnCaD2vOFwu+yNT2z/X/UK9CvWAKyoF7P7+XQV8MytT26vmv0uPoHsEUpGwtS1rG4988zsS/J/L3ur9JSkkiTDh6/Mc+P3J09aPpMaYHr/30WqZzP+v+Gc3rNc/UFhoUyrRft3xd5t8wP7/KlyRJkvYpwxhJkiQpn3Qc2ZExf4zJ1HbDSTfwf23/b4/nrk5eTY1Ha5CWkZap/eerf6Zxtcb7skwFKLswbGelS5SmUulKNKraiBb1WtDj6B5UK1utgCrcO7+s+IXmrzVn7Za1QZciSZIkFQpOUyZJkiTlk0sbX5ql7Z3Z75ARztjjuaN+G5UliGlctbFBTC7c+/m9hAaFMr2GzRoWdFm5tiVtC0uSljDhrwkMmDKA+k/U54lvngi6rN26+qOrDWIkSZKkHTgyRpIkScon5xx6DuXjy7MhZUO0bWnSUr6Y/wUt6rfY7blv//p2lrZLGl+yz2ssik6udTLXn3R9prYjqhwRUDUFb0vaFm6YcAObUzdz++m3B11OFss3LeerRV9laW9zcBsOrXQosTGxAFRJqBJtr1CqQqa+tcrVyvc6JUmSpIJkGCNJkiTlk/gS8Vx4xIW8/OPLmdpH/Dpit2HM4o2Lmb5weqa2ECG6Ne6WL3UWNW0btKVtg7ZBl5FvTjrwJE6udTIAW9O28uvKX/ly0ZdZ+t3z+T10atiJwyofVtAl7tb89fOztLWs35IJl07Itn+3xt38vS1JkqRiz2nKJEmSpHyU3WiW935/j9T01F2eM/LXkZkWOgc4o+4Z1C5fe5/Xp8KnbYO2PN72cR5v+zjPnfMc06+YzlsXvJWlX1pGWqGcdm1r2tYsbbXL+XtXkiRJ+zdHxkiSJEn5qHm95tQqV4vFGxdH29ZsWcOkvyfR/pD22Z4z4rcRWdouPSrr+jMAs1fN5tUfX2XqwqnMXz+fdVvWkRifSL0K9Tiz/pn0Pb4v9SvW3zdvBtiSuoXXf36dj+d9zI/LfmR18mrSMtKoVLoSR1Q5gjPrn0nvY3tTpUyVHF3v038+ZdRvo/h68dcsSVrChq0bKF+qPNXLVufo6kfT5qA2nH/4+ZSLLxc9597P72XQF4MyXefV81+lx9E9AKj3eD0WbFiQ7f16ju1Jz7E9s5y7ZOMS7vzszkztr3d8fZdf90e/epRbJt2Sqe3Fc1+k97G9c/S+c6tr4668MusVJv89OVP7ziNmeozpwWs/vZap7bPun3F6ndN5/ofneeuXt/hj9R+s2bKG7k26M6zDsEx9w+EwH/35Ee/9/h5fL/qa5ZuWk5yaTIVSFahXoR5n1D2Dnkf35MiqR2apMbt7b/faT69lOtasbjM+7/H5bmtuXq/57r4ke7Rq8ype/vFlpvwzhdmrZrMmeQ0lY0tSI7EGp9c5ne5NunN63dPzdA9JkiQppwxjJEmSpHwUCoXo2qgrj3z1SKb2t399O9sw5q+1fzFj6YxMbfGxkenOdpScmsy/xv+LYbOGZRlFs3bLWtZuWcvMZTN5/JvHueuMu7ir2V15fi/j/xxPz7E9Wbl5ZZZjyzYtY9mmZUz5Zwr3T72fh858iBtOvmGX15q7Zi6Xjb6M75Z8l+XY6uTVrE5eza8rf+WNn99gdJfRdDi8Q57r350rj7uS+6bex7b0bdG2l398eZdhzLu/v5tpv3SJ0nQ+snO+1tikWpMsYUx234udJaUkccawM7Jdx2VHf675k4vfu5iZy2ZmObYqeRWrklfx/dLveezrx+hxdA+eav8UCXEJuXsTBeTxbx7n9im3syVtS6b2lPQUktYkMXfNXF7+8WU6NezEsA7DKFuybECVSpIkaX/hNGWSJElSPstuqrKxf4xlS+qWLO1v//p2lrazDz070wLnW9O2cubwM3l11qtZgpidpWakcvfnd3P9x9fvtt+evP3L25zz1jk5+vB/S9oWbpxwI7dNui3b47OWz+L4F47PNogJStUyVbnoiIsytX0x/wv+WvtXlr5LNi7h28XfZmrrcHiHTKN38sO6LeuytJUqUWqP5/Ub32+PQcwfq//gxJdOzDaI2VmYMK/OepWz3jgrU3hVWNzwyQ3cOOHGLEFMdt77/T3OHH4mKWkpBVCZJEmS9meOjJEkSZLyWZPqTWhUtRG/rvw12pa0LYmP/vwoy4iXEb9mnaJs5zDnlom38M3ibzK1xcXE0frg1tQuV5sFGxYw6a9JpIfTo8eHfjeUVge14tzDzs11/f+s+4crxl2RJfipnFCZdg3aUapEKT7951P+Wpc5uPj3V/+mWb1mmUYAJacmc97b55G0LSnLfQ6pdAhNazclIS6BxRsXM23hNNZvXZ/req845grWblnLN4u/4dslmUOT1ge15ogqR2Rq275/zQnX8OYvb0bbw4R55cdXePDMBzP1f3f2u1m+Ft2bdM91nbmxedtmJv49MUv7QRUP2uO526fIq1O+Di3qtSA2FMuvq34lFAoBkJ6RTqd3OmX5WsfHxtO2QVtqlK3BTyt+4uvFX2c6Pn3hdO769C6GtB4CQJuD21ChVAUWb1zMe7+/l6lvw8oNaXNwm+h+g0oN9vym98K7s9/liW+fyNJ+Sq1TOLLKkWzctpFP5n3CxpSN0WPfLfmO26fczqNnPZovNUmSJElgGCNJkiQViEsaX8LAKQMztY34dUSmMOaXFb/w26rfMvWpUKoCZx9ydnR/0YZFvPDDC5n61C5Xm897fJ7pg/lvFn9Di9daZFpM/e7P796rMGbw9MFZFmU/uvrRfHr5p1QsXRGA1PRULnn/EkbNHpWp372f35spjHnm+2dYtHFRpj6xoVieO+c5eh3TKxoQQGQE0Ks/vkql0pVyVe/dze6O3nvnMKZb427RtWV2dkrtUzi2xrGZRocM+2kY97W4j9iY2GjbzlOU1Shbg1YHtcpVjTm1NW0rv678ldsm35Zp3aHtdrXu0M6uOvYqnmr/FHGxcdG2Tds2ATDyt5HMXjU7U/9y8eWY2mMqTao3ibY9/s3j3Djhxkz9nvzuSW499VYqJ1SmW+NudGvcjc/nf54ljDnxwBN5vO3jOao1L+76LPN0fCVjSzK6y+hMX6dVm1dx6iun8ufaP6Ntz8x4hltPvZXqZavne42SJEnaPzlNmSRJklQALml8CSFCmdo++vMjklL+N0IkuynKLmx4IfEl4qP7H8z9gNSM1Ex97m1+b5YREifXOpnzDjsvU9us5bOynXZrd8LhMGP+GJOl/Ym2T0SDGIC42Diebv80JWNLZur3/dLvWbJxSXT/3dmZgwyAm0+5md7H9s4UxEBkCq6+J/TljLpn5KrmvLjmhGsy7S9NWson8z6J7i/ftDzLlF+XHnVpprAmrwZ9MYjQoBChQSFKP1iaE148gU//+TRLv/oV6nPZUZft8XqHHnAoT5/9dKYgBoiuk/L+7+9nOefmU27OFMQA3HDyDRxT/ZhMbVvStjDxr6wjdoIwe9Vs/lj9R6a2Lkd2yRJYVSlThRtPzhwqbU3bykdzP8r3GiVJkrT/MoyRJEmSCkDt8rU5ve7pmdq2pm3NFHSM/G1klvMuOSrzFGU7j/QA6DWuV/TD+x1f7/z2Tpa+O081tSfz189nVfKqTG2JJRM5vc7pWfpWKVOFE2qekKV9xtIZQGQ6rO3bO7r6+KtzVVN+6tqoa5aROC//+HJ0+73Z75ERzsh0/PImlxdIbTuqnFCZcV3HZQrqduWSxpdQImbXkyJ8v/T7LG07jsbaUXYjcb5fkvX8IOy8jg/A6z+/nu2z0W98vyx9c/tsSJIkSblhGCNJkiQVkEsbX5qlbftomG8Xf8vf6/7OdKxWuVo0q9ssU9uqzZmDkdxasWlFrvrvHMRsr2vnUSzb1S5fO0vbys0rAVizZU2mdWwgMo1U/Yr1c1VTfiodV5qeR/fM1Pbh3A+j72HnKcqOq3Ecjao2KrD64mPjueyoy/il7y85vu9R1Y7a7fHsfk9l932EyJR4O1uZvDJHdeS37H6v5saKzbl7NiRJkqTccM0YSZIkqYBceMSF/Ovjf7EtfVu0bdLfk1iTvIYRv47I0r9bo267DD321vZ1QnIqHA5naduXNe08dVth0Pf4vjz29WOEibz31IxUXv/pdS5vcjnTFkzL1Dc/RsWcdOBJnFzrZCDy9SlVohQVS1fkyCpH0rR200zTw+VE+fjyua6hMH5f8ltunw1JkiQpNwxjJEmSpAJSsXRF2h/SPtPUZGkZabzz2zu8MzvrlGKXHpV1JE3VMlWztHU+sjM1ytbIUQ0n1Top5wXv4n6LNiwiHA5nG8os2rBol9c4oPQBxIZiM42OSUlP4Z91/xSq0TEHVzqYtg3a8vG8j6NtL//4MmVLls1Ue1xMHF0bdd3n92/boC33Nr93n11vT+FZlTJVWLhhYaa2hRsWUqVMlSx9F23M5vubkPX3SBCy+73atHbTbKfOy06DSg32dUmSJElSlGGMJEmSVIAubXxppjAG4N4v7o1Og7Vd46qNaVytcZbzT6h5Aq/99FqmtuNrHM+tp966x3unZ6TneqH5ehXqUSWhSqYpoJK2JTF94fQsa+CsTl6d7fojx9c8HoDYmFiOq3kc3y35LtPx5394nodbPZyrunIiNpT1vaZnpGfTM6t/nfivTGHM76t/54FpD2Tq0/6Q9tkGFkXNCTVPyBLGjP9zPMfVPC5L3/F/js96/oE5CzvyW3ahS4VSFXi87eN7PDccDkdHQkmSJEn5wTVjJEmSpAJ0zqHnZJk2aucgBiKLrmfn3MPOzbIY+6AvBvHJvE+y7Z8RzuCbxd9w84SbOeml3I2Kgcioig6Hd8jSft0n17F+6/rofmp6Kv0+6pdpCjaIfEB+YLkDo/sXHXFRlmv956v/8PLMl7NMibYtfRsvzXyJL+Z/keu6AcqWLJulbfaq2Tk6t22DthxU8aBMbYs3Ls60371J972qq7C5oOEFWdoe/fpRfl7xc6a2J755gh+X/5iprXSJ0rQ5uE2+1pdTR1Y9ksMOOCxT2/g/xzN42mBS01OzPefPNX/yyJePcPjTh2cJpCRJkqR9yZExkiRJUgGKLxHPhUdcyMs/vrzLPiFCdGvcLdtjdcrX4cpjr+TZGc9G2zanbqbdm+04ssqRNK7WmANKH8CmbZuYv34+P6/4mXVb1wFQt3zdvap54GkDef3n19matjXaNmv5LA558hDaH9Ke+Nh4Pv3nU/5a91eWc3eebqvfCf14/JvHWZK0JNqWHk6n9we9GfLlEE6tcyoJJRJYumkp0xdOZ3XyakZ3Gb1XdR9ywCFZ2oZ+N5S/1v1FnfJ1iAnFEB8bz5DWQ7L0iwnF0Pf4vtw6KfsRR5VKV+LsQ8/eq7oKmy5HduHBaQ9mCqo2pGzgxBdPpN0h7ahRtgY/rfiJrxZ9leXca0+8lsoJlQuy3N26r8V9dHm3S6a22z+9nSe/e5JTap9C9TLV2Zq2lWWblvHLyl+yBGySJElSfjGMkSRJkgrYJY0v2W0Yc0bdM6hdvvYujz/a5lFmLpvJt0u+zdT+26rf+G3Vb/uszu3qV6zPK+e9wiXvX5JpKqfVyasZ/tPwXZ7Xv2l/2h/SPlNbQlwCYy8eS/PXmmdZMP3PtX/y59o/91ndzeo2IyEugeTU5GhbWkYaY+eMje6XiSuTbRgDcMUxV3D3Z3ezJW1LlmNdG3WlZGzJfVZrkGJjYnmv83uc8vIpmUY7paSnZJlSb0en1TmN+1ven/8F5kLnIzvz5cIvGfrd0EztyzYt4/3f3w+oKkmSJMlpyiRJkqQC17xec2qVq7XL45cedeluzy8dV5opl0+h9zG9iQnl7K/0cTFxtKzfMld17qhr46582O3DbBdJz1JfidL831n/t8uQ47iax/Fd7+84rkbWNUn2pcT4RB5o8cCeO+5CpdKVuLjRxdkeKy5TlG13eOXD+a73dxxb49g99g0RoufRPZlw6YRCGUg90e4Jnmj7BGXiyuT4nJNrnUy5+HL5WJUkSZL2d46MkSRJkgpYKBSia6OuPPLVI1mOxcdGpjHbkzIly/DieS9y22m3MWzWMKYtnMbcNXNZt2UdYcKUjy9P/Yr1aVy1MS3qtaBtg7YckHBAnupuf0h75l8/n9d/fp3xf47nx+U/sjp5NekZ6VQqXYmGVRpyZv0zufLYK/e4sH3DKg2ZcdUMJv01iXdnv8vXi79mSdISNqZspHx8eaqXrU6T6k046+Cz8hQi3XjKjTSo1IDnfniOGUtnsHbLWtIy0nJ8/r9O/Bevzno1c+2VGxaaRev3pUMOOIQZV87goz8/4t3Z7/LN4m9YtmkZyanJVChVgXoV6nFGnTO44pgrOLLqkUGXu1vXnXQdlx11Ga/99BpT/pnCzyt+Zk3yGlLSUyhbsiy1ytXiiCpHcHqd02nXoB0HVzo46JIlSZJUzIXCO6+SKUmSJEkCYN2WdVT9T9VMAc7gMwcz4LQBAVYlSZIkqahxmjJJkiRJ2oVHv340UxBTIqYElx11WYAVSZIkSSqKnKZMkiRJkv5r3tp5PPXdU2xL38bsVbP5YsEXmY5f0PACDix3YEDVSZIkSSqqDGMkSZIk6b8Wb1zME98+ke2x+Nh47mt+XwFXJEmSJKk4cJoySZIkSdqDECGePftZDqt8WNClSJIkSSqCHBkjSZIkSdkIEaJS6UqcUvsU+jftz+l1Tw+6JEmSJElFVCgcDoeDLkKSJEmSJEmSJKm4cmRMDmVkZLB06VISExMJhUJBlyNJkiRJkiRJkgIUDodJSkqiZs2axMTsflUYw5gcWrp0KbVr1w66DEmSJEmSJEmSVIgsWrSIWrVq7baPYUwOJSYmApEvarly5QKupnB56qmnSEpKIjExkX/9619BlyNpF1JTU5k4cSJt2rQhLi4u6HIk7YLPqlT4+ZxKRYPPqlQ0+KxKRYPPavY2btxI7dq1o/nB7hjG5ND2qcnKlStnGLOTUqVKkZqaSqlSpfzaSIVYamoqCQkJlCtXzj80pULMZ1Uq/HxOpaLBZ1UqGnxWpaLBZ3X3crK0ye4nMZMkSZIkSZIkSVKeGMZIkiRJkiRJkiTlI8MYSZIkSZIkSZKkfGQYI0mSJEmSJEmSlI8MYyRJkiRJkiRJkvKRYYwkSZIkSZIkSVI+MoyRJEmSJEmSJEnKR4YxkiRJkiRJkiRJ+cgwRpIkSZIkSZIkKR8ZxkiSJEmSJEmSJOUjwxhJkiRJkiRJkqR8VCLoAiRJkiRJkiQpCOFwmNTUVDIyMoIuRSrUUlNTKVGiBFu3biU9PT3ocvIkJiaGuLg4QqFQgd7XMEaSJEmSJEnSfiU5OZkNGzaQlJRU5D9YlgpCOBymevXqLFq0qMBDjPwQGxtLYmIi5cuXJyEhoUDuaRgjSZIkSZIkab+RlJTE4sWLiYuLo0KFCpQpU4aYmJhi8QGzlF8yMjLYtGkTZcuWJSam6K5+Eg6HycjIYPPmzWzcuJH169dTq1YtEhMT8/3ehjGSJEmSJEmS9gvJycksXryYcuXKUbNmTQMYKYcyMjLYtm0bpUqVKtJhzHZlypShSpUqLF26lMWLF1O3bt18HyFT9L9qkiRJkiRJkpQDGzZsIC4uziBGEqFQiJo1axIXF8eGDRvy/X6GMZIkSZIkSZKKvXA4TFJSEuXKlTOIkQREAply5cqRlJREOBzO13sZxkiSJEmSJEkq9lJTU0lPT6dMmTJBlyKpEElISCA9PZ3U1NR8vY9hjCRJkiRJkqRiLyMjA6BYrHchad+JjY0F/vczIr/4k0eSJEmSJEnSfsMpyiTtqKB+JhjGSJIkSZIkSZIk5SPDGEmSJEmSJEmSpHxkGCNJkiRJkiRJkpSPDGMkSZIkSZIkSZLykWGMJEmSJEmSJElSPjKMkSRJkiRJkiSpEGnevDmhUIhQKBR0KTlSr149QqEQ9erVC7qUQqtE0AVIkiRJkiRJkqTia9asWYwZMwaADh06cPTRRwdaTxAMYyRJkiRJkiRJUr6ZNWsWgwYNAiKjaAxjJEmSJEmSJEmScmH+/PlBl1DouWaMJEmSJEmSJElSPnJkjCRJkiRJklTIhMORV0ZG1u3i1JaaGmLmzBqkpIQo8d9PKrevV77juuX7Yjs2FqpUgaQkSEnJ2fchL2un7+25QdwzqHOLWr15OTe354XD/9tOT9+7e+7NfXd37o41KfcMYyRJkiRJUrETDkNKSiybNkGJEoXng2fb9s+2vbnG/qMEcGKB3KluXXjuucjXWYXDr79+S+/ep5Genkb58gfw5puzqFatVrZ9U1O30bPnycyZ8yMAAwc+zwUXXJWn+7/77rMMGdIPgF697uLqq+/b4znvvPM0jzzyLwCuvvp+evW6M9t+ixf/xejRL/L991NYtmw+mzZtoFy5ihx00JGcccb5dOx4JaVKJezyPps2/W/7xx93X9OcObMYO/YlZsz4jFWrlrBt21YqVqxKw4bH07JlJ846qysxMTmbJOvvv2czbtwrzJz5OcuWLSApaT2lSpWmZs36HHHECfTseS5nn302JUpkjhbq1avHggULqFu3bqYpy4YNG0bPnj0z9e3Zs2eWNoBwOMyvv/5K48aNAWjdujUTJ07cY83Tp0/n9NNPB6BTp068++67OXqvBc0wRpIkSZIkFSlJSbB0aebXkiU7t5UgJeWcoEuVAhUKRV4xMZl/LUxtkMH69euoWLEioVBMNIjaMZDaV9vVqkHJklCqVOT+2clLELa35wZxz6DO3fm8Jk1O4pprHmDo0AFs2LCGu+++hOef/5TY2Ngs/Z98sn80iDnzzAu58MLdBzE5qfGssy7mscduIDV1G5988gZXXz2IUCi023PHjx8OQCgUon37y7Icz8jI4Nln7+T11x8hPT0t07G1a1eydu1KZsz4jDfe+A//+c8YGjY8bs+F7kJ6ejr/93838c47TxLeqegVKxaxYsUiPv98NG+88R8efXQs1avX2eW1UlK28sgj1/LBB6+QsVNiuXlzEn/++TN//vkzY8e+zLBhw+jevfte1707jRo14vTTT2fatGlMnjyZv/76i4MPPni357zwwgvR7T59+uRLXfuCYYwkSZIkSSoUtmzJGrJk99rxfwvvWs7nZSlMH0zvTVthqKEwtRWGGgrDew/l/BEIVGpqOuPHT6d9+/bExeXv8tZbt8I//0D9+pFARoXD0Uf35/ffpzBp0iRmzpzKhx/ez7333pupz0cffcTbbz8BQN26dXn33RepUGFf3L0i5513Lu+99x5LlvzDli3/G2GRnblz5/Lbb98B0KxZM849t26m4+EwXH55d9544w0Aypcvz0UXdebEE0+kQoUKrFy5ko8/Hs/48eNZuXIx11zTgu++m8Ghhx6a5V6Jif/bPvbYrLWEw9CrV29GjhwGQIkSJejS5WKaN29BQkICs2fPZtiwV1iyZAlz587i6qub8v33M6latWqWsGnbtm20bXsW06ZNjV7r/PM7cMYZzalatSpbtmxhzpw/mDJlMj/8MCNL8LM7LVu2ZPTo0Xz66ac8+eSTAFx77bW0bNlyl+f07duXadOmEQ6HefHFF3n44Yd32XfdunWMGjUKgIMPPphWrVrluLaCZhgjSZIkSZLy1bZtsHz5rsOV7aNa1q/P+TXLlYOaNXf9qlIllZkzJ9KuXRtKlozb5YfVReUDa0kqrkKhEK+//jpNmjRhxYoVPPDAA7Rs2ZIzzjgDgKVLl9KjRw8gEhK89dZbVNg3SQwAl19+Oe+99x4Aw4cP320YM3z48Ezn7eyFF56PBjEtW7ZkxIgRVKlSJVOfa67px9ixY7noootISkqid+8rmD59+m5rzG4k1/vvv89rrw0DoEKFCkyYMIETT8w85d9tt93K+eefz2effcaSJUvo168Po0ePznKtW2+9LRrENGjQgLFjx3LEEUdk6pORkcHGjf1Zvnw5aWlpWa6xK3Xq1KFOnTqs3+EP+WOPPZYOHTrs8pxOnTpRtWpVVq5cybBhw7j//vuJi4vLtu/w4cPZunUrAFdeeSWhQvwHu2GMJEmSJEnaK+npsGLFnkeyrFqV82uWLg0HHrj7oKVGDShbdvfXSU2F339PIyEBdvH5jSTtUjgMyclBVxGshISCC6yrVavG8OHDadu2Lenp6VxyySX89NNPVKhQgcsuu4zVq1cDcO+999K0adN9eu927dpRpUoVVq1axahRo3jyyScplc3QqXA4HA1aEhISuPDCCzMdT0lJYdCgQQDUrl2bsWPHUnYXf1idf/759O/fnwcffJAvv/ySb7/9lpNOOilXdQ8ePDi6/eyzz2YJYgASExMZNWoUhx9+OKtXr2bMmDHMnj07U9CyePFinnnmGQDKli3Lxx9/TIMGDXZ530MPPTTH68/srZIlS9KrVy8GDx7MihUrGDNmDBdddFG2fbdPURYXF5ftOjSFSZEMY6ZOncojjzzCDz/8wLJlyxg9evRukzSAL774gptuuonffvuNmjVr0r9/f66++uqCKViSJEmSpCIkIwPWrNlzyLJ8ec4Xwo6L233Asv1VvryjVSQFLzl5z6FvcbdpE5QpU3D3a9OmDbfeeiv//ve/Wbx4MT179uSEE07g008/BaBFixYMHDhwn983Li6Orl27MnToUDZs2MC4cePo3Llzln5Tp05lwYIFAHTs2JHEHecRAyZOnMiyZcsAuOaaa3YZxGx3+eWX8+CDDwIwYcKEXIUxCxcuZMaMGQDUr1+fLl267LLvAQccwNVXX80DDzwAREbU7BjGjBw5km3btgGRkSW7C2IKUp8+fRgyZAgZGRm88MIL2YYx06dPZ/bs2UDke1K1atWCLjNXimQYs3nzZpo0aULPnj3p1KnTHvv/888/tG/fniuvvJI33niDL7/8kn79+lGlSpUcnS9JkiRJUnEQDsOGDXta+B6WLYuMLMmJmBioXv1/YcquRrVUqrTrBbMlSQJ44IEH+OKLL/j2228ZN24c48aNA6By5cq88cYb+TYi4/LLL2fo0KFAZNqr7MKYPU1RNnXq1Oh2SkoKY8aM2e09U3f4g3Z7oJBT33zzTXS7TZs2e5yaq23bttEwZsdzAaZNmxbd3tOAh4JUt25d2rVrx0cffcSUKVP466+/OPjggzP1ef7556Pbffr0KegSc61IhjHt2rWjXbt2Oe7/3HPPUadOHR5//HEAGjZsyIwZM/jPf/5jGCNJkiRJKhY2bdrzSJalS2HLlpxfs2rVPY9kqVoVYmPz731JUhASEiI/V/dnCQkFf8+4uDjefvttjjnmGDZs2BBtHzZsGDVr1sy3+x533HEceeSR/Pbbb0yYMIGVK1dmGmWxZcsW3n33XQBq1qyZ7SLx8+fPj27fc889ubr/2rVrc9V/+wgciEwbtieHHXZYdHvp0qWZji1atCi6vfM6MUHr168fH330EeFwmBdffJGHH344emzdunXR78khhxxCixYtgiozx4pkGJNbX3/9NW3atMnUdtZZZ/Hyyy+Tmpqa7eI/KSkppKSkRPc3btwIRBLL1Jz+96D9RDgcjv7q10YqvLY/nz6nUuHmsyoVfj6nKmhbt0ZGqixbFvrvqJXMvy5dGmLZMkhKyvncXhUrhqlRA2rWjPxao0b4v+FK+L9rsoSpVg1KltzztTIycj5VWUHyWZWKhoJ8VlNTUwmHw2RkZJCRgx9cpUvne0mFWjgceRW0SpUqccABB0TDmOrVq3P66afn6HuWF5dddhkDBgwgLS2Nt956i+uuuy56bPTo0dHPhy+55BKALPWsW7dur++9bdu23b6/nY9trwWgdOnSe/zaJOyQrCUlJWXqv+O1EhISdnmtHT8D3tP9sju+Y1tOn8E2bdpQr1495s+fz6uvvsqgQYOin+UPGzaMrVu3ApHp1cLhcLTG3MrIyIh+th2by/9hkpufXftFGLN8+XKqVauWqa1atWqkpaWxevVqatSokeWcwYMHRxdc2tHEiRMz/eYV0dAqJSWF8ePHB1yNpD2ZNGlS0CVIygGfVanw8zlVXqWlhVi3Lp5160qzdm2pbF/r1pUiKSkHich/lS6dSqVKW6OvihW3Ztrf3hYfv+sPQFavjrx++WVfvMvg+axKRUNBPKslSpSgevXqbNq0KbpGhgqfq666ir///ju6v3z5cvr06cOzzz6br/c977zzuP3228nIyGDYsGH06NEjeuzVV1+Nbnfs2DFTgLFdqVKlottTp06lcePGubr/ztdMS0vb5bEdBxesXbs223p2tGbNmuh2QkJCpv5ldlgYaNmyZRxwwAG7vVZSUlK27dvDlYyMjGzr2R6cbN/eU83bXX755dx3332sXLmSt99+OzqV2gsvvABAyZIlueCCC3J8vexs27aNLVu2MHXq1Exf95xITk7Ocd/9IowBssybtz0l29V8egMHDuSmm26K7m/cuJHatWvTpk0bypUrl3+FFkHz5s0jNTWV+Ph42rdvH3Q5knYhNTWVSZMm0bp162xHBEoqHHxWpcLP51R7kp4Oq1ZFRrNsH7US+fV/20uXRvqEwzkbzVKq1P9GrGQ3omX7r5G1hEv997V/81mVioaCfFa3bt3KokWLKFu2bKYPzlV4DBs2jFGjRgHQqFEjUlNTmTNnDiNGjODss8+mW7du+XbvcuXK0bJlSyZPnsxPP/3EokWLOPLII1mxYgWff/45AMceeywnnXRStufXq1cvuj1//nxOPfXUPNVTosT/Prrf+fPoHe+1cOHCPX5e/euvv0a3a9Wqlal/nTp1+Omnn4DIlGX169fP9hrhcJikpCQSExOz/Ux9+3o+MTEx2daz4zNXqlSpHH/G3q9fPx5++GG2bdvGG2+8weWXX860adP4448/ALjgggt2WXNObd26ldKlS3PGGWfk+mdDbkKg/SKMqV69OsuXL8/UtnLlSkqUKLHLpC8+Pp74+Pgs7XFxcf4lbifbH75QKOTXRioC/DkmFQ0+q1Lh53O6/wmHYe3a7Be83/G1fHkkkMmJEiWgRo1dL3q//VWhQojIP71yPhWZInxWpaKhIJ7V9PR0QqEQMTEx+bYQvPbe3Llzo1ODlS5dmpEjR7Jt2zZOPvlkUlJS6NevH02bNuWggw7Ktxp69OjB5MmTAXjzzTd5+OGHGTFiRHS0RPfu3Xf5e6dFixY8/fTTAIwZM4bLLrtsn9W18z2bNm0a3Z40aRKhUGiXgw4gMtvTdqecckqm6zVr1owPPvgAgHHjxtG8efNsr7F95Mv2Zyg39ULmcCkn19iuWrVqXHjhhbz11lt8+umn/P3337z00kvR41dffXWen+eYmJjoZ9u5/TmUm/77RRhzyimnRH9DbTdx4kSOP/54/0ImSZIkSfu5cBg2btzzwvdLl0JOZ7WJiYFq1XYfsNSsCZUrR/pKkrQ/S0lJ4eKLL2bz5s0APP7449HF5IcMGcINN9xAUlISXbt2Zfr06fn2mW7Hjh1JTEwkKSmJN998k4ceeojhw4cDkTCha9euuzy3Xbt2VK1alZUrVzJ69Gi+/PLLPI+O2ZU6depwwgkn8P333/PPP//wzjvv0KVLl2z7rlu3jueeew6IhCCdOnXKdLxLly7cfvvtbNu2jRdffJF+/frRoEGDfV5z2bJlo9vbv8851bdvX9566y3C4TD//ve/effddwE47LDDaNas2T6tMz8VyTBm06ZNzJs3L7r/zz//MGvWLCpVqkSdOnUYOHAgS5YsiT4oV199NU899RQ33XQTV155JV9//TUvv/wyb7/9dlBvQZIkSZJUADZv3j5dWObXzqNbcjHdN5Ur/y9M2dWIlqpVI6NeJEnSnvXv358ff/wRgE6dOnHVVVdFj11//fVMmjSJjz76iO+++44777yTIUOG5EsdCQkJdOrUiWHDhrF48WKGDh3KrFmzgEjYUqVKld2ee99993H11VcTDofp0KEDI0aM4Mwzz9zlOfPnz+fJJ5/ktttuo2rVqrmqdeDAgVxwwQVAJKw46KCDOOGEEzL12bRpE507d2bVqlUAdOjQgYYNG2bqU6tWLfr27csTTzzBpk2baNeuHePGjcvSb7s///yT1NRUGjVqlKt6d5xKbObMmbk697TTTqNx48b88ssvvPjii9H2Pn365Oo6QSuSfzWcMWMGLVq0iO5vX9ule/fuDBs2jGXLlrFw4cLo8fr16zN+/HhuvPFGnn76aWrWrMnQoUOzpICSJEmSpKIhJSX7kGXn14YNOb9mhQp7HslSvTpkM6O1JEnaSx988AFDhw4FoG7dupmmoNpu2LBhNGnShKVLl/LII4/QunVrWrVqlS/1bP+MGeC2227L1L4nffr0YebMmbzwwgusXr2aVq1accYZZ9C2bVvq1q1LXFwca9eu5ffff2f69On88MMPANx44425rrNjx4706NGDYcOGsW7dOpo2bUq3bt1o3rw5CQkJzJ49m1deeYXFixcDcOCBB0ZHyOxsyJAhfP/993z11VfMmzePo446io4dO9KsWTOqVq3K1q1bmTt3LpMnT+bbb7/llVdeyXUY07hxY6pVq8aKFSt44403qFy5MieffDIJCQnRPm3btt3l+X379qVfv37R/VKlSuXoe1KYFMkwpnnz5oTD4V0e3/6w7KhZs2a5TtwkSZIkSQUrLQ1WrNh1uLJ9RMuaNTm/ZkJC9iNYdmyrUSPST5IkFZwlS5bQs2dPAGJjY3nzzTepUKFCln6VK1fm9ddfp3Xr1mRkZHDZZZfx888/73akyt5q1qwZdevWZcGCBWz77/ykFStW5JxzzsnR+c8//zyHHnood999N8nJyUydOpWpU6fusn/lypVzvWj8di+99BKJiYk89dRTpKWlMXz48OhsUTtq0qQJY8eO3eXom/j4eCZPnkyfPn14/fXXSUtLY9SoUYwaNSrb/nuzRkuJEiV48MEH6d27N6mpqTzyyCNZ+uzuM/9LL72U2267jaSkJAAuvPBCKlWqlOs6glQkwxhJkiRJUtGSkQGrVu15JMuKFZE1XHIiPn7PI1lq1oTERNjNmraSJCkAGRkZXHrppaz57/+wuOeee3a7xkrLli0ZMGAADz30EMuXL6dHjx58+OGHu124fm+EQiEuu+wyHnjggWhbly5diM/F0Nibb76Z7t2788orrzB58mR+++236PusUKECDRo04IQTTqB169a0bt16r9fAiY2NZejQoVxxxRW88MILfP755yxevJht27ZRpUoVjjvuOC666CK6du26xwCldOnSDB8+nBtvvJFXX32Vzz77jMWLF5OUlETZsmWpX78+Rx99NJ07d+ass87aq3p79epF3bp1ee655/j+++9ZuXIlW7duzdG5iYmJnHzyyUyaNAkoelOUAYTCu4ubFLVx40bKly/Phg0bKFeuXNDlFCqPPfYYSUlJJCYmRqeMk1T4pKamMn78eNq3b59vC91JyjufVanw8znNLByGdev2HLIsWxYZ9ZITsbGRkSrZBSs7jmapWNGQRbvmsyoVDQX5rG7dupV//vmH+vXr7/VIBGl/lZGRwcaNGylXrtxejYzJqzVr1lCzZk22bdvGEUccwW+//bbPrp2Xnw25yQ0cGSNJkiRJylZS0q4XvN/xlZKSs+uFQlCt2p5HslSpAgH8G1+SJEmF1EsvvRSdNq5v374BV7N3DGMkSZIkaT+zZcueR7IsXQqbNuX8mgccsOeQpVo1cICCJEmScmPdunU89thjQGSat+7duwdc0d4xjJEkSZKkYmLbNli+fNeL3m9/rV+f82uWK5d1erCdX9Wrg7O9SJIkaV/54osvSE5OZsmSJQwdOpSVK1cCcNttt5GYmBhwdXvHMEaSJEmSCrn09MjC9nsaybJqVc6vWbr07gOWmjUj67aULZt/70uSJGlvJScnM3HixL0+v3Llypx22mn7sCLtS927d2fBggWZ2k455RRuvvnmgCrKO8MYSZIkSQpIRgasWbPnkGX58kjfnIiL2/WC9zu+ypWLrOEiSZJUFK1cuZKOHTvu9fnNmjXj888/33cFKV/Ex8dTv359unTpwi233EJcEZ7z1jBGkiRJkvaxcBg2bNjzwvfLlkFqas6uGRsbmQ5sT+uyHHCAIYskSZKKtvnz5wddwj5nGCNJkiRJuRAOw7JlZfjiixArV+46aNmyJefXrFo1+2Blx1EtVapEAhlJkiRBvXr1CIfDQZch5ZhhjCRJkiTl0Kefwm23xTJjRqsc9a9Uac8jWapVg5Il87lwSZIkSYEyjJEkSZKkPZg5EwYOhMgasTGUKJHOQQfFcOCBoV2GLDVqQOnSQVcuSZIkqTAwjJEkSZKkXZg3D+68E0aOjOzHxcFVV6VzwgmT6NbtzCK9gKgkSZKkghMTdAGSJEmSVNgsXw79+kHDhpEgJhSCSy6BP/6A//u/DCpUSAm6REmSJElFiCNjJEmSJOm/NmyARx6B//s/SE6OtLVrB4MHQ5Mmkf3U1ODqkyRJklQ0GcZIkiRJ2u9t3QrPPAMPPQRr1kTaTjoJhgyBZs2CrU2SJElS0WcYI0mSJGm/lZ4Ow4fDPffAokWRtsMPj4QyHTpEpieTJEmSpLwyjJEkSZK03wmHYdw4uP12mD070larFgwaBJdfDiX8l5IkSZKkfch/YkiSJEnar0ybBgMGwFdfRfYrVoyEMtdcA6VLB1ubJEmSpOLJMEaSJEnSfuGXX2DgQPjoo8h+6dJwww3Qvz9UqBBkZZIkSZKKO8MYSZIkScXa/Plw993wxhuR6cliY6F370hbzZpBVydJkiRpf2AYI0mSJKlYWrUKHngAnn0WUlMjbZ07w/33w6GHBlubJEmSpP2LYYwkSZKkYiUpCR57DP7zH9i0KdLWqhUMHgzHHx9sbZIkSZL2T4YxkiRJkoqFlBR44YXIyJdVqyJtxx0HDz8cCWMkSZIkKSgxQRcgSZIkSXmRkQFvvgmHHw7XXRcJYg45BN55B777ziBGkiRJRU/z5s0JhUKEQqGgS8mRevXqEQqFqFevXtClFFqOjJEkSZJUJIXD8PHHMHAg/PxzpK1GDbjnHrjiCoiLC7Y+SZIkSRGzZs1izJgxAHTo0IGjjz460HqCYBgjSZIkqcj55hu47TaYOjWyX758ZP+666BMmWBrkyRJkpTZrFmzGDRoEBAZRWMYI0mSJEmF2O+/w+23w3//Ux3x8XDttTBgABxwQKClSZIkSfut+fPnB11CoWcYI0mSJKnQW7QoMv3Ya69F1oiJiYEePeDee6F27aCrkyRJkqTdM4yRJEmSVGitWQODB8NTT0FKSqStY0d48EFo2DDY2iRJkiQpp2KCLkCSJEmSdrZ5Mzz0EBx0EDz6aCSIadYMvv4a3n/fIEaSJKmoS01NpWbNmoRCISpUqEBycvIez0lOTqZChQqEQiFq1KhBWlpanmp49tlnCYVChEIh7r777hyd8/TTT0fPeeCBB3bZ76+//mLAgAGccMIJVKlShZIlS1KtWjVatmzJE088kaP3m1OzZs3iX//6F0ceeSQVKlSgVKlS1KlThwsuuIA333yTjIyMHF9r9uzZ3HLLLRx//PFUqVKFuLg4ypUrxzHHHMP111/PBx98kO3XvV69eoRCIerVq5epfdiwYYRCIXr27Blt69mzZ/RruOML4Ndff43ut2nTJkc1T58+PXrOhRdemOP3WtAMYyRJkiQVGqmp8Nxz0KAB3HEHbNwITZrA+PHw2Wdw8slBVyhJkqR9IS4ujt69ewOwYcMGRo4cucdzRowYwYYNGwC44oorKFEibxM/XXzxxZQsWRKAN954g3A4vMdzhg8fDkAoFOKyyy7LcjwjI4Pbb7+dww8/nCFDhjBjxgxWr15NamoqK1eu5LPPPuOGG27gsMMO44cffshT/enp6Vx//fUce+yxPP3008yePZsNGzaQkpLCokWLGD16NJdeeinHHXccCxcu3O21tm7dypVXXknjxo159NFH+eGHH1i9ejVpaWkkJSXx888/M3z4cDp06MCbb76Zp7p3p1GjRpx++ukATJ48mb/++muP57zwwgvR7T59+uRbbXnlNGWSJEmSApeRAe++C3feCX/+GWmrXx/uvx+6do2sESNJkqTi5aqrruKhhx4iPT2d559/PtPoiew8//zzAMTExHDllVfm+f4VK1bk3HPP5b333uOff/5h+vTp0SAgO3PnzuW7774DoFmzZtStWzdLn+7du/PGG28AUL58eTp37syJJ55IhQoVWLlyJePHj2f8+PEsXryYFi1aMGPGDA499NC9qr93794MGzYMgBIlSnDxxRfTokULEhISmD17Nq+88gpLlixh1qxZNG3alJkzZ1K1atUs19m2bRtnnXUWU6dOjV6rQ4cONG/enKpVq7Jlyxb++OMPJk+ezIwZM3IUWm3XsmVLRo8ezaeffsqTTz4JwLXXXkvLli13eU7fvn2ZNm0a4XCYF198kYcffniXfdetW8eoUaMAOPjgg2nVqlWOaytohjGSJEmSAjVpEgwcCNv/Y2DVqnDXXXDVVfDf/6goSZKkYqhWrVqcc845jB07lm+//Zaff/6Zo446Ktu+P/30UzQIadOmTZbpsPbW5ZdfznvvvQdERr3sLozZPipm+3k7e/7556NBTMuWLRkxYgRVqlTJ1Kdfv36MHTuWiy66iKSkJK644gqmT5+e67rff//9aBBToUIFJkyYwIknnpipz6233sr555/PZ599xpIlS+jTpw+jR4/Ocq3bbrstGsQ0aNCAsWPHcsQRR2Tqk5GRQf/+/Vm+fHmupoerU6cOderUYf369dG2Y489lg4dOuzynE6dOlG1alVWrlzJsGHDuP/++4mLi8u27/Dhw9m6dSsAV155ZXS6s8LI/18mSZIkKRAzZkCrVtCmTSSIKVsWBg2CefPgX/8yiJEkSQEKhyOL2O3Pr1yMfsiLfv36Rbe3j3zJzo7H9uVUVO3atYsGJqNGjYp+sL+zcDgcDVoSEhKyrE2SkpLCoEGDAKhduzZjx47NEsRsd/7559O/f38AvvzyS7799ttc1z148ODo9rPPPpsliAFITExk1KhRVK5cGYAxY8Ywe/bsTH0WL17MM888A0DZsmX5+OOPswQxOzr00ENp1KhRruvNjZIlS9KrVy8AVqxYwZgxY3bZd/sUZXFxcXscWRU0wxhJkiRJBWruXOjcGU44AaZMgbg4uP56+PtvuPtuSEwMukJJkrTfS06O/E+R/fm1DxeY353WrVvToEEDAN58881sF7ZPTk6OrlNSs2ZNzjnnnH12/7i4OLp27QpE1q4ZN25ctv2mTp3KggULAOjYsSOJO/2ldeLEiSxbtgyAa665hrJly+72vjuOrJkwYUKual64cCEzZswAoH79+nTp0mWXfQ844ACuvvrq6P7777+f6fjIkSPZtm0bEBlZsv17EbQ+ffoQ89+5indcE2ZH06dPj4ZLHTt2zHYKtsLEMEaSJElSgVi6FK6+Go44AkaNglAILrssEs48/jjs4j8OSpIkqRgLhULRkS4bNmxgxIgRWfq8/fbbbNy4EYBevXpRosS+XX1jx2Bkx6nIdrSnKcq2T/MFkVEyY8aM2e3rp59+ivbfebTKnnzzzTfR7TZt2uxxaq62bdtmey7AtGnTotu7mzqsoNWtW5d27doBMGXKFP76668sffJrtFR+cc0YSZIkSflq/XoYMgSeeAK2bIm0nXMOPPgg7GJKcEmSpGAlJMCmTUFXEayEhAK71RVXXMFdd93F1q1beeGFF7jiiisyHd8+MiImJobevXvv8/sfd9xxHHnkkfz2229MmDCBlStXZhplsWXLFt59910gMjInu0Xi58+fH92+5557cnX/tWvX5qr/9hE4EJk2bE8OO+yw6PbSpUszHVu0aFF0e3fTkwWhX79+fPTRR4TDYV588UUefvjh6LF169ZFvyeHHHIILVq0CKrMHHNkjCRJkqR8sWULPPIIHHQQPPxwZL9pU5g6FT74wCBGkiQVYqEQlCmzf78KcCH0SpUq0blzZwC+/fbbTKNGfvrpJ7777jsgsr5LnTp18qWG7aNd0tLSePvttzMdGzt2bHRkzqWXXhqdPmtHOy5Qn1vbpwnLqaSkpOh2mTJl9th/xynTdjwXiL6vnfsVBm3btqVevXoAvPrqq6SmpkaPvfbaa9H1fa666qo9jg4qDAxjJEmSJO1TaWnw8stw6KHQvz+sWwdHHgljx8L06XD66UFXKEmSpMKmb9++0e0d1wgpqKmodgxZdp6qbE9TlEHmIGPWrFmEw+Ecvz7//PNc1brjejWbN2/eY/9NO4zy2nmtm3LlymXbrzCIiYmJfs9XrlzJmDFjosdefPFFAEqWLEmPHj0CqC73DGMkSZIk7RPhMIweDY0bQ+/esHgx1K4Nr74KP/0E551XoP/BUpIkSUXIySefzDHHHAPAG2+8QXJyMps3b+bNN98EoFatWrRv3z7f7l+zZk3OPPNMAGbOnMlvv/0GwIoVK5g0aRIAxx57LEceeWS259eqVSu6/euvv+ZbnQA1atSIbs+dO3eP/XfsU7NmzUzHdqw7t2vXFIRevXpRsmRJ4H/B3LRp06K1durUicqVKwdWX24YxkiSJEnKsy++iExBdsEF8McfUKkSPPoozJ0LPXpAbGzQFUqSJKmw2z46ZuPGjYwYMYIRI0ZEp9Hq3bs3sfn8l8ru3btHt19//XUA3nrrLdLS0rIc31nz5s2j2++//37+FPhfJ598cnR74sSJhMPh3fb/5JNPsj0X4Iwzzohu7zjyZF/bcWq3PdW7oypVqnDhhRcC8OmnnzJv3rxMI6fyc7TUvmYYI0mSJGmvzZoF7dpB8+bwzTeRdV7vvBP+/htuuglKlQq6QkmSJBUV3bp1o3z58kBkFMT2kRCxsbH06tUr3+/fsWPH6DReb775JhkZGdEpykqUKEHXrl13eW67du2oWrUqAKNHj+bLL7/Mtzrr1KnDCSecAMA///zDO++8s8u+69at47nnngMgFArRqVOnTMe7dOkSHXny4osvMm/evHypecdp3HIytdqOtod04XCYf//737z77rsAHHbYYTRr1mzfFZnPDGMkSZIk5drff8Mll8Axx8Ann0CJEtCvH/z1F9x/P/z339CSJElSjpUpUya6Jst3333H999/D8DZZ5+daTqt/JKQkBANKxYvXszQoUOZNWsWEAlbqlSpsttz77vvPiASGnTo0IEpU6bs9n7z58/n5ptvZuXKlbmudeDAgdHtvn37Rr9WO9q0aROdO3dm1apVAHTo0IGGDRtm6lOrVq1o2LFp0ybatWvH77//vsv7/vnnn3s1DVv9+vWj2zNnzszVuaeddhqNGzcGIoHR1q1bgaI1KgagRNAFSJIkSSo6VqyABx6A55+H1NRI28UXRwKYBg2CrU2SJElFX9++fXnyyScztRXkh+7du3dn2LBhANx2222Z2vekT58+zJw5kxdeeIHVq1fTqlUrzjjjDNq2bUvdunWJi4tj7dq1/P7770yfPp0ffvgBgBtvvDHXdXbs2JEePXowbNgw1q1bR9OmTenWrRvNmzcnISGB2bNn88orr7B48WIADjzwwOgImZ0NGTKE77//nq+++op58+Zx1FFH0bFjR5o1a0bVqlXZunUrc+fOZfLkyXz77be88sorNGrUKFf1Nm7cmGrVqrFixQreeOMNKleuzMknn0xCQkK0T9u2bXd5ft++fenXr190v1SpUjn6nhQmhjGSJEmS9mjjRvjPf+Cxx2D7rAJt2sDgwXDsscHWJkmSpOKjYcOGNGvWjC+++AKITMm1uw/p97VmzZpRt25dFixYwLZt2wCoWLEi55xzTo7Of/755zn00EO5++67SU5OZurUqUydOnWX/StXrkypvZzb96WXXiIxMZGnnnqKtLQ0hg8fHp1WbUdNmjRh7Nix0WnUdhYfH8/kyZPp06cPr7/+OmlpaYwaNYpRo0Zl23/H9V9yqkSJEjz44IP07t2b1NRUHnnkkSx9dreWzKWXXsptt91GUlISABdeeCGVKlXKdR1BcpoySZIkSbuUkgKPPw4HHxwZ/bJ5M5xwAkyZAhMmGMRIkiRp32vTpk10+8orr9yrD//3VigU4rLLLsvU1qVLF+Lj43N8jZtvvpkFCxYwZMgQWrduTc2aNYmPjyc+Pp5q1apx6qmncsMNN/DRRx+xdOlSKleuvFe1xsbGMnToUGbOnEnfvn1p2LAhiYmJxMfHU6tWLc4//3zeeOMNZs6cSd26dXd7rdKlSzN8+HBmzpzJtddeS6NGjahQoQKxsbGUL1+eo48+mh49ejB+/HguvfTSvaq3V69eTJo0iU6dOlGnTp1chVCJiYmcfPLJ0f2iNkUZODJGkiRJUjbS0+HNN+Huu2HBgkjboYfCQw/BBRdAKBRsfZIkSSq+3n//fSAymuKKK64o8Pvff//93H///Xm6RuXKlenfvz/9+/ffq/M///zzHPc9+uijeeaZZ/bqPjs75phjOOaYY7K0Z2RksHHjRsqVK5dtODZ//vwcXb9Vq1a0atUq13WtWbMmOlrqiCOO4LTTTsv1NYJmGCNJkiQpKhyGjz6CgQNh+7qcNWvCvfdCz55Qwn9BSJIkKR99++230bVUzj//fGrWrBlwRSoMXnrppei0cX379g24mr3jP6UkSZIkAfDllzBgAEyfHtmvUCGyf+21sMO6mpIkSVK+ueuuu6Lb119/fYCVqLBYt24djz32GAAVKlSge/fuAVe0dwxjJEmSpP3cr7/C7bfDBx9E9kuVguuuiwQxFSsGW5skSZKKt19++YUlS5awbt06RowYwaRJkwA466yzOP300wOuTkH54osvSE5OZsmSJQwdOpSVK1cCcNttt5GYmBhwdXvHMEaSJEnaTy1YAPfcA8OHR6Yni42FK66IrBNTq1bQ1UmSJGl/8Oijj/Laa69laqtcuTLPPffcbs9LTk5m4sSJe33fypUrF8l1R/YX3bt3Z8H2xSv/65RTTuHmm28OqKK8M4yRJEmS9jOrV8NDD8HTT8N/p12mUyd44AE4/PBga5MkSdL+KTY2llq1atGiRQvuvfde6tatu9v+K1eupGPHjnt9v2bNmvH555/v9fkqGPHx8dSvX58uXbpwyy23EBcXF3RJe80wRpIkSdpPbNoEjz8OjzwCGzdG2lq0gIcfhhNPDLQ0SZIk7aeGDRvGsGHDgi5Dhcz8+fODLmGfM4yRJEmSirlt2+DFF+H++2HFikjbMcdEQpjWrSEUCrY+SZIkKbfq1atHOBwOugwpxwxjJEmSpGIqIwNGjoQ774S//460HXxwZDqyzp0hJibY+iRJkiRpf2EYI0mSJBUz4TBMnAgDB8KPP0baqlWDu++G3r2hZMlg65MkSZKk/Y1hjCRJklSMfPcdDBgAn30W2U9MhP794YYboGzZQEuTJEmSpP2WYYwkSZJUDPzxR2Q6svfei+yXLAnXXAO33w6VKwdbmyRJkiTt7wxjJEmSpCJsyRK491549VVIT4+sA3P55TBoENSpE3R1kiRJkiQwjJEkSZKKpHXr4OGHYehQ2Lo10nbeefDQQ3DkkcHWJkmSVJiFw+GgS5BUiBTUzwTDGEmSJKkISU6OBDBDhsD69ZG2006LBDOnnhpoaZIkSYVaTEwMABkZGQFXIqkwSU9PB/73MyK/GMZIkiRJRUBaGrzySmT6saVLI22NGsHgwXD22RAKBVufJElSYRcXF0dsbCybN2+mTJkyQZcjqZBITk4mNjaWuLi4fL1P/kY9kiRJkvIkHIZ3341MPdanTySIqVsXhg+HWbPgnHMMYiRJknIiFAqRmJjIxo0bnapMEhCZomzjxo0kJiYSyud/WBnGSJIkSYXUp5/CSSfBRRfB3LlQuTI8/jjMmQOXXQaxsUFXKEmSVLSUL1+e1NRUli5daiAj7efC4TBLly4lNTWV8uXL5/v9nKZMkiRJKmRmzoSBA2HixMh+mTJw882RV7lywdYmSZJUlCUkJFCrVi0WL17Mli1bKFeuHAkJCcTGxub7/4qXirKMjAy2bdvG1q1b831tlfwUDodJT08nOTmZjRs3kpqaSq1atUhISMj3exvGSJIkSYXEvHlw550wcmRkPy4uMjXZnXdCtWrB1iZJklRcJCYmUrduXTZs2MD69etZs2ZN0CVJhV44HGbLli2ULl26WASXsbGxJCYmUr58+QIJYsAwRpIkSQrc8uVw333w4ouQlhZp69YN7r8fDjoo2NokSZKKo4SEBBISEqhevTqpqalkZGQEXZJUqKWmpjJ16lTOOOOMfF/oPr/FxMQQFxdX4KGSYYwkSZIUkA0b4JFH4P/+D5KTI23t2sFDD8HRRwdamiRJ0n4hFApRsmTJoMuQCr3Y2FjS0tIoVapUkQ9jgmIYI0mSJBWwrVvhmWciocv2WTFOOgmGDIFmzYKtTZIkSZK07xnGSJIkSQUkPR2GD4d77oFFiyJthx8eCWU6dIBiMPWyJEmSJCkbhjGSJElSPguHYdw4uP12mD070nbggZF1Yi6/HEr4t3JJkiRJKtb8Z58kSZKUj6ZNgwED4KuvIvsVK0ZCmWuugdKlg61NkiRJklQwDGMkSZKkfPDLLzBwIHz0UWS/dGm44Qbo3x8qVAiyMkmSJElSQTOMkSRJkvah+fPh7rvhjTci05PFxkLv3pG2mjWDrk6SJEmSFATDGEmSJGkfWLUKHngAnn0WUlMjbZ07w/33w6GHBlubJEmSJClYhjGSJElSHiQlwWOPwX/+A5s2RdpatYLBg+H444OtTZIkSZJUOBjGSJIkSXshJQVeeCEy8mXVqkjbccfBww9HwhhJkiRJkrYzjJEkSZJyISMD3n4b7rwzsj4MQIMG8OCDcOGFEBMTaHmSJEmSpELIMEaSJEnKgXAYPv4YBg6En3+OtFWvDvfcA716QVxcsPVJkiRJkgovwxhJkiRpD775Bm67DaZOjeyXLx/Zv+46KFMm2NokSZIkSYWfYYwkSZK0C7//DrffDmPGRPbj4+Haa2HAADjggEBLkyRJkiQVIYYxkiRJ0k4WLYpMP/baa5E1YmJioEcPuPdeqF076OokSZIkSUWNYYwkSZL0X2vWwODB8NRTkJISaevQAR58EI44ItDSJEmSJElFmGGMJEmS9nubN8MTT8C//w0bNkTamjWDhx+Gk08OtjZJkiRJUtFnGCNJkqT9VmoqvPwyDBoEy5dH2po0iYyOadsWQqFg65MkSZIkFQ+GMZIkSdrvZGTAu+/CnXfCn39G2urXh/vvh65dI2vESJIkSZK0rxjGSJIkab8yaRIMHAg//BDZr1IF7roL+vSBkiWDrU2SJEmSVDwZxkiSJGm/MGMGDBgAU6ZE9suWhVtugZtugsTEYGuTJEmSJBVvhjGSJEkq1ubOjUxHNmpUZD8uDvr1gzvuiIyKkSRJkiQpvxnGSJIkqVhauhTuuw9eegnS0yEUgksvjbTVqxd0dZIkSZKk/YlhjCRJkoqV9ethyBB44gnYsiXSds458OCDcNRRgZYmSZIkSdpPGcZIkiSpWNiyBZ56CgYPhnXrIm2nnBIJZk4/PdjaJEmSJEn7N8MYSZIkFWlpafDaa3DvvbB4caTtiCMiocy550amJ5MkSZIkKUiGMZIkSSqSwmEYMwZuvx3++CPSVrt2ZE2Yyy6D2NhAy5MkSZIkKcowRpIkSUXOF1/AgAHwzTeR/UqV4I47oF8/KFUq2NokSZIkSdqZYYwkSZKKjFmzYOBA+OSTyH5CAtx0E9xyC5QvH2hpkiRJkiTtkmGMJEmSCr2//4a77oK33orslygBV10VaatePdjaJEmSJEnaE8MYSZIkFVorVsADD8Dzz0NqaqTt4ovh/vuhQYNga5MkSZIkKacMYyRJklTobNwIjz4aeW3eHGlr0wYGD4Zjjw22NkmSJEmScsswRpIkSYVGSgo8+yw8+CCsXh1pO+EEePhhaNky2NokSZIkSdpbhjGSJEkKXHo6vPkm3H03LFgQaTv0UHjoIbjgAgiFgq1PkiRJkqS8MIyRJElSYMJh+OgjGDgQfv010lazJtx7L/TsCSX826okSZIkqRjwn7eSJEkKxJdfwoABMH16ZL9Chcj+tddCQkKgpUmSJEmStE8ZxkiSJKlA/for3H47fPBBZL9UKbjuukgQU7FisLVJkiRJkpQfDGMkSZJUIBYsgHvugeHDI9OTxcbCFVdE1ompVSvo6iRJkiRJyj+GMZIkScpXq1fDQw/B00/Dtm2Rtk6d4IEH4PDDg61NkiRJkqSCYBgjSZKkfLFpEzz+ODzyCGzcGGlr0QIefhhOPDHQ0iRJkiRJKlCGMZIkSdqntm2DF1+E+++HFSsibUcfHQlh2rSBUCjQ8iRJkiRJKnCGMZIkSdonMjJg5Ei48074++9I20EHRaYj69IFYmKCrU+SJEmSpKAYxkiSJClPwmGYOBEGDoQff4y0VasGd98NvXtDyZLB1idJkiRJUtAMYyRJkrTXvvsOBgyAzz6L7CcmQv/+cMMNULZsoKVJkiRJklRoGMZIkiQp1/74IzId2XvvRfZLloRrroHbb4fKlYOtTZIkSZKkwsYwRpIkSTm2ZAncey+8+iqkp0MoBJdfDoMGQd26QVcnSZIkSVLhZBgjSZKkPVq3Dh5+GIYOha1bI23nnQcPPgiNGgVbmyRJkiRJhZ1hjCRJknYpORmefDISxKxfH2k77bTI/qmnBlqaJEmSJElFhmGMJEmSskhLi0xFdu+9sHRppK1RIxg8GM4+OzI9mSRJkiRJyhnDGEmSJEWFw/Dee3DHHTB3bqStbl24/37o1g1iY4OtT5IkSZKkosgwRpIkSQB8+ikMGADffx/Zr1wZ7rwTrr4a4uODrU2SJEmSpKLMMEaSJGk/N3MmDBwIEydG9suUgZtvjrzKlQu2NkmSJEmSigPDGEmSpP3UvHmRkS8jR0b24+KgT59IW7VqwdYmSZIkSVJxYhgjSZK0n1m+HO67D158EdLSIm3dukXWhTnooGBrkyRJkiSpODKMkSRJ2k9s2ACPPAL/93+QnBxpa9cOHnoIjj460NIkSZIkSSrWDGMkSZKKua1b4ZlnIqHLmjWRtpNOgiFDoFmzYGuTJEmSJGl/YBgjSZJUTKWnw/DhcM89sGhRpO3wwyOhTIcOEAoFWp4kSZIkSfsNwxhJkqRiJhyGcePg9tth9uxI24EHwqBB0L07lPBvgJIkSZIkFSj/KS5JklSMTJsGAwbAV19F9itWjIQy11wDpUsHW5skSZIkSfsrwxhJkqRi4JdfYOBA+OijyH7p0nDDDdC/P1SoEGRlkiRJkiQpJugC9tYzzzxD/fr1KVWqFMcddxzTpk3bbf8333yTJk2akJCQQI0aNejZsydrtq9gK0mSVETNnw+XXw5NmkSCmNhY6NMH5s2LrA1jECNJkiRJUvCKZBgzcuRIbrjhBu644w5+/PFHTj/9dNq1a8fChQuz7T99+nQuv/xyevXqxW+//caoUaP4/vvv6d27dwFXLkmStG+sWgXXXw+HHgqvvx5ZJ+aiiyJrxDz3HNSsGXSFkiRJkiRpuyIZxjz22GP06tWL3r1707BhQx5//HFq167Ns88+m23/b775hnr16nHddddRv359TjvtNPr06cOMGTMKuHJJkqS8SUqCQYPgoINg6FBITYUzz4Tvv4d33omEM5IkSZIkqXApcmvGbNu2jR9++IEBAwZkam/Tpg1fbV+pdidNmzbljjvuYPz48bRr146VK1fy7rvvcvbZZ+/yPikpKaSkpET3N27cCEBqaiqpqan74J0UH+FwOPqrXxup8Nr+fPqcSoXbrp7VbdvgxRdjeOihGFatCgFw7LEZPPhgBmeeGf7vOQVbq7S/8s9UqWjwWZWKBp9VqWjwWc1ebr4eofD2T9KLiKVLl3LggQfy5Zdf0rRp02j7Qw89xGuvvcacOXOyPe/dd9+lZ8+ebN26lbS0NM477zzeffdd4uLisu1/7733MmjQoCztb731FgkJCfvmzRQTv/32G6mpqcTFxXHkkUcGXY4kScVKRgZMm1aLt946nBUrygBQo8YmLrnkd5o2XUpMkRznLEmSJElS0ZecnEy3bt3YsGED5cqV223fIjcyZrtQKJRpPxwOZ2nbbvbs2Vx33XXcfffdnHXWWSxbtoxbb72Vq6++mpdffjnbcwYOHMhNN90U3d+4cSO1a9emTZs2e/yi7m/mzZtHamoq8fHxtG/fPuhyJO1CamoqkyZNonXr1rsMoiUFb/uz2qpVa6ZMKck998Tyyy+Rv+NUrx7mzjsz6Nkznri4o4GjgyxV2m/5Z6pUNPisSkWDz6pUNPisZm/7jFo5UeTCmMqVKxMbG8vy5cszta9cuZJq1aple87gwYM59dRTufXWWwE46qijKFOmDKeffjoPPPAANWrUyHJOfHw88fHxWdrj4uL8zbaT7SFYKBTyayMVAf4ckwq/OXMq8uijpZg2LTLspVw5uO02uP76EGXKxAKxwRYoCfDPVKmo8FmVigafValo8FnNLDdfiyI3sUXJkiU57rjjmDRpUqb2SZMmZZq2bEfJycnE7DSHR2xs5EOMIjZLmyRJKsaWL4cLL4zlttvOYNq0GOLj4ZZb4O+/4fbboUyZoCuUJEmSJEl7o8iNjAG46aabuOyyyzj++OM55ZRTeOGFF1i4cCFXX301EJlibMmSJQwfPhyAc889lyuvvJJnn302Ok3ZDTfcwIknnkjNmjWDfCuSJEkArF4NZ54Js2fHEBMT5vLLw9x3Xwy1awddmSRJkiRJyqsiGcZ06dKFNWvWcN9997Fs2TIaNWrE+PHjqVu3LgDLli1j4cKF0f49evQgKSmJp556iptvvpkKFSrQsmVLhgwZEtRbkCRJitqwAc46C2bPhgMPDNO//2f07Xs6cXFFbhCzJEmSJEnKRpEMYwD69etHv379sj02bNiwLG3XXnst1157bT5XJUmSlDubN8PZZ8PMmVClCnz8cRp//50UdFmSJEmSJGkf8r9bSpIkBWTrVujQAb78EipUgEmT4PDDg65KkiRJkiTta4YxkiRJAUhNhc6dYfJkKFsWPv4YmjQJuipJkiRJkpQfDGMkSZIKWHo6XH45fPABlCoV+fXkk4OuSpIkSZIk5RfDGEmSpAKUkQF9+sCIERAXB++9B82bB12VJEmSJEnKT4YxkiRJBSQchptugpdfhpgYeOstaN8+6KokSZIkSVJ+M4yRJEkqIHffDU88Edl+5RW48MJg65EkSZIkSQXDMEaSJKkADBkCDzwQ2X76aejePdh6JEmSJElSwTGMkSRJymdPPw0DBkS2hwyBfv2CrUeSJEmSJBUswxhJkqR89Npr8K9/RbbvvBP69w+2HkmSJEmSVPAMYyRJkvLJqFFwxRWR7RtugPvuC7QcSZIkSZIUEMMYSZKkfDB+PHTrBhkZ0Ls3PPYYhEJBVyVJkiRJkoJgGCNJkrSPffYZdOoEaWnQtSs895xBjCRJkiRJ+zPDGEmSpH3om2/g3HNh61Y477zImjGxsUFXJUmSJEmSgmQYI0mStI/MmgXt2sHmzdCqFYwcCXFxQVclSZIkSZKCZhgjSZK0D/zxB7RpA+vXw6mnwpgxUKpU0FVJkiRJkqTCwDBGkiQpj/75JzISZtUqOPZY+OgjKFMm6KokSZIkSVJhYRgjSZKUB0uWwJlnRn494giYMAHKlw+6KkmSJEmSVJgYxkiSJO2lVasiI2L++QcOPhgmT4bKlYOuSpIkSZIkFTaGMZIkSXth/frIGjF//AG1a8OUKVCjRtBVSZIkSZKkwsgwRpIkKZc2bYJ27WDWLKhWLTIipm7doKuSJEmSJEmFlWGMJElSLmzZAuedB998AxUrwqRJcOihQVclSZIkSZIKM8MYSZKkHNq2DS66CD77DBITYcIEaNw46KokSZIkSVJhZxgjSZKUA+npcNll8NFHULo0fPghnHBC0FVJkiRJkqSiwDBGkiRpDzIyoHdveOcdiIuD0aPhjDOCrkqSJEmSJBUVhjGSJEm7EQ7D9dfDsGEQGwsjR8JZZwVdlSRJkiRJKkoMYyRJknbjjjvgqacgFIoEMh07Bl2RJEmSJEkqagxjJEmSduGhh2Dw4Mj2s8/CpZcGW48kSZIkSSqaDGMkSZKyMXRoZFQMwH/+A336BFuPJEmSJEkqugxjJEmSdvLKK5F1YgDuuQduvjnYeiRJkiRJUtFmGCNJkrSDkSPhyisj2zfdFAljJEmSJEmS8sIwRpIk6b8++CCyLkxGRmRasv/8B0KhoKuSJEmSJElFnWGMJEkSMGUKXHQRpKXBJZfAM88YxEiSJEmSpH3DMEaSJO33vvoKzj8fUlKgQwcYNgxi/FuSJEmSJEnaR/yYQZIk7ddmzoT27WHzZmjTBkaMgBIlgq5KkiRJkiQVJ4YxkiRpvzV7Npx1FmzYAKefDqNHQ3x80FVJkiRJkqTixjBGkiTtl/76C1q1gtWr4fjj4cMPISEh6KokSZIkSVJxZBgjSZL2O4sXw5lnwrJl0KgRfPIJlCsXdFWSJEmSJKm4MoyRJEn7lZUrIyNiFiyAQw6BSZPggAOCrkqSJEmSJBVnhjGSJGm/sXYttG4Nc+ZAnToweTJUrx50VZIkSZIkqbgzjJEkSfuFpCRo1w5+/jkSwEyeHAlkJEmSJEmS8pthjCRJKva2bIHzzoPvvoNKlSJTkx1ySNBVSZIkSZKk/YVhjCRJKta2bYNOneDzzyExESZMgEaNgq5KkiRJkiTtTwxjJElSsZWWBt26wccfQ+nSMH48HH980FVJkiRJkqT9jWGMJEkqljIyoFcveO89KFkSxo6F004LuipJkiRJkrQ/MoyRJEnFTjgM114Lw4dDbCy88w60bh10VZIkSZIkaX9lGCNJkoqVcBgGDIBnnoFQKBLInH9+0FVJkiRJkqT9mWGMJEkqVh58EP7978j2889H1oyRJEmSJEkKkmGMJEkqNh5/HO66K7L92GNw5ZWBliNJkiRJkgQYxkiSpGLipZfgxhsj2/fd979tSZIkSZKkoBnGSJKkIu/tt+GqqyLbt94Kd94ZbD2SJEmSJEk7MoyRJElF2tixcNllEA5D374wZAiEQkFXJUmSJEmS9D+GMZIkqciaNAk6d4b09Egg89RTBjGSJEmSJKnwMYyRJElF0vTp0KEDbNsGnTrBK69AjH+zkSRJkiRJhZAfWUiSpCLnhx/g7LMhORnatoW33oISJYKuSpIkSZIkKXuGMZIkqUj57Tc46yzYuBGaNYP33oOSJYOuSpIkSZIkadcMYyRJUpExbx60agVr1sCJJ8IHH0BCQtBVSZIkSZIk7Z5hjCRJKhIWLoQzz4Tly+Goo+DjjyExMeiqJEmSJEmS9swwRpIkFXrLl0dGxCxcCIceChMnQqVKQVclSZIkSZKUM4YxkiSpUFu7Ftq0gT//hLp1YfJkqFYt6KokSZIkSZJyzjBGkiQVWhs3Qtu28MsvUKMGTJkCtWsHXZUkSZIkSVLuGMZIkqRCKTkZzjkHvv8eKleOjIg5+OCgq5IkSZIkSco9wxhJklTopKTABRfAtGlQrhxMmABHHBF0VZIkSZIkSXvHMEaSJBUqaWnQtWskgElIgI8/hmOPDboqSZIkSZKkvWcYI0mSCo2MDOjZE0aPhvh4GDcOmjYNuipJkiRJkqS8MYyRJEmFQjgM/frBG29AiRIwahSceWbQVUmSJEmSJOWdYYwkSQpcOAy33grPPw+hUCSQOffcoKuSJEmSJEnaNwxjJElS4O67Dx59NLL90kvQpUuw9UiSJEmSJO1LhjGSJClQjz4K994b2X7iCbjiikDLkSRJkiRJ2ucMYyRJUmCefx5uuSWy/eCDcN11wdYjSZIkSZKUHwxjJElSIN54A/r2jWwPGAC33x5sPZIkSZIkSfnFMEaSJBW40aOhRw8Ih+Ff/4KHHgq6IkmSJEmSpPxjGCNJkgrUhAnQpQukp0cCmSeegFAo6KokSZIkSZLyj2GMJEkqMFOnQseOkJoKF10EL70EMf5tRJIkSZIkFXN+/CFJkgrE99/DOefAli1w9tmRNWNiY4OuSpIkSZIkKf8ZxkiSpHz3yy9w1lmQlAQtWsCoUVCyZNBVSZIkSZIkFQzDGEmSlK/mzoXWrWHdOjj5ZBg3DkqXDroqSZIkSZKkgmMYI0mS8s2CBdCqFaxYAUcfDePHQ9myQVclSZIkSZJUsAxjJElSvli2DM48ExYtgsMPhwkToGLFoKuSJEmSJEkqeIYxkiRpn1u9OjI12V9/Qf36MHkyVK0adFWSJEmSJEnBMIyRJEn71IYN0LYt/PYb1KwJU6bAgQcGXZUkSZIkSVJwDGMkSdI+s3kznH02/PADVKkSCWLq1w+6KkmSJEmSpGAZxkiSpH1i61bo2BG+/BIqVICJEyNrxUiSJEmSJO3vDGMkSVKepabCxRfDpElQpgx8/DEcfXTQVUmSJEmSJBUOhjGSJClP0tOhe3cYOxZKlYIPPoCTTw66KkmSJEmSpMLDMEaSJO21cBiuvhrefhtKlIB334UWLYKuSpIkSZIkqXAxjJEkSXslHIabboKXXoKYGHjrLTj77KCrkiRJkiRJKnwMYyRJ0l655x54/PHI9ssvw0UXBVqOJEmSJElSoWUYI0mScu2RR+D++yPbTz0FPXoEWo4kSZIkSVKhZhgjSZJy5ZlnoH//yPbgwXDNNcHWI0mSJEmSVNgZxkiSpBwbPvx/4csdd8CAAcHWI0mSJEmSVBQYxkiSpBx57z3o2TOyfd11/5umTJIkSZIkSbtnGCNJkvbo44+ha1fIyIArroD/+z8IhYKuSpIkSZIkqWgwjJEkSbv1+edwwQWQmgpdusALL0CMf4OQJEmSJEnKsRL74iILFizg66+/ZunSpaxcuZL169dToUIFqlSpQs2aNTnllFOoV6/evriVJEkqQN9+C+eeC1u3Rn59/XWIjQ26KkmSJEmSpKJlr8KYcDjMpEmTGDFiBJ9++imLFi3a4zm1atWiZcuWXHzxxbRp04aQc5tIklSo/fQTtG0LmzbBmWfCO+9AXFzQVUmSJEmSJBU9uZpkZMuWLTz++OMcfPDBtGvXjtdee42FCxcSDof3+Fq0aBHDhw+nffv2HHTQQfzf//0fW7Zsya/3JUmS8mDOHGjdGtavh6ZNYcwYKFUq6KokSZIkSZKKphyFMRkZGTz99NMcdNBB3HzzzcyfPz8asoRCoRy/tp+zYMECbrnlFurXr8/TTz9NRkZGfr9PSZKUQ/PnQ6tWsGoVHHMMfPQRlC0bdFWSJEmSJElFV46mKWvSpAmzZ88mHA4DZJpibHtbTux83sqVK7nuuut47rnn+OWXX3J8HUmSlD+WLo1MSbZ4MTRsCBMmQIUKQVclSZIkSZJUtOUojPntt9+io1vgfwHMoYceysknn8yJJ57IMcccQ5UqVTjggAMoV64cGzZsYO3ataxcuZIff/yRb7/9lm+//ZY///wTINO1Zs+enR/vTZIk5cKqVZERMX//DQcdBJMnQ5UqQVclSZIkSZJU9OUojNkuHA5z6KGH0qVLFy6++GIaNmy4y76VKlWiUqVKNGjQgKZNm3LNNdcAMHv2bN566y3eeecd5s2bl7fqJUnSPrF+PZx1Fvz+O9SqBVOmQM2aQVclSZIkSZJUPORozRiA0047jfHjx/PHH38waNCg3QYxu3PEEUfwwAMPMHfuXD788ENOPfXUvbqOJEnaNzZtgrPPhh9/hKpVIyNi6tULuipJkiRJkqTiI0cjY6ZNm5YvoUn79u1p3749X3311T6/tiRJ2rOtW+H88+Grr6BiRZg0CQ47LOiqJEmSJEmSipccjYzJ79ErTZs2zdfrS5KkrFJToXNn+PRTKFsWPvkEjjoq6KokSZIkSZKKnxxPUyZJkoqP9HS47DL44AMoVQo+/BBOPDHoqiRJkiRJkoonwxhJkvYzGRlw1VUwciTExcH770OzZkFXJUmSJEmSVHzlaxjz999/07dvX4499liOPPJIOnbsyKRJk/LzlpIkaTfCYbjxRnjlFYiJgbffhnbtgq5KkiRJkiSpeCuRl5PnzJnDueeeG93v2LEjQ4YMAeCPP/6gadOmbNiwgXA4DMDvv//OuHHjeOyxx7j++uvzcmtJkrQX7roLhg6NbL/6KnTqFGw9kiRJkiRJ+4M8jYz59NNPmTdvHvPmzeOvv/7i1FNPjR67/fbbWb9+PeFwmFAoRCgUAiAcDnPbbbexYMGCvFUuSZJy5eGH4cEHI9vPPAOXXx5sPZIkSZIkSfuLPIUx33//fXQ7NjaWli1bArBx40Y+/PDDTCEMEN1OTU3l1VdfzcutJUlSLjz1FAwcGNn+97+hb99g65EkSZIkSdqf5CmM+f3334FIyHLEEUdQtmxZAL766ivS0tKi/erVq0eVKlWi05UBfPHFF3m5tSRJyqFhw+DaayPbd90Ft94aaDmSJEmSJEn7nTyFMStXroxuN2zYMLr9yy+/RLfr16/PnDlzmD17NpUrVyYUChEOh5k7d25ebi1JknJg1Cjo1SuyfeONMGhQsPVIkiRJkiTtj/IUxqxevTo69dgBBxwQbZ8zZ050+8wzz6REiRJUqlSJli1bRkfHrFu3Li+3liRJe/DRR9CtG2RkwJVXwqOPwg6zh0qSJEmSJKmA5CmM2bJlS3Q7NTU1ur1jGLPjiJkqVapEtzMyMvJya0mStBuffgqdOkFaWiSQefZZgxhJkiRJkqSg5CmM2b5GDMDs2bMBSEtL49dff422N2jQILqdkpIS3a5cuXJebi1Jknbh66/hvPMgJQXOPz+yZkxsbNBVSZIkSZIk7b9K5OXkevXq8dNPPxEOh/nqq6+47bbbWLlyJRs2bIj2ady4cXR7+fLlAIRCIcMYSZLywY8/Qrt2sHkztG4NI0dCXFzQVUmSJEmSJO3f8hTGnHjiicyaNYtQKEQ4HOY///kPQHS/Tp061K1bN9p/9uzZ0TVmatWqlZdbS5Kknfz+O7RpAxs2wGmnwejREB8fdFWSJEmSJEnK0zRll156aXR7ewCz/RUKhTIdX7x4MX///Xd0/9hjj83LrSVJ0g7+/htatYLVq+G44+DDD6FMmaCrkiRJkiRJEuQxjDnttNPo1atXpgBmu4MPPpj+/ftH98eMGQNAOBwG4IwzzsjLrSVJ0n8tXhwJYpYuhSOPhAkToHz5oKuSJEmSJEnSdnmapgzgxRdfpGnTprz11lssXLiQxMREzjzzTPr3709iYmK0X1JSEpdccgkQGUVjGCNJUt6tXBkJYv75Bxo0gEmT4IADgq5KkiRJkiRJO8pzGAPQs2dPevbsuds+AwcO3Be3kiRJ/7VuXWSNmDlzoHZtmDwZatQIuipJkiRJkiTtLMfTlF111VV8+OGHbN26NT/rkSRJOZCUBO3bw08/QbVqMGUK1K0bdFWSJEmSJEnKTo7DmJdeeonzzz+fypUrc/755/Pyyy+zYsWK/KxNkiRlY8sWOO88+OYbqFQpMjXZIYcEXZUkSZIkSZJ2JVfTlIXDYZKTk/nwww/58MMPCYVCHH/88Zx33nmcd955NGrUKL/qlCRJwLZtcOGF8PnnkJgIEyZA48ZBVyVJkiRJkqTdyfHImBdffJHzzjuPhIQEwuEw4XCYjIwMvv/+e+666y6aNGnCQQcdxPXXX8+UKVNIT0/Pz7olSdrvpKXBpZfC+PFQujR89BEcf3zQVUmSJEmSJGlPchzG9OrVizFjxrB69WrGjRvHlVdeSY0aNaLBTDgcZsGCBTz11FO0adOGypUr07VrV95++23Wr1+fj29BkqTiLyMDeveGUaOgZEkYPRpOPz3oqiRJkiRJkpQTuZqmDKBUqVKcc845nHPOOQB8//33jBs3jnHjxvHLL79E+23YsIF33nmHd955h9jYWE477bTodGYHHXTQvnsHkiQVc+EwXHcdvPYaxMbCyJFw1llBVyVJkiRJkqScyvHImF054YQTuP/++/npp5+YP38+Q4cOpVWrVsTFxUVHzKSlpfHFF19w8803c8ghh9CoUSMGDhzI119/vdf3feaZZ6hfvz6lSpXiuOOOY9q0abvtn5KSwh133EHdunWJj4/n4IMP5pVXXtnr+0uSVBDCYRg4EJ5+GkKhSCDToUPQVUmSJEmSJCk38hzG7KhOnTr861//YuLEiaxevZoRI0ZwySWXUKlSpUzTmf3+++/8+9//5rTTTqN69eqMHDkyV/cZOXIkN9xwA3fccQc//vgjp59+Ou3atWPhwoW7PKdz585MmTKFl19+mTlz5vD2229z+OGH5/UtS5KUrx56CIYMiWw/9xxcckmw9UiSJEmSJCn3cj1NWU4lJibSuXNnOnfuTEZGBtOmTWPcuHF88MEHzJs3L9pv1apVzJkzJ1fXfuyxx+jVqxe9e/cG4PHHH2fChAk8++yzDB48OEv/Tz75hC+++IK///6bSpUqAVCvXr29f3OSJBWAJ56AO++MbD/6KFx1VbD1SJIkSZIkae/kWxizo5iYGJo1a0azZs149NFH+eOPP6LrzHzzzTe5uta2bdv44YcfGDBgQKb2Nm3a8NVXX2V7zrhx4zj++OP597//zeuvv06ZMmU477zzuP/++yldunS256SkpJCSkhLd37hxIwCpqamkpqbmqubiLhwOR3/1ayMVXtufT5/TouHVV0PccEPkj+m77krn2msz8Fu3f/BZlQo/n1OpaPBZlYoGn1WpaPBZzV5uvh4FEsbs7PDDD+fwww+nf//+rF69mnXr1uX43NWrV5Oenk61atUytVerVo3ly5dne87ff//N9OnTKVWqFKNHj2b16tX069ePtWvX7nLdmMGDBzNo0KAs7RMnTiQhISHH9e4PtodWKSkpjB8/PuBqJO3JpEmTgi5BezBt2oE89thxAHTo8CfHHjsbf7zuf3xWpcLP51QqGnxWpaLBZ1UqGnxWM0tOTs5x30DCmB1VrlyZypUr5/q8UCiUaT8cDmdp2y4jI4NQKMSbb75J+fLlgchUZxdeeCFPP/10tqNjBg4cyE033RTd37hxI7Vr16ZNmzaUK1cu1/UWZ/PmzSM1NZX4+Hjat28fdDmSdiE1NZVJkybRunVr4uLigi5Hu/DhhyGeeCKWcDjEVVel8+ST9QiF6gVdlgqQz6pU+PmcSkWDz6pUNPisSkWDz2r2ts+olRP7LIzJyMjg119/Zf78+WzcuJGMjIw9nnP55Zfn+j6VK1cmNjY2yyiYlStXZhkts12NGjU48MADo0EMQMOGDQmHwyxevJhDDjkkyznx8fHEx8dnaY+Li/M32062h2ChUMivjVQE+HOs8Jo8Gbp2hbQ0uPRSePbZWGJiYoMuSwHxWZUKP59TqWjwWZWKBp9VqWjwWc0sN1+LPIcx27Zt44EHHuC5555jzZo1uTp3b8KYkiVLctxxxzFp0iQ6duwYbZ80aRLnn39+tueceuqpjBo1ik2bNlG2bFkA5s6dS0xMDLVq1cp1DZIk7Wtffgnnnw8pKdCxI7z6KsTEBF2VJEmSJEmS9oU8fcyzbds22rRpw4MPPsjq1asJh8M5fuXFTTfdxEsvvcQrr7zC77//zo033sjChQu5+uqrgcgUYzsGPd26deOAAw6gZ8+ezJ49m6lTp3LrrbdyxRVXZDtFmSRJBWnmTGjfHpKToW1bePttKBH4RKKSJEmSJEnaV/L0Uc8TTzzB1KlTCYVCu1yvJTt5DWO6dOnCmjVruO+++1i2bBmNGjVi/Pjx1K1bF4Bly5axcOHCaP+yZcsyadIkrr32Wo4//ngOOOAAOnfuzAMPPJCnOiRJyqvffoM2bWDjRjjjDHjvPchmlkxJkiRJkiQVYXkKY95+++0sbXkNWnKqX79+9OvXL9tjw4YNy9J2+OGHM2nSpHyuSpKknPvrL2jdGtasgRNOgA8+gISEoKuSJEmSJEnSvpanMGbu3LmEQqFoAFOtWjXatWtHjRo1KFmy5D4pUJKk4mjRIjjzTFi2DBo3hk8+gXLlgq5KkiRJkiRJ+SFPYUx8fDxbtmwB4JBDDmHGjBkkJibuk8IkSSquVqyAVq1gwQI45BCYNAkqVQq6KkmSJEmSJOWXmLyc3KhRI8LhMKFQiBYtWhjESJK0B2vXRqYmmzsX6taFKVOgWrWgq5IkSZIkSVJ+ylMY06dPn+j2nDlz8lyMJEnFWVIStGsHv/wC1avD5MlQu3bQVUmSJEmSJCm/5SmM6datGx07diQcDjN16lQefPBBMjIy9lVtkiQVG8nJcM458N13cMABkSCmQYOgq5IkSZIkSVJByNOaMQBvv/02V199NcOGDePuu+/m2WefpUWLFtSuXZtSpUrt9ty77747r7eXJKnQS0mBTp1g6lQoVw4mTIAjjwy6KkmSJEmSJBWUPIcxq1evZuXKlQCEw2GWLl3KW2+9laNzDWMkScVdWhp06waffAIJCTB+PBx3XNBVSZIkSZIkqSDlKYxZv349rVq1Ys6cOYRCoWh7OBze47k79pckqTjKyIArroD334eSJWHsWDj11KCrkiRJkiRJUkHLUxjz2GOP8ccffxAKhQiHw9GAZU9BS07CGkmSirJwGK65Bl5/HWJjYdQoaNUq6KokSZIkSZIUhDyFMaNGjcoUwBiySJIUCWJuuw2eew5CoUggc955QVclSZIkSZKkoOQpjFmwYAHwv5Eup5xyCq1bt6Z69eqUKlXKqcgkSfulBx6ARx6JbL/wAnTtGmw9kiRJkiRJClaewpiKFSuyfPlyQqEQJ554ItOnTzeAkSTt1/7v/+Duu/+33bt3sPVIkiRJkiQpeDF5Obl58+bRUTFHH320QYwkab/24otw002R7fvvhxtuCLQcSZIkSZIkFRJ5CmNuueUW4uLiAPjiiy9IT0/fJ0VJklTUvPUW9OkT2e7fH+64I9h6JEmSJEmSVHjkKYw55phjeOqppwiFQsyZM4fzzz+fP/74Y1/VJklSkTBmDFx+OYTD0K8fPPwwOFhUkiRJkiRJ2+VpzZiWLVsCUL58edatW8fHH3/Mxx9/TM2aNalduzalSpXa5bmhUIgpU6bk5faSJAVu0iTo0gXS06F7d3jySYMYSZIkSZIkZZanMObzzz+PrhMTCoWi68csWbKEpUuX7vK8cDjs+jKSpCJv2jQ4/3zYtg06dYKXXoKYPI05lSRJkiRJUnGUpzBmu+0hzI4By/a2nRnCSJKKgxkz4OyzYcsWaNcusmZMiX3yp6okSZIkSZKKm33ysVF2AYuhiySpuPr1VzjrLEhKgubN4b33oGTJoKuSJEmSJElSYZXnMGZXI2AkSSqO/vwTWreGtWvhpJNg3DgoXTroqiRJkiRJklSY5SmM+eeff/ZVHZIkFXoLF8KZZ8Ly5dCkCXz8MSQmBl2VJEmSJEmSCrs8hTF169bdV3VIklSoLV8eCWIWLYLDDoOJE6FixaCrkiRJkpRFOLzrV0ZG4ThWWOooBO8tJi2Nmps2Qdu2Qf/OkaR85VLDkiTtwZo1kanJ5s2DevVg8mSoWjXoqiRJkrRL4TChr7/moA8+IObPPyEUKhwfUheCD76L1LG9vZ6KlFjgBCDjt9/gtdegSpWgS5KkfGEYI0nSbmzcGPkPWr/+CjVrRoKYWrWCrkqSJEnZWrwYhg+HYcMo8eefNA66HhUPoVD2r5iY3LXnx7FicK+MlBTCI0YQ+/HHkfmg33wTWrQI+rsuSftcjsKYRYsWUbt27XwrIr+vL0nS3khOhnPOgRkzoHLlSBBz8MFBVyVJkqRMtmyBMWNg2DCYNCk6MiKckMDyxo2pVr8+MbGxherD5/3qXoWljr29XigU6G/v/UF6airTjj2WFs8+S2jOnMj80HfdFXmV8P+RSyo+cvQTrUGDBlxyySX079+fww8/fJ/dfM6cOQwePJgRI0awdevWfXZdSZLyKiUFOnaEadOgfPnIGjENGwZdlSRJkoBI4PLtt5EAZsQI2LDhf8eaNYMePUg77zy+mzaN9u3bExMXF1ip/8/efYdHVa1tGL8nIQlIVemC2HtBEUXsBRQrvYkURUFERRQVCyoiKCqCCmKhCNKrDRUsWLEh2BuWD+lYkCYQkvn+WIeiggJJ2JnJ/buuubJmZybzhHO2mdnvWu+S9N9W7LUX6997j7TrroPBg6F7d3j9dRg50tYEkpJGyrY8KDMzk6eeeorDDjuMOnXqMHz4cFauXLlDL7hy5UqGDx/OOeecw6GHHsqwYcPIzMzcoZ8lSVJeyMyEpk1DAaZoUZgyBY46KupUkiRJYv58uOeeMEvm+OPhscdCIaZKFejWLWzyN306tG4NxYtHnVbS9ihaFAYNCm3KihULM+OOPBKeey7qZJKUK7ZrrV92djZTp05l6tSptGvXjjPOOIMaNWpQvXp1qlatSunSpUlJSfnL45cuXcrs2bP58MMPee+993jttddYu3YtAHE3VZMk5TPZ2dCmTeh0kZEBzz4LNWtGnUqSJKkAW7MGnnkmrIKZOjW8YQMoUgQaNgxv3k45JbSakpT4mjeHY4+FJk3g44/hggvgmmvg3nvDhzRJSlDbVIwpXbo0v/zyC7H/9cmMx+OsWbOGKVOmMGXKlL88tkSJEhQvXpzly5ezYsWKf/ysDQWYWCxGLBYjHo9TpkyZnP4ekiTlWDwOV1wRJmIVKgTjx8Ppp0edSpIkqQCKx+HDD0MBZtQoWLZs0/dOOimsfGnYEEqUiCigpDy1337w7rvQtSs8+CD06xdWyoweDfvvH3U6Sdoh2zRtZM6cOXTq1In09HTi8fjGQgqE4srmtz/++IN58+axfPnyf3wP/lqESUtLo1OnTnzzzTd59xtKkrQN4nG4/np4/PEwqfLpp+G886JOJUmSVMAsXAi9e8Ohh8Jxx8Gjj4ZCTOXKcOut8N138OabcMklFmKkZJeRAX36hDZlu+8eVskcfXSYPSdJCWibijElSpSgT58+zJkzhyuvvJKiRYtuLLBsKK5sy23Dc4oUKcIVV1zBd999R58+fShZsmRe/56SJP2rO+8M7/MBnnwyrIiXJEnSTrB2LYwbB+eeGzbqvvFG+Oqr0IbsoovglVfgp5/grrvCbHlJBct558Hs2XDyybByJbRoEQqyq1ZFnUyStst2NVTdY489ePjhh5k3bx79+/fn5JNPJi0t7R8rYLZ0S01N5fjjj6dfv378/PPP9O/fn8qVK+fV7yVJ0ja7//5QjAF46KHQdlySJEl5KB6Hjz6Cjh2hQgVo3BimTAn7wZxwAjzxRFgl8/TTcMYZ7gcjFXSVKsFrr8Htt4f/HgwZAsccA59+GnUySdpm27RnzN+VKFGCK664giuuuII1a9YwY8YMZsyYwYIFC1iyZAnLli2jVKlSlC5dmooVK1KjRg1q1qzJLrvsktv5JUnKkYEDoUuXMO7ZE666Kto8kiRJSW3RolBgGToUvvhi0/FKlaBlS2jVCg44ILJ4kvKx1FS44w449dSwau7rr+HYY8OeMu3bw/+2VJCk/GqHijGbK1y4MKeddhqnnXZabuSRJGmnGT4cOnQI465dw02SJEm5bO1aeP75UIB58UXIygrHCxeG+vWhdWs4/fRwoVWS/supp8Inn4T/drzwQvhQ9+qrYUXdrrtGnU6Stsp1vpKkAmnixPDePR4Pq2HuvjvqRJIkSUkkHg+bbV99NVSsCA0bhoJMVhYcfzw89lhoQzZiBNSqZSFG0vYpXRqeey5s/JmWBhMmwFFHwYwZUSeTpK3K8coYSZISzUsvQdOmoSV5mzbQt68r2iVJknLF4sWhwDJ0KHz22abjFSuGNmStW8OBB0aVTlIyicXg2mvhpJPCB7zvvw/jHj3ghhvca0pSvmMxRpJUoLzxBtSrB5mZYZ/YJ57wPbokSVKOrFsXWgUNHQpTpsD69eF4RkZ449W6NZx5pqtfJOWNY44JK/HatYPRo0P/6ddeC32py5WLOp0kbWQxRpJUYHzwAZx3HqxZE74OH+41AUmSpB02ezYMGRJWwvz666bjxx0XCjBNmrh/g6Sdo0QJGDkytD3s2BGmTYMjjwwf+mrVijqdJAEWYyRJBcSnn8LZZ8PKlWF/2HHjID096lSSJEkJZunSTW3IPvlk0/EKFUIbslat4OCDI4snqQCLxeCSS6BGjVAM/vxzOOssuPFG6N497C0jSRGyMYskKel9+22YDPX772G/2GeegcKFo04lSZKUIDIzwxuoevXC3i/XXhsKMenpoe/rlCkwdy7cc4+FGEnRO+SQ0BahfXuIx8N/m045Bf7v/6JOJqmAc2WMJCmp/fQTnHEGLFkCVauGawXFikWdSpIkKQF8+ummNmRLl246Xr16aEPWtCnstltk8SRpq4oUgUcfDW0RLrsMZswIHwgHDYL69aNOJ6mAshgjSUpaCxeGvWLnzQuTNKdOhVKlok4lSZKUj/3yS9h3YehQmDVr0/Hy5eHii0MbskMPjSyeJG2XRo3gmGOgWTN4/31o0AA6dIAHHrBdgqSdzjZlkqSk9MsvoRDz/few995h/8YyZaJOJUmSlA9lZsJzz4XZ4hUrwjXXhEJMejo0bAjPPw8//wy9e1uIkZR49t4b3nor7B0DMGAAHHccfP11tLkkFTiujJEkJZ0//gj7NH75JeyxB7z6avgqSZKkzXz2WVgB8/TToafrBtWqhTZkzZrB7rtHlU6Sck9aWtg75rTTwiq/Tz8N/63r3z+s+IvFok4oqQCwGCNJSiqrVsG558LHH4eVMK+8EiZCSZIkCfj1Vxg1KhRhZs7cdLxs2U1tyA4/PLJ4kpSnzjoLPvkk/Pfu1VehTZvwofHRR6F48ajTSUpyOWpT1q1bN+bMmZNbWSRJypE1a6BuXXjnnbA3zLRpcNBBUaeSJEmK2Pr18MILoeVYhQpw1VWhEJOWFlqTPfts2GTv/vstxEhKfhUqwMsvw913Q2oqjBgBRx8dZvRJUh7KUTGmR48eHHjggZx44ok8+eSTLF++PLdySZK0XTIzoXHjMKmpWDF48UU48sioU0mSJEXoiy+gSxeoVAnOOw8mTAhvmo46Ch56CBYsCMfOPz8UZiSpoEhNhZtvhjfegMqVYc4cqFED+vWDeDzqdJKSVI6KMQDxeJwZM2bQrl07ypcvT7NmzXjxxRfJzs7OjXySJP2nrCxo2TLsO1u4cPhao0bUqSRJkiLw229hc+pjj4XDDgurXRYvDv1br70WZs8Os7+vugpKl446rSRF64QTwn8X69YNxepOneDCC0NLR0nKZTkuxsRiMeLxOPF4nDVr1jB27FjOO+88KlWqRJcuXfjss89yI6ckSVuUnQ3t2sHo0WFC54QJcOqpUaeSJEnaidavhylTwjLhChXgyivhww+hUKFwgXHyZJg/H/r0cemwJP3dbrvBxInwyCOQnh5m9x15JLz5ZtTJJCWZXFkZE4vFNt42FGYWLVpEnz59qFq1KkcffTQPPfQQS5cuzY3MkiQBYfV4584waBCkpMDIkXDOOVGnkiRJ2km++gpuvBH23BPOPRfGjYN168JFxL59QxuySZPCLG/bkEnS1sVioZD9/vtwwAGhgH3aadC9e2jFIEm5IEfFmPHjx9O0aVOKFSu2sQizpcLM7Nmzufbaa6lUqRIXXHABEyZMIDMzM7d+B0lSAdWtW2jpCzB4cNiTVpIkKan9/jsMHAjHHQeHHAK9e8PChaHl2DXXwKxZoeXONdeE1mSSpG1XtSrMnAmtWoU2DLffDmeeGYrbkpRDOSrG1K9fn5EjR7J06VImT55MixYtKFGixFYLM5mZmbzwwgs0btyY8uXLc+WVV/LRRx/l1u8iSSpA7r0XevQI4/79w3tlSZKkpJSVBS+9BE2bhjZkV1wBH3wQNqC+4IKw+mX+/LAapmrVqNNKUmIrVgyGDoVhw6BoUZg+Paw4nDIl6mSSElyO25QBpKenc8EFFzBs2DCWLFnC888/T+vWrdl1113/UZjZcP/3339n4MCBHHfccdSsWZO33norN6JIkgqA/v3hppvC+N57oUOHaPNIkiTlia+/hq5dQxuyOnVgzBhYuxYOPzzs/zJ/PjzzTNgXJj096rSSlFwuvhg+/jgUuX/5JbSDvP760A5SknZArhRjNpeWlsY555zD4MGDWbx4MZMnT6ZSpUobv7+lNmbvvfcep512Gj02THGWJGkrnnoKOnYM41tvhRtuiDaPJElSrlq2DB5/HI4/Hg4+GO65J7TH2W03uOqq0D7nk0/g2muhXLmo00pScjvgAHjvPbj66nD/gQfghBPg+++jzSUpIeV6MWaDTz/9lM6dO3PJJZcwf/58AOLx+F8es3lhJjs7m9tvv53nn38+ryJJkhLc+PFwySVhfM01YS9FSZKkhJeVBVOnQvPmoQ1Zu3bh4l9qKpx3HkyYEAoyDz0ERx8dNpqWJO0cGRlhs9LJk2HXXeGjj+Coo8JqRUnaDoVy84ctX76cESNGMGjQIGbNmgVsKsBsKLpsOJaWlsauu+7KkiVL/rJSpl+/fpx33nm5GUuSlASmTIFmzcIeim3bwoMPeh1CkiQluG+/Dct+hw2DefM2HT/0UGjTBi66CMqXjy6fJGmTCy8MKxObN4e33w77eL3ySijU7LJL1OkkJYBcWRkzffp0Lr74YipUqEDHjh35+OOPt7pXTMWKFbnzzjuZO3cuCxYs4PHHHyclZVOMmTNn5kYkSVISmT4dGjSA9etDQWbgQAsxkiQpQf3xBzzxRGhzc+CB0LNnKMTsuitceWWYcf3ZZ3DddRZiJCm/qVwZXn899MyOxeDJJ6F6dfj886iTSUoAOVoZ07NnTwYPHsyPP/4I/HUVzAYbjp166qlceeWV1K1bl9TU1I3fb9u2LZMmTeLFF18E4I8//shJJElSknnvvdCdY80auOCCMHl0sz8jkiRJ+V92Nrz2GgwdChMnwp9/huMpKVCnDrRuDeefH1rhSJLyt0KF4K674LTTwgrGL78MBZl+/eCyy5w5KGmrclSMufXWWzeueoF/FmGKFSvGxRdfzJVXXskhhxyy1Z+zzz775CSGJClJzZ4drk+sWgVnnhla8qalRZ1KkiRpG82ZE2aSPPUU/PzzpuMHHxzakLVoEfaIkSQlntNPD23LWrWCl14K+3298go8/jiUKhV1Okn5UK7sGbP5XjAABx98MB06dKBVq1YUK1bsv0MUytWtayRJSeDrr6F2bVi2LHTxmDwZCheOOpUkSdJ/WLECxo4Nq2DefnvT8VKlQr/VNm3gmGOcOS1JyaBsWXjhBejTB7p2hXHj4MMPYfRoOO64qNNJymdypQoSj8dJTU3lggsuoGPHjpx22mnb9fxu3brRqVOn3IgiSUoCP/4YVsIsXQpHHx3e2xYtGnUqSZKkrcjODpvcDR0KEybA6tXheEoKnHVWaEN2wQXOLJGkZJSSAtdfDyefDE2bhg+0J54Y9gS77rrwfUkiF4oxZcqU4bLLLqNdu3ZUqlRph37Grrvuyq677prTKJKkJDB/PpxxRvh6yCHw8stQsmTUqSRJkrbg++83tSGbO3fT8YMOCgWYFi1gjz0iiydJ2omOPRZmzQr7xowbBzfcEPYLe+qpsIJGUoGXo2LM008/TaNGjUizgb8kKRcsXRpWxPz4I+y7b2i3W7p01KkkSZI2s2IFjB8fVsG8+eam4yVLhjZkrVuHC3K2IZOkgqdkybDZaa1acPXVYS+ZI4+EESPCHjOSCrQcFWPmzJlDr169AKhRowa1a9f+18f/+eef/Pnnnxvv77bbbjl5eUlSElm2LOwR8/XXUKkSvPqq+9lKkqR8Ijs7FF6GDg2FmFWrwvFYLLyBad0aLrwQihSJMqUkKT+IxcLqmOOPhyZN4Msvw6zDW26B228H986WCqwcnf133HEHsf/N9rnmmmv+sxhz880389BDDwEQi8VYv359Tl5ekpQkVq6EOnVg9mwoVy4UYqpUiTqVJEkq8H78cVMbsp9+2nT8gANCAebii8MsEkmS/u6ww+DDD+Gaa+DJJ6FHj7C/2MiRULly1OkkRSDHpdh4PL6xILOtj5ckaYM1a8JE0vfeg113hWnTwvUNSZKkSKxcCRMmhFUw06dvOl6iRNiYuXVrqFHDNmSSpP+2yy7wxBNhY9TLL4e33w5ty4YMCR+EJRUoKTn9AdtTiHEljCRpc+vWQcOGYU/DYsVCO93DD486lSRJKnDi8dCGrE0bKF8+FFymTw8Fl1q1Qq//hQvhscdC2xkLMZKk7dG0KcyaBcccA7//DnXrhj1l1q6NOpmknWinNin89ttvd+bLSZLysays0NnjhRdCe/UXXgh73UqSJO00P/0Ew4aFNmQ//LDp+H77hYJMy5a2kpEk5Y5994V33oGbb4YHHoCHHw4rZUaPtj2EVEBsVzGme/fuW/3ee++9t9XvZ2Vl8eWXX/LKK68Qi8WIx+OkpaVtX1JJUtLIzg77GY4dC2lpMGkSnHxy1KkkSVKBsGoVTJwY2pC99tqm48WLh42WW7eGmjVd/SJJyn3p6XD//XD66dCqVVgtc/TR8OijYbaipKS2XcWYO+644x9tyTbsAfP+++/z/vvv/+vzN99fpmzZstvz0pKkJBGPQ6dOoUVuamqYBHTWWVGnkiRJSS0eD7ORhwwJs0FWrgzHY7FwQax1a6hfP/T2lyQpr51zDsyeDS1ahLaYLVvCq6/CI4+EHt6SktIOtSnbUID5r2N/t2FVTCwWo0aNGjvy0pKkBHfLLWE1diwWJqTWrx91IkmSlLTmzg1tyIYOhe+/33R8331DAebii6FKlajSSZIKsj32gFdegZ494Y47QsvMGTNgzBioWjXqdJLywA4VYzasbtm8APP3FTP/JiUlhU6dOu3IS0uSElivXuEGYRV2ixbR5pEkSUlo9erQA3Xo0DDLeMPn1mLFoHHjUIQ58UTbkEmSopeaCrfdBqecAs2bw7ffQo0aYU+ZDh38WyUlmZTtfUI8Ht9429rxf7tVqVKF0aNHU7NmzVz7JSRJ+d/DD4d9CgHuuw/atYs2jyRJSiIb2pBddhmULx9mfLzySjh+2mlhtvGiRTBoEJx0khe3JEn5y8knwyefwPnnw9q10LFjaCPx229RJ5OUi7ZrZcyQIUM2juPxOJdccsnGFTG1atWiWbNmW3xeamoqxYoVY//99+eQQw7ZrlU0kqTEN3gwXH11GN9+O1x/fbR5JElSkvj5Zxg+PKyC+e67Tcf33jusgGnZEvbaK6JwkiRth913h2eegYcegi5dYPJk+PhjGDkSTjgh6nSScsF2FWNatWr1l/uXXHLJxvEhhxzyj+9LkjR2bJikCtC5cyjGSJIk7bA//wwXqIYM2bT6BaBoUWjUKBRhTjoJUra7EYQkSdGKxeCaa0I7zaZNYc6c0MKse3e48cbQ1kxSwtqhPWM2OPnkkzeuctlvv/1yJZAkKXk8/zxcdBFkZ8Pll8P999sVRJIk7YB4HN57L6yAGT0ali/f9L1TToE2baBBg7AvjCRJia5atbAq5oorYMQIuOUWeO01ePrp0I5TUkLKUTFm+vTpuRRDkpRsXn0VGjaE9etDQWbAAAsxkiRpO82fv6kN2TffbDpepcqmNmT77BNVOkmS8k7x4uFv4JlnwpVXhg/ZRx4Jw4bBWWdFnU7SDshRMUaSpC2ZMQMuvDDsO1i3brh+4mpqSZK0TdasCT3zhwyBadPCEluAXXYJMz1atw6rYWxDJklKdrFY+LtXowY0aQKffgpnnw033AA9ekBaWtQJJW2HbSrGdO/efeO4Ro0a1K5d+x/Hd0S3bt1y9HxJUv4zaxbUqQOrVkHt2qGTSCFL/5Ik6d/E4/DBB5vakC1btul7J50U2pA1bBhmCUuSVNAcdFBo13n99aHtRO/e8MYbMGoU7L131OkkbaNtujx2xx13bNwb5pprrtlYjNn8+I6wGCNJyeXLL0MB5o8/wnWTSZMgIyPqVJIkKd9asCD0vx86FL76atPxPfeEVq1CGzL3J5UkCYoUgf794Ywz4NJL4f334aij4Mknw4QFSfneNs9VjsfjWy28xOPx7X7hnBRxJEn5zw8/QK1a8MsvcMwx8PzzoZuIJEnSX6xZA88+GwowL7+8qQ1ZkSLQoEFox3LaabYhkyRpS+rXh6OPhubNQ4/wRo2gfXvo0yf8LZWUb23zu9t/K57EYrHtukmSksu8eWFyzoIFcNhh8NJLUKJE1KkkSVK+EY/Dhx+GDYgrVgx97198MRRiTjwxzOpdtChsVHzGGRZiJEn6N3vtFdqUde0a9pUZOBCOPTa0q5CUb23XypjtOS5JKhiWLIEzz4SffgpdRKZNg913jzqVJEnKFxYt2tSG7IsvNh2vVCm0IWvVCvbfP7J4kiQlrLQ06NkzrCZt0QI+/zy0qXjkkbDXmhPipXxnm4oxQ4YM2Tg+5JBDtnhcklTw/PZbaE32zTehtfurr0L58lGnkiRJkVq7Fp57LhRgXnoJsrLC8cKFQ2uVNm3ChaPU1EhjSpKUFGrVgk8+CfusTZsW9pN55ZWwWsaWFVK+sk3FmFatWm3XcUlS8luxAurUgU8/DQWYV14JBRlJklQAxePw8cehADNyZJixsUHNmmEfmMaNoWTJqBJKkpS8ypcPEyB694Zbb4VRo+CDD2D06LBaRlK+sM1tyiRJ2uDPP+GCC8J7u912C5Nv7DAiSVIBtHjxpjZkn3++6fgee4QZuq1awYEHRhZPkqQCIyUFbroJTjkFmjWD778PEyLuvRc6dbJtmZQPWIyRJG2XdeugQQOYPh2KF4eXX4bDDos6lSRJ2mnWrYPnnw8FmClTNrUhy8iAevVCG7IzzrANmSRJUTj+eJg1C9q2hYkToXPn0FN86FAoXTrqdFKBlqNizNKlSxk1atTG+5UrV6ZevXpbfOyECROYP3/+xvvNmzentP8BkKSEsn49NG8OL74IRYqE6y+ueJYkqQCIx2H27HAhZ8QI+PXXTd+rUSO0IWvSBEqViiafJEnaZNddYfz4sG/MtdfCCy/AkUeGVqKnnBJ1OqnAylEx5plnnqFTp07E/rfMbeTIkVt9bCwW+8tjixQpwmWXXZaTl5ck7UTZ2WEfwAkTID0dnnkGTjwx6lSSJClPLVkSii9Dh4aN4jaoUCG0IWvdGg46KKp0kiRpa2IxuOIKOOGEMGHi66/h9NPhttvCzRWs0k6XkpMnv/zyywDE43HKli1Lo0aNtvrYevXqUbFiReLxOABTp07NyUtLknaieByuugqGDQvv18aOhVq1ok4lSZLyxLp1MHky1K0b9n7p3DkUYjIywsWcF1+EuXPhnnssxEiSlN8dcQR89FFoI5qdDXfeGYoy8+ZFnUwqcHJUjPnyyy+BsOrlxBNPJCVl6z8uFotxwgkn/OO5kqT8LR4PewAOGBAm1gwbBhdeGHUqSZKU6z75JLQy2WOPsPfLM8+EHqXHHhveCCxcCKNHw9lnQyG3H5UkKWEULQqDB8PTT0OxYvDmm1C1atgDTtJOk6N30IsWLdrYdqx8+fL/+fiyZcsCYSXNokWLcvLSkqSd5O67oXfvMH7ssbBnjCRJShJLl4b+8UOHhj1hNihfHi6+OLQhO+SQiMJJkqRcddFFYZJF06bw8cdw/vnQqVNY7ZqREXU6KenlaGXMqlWrNo6XLVv2n4//448/tvhcSVL+1LdvaCUL0KcPuNWXJElJIDMTnn0W6tcPq2A6dQqFmPR0aNQobPL7889hNoaFGEmSksv++8O774a//xA++J9wAsyZE2UqqUDIUTGmVKlSQFjp8uabb5Kdnb3Vx2ZlZTF9+vSNK2lKliyZk5eWJOWxJ58MnUoAunffNJYkSQnqs8/C/i977BF6jk6aFAozxxwDjzwCCxaEjeHOOcc2ZJIkJbOMDHjwwTA5Y7fdYOZMOOqosFpWUp7JUTGmSpUqxONxAObNm0evXr22+thevXoxb7ONofbaa6+cvLQkKQ+NGgWXXx7GXbrArbdGm0eSJO2gX36Bhx+GatXCBr4PPhhak5UrB9dfHwo0H34IV14Ju+8edVpJkrQznX9+2DPupJNg5crQxuzSS8GORlKeyFEx5oQTTgAgFosRj8fp1q0bzZs354033mDx4sUsWbKEN954g+bNm3P77bdvfFwsFqNmzZq58gtIknLXM8+EFvHxOFxxBdx7L/xvUaMkSUoE69eHDXkbNoSKFeHqq0Nf+LQ0aNAAnnsutCG77z447LCo00qSpChVqgSvvQa33x4+/A8eDNWrhwkbknJVjtaeN2/enL59+wKbCjJjxoxhzJgx/3jshiLM5s+VJOUv06ZB48aQlRUKMo88YiFGkqSE8fnnMHQoPP00LF686fjRR0Pr1tC8uatfJEnSPxUqBHfcAaeeGlbHfPUVHHtsWFHbrp0XBqRckqOVMccccwxnnXXWxlZlGwoyW7ptKMTEYjFq1apF9erVc55ekpRr3n4b6taFdevCpNnBgyElR38lJElSnvvtN+jfP8xgPfxweOCBUIgpWzbsD/PJJ6EP/FVXWYiRJEn/7tRTYfbssH/cmjWhXUbjxrBsWcTBpOSQ48tsQ4cOpWLFihvvx2KxLd4grI6pUKECQ4cOzenLSpJy0cyZcO65sHo1nH122LPPfXslScqn1q+HKVOgUSOoUAE6doSPPgp/vOvVCz1H580LhZkjjog6rSRJSiRlyoSWpg88EFqcjh8PVavCe+9FnUxKeDkuxpQrV44ZM2Zw9NFHb1wF83cbjlerVo13332X8uXL5/RlJUm55Isv4KyzYPlyOOUUmDAB0tOjTiVJkv7hyy/hhhugcuUwi2L8+LCktWpV6NsXFiyAiRPhggvCxRNJkqQdkZISVti+8w7ssw/83//BSSdB796QnR11Oilh5cq858qVK/Phhx8yfvx4JkyYwPvvv8/i//UoLlu2LMcddxyNGjWiQYMGufFykqRcMmcOnHkm/PpraAf73HOwyy5Rp5IkSRv9/juMHh32gvngg03HS5eGFi2gVatQjJEkScpt1avDrFlh35jRo+HGG+HVV2HYMChXLup0UsLJ1SY0DRs2pGHDhrn5IyVJeWTuXDjjDFi0KHQwefFFKF486lSSJImsLJg2LRRgJk+GtWvD8UKFwoqY1q1DL3eXskqSpLxWokToZX7mmWEPuqlTw0SQ4cPDMUnbzB0BJKkAWrQovGeaOxcOOCC8l9ptt6hTSZJUwH39dSjADB8eWo5tcMQR0KYNNG8OZctGFk+SJBVQsRhceikcfzw0aQKffw61a0PXrnDnnW46K22jXD1TsrOz+eCDD/jwww9ZsmQJENqUVa9enWOPPZaUlBxvUSNJyqHffgvvmb77DqpUgVdecXWxJEmRWbYMxowJRZjNN8bdfXe46KKwCqZq1XARRJIkKUqHHBLapl57LTz2GPTsCdOnw6hRsOeeUaeT8r1cK8Y89thj9OjRgwWbz+DaTIUKFejWrRuXX355br2kJGk7rV5diPPOS+Wzz6BChdDqtXLlqFNJklTAZGWFP8JDh8KkSbBmTTiemhraj7VuDeedZxsySZKU/xQpAgMHhr7nbdvCu+/CkUfC4MFQr17U6aR8LcdLVbKzs2nWrBkdOnRg/vz5xOPxLd4WLFjAFVdcQfPmzYnH47mRXZK0HVavhh49juOjj1LYffewImbffaNOJUlSAfLtt3DzzWFp6llnhVmka9bAYYfBAw/A/Pnw7LNQv76FGEmSlL81agSzZ8Oxx4aVvvXrQ8eOmyaZSPqHHBdjbr31VsaMGUM8HicWi/3rLR6PM2bMGG699dbcyC5J2kbr1kHjxql8+WVpSpSIM3VqWF0sSZLy2B9/wBNPwAknwIEHQq9eoeiy227hgsVHH8Gnn0LnzvYNlSRJiWXvveGtt6BLl3C/f3+oUQO++SbaXFI+laNizNy5c7n//vs3Fls2+PuqmA02FGTuv/9+fv7555y8tCRpO1x7LUydmkJGxnqeey6Lo4+OOpEkSUksKyssQb3oIihfHi6/PLTwSE2Fc8+F8eNhwQJ4+GGoVs39YCRJUuJKT4feveHFF6FMGfjkk/D+5qmnok4m5Ts52jPmySefZP369RsLMfF4nHLlynHmmWdS+X+bEPz888+88sorLF68eOPj1q9fzxNPPEH37t1zGF+S9F+efhoGDAjjLl0+4vjjq0UbSJKkZPXdd+HCw7BhsPnks0MOgTZtQnGmQoXo8kmSJOWVs88Obcsuvhheey3sgffqq2G1TPHiUaeT8oUcFWOmT58OsLFF2bXXXss999xDWlraXx6XmZnJjTfeSN++fTcWZDY8V5KUdz79NEzGBbjlliyOOWZxtIEkSUo2y5fDuHEwdCi8/fam46VKQfPm4ULEMce4+kWSJCW/ihVh6lS45x7o1g2GD4f33oMxY+Coo6JOJ0UuR23Kvvvuu43FlcMPP5wHHnjgH4UYgLS0NPr06cMRRxwBhOLNd999l5OXliT9h2XLoEED+PPPsEfwrbdmRx1JkqTkEI9T+tNPSW3dOrQha9s2FGJSUqBOHRg7FhYuDDNBq1e3ECNJkgqO1FS45RZ44w2oVCmsHK5RAx56CDbbzkIqiHJUjPn999+BsBdMzZo1//PxNWvW3LiHzIbnSpJyX3Z2mIg7Zw5UqQIjRoT3Q5IkKYficVLbt+eEbt1IGTkyzHo46CC4997QmmzKFGjUCAoXjjqpJElSdE48Mewfc+GFsG4dXHMN1K0Lv/4adTIpMjkqxmRkZGwcL1u27D8fv/ljNn+uJCl39e4NzzwT9tEbPx523z3qRJIkJYmHHyZlyBDiKSlkXXZZaL3x5Zdwww2hNYckSZKC3XaDSZPCqpj0dHj2WahaFd56K+pkUiRyVIwpW7YsENqOTZkyhfnz52/1sfPmzeOFF17Y2NZsw3MlSbnr1VfDimCARx4JbeolSVIueP116NwZgM9btya7f3847jjbkEmSJG1NLAZXXRUmsOy/P8ybB6eeCj16QFZW1OmknSpHxZjq1asTj8eJxWIsX76cE044gREjRvylBdnvv//OiBEjOPHEE1mxYsXGx1evXj3H4SVJfzVvHjRrFtqUtWkTWthLkqRc8NNPof1YVhbZzZvzw/nnR51IkiQpcRx1FMycCRdfHC5a3HYb1KoFCxZEnUzaaXJUjLngggs2jmOxGHPnzqVly5aULl2aYsWKUbx4cUqXLk3Lli2ZO3fuxlUxf3+uJCnn1q0L14iWLg3vcfr3d6KuJEm5YvVqqFcv9Dg/+miyHn3UP7KSJEnbq3hxGDYMnnoKihYNq46rVoUXX4w6mbRT5KgY06hRI/bZZ5+N92OxGPF4nHg8zurVq1m1atXG+xsKMbFYjH333ZfGjRvnLLkk6S86dw6rfkuVCvvEFCkSdSJJkpJAPB6Wms6eDWXKhL7n/pGVJEnacS1bhlUyRx4ZZpSecw506RJmmUpJLEfFmNTUVEaOHElaWtrGY7FYbIs3CHvLpKenM3LkSFJScvTSkqTNjBgRVsIAPP00bFYnlyRJOXH//TBqFBQqFGY77Lln1IkkSZIS34EHhhmlHTuG+/ffDyedBD/8EG0uKQ/luCJy7LHHMnXqVHbfffeNq2D+bsPxMmXKMHXqVI5xN2lJyjWffQaXXRbGt90G554bbR5JkpLGyy/DTTeFcb9+cPLJ0eaRJElKJoULw8MPh5XHu+4KH3wQ+q6PHRt1MilP5MrylJNPPpnvv/+eHj16UK1atb+0K4vFYlSrVo27776bOXPmcNJJJ+XGS0qSgD/+gPr14c8/oXZtuP32qBNJkpQk5syBpk3DBrOXXgpXXBF1IkmSpORUt25oCXvCCbB8OTRpApdfHvbtk5JIrvUKK168ODfffDMffvgha9euZfHixSxatIi1a9fy4Ycf0rVrV4oXL55bLydJBV48Dq1bh2tFe+4JI0dCamrUqSRJSgIrV4aLAsuWQY0aoRfo/1ovS5IkKQ/suSdMnw633BLedz3xBBx7LHzxRdTJpFyTJxu3pKamUqZMGcqWLUuqVwYlKU/07g2TJ0N6emhhv/vuUSeSJCkJxOPQqlX44F++PEyYABkZUaeSJElKfoUKQY8eMG1aeB/2xRdQvXoozGxhawwp0eRJMUaSlLdeew1uvjmMH344vDeRJEm5oGdPmDgR0tLC14oVo04kSZJUsJxxRmhbdtZZoS/75ZdDs2ahV7uUwApty4PefPPNPHnxk90AU5K22/z5m1rYt24Nl10WdSJJkpLE88/DbbeF8YABcPzx0eaRJEkqqMqVgylT4IEHwmzUMWPggw9g9OjQvkxKQNtUjDn11FOJ5XKP5Fgsxvr163P1Z0pSslu3Dho1gqVLoWrVcJ3IFvaSJOWCr7+Giy4KLTA6dIC2baNOJEmSVLClpECXLnDSSWFlzI8/wgknwD33wLXXhu9LCWS7/h8bj8dz9SZJ2j7XXw8zZkCpUqGFfZEiUSeSJCkJ/PEH1K0Ly5eHD/sPPhh1IkmSJG1QowbMmgUNG8L69eHiyHnnhZmqUgLZrmJMLBbLlZskafuNGhX2hwEYPhz22SfaPJIkJYXsbGjRAr75BipVgnHjID096lSSJEnaXKlSMHYsDBwIhQvDiy/CkUfC669HnUzaZttcjMlvK2IGDBjA3nvvTeHChalWrRpvvfXWNj3vnXfeoVChQlStWjVXckjSzvD555u6pdxyS5gAIkmScsEdd4S9YjIyYNKk0J9ckiRJ+U8sBu3ahb1jDj4YFi6EM86Abt3Cihkpn9umPWNatWqV1zm2y5gxY+jUqRMDBgzghBNO4LHHHqNOnTp8+eWX7Lnnnlt93h9//EHLli0544wzWLx48U5MLEk7bvlyaNAAVq+GWrXgzjujTiRJUpKYOBHuuiuMH38cjjkm2jySJEn6b4cfDh9+CNdcA4MGhfdz06fDyJFhpbOUT21TMWbIkCF5nWO79OnTh0svvZS2/5sm3rdvX15++WUeffRRevXqtdXntWvXjubNm5OamsrkyZN3UlpJ2nHxOLRpA99+C5Urh/cVqalRp5IkKQl8/jm0bBnGnTptGkuSJCn/K1oUnnwyrIxp1w7eeiu0LRs6FM4/P+p00hZtUzEmP1m3bh0zZ87kpptu+svx2rVr8+677271eUOGDOH777/n6aefpkePHv/5OmvXrmXt2rUb7y9fvhyAzMxMMjMzdzB9ctrQei4ej/tvI+WyBx5IYeLEVNLT44wenUXJknF29DTbcH56nkr5m+eqtBP89huF6tYltmoV2aedRlbPnmzPH1jPUykxeK5KicFzVTnSsCEcdRSpLVqQMnMmXHABWVddRXbPnqENrXKN5+qWbc+/R8IVY3755ReysrIo97dezuXKlWPRokVbfM53333HTTfdxFtvvUWhQtv2K/fq1Ys7t9ALaOrUqeyyyy7bHzyJbSharV27lilTpkScRkoen322O7fffgIAl1zyKUuX/kRunGLTpk3L+Q+RlOc8V6U8kpXF8XfdRdnvv2dV2bK82aYN66ZO3aEf5XkqJQbPVSkxeK4qJ2I33cQhw4ez37PPkvrww6x44QU+uv56VlWsGHW0pOO5+lerV6/e5sfmajEmMzOTt99+mxkzZrB48WJWrlxJrVq1aNq0aW6+DACxWOwv9+Px+D+OAWRlZdG8eXPuvPNODjjggG3++V27dqVz584b7y9fvpzKlStTu3ZtSpQosePBk9CcOXPIzMwkIyODc845J+o4UlKYPx8uv7wQ2dkxWrTIpl+/Q4jFDsnRz8zMzGTatGnUqlWLtLS0XEoqKbd5rkp5K6VrV1JnzyZepAjpL7zAmUceud0/w/NUSgyeq1Ji8FxVrrnwQtZPmULqpZdS6ocfOOOGG8h65BHizZtHnSwpeK5u2YaOWtsi14ox/fv3p2fPnv9YnVKyZEkaN25MlSpVWLBgAQBnnnkmL7/88g69TunSpUlNTf3H6yxZsuQfq2UAVqxYwUcffcSsWbPo2LEjANnZ2cTjcQoVKsTUqVM5/fTT//G8jIwMMrawlC0tLc3/s/3NhiJYLBbz30bKBevWwUUXwZIlcMQR8NhjKaSnp+Taz/e/Y1Ji8FyV8sDo0fDAAwDEhgwh7ZhjcvTjPE+lxOC5KiUGz1XligsvhGOOgYsuIvbGGxRq3RqmT4dHHgn7zCjHPFf/anv+LXJ8dW/9+vU0aNCAq6++moULFxKPxzfeNr5ISgqXXHLJxuOvvfbaVluK/Zf09HSqVav2j+VQ06ZNo2bNmv94fIkSJfjss8+YPXv2xlv79u058MADmT17Nscdd9wO5ZCkvNKlC7z7LpQsCRMngp0RJUnKBbNnwyWXhPGNN0KTJpHGkSRJUh7ZYw949VW4805ISYGhQ6FaNfjkk6iTqYDLcTGmU6dOTJo0aWObsA23v2vYsCEQVk9kZ2fz4osv7vBrdu7cmSeffJLBgwfz1Vdfce211zJ37lzat28PhBZjLVu2BEIh6LDDDvvLrWzZshQuXJjDDjuMolZEJeUjo0bBQw+F8fDhsO++0eaRJCkp/PIL1K0Lf/4JZ58Nd98ddSJJkiTlpdRU6NYNXnstFGe++QaOOw4GDIDNFhFIO1OOijGfffYZjz766F8KMPGt/J/58MMPp2zZshvvT58+fYdft0mTJvTt25fu3btTtWpV3nzzTaZMmUKVKlUAWLhwIXPnzt3hny9JUfjiC2jbNoxvvhnOPz/aPJIkJYXMTGjcGP7v/2C//WDkyPDhXJIkScnvlFPCCunzzoO1a+HKK6FhQ/j996iTqQDKUTHmiSee2Fh8icfj7L777txwww0bV8n83RFHHLHx8V988UVOXpoOHTrw008/sXbtWmbOnMnJJ5+88XtDhw7912LPHXfcwezZs3P0+pKUm5Yvh/r1YfVqOPNM6N496kSSJCWJLl3g9dehWDGYPBl23TXqRJIkSdqZSpeGZ5+Fvn0hLS30hK9aNfSIl3aiHBVjpk+fTiwWIx6PU7hwYd577z3uueeerT6+cuXKQCjcuHJFkoJ4HNq0gW+/hcqVnbArSVKueeop6NcvjIcNg0MPjTaPJEmSohGLwTXXwIwZoSf83Llw8snQqxdkZ0edTgVEjooxP//8MxD2galTpw777LPPvz6+SJEiG8fLly/PyUtLUtJ44IEwKSMtDcaNgzJlok4kSVIS+PBDaNcujLt1g3r1os0jSZKk6FWrBh9/DM2bQ1ZW6BN/1lmwaFHUyVQA5KgY8+eff24cb74fzNYsXbp047hQoUI5eWlJSgpvvAE33RTG/fqFveQkSVIOLV4cii9r14ZN2G6/PepEkiRJyi9KlICnn4bBg2GXXeCVV+DII2Hq1KiTKcnlqBiz2267bRzPmTPnPx8/c+bMjXvJbP5cSSqIFiyAJk3CRIyLL4b27aNOJElSEli3LmzKOn8+HHRQ+KCdkqOPPZIkSUo2sVjoGf/RR3D44bBkSVgh07UrZGZGnU5JKkefSvbff3/i8TjxeJzp06cza9asrT522LBh/PDDD0Boa3bIIYfk5KUlKaFlZkLjxmHi7hFHwMCB4X2AJEnKoWuugbffDjMeJ08OXyVJkqQtOfhgeP99uOKKcP+ee8JeMj/9FGksJaccFWNOPfVUIBRXsrKyOOOMM7jjjjv+8phvvvmGq666irZt2xKLxYjH4395riQVRF26wDvvQMmSMGFCWBUrSZJy6PHHN81wGDkSDjww6kSSJEnK74oUgQEDYPz4cKHmvffgqKPCBRspF+WoGHPppZdu3PslFouxbNky7rrrLoCNK2ZeeuklBgwYwPr16zc+Ly0tjTZt2uTkpSUpYY0eHfaHARg2DPbbL9o8kiQlhXffhY4dw7hHDzj33GjzSJIkKbE0aACzZ0ONGrBsWWh926EDbLZvupQTOSrG7LnnnnTu3HnjapfNV75ssKEos2GvmFgsRpcuXShXrlxOXlqSEtKXX0LbtmHctStccEG0eSRJSgrz54cPz5mZ4UNz165RJ5IkSVIi2msvePNNuOmmcP/RR0Nx5quvIo2l5JDjnSzvvvtu6tat+5eCzJZuEAozdevW5c4778zpy0pSwlm+HOrXh1Wr4Iwz4H8LCSVJUk6sWRP+wC5aBIcdBkOGuBGbJEmSdlxaGvTqBS+/DGXLwqefwjHHhPeZf1uIIG2PHBdjUlNTmThxIr1792bXXXfduBLm77dSpUpx7733Mn78eFJScvyykpRQ4nG45BL45huoVAlGjYLU1KhTSZKU4OJxuPJK+OAD2HVXmDwZihWLOpUkSZKSQe3a8MkncOaZsHp1uLDTogWsWBF1MiWoQrn1g66//nquvPJKpk+fzvvvv8/SpUsBKFu2LNWrV+fUU09lF3eollRAPfhg2PctLS3sB1emTNSJJElKAv37w+DBkJICY8bAvvtGnUiSJEnJpHz5sELm3nvhtttg5MgwEWj0aKhWLep0SjC5VowBKFKkCHXq1KFOnTq5+WMlKaG9+SbccEMY9+0Lxx0XaRxJkpLD9OnQqVMY9+4NtWpFmUaSJEnJKiUl7El4yinQrBnMmQPHHx/eg15zjS1ytc1y1C/s9ttv5/vvv8+tLJKUdBYuhCZNICsrrGS94oqoE0mSlATmzoVGjcIf2ObNoXPnqBNJkiQp2dWsCbNmQb16kJkJ114LF1wAv/wSdTIliBwVY+666y4OOOAATj75ZIYMGcLKlStzK5ckJbzMTGjceNN+wgMHOllCkqQcW70a6tYNH3qPOgqeeMI/sJIkSdo5dtst9KHv3x8yMuD556Fq1dAWRfoPOSrGAMTjcd555x3atm1L+fLladmyJa+++mpuZJOkhHbjjfD221CiBEycCEWLRp1IkqQEF4/D5ZeHGYmlS8OkSeC+lJIkSdqZYjHo0AHeew8OPBDmz4fTToPu3cPKbWkrclyMicVixONx4vE4q1evZsSIEdSuXZsqVarQrVs35syZkxs5JSmhjB0LDz4Yxk89BfvvH20eSZKSwoMPwogRkJoK48ZBlSpRJ5IkSVJBVbUqfPQRtG4N2dlw++1wxhmhOCNtQY6LMRAKMhtuGwozP//8M3fffTcHHnggJ554IoMGDWLFihW58XKSlK999RVcckkY33hj6KQiSZJy6JVXoEuXMH7wQTj11EjjSJIkSRQrBkOGwPDhoSXKG2+EIs0LL0SdTPlQjooxI0eO5MILLyQjI2NjEWZLhZkZM2Zw+eWXU758eVq0aMG0adNyK78k5SsrVkD9+rBqVVih2qNH1IkkSUoCP/wATZqEGYdt2kDHjlEnkiRJkjZp0QI+/jjsafjLL3DeeXDddbBuXdTJlI/kqBjTtGlTJk6cyOLFixk2bBjnnnsuhQoV+kdhBsLeMn/++SejRo3i7LPPZs8998yVX0CS8ot4HC69FL7+GvbYA0aPhkKFok4lSVKCW7kyLDP97Tc49lgYMCD06ZYkSZLykwMOgBkz4Oqrw/0+feCEE+D776PNpXwjV9qUFS9enBYtWvDcc8+xePFiBg0aRK1atUhNTf1HYWbD/fn2zpOUZPr2De3r09LC17Jlo04kSVKCi8fDSpjPPoNy5WDiRChcOOpUkiRJ0pZlZEC/fvDMM7DbbmFPmaOOCjN2VeDlSjFmc6VKlaJNmza8/PLLLFiwgEcffZRTTjmFeDwOsHGljCQlk7fe2tTGvk8fOP74aPNIkpQU7rkHxo8PMx0mTAhLTyVJkqT87oILYPZsOPHE0NO+WTNo2zb0tVeBlevFmM0tXLiQuXPnMnfu3Lx8GUmK1MKF0LgxZGVB8+Zw5ZVRJ5IkKQlMmQK33BLGjzwSWjxIkiRJiaJyZXj9dbjtttBmd9AgqF49rPpWgZTruxl88803jBkzhjFjxvD111/n9o+XpHwlMzPsJ7xoERx2GDz+uG3sJUnKsW+/DTMc4nFo1w4uvzzqRJIkSdL2K1QIuneH006Diy6Cr74K+yD27Rve43oRqUDJlWLMTz/9xOjRoxkzZgyffvopwMa2ZMDG/WI2P16tWrXceGlJitRNN4UWZSVKhO4pRYtGnUiSpAS3fDnUrQt//BFWwzz0UNSJJEmSpJw57bTQtqx1a3jxRWjfHl59NczqLVUq4nDaWXLUpuzBBx+kRo0a7Lvvvtxyyy188sknxONx4vH4xgJMLBbbeKx8+fJcf/31fP7553zwwQe59TtIUiTGjQv7wwAMHQoHHBBpHEmSEl92Nlx8cZgxuMceYb+Y9PSoU0mSJEk5V7YsPP883H9/WDEzbhwcdRS8/37UybST5GhlzHXXXbex2AJsXP0Cm1bAZGRkcMEFF9C6dWvOOussUlLydJsaSdopvvoKLrkkjG+4AerVizaPJElJoXt3ePZZyMiASZOgfPmoE0mSJEm5JyUFrrsOTjoJmjaFH3+EE0+Enj3Dca+dJ7Vc+V/3723I4vE4xx13HAMGDGDRokWMGTOGOnXqWIiRlBRWroQGDcLX006Du++OOpEkSUlg8mS4884wHjgwbG4qSZIkJaNjj4VZs6BxY1i/Psz0PfdcWLIk6mTKQ7myZ8yGVTCVKlWiRYsWtGrVigMPPDA3frQk5SvxOFx6aVgZU7EijBoVVpZKkqQc+PLL0J4M4OqrQy9tSZIkKZmVLAmjR0OtWuE98EsvwZFHwtNPwxlnRJ1OeSDHS1UKFy5Ms2bNePnll/m///s/evbsaSFGUtLq1w/Gjt3U2rNcuagTSZKU4JYtgwsv3LTk9P77o04kSZIk7RyxGLRtCx9+CIceCosWheLMrbeGFTNKKjkqxjz++OMsWrSIESNGUKtWrb/sGSNJyebtt6FLlzDu0wdq1ow2jyRJCS8rC5o1gzlzoEoVGDMG0tKiTiVJkiTtXIceCh98AJdfHtqy3H03nHoqzJ0bdTLlohwVY9q2bUvx4sVzK4sk5VuLFm1q49msGXTsGHUiSZKSwK23hnYMRYrApElQpkzUiSRJkqRo7LILPPZYaF1WogS88w5UrRr2VlRSyHGbMklKdpmZ0KQJLFwYJio88URYRSpJknJg7Fi4554wHjQIjjoq2jySJElSftCkCcyaBdWrw++/Q716YU+ZNWuiTqYcshgjSf+ha1d4800oXhwmToSiRaNOJElSgvvkE2jTJoy7dAnLTiVJkiQF++wT+uVff324//DDcPzx8O230eZSjliMkaR/MX48PPBAGA8dCgccEGkcSZIS36+/Qt26sHo11K4NvXpFnUiSJEnKf9LT4b77YMoUKF0aZs+Go4+G4cOjTqYdZDFGkrbi66//Omm3fv1o80iSlPDWrw9tF376Kcz2GzUKUlOjTiVJkiTlX3XqhJXlp50Gq1ZBy5bQqhWsXBl1Mm0nizGStAUrV0KDBuHrqadCz55RJ5IkKQnccAO8+mro+fnMM7DbblEnkiRJkvK/ihVh2jS46y5ISYFhw6BatbBaRgnDYowk/U08DpddBl9+CRUqwOjRUKhQ1KkkSUpww4fDgw+G8bBhcNhh0eaRJEmSEklqKtx6K0yfDpUqhf1jjjsOHnkkXMxSvmcxRpL+5uGHNxVgxo2DcuWiTiRJUoL76KMw0wHCB0h7f0qSJEk75qSTwoqYCy6AdevgqqvC++vffos6mf6DxRhJ2sw778B114Xx/ffDCSdEm0eSpIS3eDHUqwdr18J558Gdd0adSJIkSUpsu+8OkyfDQw9BenoYV60aLmwp37IYI0n/s3gxNG68aW/hq6+OOpEkSQkuMxMaNYJ58+DAA+Hpp0OPa0mSJEk5E4uFVTEzZsD++8PPP8Mpp8Ddd0NWVtTptAV+EpIkQgGmaVNYsAAOOQSefDL8TZMkSTlw7bXw1ltQvHiYrVeyZNSJJEmSpORy9NEwcya0aBGKMLfeCmedBQsXRp1Mf2MxRpKAm28O+58VKwYTJoSvkiQpBwYNgv79w+yGESPgoIOiTiRJkiQlp+LFYfhwGDoUdtkFXn0VjjwSXnop6mTajMUYSQXexIlw331hPGSI14okScqx996DDh3CuHt3OP/8aPNIkiRJBUGrVvDxx6EQs3Qp1KkDN94Y2gcrchZjJBVo33wDrVuH8XXXQcOGkcaRJCnxLVgA9evDunXh6803R51IkiRJKjgOPDBMjrryynC/d2846ST48cdoc8lijKSCa9UqaNAAVqyAk0+Ge+6JOpEkSQlu7drwx3XhQjj00NAmIcWPHJIkSdJOVbgwPPJIaAdTqhS8/z5UrQrjxkWdrEDzk5GkAikeh8sugy++gAoVYMwYKFQo6lSSJCWweDzMvnvvvfCBb/Lk0LtakiRJUjTq1YPZs6FmTVi+HBo3hvbt4c8/o05WIFmMkVQgPfIIjBoVCjBjx0L58lEnkiQpwQ0cCIMGhZUwo0fDfvtFnUiSJElSlSrwxhuhfXAsBo89BsceC19+GXWyAsdijKQC5913oXPnML7vPjjxxGjzSJKU8N56C66+Oox79YKzzoo2jyRJkqRNChWCu++GqVOhXDn4/HM45pgwmSoejzpdgWExRlKBsngxNGoE69dDkyZwzTVRJ5IkKcH9/DM0bBj+uDZtCl26RJ1IkiRJ0paceSZ88gnUrh1albVtC82bhxZmynMWYyQVGBuuES1YAAcfDE8+GVZnSpKkHfTnn6EP9ZIlYUPQQYP84ypJkiTlZ+XKwYsvwj33QGpqaDF81FHw0UdRJ0t6FmMkFRi33ALTp0OxYjBxYvgqSZJ2UDwOl18OM2fC7rvDpEmwyy5Rp5IkSZL0X1JS4MYbQ7vhKlXghx+gZk3o0weys6NOl7QsxkgqECZNgt69w3jIEDjooGjzSJKU8Pr1g6efDrPpxo6FvfaKOpEkSZKk7XH88TB7NjRoAJmZcN11cP75sHRp1MmSksUYSUnv22+hVasw7tw5tLWXJEk58OqrcP31YfzAA3D66dHmkSRJkrRjSpWCcePg0UchIwOmTAktiKdPjzhY8rEYIymprVoVivsrVsBJJ4V2mJIkKQd+/BGaNIGsrDDb4eqro04kSZIkKSdiMWjfHj74ILSTWbAgTLi6/fawCbNyhcUYSUlrQyv7zz+H8uVhzBhIS4s6lSRJCWzVKqhbF379FapXh4EDwwc3SZIkSYnviCPgo4/gkkvChbXu3eGMM2DevKiTJQWLMZKSVv/+MHLkplb2FSpEnUiSpAQWj4cPZZ9+CmXLwsSJULhw1KkkSZIk5aaiRWHQIBgxAooVgzffhKpVib3wQtTJEp7FGElJacaMsD8MwH33hRZlkiQpB3r3DrMbChWCCROgUqWoE0mSJEnKK82bw6xZcPTR8OuvFKpXj8MGDYK1a6NOlrAsxkhKOkuWQKNGkJkJjRtDp05RJ5IkKcG99BJ07RrGDz8MJ54YbR5JkiRJeW+//eDdd+HaawGo8vLL8H//F3GoxFUo6gCSlJvWr4emTWH+/LDf2JNP2spekqQc+e47aNYstCm77DJo1y7qRJIkSZJ2lowM6NOH9SefzOw33+TIAw6IOlHCshgjKanceiu8/npoaTlxIhQvHnUiSZIS2IoVULcuLFsGxx8fVsU4y0GSJEkqcOLnnsv8WIwjow6SwGxTJilpTJ4M994bxoMHw8EHRxpHkqTElp0NLVvCl19CxYphn5iMjKhTSZIkSVJCshgjKSl89x20ahXG114b9oyRJEk50KNHmOmQnh6Wm1aoEHUiSZIkSUpYFmMkJbxVq6BBA1i+POwnvGF1jCRJ2kHPPgu33x7GAwfCccdFm0eSJEmSEpzFGEkJLR6H9u3hs8+gXDkYOxbS0qJOJUlSAvvqK2jRIow7doQ2baLNI0mSJElJwGKMpIT26KPw9NOQmhoKMXZQkSQpB5YtgwsvhBUr4OSToU+fqBNJkiRJUlKwGCMpYb33HnTqFMb33huuGUmSpB2UlQUXXRQ2YqtcGcaNc7mpJEmSJOUSizGSEtLSpdCoEWRmQsOG0Llz1IkkSUpw3brBlClQuDBMmgRly0adSJIkSZKShsUYSQknKwuaNYN58+DAA2HwYIjFok4lSVICGzcOevYM4yefhGrVos0jSZIkSUnGYoykhHPbbfDqq1C0KEycCMWLR51IkqQE9umn0Lp1GF93XWhVJkmSJEnKVRZjJCWUZ56BXr3CeNAgOOSQaPNIkpTQfvsN6taF1avhzDPhnnuiTiRJkiRJSclijKSEMWcOtGwZxtdcA02aRJtHkqSEtn49NG0KP/4Ie+8No0dDoUJRp5IkSZKkpGQxRlJCWL0aGjSA5cvhhBPgvvuiTiRJUoLr2hWmTYNddoHJk2H33aNOJEmSJElJy2KMpHwvHof27UNL+3LlYOxYSEuLOpUkSQls5Ei4//4wHjoUjjgi0jiSJEmSlOwsxkjK9wYOhOHDITUVxoyBihWjTiRJUgL7+GO49NIwvvlmaNQo2jySJEmSVABYjJGUr73/ftgfBsKewqecEm0eSZIS2pIlULcurFkD55wD3btHnUiSJEmSCgSLMZLyraVLoWFDyMwM+8Vcd13UiSRJSmCZmdC4Mfz8M+y/P4wYEZadSpIkSZLynMUYSflSVhY0bw7z5sGBB8LgwRCLRZ1KkqQEdt118MYbULw4PPMMlCoVdSJJkiRJKjAsxkjKl7p1g1degV12gQkToESJqBNJkpTAhgyBhx8O4+HD4eCDo80jSZIkSQWMxRhJ+c6zz0LPnmE8aBAcemi0eSRJSmjvvw/t24fxHXfAhRdGGkeSJEmSCiKLMZLylTlzoGXLML76amjaNNo8kiQltIULoX59WLcO6taF226LOpEkSZIkFUgWYyTlG6tXQ4MG8McfULMm3Hdf1IkkSUpga9eGP6wLFsAhh8CwYZDi239JkiRJioKfxiTlC/E4XHEFfPoplC0LY8dCenrUqSRJSmBXXw0zZkDJkjB5MhQvHnUiSZIkSSqwLMZIyhceeyxM2E1NhTFjYI89ok4kSVICe+wxePxxiMVg1CjYf/+oE0mSJElSgWYxRlLkPvgArrkmjHv1glNPjTSOJEmJ7e234aqrwrhnT6hTJ9o8kiRJkiSLMZKi9csv0LBh2Fe4fn24/vqoE0mSlMDmzQt/WDMzoXFjuPHGqBNJkiRJkrAYIylCWVnQrBn8/DMccAAMGRK6qUiSpB2wZk2Y2bB4MRxxBAwe7B9WSZIkSconLMZIiswdd8Arr8Auu8CECVCiRNSJJElKUPE4tG8PH34Iu+0GkydD0aJRp5IkSZIk/Y/FGEmReP556NEjjJ94Ag47LNo8kiQltIcfhqeegpQUGDsW9t476kSSJEmSpM1YjJG00/3wA1x8cRh37AjNm0ebR5KkhPb669C5cxjffz+ccUa0eSRJkiRJ/2AxRtJO9eef0KABLFsGxx8PDzwQdSJJkhLYTz9Bo0ZhI7YWLaBTp6gTSZIkSZK2wGKMpJ0mHocOHWD2bChTJnRRSU+POpUkSQlq9WqoVw9+/RWOPhoefxxisahTSZIkSZK2wGKMpJ3miSdg6NDQzn70aKhUKepEkiQlqHgcLr100wyHSZOgSJGoU0mSJEmStsJijKSd4sMP4aqrwrhnTzj99GjzSJKU0O6/P8xsKFQIxo+HPfeMOpEkSZIk6V9YjJGU5375BRo2hHXroG5duOGGqBNJkpTAXn4ZbropjPv1g5NPjjaPJEmSJOk/WYyRlKeysuCii2DuXNh//9CmzHb2kiTtoDlzoGlTyM4ObcquuCLqRJIkSZKkbWAxRlKeuvNOmDo1tLGfMAFKlow6kSRJCWrlyrDEdNkyqFED+vd3hoMkSZIkJQiLMZLyzAsvwF13hfETT8Dhh0ebR5KkhBWPQ6tW8MUXUL58mOGQkRF1KkmSJEnSNrIYIylP/PADtGgRxldeGVqVSZKkHXT33TBxIqSnh68VK0adSJIkSZK0HSzGSMp1f/4JDRps6qLSp0/UiSRJSmDPPQfduoVx//5w/PHR5pEkSZIkbTeLMZJyVTweVsLMng1lysC4cWESryRJ2gFffx2Wmsbj0KEDtG0bdSJJkiRJ0g6wGCMpVz35JAwZAikpMHo0VKoUdSJJkhLUH39A3bqwfDmcdBI8+GDUiSRJkiRJO8hijKRc89FH0LFjGN99N5x+erR5JElKWNnZYUXMN9+EmQ0uNZUkSZKkhGYxRlKu+PVXaNgQ1q2DCy+EG2+MOpEkSQnsjjvg+echIwMmTYJy5aJOJEmSJEnKAYsxknIsKwsuugj+7/9gv/3gqacgFos6lSRJCWriRLjrrjB+4gk45pho80iSJEmScsxijKQc694dXn4ZihSBCROgZMmoE0mSlKA+/xxatgzja6+Fiy+ONo8kSZIkKVdYjJGUI1OmhGIMwOOPwxFHRJtHkqSE9dtvodfnqlVh47XevaNOJEmSJEnKJRZjJO2wH38MewsDdOiwaSxJkrZTVhY0awY//AB77QVjxkChQlGnkiRJkiTlEosxknbIn39Cgwbw++9w3HHQp0/UiSRJSmA33wxTp4aen5MnQ+nSUSeSJEmSJOUiizGSdkjHjjBrVrhWNG4cZGREnUiSpAQ1evSmlmRDhsCRR0abR5IkSZKU6yzGSNpuTz4JgwdDSkq4flS5ctSJJElKULNnwyWXhPGNN0KTJpHGkSRJkiTlDYsxkrbLzJlhVQxAjx5wxhnR5pEkKWEtXQp164ben2efDXffHXUiSZIkSVIesRgjaZv99lvYJ2btWrjggjCBV5Ik7YDMzLAK5v/+D/bbD0aOhNTUqFNJkiRJkvKIxRhJ2yQ7G1q0CNeM9t0XnnoqtCmTJEk7oEsXeP11KFYMJk+GXXeNOpEkSZIkKQ95KVXSNrnrLnjxRShSBCZMgFKlok4kSVKCeuop6NcvjIcNg0MPjTaPJEmSJCnPWYyR9J9eegnuvDOMBw6EI4+MNo8kSQnrww+hXbsw7tYN6tWLNo8kSZIkaaewGCPpX/30EzRvDvE4tG8PLVtGnUiSpAS1eHEovmzYfO3226NOJEmSJEnaSSzGSNqqNWugYUP4/Xc49ljo2zfqRJIkJah166BBA5g/Hw46CIYPd/M1SZIkSSpA/AQoaauuugpmzoTdd4dx4yAjI+pEkiQlqGuugXfegRIl4JlnwldJkiRJUoFhMUbSFg0eDE8+CbEYjBoFe+4ZdSJJkhLU44+HTddiMRg5Eg44IOpEkiRJkqSdzGKMpH/4+GPo0CGM77oLatWKNo8kSQnr3XehY8cw7tEDzj032jySJEmSpEhYjJH0F7/9Flrar10L558PXbtGnUiSpAQ1f374o5qZGTZh84+qJEmSJBVYFmMkbZSdDRdfDD/9BPvsA8OGubewJEk7ZM0aqF8fFi2Cww6DIUNCmzJJkiRJUoHkZVZJG/XoAVOmQOHCMGEClCoVdSJJkhJQPB76fX7wAey6K0yeDMWKRZ1KkiRJkhQhizGSAHjpJbjjjjAeOBCqVo0yjSRJCax//7ASJiUFxoyBffeNOpEkSZIkKWIWYyTx009w0UVhIm+7dtCqVdSJJElKUNOnQ6dOYdy7N9SqFWUaSZIkSVI+YTFGKuDWrAl7Cv/2G1SvDv36RZ1IkqQENXcuNGoEWVnQvDl07hx1IkmSJElSPmExRirgrr4aZs6E3XeH8eMhIyPqRJIkJaDVq6FuXfjlFzjqKHjiCYjFok4lSZIkSconErYYM2DAAPbee28KFy5MtWrVeOutt7b62IkTJ1KrVi3KlClDiRIlOP7443n55Zd3YlopfxoyZNO1opEjYc89o04kSVICisfh8sth1iwoXRomTYJddok6lSRJkiQpH0nIYsyYMWPo1KkTt9xyC7NmzeKkk06iTp06zJ07d4uPf/PNN6lVqxZTpkxh5syZnHbaaZx//vnMmjVrJyeX8o9Zs6BDhzDu3h1q1442jyRJCatPHxgxAlJTYdw4qFIl6kSSJEmSpHwmIYsxffr04dJLL6Vt27YcfPDB9O3bl8qVK/Poo49u8fF9+/blhhtuoHr16uy///707NmT/fffn+eee24nJ5fyh99/hwYNwn4x550HN98cdSJJkhLUtGlwww1h3LcvnHpqlGkkSZIkSflUoagDbK9169Yxc+ZMbrrppr8cr127Nu++++42/Yzs7GxWrFjBbrvtttXHrF27lrVr1268v3z5cgAyMzPJzMzcgeTJKx6Pb/zqv03+l50NF12Uyo8/prDPPnEGDVpPVlbYa1jJbcP56Xkq5W+eqwnkhx8o1KQJsexsslu1Iuvyy8H/3QoEz1MpMXiuSonBc1VKDJ6rW7Y9/x4JV4z55ZdfyMrKoly5cn85Xq5cORYtWrRNP+OBBx5g1apVNG7ceKuP6dWrF3feeec/jk+dOpVd7AH+FxuKVmvXrmXKlCkRp9F/GTPmAF588WDS07Po2PFNZsxYHnUk7WTTpk2LOoKkbeC5mr+l/vknJ910EyV//53f99+ft889l+wXX4w6lnYyz1MpMXiuSonBc1VKDJ6rf7V69eptfmzCFWM2iMVif7kfj8f/cWxLRo0axR133MEzzzxD2bJlt/q4rl270rlz5433ly9fTuXKlalduzYlSpTY8eBJaM6cOWRmZpKRkcE555wTdRz9i6lTY4wenQrAgAFxWrY8MeJE2pkyMzOZNm0atWrVIi0tLeo4krbCczUBxOOkNmtGyv/9H/Fy5Sg2dSpn77FH1Km0E3meSonBc1VKDJ6rUmLwXN2yDR21tkXCFWNKly5NamrqP1bBLFmy5B+rZf5uzJgxXHrppYwbN44zzzzzXx+bkZFBRkbGP46npaX5f7a/2VAEi8Vi/tvkY//3f9CyJcTjcPnlcOmlCXf6K5f43zEpMXiu5mO9esHEiZCWRmzCBNL22ivqRIqI56mUGDxXpcTguSolBs/Vv9qef4uUPMyRJ9LT06lWrdo/lkNNmzaNmjVrbvV5o0aNonXr1owcOZJzzz03r2NK+cqaNdCwIfz2GxxzDPTrF3UiSZIS1JQpcMstYfzII3DCCdHmkSRJkiQlhIScGt+5c2cuvvhijjnmGI4//ngef/xx5s6dS/v27YHQYmz+/PkMGzYMCIWYli1b0q9fP2rUqLFxVU2RIkUoWbJkZL+HtLNccw189BHsthuMHw+FC0edSJKkBPTtt9C8eVhm2r59WGoqSZIkSdI2SMhiTJMmTfj111/p3r07Cxcu5LDDDmPKlClUqVIFgIULFzJ37tyNj3/sscdYv349V155JVdeeeXG461atWLo0KE7O760Uw0dCo8/DrEYjBwJ/ztNJEnS9li+HC68EP74I6yGcZmpJEmSJGk7JGQxBqBDhw506NBhi9/7e4Fl+vTpeR9Iyodmz4YrrgjjO+6As86KMo0kSQkqOxsuvhi+/hr22CMsM01PjzqVJEmSJCmBJNyeMZK2ze+/Q4MGYb+Yc86BW2+NOpEkSQmqe3d49lnIyIBJk6B8+agTSZIkSZISjMUYKQllZ0PLlvDDD7DXXjB8OKR4tkuStP0mT4Y77wzjgQOhevVI40iSJEmSEpOXZ6Uk1KsXPP98mMA7YQLstlvUiSRJSkBffhnakwFcfTW0bh1pHEmSJElS4rIYIyWZadPgttvCeMAAOProaPNIkpSQfv8dLrwQVq6E006D+++POpEkSZIkKYFZjJGSyNy50KwZxOPQti1ccknUiSRJSkBZWdC8OcyZA1WqwJgxkJYWdSpJkiRJUgKzGCMlibVroWFD+PVXqFYNHn446kSSJCWoW2+Fl16CIkVg0iQoUybqRJIkSZKkBGcxRkoSnTrBhx+G/WHGj4fChaNOJElSAho7Fu65J4wHDYKjjoo2jyRJkiQpKViMkZLAsGEwcCDEYjBiBOy1V9SJJElKQJ98Am3ahHGXLqH3pyRJkiRJucBijJTgPvkE2rUL49tvh7PPjjaPJEkJ6ddfoW5dWL0aateGXr2iTiRJkiRJSiIWY6QEtmwZNGgAa9ZAnTpw221RJ5IkKQGtXw+NG8NPP8G++8KoUZCaGnUqSZIkSVISsRgjJajsbGjZEr7/PrQle/ppSPGMliRp+91wA7z2GhQtCpMnhw3YJEmSJEnKRV66lRLUPffAc89BRgZMmOB1I0mSdsjw4fDgg2E8bBgcdli0eSRJkiRJSclijJSAXnllU0uy/v3h6KOjzSNJUkL66CO47LIwvvVWqF8/2jySJEmSpKRlMUZKMD//DM2ahTZll14abpIkaTstXgz16sHatXDeeXDnnVEnkiRJkiQlMYsxUgJZuxYaNoRffgmrYR55JOpEkiQloMxMaNQI5s2DAw904zVJkiRJUp7zU6eUQK69Fj74AHbdFcaPh8KFo04kSVIC6tQJ3noLSpSAyZOhZMmoE0mSJEmSkpzFGClBDB8Ojz4KsRiMGAF77x11IkmSEtCTT8KAAZv+oB50UNSJJEmSJEkFgMUYKQF8+im0axfG3bpBnTrR5pEkKSHNmAFXXhnG3buHvWIkSZIkSdoJLMZI+dyyZVC/Pvz5J5x9dijGSJKk7bRgATRoAOvWhT+sN98cdSJJkiRJUgFiMUbKx7KzoVUr+P57qFLF/YUlSdoha9eGQszChXDooTB0qH9QJUmSJEk7lZ9CpXzs3nvh2WchIwMmTIDdd486kSRJCSYeD63J3nsPSpWCyZOhePGoU0mSJEmSChiLMVI+9eqrcOutYfzII1CtWrR5JElKSI8+CoMGhZUwo0fDfvtFnUiSJEmSVABZjJHyoZ9/hqZNQ5uySy6Btm2jTiRJUgJ680245powvuceOOusaPNIkiRJkgosizFSPrN2LTRqBL/8AkcdFVbFSJKk7fTzz9CwIaxfH2Y4XH991IkkSZIkSQWYxRgpn7nuOnj//dDWfvx4KFIk6kSSJCWYP/+EevVg6VKoWjW0KYvFok4lSZIkSSrALMZI+ciIEdC/fxg//TTss0+0eSRJSjjxOFx+OcycCbvvDpMmwS67RJ1KkiRJklTAWYyR8onPPoPLLgvj226Dc8+NNo8kSQmpX78woyE1FcaOhb32ijqRJEmSJEkWY6T84I8/oH790FWldm24/faoE0mSlIBefXXT3jAPPACnnx5tHkmSJEmS/sdijBSxeBxat4Y5c2DPPWHkyDCZV5IkbYcff4TGjSErC1q1gquvjjqRJEmSJEkbWYyRIta7N0yeDOnpMH58aG8vSZK2w6pVULcu/PYbVK8OAwdCLBZ1KkmSJEmSNrIYI0Xotdfg5pvD+OGHw/UjSZK0HeJxuOQS+PRTKFsWJk6EwoWjTiVJkiRJ0l9YjJEiMm8eNG0K2dmhTdlll0WdSJKkBNS7N4wdC4UKwYQJUKlS1IkkSZIkSfoHizFSBNatg0aNYOlSqFoVBgywm4okSdvtpZega9cwfvhhOPHEaPNIkiRJkrQVFmOkCFx3Hbz3HpQqFSbxFikSdSJJkhLMd99Bs2ahTdlll0G7dlEnkiRJkiRpqyzGSDvZiBHwyCNhPHw47LNPtHkkSUo4K1ZA3bqwbBnUrBlWxbjEVJIkSZKUj1mMkXaizz+Hyy8P41tvhfPOizaPJEkJJzsbWraEL7+EihVh/HjIyIg6lSRJkiRJ/8pijLST/PEH1K8Pq1dD7dpwxx1RJ5IkKQH16AGTJ0N6OkycCBUqRJ1IkiRJkqT/ZDFG2gnicWjTJrS333PP0KosNTXqVJIkJZhnn4Xbbw/jgQPhuOOizSNJkiRJ0jayGCPtBPfdB5MmhUm848dD6dJRJ5IkKcF89RW0aBHGHTuGWQ6SJEmSJCUIizFSHnv9dejaNYwfegiqV482jyRJCWfZMrjwQlixAk45Bfr0iTqRJEmSJEnbxWKMlIfmz4emTcNew61aweWXR51IkqQEk5UFF120qdfnuHGQlhZ1KkmSJEmStovFGCmPrFsHjRrBkiVw5JEwYADEYlGnkiQpwXTrBlOmQOHCoednmTJRJ5IkSZIkabtZjJHyyPXXw4wZULIkTJgAu+wSdSJJkhLMuHHQs2cYP/kkHH10tHkkSZIkSdpBFmOkPDBqFDz8cBg//TTsu2+0eSRJSjiffgqtW4fxddeFVmWSJEmSJCUoizFSLvv8c2jbNoxvuQXOOy/aPJIkJZzffoO6dWH1ajjzTLjnnqgTSZIkSZKUIxZjpFy0fDk0aBCuHdWqBXfeGXUiSZISzPr10LQp/Pgj7L03jB4NhQpFnUqSJEmSpByxGCPlkngc2rSBb7+FypVh5EhITY06lSRJCeamm2DatLDZ2uTJsPvuUSeSJEmSJCnHLMZIueT++2HiREhLg/HjoXTpqBNJkpRgRoyABx4I46eegiOOiDaPJEmSJEm5xGKMlAumTw8TeQH69YNjj400jiRJiefjjzdtunbzzdCwYbR5JEmSJEnKRRZjpBxasACaNIHsbLj4YmjfPupEkiQlmCVLoG5dWLMGzjkHunePOpEkSZIkSbnKYoyUA5mZ0LhxuIZ0xBEwcCDEYlGnkiQpgWz4Y/rzz7D//qFVmZuuSZIkSZKSjMUYKQe6dIF33oGSJWHChLDXsCRJ2g7XXQdvvAHFi8Mzz0CpUlEnkiRJkiQp11mMkXbQ6NFhfxiAYcNgv/2izSNJUsIZMgQefjiMhw+Hgw+ONo8kSZIkSXnEYoy0A778ctMew127wgUXRJtHkqSE8/77mzZau/NOuPDCaPNIkiRJkpSHLMZI22n5cqhfH1atgjPOgLvuijqRJEkJZuHC8Md03TqoWxduvTXqRJIkSZIk5SmLMdJ2iMfhkkvgm2+gUiUYNco9hiVJ2i5r10KDBrBgARxySOj1meJbUkmSJElScvOTr7Qd+vSBCRMgLQ3Gj4cyZaJOJElSgrn6apgxA0qWhMmToXjxqBNJkiRJkpTnLMZI2+jNN+HGG8O4b1847rhI40iSlHgeewwefxxisbC8dP/9o04kSZIkSdJOYTFG2gYLFkDjxpCVBS1awBVXRJ1IkqQE8/bbcNVVYdyzJ9SpE20eSZIkSZJ2Iosx0n/IzAyFmMWL4fDDw6TeWCzqVJIkJZB586Bhw01/VDcsNZUkSZIkqYCwGCP9hxtugHfegRIlwn4xu+wSdSJJkhLImjVQr16Y1XDEETB4sLMaJEmSJEkFjsUY6V+MHRv2hwEYNszW9pIkbZd4HNq3h48+gt12g8mToWjRqFNJkiRJkrTTWYyRtuLLL+GSS8L4ppvgwgujzSNJUsJ5+GF46ilISQkzHPbeO+pEkiRJkiRFwmKMtAUrVkCDBrBqFZx+Otx1V9SJJElKMK+/Dp07h/H998MZZ0SbR5IkSZKkCFmMkf4mHg8rYr7+GvbYA0aNgkKFok4lSVIC+eknaNQIsrKgRQvo1CnqRJIkSZIkRcpijPQ3Dz4I48dDWlr4WrZs1IkkSUogq1dDvXrw669QrRo8/jjEYlGnkiRJkiQpUhZjpM28+SbccEMYP/gg1KgRbR5JkhJKPA6XXgqzZ0OZMjBpEhQpEnUqSZIkSZIiZzFG+p+FC6FJk9BR5aKLoEOHqBNJkpRg7r8fRo8O/T3Hj4fKlaNOJEmSJElSvmAxRgIyM6FxY1i0CA47DB57zI4qkiRtl5dfhptuCuN+/eDkk6PNI0mSJElSPmIxRgJuvBHefhtKlICJE6Fo0agTSZKUQObMgaZNITs7tCm74oqoE0mSJEmSlK9YjFGBN3Zs2B8G4KmnYP/9o80jSVJCWbkS6taFZcvCZmv9+7u8VJIkSZKkv7EYowLtq6/gkkvC+MYbw7UkSZK0jbKzoVUr+OILqFABJkyAjIyoU0mSJEmSlO9YjFGBtWIF1K8Pq1bBaadBjx5RJ5IkKcH07Bn6e6anh68VK0adSJIkSZKkfMlijAqkeDy0tP/663DdaNQoKFQo6lSSJCWQ556Dbt3CuH//0KJMkiRJkiRtkcUYFUj9+sG4caEAM24clCsXdSJJkhLI119DixZhdkOHDtC2bdSJJEmSJEnK1yzGqMB5+23o0iWM+/SBmjWjzSNJUkL544+wydry5XDSSfDgg1EnkiRJkiQp37MYowJl0SJo3BjWr4dmzaBjx6gTSZKUQLKzw4qYb76BSpXC8tL09KhTSZIkSZKU71mMUYGRmQlNmsDChXDoofDEExCLRZ1KkqQEcvvt8PzzULgwTJpkn09JkiRJkraRxRgVGF27wptvQvHiMHEiFC0adSJJkhLIhAnQo0cYP/44HHNMtHkkSZIkSUogFmNUIIwfDw88EMZDh8IBB0QaR5KkxPL559CqVRhfey1cfHG0eSRJkiRJSjAWY5T0vv4a2rQJ4y5doH79aPNIkpRQfvsNLrwQVq2C00+H3r2jTiRJkiRJUsKxGKOktnJlKL6sXAmnngo9e0adSJKkBJKVBc2awQ8/wF57wZgxUKhQ1KkkSZIkSUo4FmOUtOJxaNsWvvoKKlaE0aO9fiRJ0na5+WaYOhWKFIHJk6F06agTSZIkSZKUkCzGKGk99NCmCbzjxkG5clEnkiQpgYwatakl2ZAhcOSR0eaRJEmSJCmBWYxRUnrnHbj++jB+4AGoWTPaPJIkJZRZs+DSS8P4ppugSZNo80iSJEmSlOAsxijpLFoEjRrB+vWhzf1VV0WdSJKkBLJ0KdStC3/+CWefDT16RJ1IkiRJkqSEZzFGSWX9emjaFBYuhEMOgccfh1gs6lSSJCWIzMywCmbuXNhvPxg5ElJTo04lSZIkSVLCsxijpNK1K7zxBhQvDhMnQrFiUSeSJCmBdOkCr78e/oBOngy77hp1IkmSJEmSkoLFGCWNCRPg/vvDeMgQOPDAaPNIkpRQnnoK+vUL42HD4NBDo80jSZIkSVISsRijpPDNN9CmTRhffz00aBBtHkmSEsqHH0K7dmHcrRvUqxdtHkmSJEmSkozFGCW8lSuhfn1YsQJOOQV69Yo6kSRJCWTRolB8WbsWLrgAbr896kSSJEmSJCUdizFKaPE4XHYZfPklVKgAo0dDoUJRp5IkKUGsWwcNG8L8+XDQQTB8OKT49lCSJEmSpNzmp20ltIcf3lSAGTcOypePOpEkSQnkmmvgnXegRAl45pnwVZIkSZIk5TqLMUpY77wD110XxvffDyecEG0eSZISyuOPw8CBEIvByJFwwAFRJ5IkSZIkKWlZjFFCWrwYGjeG9euhSRO4+uqoE0mSlEDefRc6dgzjHj3g3HOjzSNJkiRJUpKzGKOEs349NG0KCxbAIYfAk0+GSb2SJGkbzJ8PDRpAZmbYL6Zr16gTSZIkSZKU9CzGKOHcfDNMnw7FisGECeGrJEnaBmvWQP36sGgRHH44DBnijAZJkiRJknYCizFKKBMnwn33hfGQIXDQQdHmkSQpYcTjcMUV8MEHsOuuMHmyMxokSZIkSdpJLMYoYXzzDbRuHcadO4fOKpIkaRv17w9Dh0JKCowZA/vsE3UiSZIkSZIKDIsxSgirVoX29itWwEknwT33RJ1IkqQEMn06dOoUxr17Q61aUaaRJEmSJKnAsRijfC8eh8svhy++gPLlw2TetLSoU0mSlCDmzoVGjSArC5o3D8tLJUmSJEnSTmUxRvle//4wciSkpsLYsVChQtSJJElKEKtXQ9268MsvcNRR8MQTEItFnUqSJEmSpALHYozytRkzNk3gve++0KJMkiRtg3gcLrsMZs2C0qVh0iTYZZeoU0mSJEmSVCBZjFG+tWRJ6KqSmQmNG29qdS9JkrZBnz6blpaOHw9VqkSdSJIkSZKkAstijPKl9euhaVOYPx8OOgiefNKuKpIkbbNp0+CGG8K4b1845ZRI40iSJEmSVNBZjFG+dOut8PrrUKwYTJwIxYtHnUiSpATxww/QpAlkZ0ObNnDllVEnkiRJkiSpwLMYo3xn8mS4994wHjwYDj440jiSJCWOlSuhbl34/Xc49lgYMMClpZIkSZIk5QMWY5SvfPcdtGoVxtdeG/aMkSRJ2yAeDythPvsMypULS0sLF446lSRJkiRJwmKM8pFVq6B+fVi+HE48cdPqGEmStA169YLx4yEtLRRi9tgj6kSSJEmSJOl/LMYoX4jHoV07+PxzKF8exo4N15IkSdI2eOGFsOEaQP/+ULNmtHkkSZIkSdJfWIxRvjBgAIwYAampoRBToULUiSRJShDffAPNm4eZDe3bw2WXRZ1IkiRJkiT9jcUYRe6998L+MAC9e8NJJ0WbR5KkhLF8OdStG76ecAL06xd1IkmSJEmStAUWYxSpJUugYUPIzAxfNxRlJEnSf8jOhosvhq+/DvvDjB8P6elRp5IkSZIkSVtgMUaRWb8emjWD+fPhoINg8GCIxaJOJUlSgujeHZ59FjIyYNKksOmaJEmSJEnKlyzGKDK33QavvQZFi8LEiVC8eNSJJElKEJMmwZ13hvFjj0H16tHmkSRJkiRJ/8pijCLxzDNwzz1hPHgwHHxwtHkkSUoYX3wBLVuG8TXXQKtW0eaRJEmSJEn/yWKMdrrvvtt0DalTJ2jcONI4kiQljt9/h7p1YeVKOO00uO++qBNJkiRJkqRtYDFGO9WqVdCgASxfDieeCL17R51IkqQEkZUFzZvDnDlQpQqMGQNpaVGnkiRJkiRJ28BijHaaeBzat4fPPoNy5WDsWK8hSZK0zW69FV56CYoUCXvGlCkTdSJJkiRJkrSNLMZop3n0UXj6aUhNDYWYChWiTiRJUoIYO3bTZmuDBsFRR0WbR5IkSZIkbZdCUQdQwfDee2F/GIB774WTT440jpQc4nFYuzbsHbFyZegDuGH899uqVaT88QeH/PQTKR9+CLvsAunpkJHxz69bOvZvj0lNhVgs6n8NKXl98gm0aRPGXbpAs2bR5pEkSZIkSdvNYozy3NKl0KgRZGaG/WI6d446kRSB9ev/Wiz5j8LJNn8vK2ubI6QC++fF7xaL5U5RZ0ce81/PL1TIQpES2y+/QN26sHo11K4NvXpFnUiSJEmSJO0AizHKU1lZYQLvvHlw4IEweLDXRZXPxePw5587XhzZ2vfXrMnb3EWKQLFif70VLfqX+1mFC/PjDz+w9x57kJqZGVbVrFu35a//9b14/K//ZmvW5P3vuCO2Vija2UWhLT3GQpH+y/r10KQJ/PQT7LsvjBoVVqJJkiRJkqSEYzFGeeq22+DVV0NHpAkToESJqBMpqWRm5nxlyZaOb15oyG2FCv2zaLKV4sk2fa9o0XDbhgu02ZmZfDFlClXOOYfUtLSc/R7r1/97wWZbijrbWvjZnucnWqEoitVE2/IYC0X5QkrXrvDaa+EcnzwZdtst6kiSJEmSJGkHWYxRnnnmmU3dVAYNgkMPjTaPIpSdHVrs5FbhZMP31q3L29w7Uhz5r++lp+dt5p2lUKFwK1o06iT/tH597heFcqtwlJ29KeeGPX/Wro3u32prtlQoyi+FowJSKKr0+uuk9usX7gwbBocdFm0gSZIkSZKUIxZjlCfmzIFWrcL46quhadNo82gbxePhonFu7GWy+W316rzNnZHx36tHtrdwUqQIpKTkbW7ljQ2Fol12iTrJP22pUBT1aqJELRRFXRTa0te0tFwpFMVmzqTqgAHhzq23Qv36Of6ZkiRJkiQpWhZjlOtWr4YGDeCPP6BmTbjvvqgTJakNG8JvS9ut7fnedmwIv91SUnK+suTv3ytaNFwAlRJBfi4UZWXlj6LQlh6ztULRihXR/XttTS7sP5Q6fjyxzEyyzzmHlDvvjPo3kiRJkiRJuSBhizEDBgzgvvvuY+HChRx66KH07duXk046aauPf+ONN+jcuTNffPEFFStW5IYbbqB9+/Y7MXHBEI/DFVfAp59C2bIwdmzydGXaYZtvCJ+Tllx/P7YzN4TPrcJJ4cIFor2QlJBSU0ORKBEKRfllNdG6df8sYOdCoSgGrNhjDwo/9RQprtCTJEmSJCkpJGQxZsyYMXTq1IkBAwZwwgkn8Nhjj1GnTh2+/PJL9txzz388/scff+Scc87hsssu4+mnn+add96hQ4cOlClThgYNGkTwGySvxx4Lre1TU2HMGNhjj6gTbafNN4TPzcJJXm4In5oKxYvnbuFkGzeEl6SdIr8XinJ5NVBWoUK8u9denF6yZNS/nSRJkiRJyiUJWYzp06cPl156KW3btgWgb9++vPzyyzz66KP02rBj/GYGDhzInnvuSd++fQE4+OCD+eijj7j//vstxuSiuXPL8+ijYdyrF5x6ah6+2N83hM+twkkUG8LvSPFk8+Pp6a42kaSopKaGlYRFiuTaj8zOzGTNlCm59vMkSZIkSVL0Eq4Ys27dOmbOnMlNN930l+O1a9fm3Xff3eJzZsyYQe3atf9y7KyzzmLQoEFkZmaStoX9JtauXcvazTYuXr58OQCPPPIIhQsXzumvkVRWrlzJqlVFGDr0XNatg8MP/46UlOfo0weIx0nNyiJt7VrS1q4lfd26MP7f183vp//vMWnr1v3jfvpmxzc8Ly+tT00lMyODzIwM1qWnh3F6erhlZLBuw/2/f3+z+5s/JjM9ncy0tO3bED4e31QkknJBPB5n7dq1zJkzh5gFPCnf8lyV8j/PUykxeK5KicFzVUoMnqtbtmY7tpJIuGLML7/8QlZWFuXKlfvL8XLlyrFo0aItPmfRokVbfPz69ev55ZdfqFChwj+e06tXL+7cwqa5K1asIDMzMwe/QXLZ9bffqPfqayz9sQznrJ5CqdRlVJw/n8J3riUtM5P0detI3Xzj5VyWHYuRmZbGuvT0rd4yt3T8X56TmZ5Odm636Fq3Lu9X3UjbyP+GSYnBc1XK/zxPpcTguSolBs9VKTF4rv5VUhdjNvh79S0ej/9rRW5Lj9/S8Q26du1K586dN95fvnw5lStXpnjx4q6M2UypFSs4/IvPNx3IAn7b8mMz09L+slLkL6tL/r7yZMPjNoz/fv9/4/WFCuVqi670/92kZLRhBkNGRoYzGKR8zHNVyv88T6XE4LkqJQbPVSkxeK5u2Za6bm1NwhVjSpcuTWpq6j9WwSxZsuQfq182KF++/BYfX6hQIXbfffctPicjI4OMjIx/HO/YsSMlSpTYwfTJZ9qY37iKKqykGEed+C1X33zyVvdFSUtNZdv/rykpt2VmZjJlyhTOOeec7fpDIWnn8lyV8j/PUykxeK5KicFzVUoMnqtbtnz5cm655ZZtemzCFWPS09OpVq0a06ZNo169ehuPT5s2jQsvvHCLzzn++ON57rnn/nJs6tSpHHPMMf4fJ4cOP2U3rti3LrvvvoDD6/0OdepEHUmSJEmSJEmSpHwl4YoxAJ07d+biiy/mmGOO4fjjj+fxxx9n7ty5tG/fHggtxubPn8+wYcMAaN++PY888gidO3fmsssuY8aMGQwaNIhRo0ZF+WskhfLloV278axYsRIoGnUcSZIkSZIkSZLynYQsxjRp0oRff/2V7t27s3DhQg477DCmTJlClSpVAFi4cCFz587d+Pi9996bKVOmcO2119K/f38qVqzIQw89RIMGDaL6FZJKamqc1NTsqGNIkiRJkiRJkpQvJWQxBqBDhw506NBhi98bOnToP46dcsopfPzxx3mcSpIkSZIkSZIk6a9Sog4gSZIkSZIkSZKUzCzGSJIkSZIkSZIk5SGLMZIkSZIkSZIkSXnIYowkSZIkSZIkSVIeshgjSZIkSZIkSZKUhyzGSJIkSZIkSZIk5SGLMZIkSZIkSZIkSXnIYowkSZIkSZIkSVIeshgjSZIkSZIkSZKUhyzGSJIkSZIkSZIk5SGLMZIkSZIkSZIkSXnIYowkSZIkSZIkSVIeshgjSZIkSZIkSZKUhyzGSJIkSZIkSZIk5SGLMZIkSZIkSZIkSXnIYowkSZIkSZIkSVIeshgjSZIkSZIkSZKUhyzGSJIkSZIkSZIk5SGLMZIkSZIkSZIkSXnIYowkSZIkSZIkSVIeshgjSZIkSZIkSZKUhyzGSJIkSZIkSZIk5SGLMZIkSZIkSZIkSXnIYowkSZIkSZIkSVIeshgjSZIkSZIkSZKUhyzGSJIkSZIkSZIk5SGLMZIkSZIkSZIkSXnIYowkSZIkSZIkSVIeshgjSZIkSZIkSZKUhyzGSJIkSZIkSZIk5aFCUQdIFPF4HIDly5dHnCT/WbNmDWvWrCEtLc1/Hykfy8zMZPXq1Sxfvpy0tLSo40jaCs9VKf/zPJUSg+eqlBg8V6XE4Lm6ZRuuh2+oH/ybWHxbHiXmzZtH5cqVo44hSZIkSZIkSZLykZ9//plKlSr962Msxmyj7OxsFixYQPHixYnFYlHHyVeWL19O5cqV+fnnnylRokTUcSRtheeqlBg8V6X8z/NUSgyeq1Ji8FyVEoPn6pbF43FWrFhBxYoVSUn5911hbFO2jVJSUv6zslXQlShRwhNRSgCeq1Ji8FyV8j/PUykxeK5KicFzVUoMnqv/VLJkyW163L+XaqT/b+/eg6Kq/z+Ov1YRUVQIcQ3DW8oo3lC5GFjmJRnJcaTIMjWlsnIS06isdKZMTWu0Qm1kRifzMmN0UYzJWzYploUCRpEagjc0UURFE++wvz/8scOyKyzIfo/U8zGzM+57z57z2p3ZP/Tl53wAAAAAAAAAAMAdoYwBAAAAAAAAAABwIcoY3LHGjRvr3XffVePGjY2OAqAK/FaB+oHfKnD343cK1A/8VoH6gd8qUD/wW71zJovFYjE6BAAAAAAAAAAAwL8VK2MAAAAAAAAAAABciDIGAAAAAAAAAADAhShjAAAAAAAAAAAAXIgyBgAAAAAAAAAAwIUoY3BHli5dqo4dO8rDw0PBwcH66aefjI4EoJKdO3dqxIgRatOmjUwmkzZs2GB0JACVzJ8/X6GhoWrevLnMZrOio6OVk5NjdCwAlSQmJqpXr15q0aKFWrRoofDwcG3evNnoWACqMX/+fJlMJk2bNs3oKAAqmDVrlkwmk83j3nvvNToWAAf+/vtvjRs3Ti1btlTTpk3Vu3dvZWZmGh2r3qGMQa19+eWXmjZtmmbOnKnffvtNDz30kKKiopSfn290NAAVlJSUKCgoSJ9++qnRUQDcRmpqqiZPnqy0tDRt27ZNN2/eVGRkpEpKSoyOBqACf39/ffDBB8rIyFBGRoYGDx6skSNHat++fUZHA3Ab6enpWrZsmXr16mV0FAAOdO/eXQUFBdZHdna20ZEAVHL+/Hn1799fjRo10ubNm7V//3599NFH8vb2NjpavWOyWCwWo0OgfurXr5/69u2rxMRE6ywwMFDR0dGaP3++gckA3I7JZFJycrKio6ONjgKgCmfOnJHZbFZqaqoGDBhgdBwAVfDx8dGCBQv0/PPPGx0FQCWXLl1S3759tXTpUs2dO1e9e/dWQkKC0bEA/L9Zs2Zpw4YNysrKMjoKgCq89dZb2rVrF3dEqgOsjEGtXL9+XZmZmYqMjLSZR0ZG6pdffjEoFQAA/w4XLlyQdOsfeQHcnUpLS5WUlKSSkhKFh4cbHQeAA5MnT9bw4cP1yCOPGB0FwG3k5uaqTZs26tixo0aPHq3Dhw8bHQlAJSkpKQoJCdGoUaNkNpvVp08fLV++3OhY9RJlDGqlqKhIpaWlat26tc28devWOnXqlEGpAACo/ywWi+Lj4/Xggw+qR48eRscBUEl2draaNWumxo0ba9KkSUpOTla3bt2MjgWgkqSkJGVmZnLXBuAu1q9fP61evVpbt27V8uXLderUKUVEROjs2bNGRwNQweHDh5WYmKiAgABt3bpVkyZN0iuvvKLVq1cbHa3ecTM6AOo3k8lk89xisdjNAACA8+Li4vTHH3/o559/NjoKAAe6dOmirKwsFRcXa926dZowYYJSU1MpZIC7yPHjxzV16lR9//338vDwMDoOgNuIioqy/rlnz54KDw9Xp06dtGrVKsXHxxuYDEBFZWVlCgkJ0bx58yRJffr00b59+5SYmKjx48cbnK5+YWUMasXX11cNGza0WwVTWFhot1oGAAA4Z8qUKUpJSdH27dvl7+9vdBwADri7u6tz584KCQnR/PnzFRQUpEWLFhkdC0AFmZmZKiwsVHBwsNzc3OTm5qbU1FQtXrxYbm5uKi0tNToiAAc8PT3Vs2dP5ebmGh0FQAV+fn52//EoMDBQ+fn5BiWqvyhjUCvu7u4KDg7Wtm3bbObbtm1TRESEQakAAKifLBaL4uLitH79ev3444/q2LGj0ZEAOMlisejatWtGxwBQwZAhQ5Sdna2srCzrIyQkRGPHjlVWVpYaNmxodEQADly7dk0HDhyQn5+f0VEAVNC/f3/l5OTYzA4ePKj27dsblKj+4jZlqLX4+Hg988wzCgkJUXh4uJYtW6b8/HxNmjTJ6GgAKrh06ZLy8vKsz48cOaKsrCz5+PioXbt2BiYDUG7y5Mlau3atvv32WzVv3ty68tTLy0tNmjQxOB2AcjNmzFBUVJTatm2rf/75R0lJSdqxY4e2bNlidDQAFTRv3txu3zVPT0+1bNmS/diAu8jrr7+uESNGqF27diosLNTcuXN18eJFTZgwwehoACp49dVXFRERoXnz5unJJ5/Unj17tGzZMi1btszoaPUOZQxq7amnntLZs2c1e/ZsFRQUqEePHtq0aROtKHCXycjI0KBBg6zPy++9O2HCBK1cudKgVAAqSkxMlCQNHDjQZv75558rNjb2fx8IgEOnT5/WM888o4KCAnl5ealXr17asmWLhg4danQ0AADqnRMnTujpp59WUVGRWrVqpQceeEBpaWn8uxJwlwkNDVVycrLefvttzZ49Wx07dlRCQoLGjh1rdLR6x2SxWCxGhwAAAAAAAAAAAPi3Ys8YAAAAAAAAAAAAF6KMAQAAAAAAAAAAcCHKGAAAAAAAAAAAABeijAEAAAAAAAAAAHAhyhgAAAAAAAAAAAAXoowBAAAAAAAAAABwIcoYAAAAAAAAAAAAF6KMAQAAAAAAAAAAcCHKGAAAAAA1EhsbK5PJZPPYsWOH0bHqvaNHj9p9rwMHDjQ6FgAAAIA6QBkDAAAAAAAAAADgQpQxAAAAAOocq2dk9/k7dOhgdCQAAAAABnEzOgAAAACA+iUyMlLe3t42M39/f2PC/Iu0aNFCU6dOtZl17tzZoDQAAAAA6hJlDAAAAIAaGTNmjMaMGWN0jH8dHx8fJSQkGB0DAAAAgAtwmzIAAAAAAAAAAAAXoowBAAAAUCNV7QdT/nzVqlV27xs0aJDT+8ikpaUpLi5OvXv3lq+vr9zd3WU2mxUREaH33ntPp0+frjJjhw4d7K4lSefOndPMmTPVs2dPtWjRQiaTSStXrrS+b/fu3Vq8eLHGjx+vkJAQ3X///fL29lajRo10zz33qGvXrho9erSSkpJ0/fp1u+uuXLnS5noVHTt2rMp9ZI4ePWr3+sCBA6v8nIcOHdKMGTPUv39/tW7dWu7u7vLy8lJAQIDGjh2rr7/+WqWlpbd9f8W85Y9Zs2ZJkvbs2aNx48apbdu2aty4sVq3bq2YmBilp6dXmQkAAACAPW5TBgAAAOCuUVRUpGeffVbfffed3WtnzpzRmTNn9Ouvv2rBggVKSEjQxIkTnT73n3/+qcjISBUUFNz2mOHDh+vs2bMOXysuLlZxcbFycnL05ZdfqmvXrvrmm2/UvXt3pzPUlRs3bmj69OlasmSJXdly48YNXbx4UXl5eVq7dq26du2qpKQkBQUFOX3+mTNn6oMPPlBZWZl1VlhYqPXr1yslJUVffPGFnnjiiTr7PAAAAMC/HStjAAAAANwVioqKFB4e7rCIqaykpEQvvPCCPvnkE6fPHxUVVWURU1N//fWXoqKidP78+To7pzPKysr02GOPKSEhocpVL+X++usvRUREKCMjw6nzJyYmat68eTZFTEU3b97U888/rzNnztQoNwAAAPBfxsoYAAAAAHVm6tSpkqTvv/9eBw4csHktJiZG/v7+NrOKz2NjY5WXl2fzuqenpyIjI2U2m5WTk2N3W7Pp06fr4YcfVt++favNduLECUlScHCwgoODdenSJe3Zs8fuOJPJpJ49e+q+++5Ty5Yt5e3trWvXruno0aP66aefdPXqVeuxx48f15IlS/TOO+9Ikrp162b9DhYtWmRz3ubNm+u5556zmfn4+FSbu7IPP/xQGzdutJv37dtXYWFhKioq0qZNm3T58mXra5cvX1ZMTIxycnLk4eFR5fkLCwslSYGBgRowYIAOHz6sbdu22Rxz8eJFrVmzRvHx8TXODwAAAPwXUcYAAAAAqDMJCQmSbhUrlcuYuLi42+6Bsnv3bruCISgoSD/88IN8fX2ts+TkZMXExMhisUi6tUpjzpw5Sk5OrjabyWTSihUrFBsbazMvKSmx/vnzzz9XeHi4zTUrOnLkiPr06aMLFy7YZCovY8LCwhQWFibJvozx8fGxfj+1VVJSogULFtjN3333XeteL5KUm5ur/v3726xeyc/P14oVK/Tyyy9Xe53x48drxYoVatiwoSTpjTfe0MKFC22O2blzJ2UMAAAA4CTKGAAAAACGW7dund3s448/titFHnvsMYWGhtqsaClfBdK0adMqrxEbG2tXxEi3Vt+UGzFihCSpoKBAaWlpys3N1YULF3T58mVrAeTp6WlTxmRnZ+vmzZtyc3P9X6+2b99ud1u0zp07W8ugcgEBAZo5c6amTZtmM9+wYUO1ZYyHh4cWLlxoLWIk6aWXXrIrY44ePVrzDwAAAAD8R1HGAAAAADDc7t277WZDhgxx6r3Xr1/X3r179eCDD1Z5nKMiprKsrCy99tpr2r59u7V8qU5paanOnz+vVq1aOXX8nUhPT7ebDRs2TA0a2G8HOnz4cLsyxtH7Kxs6dKjdZ/Hz87M77uLFi9WeCwAAAMAtlDEAAAAADHenm8GfPn262mN69epV5eu7d+/W4MGDbfZacVZt3lMbjr6ntm3bOjzW0by4uFjXr1+Xu7v7ba/Rvn17u5mjfWbKysqqigoAAACgAvv/PgUAAAAA9cylS5eqPcbLy6vK1+Pi4mpdqji7iuZOObqOyWRyeGxN5+VatmxpN6t4yzIAAAAANcfKGAAAAACGM5vNOnDggM1s4sSJNvu5VCUwMLDaY6oqIU6ePKmMjAybmZubm95//32NHj1afn5+atSokSQpPDxcaWlpTuWqa2az2W6Wn5/v8FhHc29vb+vnAAAAAPC/QxkDAAAAoM45WklRWlp62+NDQ0OVmppqM4uMjNSoUaOqvVZpaekdr9xwVFwMGzZM06dPt5mVlJTozz//dOqcDRo0sLmVV1Wf31mhoaF2sy1btqisrMxu35hNmzY59X4AAAAArsdtygAAAADUuWbNmtnN9u/ff9vjH3/8cbtZXFyc3WqVcjdu3ND27dv14osvKjo6utY5yznaQ+XgwYO6cuWK9fnly5f17LPPOnVLNMn+Ozh9+rTOnTt3RzkHDRqke+65x2aWl5enOXPm2Mxyc3M1d+5cu/fXxXcFAAAAoOZYGQMAAACgzgUEBNjN3nzzTf3888+69957ZTKZ5OfnpzfffFPSrVt/RUVFafPmzdbjCwsLFRoaqtDQUHXp0kVeXl66cOGCDh06pOzsbGsp8vDDD99x3m7duqlJkyY25cvBgwcVGBioIUOG6OrVq9qxY4dOnjzp9DkDAgKUmZlpfX7jxg3169dPAwcOtN5+beTIkRo0aJDT5/T09NQbb7yhGTNm2MxnzZqllJQUhYWF6ezZs9q4caPd/jft2rXTc8895/S1AAAAANQdyhgAAAAAdS4qKkomk8lmw/krV67oq6++sj7v3r27tYyRpFWrVik8PFyHDh2yOVd6errS09NdmtfDw0MTJ07UkiVLbObHjh3TihUrrM/9/f3l5eWlffv2VXvORx991KaMkW6tYsnLy7M5X03KGEmaPn26du3apY0bN9rM9+7dq7179zp8T9OmTbVu3Tp5eHjU6FoAAAAA6ga3KQMAAABQ5zp16qQpU6bU6D2tWrVSWlpajW6l1bRpUz300EM1TOfYhx9+qAEDBtz2dT8/P6WkpMjX19ep802bNk0dOnSok2wVNWzYUMnJyZo6dapTe+V07dpVv/zyi0JCQuo8CwAAAADnsDIGAAAAgEssWrRIwcHBWrlypX7//XcVFxfbbGjviK+vr5KTk5WVlaU1a9Zo165dOnLkiIqLi9WgQQN5e3urU6dOCgoK0pAhQxQZGelwf5raaNKkiX744QclJiZqzZo12r9/v0wmk9q2bauRI0cqPj5eZrPZ6fP5+Phoz549WrBggTZv3qwjR46opKSkTrI2atRICQkJmjJlij777DPt2LFDeXl5Ki4uloeHh8xms8LCwhQdHa2YmBinShsAAAAArmOyVLxvAAAAAAAAAAAAAOoUtykDAAAAAAAAAABwIcoYAAAAAAAAAAAAF6KMAQAAAAAAAAAAcCHKGAAAAAAAAAAAABeijAEAAAAAAAAAAHAhyhgAAAAAAAAAAAAXoowBAAAAAAAAAABwIcoYAAAAAAAAAAAAF6KMAQAAAAAAAAAAcCHKGAAAAAAAAAAAABeijAEAAAAAAAAAAHAhyhgAAAAAAAAAAAAXoowBAAAAAAAAAABwIcoYAAAAAAAAAAAAF/o/dwIj29IXFPAAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "viewer = create_viewer('Velocity Profile', 'iteration', 'velocity (m/s)')\n",
+ "plt.rcParams.update({'font.size': 22})\n",
+ "viewer.plot(estimates_vx, color = 'blue', label='x_velocity')\n",
+ "viewer.plot(estimates_vy, color = 'red', label='y_velocity')\n",
+ "update_plotter()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "868e08e3",
+ "metadata": {},
+ "source": [
+ "## Example: Reentring Ballistic Object (Projectile Motion)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "74bb7b82",
+ "metadata": {},
+ "source": [
+ "[Link](https://en.wikipedia.org/wiki/Projectile_motion)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ac59d052",
+ "metadata": {},
+ "source": [
+ "$$\n",
+ "\\vec{x}_k =\n",
+ "\\begin{bmatrix}\n",
+ "x_k & y_k & \\dot{x}_k & \\dot{y}_k & d_k\n",
+ "\\end{bmatrix}^T\n",
+ "= \\begin{bmatrix}\n",
+ "x_1 & x_2 & x_3 & x_4 & x_5\n",
+ "\\end{bmatrix}^T\n",
+ "$$"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "045a1533",
+ "metadata": {},
+ "source": [
+ "Where $x_k$ and $y_k$ are the positions of the target. $\\dot{x}_k$ and $\\dot{y}_k$ are velocities. $d_k$ is the aerodynamic properties."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a2f46277",
+ "metadata": {},
+ "source": [
+ "The vehicle state dynamics are:\n",
+ "\n",
+ "$$\n",
+ "\\dot{x}_1(k) = x_3(k)\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "\\dot{x}_2(k) = x_4(k)\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "\\dot{x}_3(k) = D(k) x_3(k) + G(k) x_1(k) + v_1(k)\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "\\dot{x}_4(k) = D(k) x_4(k) + G(k) x_2(k) + v_2(k)\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "\\dot{x}_5(k) = v_3(k)\n",
+ "$$"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f33a6fa0",
+ "metadata": {},
+ "source": [
+ "Where $D(k)$ is the drag-related force term, $G(k)$ is the gravity-related force term and $v(k)$ are the process noise\n",
+ "terms."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "aee6ebed",
+ "metadata": {},
+ "source": [
+ "Defining,\n",
+ "\n",
+ "$R(k) = \\sqrt{x_{1}(k)^2 + x_{2}(k)^2}$ as the distance from the center of the Earth.\n",
+ "\n",
+ "$V(k) = \\sqrt{x_{3}(k)^2 + x_{4}(k)^2}$ as absolute vehicle speed.\n",
+ "\n",
+ "then drag and gravitational terms are:\n",
+ "\n",
+ "$D(k) = -\\beta(k) e^{\\left(\\frac{R_0 - R(k)}{H_0}\\right)} V(k)$\n",
+ "\n",
+ "$G(k) = -\\frac{G m_0}{r^3(k)}$\n",
+ "[link](https://en.wikipedia.org/wiki/Gravitational_acceleration)\n",
+ "\n",
+ "$\\beta(k) = \\beta_0 e^{x_5(k)}$"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "11427baa",
+ "metadata": {},
+ "source": [
+ "Where the parameterization of the ballistic coefficient, $\\beta(k)$, reflects the uncertainty in vehicle characteristics. $\\beta_0$ is the ballistic coefficient of the \"typical vehicle\" and it is scaled by $e^{x_5(k)}$ to ensure its value is always positive. This is vital for filter stability."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "80ebabef",
+ "metadata": {},
+ "source": [
+ "The used values are:\n",
+ "\n",
+ "$$\\beta_0 = −0.59783$$\n",
+ "\n",
+ "$$H_0 = 13.406$$\n",
+ "\n",
+ "$$Gm_0 = 3.9860 × 10^5$$\n",
+ "\n",
+ "$$ R_0 = 6374.0 $$\n",
+ "\n",
+ "and reflect typical environmental and vehicle characteristics."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a5ec494d",
+ "metadata": {},
+ "source": [
+ "The motion of the vehicle is measured by a radar which is located at $(xr, yr)$. It is able to measure range $r$\n",
+ "and bearing $\\theta$ at a frequency of 10Hz, where\n",
+ "\n",
+ "$$\n",
+ "r_r(k) = \\sqrt{(x_1(k) - x_r)^2 + (x_2(k) - y_r)^2} + w_1(k)\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "\\theta(k) = arctan \\left( \\frac{(x_2(k) - y_r)^2}{(x_1(k) - x_r)^2} \\right) + w_2(k)\n",
+ "$$\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "26bd6174",
+ "metadata": {},
+ "source": [
+ "$w_1(k)$ and $w_2(k)$ are zero mean uncorrelated noise processes with variances of $1$m and $17$mrad respectively. The\n",
+ "high update rate and extreme accuracy of the sensor means that a large quantity of extremely high quality data is\n",
+ "available for the filter. The bearing uncertainty is sufficiently that the EKF is able to predict the sensor readings\n",
+ "accurately with very little bias."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "65c282dd",
+ "metadata": {},
+ "source": [
+ "The true initial conditions for the vehicle are:\n",
+ "\n",
+ "$$\n",
+ "\\vec{x}(0) = \\begin{bmatrix}\n",
+ "6500.4 \\\\\n",
+ "349.14 \\\\\n",
+ "-1.8093 \\\\\n",
+ "−6.7967 \\\\\n",
+ "0.6932\n",
+ "\\end{bmatrix}\n",
+ "$$\n",
+ "\n",
+ "and;\n",
+ "\n",
+ "$$\n",
+ "P(0) = \\begin{bmatrix}\n",
+ "10^{-6} & 0 & 0 & 0 & 0 \\\\\n",
+ "0 & 10^{-6} & 0 & 0 & 0 \\\\\n",
+ "0 & 0 & 10^{-6} & 0 & 0 \\\\\n",
+ "0 & 0 & 0 & 10^{-6} & 0 \\\\\n",
+ "0 & 0 & 0 & 0 & 0 \\\\\n",
+ "\\end{bmatrix}\n",
+ "$$"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4c1cec55",
+ "metadata": {},
+ "source": [
+ "In other words, the vehicle’s coefficient is twice the nominal coefficient."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "14dc937e",
+ "metadata": {},
+ "source": [
+ "The vehicle is buffeted by random accelerations,\n",
+ "\n",
+ "$$\n",
+ "Q(k) = \\begin{bmatrix}\n",
+ "2.4064 × 10−5 & 0 & 0 \\\\\n",
+ "0 & 2.4064 × 10−5 & 0 \\\\\n",
+ "0 & 0 & 0\n",
+ "\\end{bmatrix}\n",
+ "$$"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "00b365fd",
+ "metadata": {},
+ "source": [
+ "The initial conditions assumed by the filter are,\n",
+ "\n",
+ "$$\n",
+ "\\vec{x}(0|0) = \\begin{bmatrix}\n",
+ "6500.4 \\\\\n",
+ "349.14 \\\\\n",
+ "-1.8093 \\\\\n",
+ "−6.7967 \\\\\n",
+ "0\n",
+ "\\end{bmatrix}\n",
+ "$$\n",
+ "\n",
+ "and;\n",
+ "\n",
+ "$$\n",
+ "P(0|0) = \\begin{bmatrix}\n",
+ "10^{-6} & 0 & 0 & 0 & 0 \\\\\n",
+ "0 & 10^{-6} & 0 & 0 & 0 \\\\\n",
+ "0 & 0 & 10^{-6} & 0 & 0 \\\\\n",
+ "0 & 0 & 0 & 10^{-6} & 0 \\\\\n",
+ "0 & 0 & 0 & 0 & 1 \\\\\n",
+ "\\end{bmatrix}\n",
+ "$$\n",
+ "\n",
+ "The filter uses the nominal initial condition and, to offset for the uncertainty, the variance on this initial estimate\n",
+ "is 1."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "339b56b6",
+ "metadata": {},
+ "source": [
+ "Both filters were implemented in discrete time and observations were taken at a frequency of 10Hz.\n",
+ "\n",
+ "However, due to the intense nonlinearities of the vehicle dynamics equations, the Euler approximation of Equation 16 was\n",
+ "only valid for small time steps.\n",
+ "\n",
+ "The integration step was set to be 50ms which meant that two predictions were made per update.\n",
+ "\n",
+ "For the unscented filter, each sigma point was applied through the dynamics equations twice.\n",
+ "\n",
+ "For the EKF, it was necessary to perform an initial prediction step and re-linearise before the second step."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "id": "ae60ba67",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "beta_0 = 0.59783 # ballistic coefficient of the \"typical vehicle\"\n",
+ "H_0 = 13.406\n",
+ "R_0 = 6374.0\n",
+ "Gm0 = 3.9860e5\n",
+ "mu = 0.03\n",
+ "g = 9.81\n",
+ "\n",
+ "dt = 0.05\n",
+ "\n",
+ "def reentering_object_time_update(x, v):\n",
+ " x_out = np.copy(x)\n",
+ " \n",
+ " beta_k = beta_0 * np.exp(x[4]) # scaled ballistic coefficient\n",
+ " R_k = np.sqrt(x[0]**2 + x[1]**2) # absolute distance from the center of the Earth\n",
+ " V_k = np.sqrt(x[2]**2 + x[3]**2) # absolute vehicle speed\n",
+ " \n",
+ " D_k = -beta_k * np.exp((R_0 - R_k) / H_0) * V_k # drag-related force term\n",
+ " # G_k = -Gm0 / (R_0**3)\n",
+ " G_k = -g\n",
+ " \n",
+ " # x_2_dot = D_k * x[2] + G_k * x[0] # not working as in the paper\n",
+ " # x_3_dot = D_k * x[3] + G_k * x[1] # not working as in the paper\n",
+ " \n",
+ " x_2_dot = D_k * x[2] * V_k + G_k\n",
+ " x_3_dot = D_k * x[3] * V_k\n",
+ " \n",
+ " x_out[0] = x[0] + (x[2] * dt)\n",
+ " x_out[1] = x[1] + (x[3] * dt)\n",
+ " x_out[2] = x[2] + (x_2_dot * dt) + v[0]\n",
+ " x_out[3] = x[3] + (x_3_dot * dt) + v[1]\n",
+ " x_out[4] = x[4] + v[2]\n",
+ " \n",
+ " return x_out\n",
+ "\n",
+ "def range_bearing_model(x, n):\n",
+ " polar_r = np.sqrt(x[1]**2 + x[0]**2) + n[0]\n",
+ " polar_b = np.arctan2(x[0], x[1]) + n[1]\n",
+ " z = np.array([[polar_r], [polar_b]])\n",
+ " return z"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "id": "6b5ceeb4",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "actual_object_0 = np.array([[6500.4], [349.14], [-1.8093], [-6.7967], [0.6932]])\n",
+ "radar_pos = [R_0, 330]\n",
+ "\n",
+ "trajectory_list = []\n",
+ "actual_object_k = actual_object_0\n",
+ "actual_noise = np.zeros((3, 1))\n",
+ "\n",
+ "for i in range(300):\n",
+ " actual_object_k = reentering_object_time_update(actual_object_k, actual_noise)\n",
+ " trajectory_list.append(actual_object_k)\n",
+ "\n",
+ "# generate measurements\n",
+ "measurement_list = []\n",
+ "for i in range(0, 300, 2):\n",
+ " dx = trajectory_list[i][1] - radar_pos[1]\n",
+ " dy = trajectory_list[i][0] - radar_pos[0]\n",
+ " \n",
+ " meas_r = np.sqrt(dx**2 + dy**2) + np.random.normal(0.0, np.sqrt(1.0))\n",
+ " meas_b = np.arctan2(dy, dx) + np.random.normal(0.0, np.sqrt(17e-3))\n",
+ " meas_k = np.array([[meas_r], [meas_b]])\n",
+ " measurement_list.append(meas_k)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "id": "45fcc65e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAAGsCAYAAADqumJNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6gElEQVR4nO3deVhUZd8H8O+wyCYDbiyCipkiKC5oai65i5r5pKaZTy6PSnVl6atvli2WlS1aPUTpo69LaqU8mqllJaYkpiCm4oKKWzkhgiiCDMjOnPcPmtMAs5zZmBn4fq6LqzPMfe5zj5xmfnMvv1smCIIAIiIiIrIKJ1s3gIiIiKghY7BFREREZEUMtoiIiIisiMEWERERkRUx2CIiIiKyIgZbRERERFbEYIuIiIjIihhsEREREVmRi60bQIBKpUJWVha8vb0hk8ls3RwiIiKSQBAEFBYWonXr1nBy0t1/xWDLDmRlZaFNmza2bgYRERGZ4MaNGwgODtb5PIMtO+Dt7Q2g+o8ll8tt3BoiIiKSQqlUok2bNuLnuC4MtuyAeuhQLpcz2CIiInIwhqYAcYI8ERERkRUx2CIiIiKyIgZbRERERFbEYIuIiIjIihhsEREREVkRgy0iIiIiK2KwRURERGRFFgm2Tp8+jcWLF6Nnz55o1aoV3NzcEBQUhN69e+OFF17Azp07UVVVVee8xMREyGQyyT+zZs2S3KbvvvsOTzzxBNq1awd3d3f4+fnh4YcfxkcffYSCggKjXl92djbeeustREZGonnz5vD09MQDDzyAmTNn4vDhw0bVRURERI2LTBAEwdSTlUolFixYgC1btsBQNfn5+fD19a3xu8TERAwdOlTy9WbOnInNmzfrLVNYWIhp06bhhx9+0FkmODgY27dvR//+/Q1ec/fu3Zg9ezbu3buns0x0dDTWrFkDZ2dng/Vpo1Qq4ePjg4KCAiY1JWpgVCoVMjIyUFhYCG9vb7Rt21bvHmpE5Dikfn6bnEE+Ly8PUVFROHnyJADAz88PkyZNQmRkJORyOXJycpCZmYnExEScOHHCYH1PPvkkpk6dqrdM27Zt9T5fWVmJSZMm4cCBAwAAf39/REdHIzw8HHl5eYiLi0NSUhIyMzPx6KOP4ujRo+jSpYvO+g4ePIgnn3wSFRUVAIBHH30U48ePh5eXF1JTU7FhwwYolUqsX78eALBu3TqDr5OIGo/09HTEx8dDqVSKv5PL5Rg1ahS8vLwYgBE1Eib3bI0ePRr79+8HAMydOxcxMTFo2rSp1rLZ2dlo1aoVXFxqxnaaPVtvvfUWli1bZkpTRGvWrMHzzz8PAAgPD8cvv/wCf3//GmVeeuklfPLJJwCAAQMG4OjRo1rrKi0tRWhoKDIyMgAAn3/+OV544YUaZa5cuYLBgwfj1q1bAICff/4ZI0eONLrd7NkianjS09OxY8cOSWXlcjlGjx6NsLAwK7eKPW1EliT189uk/8M2b94sBlqTJ0/G+vXrdQZaABAYGFgn0LK0qqoqvPPOO+Ljr776qk6gBQArVqxAjx49AABJSUni66ht48aNYqD12GOP1Qm0AKBTp05YvXq1+PjNN9805yUQUQOhUqkQHx8vubxSqcSOHTuQnp5uxVZVB4CxsbHYsmULdu3ahS1btiA2Ntbq1yVq7EwKtlauXAkAcHV1RWxsrEUbZKrDhw+LPUyDBw9GZGSk1nLOzs6YP3+++DguLk5rue3bt4vHixYt0nndxx9/HCEhIQCAlJQUKBQKI1tORA1NRkZGjaFDqeLj46FSqazQor972mq3q74CPXsUc+AKPku4qvW5zxKuIubAlXpukXFUKhUUCgXS0tKgUCisdu+Q+YwOtpKSksT/KceNG4fAwECLN8oUmt8ix44dq7es5vP79u2r83xhYSGSkpIAAN7e3hg0aJDOupycnDB69Gi99RFR41JYWGjSeUqlUuxRtyQpPW3WDPTslbOTDP/WEnB9lnAV/z5wBc5OMhu1zDD2UjoWo4MtzVQHw4cPhyAI2Lp1K0aMGAF/f3+4u7sjKCgI48ePx9dff6015YM23377LXr06AG5XA53d3e0bt0ao0aNwkcffYS8vDyD56elpYnHDz30kN6y/v7+aNOmDQDg9u3buHPnTo3nL168KL7p9OzZ0+AqQ83rnT9/3mBbiahh8/b2NvlcUwM1faT0tFkr0LNn84d3xKKRnWoEXOpAa9HITpg/vKONW6gdeykdj9ETqdSrD4HqFArDhw/HoUOHapTJyspCVlYW9u7di5iYGOzZs0cMbnSpHaRkZ2cjOzsbBw4cwDvvvIPY2FjMnj1b5/mXL18Wj9u3b2/wdbRv3x43btwQz23VqpVZdWk7l4gap7Zt20Iul5s0lGhOoKaL1ADOGoGevSmpLEGGMgMZhRn4U/kn7nrcwKA+Mvz7ALDql2sor1LZdaAltZcyNDSUCx/siNHBVnZ2tni8ePFiXL16FW5ubpgxYwYGDhwIFxcXnD17Fhs2bEBeXh5SU1MxbNgwnDx5Ej4+PnXqk8lkiIyMxJAhQxAWFgYfHx8UFRUhLS0NO3bsQGZmJoqKijBnzhzcvn0bS5Ys0douzTxYLVu2NPg6WrRoofVcS9elTVlZGcrKysTHprwhE5mKq9GsTz29QOpqRDW5XG4wxY0ppAZw1gj0bOle6T1czLuIi3f//rlZdLNOuQ4+HdDEuS/Kq1Ro4uxkt4EWYFwvpXo+Mdme0cFWfn6+eHz16lW0aNECCQkJ6N69u/j7adOmYeHChRgxYgQuXLiAa9eu4fXXX8eqVatq1BUaGopLly6hU6dOWq/14Ycf4rXXXsPHH38MAHjttdcwZMgQ9OvXr07ZoqIi8djd3d3g6/Dw8BCPa3+bs2Rd2nzwwQd4++23DZYjsjRdeZ/qK+1AYxIWFoYpU6bU+ffWZ/To0VYJfKX0tFkr0KtP+aX5OHHrBH679RtO3DqBPwr+0FpO3kSOdvJ2aCtvi3be7XD5hifO/BVolVep8FnCVbsNuNhL6ZiMDrZqT6CMiYmpEWipBQQEYOvWrejZsycEQcDGjRvxwQcf1PjmFBgYqHeCvaurKz766CPcvXsXmzZtgiAIePfdd/Hjjz8a22yTyWSWnyD56quv1ljhqFQqDQ6zEplLV94n9TyPKVOmMOCysLCwMDFfn7on8f79+/j555/rNeCV0tNmrUDPmgRBwMW8iziUcQiJNxJxOb/uNI623m0R3iJc/AltFgpfd1/x+c8SrmJP0t9ztNRztgDYZcDVWHspHZ3RwZbmH9DHxwdPPfWUzrLdu3dHv379cOzYMZSWliIpKanGyj2p3n33XWzevBmCICAhIQElJSU1epMAoGnTpmKvW2lpqd68XwBQUlKi9TWp69JWzpS6tHFzc4Obm5vBckSWwnketuPk5FRnOCcsLKzeh3J19bQ5Ws+mSlDhVM4pHPjzAA7dOIRb92/VeP5B3wfxUMBD6BvQF738e9UIrGrTNhle/V97DbgaSy9lQ2N0sNWsWTPxuFu3bgaTlfbq1QvHjh0DAFy7ds3YywEAgoKC0LFjR1y5cgVlZWW4fv06wsPDa5Tx9fUVg63c3FyDwdbdu3drnFu7LrXc3FyD7dNXF5E94DwP+6ItAKsP2nraHGXO3h/3/sDeP/bixz9+RPb9v+cOe7h4YEDrARjadij6t+6Plh6G59mqVakErZPh1Y+rVCZvHWw1DbWXsqEzOtjq3LkzEhISAEDS1jKak+LNmQjesmVLXLlS/U1D2yT00NBQXL9+HQBw/fp1g29k6rLqc2vXpa2cKXUR2QPO8yA1WwV6piiuKMaP13/Et1e+xYW7F8Tfe7t6Y0S7ERjRbgT6BvaFm7NpIwULR2qfLwzYpkdL6uKVhtJL2ZgYHWxpzs8qKCgwWF4zMNK2GlEqzVxY2nqPIiIixGGSEydOiHsuapOTkyOmffDz86uR9gGo3lfRyckJKpUKp0+fRlVVld5cW5obbXft2lXS6yGqT5znYXtcBSpdhjIDcZfisPvKbtyvug8AcJG5YGDQQIzrMA5D2gwxOcCyV8YuXnHkXsrGyOhga8yYMZDJZBAEAefOnUNFRQVcXV11lj916pR4bGqvT2ZmpjgE6ebmpvVb2ejRo/HRRx8BqM7i/vLLL+us76effhKPtWWb9/b2xoABA3DkyBEUFhbi6NGjGDx4sNa6VCpVjf0Vx4wZI+k1EdUnzvOwLa4CNUwQBJzMOYkvzn+BozePir/3qvBCh8IO6CLrggkPTUBYSMP79zJ18Yoj9VI2dkaHwMHBwWLgoVQqde4tCABnzpxBSkoKgL8DGFMsXboUglA9dj506FB4enrWKTN48GAEBAQAABITE5Gamqq1rqqqKnz22Wfi46lTp2otp/n7Tz75RGfb9uzZIw4j9uvXjzc+2aXa20ppw3ke1sFs3/oJgoBfM3/FjH0zMHv/7OpASwACigMwIGcARt8cjU7KTqgoqGiQ/17cSqlxMOmd9f333xePFy1ahHPnztUpk5OTg6efflp8PH/+/BorCK9du4aVK1fq/aZdUVGBxYsXY/PmzeLvli5dqrWss7Mz3nzzTfHxjBkzcPv27TrllixZgjNnzgAABgwYgKioKK31zZ49W/yWv3fvXqxevbpOmatXr2LevHni43fffVfnayGyNfU8j9pzLeVyOdM+WAk/SHUTBAE/K37G5L2TMS9hHs7cOQNXmSs6FXfC6JujMfD2QASWBEKGmul3Gtq/F7dSahxkgrrLyEhLlizBihUrAFQP7c2cOVPMIH/mzBkxgzxQvSLx6NGjNRKEnjlzBj179oSbmxuGDRuGhx56CO3bt4e3t3eNDPLquVUA8N577+G1117T2abKykqMHTsWBw4cAFCd6ys6Ohrh4eHIy8tDXFwcjh6t7p728fFBUlISunTporO+gwcPYuzYsaioqABQvfH2+PHj4eXlhdTUVGzYsEGctxYdHY1169aZ8k8JpVIJHx8fFBQUSFp0QGQOzh2qPwqFAlu2bDFYbubMmY2qV/xY1jF8mvopLt69CABwEVzwgPIBdFR2hEeVh4GzG9a/V1paGnbt2mWw3MSJExEREVEPLSJjSP38NjnYAoDXX38dK1as0LvZdFRUFOLi4mqkjAD+DrakkMvliImJ0bs3olphYSGmTZuGH374QWeZ4OBgbN++Hf379zdY3+7duzF79my92/BER0djzZo1Bjes1oXBFlHDxA/Sms7nnsenqZ/iePZxAIC7kzva57VHR2VHNFE1kVxPQ/r3YkDu2KR+fhs9QV7Te++9hylTpmDjxo04cOAAbt68iYqKCvj5+aF///6YMWOGzgnjYWFhiI+PR0pKCo4fPw6FQoG7d+8iPz8fbm5uaNmyJbp3746RI0di+vTpkoMQb29v7N27F9999x2+/PJLnDhxArdv34a3tzc6dOiAiRMn4tlnn5W8MnLChAno168f1qxZg71790KhUKC0tBSBgYEYOHAg5syZo3PyPBE1blwFWu3W/Vv496l/Y9/1fQAAVydXPNnpSVQdq0JFQYXR9TWkfy8uXmkczOrZIstgzxZRw6RSqRAbG2vwg3TBggUNcii3rKoMX174EuvT1qOksgQyyPBYh8fwXLfncPPizRoruaVqiP9eulYjqnFOpf2ql54tIiLSrTFn+z584zBWnFiBG4XV8257tOqBV/u+CtltGXZu3GlykuuG+O/FJKUNH3u27AB7togaNm15tjw8PNC3b18MGjSoQQUPuSW5eP/4+zjwZ/VCpVYerbCw10KMe2AcLl26pDfw1KcxBB5cvOJ46mWCPFkGgy2ihk+lUuHIkSM4fvx4jc3rG0oQIQgCdl/bjY9PfozC8kI4y5wxI3wGnu3+LLxcvSQNqdbm6emJqKgocc4SAw+yNxxGJCKyI5cvX0ZiYmKd3xvKEu4Ibihv4O1jb+P4repVhmHNw/DOgHfQuXlnsYyUfFK1jRs3zmH/TYg0MdgiIrIyqclNQ0NDHar3RhAEfHv1W6w8sRIllSVwd3bHvB7z8HT403BxqvnxYswm5w2lt49IjcEWEZGVGZMl3FFyKd0tuYtlx5Yh8UYiAKC3f2+80/8dtJG30VpearqGqKgo9OnTx6GCTiJDGGwRkc019InBUnt1jOn9saXDNw7jzeQ3kVeaB1cnVyyIXIDp4dPhJNP9N5OaT4qBFjVEDLaIyKbBjraVeg1tGKmhJDctryrHJyc/wbZL2wAAD/o+iA8HfYjQ5qEGz23MaTCIGGwRNXK2DHZ0JXNsCJPGNTWELOGZhZl46fBLuHD3AgBgRvgMzI+cDzdnN8l1MJ8UNVYMtogaMVsGOw110rg2jt6rk/BnApYmLUVhRSF83Hzw/sD38UjwIybVFRYWhtDQ0AY9bExUG+9uokZKarCjUqmscn1jJo03BOpendq5eORyud324FWoKrDyxEr8T+L/oLCiEN1bdcfOx3aaHGipOTk5ISQkBBEREQgJCWGgRQ0ee7aIGilbr5BraJPGpXCkXp380nz87+H/xYlbJwAAM8NnYkGvBXB1cgXQ8Bc1EFkSgy2iRsrWwU5DmTRuLHWvjj27nHcZCw4twM2im/B08cT7A9/H8HbDxecbw6IGIkvi1xCiRsrWwY560rg+9j5pvCHar9iP6fum42bRTbTxboOtY7fWCbR27NhRp1dUPc8vPT29vptMZPcYbBE1UrYOdtSTxvWx50njDY0gCFh9ZjVeOvwSSipL8HDgw4h7NA4PNntQLGPreX5EjorvYkSNlD0EO444abwhKq8qx6tHX8Xas2sBVM/P+s+I/8DHzadGuca2qIHIUjhni6gRs4e8R440abwhKigrwIJDC3Aq5xRcZC5Y+vBSTOw4UWtZW8/za2i4yKDxYLBF1MjZQ7DjCJPGG6IbhTfw/MHnoVAq0NS1KT4Z8gn6t+6vs7yt5/k1JFxk0Lgw2CIiBjuN0IXcC3g+4XnkleYhwCsAq4evRqdmnfSe0xAy4duDxrJzAv2N/ZVERI1MSnYKZu+fjbzSPIQ1D8PWsVsNBlqAfczzc3RcZNA48f8IIqJG5OCfB/H8wedRXFmMvoF9sWn0Jvh5+kk+n4sazMNFBo0ThxGJiBqJXVd34e1jb0MlqDCi7QiseGQFmjg3Mboee5jn56i4yKBxYrBFRNQIbErbhH+n/hsAMCpgFD4c9CFcnV1Nro/z/EzDRQaNE7+GEBE1cO8efFcMtEILQuGd4o1Vn69itncbsHUyYbINBltERA2UIAhYdmAZdtysXvnWNb8rIvIjIIOM2+vYCBcZNE78axIRNUCCIODTU5/i26xvAQDd8rqhc0HnOuW48q3+cZFB48M5W0REDYwgCPj45Mf48uKXAIDud7ujY2FHrWXVK984/6p+cZFB48Jgi4ioAREEAR+d/AhfXfwKANDzbk90KOyg9xyufLMNLjJoPBhsUYPGvceosfn89OdioDWv4zzkKHIMnsOVb/WD70eNF4MtarC49xg1Nv939v+wPm09AOC1vq/hyU5PIvZ4LLfXsQN8P2rcGFJTg6Tee6z2hwxXYFFDtfn8Zqw6swoA8FLvl/BU56e48s1O8P2I+H8YNTjce4wam7hLcfjk1CcAgBd6vICZXWaKz3Hlm23x/YgADiNSA2TM3mOcnEqObu/ve/H+8fcBANER0Xi2+7N1ynDlm+3w/YgABlvUAHHvMWosjmQewZtJbwIA/hn2T7zY80WdZbnyzTb4fkQAhxGpAeLeY9QYnLl9BosSF6FSqMTY9mPx8kMvQyaT2bpZVAvfjwhgsEUNEPceo4buWv41zEuYh9KqUgwIGoDlA5bDSca3c3vE9yMCGGxRA8QVWNSQZRdl49mDz0JZrkS3lt3w78H/hquzq62bZVdUKhUUCgXS0tKgUChsOvmc70cEADJBEARbN6KxUyqV8PHxQUFBgcFvQCQd89pQQ6MsV2LGTzPwe8HveMDnAWwZvQW+7r62bpZdsdf/7+21XWQeqZ/fDLbsAIMt62HGZmooKqoq8NzB5/Dbrd/g5+GHrY9uRYBXgK2bZVfU+ax0sXWqC74fNTxSP7+5GpEaNK7AooZAEAS8lfwWfrv1GzxdPLF6xGoGWrVIzWcVGhpqswCH70eNF0NqIiI7t+bsGuz9Yy+cZc74ZMgn6Ny8s62bZHeMyWdFVN8YbBER2bE91/Zgzdk1AIA3+r2BgUEDbdwi+8R8VmTPGGwREdmpE7dO4O3ktwEAcyPm4olOT9i4RfaL+azInlkk2Dp9+jQWL16Mnj17olWrVnBzc0NQUBB69+6NF154ATt37kRVVZVRdV66dAnu7u6QyWTijz7Lli2rUVbqj67x88TERKPqmTVrllGvz9rsaekzERkvszBTTFoaFRKlNzs8MZ8V2TezJsgrlUosWLAAW7ZsQe1FjVlZWcjKysKpU6ewevVq5Ofnw9fXV1K9KpUKc+bMQVlZmTnNk6RDhw5Wv0Z94xJjIsd2v+I+XvzlRdwru4fwFuF4d8C7TFpqgDqflb7ViMxnRbZicrCVl5eHqKgonDx5EgDg5+eHSZMmITIyEnK5HDk5OcjMzERiYiJOnDhhVN2xsbFITk6Gl5cX7t+/L+mcqVOnokePHpLKzpkzB3l5eQCA2bNnGyz/5JNPYurUqXrL2Mu3JV1Ln5VKJXbs2GHzpc9EpF+VqgpLfl2Ca/euoZVHK3w29DN4uHjYulkOISwsDFOmTOGXTbI7Jgdb06ZNEwOtuXPnIiYmBk2bNtVaNjs7W+dztf3+++944403AADLly/HwoULJZ3XuXNndO5seIVOcnKyGGj5+vpi0qRJkup+/PHHJbXDlhxh6TMR6ff56c+RmJmIJk5NEDs0Fv5e/rZukkMJCwtDaGgo81mRXTHp7tu8eTP2798PAJg8eTLWr1+vN5gKDAyEi4vhuE4QBMydOxfFxcXo06cP5s+fb0rz9NqwYYN4/M9//hPu7u4Wv4atcOkzkWP78Y8fsfH8RgDAOwPeQUSrCBu3yDGp81lFREQgJCSEgRbZnEl34MqVKwEArq6uiI2NtVhj1q5di8TERLi6umLDhg0W/x+kqKioxhDb3LlzLVq/rXHpM5Hjupx3GcuSlwEA5nSdg0cfeNS2DSIiizE6mklKSkJ6ejoAYNy4cQgMDLRIQzIyMvDKK68AABYvXoyICMt/o/vvf/8rzgHr1auX5DlejoJLn4kcU0FZARYcWoDSqlIMaD2AKw+JGhijg63Dhw+Lx8OHD4cgCNi6dStGjBgBf39/uLu7IygoCOPHj8fXX38tOeXDM888g8LCQnTq1AlLly41tlmSaA4hzpkzR/J53377LXr06AG5XA53d3e0bt0ao0aNwkcffSTO/7IHXPpM5HhUggpLjizBzaKbCGoahBWPrICzk3PNMkzlQuTQjJ4gr54UDwDBwcEYPnw4Dh06VKOMOu3D3r17ERMTgz179qBNmzY669y0aRP2798PmUyG9evXW2Ue1YULF3D8+HEAgIeHB6ZNmyb53PPnz9d4nJ2djezsbBw4cADvvPMOYmNjJa1qtDYufSZyPGvOrsHRm0fh5uyGT4d+Ch83nxrPM5ULkeMzOtjKzs4WjxcvXoyrV6/Czc0NM2bMwMCBA+Hi4oKzZ89iw4YNyMvLQ2pqKoYNG4aTJ0/Cx8dHa32LFi0CAERHR+ORRx4x4+XotnHjRvF48uTJWttSm0wmQ2RkJIYMGYKwsDD4+PigqKgIaWlp2LFjBzIzM1FUVIQ5c+bg9u3bWLJkiaS2lJWV1cghZmhSuzG49JnIcSTeSMTas2sBAG89/FadPQ+ZyoWoYZAJtbORGtC5c2dcvnxZfNyiRQskJCSge/fuNcrdunULI0aMwIULFwAA8+bNw6pVq+rU949//APff/89AgMDkZ6eXicI0swcb2RTReXl5QgKCkJubi6A6qFQQ0Fddna2OKypTUVFBV577TV8/PHHYjuTk5PRr18/g+1ZtmwZ3n777Tq/LygoMDgMKJVKpeLSZyI7dqPwBp7c+yQKKwoxrfM0vNr31RrPq1QqxMbG6v0yJpfLsWDBAv6/TWQjSqUSPj4+Bj+/jf4/tPZcgZiYmDqBFgAEBARg69atYrC0cePGOqvgtm3bhu+//x4AsHr1akm9Tab47rvvxECrU6dOknrPAgMDdQZaQPVKzI8++gj/+te/AFQHgu+++66k9rz66qsoKCgQf27cuCHpPGNw6TORbraeA1VeVY6XDr+EwopCdG/VHS/1fqlOGaZyIWo4jB5G1FzJ5uPjg6eeekpn2e7du6Nfv344duwYSktLkZSUhNGjRwMA7ty5gwULFgAAJkyYgAkTJhjbFMk0hxCNmRgvxbvvvovNmzdDEAQkJCSgpKQEHh76sz27ubnBzc3Nou0gImnsYQ7Uxyc/xsW7F+Hj5oOPB38MV2fXOmWYyoWo4TC6u6NZs2bicbdu3QwmK+3Vq5d4fO3aNfF43rx5yM3NhY+Pj9bhRUvJyMjAgQMHAAAuLi6YOXOmResPCgpCx44dAVTPxbp+/bpF6yciy1HPgardY6SeA6VOa2NN+xX7EXcpDgDw/sD3EeAVoLUcU7kQNRxG92x17twZCQkJACBpfpHm0KD6Da6goADffPMNAKBLly744osvJF17+fLl4nF0dDT8/Q1vY7Fp0yZxiGDcuHGSzjFWy5YtceXKFQDAvXv3LF4/EZnPHrazylBm4K3ktwAAs7vOxiPBuqc0qFO5GJqzxVQuRPbP6GBLc35WQUGBwfKawYc68NKc6J6cnIzk5GRJ19bMvyUlcBIEAZs2bRIfWytj/J07d8RjX19fq1yDiMxjzByokJAQi1+/rKoMLx1+Cfcr7iPSL9Jg4lKmciEyn70sFjM62BozZgxkMhkEQcC5c+dQUVEBV9e68w3UTp06JR6Hhoaa1koTHThwAH/++SeA6uE+9XwxS8rMzBSHR93c3KzyJk1E5rP1HKhPT32K9Lx0NHNrhhWPrICLk+G3X6ZyITKdPczPVDM62AoODsbgwYORmJgIpVKJuLg4zJgxQ2vZM2fOICUlBUD1vIIBAwYAqO79kZrGwZzUD5oT42fNmgVnZ2c9pU2zdOlSsV1Dhw6Fp6enxa9BROaz5RyoXzN/xdfpXwMAlg9crnOeljZhYWEIDQ21i2/nRI7C3nLUmfR/6/vvvy8eL1q0COfOnatTJicnB08//bT4eP78+QZX6VnS3bt38d133wGoDtiMyfB+7do1rFy5Uu+QQ0VFBRYvXozNmzeLv7PWNkNEZD5bbWeVW5KLpUnV7w3/DPun3nlaujCVC5F0Uudn1mfKF6N7tgDg4YcfxiuvvIIVK1bg7t276NOnD2bOnClmkD9z5oyYQR6oXpH4xhtvWLThhnz11VdilvZhw4bhgQcekHxuUVERXnnlFbz55psYNmwYHnroIbRv3x7e3t41Mshr5sd677330L9/f4u/DiKyDFvMgVIJKrx+9HXkleahU7NOWNhrocXqJiLtbD0/UxuTgi0A+PDDD+Hs7IwVK1agrKwM69atw7p16+qUi4qKQlxcnFX2O9THErm1ysrKsG/fPuzbt09nGblcjpiYGLvYG5GI9KvvOVBfX/wayVnJcHd2x8pHVsLNmfn1iKzN1vMztTE52AKqe3OmTJmCjRs34sCBA7h58yYqKirg5+eH/v37Y8aMGRgzZoyl2irZb7/9Jm4e3bx5c0ycONGo88PCwhAfH4+UlBQcP34cCoUCd+/eRX5+Ptzc3NCyZUt0794dI0eOxPTp0y22xQ7ZD3tZwUKWV19zoC7lXUJMagwAYPFDi9HBt4NF6yci7ewxR53ReyOS5UndW4nqhz2tYCHHVF5Vjid/eBLX7l3DsDbD8OnQT2ss9iEi66nPfUWttjciUUNmDxnGyfGtOrMK1+5dQ3P35nir/1sMtIjqkXp+pj71naOOwRbRX+xxBQs5njO3z2Dz+c0AgGUPL0Nz9+a2bRBRI6Sen1m7t0kul9d72gfAzDlbRA2JPa5gIcdSXFGM146+BgEC/tHhHxjadqitm0TUaNlTjjoGW0R/sccVLORY/n3q37hReAMBXgF4pc8rtm4OUaOnzlFnaxxGJPqLPa5gIceRnJWM7Ze3AwDmdZgHxWUFFAoFh52JiD1bRGrqDOOGVrBYOsM4OT5luRJvJr0JAAgrDcPZ78/iLM4C4EpWImLPFpHIHlewNFQqlQoKhQJpaWkNovdnxW8rkFOcg6YVTRGaE1rjOa5kJSL2bBFpqO8M441RQ8tjlpCRgO9//x4yQYbeub3hImh/W42Pj0doaCiDdaJGiMEWUS32tIKloVHnMatN3ftjiyXZ5lCWK7E8ZTkAoKOyI1qWtdRdlitZiRotBltEWtjLCpaGRGoeM0fq/Yk5FYPcklwEugWiy70uBstzJStR4+QY72hE5PCMyWPmCE7cOoGdV3YCAOZ3ng9nwdngOVzJStQ4MdgionrRkPKYlVWV4e1jbwMAnuj0BMZ2G2twX1OuZCVqvBhsEVG9aEh5zP7v7P/hT+WfaOXRCgt7LeRKViLSi//nE1G9UOcx08cRen8u513GpvObAACv930d8ibVr8ne9mIjIvvBCfJEVC/UvT/aViOq2XvvT5WqCsuSl6FSqMTwtsMxvN3wGs9zJSsRacNgi4jqjaPnMdt2aRvO3z2Ppq5N8Vrf17SW4UpWIqqNwRYR1StH7f25WXQTn5/+HACwqPci+Hn62bhFROQoGGwRaaFSqRwuGHAkjtj78+HxD1FSWYJIv0hM6jjJ1s0hIgfCYIuoloa2nQyZ7/CNw0jMTISLzAVvPvwmnGQMvIlIOr5jEGlQbydTO/kmNxNuvMqqyvDhbx8CAKaHT0cH3w42bhERORoGW0R/kbqdjEqlqqcWkT344vwXyCzKhJ+HH57t/qytm0NEDojBFtFfGtp2MmS+zMJMbEzbCABY/NBieLl62bhFROSIGGwR/aUhbSdDlrHixAqUVZWhb0BfRIVE2bo5ROSgGGwR/aUhbSdD5vs181ck3qieFP9q31chk8ls3SQiclAMtoj+0lC2kyHzlVWV4YPjHwDgpHgiMh+DLaK/cDNhUtt0fhMnxRORxfBTg0gDNxOmW/dvYUPaBgCcFE9ElsGkpkS1OOp2MmQZsamxKKsqQy//XpwUT0QWwWCLSAtH3E6GzHc+9zx++OMHANW9WpwUT0SWwK/qREQABEHAyhMrAQDjO4xHlxZdbNwiImoo2LNFRATgwJ8HcPr2abg7u+PFni/aujlEVqNSqThNop4x2CKiRq+8qhz/PvVvAMCsrrMQ4BVg4xYRWUd6ejri4+Nr7JYhl8sxevRoLgCyIoayRNTobUvfhptFN9HKoxX+1eVftm5Og6BSqaBQKJCWlgaFQsE9Re1Aeno6duzYUWdbMqVSiR07diA9Pd1GLWv42LNFRI1aXmke/u/c/wEAXuz5IjxdPW3cIsux1XARe0/sj0qlQnx8vN4y8fHxCA0N5ZCiFTDYIqJGbc2ZNSiqKELn5p0xvsN4WzfHYmwV8Kh7T2pT954wX51tZGRk1OnRqk2pVCIjI4Mrsa2A4SsRNVqKAgW+ufINAOCl3i/B2cnZxi2yDFsNF0ntPeGQYv0rLCy0aDkyDoMtImq0Vp9ZjSqhCo8EP4K+gX1t3RyLsGXAY0zvCdUvb29vi5Yj4zDYIqJGKf1uOuIV1UHJ/J7zbdway7FlwMPeE/vVtm3bOtuQ1SaXy9G2bdt6alHjwmCLiBqlz09/DgAY034MQpuH2rg1lmPLgIe9J/bLyckJo0eP1ltm9OjRnBxvJfxXJaJGJzUnFUduHoGzzBnzesyzdXMsypYBD3tP7FtYWBimTJlS528kl8u5cMHKuBqRiBoVQRAQmxoLAJjQcQLaydvZuEWWpQ549A0lWivgUfeeaFuNqMbeE9sKCwtDaGgoM8jXM/7rUoPFpIqkzdGbR5F6OxVuzm54rttz4u8byv1i6+Ei9p7YPycnJ4SEhCAiIgIhISEMtOoBe7aoQWJSRdJGJajw2enPAABPdX4K/l7+ABre/aIOeGz1mth7QlSTTBAEwdxKTp8+jW3btuHgwYPIzMyEUqlEy5YtERgYiH79+mHIkCGYMGECnJ2l57C5dOkSevTogbKyMvF3hpo6ZMgQHD58WPI1rl+/Lil5W3Z2NtauXYu9e/dCoVCgtLQUAQEBGDRoEGbPno3BgwdLvqY2SqUSPj4+KCgoMDjfgQzTlVRRjd+uG694RTwWH14ML1cv7Ju4D83cmzXo+4UbDhNZl9TPb7N6tpRKJRYsWIAtW7bUCYSysrKQlZWFU6dOYfXq1cjPz4evr6+kelUqFebMmVMj0LKV3bt3Y/bs2bh3716N31+/fh3Xr1/Hl19+iejoaKxZs8aoYJKsg1tSkC5VqiqsObMGADCzy0w0c2/W4O8X9XAREdmWycFWXl4eoqKicPLkSQCAn58fJk2ahMjISMjlcuTk5CAzMxOJiYk4ceKEUXXHxsYiOTkZXl5euH//vknt2717t8Eyfn5+ep8/ePAgnnzySVRUVAAAHn30UYwfPx5eXl5ITU3Fhg0boFQqsX79egDAunXrTGorWQ63pCBdDmQcwB8Ff8C7iTemh00HwPuFiOqHycHWtGnTxEBr7ty5iImJQdOmTbWWzc7O1vlcbb///jveeOMNAMDy5cuxcOFCk9r3+OOPm3SeWmlpKebMmSMGWp9//jleeOEF8fl//vOfePbZZzF48GDcunUL69evx+TJkzFy5EizrkvmYVJF0kYlqLDuXPWXoelh09G0SfX7Ee8XIqoPJvWLb968Gfv37wcATJ48GevXr9cbTAUGBsLFxXBcJwgC5s6di+LiYvTp0wfz59suq/PGjRvFDMuPPfZYjUBLrVOnTli9erX4+M0336y39pF2TKpI2hzKOISr+VfR1LUppoVNE3/P+4WI6oNJwdbKlSsBAK6uroiNjbVYY9auXYvExES4urpiw4YNNp0jsX37dvF40aJFOss9/vjj4vBCSkoKFAqFlVtG+jCpItUmCAL+79z/Aahegejj5iM+x/uFiOqD0dFMUlKSuGP8uHHjEBgYaJGGZGRk4JVXXgEALF68GBERERap1xSFhYVISkoCUP2NdtCgQTrL1s5ps2/fPqu3j3SzdY4hsj+/Zv6K9Lx0eLh4YEb4jBrP8X4hovpg9DuIZmqF4cOHQxAEbN26FSNGjIC/vz/c3d0RFBSE8ePH4+uvv0ZVVZWkep955hkUFhaiU6dOWLp0qbHNqmPcuHEICgpCkyZN0KxZM3Tp0gXR0dE4dOiQwXMvXrwoJjTs2bOnwVWGDz30kHh8/vx58xpOZmNSRVITBAFrz64FUN2r5evuW6cM7xcisjajJ8irJ8UDQHBwMIYPH14ngFGnfdi7dy9iYmKwZ88etGnTRmedmzZtwv79+yGTybB+/Xq4u7sb26w6fvzxR/H43r17uHfvHi5evIgNGzZg2LBh+Prrr3X2yl2+fFk8bt++vcFraZbRPJdsh0kVCQCSs5Jx/u55uDu71+nV0sT7hYisyehgKzs7WzxevHgxrl69Cjc3N8yYMQMDBw6Ei4sLzp49iw0bNiAvLw+pqakYNmwYTp48CR8fH631qedERUdH45FHHjHj5QDNmjXDyJEj0bt3bwQFBcHZ2Rk3b97EL7/8gn379kGlUuGXX37Bww8/jJSUFAQEBNSpQzOnVsuWLQ1es0WLFlrP1aWsrKxGDjFDS8/JNMwx1LCYkqBTvQJxSugUtPBoobcs7xcishajg638/Hzx+OrVq2jRogUSEhLQvXt38ffTpk3DwoULMWLECFy4cAHXrl3D66+/jlWrVtWp77nnnsO9e/cQGBgoTrw31QcffIBevXqhSZMmdZ5btGgRUlNTMWnSJCgUCvz555+YPXs2fvrppzpli4qKxGMpvWweHh7isZQl4h988AHefvttg+WIHIk1s5Wbsp3O2TtnkXo7FS5OLpjZZaZF2kFEZAqj3wlrb84aExNTI9BSCwgIwNatWyGTyQBUp1KoHYhs27YN33//PQBg9erVWnu+jPHwww9rDbTUIiMjsX//fri5uQGonsxuKOGquv2W9Oqrr6KgoED8uXHjhsWvQVSf0tPTERsbiy1btmDXrl3YsmULYmNjxcU05ta9Y8eOOj3ASqUSO3bs0HmNzec3AwDGPTAOfp76ExgTEVmT0cGWZr4ZHx8fPPXUUzrLdu/eHf369QNQnSRUvcIPAO7cuYMFCxYAACZMmIAJEyYY2xSTdOrUCTNm/D1344cffqhTRjNnWElJicE6NctIycfj5uYGuVxe44fIUZkaDEkhdTud2l8CM5QZSMhIAADM6jLL5OsTEVmC0cFWs2bNxONu3boZTFbaq1cv8fjatWvi8bx585CbmwsfHx+tw4vWNHToUPFY2weB5h6Oubm5Buu7e/eu1nOJGjpTgyGpjNlOR9OXF7+EAAGPBD+CDr4dTLo2EZGlGD1nq3PnzkhIqP7GKKVHRnNoUP2mWVBQgG+++QYA0KVLF3zxxReSrr18+XLxODo6Gv7+/pLbrUlz0ru2Ce2hoaHi8fXr1w3Wp1lG81yihs7aewuasp1OXmke9lzbA4C9WkRkH4wOtjTnZxUUFBgsrxnMqAMvQRDE3yUnJyM5OVnStTXzb40bN87kYOvOnTvisbaeqPDwcDg5OUGlUuH06dOoqqrSm2tLc95X165dTWoTkSOy9t6Cpmyns/3SdpRVlaFLiy7o7d/bpOsSEVmS0cOIY8aMESeNnzt3TtyoWZdTp06Jx/bS66OZF0xbm7y9vTFgwAAA1R8SR48e1VmXSqUS94kEqv99iBoLa+8taOx2OiWVJYi7FAcAmNV1llUWuBARGcvoYCs4OBiDBw8GUD08EBcXp7PsmTNnkJKSAqBmAOPr6wtBECT9aNL8fY8ePYxtOoDqpKNfffWV+HjcuHFay02dOlU8/uSTT3TWt2fPHnEYsV+/fszTQ3ZPpVJBoVAgLS0NCoXC5PlUgPX3FjR2O50f//gR+WX5CGoahBFtR5h0TSIiSzMpCc77778vHi9atAjnzp2rUyYnJwdPP/20+Hj+/Pk18lFZ2meffWZwOPL06dMYPXq0mFB01KhR6Nu3r9ays2fPFj8g9u7di9WrV9cpc/XqVcybN098/O6775rafKJ6YekUDfWxt6DU7XQEQRB7taZ1ngYXJ6NnSRARWYVMqN19JNGSJUuwYsUKANWpDGbOnClmkD9z5oyYQR6oXpF49OhRk7bh0RwG0NfUxx9/HN999x06dOiAESNGoGvXrmjRogWcnZ2RlZWFhIQE/PTTT+K3+Hbt2iE5ORmtW7fWWefBgwcxduxYcah03LhxGD9+PLy8vJCamooNGzaI89aio6Oxbt06o18fUN1D6OPjg4KCAqaBIKtRp2jQxZx9AE1JOmosQ0lTT+Wcwqz4WXB3dsfByQfh42Ze3j4iIkOkfn6bHGwBwOuvv44VK1bo3Ww6KioKcXFxNVJGGMPYYEuKqKgofPHFF3oDLbXdu3dj9uzZerfhiY6Oxpo1awxuWK0Lgy2yNpVKhdjYWL0rB+VyORYsWGByL5Q1M8hL8dLhl7BfsR+TOk7Csv7L6u26RNR41UuwBQBnz57Fxo0bceDAAdy8eRMVFRXw8/ND//79MWPGDLMnjEsNtn7//XckJiYiJSUFZ8+exZ07d5Cbm4uysjL4+PggJCQEDz/8MKZNmyYmWpUqOzsba9aswd69e6FQKFBaWorAwEAMHDgQc+bMEeewmYrBFlmbQqHAli1bDJabOXOmQ847zLmfg9HfjkalUImdj+1EaHP7WIxDRA1bvQVbZD4GW2RtaWlp2LVrl8FyEydORERERD20yLJWn1mNtWfXItIvElvGGA4qiYgsQernd/318RORzVg7RYMtVVRVYOeVnQCAES1GWGSVJRGRJXG5DlEjoE7RYGjOlqkpGsxlznyvhIwE5JbkwkPlgWv7ruEP/AHA8hP0iYhMxWCLqBFQp2jQtxrR3BQNpjJ3JeOXZ74EAIQoQ+Ck0Vmv3gjbnFWWRESWwGFEokZCar6q+qROR1G7x00dKBnK/3VDeQNpyjQAQEhRiNYy5myETURkCezZImpEwsLCEBoaatMUDWoqlQrx8fF6y8THxyM0NFRn+75Mre7V8ivxg1ell9Yy5myETURkCQy2iBoZJycnuwg8MjIy9M4hA/QHSlWqKhzIOgBAd6+WmqkbYRMRWQKHEYnIJqQGQLrKpWSn4G7FXbhWuSKoOEhvHY64ypKIGg4GW0RkE+amo9h1tTpv2IMVD8JZ0L17gy1XWRIRAQy2iMhG1Oko9NEVKBWUFeDQjUMAgH/1+pfeOkxdZalSqaBQKJi3i4jMxjlbRGQT5qSjOPDnAVSoKtCxWUeM6T0GIV4hFt0Iuz421iaixoPBFhHZjDodhbGBzU/XfwIAjG0/VqzHUqss1ekoamPeLiIyFYMtIrIpYwOlW/dv4eStkwD+DrYAy6yytEQ6CiKi2hhsEZHNGRMoxV+PhwABkX6RaN20tUXbYW46CiIibfjVjIgcinoI8dEHHrV43eamoyAi0obBFhE5jOsF15Gelw4XmQtGthtp8frNTUdBRKQNhxGJyGEc/PMgAKBv675o5t7M4vWr01HoG0o0J2+XSqWyi62SiKh+MdgiIodxMKM62BrRdoRV6jcnHYUhTCdB1HjxKxUROYSsoixcvHsRMsgwtM1Qq11HnY6idsJVuVxuctoHdTqJ2j1m6nQS6enpZrWZiOwbe7aIHEhjHob6JeMXAECkfyRaeLSw6rUsmbeL6SSIiMEWkYOw9TCUrQM9aw8h1maJvF0A00kQEYMtIodg66zmtg708kvzcfr2aQDAsLbDrH49S2I6CSJinzWRnZM6DGWtjZLtYb5RclYyVIIKnZp1sngiU2tjOgkiYrBFZOeMGYayNFsHempJN5MAAAOCBlj1OtagTiehjznpJIjI/jHYIrJzthyGsmWgp6YSVEjKqg62BgUNstp1rEWdTkIfU9NJEJFj4P/dRHbOGsNQKpUKCoUCaWlpUCgUOnumpAZwhgIyc1zKu4S80jx4uniiR6seVruONVkjnQQROQ5OkCeyc5bOam7MZHepAdz+/fvh6upqlaBBPYTYN7AvXJ1dLV5/fbFkOgkiciz8v5zIzllyGMrYye5S5hsBQHFxsdUmyx+9eRQAMDBooMXrrm/qdBIREREICQlhoEXUSPD/dCIHYIlhKFMmu0sJ9PSdb66i8iKcvXMWANCysKXeIU8iInvFYUQiB2HuMJSpyTXVgd4PP/yA4uJio883x/envkeVUAWvCi8c+fEIjuAI9xMkIofDni0iB2LOMJQ5qxrDwsIQFRVl0esYkp6ejl2/7QIAtCptJf6e+wkSkaNhsEXUSJi7qlHK3C1jrqOPesgz1z0XANCyrGWdMvWR34uIyBIYbBE1EuYm16zP5JwZGRnIL8xHnlseAKBlad1gy9r5vYiILIXBFlEjYcyqRm15uOozOWdhYSHuut2FIBPgUekBr0ovneWIiOwdJ8gTNSLqye768mwZysNl6HxL8Pb2Rq7bX0OIpS0hg0xnOSIie8dgi6iR0beqUZ2Hqzb1pHR1mglrJ+ds27YtCpoWANA+XwvgfoJE5DgYbBE1QupVjZqk5uEKDQ3Ver4lyWQyFLgXAFVA87LmWstwP0EichR8pyIiAPax6bTar2d/RVFVEZwEJ/iU+9R4jvsJEpGjYbBFRADMy8NlSenp6fjqwFcAAJ9yHzjVepsaNWoUAy0icigMtogIgPl5uCxBPZSZ75YPAGhW1qxOmZ9//pn5tYjIoTDYIiIA9ZtHSxf1UGZ+k7+CrfK6wZaxQ5na0lgQEdUnTpAnIgB/5+HSthpRzdqT0gsLCyFAwD23ewC092ypy0lhKI0FEVF9YM8WEYnUebRq93DV16R0b29vlDqXosKpAjJBBu8K7UOWUoYy1Wksak/6596KRFTf2LNFRDXURx4tXdq2bYtKn0oAQNOKpnCGc50yUoYyjU1jQURkTRZ5lzl9+jQWL16Mnj17olWrVnBzc0NQUBB69+6NF154ATt37kRVVZVRdV66dAnu7u6QyWTijyGFhYX49ttv8cILL6B///5o1aoVXF1dIZfL0blzZ8yYMQPx8fEQBMFgXYmJiTWubehn1qxZRr0+InumzqMVERGBkJAQkwISU+ZKOTk5IaBrAABAXqF9/piUoUx7SmNBRGRWz5ZSqcSCBQuwZcuWOgFMVlYWsrKycOrUKaxevRr5+fnw9fWVVK9KpcKcOXNQVlYmuS3//ve/8frrr6O0tLTOc4WFhbh8+TIuX76Mr776CoMGDcLXX3/N7NNEVmLOXKkityIAQCunVjV+b8xcK3tJY0FEBJgRbOXl5SEqKgonT54EAPj5+WHSpEmIjIyEXC5HTk4OMjMzkZiYiBMnThhVd2xsLJKTk+Hl5YX79+9LOufKlStioBUcHIzhw4ejd+/eaNWqFUpKSnD8+HF8/fXXKCoqwpEjRzBkyBCkpKTAz8/PYN1PPvkkpk6dqrcMAzeialK3/NHl2r1rAICnRj2FcKdwk4Yy7SGNBRGRmsnB1rRp08RAa+7cuYiJiUHTpk21ls3Oztb5XG2///473njjDQDA8uXLsXDhQknnyWQyjBo1Ci+99BKGDx9e50151qxZWLJkCaKionD58mVcv34dS5YswRdffGGw7s6dO+Pxxx+X1A6i+qBSqWwyp0pKu8yZKyUIAv649wcA4MFmDyKkWYhJ7VCnsdA3lGgPeyva69+RiCzLpGBr8+bN2L9/PwBg8uTJWL9+vd7ygYGBkuoVBAFz585FcXEx+vTpg/nz50sOtt577z00b659DzW1du3aYfv27ejRowcAYPv27Vi1ahU8PT0lXYPIHthzOgNj5kpp21sxtyQXhRWFcJI5IURe93mp7CGNhSH2/HckIssy6Z1m5cqVAABXV1fExsZarDFr165FYmIiXF1dsWHDBqPeCA0FWmrdu3dH586dAQDFxcW4du2aSW0lsgV7T2dg7lypzKJMAECgVyCaODcxqy22TmOhj73/HYnIsozu2UpKShLfCMaNGye518qQjIwMvPLKKwCAxYsXIyIiwiL1aqM5T6OkpMRq1yGyJEdIZ2DuXKnMwupgK6hpkEXaY8s0Fro4wt+RiCzL6P+TDx8+LB4PHz4cgiBg69atGDFiBPz9/eHu7o6goCCMHz8eX3/9teSUD8888wwKCwvRqVMnLF261NhmSVZWVoYrV66Ij9u1a2fwnG+//RY9evSAXC6Hu7s7WrdujVGjRuGjjz5CXl6e1dpKpMkR0hmYu+XPzaKbACwXbAGWSWNhSY7wdyQiyzL6XUc9KR74e9Xf008/jYSEBNy+fRtlZWXIysrC3r17MX36dPTp0wc3btzQW+emTZuwf/9+yGQyrF+/Hu7u7sa/Eoni4uJQUFAAAIiMjERAQIDBc86fP4+zZ8+isLAQZWVlyM7OxoEDB/Dyyy+jXbt2kibZE5nLEdIZqOdK6aNvrpQ1gi174wh/RyKyLKOHEbOzs8XjxYsX4+rVq3Bzc8OMGTMwcOBAuLi44OzZs9iwYQPy8vKQmpqKYcOG4eTJk/Dx8dFa36JFiwAA0dHReOSRR8x4OfrduXMHL7/8svhYvepRF5lMhsjISAwZMgRhYWHw8fFBUVER0tLSsGPHDmRmZqKoqAhz5szB7du3sWTJEkntKCsrq5FDzNC3XCLAcdIZqOdKmTL5WxxG9G64wZaj/B2JyHKMDrby8/PF46tXr6JFixZISEhA9+7dxd9PmzYNCxcuxIgRI3DhwgVcu3YNr7/+OlatWlWnvueeew737t1DYGCgOPHeGsrLyzFp0iTcuXMHAPD4449jwoQJOsuHhobi0qVL6NSpk9bnP/zwQ7z22mv4+OOPAQCvvfYahgwZgn79+hlsywcffIC3337bhFdB9szay/gdJZ0BYPpcKXXPVnDT4Ppopk040t+RiCxDJkjZu0ZDp06dcPXqVfHxl19+ienTp2ste/bsWfTs2ROCIMDd3R23b9+u8W1t27Zt+Oc//wkA2LVrl9bgR3ObHiObKlKpVJgxYwa2bt0KAOjQoQNOnDiBZs2amVSfptmzZ2PTpk0AgLFjx+LHH380eI62nq02bdqgoKDA4HwXsk/1tYxfV8JQNVuvsjNHZVUlem/tjSqhCpv6bUJkx0ibz6+ylob8dyRqTJRKJXx8fAx+fhsdbPXq1QupqakAAB8fH+Tm5sLFRXcHWf/+/XHs2DEAwL59+8T5HHfu3EF4eDhyc3MxYcIE7Nq1S3sDzQy2BEHAs88+K+YCa9u2LQ4fPqw1x48pbt68iTZt2kAQBLi5uSE/Px8eHh5G1SH1j0X2qb4/OBtifqb09HTs3r8bcc3iAAGY+OdE+Mp9Hfo1GdIQ/45EjY3Uz2+jhxE1e4O6deumN9ACqoMzdbClmdNq3rx5yM3NhY+Pj9bhRUsQBAHPP/+8GGgFBwfjl19+sVigBQBBQUHo2LEjrly5grKyMly/fh3h4eEWq5/smy2W8dtjOgNzqIPVe673gGaAm8oNTnCSvL2Po2pof0ci0s3oYKtz585ISEgAAEm9MJqT4tXf4AoKCvDNN98AALp06SJ5Nd/y5cvF4+joaPj7++ssKwgC5s2bh7Vr1wKoDooOHTqEDh06SLqWMVq2bCmmk7h3757F6yf7ZW7GdFOp0xk4Os1gtdSlem9T96qaq5Ebcs4pU/+O3OaHyLEYHWxpToRXp1DQRzP4UAdemsOBycnJSE5OlnRtzfxb48aN0xlsqQOtNWvWAABat26NQ4cO4cEHH5R0HWOpJ90DgK+vr1WuQfapoS7jr68Pc81gtdRZe7BlTLDaGIIQDj8SOR6jg60xY8ZAJpNBEAScO3cOFRUVcHV11Vn+1KlT4nFoaKhprTRC7UArMDAQhw4dQseOHa1yvczMTHF41M3NrUH0NpB0DXEZf31+mGsGoWKwVVk3z56UYLUxBCG65gc29CFXIkdn9Fe+4OBgDB48GED1/+BxcXE6y545cwYpKSkAqj9sBgwYAKC690cQBEk/mjR/r95MurYXXnhBDLQCAgJw6NAhnekbLGHp0qViO4cOHcpNrRsZczOm25v63rNPMwjV1bNVu5w2jWGvQanzA1UqVT21iIikMql//f333xePFy1ahHPnztUpk5OTg6efflp8PH/+fKNX6RnrxRdfxH/+8x8AfwdapvSmXbt2DStXrtQ7F6eiogKLFy/G5s2bxd9Zc5shsk/mZky3J7b4MNcMVnUFW4aC1cYShHCbHyLHZfQwIgA8/PDDeOWVV7BixQrcvXsXffr0wcyZM8UM8mfOnBEzyAPVKxINZWs31xtvvCGuapTJZFiwYAEuXbqES5cu6T0vMjKyzht5UVERXnnlFbz55psYNmwYHnroIbRv3x7e3t41MshrbkP03nvvoX///pZ/YWT3zMmYbk9sMdlfHazu2LEDFU4VAIAmqiY1yhgKVm21SKG+NdT5gUSNgUnBFlCdQd3Z2RkrVqxAWVkZ1q1bh3Xr1tUpFxUVhbi4OKvudwgAR48eFY8FQcCrr74q6bxNmzZh1qxZWp8rKyvDvn37sG/fPp3ny+VyxMTEYPbs2Ua1lxqWhrCM31Yf5upgNTE5EQDgqqqeAyo1WG0sQUhDnB9I1FiYHGwB1b05U6ZMwcaNG3HgwAHcvHkTFRUV8PPzQ//+/TFjxgyMGTPGUm2tN2FhYYiPj0dKSgqOHz8OhUKBu3fvIj8/H25ubmjZsiW6d++OkSNHYvr06UxESgAcPx2DLT/Mw8LC4HHRAygCuoV2Qy//Xujdu7fBPH7GtKd2OUdbuchtfogcl1nBFlCdCuKzzz6zRFu0kpo1PjEx0WLXdHNzQ1RUFKKioixWJ5G9s+WHeXp6Om4rbwNOwO8XfkfumVwcO3ZMUs+WKe12xJWLmkOuujjK/ECixob/VxIRANtN9k9PT8f2HdtRJqveL1Q9Z0vqSkJj2+3IKxfVQ661e9PlcjnTPhDZMbN7toio4ajvyf7qlYSVskrgr21Qa0+Ql5JBXmq7bbG9kqU1hPmBRI0Ngy0iqsHQh7kl5zqpVxKWu5QDAJwEJzgLzjXKSF1JqK3dwcHByMzMRFpaGry9vaFSqRrEykVHnx9I1Ngw2CKyE/Y0YVvXh7ml5zqpVwhWyioB/L0SUVc5QzTbnZ6ejs8//7xGW6Xm+rPWykV7+hsTUf1hsEVkBxxhwrY5W8XoCjLUKwTVwZazylnr+caugNTV1pKSEknnW2PFpSP8jYnIOhhsEdmYI+x3Z85cJ31BRmhoKORyOW6X3wYAuAh135KMXQEppa36WGPFpSP8jYnIeth/TWRDjrLVjKlbxRha+Xf58mWMHj36754toW7PlrErIKW0VR9Lr7h0lL8xEVkPgy0iG3KU/e5MydJuTG9Yn/59ANQMtkxNZyC1rbXnb1krfYKj/I2JyHo4jEhkQ46y1YwpWdqNCTJaBLQAfgfatW6Hif0nal1JKHUyudS2PvHEE3BycrL6ZHVH+RsTkfUw2CKyIUfZ786ULO3GBBklrtUT15t7N0dERITWlYRSJ5NLbWtISEi9rAR0lL8xEVkPhxGJbEgdGOhjD/vdmZJd3pggo7SyFADg4eJhVIZ3lUoFhUKBtLQ0KBQKqFQqm2XC18VR/sZEZD3s2SKyIUfa787Y7PLG9IaVnqsOttyc3STP87p8+bLettRnJnx9HOlvTETWIROk7vRMVqNUKuHj44OCggKD34CpYXKkHEyVlZU4efIk8vLy0Lx5c/Tu3RsuLtq/t+lKeaCmnpD+6alPsfH8RowPGo8mSU10llcbMmSI3s3n1fXaUxJRR/obE5E0Uj+/2bNFZAccZb87bQHDsWPHdAYMUnuYKlXVqR9UFdLSHxw/flzv85o5v+xlWxtH+RsTkeUx2CKyE/YUGGhjamJOKUFGpVAdbHm4e0CA4c52Q5ngjd3fsL56wOz9b0xE1sFgi4gMMieDPGA4yFD3bLXwbYFyebneeV4eHh6Stt2RuhqSw3tEZG3svyYig6ydmFMdbLk4uRhcSdi3b19JdUpZDWnMykciIlMx2CIig6ydmLNCVQGgOthSz/OqPdlUneF90KBBFkmlYOo2OtrSTRAR6cNhRCIyyBqJOTXnSRUUFgCoDrYAw/O8LJFKwZjeOvUQKIccicgUDLaIyCBTMsjrUzto+b3V74AXcPf2XaBLdRl987wskUfL2N46UxcIEBEx2CIigyyZmFNb0KJC9VDcmdNnkB6QLiloMTeVgjG9deYuECCixo3vCkQkiaG5VFICJF1BiyCrTvfgJDhpnSeli7r3KyIiwui9Do3ZRsfaCwSIqGFjzxYR6VU7B9WLL76IzMxMk3qTdAUtKll1cCUTZEbnyDKVMb111l4gQEQNG4MtItJJ34TwiIgIo+u7dOmS1t+rhxGd/upsr8+gRVveLg8PDzz22GNib501FggQUePBYUQi0srSOahUKhXS0tK0PqceRpQJMgD1E7SoX5+2BKm1f2fMkCMRUW0MtogaMFNzQpmag0qfjIwMFBcXGyzn6elZI2ixRl4rY1+feshRH6kLBIio8eEwIlEDZU5OKFNyUBkiZWhQBhm6desmBi3Gvgapexya8voskW6CiBonBltEDkxXcGFuTihrTAjXNzSoufl0aGgoAOPzWhkTmJn6+sxNN0FEjRODLSIHpSu4GDVqFH7++We95xrKCWWNCeFSEqN6elQPIRqb18rYwMyc12doU20iotr4dYzIAembvL5z506zc0JZY0K4vnlP6p6tyJ6RcHJyMmqYz5T5ZZzwTkT1icEWkYORElxIoW8ozVoTwnUlRnV2cQYAtGnTxmDbNBUWFpqUcJQT3omoPnEYkcjBSAkupDA0lGatCeHa5j1dvnAZd3LvQAbjUj94e3ubNf+KE96JqD4w2CJyMJZI+Cl1iEwzMFIqlSguLoanpyc8PDygUqlM7vmpPe9JOP9Xni1ZdbBlzMbXCoVC0jW9vLzq/I4T3omoPjDYInIwlkj4qW+ITNsKx5KSEiQkJFitB0g9Z8tJVt0mS258bQgnvBORtTHYInIwUnt91KsSjQmQtK1w1LadDfD3Sr9+/fohNDTUrB4hzdQPalKH+e7fvy/pGlLLERFZGoMtIgcjtdcnLCwMYWFhkofIdKVP0BZoaUpJSUFKSopZPV2C8Ncw4l9zttSkDPNx30IisncMtogckNReH6lDZJZY4aju6RoyZAiaN29u1Pwndc+Wes6WJkOvwZj5XUREtsBgi8hBWXJyt6VWOAJAYmKieCy1t0vds+VkQjaa+pzfRURkCr77EDkwda9PREQEQkJCTA4oLl26ZOGWVVP3dqWnp+stJ87ZqtuxJYmu/F1yudzg1kRERNbGni2iRk6lUiEtLc2q19i7d6/e7YHEYURToy0wjQMR2S8GW0SNXEZGBoqLi616jZKSEhw5cgSDBw/W+rw4jCgzLzBiGgciskf8ykfUyElNkurq6mrWdY4fP15jf0JNulYjEhE1BOzZImrkpKZEmDp1KpycnHDp0iUcP37c6OuUlJQgIyNDa8+TvtWI2pKscmiQiByJRYKt06dPY9u2bTh48CAyMzOhVCrRsmVLBAYGol+/fhgyZAgmTJgAZ2dnyXVeunQJPXr0QFlZmfg79bdfKb777jt89dVXOHHiBHJyciCXy9GhQwdMnDgRzzzzDHx8fCTXlZ2djbVr12Lv3r1QKBQoLS1FQEAABg0ahNmzZ+scGiFyBFJTJ6gn4IeEhKBdu3Z10k5IoVQqoVAoDAZO6gDr0qVLSEtLqzHMyb0LicjRyARjIphalEolFixYgC1bthgMhPLz8+Hr6yupXpVKhUGDBiE5ObnG76U0tbCwENOmTcMPP/ygs0xwcDC2b9+O/v37G6xv9+7dmD17Nu7du6ezTHR0NNasWWNUMKlJqVTCx8cHBQUFdVZTEdUHXQlN1bSt6NPscfr9999x9uxZg9fx9PTUGjgtubwEfxT8gS+ivkDT/KaSAjmuMiQiW5P6+W1yz1ZeXh6ioqJw8uRJAICfnx8mTZqEyMhIyOVy5OTkIDMzE4mJiThx4oRRdcfGxiI5ORleXl5GbbFRWVmJSZMm4cCBAwAAf39/REdHIzw8HHl5eYiLi0NSUhIyMzPx6KOP4ujRo+jSpYvO+g4ePIgnn3wSFRUVAIBHH30U48ePh5eXF1JTU7FhwwYolUqsX78eALBu3TqjXieRvdCXJHXUqFHw8PBAWlpajd4ozcnoXbp0wZUrVwxmm689EV+dGqKsc3UPdsafGTgff15Sm+Pj4/WucCQishcm92yNHj0a+/fvBwDMnTsXMTExaNq0qday2dnZaNWqFVxcDMd2v//+O7p164bi4mLExMRg4cKF4nOGmrpmzRo8//zzAIDw8HD88ssv8Pf3r1HmpZdewieffAIAGDBgAI4ePaq1rtLSUnEZOQB8/vnneOGFF2qUuXLlCgYPHoxbt24BAH7++WeMHDnS4GusjT1bZC9qz4+6f/++5P0VDfWO6XOwzUHcc76HMcox8MrzknzezJkzufqQiGxG6ue3SV8JN2/eLAZakydPxvr163UGWgAQGBgoKdASBAFz585FcXEx+vTpg/nz50tuU1VVFd555x3x8VdffVUn0AKAFStWoEePHgCApKQk8XXUtnHjRjHQeuyxx+oEWgDQqVMnrF69Wnz85ptvSm4vkRQqlQoKhQJpaWlQKBQ6V/NZimaS1JKSEuzcubPOcJ6uRKW6EotK+X+/qqoKAFB837gUFFJXUhIR2ZJJw4grV64EUL0UPDY21mKNWbt2LRITE+Hq6ooNGzYYNTxw+PBhsYdp8ODBiIyM1FrO2dkZ8+fPx+zZswEAcXFxiIqKqlNu+/bt4vGiRYt0Xvfxxx9HSEgIFAoFUlJSoFAo+E2bLCI9Pd3g3ofWImWvRG3DeGFhYVCpVPj+++9RXl4OoHp431q4uTQROQKje7aSkpLEb7Tjxo1DYGCgRRqSkZGBV155BQCwePFiREREGHW+5gfD2LFj9ZbVfH7fvn11ni8sLERSUhKA6jfzQYMG6axLvS+bvvqIjKUekpPaq2RpUvZKVCqVYu+vWnp6Onbu3CkGWtYkk8mMmtNJRGQrRgdbhw8fFo+HDx8OQRCwdetWjBgxAv7+/nB3d0dQUBDGjx+Pr7/+WhweMOSZZ55BYWEhOnXqhKVLlxrbrBrbjTz00EN6y/r7+6NNmzYAgNu3b+POnTs1nr948aI4XNOzZ0+Dqww1r3f+vLTJvUS6SO1VsuaQotThOc1yKpXK5C8b6t4xTy9PyecIgoCdO3daPfAkIjKX0cGWevUhUJ1CYfjw4Xj66aeRkJCA27dvo6ysDFlZWdi7dy+mT5+OPn364MaNG3rr3LRpE/bv3w+ZTIb169fD3d3d6Bdy+fJl8bh9+/YGy2uW0TzX0nURGcvUXiVLkjo8p1lOPbHeHH379DX6HGsHnkRE5jI62MrOzhaPFy9ejEOHDsHNzQ3R0dHYsmULtm7dipdffhnNmzcHAKSmpmLYsGEoKCjQWZ96TlR0dDQeeeQRU15HjTxYLVu2NFi+RYsWWs+1dF3alJWVQalU1vghUjOlV8nS1IlO9ZHL5Wjbtq1F2qMZLGmbZK+PtQNPIiJzGR1s5efni8dXr15FixYtcPz4caxbtw4zZszAtGnTsGLFCly4cEHMYXXt2jW8/vrrWut77rnncO/ePQQGBooT701RVFQkHkvpGfPw8BCPa39IWLIubT744AP4+PiIP+ohTSLAtF4lS6s9F1Gb0aNH15gc7+UlPWWDLsd/O47Q0FAsWLAAM2fONDglQI2rEonInhkdbNXuro+JiUH37t3rlAsICMDWrVvFvc42btxY5w1x27Zt+P777wEAq1evNmoLnfqiba82c7366qsoKCgQfwwNs1LjYkqvkjXoSuUgl8vrZG9PT0/Hnj17zL5m8f1iZGRkiCkowsPDJZ3HVYlEZM+MTv2g+abm4+ODp556SmfZ7t27o1+/fjh27BhKS0uRlJQkflu+c+cOFixYAACYMGECJkyYYGxTamjatKnY61ZaWqo37xeAGpmua79Ra55rKCO2obq0cXNzg5ubm8Fy1Dipe5X0JQit3atkLWFhYWJyX137GZqTzFQbzS9lUvdt1BV4atvEGgA3tiaiemV0sNWsWTPxuFu3bgYTFvbq1QvHjh0DUD2cqDZv3jzk5ubCx8cHq1atMrYZdfj6+orBVm5ursFg6+7duzXOrV2XWm5ursFr66uLyBT6ts+p702YNbflqU3KykljaX5hMSfw1JanTD3kr/kFiRtbE5G1GR1sde7cGQkJCQAgaRKr5tCg+k2voKAA33zzDYDqPdW++OILSddevny5eBwdHV0jQ3xoaCiuX78OALh+/brBxKLqsupzNWk+1ixnSl1EppLSq2RrUlZOGsPTy7NOL5WuwNPT0xPdunWDh4cHVCqVpN42bT3V6txl3NiaiKzF6GBLc36WrhWGmjRX56kDL809DpOTk5GcnCzp2pr5t8aNG1cj2IqIiBC/YZ84cQJDhw7VWU9OTo44T8rPzw+tWrWq8Xx4eDicnJygUqlw+vRpVFVV6c21pbnRdteuXSW9FiIp9PUq2QNLT0zv26ev1mBSM/C8dOkS0tLSUFxcjJSUFKSkpNTonTK1t40bWxORtRj9rjJmzBhx0vi5c+dQUVGht/ypU6fEY2v2+hiTxf2nn34Sj7Vlm/f29saAAQMAVH+Y6NqsGqgeRtHcX3HMmDGS20zk6EydmN6kSZMaj9VfZtq2a6tzP0gnJyeUlJTg+PHjKC6uuYeiZmZ9U3vbmEKCiKzF6J6t4OBgDB48GImJiVAqlYiLi8OMGTO0lj1z5gxSUlIA1AxgfH19a/Ru6aO5GlDfOYMHD0ZAQABu3bqFxMREpKamat0fsaqqCp999pn4eOrUqVrrmzp1Ko4cOQIA+OSTTzB48GCt5fbs2SMOI/br18+ueyGILE3KBHZtysvLMWTIEDRv3hze3t5IPZOKewX3kPFnBo7GHdU6Ty00NFRSZv3hw4eb9FoAppAgIuswqb/8/fffF48XLVqEc+fO1SmTk5ODp59+Wnw8f/78GvmoLM3Z2Rlvvvmm+HjGjBm4fft2nXJLlizBmTNnAAADBgzQugk1AMyePVucO7J3716sXr26TpmrV69i3rx54uN3333XnJdA5HCk5OPSJTU1FV26dKnxBeXQoUM694M8cuSIpMz6tXu9jMEUEkRkDTJBahdTLUuWLMGKFSsAVKcymDlzJgYOHAgXFxecOXMGGzZsQF5eHoDqFYlHjx41aRseqT1bAFBZWYmxY8fiwIEDAKpzfUVHRyM8PBx5eXmIi4sThwR9fHyQlJQkJl7V5uDBgxg7dqw4VDpu3DiMHz8eXl5eSE1NxYYNG8R5a9HR0Vi3bp3Rrw+o/oDw8fFBQUGBUZmzieyFtpV/UkRFRcHLywsvp7+MzJJMDM4ejFZlrbSW9fDwkJSKZcKECUhISDC6LXK5HAsWLOCcLSKSTOrnt8nBFgC8/vrrWLFihd7NpqOiohAXF1cjZYQxjAm2gOphgGnTpuGHH37QWSY4OBjbt29H//79Dda3e/duzJ49W+82PNHR0VizZo3BDat1YbBFDYFmTqs7d+6Iw/BS7G+9H4VNCvUGW1LNnDkT9+/fx86dO406j6sRichYUj+/zfoK99577+HUqVN48cUX0blzZ3h7e8Pd3R1t27bF1KlT8dNPPyE+Pt7kQMsU3t7e2Lt3L/bs2YOJEyeiTZs2cHNzQ8uWLdG3b1+sWLEC58+flxRoAdXfki9evIilS5eiR48e8PX1hbu7O9q3b4/p06cjMTER69atMznQImoo1CsnIyIi8MADD1jlGoamIqgTnBqzdZC2jPhERJZkVs8WWQZ7tqihUalUiI2NlTyUJ7Vna8iQIUhMTNT5vDpoSktLw65duwxed9CgQRgyZAiHDonIJPXSs0VEpKaZsiEjIwOjRo2yaP0ymQwDBgxA//796+xZKpPJ0L9/f7F3SupE9wceeICBFhFZndGpH4iIatM2QV4ul6N///44f/68RbLMC4KApKQkrUmQBUFAcnIygoODERYWZvaeikRElsRgi4jMomtrHKVSieTkZDzxxBPw8vJCYWEh7t+/XyMJsLEM7Taxd+9eMQu8tTfz1rbJNXvJiEgbBltEZDIpW+P8/PPPYkoFlUqFY8eOmdzTVV5ervf5kpISKBQKPPDAA1bdzFtXTx43tCYibRhsEZHJpGyNo94GJyQkRFKPky5NmjQxGGwBEIMtwDqbeevryeOG1kSkDfu8ichkUre30Syn7nEyduVt7Q3jpdJMSaEO+EwlpScvPj5e3M+RiAhgzxYRmUHqqr/a5Wr3OKVcSkFhcSGGDh2KjOSMOsNzXbt2NThfS82a+5Ma25NHRAQw2CIiM0hZ9efp6Yng4OA6v1f3OAGA6++u1fW1a4t/9PoHTp48iby8PDRv3hyRkZFa9ybVxsPDw6pBjik9eUREDLaIyGRS5mAVFxfj888/lzR5POPPDByNO1ojeDty5IjkzaUfe+wxq64INLUnj4gaN87ZIiKzhIWF4YknnoCnp6fOMurJ4+np6XrrOnToUJ1eMqmBVr9+/aw+MV3dk6cP83cRUW0MtojILOnp6fj5558lBUV79+7VPnncApuGhYaGml+JAeqePH3Mzd9FRA0P3xGIyGTqNAhS82aVlJTgyJEjdX5fXCKt90qX+uxN0rWakhtaE5EunLNFRCaRkgZBm+PHj2PQoEFi7096ejqK7xcDTUxvS333JlkjfxcRNVwMtojIJFLSIGhTUlIipkYQA7amprXBllnbNVdTEhHpw69hRGQSc9IbqM81NWBTGzVqFIftiMjuMdgiIpOYk95Afa65+ah+/PFH/PHHH8zYTkR2jcOIRGQSKQlNtfHw8BAns5ubj6qkpARfffUVPDw80Ldv3xpzwYiI7AXflYjIJFLSIGhTVVUl9kRJyVslRUlJCRITE/Hxxx8bzOVFRFTfGGwRkcnUaRA8PDwkn1NeXo6YmBikp6ebHLDpUlJSIil5KhFRfWKwRURmCQ0NhYuLcTMSiouLrRoU7d27l3O5iMhucM4WEZlFnWvKFPHx8SgvLweaW7ZN6rlctkwNQUSkxp4tIjLLpUuXTD5XqVSitLTUgq2pWz+HFYnI1hhsEZHJ0tPTcfz4cVs3w6D4+HgOKRKRzTDYIiKTmLpdj1Yyy1Sji1KpREZGhnUvQkSkA4MtIjKJudnf65u5CVSJiEzFYIuITGIPwUuTJtJ3rzY3gSoRkam4GpGITGLr4MXT0xOjRo3C/fv3ceTIEb0T7eVyuZi1noiovjHYIiKTmLpdj6UUFxdjz549AGAwqero0aO5jQ8R2QzffYjIJE5OTujatavV6n/iiScwZcoUSdv5lJSUAKgbdMnlckyZMoV5tojIptizRUQmUalUOH/+vFXq9vDwQFhYGJycnBAaGipOxt+/fz+Ki4t1nufq6oonnngC9+/fh7e3N9q2bcseLSKyOb4LEZFJrLkasaSkREzV4OTkhJCQEMjlcr2BFlCd4sHJyQkREREICQlhoEVEdoHvRERkEmuvRqxdv9Tr2cMqSSIiTQy2iMgk1l6N6OXlZdL1bL1KkoioNgZbRGSStm3bGlwFaI7a2+uoVz/qwxQPRGSPGGwRkV36888/oVAokJaWBoVCAaA6hYM+TPFARPaIqxGJyCQZGRliygVrSElJwdGjR8XHcrkco0ePxpQpUxAfH19jcr76OaZ4ICJ7xGCLiExi7YnolZWVNR4rlUrs2LEDU6ZMwYIFC5CRkYHCwkKmeCAiu8dgi4hMYquJ6D/88AM6duyIkJAQm1yfiMhY/CpIRCaRMmHdGoqLixETE4P09PR6vzYRkSkYbBGRSZycnAxOWLeW4uJi7NixgwEXETkEBltEZLKwsDDJ+xdaQ3x8fJ0UEURE9obBFhGZJSwsDAsWLEBUVFS9X1upVCIxMREKhYJBFxHZLU6QJyKzOTk51cn4Xl+OHDmCI0eOMP0DEdkti/RsnT59GosXL0bPnj3RqlUruLm5ISgoCL1798YLL7yAnTt3oqqqqs55d+/exe7du/Haa68hKioK4eHh8PPzg6urK3x8fNC5c2c8/fTT2LNnj8FvrcuWLYNMJjP6R9eKpsTERKPqmTVrlgX+JYkcl623yVGnhuA8LiKyN2b1bCmVSixYsABbtmyBIAg1nsvKykJWVhZOnTqF1atXIz8/H76+vjXKbNq0CYsXL9ZZt1KpxOXLl7F161b06tUL//3vf/Hggw+a0+Q6OnToYNH6iBor9epEzWSjthAfH4/Q0FDm3SIiu2FysJWXl4eoqCicPHkSAODn54dJkyYhMjIScrkcOTk5yMzMRGJiIk6cOKGzHmdnZ3Tv3h29evVC27ZtERAQAF9fX+Tn5+PUqVPYvn077t27h1OnTmHQoEE4e/Ys/Pz86tQzdepU9OjRQ1Lb58yZg7y8PADA7NmzDZZ/8sknMXXqVL1luB8bNXbq1Yk7duywaTuUSiUyMjKYh4uI7IZMqN0lJdHo0aOxf/9+AMDcuXMRExODpk2bai2bnZ2NVq1awcWlZmx348YNeHt71+nx0nT37l2MHTsWv/32GwDg+eefx+rVq01pMgAgOTkZAwYMAAD4+voiOzsb7u7udcolJiZi6NChAIC33noLy5YtM/mahiiVSvj4+KCgoMBmq7qILCU9PV3rdjpdu3bF+fPntfZ8XW96HeVO5Whzvw08qzzrPO/p6Yni4mLJbZg4cSIiIiJMewFERBJJ/fw2qWdr8+bNYqA1efJkrF+/Xm/5wMBArb9v06aNwWu1aNECa9asQa9evQAAe/fuNSvY2rBhg3j8z3/+U2ugRUSmCwsLQ2hoqNbtdIYPH46MjAxcunQJx48fF89pX9ReZ31yuRwvvvgiMjMz8ccff+DIkSMG22Dr+WNERJpMCrZWrlwJAHB1dUVsbKxFG6RNly5dxOOcnByT6ykqKqoxxDF37lyz2kVE2jk5OWkdxlP/PiQkBO3atavTA6bN6NGj4eLigpCQELRt2xZnz57Ve45cLuewPhHZFaODraSkJHG1z7hx43T2WlnStWvXxOOAgACT6/nvf/+L+/fvAwB69eoleY4XEVmeZg/Y5cuXce7cuRpDhdpSOUiZFzZ69GhOjiciu2J0sHX48GHxePjw4RAEAdu2bcOmTZuQlpaGgoICtGjRAr169cKUKVPw1FNPwdnZ2eQGFhYW4oUXXhAfT5482eS6NIcQ58yZI/m8b7/9Fnv27MEff/yB8vJyNG/eHF27dsXIkSMxZ84cNG/e3OQ2ETVmmj1dI0eO1Dr0WJs6a722eWFG5dlSVQF/JgNFOUBTf6Bdf8DJ9PcqIiJdjJ4gP3HiROzevRsAsGfPHsTGxuLQoUM6y0dGRmLPnj0G52fdvn0bycnJAACVSoWCggKcPXsW//3vf8Whwz59+uDgwYMmzce4cOECunbtCgDw8PBAdnY2fHx8dJbXnCCvT9OmTREbGytpVaMunCBPZDyVSiUpONPq4vdA/CuAMuvv38lbA6NXAOHjrdNgImpwrDZBPjs7WzxevHgxrl69Cjc3N8yYMQMDBw6Ei4sLzp49iw0bNiAvLw+pqakYNmwYTp48qTe4SU1NxYQJE7Q+5+/vj3/9619YtmwZ3NzcjG0yAGDjxo3i8eTJk/W2RU0mkyEyMhJDhgxBWFgYfHx8UFRUhLS0NOzYsQOZmZkoKirCnDlzcPv2bSxZskRSW8rKylBWViY+tnVeIiJHpGtemEEXvwd2zABQ63umMrv691O+ZMBFRBZldM9W586dcfnyZfFxixYtkJCQgO7du9cod+vWLYwYMQIXLlwAAMybNw+rVq3SWW98fDzGjBmj9bknnngCM2bMwGOPPWZMU0Xl5eUICgpCbm4ugOqh0EceeUTvOdnZ2SgsLESnTp20Pl9RUYHXXnsNH3/8MYDqwCw5ORn9+vUz2J5ly5bh7bffrvP7gqws9mwRWZOqClj1EFCYraOADPAOBF74jUOKRGSQUqmET+vWhkemBCN17NhRQPVXQgGA8OWXX+ose+bMGUEmkwkABHd3d0GpVEq6RkVFhZCVlSXs2rVLGDp0qHitKVOmCEVFRcY2WdixY4dYR6dOnYw+X59//etfYt1jx46VdE5paalQUFAg/ty4cUMAIBQAgsAf/vCHP/zhD38c4qcA1Z//BQUFej/3YWxwERkZKaiDCx8fH6GiokJv+Ycfflgsv2/fPmMvJwiCICxevFjQDLiMFRUVJZ6/YsUKk9qgS2ZmphhQurm5CcXFxUbXUVBQIDDY4g9/+MMf/vDHsX6kBltGz9lq1qyZeNytW7c6WeFr69WrF44dOwagZgoHY3zwwQfYvXs3rl27hh07dmDZsmWSVxxlZGTgwIEDAAAXFxfMnDnTpDboEhQUhI4dO+LKlSsoKyvD9evXER4eblplWVkAhxGJrEeRBGx9wnC5f+4EQgZYvz1E5NiUSqB1a4PFjA62OnfujISEBACQNL9IcyK6qRPBnZ2dERUVJQZriYmJkoOtTZs2QaVSAajOC+bv729SG/Rp2bIlrly5AgC4d++e6RV5eVX/EJF1hA0HWgZVT4avPUEeACCrXpUYNpxztojIsKoqScWMzvynORG+oKDAYHnN4EPKCkBdNNM9SA1oBEHApk2bxMfWyhh/584d8VjfPo9EZGNOztXpHQAAslpP/vV49IcMtIjIoowOtsaMGQOZrPpN6dy5c6ioqNBb/tSpU+JxaGiosZcTXb16VTxu1aqVpHMOHDiAP//8E0D1cN/o0aNNvr4umZmZYo+bm5ubaUvRiaj+hI+vTu8gr7X7hbw10z4QkVUYPYwYHByMwYMHIzExEUqlEnFxcZgxY4bWsmfOnEFKSgqA6p6pAQNMmwORkZGBffv2iY+l1qOZW2vWrFlmZbLXZenSpRCE6uGIoUOHwtPT0+LXICILCx8PdH6UGeSJqF6YtIHY+++/Lx4vWrQI586dq1MmJycHTz/9tPh4/vz58PDwEB/funULb7/9NvLy8vRe68qVKxg7dqy4Z9rQoUMlzde6e/cuvvvuOwDVObCMyfB+7do1rFy5Uu8cs4qKCixevBibN28Wf7d06VLJ1yAiG3NyBtoPAiKeqP4vAy0ishKjk5qqLVmyBCtWVM99cHNzw8yZM8UM8mfOnBEzyAPVKxKPHj0Kd3d38XyFQoH27dvDxcUFQ4YMQZ8+fdChQwfI5XKUl5cjMzMTR44cwf79+8WhyqCgIPz666944IEHDLbv008/xcKFCwFU7+F48OBBya/tzJkz6NmzJ9zc3DBs2DA89NBDaN++Pby9vWtkkL9x44Z4znvvvYfXXntN8jU0cbseIiIixyP189vkYAsAXn/9daxYsQJVembjR0VFIS4urkbKCODvYEuqUaNGYd26dWjXrp2k8hERETh//jwAYNu2bXjqqackX0sdbEkhl8sRExPDvRGJiIgamXoJtgDg7Nmz2LhxIw4cOICbN2+ioqICfn5+6N+/P2bMmKFzCx4AuHz5Mg4fPozDhw/j0qVLuH37Nu7cuQOZTAYfHx907NgRffr0wZNPPok+ffpIbtNvv/2Gvn37AgCaN2+OrKwso/ZULCsrQ2JiIlJSUnD8+HEoFArcvXsX+fn5cHNzQ8uWLdG9e3eMHDkS06dPNztAYrBFRETkeOot2CLzMdgiIiJyPFI/v02aIE9ERERE0jDYIiIiIrIiBltEREREVsRgi4iIiMiKGGwRERERWZHR2/WQ5akXhOrLWE9ERET2Rf25bSixA4MtO1BYWAgAaNOmjY1bQkRERMYqLCyEj4+PzueZZ8sOqFQqZGVlwdvbGzKZzOjzlUol2rRpgxs3bjBPF+nE+4QM4T1CUvA++ZsgCCgsLETr1q3h5KR7ZhZ7tuyAk5MTgoODza5HLpc3+hufDON9QobwHiEpeJ9U09ejpcYJ8kRERERWxGCLiIiIyIoYbDUAbm5ueOutt4zabJsaH94nZAjvEZKC94nxOEGeiIiIyIrYs0VERERkRQy2iIiIiKyIwRYRERGRFTHYIiIiIrIiJjW1shMnTuC3337DiRMncOHCBdy5cwe5ubmoqKiAr68vwsLCMGzYMMyaNQtt27aVVGd2djbWrl2LvXv3QqFQoLS0FAEBARg0aBBmz56NwYMHG9XG7777Dl999RVOnDiBnJwcyOVydOjQARMnTsQzzzwjKWEbmceS98m5c+fw888/IykpCefPn0dWVhYqKirQrFkzhIeHY8SIEZg9ezYCAwONaiPvE9uyxntJbZcuXUKPHj1QVlYm/s6YNVS8R2zPWvdJSUkJtm3bhu+++w5paWnIycmBq6sr/P390bFjRwwdOhT/+Mc/0LFjR4N1Ncr7RCCr8vLyEgAY/HFzcxPef/99g/Xt2rVL8PX11VtXdHS0UFlZabAupVIpjBs3Tm9dwcHBQlJSkiX+KUgPS9wn+fn5QseOHSXV4+npKaxatUpS23if2AdLv5fUVlVVJfTv379OfVLwHrEf1rhPfvjhB6Ft27YG61ywYIHeehrzfcLUD1bWtGlTeHl5oU+fPujSpQsCAgIQEBAAQRCgUCjw448/IikpSSz/9ttv480339Ra18GDBzF27FhUVFQAAB599FGMHz8eXl5eSE1NxYYNG8QdyKOjo7Fu3Tqd7aqsrMTYsWNx4MABAIC/vz+io6MRHh6OvLw8xMXFie3y9fXF0aNH0aVLF4v8m1BdlrhPbt26JfZWOTs7Y9CgQRg0aBAeeOABeHp64s8//8TOnTvx22+/ied89NFHeOmll3S2i/eJ/bDke4k2MTExWLRoEby8vHD//n3x94Y+IniP2BdL3yebNm3C3LlzoVKpAABDhw5FVFQU2rRpg4qKCmRmZuLSpUvYt28fnn76aXz66ada62n094kNA71GIS0tTVCpVHrLbNmyRZDJZAIAwcXFRbh582adMiUlJTW+WXz++ed1yly+fFkICAgQy/z88886r/mf//xHLBceHi7cunWrTpn//d//FcsMGDBAwqslU1niPsnOzhZatGghLF++XMjKytJZz4cffij+XZs0aSJcvXpVZ1neJ/bDUu8l2ly7dk3w9PQUAAgxMTFG9WzxHrEvlrxPjh49Kjg5OQkABD8/P+HXX3/VWWdlZaXe953Gfp8w2LITjz32mHiTbdy4sc7zq1atEp9/7LHHdNbz7bffiuX69euntUxlZWWNoOzUqVM6y/Xo0UMsFx8fb9qLI4vRd5+Ul5cLhYWFkuqZMGGCWM9bb72ltQzvE8dk6L2kNpVKJQwZMkQAIPTp00eoqqqSHGzxHnFchu6T8vJy4cEHHxQACK6urkJqaqrJ1+J9IghcjWgnNLtLc3Jy6jy/fft28XjRokU663n88ccREhICAEhJSYFCoahT5vDhw7h16xYAYPDgwYiMjNRal7OzM+bPny8+jouL0/sayPr03Seurq5o2rSppHqefPJJ8fjcuXNay/A+cUyG3ktqW7t2LRITE+Hq6ooNGzbAyUn6xwLvEcdl6D759ttvce3aNQDAs88+i549e5p8Ld4nTP1gN9Q3NQAEBATUeK6wsFAcy/b29sagQYN01uPk5ITRo0eLj/ft21enTHx8vHg8duxYve3SfF5bXVS/9N0nxvD29haPS0pKtJbhfeKYjLlHMjIy8MorrwAAFi9ejIiICKOuxXvEcRm6TzZu3CgeR0dHm3Ut3icMtuzCnj17sGvXLgCAh4cHHn300RrPX7x4UZyc2LNnTzg7O+ut76GHHhKPz58/X+f5tLQ0rWW18ff3R5s2bQAAt2/fxp07d/SWJ+sxdJ8YQ/MeaNeuncEyvE8cg7H3yDPPPIPCwkJ06tQJS5cuNfp6vEcck6H7pLKyEsnJyQCAVq1aoVu3brh+/ToWLlyITp06wcPDA76+vujevTsWLVqE69ev670e7xPm2apXv/76K/Ly8gAA5eXluHHjBvbv3y+uznB1dcW6devg5+dX47zLly+Lx+3btzd4Hc0ymueaU9+NGzfEc1u1amXwHDKdqfeJVBUVFTW+ter6QOZ9Yr8scY9s2rQJ+/fvh0wmw/r16+Hu7m50O3iP2DdT75OLFy+iuLgYABAeHo7//ve/mDt3bo1VqqWlpTh37hzOnTuHVatW4aOPPsKCBQu0toP3CYOtevXyyy/j+PHjdX4vk8kwdOhQvPPOOxgwYECd5+/duycet2zZ0uB1WrRoofVca9VHlmXqfSLVe++9h6tXrwIAevTooTPY4n1iv8y9R7Kzs8W5n9HR0XjkkUdMagfvEftm6n2SnZ0tHmdkZGD69OmorKxE9+7d8fTTT6Nt27a4c+cOdu/ejYSEBFRUVOB//ud/4OLignnz5tWpj/cJgy27EBwcjGHDhokT22srKioSj6V8+/Tw8BCPCwsLrV4f1Q9D94kUP/74I959910Af3+r1TUhmveJ45F6jzz33HO4d+8eAgMDsXLlSpOvx3vEMRm6T/Lz88Vj9RDhM888gzVr1tR4v5g3bx4+//xzcVL7//7v/+Lxxx9HUFBQjfp4n3DOVr1KSUmBUJ1uA0VFRTh9+jSWLVuGe/fu4Y033kC3bt2wf/9+vXXIZLJ6ai3ZiiXuE21OnjyJp556Spz/98knnxicP0H2yZx7ZNu2bfj+++8BAKtXr26YW6MQANPvE/V7hFpoaChWrVql9YvZiy++iAkTJgAAysrKsGbNGuu8GAfHYMtGvLy80KNHD7z11ls4ffo0AgMDkZeXh/Hjx+Ps2bM1ymou59e1ckyTZhnNVWfa6istLTW7PrIeY+4Tfc6dO4eoqCjxW+LSpUvx4osv6j2H94ljMOYeuXPnjjivZsKECeKHpKl4jzgOY+6T2n+bOXPmwNXVVWfdzz33nHh88ODBOs/zPmGwZRc6dOiADz74AED1JMb333+/xvO+vr7icW5ursH67t69q/Vca9VH9cPQfaJLWloahg8fLk6UffXVV/HOO+8YPI/3ieMxdI/MmzcPubm58PHxwapVq8y+Hu8Rx2ToPmnWrFmNx7169dJbn+bzmikl1HifcM6W3dCcpJyYmFjjudDQUPHY0BLb2mU0z9X8nbrM9evXDc7vMFQf1R9994k258+fx/Dhw8U3uJdffllykMb7xDHpukcKCgrwzTffAKhOaPnFF19Iqm/58uXicXR0NPz9/cXHvEccl773ks6dO9d4LJfL9dalORSt3p9XE+8TBlt2Q7OrtPbqi/DwcDg5OUGlUuH06dOoqqrSm2vrxIkT4nHXrl3rPB8RESEmmTtx4gSGDh2qs66cnBxxCa6fn1+DWILryPTdJ7Wpe7TUeWpeeuklrFixQvK1eJ84Jl33iKCxoXRycrKYR8kQzfxb48aNqxFs8R5xXPreS1q2bInWrVsjKysLQHWgro/m+drmAPI+4TCi3VAvxQdQ5+by9vYWl+cWFhbi6NGjOutRqVQ1JjyOGTOmThlDGeY1/fTTT+Kxocy/ZH367hNN58+fx7Bhw8RAa9GiRfjoo4+MuhbvE8ck9R6xBN4jjsvQfaL5Nzp58qTeuk6dOiUea+uJ4n0CCVu6U72YN2+euPnmlClT6jy/evVqbkRNBu8TQRCE8+fPC61atRLLLVy40KRr8T5xTFLuEUPU5xv6iOA94rgM3SeJiYni8506dRLKy8t11vX444+LZZcvX17ned4n1UtCyUrWrFkj/PLLL4JKpdJZprKyUvjggw8EmUwm3mCJiYl1ypWUlAht27YVy6xatapOmStXrtS4oQ8cOKDzuv/5z3/Ecl26dBFycnLqlHnppZfEMgMGDJD4qslYlrxPLly4IPj5+Yll/ud//sestvE+sQ+WvEekkBpsCQLvEXti6ftk1KhRYplnnnlGqKqqqlPm888/F8t4e3sLubm5Wutq7PeJTBA0BvLJombNmoUtW7agTZs2GDlyJCIiIuDn54cmTZrg3r17OH/+PL777jsoFArxnFdffVXnBOaDBw9i7NixqKioAFA9f2L8+PHw8vJCamoqNmzYII6tR0dHY926dTrbVllZibFjx4rbNgQEBCA6Ohrh4eHIy8tDXFycOFzp4+ODpKSkGrvEk+VY6j7JzMxE7969kZOTA6B6H80333zT4PU9PT0xatQorc/xPrEPln4vMUQzn5+hjwjeI/bD0vfJ9evX0b9/f9y6dQsA0L17d0yfPh1t27ZFbm4udu3aVSPVw44dOzB58mStdTX6+8TGwV6DNnPmzBrfEPX9+Pj4CP/5z38M1rlr1y7B19dXb13R0dFCZWWlwbqUSqUwbtw4vXUFBwcLSUlJlvjnIB0sdZ8cOnRIcj2aP+3atdPbPt4ntmeN9xJ9NOuTgveIfbDGfZKWliaEhYXpratp06bC9u3bDdbVmO8T9mxZUVFREZKSknD48GGkpKQgKysLt2/fRmFhIby8vODv749u3bohKioKkydPlpzJOTs7G2vWrMHevXuhUChQWlqKwMBADBw4EHPmzMHgwYONaud3332HL7/8EidOnMDt27fh7e2NDh06YOLEiXj22WeZYdrKLHWfJCYm6l3lo0u7du1qfNPVhfeJ7VjrvUQXY3q2NPEesS1r3Sfl5eXYvHkzvvnmG1y8eBF37txB06ZN0alTJ4wZMwbPP/+8UYsxGuN9wmCLiIiIyIqY+oGIiIjIihhsEREREVkRgy0iIiIiK2KwRURERGRFDLaIiIiIrIjBFhEREZEVMdgiIiIisiIGW0RERERWxGCLiIiIyIoYbBERERFZEYMtIiIiIitisEVERERkRQy2iIiIiKyIwRYRERGRFTHYIiIiIrKi/wfI/neQI4WmPAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "obj_x_list = []\n",
+ "obj_y_list = []\n",
+ "for object_at_k in trajectory_list:\n",
+ " obj_x_list.append(object_at_k[1])\n",
+ " obj_y_list.append(object_at_k[0])\n",
+ " \n",
+ "meas_x_list = []\n",
+ "meas_y_list = []\n",
+ "for meas_at_k in measurement_list:\n",
+ " meas_x = meas_at_k[0] * np.cos(meas_at_k[1]) + radar_pos[1]\n",
+ " meas_y = meas_at_k[0] * np.sin(meas_at_k[1]) + radar_pos[0]\n",
+ " meas_x_list.append(meas_x)\n",
+ " meas_y_list.append(meas_y)\n",
+ " \n",
+ "plt.plot(actual_object_0[1], actual_object_0[0], 'x') # object initial position\n",
+ "plt.plot(radar_pos[1], radar_pos[0], 'o') # radar\n",
+ "plt.plot(obj_x_list, obj_y_list) # actual trajectory\n",
+ "plt.axhline(y = R_0, color = 'r', linestyle = '-') # earth surface\n",
+ "plt.scatter(meas_x_list, meas_y_list, color='grey')\n",
+ " \n",
+ "# rendering the plot\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "id": "f288f98a",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "P_a = \n",
+ "[[0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00\n",
+ " 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00]\n",
+ " [0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00\n",
+ " 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00]\n",
+ " [0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00\n",
+ " 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00]\n",
+ " [0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00\n",
+ " 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00]\n",
+ " [0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00\n",
+ " 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00]\n",
+ " [0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 2.4064e-05\n",
+ " 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00]\n",
+ " [0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00\n",
+ " 2.4064e-05 0.0000e+00 0.0000e+00 0.0000e+00]\n",
+ " [0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00\n",
+ " 0.0000e+00 1.0000e-02 0.0000e+00 0.0000e+00]\n",
+ " [0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00\n",
+ " 0.0000e+00 0.0000e+00 1.0000e+00 0.0000e+00]\n",
+ " [0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00\n",
+ " 0.0000e+00 0.0000e+00 0.0000e+00 1.7000e-02]]\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "x0 = np.array([[6500.4], [349.14], [-1.8093], [-6.7967], [0.]])\n",
+ "\n",
+ "P0 = np.array([[10e-6, 0.0, 0.0, 0.0, 0.0],\n",
+ " [0.0, 10e-6, 0.0, 0.0, 0.0],\n",
+ " [0.0, 0.0, 10e-6, 0.0, 0.0],\n",
+ " [0.0, 0.0, 0.0, 10e-6, 0.0],\n",
+ " [0.0, 0.0, 0.0, 0.0, 1.0]])\n",
+ "\n",
+ "Q = np.array([[2.4064e-5, 0.0, 0.0],\n",
+ " [0.0, 2.4064e-5, 0.0],\n",
+ " [0.0, 0.0, 0.01]])\n",
+ "\n",
+ "R = np.array([[1.0, 0.0],[0.0, 17e-3]])\n",
+ "\n",
+ "nx = np.shape(x0)[0]\n",
+ "nz = np.shape(R)[0]\n",
+ "nv = np.shape(x0)[0]\n",
+ "nn = np.shape(R)[0]\n",
+ "\n",
+ "ukf = UKF(dim_x=nx, dim_z=nz, Q=Q, R=R, kappa=(3 - nx))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "id": "bbb62fd6",
+ "metadata": {},
+ "outputs": [
+ {
+ "ename": "ValueError",
+ "evalue": "could not broadcast input array from shape (2,1) into shape (2,)",
+ "output_type": "error",
+ "traceback": [
+ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
+ "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)",
+ "\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_2948\\3010117484.py\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 10\u001b[0m \u001b[0mz\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmeasurement_list\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mz_idx\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 11\u001b[0m \u001b[0mz_idx\u001b[0m \u001b[1;33m+=\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 12\u001b[1;33m \u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mP\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mukf\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcorrect\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmeasurement_model\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mP\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mz\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 13\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 14\u001b[0m \u001b[0mestimates\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+ "\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_2948\\3724165018.py\u001b[0m in \u001b[0;36mcorrect\u001b[1;34m(self, h, x, P, z)\u001b[0m\n\u001b[0;32m 87\u001b[0m \u001b[0my_sigmas\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mzeros\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdim_z\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mn_sigma\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 88\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mn_sigma\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 89\u001b[1;33m \u001b[0my_sigmas\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mi\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mh\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mxx_sigmas\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mi\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mxn_sigmas\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mi\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 90\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 91\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mPyy\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcalculate_mean_and_covariance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my_sigmas\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
+ "\u001b[1;31mValueError\u001b[0m: could not broadcast input array from shape (2,1) into shape (2,)"
+ ]
+ }
+ ],
+ "source": [
+ "x, P = x0, P0\n",
+ "x = np.reshape(x, (5,))\n",
+ "\n",
+ "estimates = []\n",
+ "z_idx = 0\n",
+ "for i in range(300):\n",
+ " x, P, _ = ukf.predict(reentering_object_time_update, x, P)\n",
+ " \n",
+ " if i % 2 != 0:\n",
+ " z = measurement_list[z_idx]\n",
+ " z_idx += 1\n",
+ " x, P, _ = ukf.correct(measurement_model, x, P, z)\n",
+ " \n",
+ " estimates.append(x)\n",
+ "\n",
+ "#estimates = np.asarray(estimates).T\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fd3064cb",
+ "metadata": {},
+ "source": [
+ "# References"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ccd8f3a0",
+ "metadata": {},
+ "source": [
+ "[1] [S. J. Julier and J. K. Uhlmann. A New Extension of the Kalman Filter\n",
+ "to Nonlinear Systems. In Proc. of AeroSense: The 11th Int. Symp. on\n",
+ "Aerospace/Defence Sensing, Simulation and Controls., 1997.](https://www.cs.unc.edu/~welch/kalman/media/pdf/Julier1997_SPIE_KF.pdf)\n",
+ "\n",
+ "[2] [E. A. Wan and R. van der Merwe, “The Unscented KalmanFilter for Nonlinear Estimation,” in Proc. of IEEE Symposium2000 (AS-SPCC), Lake Louise, Alberta, Canada, Oct. 2000.](https://groups.seas.harvard.edu/courses/cs281/papers/unscented.pdf)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "7aefb34f",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/python/examples/Introduction_Unscented_Transformation.ipynb b/python/examples/Introduction_Unscented_Transformation.ipynb
new file mode 100644
index 0000000..5f7ff7b
--- /dev/null
+++ b/python/examples/Introduction_Unscented_Transformation.ipynb
@@ -0,0 +1,1190 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "d85504e0",
+ "metadata": {},
+ "source": [
+ "# Introduction"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "id": "0d5d33d9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import scipy.stats as stats\n",
+ "import math"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "id": "1c89438a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def f(x):\n",
+ " '''\n",
+ " Non-linear function\n",
+ " '''\n",
+ " return x**2\n",
+ "\n",
+ "\n",
+ "def f_prime(x):\n",
+ " '''\n",
+ " Partial derivative of function f\n",
+ " '''\n",
+ " return 2 * x\n",
+ "\n",
+ "\n",
+ "def f_taylor_order_1(x, x_mean, z_mean):\n",
+ " '''\n",
+ " First order Taylore expansion of function f(x)\n",
+ " '''\n",
+ " return (f_prime(x) * x_mean) - z_mean"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "id": "ab4f9a93",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def gaussian_pdf(x, mu, var):\n",
+ " '''\n",
+ " probability density function of gaussian distribution\n",
+ " \n",
+ " x : point of interest\n",
+ " mu : mean of the distribution\n",
+ " var : variance of the distribution\n",
+ " '''\n",
+ " return (1. / np.sqrt(2. * np.pi * var)) * np.exp(-0.5 * (x - mu)**2 / var)\n",
+ "\n",
+ "\n",
+ "def generate_normal_samples(mu, var, sigma_num=3, num=300):\n",
+ " '''\n",
+ " generate normally distributed 1D [samples, pdfs] such that the mean value\n",
+ " is included as well in the middle index of the array.\n",
+ " '''\n",
+ " sigma = np.sqrt(var)\n",
+ " sigma_3 = sigma_num * sigma\n",
+ " x = np.linspace(mu - sigma_3, mu + sigma_3, num)\n",
+ " middle_idx = int(num / 2)\n",
+ " x = np.insert(x, middle_idx, mu) # add the mean value to the samples in the correct order of points (middle)\n",
+ " p = gaussian_pdf(x, mu, var)\n",
+ " return x, p"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "id": "258ee36f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def create_plot():\n",
+ " '''\n",
+ " create and prepare the 3 subplot figures to be used by the KF visualizer\n",
+ " '''\n",
+ " fig, axes = plt.subplots(2, 2, figsize=(20, 10))\n",
+ "\n",
+ " axes[1, 0].set_axis_off()\n",
+ "\n",
+ " axes[0, 0].axvline(c='grey', lw=2)\n",
+ " axes[0, 0].axhline(c='grey', lw=2)\n",
+ "\n",
+ " axes[0, 1].axvline(c='grey', lw=2)\n",
+ " axes[0, 1].axhline(c='grey', lw=2)\n",
+ "\n",
+ " axes[1, 1].axvline(c='grey', lw=2)\n",
+ " axes[1, 1].axhline(c='grey', lw=2)\n",
+ "\n",
+ " axes[0, 0].grid(visible=True)\n",
+ " axes[0, 1].grid(visible=True)\n",
+ " axes[1, 1].grid(visible=True)\n",
+ "\n",
+ " axes[0, 1].set_title('Function Model f', fontsize=30)\n",
+ "\n",
+ " axes[0, 0].set_xlabel('p(z)', fontsize=30)\n",
+ " axes[0, 0].set_ylabel('output z', fontsize=30)\n",
+ "\n",
+ " axes[1, 1].set_xlabel('input x', fontsize=30)\n",
+ " axes[1, 1].set_ylabel('p(x)', fontsize=30)\n",
+ "\n",
+ " return fig, axes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "id": "cd9f4d93",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class Gaussian(object):\n",
+ " def __init__(self, samples):\n",
+ " self.num = len(samples)\n",
+ " self.mean = self.calculate_mean(samples)\n",
+ " self.var = self.calculate_covariance(samples)\n",
+ " \n",
+ " def calculate_mean(self, samples):\n",
+ " mean = 0.0\n",
+ " for x_i in samples:\n",
+ " mean += x_i\n",
+ " mean /= len(samples)\n",
+ " return mean\n",
+ " \n",
+ " def calculate_covariance(self, samples):\n",
+ " var = 0.0\n",
+ " for x_i in samples:\n",
+ " var += (x_i - self.mean)**2\n",
+ " var /= len(samples)\n",
+ " return var"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "id": "1ea5fdbf",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class MontoCarloSampler(object):\n",
+ " def __init__(self, nl_model, mean, var, num):\n",
+ " '''\n",
+ " Monto-Carlo method is used to calculate the statistics of a random variable\n",
+ " which undergoes a nonlinear transformation.\n",
+ " \n",
+ " nl_model: nonlinear model\n",
+ " mean: mean of the input normal distribution\n",
+ " var: variance of the input normal distribution\n",
+ " num: number of random samples to be drawn from the distribution\n",
+ " '''\n",
+ " \n",
+ " # 1. draw random samples from the normal distribution defined by mean and variance\n",
+ " self.x_samples = np.random.normal(mean, var, num)\n",
+ " \n",
+ " # 2. calculate the pdf of the drawn samples from 'x'\n",
+ " self.p_x_samples = gaussian_pdf(self.x_samples, mean, var)\n",
+ " \n",
+ " # 3. transform the drawn samples through the nonlinear model\n",
+ " self.z_samples = nl_model(self.x_samples)\n",
+ " \n",
+ " # 4. calculate the mean and covariance of the transformed samples.\n",
+ " z_gauss = Gaussian(self.z_samples)\n",
+ " \n",
+ " # 5. set other outputs\n",
+ " self.num = num\n",
+ " self.mean = z_gauss.mean\n",
+ " self.var = z_gauss.var\n",
+ " \n",
+ " # 6. calculate the pdf of the transformed samples 'z'\n",
+ " self.p_z_samples = gaussian_pdf(self.z_samples, z_gauss.mean, z_gauss.var)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "id": "8059bc88",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class EKF_Visualization(object):\n",
+ " def __init__(self, model=None, model_taylor=None, x_mean=0.0, x_sigma=0.0, samples_num=100, x_model_range=[-1., 1.], monto_carlo_sizes=[]): \n",
+ " '''\n",
+ " initialize the class object\n",
+ " \n",
+ " model : model to be used for projection\n",
+ " model_taylor : first order Taylor expansions of model f(x)\n",
+ " \n",
+ " x_mean : input mean\n",
+ " x_sigma : input standard deviation\n",
+ " \n",
+ " x_model_range : range of values for plotting inputs of model and model_taylor\n",
+ " z_model_range : range of values for plotting outputs of model and model_taylor\n",
+ " \n",
+ " '''\n",
+ " \n",
+ " self.xlim_min, self.xlim_max = x_model_range\n",
+ " \n",
+ " self.x_mean = x_mean\n",
+ " self.x_sigma = x_sigma\n",
+ " \n",
+ " self.z_mean = model(self.x_mean)\n",
+ " \n",
+ " self.model = model\n",
+ " self.model_taylor = model_taylor\n",
+ " \n",
+ " self.fig, self.axes = create_plot()\n",
+ " \n",
+ " self.monto_carlo_sizes = monto_carlo_sizes\n",
+ " \n",
+ " def update_plot(self):\n",
+ " '''\n",
+ " main function to execute the class plotting\n",
+ " '''\n",
+ " \n",
+ " # ==============================================================================================\n",
+ " # 1. generate 'x' samples to feed to the model 'f(x)'\n",
+ " #\n",
+ " x_norm_bel, p_norm_bel = generate_normal_samples(self.x_mean, self.x_sigma, num=50)\n",
+ " x_norm_pts, p_norm_pts = generate_normal_samples(self.x_mean, self.x_sigma, num=8)\n",
+ " # ==============================================================================================\n",
+ " \n",
+ " \n",
+ " # ==============================================================================================\n",
+ " # 2. propagate the 'x' samples through model 'f(x)' to obtain 'z' samples\n",
+ " #\n",
+ " x_model_curve = np.linspace(self.xlim_min, self.xlim_max, num=100)\n",
+ " z_model_curve = self.model(x_model_curve)\n",
+ " \n",
+ " z_norm_bel = self.model(x_norm_bel)\n",
+ " z_norm_pts = self.model(x_norm_pts)\n",
+ " # ==============================================================================================\n",
+ " \n",
+ " \n",
+ " # ==============================================================================================\n",
+ " # 3. propagate the 'x' samples through the taylore expansion of model 'f(x)' to obtain 'z' samples\n",
+ " #\n",
+ " z_model_taylor = self.model_taylor(x_model_curve, self.x_mean, self.z_mean)\n",
+ " z_norm_bel_taylor = self.model_taylor(x_norm_bel, self.x_mean, self.z_mean)\n",
+ " z_norm_pts_taylor = self.model_taylor(x_norm_pts, self.x_mean, self.z_mean)\n",
+ " # ==============================================================================================\n",
+ " \n",
+ " \n",
+ " # ==============================================================================================\n",
+ " # 4. Monto-Carlo method: draw normally distributed random samples from 'x' and transform them\n",
+ " # through the nonlinear function f(x), then calculate mean and covariance of the 'z' outputs.\n",
+ " # \n",
+ " monto_carlo_sampler_list = []\n",
+ " z_monto_carlo_approx_list = []\n",
+ " p_monto_carlo_approx_list = []\n",
+ " \n",
+ " for s in self.monto_carlo_sizes:\n",
+ " monto_carlo_sampler = MontoCarloSampler(nl_model=self.model, mean=self.x_mean, var=self.x_sigma, num=s)\n",
+ " z_monto_carlo_approx, p_monto_carlo_approx = generate_normal_samples(monto_carlo_sampler.mean, monto_carlo_sampler.var, num=50)\n",
+ " \n",
+ " monto_carlo_sampler_list.append(monto_carlo_sampler)\n",
+ " z_monto_carlo_approx_list.append(z_monto_carlo_approx)\n",
+ " p_monto_carlo_approx_list.append(p_monto_carlo_approx)\n",
+ " \n",
+ " # ==============================================================================================\n",
+ " \n",
+ " \n",
+ " # ==============================================================================================\n",
+ " # 5. calculate the min and max samples to set plots limits\n",
+ " #\n",
+ " \n",
+ " z_list = [z_norm_bel, z_norm_bel_taylor]\n",
+ " p_list = [p_norm_bel]\n",
+ " for i in range(len(z_monto_carlo_approx_list)):\n",
+ " z_list.append(z_monto_carlo_approx_list[i])\n",
+ " p_list.append(p_monto_carlo_approx_list[i])\n",
+ " \n",
+ " z_lim_min, z_lim_max = np.min(z_list), np.max(z_list)\n",
+ " \n",
+ " p_input_max = np.max(p_norm_bel) \n",
+ " p_output_max = np.max(p_list)\n",
+ " # ==============================================================================================\n",
+ " \n",
+ " \n",
+ " # ==============================================================================================\n",
+ " # 6. set plots limits\n",
+ " #\n",
+ " self.axes[0, 0].set_xlim(0., p_output_max)\n",
+ " self.axes[0, 0].set_ylim(z_lim_min, z_lim_max)\n",
+ " \n",
+ " self.axes[1, 1].set_xlim(self.xlim_min, self.xlim_max)\n",
+ " self.axes[1, 1].set_ylim(0., p_input_max)\n",
+ " \n",
+ " self.axes[0, 1].set_xlim(self.xlim_min, self.xlim_max)\n",
+ " self.axes[0, 1].set_ylim(z_lim_min, z_lim_max)\n",
+ " # ==============================================================================================\n",
+ " \n",
+ " \n",
+ " # ==============================================================================================\n",
+ " # 7. plot input normal distribution\n",
+ " #\n",
+ " self.axes[1, 1].plot(x_norm_bel, p_norm_bel, color='blue', label='input normal distribution')\n",
+ " if (len(monto_carlo_sampler_list) == 1):\n",
+ " self.axes[1, 1].plot(monto_carlo_sampler_list[0].x_samples, monto_carlo_sampler_list[0].p_x_samples, color='red', marker='o', linestyle='', label='input drawn samples') # plot samples\n",
+ " # ==============================================================================================\n",
+ " \n",
+ " \n",
+ " # ==============================================================================================\n",
+ " # 8. plot output normal distributions\n",
+ " # \n",
+ " self.axes[0, 0].plot(p_norm_bel, z_norm_bel, color='blue', label='output normal distribution')\n",
+ " \n",
+ " if (len(monto_carlo_sampler_list) == 1):\n",
+ " self.axes[0, 0].plot(monto_carlo_sampler_list[0].p_z_samples, monto_carlo_sampler_list[0].z_samples, color='red', marker='o', linestyle='', label='output transformed samples') # plot samples\n",
+ " \n",
+ " self.axes[0, 0].plot(p_norm_bel, z_norm_bel_taylor, color='orange', label='Taylor-1st-Order Distribution')\n",
+ " \n",
+ " for i in range(len(monto_carlo_sampler_list)):\n",
+ " self.axes[0, 0].plot(p_monto_carlo_approx_list[i], z_monto_carlo_approx_list[i], color='black', linestyle=':', label=f'monto-carlo approx N={monto_carlo_sampler_list[i].num}, [mean={round(monto_carlo_sampler_list[i].mean,2)}, var={round(monto_carlo_sampler_list[i].var,2)}]')\n",
+ " # ==============================================================================================\n",
+ " \n",
+ " \n",
+ " # ==============================================================================================\n",
+ " # 9. plot model curve\n",
+ " # \n",
+ " self.axes[0, 1].plot(x_model_curve, z_model_curve, color='blue', label='non-linear model f(x)=x')\n",
+ " \n",
+ " if (len(monto_carlo_sampler_list) == 1):\n",
+ " self.axes[0, 1].plot(monto_carlo_sampler_list[0].x_samples, monto_carlo_sampler_list[0].z_samples, color='red', marker='o', linestyle='', label='input/output samples') # plot samples\n",
+ " \n",
+ " # ==============================================================================================\n",
+ " \n",
+ " \n",
+ " # ==============================================================================================\n",
+ " # 10. plot model first order taylor curve\n",
+ " # \n",
+ " self.axes[0, 1].plot(x_model_curve, z_model_taylor, color='orange', label='first order taylor of f(x)')\n",
+ " # ==============================================================================================\n",
+ "\n",
+ " self.axes[0, 0].legend(loc='upper right')\n",
+ " self.axes[0, 1].legend(loc='upper right')\n",
+ " self.axes[1, 1].legend(loc='upper right')\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "id": "3d9aa617",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABJsAAAJ8CAYAAABZZqAdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd1yV1R/A8c8BB+49o8Q92Ip7gJbacubIjWblKGekZTnTTM31y5FpoqVJWmpb0xzRUDAJJ47EkeZAUVBRwfP747lc2fPCZXzfr9d9Xe5zn/F9zr3Ac7/3nO9RWmuEEEIIIYQQQgghhLAEG2sHIIQQQgghhBBCCCHyDkk2CSGEEEIIIYQQQgiLkWSTEEIIIYQQQgghhLAYSTYJIYQQQgghhBBCCIuRZJMQQgghhBBCCCGEsBhJNgkhhBBCCCGEEEIIi5FkkxBCCCGEEELkUEopL6WUNt2mWjsekXZKqVDT6xaaDceKfY/sttD++iiltimlriilHsTZf1dL7F/kfZJsEkIIIYQQQmSJOB9Q03pbaO2Ys5pSqrRSaqrp1tXa8VibUmp3gvfAoXRs2y2J95BX1kWbPyillgHrgQ5ABaCAdSMSuZG8aYQQQgghhBAi+5QGpph+XgNssVokOZOTUqqR1vpAGtb1zupg8hulVENgmOnhNWAxcAK4Z1q2zxpxidxHkk1CCCGEEEKI7NAtDeuczvIochmt9W5AWTuObBKN8RnVG0gx2aSUqgA8k2A7kXnPxvn5da31BqtFInI1+YUUQgghhBBCZDmt9RZrxyByvJ+A54E+SqnxWuv7KazbHygIPAS2Ac9lQ3z5weNxfj5otShEric1m4QQQgghhBBC5AS+pvtyQKdU1h1kut8JXMiqgPKhwnF+vpfsWkKkQpJNQgghhBBCiBwnPTN5pbauUso3TgFpB9OyjkqpLUqpC0qpe0qpi0qpjUqppumIsY5Sao5SKkApddU0a9dNpdRfSqklSqknlVLKtK6DUkoDZ+LsYlAyhdId4hwjzbPRKaWKKqXGKqV2KaX+M53XFaWUv1LqLaVUqVS2n5qw0LZSqplSap1S6myc/X2nlHo6re2UDr8BJ00/D0puJaWUO+BqeuibngMopR5XSs02vUbXTef0r1LqW6WUt1LKNo37Ka+Uel8pdVQpddu0rwCl1BtKqaLpicm0P0el1HylVFCCuL5RSvVTSmXZZ/fY96bp/Rm33c8keF/6ZlUMIu+RZJMQQgghhBAiP7FRSi3FGLLVBXgMKARUAXoAvyulXkppB0qpAkqpBcBRwAfwAMpjlCkpCbgDI4AdQJssOo+EMTXDSNTMB7yAShjnVQFoCcwCTiulOqRjn29jJID6Ak/E2d9zwI9KqWkWPIVYa0z3zyilKiazjrfp/iawOa07Vkq9CoQAEzBeozIY51QVY/jeauBg3GRfMvtpDhwDJgL1gaKmfXkAc4H9SqlqaYypgFJqERAMjMVIosWNqxPwOfCHUqpyWs9VCGuTmk1CCCGEEEKI/OQ9oA/GDFtrgVNACaA7RsFpG2CpUuo3rfXxhBubeip9BXQ2LYrBmFFuF3AFI/FQH+gIuPGouPcVjCLpFYGPTct2Ycz2ldCV9JyQUsoN+AUoYlp0EGPq+nNAZaAXRsKpHPCdUqqDqfB4Sl7BaKd/MXoPHcFIgDwN9Dad12Sl1B6t9S/piTcVa4HpGJ9V+2Mkz8yUUgUxkl8AX2qt75o6j6XIlGhaHmfRt8D3QDhQBxgMVAecAX+llLvW+moS+6mJkagsaVp0yBTzeYyEZR+gCfAlRk2plGJSpvVii+dfBb7AeP1uA9Uw2trDtM+dSqnGWus7qZ5w+sS+NwFGAW1NP79K/PfiOQsfV+RhkmwSQgghhBBC5Cd9MJIDL2mto+MsX2nqYTIKI6kyCqN3UkI+PEo0nQOe11ofSmK9iUqpRhjTx2NKEGxJ0GvmXGYLp5uGV33Oo0TTImCc1vphnNUWK6XexUjiFATWKqXqaK2jUth1H+BnoJvW+nac5WuUUvt5lAR6AyPRZRFa6/NKqV+ApzB6MM1PsMrzGL3III1D6ExtvsD0MAboq7X+MsE684CNGL22HgOWAj2T2N3HPEo0rQZeifs+Mr2H5gHj0hDaKB4lebYAg7TWtxKsM08pNRN4G2gATMboUWUxse9NAKVU1zhPbddah1ryWCL/kGF0QgghhBBCiCyXTG0ia9SDOQ68nCDRFOsd4K7p544Jn1RKFccYggVwn+QTTQBorQ9orc9mMt7UPA84mn7+ExibINEUG8sMjJ48YMw41j+V/YYBvRMkmmIt4lEvl3ZKKUt3YvA13TsrpRomeM7bdH9Ca/17Gvc3ikfJuA8TJpoAtNZ3MXpMXTItekEpVSfuOkopV+DJ2OMDwxK+j7TWGiMBtz+lgJRSdhgJJDDek72TSDTF7nMS8Kvp4XDTtkLkaJJsEkIIIYQQQuQny7TW95N6QmsdAQSaHlZP4kP9M0BZ08/rU0o0ZaPucX6ea0p2JGd2MtslZa3W+kZST5iSWXtMDwsDNVONMn2+BmITL96xC001nJ41PVxD2sWeazTwYXIrmZI9S2MPB3RNZj8A/0vhfaRTOo5JR4whlQCLk9tXHJ+b7ksCzVJZVwirk2F0QgghhBBCiOzQLZXns6sezJ+pPP+v6V4BpYH/4jzXKs7P31gwpsxoYrrXGMPeUvI7EAkUB1KbdS+t7QRGQWuLMdVh+hIYCvRRSo3XWj/A6I1VAHiIMRQyVaYEVWyx7r+11qnVw9oOzDD9nLCNGsf5eWcq+0nt+dZxfi6eYPhaUh6L83N9YHcq6wthVZJsEkIIIYQQQmS5zNYmsqBrqTx/L87PCXs22cf5+Zhlwsm0Kqb7/0w9s5KltX6olDqNMeNZWaVUoRR61GSmnSzBFyPZVB5jqOBmYJDpuZ1a6wtp3E+VOD+fSMP6cdepkuC5qnF+Pp3STrTWYUqpcIyEZVIc4vw8Jw1xxWXR5J4QWUGG0QkhhBBCCCHyk0T1jNKhZJyfIzMbiIWUMN0nVVspKXHjLpHsWplrp0zTWv8GnDQ99DbVbnIxPfZNx67inmNa2iil9iluuo9Ow7C31I5XKg3bJ6dQJrYVIltIzyYhhBBCCCFEbpddX6LHLeBcPNm1slcERu+ZYmlcP27cKfaEygHWAO9h1Gm6Y1p2C6OXU1rFPce0tFFK7RObiCqQSq+wtBwvblLLIRsKyQuRraRnkxBCCCGEECInih2mlWIvDqWU4lHR7qwWd+hW/Ww6ZmpiZ0+rrJRKqadSbFvFFvMOS2PvHGtai9HDqgDwommZn2nmuLS6FOfn2mlYP+46FxM8F/dxikXRlVLlSH4IHcSveeWY7FpC5FKSbBJCCCGEEELkROGm+/JKqYIprOdE2nv1ZNavcX7unMF9xB2epjIRS6z9cfb1ZCrrtuBRz539Ka2YE2itzwO/JFjsm859XAFiew25KaUqpLJJhzg/J2yjuI/bpbKf1F6LPXF+Tq14vhC5jiSbhBBCCCGEEDnRUdN9QeLP3JXQqGyIJdaPwHXTz32VUs4Z2Efc4VOWSJJ9FefnN0y9l5IzIZntcrKPgH2m27da698zsI/Ycy0AjEluJVPPsBGmh5rEw/XiPn4tuSSo6TUYm0pMP/CoCPtApZT0bhJ5iiSbhBBCCCGEEDnRT3F+nqGUKpxwBaXUUIwZy7KF1vo2MNv0sBDwbUoJJ6WUm1KqWoJ9XAdumh66pZIcSovvgSOmn1sCc5VSiT7nKaXeBjqZHp4H1mXyuNlCa71Va93MdMtob7L/AbFD795USr2QcAWllB3wOY9mnPtKa30y7jpa67+BHaaH9YClSinbBPtRwAdAs5QCMr2XppkeFgJ+UEp5pLSNUqqxUiq9M9cJYRVSIFwIIYQQQgiRE20BTgG1MIZ/BSilVmHUzakMdMUYyvQrRv2cqknuxfLmAa0whtFVAw4qpTYDu4ErQBGgLsZwLA+gLY+GccX6BWPoVE3ATyn1NY+GDQLsSWtdIq31Q6XUAOA307HHA22VUuswakxVAnqZYgZ4AAzUWkel/ZRzN611qFJqLLAc4zPwJqXUVozeReEYdZqGADVMm/wLjExmd8OBAxgzEw4Fmiil1mIk8CoDfYGmGEPu7Enhfam1/kgp1RgYCDwB7FdK/QTsxHjtFFAecMYYllcTOA28me5GECKbSbJJCCGEEEIIkeNore8ppV4EfgbKYHzgXphgtX3AC0BANsallVI9TLEMA2yBHqZbUh4msWw68DRGcqin6RZXdSA0HTEdVEo9iTFcrArQ0HRL6DrQV2u9O637ziu01h+beh0tAOyALqZbQoeBTqZaT0nt55RS6hlgK0YiyAUjARnXEYzXdG8aQvMGTgLvAIWBZ0y35FxI4TkhcgwZRieEEEIIIYTIkbTWBzCSTP/D6OUUBdwA/sDoedJaa33VCnE90FqPBFyBRcAhjB4yMab7A6aY22itEyUctNZBQCNgJRAC3LFATH9g9NAZh1F8+ipGL6YwjPaaBNTUWm/L7LFyK631cqAOxjC3IIzX6j7GjHU/AIMBN611aCr7+R1jNsLZwHGMIXrhGK/7m0ATrfW5NMaktdbvYSQYJ2O8dv+Z4orCSC7tAGYAzbXWXmk7WyGsS2mtrR2DEEIIIYQQQgghhMgjpGeTEEIIIYQQQgghhLAYSTYJIYQQQgghhBBCCIuRZJMQQgghhBBCCCGEsBhJNgkhhBBCCCGEEEIIiylg7QCySsGCpXVMTC0aJjXhZz5w+/ZtihUrZu0wrEraQNoApA1A2iC/nz/k3TY4cODANa11BWvHIR4pXbq0rlWrlrXDsKoLF+DyZXBxgYIFM7+/vPr7ay3SnpZ18eJFAKpWrWrlSPIOeY9aniXa9PZtOH4cHn8cKla0UGC5WFquwfJsssnOrhKRkYHs3w82+bD/1u7du/Hy8rJ2GFYlbSBtANIGIG2Q388f8m4bKKXOWjsGEV+lSpUIDAy0dhhWdfo01K4NnTvDjBmZ319e/f21FmlPy5o2bRoAU6ZMsXIkeYe8Ry3PEm06cCD8+y8cOQIlSlgmrtwsLddgeTYNo5QG4M4dKwcihBBCCCHyjZo14dlnYcUKuHfP2tEIIYTIrMuXwc8PBg2SRFN6SLJJCCGEEEIICxo9Gq5cgQ0brB2JEEKIzFq+HO7fh9dft3YkuUueTzbdvm3lQIQQQgghRL7y1FPQoAEsWgRaWzsaIYQQGXXvHixbZvRYrVPH2tHkLnm2ZpONjSSbhMisBw8ecOHCBaKioqwdSoaVKlWKY8eOWTsMq8rvbZDfzx9yfxvY2dlhb29PQUtUWxYiGygFo0bBsGHg7w+tW1s7IiFEXpIXrtGzU2augyIjwdfXKAqeiy+lMiwz12B5Ntkkw+iEyLwLFy5QokQJHBwcUEpZO5wMiYiIoEQ+H1yd39sgv58/5O420FoTFhbGhQsXqF69urXDESLN+veHt96CxYsl2SSEsKy8cI2enTJ6HaS1kWAqUgQcHY0vEvKTzF6DyTA6IUSyoqKiKFeunPwTE0JYjVKKcuXKybe3ItcpVgyGDoXNm+HcOWtHI4TIS+QaPXvcvm10XqlYMf8lmiDz12CSbBJCpEj+iQkhrE3+DoncauRI45vxJUusHYkQIq+R/41Z7/JlsLWFcuWsHYn1ZOZ9loeTTQ8BGUYnhBBCCCGso1o16NYNPvlEvgAVQojc5P59uHEDypc3Ek4i/fJwskl6NgmRH/n6+nLx4sUMbx8aGsr69estGJFlFS9ePNV1pk6dyrx58wCYPHkyu3btSnbdLVu2cPTo0WSfX758OWvXrgXAy8uLwMDANMcaHh7O0qVLzY8vXrxIjx490ry9EELkBaNHGx9Y1q2zdiRCCCHS6soV475iRevGkZtJskkIkafk5GRTTExMluw3JdOnT6dt27bJPp9Ssik6Opphw4YxcODADB07YbKpatWqbNq0KUP7EkKI3KpVK3B3NwqFa23taIQQImfz9vY2Xy8OHTo0xS9Fs0pMDFy7BqVLQ+HCGd+Pg4MD165dy9A6GzdupH79+ubr+IMHDzJ06NAU9/XRRx+xevXqjAdsYXk+2STD6ITI3ebPn4+TkxNOTk4sXLgQMBJCTk5O5nXmzZvH1KlT2bRpE4GBgfTr1w83Nzfu3r2Lk5MTEyZMoEmTJjRp0oRTp04B8f+RwaMeQxMnTuTXX3/Fzc2NBQsWxItl9+7deHl50aNHD+rVq0e/fv3Qpk8OO3fuxN3dHWdnZ4YMGcK9e/cA4x/I9OnTadWqFRs3bsTBwYG3336b5s2b4+HhwV9//UXHjh2pWbMmy5cvByAyMpInn3yShg0b4uzszNatW1Ntp5kzZ1K3bl2eeuopQkJCzMu9vb3ZsmWL+dwaNGiAi4sLb7zxBr///jvffPMNPj4+uLm5cfr0aby8vHj77bfx9PRk0aJF8XpJAXz++ee0aNECJycn9u/fD5BoHScnJ0JDQ5k4cSKnT5/Gzc0NHx+feK9bVFQUgwcPxtnZGXd3d3PvK19fX7p3787TTz9N7dq1efPNN1M9dyGEyMmUMno3HTkCO3daOxohhMg9Vq5cSYMGDbJs/9HR0Ukuv34doqOhUqUsO3SqVq1axdKlS83XyLNmzeL1119PcZshQ4awePHi7AgvTQpYO4CsIj2bhLCsMWMgKMiy+3RzA1P+KEkHDhxg9erV7Nu3D601TZs2xdPTkzJlyiS5fo8ePfjoo4+YN28eHh4e5uUlS5Zk//79rF27ljFjxvDdd98le8zZs2czb968ZNc5ePAgR44coWrVqrRs2ZLffvsNDw8PvL292blzJ3Xq1GHgwIEsW7aMMWPGAGBnZ4e/vz9gJHwef/xx/vjjD8aOHYu3tze//fYbUVFRODo6MmzYMOzs7Ni8eTMlS5bk2rVrNGvWjM6dOydboO/AgQNs2LCBgwcPEh0dTcOGDWnUqFG8da5fv87mzZs5fvw4SinCw8MpXbo0nTt35vnnn483vC08PJw9e/YARiIprtu3b/P777+zd+9ehgwZwuHDh1Nsy8OHDxNkeuOEhoaan1tiqpZ76NAhjh8/TocOHThx4gQAQUFBHDx4kMKFC1O3bl1ef/11Hn/88WSPI4QQOd2LL8Kbb8KiRfDUU9aORgiRl1jjGj00NJRnnnmGVq1a8fvvv/PYY4+xdetWihQpQlBQEMOGDePOnTvUrFmTTz/9lDJlyuDl5UXTpk3ZtWsX4eHhrFq1itatW6cYh5eXl/m6vnjx4owePZrvvvuOIkWKsHXrVipVqsTVq1cZNmwY50zTfi5cuJCWLVuyf/9+xowZw927dylUqBBr166lbt26+Pr68v333xMVFcXt27f55Zdf4p3X008/jaNjK4KD/6RJE1cGDx7MlClTuHLlCuvWraNJkyZcv36dIUOG8M8//1C0aFFWrFiBi4sLYWFh9OnTh6tXr9KkSRPzl9JgfGG7ePFi7t+/T9OmTVm6dCm2yRSDmj59Ov7+/pw5c4bOnTszefJkgoODcXV1BWDUqFGUL1+eyZMns23bNmbOnMnu3bspWrQoDg4O7N+/nyZNmqT6Os+fP5/Dhw/z6aefcujQIfr06cP+/fspWrRoqtumRZ7t2QRQtKgkm4TIzfz9/enWrRvFihWjePHidO/enV9//TXd++nTp4/5/o8//shUTE2aNMHe3h4bGxvc3NwIDQ0lJCSE6tWrU6dOHQAGDRrE3r17zdv07t073j46d+4MgLOzM02bNqVEiRJUqFABOzs7wsPD0Vrz9ttv4+LiwlNPPcW///7L5cuXk43p119/pVu3bhQtWpSSJUua9x9XyZIlsbOzY+jQoXz99dcp/hNJGG9csW3Zpk0bbt26RXh4eLLrpsTf358BAwYAUK9ePapVq2ZONj355JOUKlUKOzs7GjRowNmzZzN0DCGEyCkKF4bhw+G778D0p04IIXK1kydPMnLkSI4cOULp0qX56quvABg4cCAffPABwcHBODs7M23aNPM20dHR7N+/n4ULF8Zbnha3b9+mWbNm/P3337Rp04ZPPvkEgNGjRzN27FgCAgL46quvzEPN6tWrx969ezl48CCTJk3i7bffNu/rjz/+YM2aNfESTbFOnTpFz56j+e23YI4fP8769evx9/dn3rx5zJo1C4ApU6bg7u5OcHAws2bNMpecmDZtGq1ateLgwYN07tzZnAA7duwYfn5+/PbbbwQFBWFra8u6FAr5TZ48GQ8PD9atW8fcuXMJDAyMN6pj9uzZ+Pn5sWvXLkaNGsXq1auxsTFSOx4eHubPS3PnzsXNzS3RbdSoUQCMGTOGU6dOsXnzZgYPHszHH39ssUQT5OGeTQDFiskwOiEsJaVvN7KKTqa4RYECBXj48KH5cVRUVIr7idsjKPbnuPvQWnP//v00xVQ4zsBtW1tboqOjk40zVrFixZLch42NTbz92djYEB0dzbp167h69SoHDhygYMGCODg4pOsck1KgQAH279/Pzp072bBhAx999FGS/2CTijel4yil0v16QPKvLSTdxkIIkdsNHw6zZxv/T+OUsxNCiEyxxjU6QPXq1XFzcwOgUaNGhIaGcvPmTcLDw/H09ASML2B79uxp3qZ79+7x1k+PQoUK8fzzz5u3//nnnwHYsWNHvLpOt27dIiIigps3bzJo0CBOnjyJ1jpe7dT27dtTtmzZJI9jb1+d+vWdKV8eHB0defLJJ1FK4ezsbI7Z39/fnFxr164dYWFh3Lx5k7179/L1118D8Nxzz5lHY+zcuZMDBw7QuHFjAO7evUvFdFQev3TpEhUqVDA/Llq0KJ988glt2rRhwYIF1KxZ0/xcxYoVOX78OAA+Pj74+Pgku18bGxt8fX1xcXHh1VdfpWXLlmmOKS3ydM+mYsWkZ5MQuVmbNm3YsmULd+7c4fbt22zevJnWrVtTqVIlrly5QlhYGPfu3Ys35K1EiRJERETE24+fn5/5vnnz5oBRS+nAgQMAbN26lQcPHiS7fWrq1atHaGiouR7UZ599Zv4nmxE3b96kYsWKFCxYkF27dqXas6dNmzZs3ryZu3fvEhERwbfffptoncjISG7evMmzzz7LwoULzUPb0nu+sW3p7+9PqVKlKFWqFA4ODvz1118A/PXXX5w5cybVfbdp08b8jc6JEyc4d+4cdevWTXMcQgiR21SqBP37g68vhIVZOxohhMicjHw5GLtN3PUHDx6Mm5sbzz77bIrbFixY0PylZ9ztHz58yB9//EFQUBBBQUH8+++/lChRgnfffZe2bdty+PBh/Pz84n0ZmtwXq1FRYGtbmAoVwMYm/hfDsV8KQ9JfmsbGltQXwFprBg0aZI4xJCQkUamKlBQpUiTRl7mHDh2iXLlyiSZGioqKokiRIkDqPZvA6KFWvHjxTE2wlJw8nWwqXhzS+ZlRCJGDNGzYEG9vb5o0aULTpk0ZOnQo7u7uFCxYkMmTJ9O0aVOef/556tWrZ97G29ubYcOGmQuEA9y7d4+mTZuyaNEic9Hvl19+mT179tCkSRP27dtn/qfj4uJCgQIFcHV1TVQgPDl2dnasXr2anj174uzsjI2NDcOGDcvweffr14/AwEBz99m455eUhg0b0rt3b9zc3HjhhReSHP8eERHB888/j4uLC56enuZze/HFF5k7dy7u7u6cPn061djKlClDixYtGDZsGKtWrQLghRde4Pr167i5ubFs2TLzcMJy5crRsmVLnJycEn2rMmLECGJiYnB2dqZ37974+vrGu2gRQoi8aOxYuHsXPv7Y2pEIIYTllSpVijJlypiHcaXlC9jVq1cTFBTEDz/8kKFjdujQgY8++sj8OPYL1Zs3b/LYY48BpDhkLa5r14xJHeJ0IkpS3C9Nd+/eTfny5SlZsmS85T/++CM3btwAjBIRmzZt4sqVK4BRSzU9ZSLq169v/lIb4OzZs3z44YccPHiQH3/8kX379pmfO3HihHnInY+PjznBFfcWW0T85s2bjB49mr179xIWFmb5WaO11nnyVqVKFd2ypdbt2ul8adeuXdYOweqkDTLfBkePHrVMIFb0xBNP6KtXr1o7DKu6deuWtUOwqvx+/lrnjTZI6u8REKhzwDWH3B7d6tSpk+h1EvF17Kh15cpaR0WlbX25nrEsaU/Lmjp1qp46daq1w8hT0vIetfY1+pkzZ7Sjo6P58dy5c/WUKVO01lofPHhQN23aVDs7O+suXbro69eva6219vT01AEBAVprra9evaqrVauW5L4HDRqkN27cmGibYsWKmdfZuHGjHjRokHlfvXr10s7Ozrp+/fr61Vdf1Vpr/fvvv+vatWvrFi1aaB8fH/PxVq9erUeOHJnouPfva/3NN2d0nTqPzituLHHPOSwsTHfu3Fk7Ozvrpk2b6r///ltrrfW1a9d0+/bttbu7ux4zZky8zyEbNmzQrq6u2tnZWTds2FD/8ccfWmutq1WrluRnlbjnrrXWTk5O+tatW/rhw4f6ySef1Fu3btVaax0YGKidnJz03bt3tdZau7u7p/mzz+DBg/WiRYu01lqfO3dO16xZU1++fDnRehm9BlPGenlP1apVtbv7RS5fhsBAa0eT/WKnaM/PpA0y3wbHjh2jfv36lgvICqpVq8aBAwcoX768tUOxmoiICEqUKGHtMKwmv58/5I02SOrvkVLqgNbaI5lNhBXUrVtXh4SEWDuMHG37dujY0RhON2hQ6uvL9YxlSXtaVmyR5ylTplg5krwjLe/RvHCNnp3Sch108aJxc3ICO7tsCiwdFixYQIkSJcwF0JNy8OBB5s+fz2effWbRY2f0GixPD6MrVQpu3rR2FEIIazp8+HC+TjQJIYTIWdq3B0dHmD8f8uh3vkIIkas8fAhXrhj5g5yYaAIYPnx4qiUnrl27xowZM7IpotRJskkIIYQQQohsohSMGwfBwZDMpKBCCCGyUVgYREcbEznkVHZ2dgwYMCDFddq3b4+Dg0P2BJQGeT7ZFB4u3xoJIYQQQoico29fqFjR6N0khBDCerSGy5ehaFHI5RUHcpw8nWwqXRoePDCmMBRCCCGEECInsLODkSPhhx/g2DFrRyOEEPnXrVtGvqBSJaPnqbCcPJ1sKlXKuJehdEIIIYQQIicZPhwKF4aFC60diRBC5F+XL0PBglCmjLUjyXsk2SSEyLHCwsJwc3PDzc2NypUr89hjj5kf379/P037GDZsGJs2bcpwDBs3bsTR0REbGxsCU5naMjw8nKVLl6a4jr+/P02aNKFevXrUq1ePFStWpDmW4sWLp3ndpHh5eVG3bl1cXFyoV68er732GuHh4ebnW7RokeL2s2bNSvH5Z599lvDwcEJDQ3FyckpXbLt37+b33383P16+fDlr165N1z6EECI3qVABBg6ENWuMwrRCCJGbLF68mPr169OvXz+++eYbZs+eneZtQ0NDWb9+vUXj8fb2Tvc1/507Rs+mihVh797416LpNXXqVObNm5fh7ZNz7949nnrqKdzc3PDz84v33PHjx3Fzc8Pd3Z3Tp09z9+5dPD09iYmJSXZ/hw4dwtvb2+JxJkWSTUKIHKtcuXIEBQURFBTEsGHDGDt2rPlxoUKFsuSYCf84Ozk58fXXX9OmTZtUt00t2fTff//Rt29fli9fzvHjx/H39+fjjz/m+++/T7RudHR0+oOPQ2vNw4cPEy1ft24dwcHBBAcHU7hwYbp06WJ+LrV/sMklm2KP9cMPP1C6dOkMxZsw2TRs2DAGDhyYoX0JIURuMX483L8PH31k7UiEECJ9li5dyg8//MC6devo3LkzEydOTLROctezmU02pZRMSavo6Gj++w9sbIzkf8Jr0ayW1mv9gwcP8uDBA4KCgujdu3e857Zs2UKXLl04ePAgNWvW5NNPP6V79+7Y2tomuz9nZ2cuXLjAuXPnMhV/WkiySQiRq3zyySc0btwYV1dXXnjhBe7cuUNERATVq1fnwYMHANy6dQsHBwfz41g7d+7E3d0dZ2dnhgwZwr179wBwcHBg+vTptGrVio0bN8bbpn79+tStWzdRHEeOHKFJkya4ubnh4uLCyZMnmThxIqdPn8bNzQ0fH59E2yxZsgRvb28aNmwIQPny5ZkzZ475myBvb2/GjRtH27ZtmTBhAmfOnKF58+Y0btyYd999N96+5s6dS+PGjXFxcWHKlCmA8Y+7fv36jBgxgoYNG3L+/Plk27FQoULMmTOHc+fO8ffffwOPek5dunSJNm3a4ObmhpOTE7/++isTJ07k7t27uLm50a9fvySP5eDgwLVr1wDjH+igQYNwcXGhR48e3Llzx9zWsesEBgbi5eVFaGgoy5cvZ8GCBbi5ufHrr7/G+3YoKCiIZs2a4eLiQrdu3bhx4wZg9NSaMGECTZo0oU6dOvz666/Jnq8QQuREdetC586wZAncvm3taIQQIm2GDRvGP//8Q+fOnVmwYAG+vr689tprQOLr2T179phHJri7uxMREcHEiRP59ddfcXNzY8GCBfH2rbXGx8cHJycnnJ2dzb15du/eTdu2benbty/Ozs5orXnttddo0KABzz33HFfidBE9cOAAnp6eNGrUiI4dO/Lff/8BxrXj22+/jaenJx9+uIgbN4xE04ULia9Fv/32W5o2bYq7uztPPfUUly9f5uHDh9SuXZurV68C8PDhQ2rVqmW+to2V0rVr7PEXLVoUb5vr16/TtWtXXFxcaNasGcHBwVy5coX+/fsTFBSEm5sbp0+fNq//ww8/sHDhQlauXEnbtm0B40vl2C+SN2/ezFNPPYXWmkuXLlGnTh1zO3Tq1IkNGzZk4h2QNgWy/AhWJMkmISzowBi4EWTZfZZxg0YL07VJ9+7defnllwF45513WLVqFa+//jpeXl58//33dO3alQ0bNvDCCy9QsGBB83ZRUVF4e3uzc+dO6tSpw8CBA1m2bBljxowBjOlE/f390xzH8uXLGT16NP369eP+/fvExMQwe/ZsDh8+TFBQUJLbHDlyhEGDBsVb5uHhwZEjR8yPT5w4wY4dO7C1taVz584MHz6cgQMHsmTJEvM627dv5+TJk+zfvx+tNZ07d2bv3r088cQThISEsHr16lSH8wHY2tri6urK8ePHcXV1NS9fv349HTt2ZNKkScTExHDnzh1at27NRx99ZD630NDQFI8VEhLCqlWraNmyJUOGDGHp0qW88cYbScbh4ODAsGHDKF68uHmdnTt3mp8fOHAg//vf//D09GTy5MlMmzaNhaYiJ9HR0ezfv58ffviBadOmsWPHjlTPWwghcpI334StW+HTT+H1160djRAi17HCNfry5cv56aef2LVrF+XLl8fX1zfe83GvZzt16sSSJUto2bIlkZGR2NnZMXv2bObNm8d3332XaN9ff/01QUFB/P3331y7do3GjRubRxjs37+fw4cPU716db7++mtCQkI4dOgQly9fpkGDBgwZMoQHDx7w+uuvs3XrVipUqICfnx/Tp0/ns88+A4yRCHv27OH8eaNeU8WKULhw4mvRGzdu8Oeff6KUYuXKlcyZM4cPP/yQ/v37s27dOsaMGcOOHTtwdXWlfPny8c4hpWvX2OMnNGXKFNzd3dmyZQu//PILAwcOJCgoiJUrVybZVs8++2y8mO/fv88///yDg4MDAN26deOrr75iyZIl/PTTT0ybNo3KlSsDxueP2bNn8+abbyb7GltCvujZFKckiRAilzt8+DCtW7fG2dmZdevWmRM1Q4cOZfXq1QCsXr2awYMHx9suJCSE6tWrU6dOHQAGDRrE3r17zc8n7JaamubNmzNr1iw++OADzp49S5EiRVLdRmuNSmKai7jLevbsae76+ttvv9GnTx8ABgwYYF5n+/btbN++HXd3dxo2bMjx48c5efIkANWqVaNZs2ZpPg+tdaJljRs3ZvXq1UydOpVDhw5RIpl5YFM61uOPP07Lli0B6N+/f7oSeXHdvHmT8PBwPD09gcSvW/fu3QFo1KgRoaGhGTqGEEJYU4sWxm3+fMjkCGohhMgR4l7PtmzZknHjxrF48WLCw8MpUCDl/i7+/v706dMHW1tbKlWqhKenJwEBAQA0adKE6tWrA7B3717zelWrVqVdu3aAcc1/+PBh2rdvj5ubG++99x7//vuvef+9e/cmOhquXoWyZY2JGpJy4cIFOnbsiLOzM3PnzjV/5hgyZIi5ruinn36a6DNHateuyX3m8Pf3N1/vt2vXjrCwMG6mo9fMtWvXEpWz+N///sf7779P4cKFzZ8pACpWrMjFixfTvO+Mkp5NQoi0SWcPpKzi7e3Nli1bcHV1xdfXl927dwPGP7LQ0FD27NlDTExMogLVSSVV4ipWrBgAgwcP5uDBg1StWpUffvgh2fX79u1L06ZN+f777+nYsSMrV66kRo0a8daZNGmSuR5TUFAQjo6OBAYG0rlzZ/M6Bw4coEGDBoniiJVUckprzVtvvcWrr74ab3loaGii7VMSExPDoUOHqF+/frzlbdq0Ye/evXz//fcMGDAAHx+fJOsnpXSshHHHPi5QoIC5llRUVFSaY01OYdMVgq2tbabrXAkhhLW8+SZ07QpffQXp/O5DCJHf5ZBr9LjiXiNOnDiR5557jh9++IFmzZql2gs9pWv2tF4nOzo68scff5iXRURExNvH1avw8CGYOvok6fXXX2fcuHF07tyZ3bt3M3XqVMD4QrVSpUr88ssv7Nu3j3Xr1qV4PqmdQ9y4E0rq/JJTpEiRRNfW//77LzY2NuYhgDY2Rl+jqKioNH1Rnll5umdTiRKglCSbhMhLIiIiqFKlCg8ePEj0x33gwIH06dMn0TcMAPXq1SM0NJRTp04B8Nlnn5m/cYhr9erVBAUFpZhoAvjnn3+oUaMGo0aNonPnzgQHB1OiRIl4/8xmzpxpLmgOMHLkSHx9fc2Pw8LCmDBhQrJdWFu2bGkeTx33XDt27Minn35KZGQkYPwjuZLOqYwePHjAW2+9xeOPP46Li0u8586ePUvFihV5+eWXeemll/jrr78AKFiwYKI6WMk5d+6c+Z/8F198QatWrQBjyNyBAwcA+Oqrr8zrJ2y7WKVKlaJMmTLmekzJvW5CCJGbdepk1G+aMwdS+W5ECCFyldOnT+Ps7MyECRPw8PDg+PHjyV73gfGlp5+fHzExMVy9epW9e/fSpEmTJNfbsGEDMTExXLp0iV27dgFQt25drl69ar4OffDgAceOHTNv9/ChMQNoyZJQtOij/SWM6ebNmzz22GMArFmzJt6xhw4dSv/+/enVq1eiYtwZvXZt06aN+Xp/9+7dlC9fnpIlS6a6XawyZcoQExNjTjhFR0czePBg1q9fT/369Zk/f7553RMnTqR75uiMyNPJJhsbI+EkySYh8o4ZM2bQtGlT2rdvT7169eI9169fP27cuBGvm2gsOzs7Vq9eTc+ePXF2dsbGxoZhw4alerzNmzdjb2/PH3/8wXPPPUfHjh0B8PPzw8nJCTc3N44fP87AgQMpV64cLVu2xMnJKckC4VWqVOHzzz/n5Zdfpl69erRo0YIhQ4bQqVOnJI+9aNEilixZQuPGjeN1o+3QoQN9+/alefPmODs706NHj2T/YSfUr18/XFxccHJy4vbt22zdujXROrt37zYXcfzqq68YPXo0AK+88gouLi7069cv1ePUr1+fNWvW4OLiwvXr1xk+fDhgjEcfPXo0rVu3jvfPuVOnTmzevNlclDGuNWvW4OPjg4uLC0FBQUyePDlN5yqEELmFjY0xM91ff4Hp85IQQuQJCxcuxMnJCVdXV4oUKcIzzzyDi4sLBQoUwNXVNVGB8G7duuHi4oKrqyvt2rVjzpw55lpDCderXbs2zs7ODB8+3JzQKVSoEJs2bWLChAm4urri5ubGvn37zNvdvAkPHiTu1ZTwWnTq1Kn07NmT1q1bJ6rJ1LlzZyIjI5P8ghsydu06depUAgMDcXFxYeLEiYkSXGnRoUMHc+mKWbNm0bp1a1q3bs38+fNZuXKlOem2a9cunnvuuXTvP71UakNLcquqVavqixcv4uAAbdqAaVhlvrF79268vLysHYZVSRtkvg2OHTuWaIhVTrZp0ya2bt1qLgAIRk+o5GoO5Rf5vQ3y+/lD3miDpP4eKaUOaK09rBSSSELdunV1SEiItcPIlaKiwMEB3Nzgp58eLZfrGcuS9rSsadOmAZhnxhWZl5b3aG67Rre22OsgreHIESPBX7++MQoqIwIDAxk7dmyOmwn54MGDzJ8/P95noYTu3buHp6cn/v7+qdbPipXRa7A8XbMJjKkMTTMTCiHysNdff50ff/wx1eFvQgghRE5kZwejRsGkSRAcDAlGOAshhMikmzeNxH716hlPNM2ePZtly5alu1ZTdnB3d6dt27bExMQkGt4X69y5c8yePTvNiabMyNPD6ECSTULkF//73/84deqUebY5IYQQIrcZPhyKFYN586wdiRBC5D3//QeFCkGZMhnfx8SJEzl79qy5HmlOM2TIkGQTTQC1a9fOtt6dkmwSQgghhBAiByhTBl5+Gb74As6etXY0QoicLK+Ww8kqkZHGrVIlYxidSJvMvM/ybDNHRRVh7FioWNGoNi+/i0IIIYQQIqcbO9a4//BD68YhhMi57OzsCAsLk4RTOly6BAUKQIJa3yIFWmvCwsKws7PL0PZ5tmbT/fsFWb4cpk0zxmXevg3Fi1s7KiGEEEIIIZL3xBPQvz+sXAnvvmvtaIQQOZG9vT0XLlzgqgzhSZPIyHuEhRWmVCk4ccLa0eQudnZ22NvbZ2jbXJVsUkrZAoHAv1rr51NeVxMVBWXLGo+vXpVkkxBCCCFEeqXn+ktYxoQJsGYNLFoETz1l7WiEEDlNwYIFqV69urXDyDWeeuoyf/5ZiXPnHuUHRNbLbcPoRgPH0rKijY3RpbBoUeOxJH2FELHCw8NZunRpth/X29ubTZs2ZftxLcnX1xcbGxuCg4PNy5ycnAgNDU3T9nv37qVhw4YUKFAgUVusWbOG2rVrU7t2bdasWZPqvry9valevTrLly9P1zlkpwMHDuDs7EytWrUYNWpUkt3dw8LCaNu2LcWLF+e1114zL4+IiMDNzc18K1++PGPGjMnG6JN25swZmjZtSu3atenduzf3799Pcr3UXs/XX3+d4nG+BfLz86NWrVo8/7zkMnKgNF9/CcuoVw+6dYOPPoLbt5Mv9CqEECJl//wDu3ZV5NVXJdGU3XJNskkpZQ88B6xM2/rGBX2RIsZjSTYJIWJZI9kUExOTrcdLjtaahw8fZmof9vb2zJw5M0PbPvHEE/j6+tK3b994y69fv860adPYt28f+/fvZ9q0ady4cSPV/c2dO5dhw4ZlKJbsMHz4cFasWMHJkyc5efIkP/30U6J17OzsmDFjBvMSTD9VokQJgoKCzLdq1arRvXv3LIs1Ojo6TetNmDCBsWPHcvLkScqUKcOqVasSrZPa6xkYGEh4eHi8bXr37s3KlWn6Fy+yUXqvv4TlvPWWMU33N99UtXYoQgiRa82bZ3REGTfO2pHkP7lpGN1C4E2gRHIrKKVeAV4BKF26BgAnT/4NuLJ373GKFfsv66PMISIjI9m9e7e1w7AqaYPMt0GpUqWIiIiwXEDpdPbsWbp3707z5s0JCAjAycmJ/v37M2vWLK5evcrKlSvx8PDg+vXrjBw5ktDQUIoUKcLixYtxcnJi1qxZnD9/nrNnz3LhwgWGDx/O8OHDGT9+PKdPn8bFxYW2bdsyY8YM3n33XX7++WeUUvj4+PDCCy8kiicyMhIfHx8OHjyIUoqJEyfSpUsXxo4dy19//cXdu3fp0qULkyZNAjDH+8svv/DKK6/w4MED7t69S0REBLt37+add94hOjqahg0bsmDBAgoXLhzveL6+vqxevZoHDx5Qo0YNVqxYQdGiRRk2bBh2dnYcO3aMK1euMGvWLJ555hnWrVvHt99+y7179zh79iw9e/bkrbfe4syZM/Ts2ZPWrVsTEBDA+vXrWbFiRaLz9fHxoVy5ckycOJEdO3Ywb948fvjhB2ziTNkRFRVFhw4d+P333/nrr7+oXbs2Dx8+JDIyMk3vlXLlylGuXDliYmLMbQGwZcsWvLy8KFiwIABeXl5s3ryZnj17JruvuO0JMGzYMIoUKcKJEyc4f/48S5cuZf369ezfvx8PDw9zD6idO3cya9Ys7t+/T/Xq1Vm6dCnFixdn9uzZ/Pjjj0RFRdG0aVMWLVqEUopnn30WDw8P9u7dy82bN1myZAktWrRI9Vz/++8/wsPDcXJyIjIykp49e7Jx48Ykp8p1dXXl8OHD3L9/P8l2PHXqFJcvX8bNzS3Fdm7bti1Lly6lfv36ADz77LPMnDmTBw8e8PbbbxMVFYWdnR3Lli2jdu3arFu3jm3bthEVFcWdO3f47rvvUjwnrTU7d+7k448/JiIigh49evD+++/Tv3//eOul9HrGxMQwbtw4Vq1axebNm+Odz507d4iOjk7yHKOiovL933QrWUg6rr8qVKggr5MFNWrkwsaNj/HCC3spVChzXxQIg1wfZg1pU8uR96jlXL9eiJUrm9Gu3QVOnvyHkyetHVE+o7XO8TfgeWCp6Wcv4LvUtilTproGrffu1Rq0/uADna/s2rXL2iFYnbRB5tvg6NGj8R57enrq1atXa621vn//vvb09NSfffaZ1lrr27dva09PT71hwwattdbh4eHa09NTf/XVV1prra9evao9PT31N998o7XW+tKlS6ke/8yZM9rW1lYHBwfrmJgY3bBhQz148GD98OFDvWXLFt2lSxettdavvfaanjp1qtZa6507d2pXV1ettdZTpkzRTZo00VFRUfrq1au6bNmy+v79+/rMmTPa0dHRfJxNmzbpp556SkdHR+v//vtPP/744/rixYuJ4nnzzTf16NGjzY+vX7+utdY6LCxMa611dHS09vT01H///bfWWutq1arpD+L88Rk0aJDeuHGjvnv3rra3t9chISFaa60HDBigFyxYkOh4165dM/88adIkvXjxYvN+OnbsqGNiYvSJEyf0Y489pu/evatXr16tK1eurK9du6bv3LmjHR0ddUBAgD506JBWSuk//vgjxfO9ffu2btCggf7ll190nTp19KlTpxLFtHr1aj1y5Ei9Zs0aPXDgQK211o6OjvrMmTNaa6179eqlXV1dE93WrFkTbz+xbRFr7ty5esaMGebH06dP13Pnzk10/JT2MWjQIN27d2/z+6NEiRI6ODhYh4eH64YNG+qDBw/qq1ev6tatW+vIyEittdazZ8/W06ZN01o/eh211rp///7m96qnp6ceN26c1lrr77//Xj/55JNaa62PHz+e5Lm6urrqGzdu6ICAAPO6Wmu9d+9e/dxzzyV7PrFtm5Rp06bp8ePHp9geWms9f/58PXnyZK211hcvXtS1a9fWWmt94cIF/eDBA6211j///LPu3r27+ZiPPfaY+dxv3bqV7DkdOXJEX716VdesWdN8vHPnzsX7XYqV0uu5cOFCPX/+fK211sWKFYu33a5du5Jto4R/j7TWGgjUOeA6Ja/eMnL9VadOnSRePZFRO3ca17HLllk7krxDrg8ta+rUqeZrMGEZ8h61nAkTtLax0fqzz/60dih5TlquwXJLz6aWQGel1LOAHVBSKfW51rp/chvE1mzSGuzsZBidELlV9erVcXZ2BsDR0ZEnn3wSpRTOzs7mOkH+/v589dVXALRr146wsDBu3rwJQMeOHSlcuDCFCxemYsWKXL58OdEx/P396dOnD7a2tlSqVAlPT08CAgLo3LlzvPV27NjBhg0bzI/LlCkDwJdffsmKFSuIjo7m0qVLHD16FBcXF8AYGpRQSEgI1atXp06dOgAMGjSIJUuWJKrHc/jwYd555x3Cw8OJjIykY8eO5ud69eqFjY0NtWvXpkaNGhw/fhyA9u3bU65cOQC6d++Ov78/Tz31FNWqVaNZs2apnu8nn3xCmzZtWLBgATVr1kz2denbty8zZ87kzJkz8Zb7+fklu01KjP9Z8Sml0r2fTp06md8flSpVwtnZmYiICBwdHQkNDeXChQscPXqUli1bAnD//n2aN28OwK5du5gzZw537tzh+vXrODo60qlTJwDz8LVGjRqZ33d169YlKCgoy88JYMOGDXz22WeprterVy/at2/PtGnT+PLLL809w27dusVrr73GyZMnUUrx4MED8zbt27enrKmIQezQveQkNetNUueU3LlfvHiRjRs3yje2uUe6r7+EZbVtC/Xq3WLOnJIMHWpM2y2EECJ14eGwdCn06AH29netHU6+lCv+ZWmt3wLeAlBKeQFvpHahE1uz6fZtqFBBkk1CWELcD4gFCxaM97ho0aLxHpcqVSre4/Lly8d7XLly5TQdM+7QMhsbG/NjGxsbc42ZlD7Ux93e1tY2ybo0SW0PsGTJEj755BMAfvjhB7TWiT5Ynzlzhnnz5hEQEECZMmXw9vYmKirK/HyxYsXSfLyEvL292bJlC66urvj6+sZrv4RxxD5ObnncOFI6/qFDhyhXrhwXL15MMbYCBQowfvx4Pvjgg3jLe/fuTUhISKL1x40bx8CBA5Pdn729fbzzu3DhAl5eXinGkJS474+E753o6GhsbW1p3749X3zxRbztoqKiGDFiBIGBgTz++ONMnTo13usYu6+476GQkJAkk4lg/K7ETksc95yqVk1/7ZW///6b6OhoGjVqlOq6jz32GOXKlSM4OBg/Pz8+/vhjAN577z3atm3L5s2bCQ0Njde2cd8bERERtG7dOsl9r1+/nvr16xMeHk50dDQFChRI9pySez0PHjzIqVOnqFWrFmAMm6tVqxanTp1KS1OIbJaR6y9hWUpBv37nePddJ778EhKUuxNCCJGMpUshIgImTjTq34nsl2sKhKdXbLIpMhIqVpRkkxB5WZs2bVi3bh1gfMgvX748JUuWTHb9EiVKxKsJ06ZNG/z8/IiJieHq1avs3buXJk2aMHLkSHNx5qpVq9KhQwc++ugj83Y3btzg1q1bFCtWjFKlSnH58mV+/PHHVOOtV68eoaGh5g/Yn332GZ6enonWi4iIoEqVKjx48MB8frE2btzIw4cPOX36NP/88w9169YF4Oeff+b69evcvXuXLVu2mHvwJGyvpM737NmzfPjhhxw8eJAff/yRffv2pXge3t7e7NixI15vFz8/v3hFrWNvKSWawOiBtn37dm7cuMGNGzfYvn27uSfXW2+9xebNm1PcPq2aNWvGb7/9Zm77O3fucOLECXNiqXz58kRGRqZp1sDYnk1J3UqXLk2VKlUoUaIEf/75J1pr1q5dS5cuXdId8xdffEGfPn3iLdu8eTNvvfVWkuu/+OKLzJkzh5s3b5p7Bd66dYvHHnsMMGqBJSdhUfK4twYNGqCUom3btub2WbNmTZLnlNzr+dxzz/Hff/8RGhpKaGgoRYsWlUSTEKlo0eIaDRrA7NlGj30hhBApu3MHFi6Ep58Gd3drR5N/5bpkk9Z6t9Y61XmRlTKKKEZGGj2brlzJ8tCEEFYydepUAgMDcXFxYeLEiUlOsx5XuXLlaNmyJU5OTvj4+NCtWzdcXFxwdXWlXbt2zJkzJ8meV++88w43btzAyckJV1dXdu3ahaurK+7u7jg6OjJkyJAkkzsJ2dnZsXr1anr27ImzszM2NjZJzqg2Y8YMmjZtSvv27alXr1685+rWrYunpyfPPPMMy5cvx87ODoBWrVoxYMAA3NzceOGFF/Dw8Ei036TOt1KlSrz00kvMmzePqlWrsmrVKoYOHRqvd09ChQoVYtSoUVxJxx/YgIAA7O3t2bhxI6+++iqOjo4AlC1blnfffZfGjRvTuHFjJk+ebB7adejQoTT3hEtNhQoV8PX1pU+fPri4uNCsWTOOHz9O6dKlefnll3F2dqZr1640btzYIsdbtmwZQ4cOpVatWtSsWZNnnnkGgG+++YbJkyeb13NwcGDcuHH4+vpib2/P0aNHzc99+eWXiZJNp0+fTjah2qNHDzZs2ECvXr3My0aPHs1bb71Fy5YtMz0z4gcffMD8+fOpVasWYWFhvPTSS4Axw9zQoUOBlF9PkTul9fpLWJ6NDUyYAIcOwbffWjsaIYTI+VatMjqbJPO9nMgmKq3DOXKbypXt9eXLF/jf/2D/ftizB86etXZU2Wf37t0ZGoKSl0gbZL4Njh07Zp7VKreKiIigRIlkJ1HKlby9vXn++efp0aNHvOW+vr4EBgbG630Fub8NOnbsyLZt2xItT64dEsrt55+U/v37s2DBAipUqJCm9XNLG+zevZt58+YlOSteUn+PlFIHtNaJM6rCaurWrauTGkorMm737t20bOlF3bpQvjzs22cMrxMZI9eHljVt2jQApkyZYuVI8g55j2bOvXtQsybUqAF79xrLpE0tLy3XYLmuZ1NaxR1GV7UqXLoED2XGWCGEyHWSSjSBURfs3XffZfny5dkckfV9/vnnaU405RZ+fn6MGDHCXHhfCPFIwYLGN/QBAbB9u7WjEUKInMvXF/79F95919qRiFxRIDwjlNLY2hrJpscfhwcPjKF0FhqJIYQQVpNczR1vb2+8vb2zNRZrWrRokbVDEBbUu3fvZAuuCyFg0CCYPh1mzIAOHaR3kxBCJPTggVHfrmlTeOopa0cj8mzPJoDixR8lmwDOn7duPEIIIYQQQmREoUJG7abffjPKQwghhIhv3ToIDYV33pGEfE6Qp5NNxYrB7duSbBJCCCGEELnfSy8ZvfRnzLB2JEIIkbPExMCsWcbsc889Z+1oBOTxZFPx4nDrFjzxhPH43DnrxiOEEEIIIURGFSkCPj7wyy/w++/WjkYIIXIOPz84eVJ6NeUkeTrZVLo0hIdD2bLGP2fp2SSEEEIIIXKzV181ZqV77z1rRyKEEDnDw4cwcyY4OkLXrtaORsTK08mmMmWMZJNSxlA6STYJIQDCw8NZunRpth/X29ubTZs2ZftxLcnX1xcbGxuCg4PNy5ycnAgNDU3T9nv37qVhw4YUKFAgUVusWbOG2rVrU7t2bdasWZPqvry9valevXqOno3uwIEDODs7U6tWLUaNGoXWOtE6P//8M40aNcLZ2ZlGjRrxyy+/WCHSxNLyety7d4/evXtTq1YtmjZtGu99cO7cOTp06ED9+vVp0KCB+bl+/fpRtmzZXP+7IIS1FCsG48bBjz9CYKC1oxFCCOvbvBmOHoVJk8AmT2c4cpc8/VKUKQM3bhg/S7JJCBHLGsmmmJiYbD1ecrTWPHz4MFP7sLe3Z+bMmRna9oknnsDX15e+ffvGW379+nWmTZvGvn372L9/P9OmTeNG7B/wFMydO5dhw4ZlKJbsMHz4cFasWMHJkyc5efIkP/30U6J1ypcvz7fffsuhQ4dYs2YNAwYMyNKYoqOjU10nra/HqlWrKFOmDKdOnWLs2LFMmDDB/NzAgQPx8fHh2LFj7N+/n4oVKwKwbt06OnfubLkTEiIfGjnSuM6V3k1CiPxOa+NvYZ060KuXtaMRceXpZFPp0pJsEiI3Cw0NpV69egwdOhQnJyf69evHjh07aNmyJbVr12b//v2A8cG4a9euuLi40KxZM3Ovm6lTpzJixAi8vLyoUaMGixcvBmDixImcPn0aNzc3fHx80Frj4+ODk5MTzs7O+Pn5JRlPZGQkgwcPxtnZGRcXF7766ivASCh4eHjg6OjIlClTzOs7ODgwffp0WrVqxcaNG+Pta+fOnbi7u+Ps7MyQIUO4d+9eouN98sknNG7cGFdXV1544QXu3LkDGD16hg0bRuvWralTpw7fffcdYPQ66tKlC08//TR169Zl2rRpAJw9e5b69eszYsQIGjZsyPnz55M831GjRjF9+nQAtm3bRps2bZJMTD3//PMcOXKEkJCQtLyM8Tg4OODi4oJNgq+dtm3bRvv27SlbtixlypShffv2SSZmUuLt7c3w4cNp27YtNWrUYM+ePQwZMgQPDw+8vb3N623fvp3mzZvTsGFDevbsSWRkJADTp0+ncePGODk58corr5h7IXl5eTFhwgSaNGlCnTp1+PXXX9MUz6VLl7h16xbNmzdHKcXAgQPZsmVLovXc3d2pWrUqAI6OjkRFRSX5foh17NgxmjRpYn4cGhqKi4tLiufw7LPP8vbbb+Pp6cmiRYtSjT2tr8fWrVsZNGgQAD169GDnzp1orTl69CjR0dG0b98egOLFi1O0aNFUjyuESJuSJWH0aNi6Ff7+29rRCCGE9Xz3HQQFwdtvg62ttaMRceXpZFPsMDqtjWTTpUuQhi90hRDJ8PLywtfXF4AHDx7g5eXF559/DsCdO3fw8vIyJy5u3ryJl5cXX3/9NQDXrl3Dy8uLb7/9FoD//vsvTcc8deoUo0ePJjg4mOPHj7N+/Xr8/f2ZN28es2bNAmDKlCm4u7sTHBzMrFmzGDhwoHn7EydOsG3bNnPvjAcPHjB79mxq1qxJUFAQc+fO5euvvyYoKIi///6bHTt24OPjw6VLlxLFMmPGDEqVKsWhQ4cIDg6mXbt2AMycOZPAwECCg4PZs2dPvCFmdnZ2+Pv78+KLL5qXRUVF4e3tjZ+fH4cOHSI6Opply5YlOl737t0JCAjg77//pn79+qxatcr8XGhoKHv27OH7779n2LBhREVFAbB//37WrVtHUFAQGzduJNA0xiIkJISBAwdy8OBBAgMDkzzf2bNn4+fnx65duxg1ahSrV69OlBQCsLGx4c033zS3f1y9e/fGzc0t0W3t2rUpvs7//vsvj8dOHYrRe+rff/9NcZuk3Lhxg19++YUFCxbQqVMnxo4dy/79+zl06BBBQUFcu3aN9957jx07dvDXX3/h4eHB/PnzAXjttdcICAjg8OHD3L1715zEA6M30P79+1m4cKE5iRcSEpLkubq5uREeHs6///6Lvb19us7pq6++wt3dncKFCye7Tv369bl//z7//PMPAH5+fvQyfZWX0jmEh4ezZ88exo8fz7p165KMu0ePHkDaX4+46xUoUIBSpUoRFhbGiRMnKF26NN27d8fd3R0fH58c07tPiLxi1Cgj6WT6jkAIIfIdrWHaNKhRAxJ0mhc5QAFrB5CVypQxkku3bxsz0j18CBcvPpqdTgiR81WvXh1nZ2fA6PXx5JNPopTC2dnZXAPG39/f3MuoXbt2hIWFcfPmTQA6duxI4cKFKVy4MBUrVuTy5cuJjuHv70+fPn2wtbWlUqVKeHp6EhAQkGioz44dO9iwYYP5cZkyZQD48ssvWbFiBdHR0Vy6dImjR4+ae5r07t070fFCQkKoXr06derUAWDQoEEsWbKEMWPGxFvv8OHDvPPOO4SHhxMZGUnHjh3Nz/Xq1QsbGxtq165NjRo1OH78OADt27enXLlygJGs8vf356mnnqJatWo0a9Ys1fP95JNPaNOmDQsWLKBmzZrJvi59+/Zl5syZnDlzJt7y5HqFpSapWkYqA1OJdOrUyfz+qFSpEs7OzkRERODo6EhoaCgXLlzg6NGjtGzZEoD79+/TvHlzAHbt2sWcOXO4c+cO169fx9HRkU6dOgFGWwI0atTI/L6rW7cuQUFBFjunI0eOMGHCBLZv357qefbq1Ysvv/ySiRMn4ufnZ273lM4h7nuxX79+9OvXL9OxJ7dedHQ0v/76KwcPHuSJJ56gd+/e+Pr68tJLL6V6bkKItClTBsaMMZJNQUHg5mblgIQQIpt9+y0cOACrV0PBgtaORiSU55NNYAyli/2C9vx5STYJkVG7d+82/1ywYMF4j4sWLRrvcalSpeI9Ll++fLzHlStXTtMx4/bwsLGxMT+2sbEx155J6YNx3O1tbW2TrFeT1PYAS5Ys4ZNPPgHghx9+QGud6AP3mTNnmDdvHgEBAZQpUwZvb29zLyOAYsWKpfl4CXl7e7NlyxZcXV3x9fWN134J44h9nNzyuHGkdPxDhw5Rrlw5Ll68mGJsBQoUYPz48XzwwQfxlvfu3TvJ4XXjxo2L1+MsIXt7+3jnd+HCBby8vFKMISlx3x8J3zvR0dHY2trSvn17vvjii3jbRUVFMWLECAIDA3n88ceZOnVqvNcxdl9x30MhISFJJhPB+F2xt7fnwoUL8c4pdrhcQhcuXKBbt26sXbs2xSRfrN69e9OzZ0+6d++OUoratWuneg5x3wPr1q1j7ty5ifZbq1YtNm3alObXw97envPnz2Nvb090dDQ3b96kbNmy2Nvb4+7uTo0aNQDo2rUrf/75pySbhLCwsWNh0SIj4WTqSCyEEPmC1jB1KtSsCf37WzsakZQ8PYyudGnjPm6y6dw5q4UjhMgibdq0Yd26dYDxIb98+fKULFky2fVLlChBREREvO39/PyIiYnh6tWr7N27lyZNmjBy5EiCgoIICgqiatWqdOjQgY8++si83Y0bN7h16xbFihWjVKlSXL58mR9//DHVeOvVq0doaCinTp0C4LPPPsPT0zPRehEREVSpUoUHDx6Yzy/Wxo0befjwIadPn+aff/6hbt26gDGz2fXr17l79y5btmwx9+BJ2F5Jne/Zs2f58MMPOXjwID/++CP79u1L8Ty8vb3ZsWMHV69eNS/z8/Mzt1ncW0qJJjB6oG3fvp0bN25w48YNtm/fbu7J9dZbb7F58+YUt0+rZs2a8dtvv5nb/s6dO5w4ccKclClfvjyRkZFpmikttmdTUrfSpUtTpUoVSpQowZ9//onWmrVr19KlS5dE+wkPD+e5557j/fffT/R6DRw40FybLK6aNWtia2vLjBkzzAmv9JxDv379kow7dpuUXo+4OnfubJ6pbtOmTbRr1w6lFI0bN+bGjRvm98Yvv/xCgwYNUm1TIUT6lC5tJJw2bzZ6NwkhRH7xzTdw8CC8+y4UyNNdaHKvPJ1siu3ZFB4ev2eTECJvmTp1KoGBgbi4uDBx4sRkp2mPVa5cOVq2bImTkxM+Pj5069YNFxcXXF1dadeuHXPmzEmy59U777zDjRs3cHJywtXVlV27duHq6oq7uzuOjo4MGTIkyeROQnZ2dqxevZqePXvi7OyMjY1NkjOqzZgxg6ZNm9K+fXvq1asX77m6devi6enJM888w/Lly7GzswOgVatWDBgwADc3N1544QU8PDwS7Tep861UqRIvvfQS8+bNo2rVqqxatYqhQ4fG6xmTUKFChRg1ahRXrlxJ9ZxjBQQEYG9vz8aNG3n11VdxdHQEoGzZsrz77rs0btyYxo0bM3nyZMqWLQsYva3S2hMuNRUqVMDX15c+ffqYC8ofP36c0qVL8/LLL+Ps7EzXrl1p3LixRY63bNkyhg4dSq1atahZsybPPPMMAN988w2TJ08G4KOPPuLUqVPMmDHDXDsptk2Dg4OpUqVKkvvu3bs3n3/+ublekyXPIaXXY/LkyXzzzTcAvPTSS4SFhVGrVi3mz5/P7NmzAaMH2Lx583jyySdxdnZGa83LL7+c4XiEEMkbPRpKlTK+4RdCiPwgtldT7dqQQlUAYW1a6zx5q1Klij5wQGvQessWrbXWunRprUeO1PnCrl27rB2C1UkbZL4Njh49aplArOjWrVvWDsHiBg0apDdu3Jho+erVq/XIJP7I5fY26NChQ5LLk2uHhHLr+d+8eVP36NHDIvvKaW2Q1tcurqT+HgGBOgdcc8jt0a1OnTqJXieROWn5Xz5tmnHN+9dfWR9PbifXh5Y1depUPXXqVGuHkafIezR1X39t/M1buzZt60ubWl5arsHydM+muMPoAGrVgpMnrRaOEEKIDNi2bVuSy0uVKsW7777L8uXLszmi7FGyZEk2btxo7TAsrl+/fuzZs8fcG08IkXmjRxvXvdK7SQiR1z18+KhXU58+1o5GpCTdoxuVUv+YfrwBeGutD6Vxu/bAx4DWWqde/dQC4hYIB6hbF379NTuOLIQQWcfX1zfJ5d7e3nh7e2drLNa0aNEia4cgMiBh/TEhROaVKgXjxsHkycbMTI0aWTsiIYTIGps3Q3AwfPaZ1GrK6TLSs8kBqAa4A78ppTqlcbuipm0dMnDMDClVCpQyajYB1KtnFAi/cye7IhBCCCGEECLrjR5tfNE6bZq1IxFCiKzx8KHxN65OHenVlBtkdhhdcWCzUsrHEsFYmo0NlCz5qGdTbH3dEyesF5MQQgghhBCWVrIkjB8P334LgYHWjkYIISzv66/h0CGjF6etrbWjEanJTLJpJRBp2sdspdSnSqkc15GtXDm4ds342TQzOMePWy8eIYQQQgghssLrr0PZssZU4EIIkZfExBhJpnr14MUXrR2NSIvMJJu+A1oD5wEFDAJ2KqXKWSIwS6lcGS5fNn6uXdsYVhcSYt2YhBBCCCGEsLSSJWHCBPjpJ/D3t3Y0QghhOevXw7FjMH269GrKLTI1jE5r/TfQBNiHkXBqBexTStW3QGwWUakS/Pef8bOdHTg4SM8mIfK78PBwli5dmu3H9fb2ZtOmTdl+XEvy9fXFxsaG4OBg8zInJydCQ0PTtP3evXtp2LAhBQoUSNQWa9asoXbt2tSuXZs1a9akui9vb2+qV6+eo2ejO3DgAM7OztSqVYtRo0ZhzBQb3/79+3Fzc8PNzQ1XV1c2b95shUgTS8vrce/ePXr37k2tWrVo2rRpvPfBhAkTcHJywsnJCT8/P/Pyfv36UbZs2Vz/uyBETvXaa8aXrW+/DUn8yRFCiFznwQNjBjp3d3jhBWtHI9IqszWb0FpfBryADRgJp+rAH0qppzO7b0uI27MJjG530rNJiPzNGsmmmJiYbD1ecrTWPHz4MFP7sLe3Z+bMmRna9oknnsDX15e+ffvGW379+nWmTZvGvn372L9/P9OmTeNGbMG9FMydO5dhw4ZlKJbsMHz4cFasWMHJkyc5efIkP/30U6J1nJycCAwMJCgoiJ9++olXX32V6OjoLIspLftO6+uxatUqypQpw6lTpxg7diwTJkwA4Pvvv+evv/4iKCiIffv2MXfuXG7dugUYs9F17tzZsiclhDArWhTeeceYgXn7dmtHI4QQmffpp/DPP/Dee0ZdZpE7WOSl0lrf01r3BaaYFpUEvlVKjbbE/jOjcmUICzOyoWDUbQoJMSrZCyFyttDQUOrVq8fQoUNxcnKiX79+7Nixg5YtW1K7dm32798PGB+Mu3btiouLC82aNTP3upk6dSojRozAy8uLGjVqsHjxYgAmTpzI6dOncXNzw8fHB601Pj4+ODk54ezsHK8XRlyRkZEMHjwYZ2dnXFxc+OqrrwAjoeDh4YGjoyNTpkwxr+/g4MD06dNp1aoVGzdujLevnTt34u7ujrOzM0OGDOHevXuJjvfJJ5/QuHFjXF1deeGFF7hjmkrT29ubYcOG0bp1a+rUqcN3330HGL2OunTpwtNPP03dunWZZpqS6OzZs9SvX58RI0bQsGFDzp8/n+T5jho1iunTpwOwbds22rRpk2Ri6vnnn+fIkSOEZCBz7+DggIuLCzYJrhS2bdtG+/btKVu2LGXKlKF9+/ZJJmZS4u3tzfDhw2nbti01atRgz549DBkyBA8PD7y9vc3rbd++nebNm9OwYUN69uxJZGQkANOnT6dx48Y4OTnxyiuvmHsheXl5MWHCBJo0aUKdOnX49ddf0xTPpUuXuHXrFs2bN0cpxcCBA9myZUui9YoWLUoB09y9UVFRKKVS3O+xY8do0qSJ+XFoaCguLi4pnsOzzz7L22+/jaenJ4sWLUo19rS+Hlu3bmXQoEEA9OjRg507d6K15ujRo3h6elKgQAGKFSuGq6trul9PIUTGvfwyVKtmJJ2kd5MQIjeLioIZM6BFC3jmGWtHI9LDonlBrfUMoDdwF7AF5iulPlZKWW1UZaVKxv2VK8Z9vXpw5w78+6+1IhIi9/Ly8sLX1xeABw8e4OXlxeeffw7AnTt38PLyMicubt68iZeXF19//TUA165dw8vLi2+//RaA/2LHt6bi1KlTjB49muDgYI4fP8769evx9/dn3rx5zJo1C4ApU6bg7u5OcHAws2bNYuDAgebtT5w4wbZt28y9Mx48eMDs2bOpWbMmQUFBzJ07l6+//pqgoCD+/vtvduzYgY+PD5cuXUoUy4wZMyhVqhSHDh0iODiYdu3aATBz5kwCAwMJDg5mz5498YaY2dnZ4e/vz4txKhlGRUXh7e2Nn58fhw4dIjo6mmXLliU6Xvfu3QkICODvv/+mfv36rFq1yvxcaGgoe/bs4fvvv2fYsGFERUUBxpCsdevWERQUxMaNGwk0TUkUEhLCwIEDOXjwoLkXTcLznT17Nn5+fuzatYtRo0axevXqREkhABsbG958801z+8fVu3dv85CwuLe1a9em+Dr/+++/PP744+bH9vb2/JuBP9Q3btzgl19+YcGCBXTq1ImxY8eyf/9+Dh06RFBQENeuXeO9995jx44d/PXXX3h4eDB//nwAXnvtNQICAjh8+DB37941J/HA6A20f/9+Fi5caE7ihYSEJHmubm5uhIeH8++//2Jvb5+mc9q3bx+Ojo44OzuzfPlyc/IpKfXr1+f+/fv8888/APj5+dGrV69UzyE8PJw9e/Ywfvx41q1bl2TcPXr0ANL+esRdr0CBApQqVYqwsDBcXV358ccfuXPnDteuXWPXrl2cP38+hVdOCGFJhQrBlCnGrHRJ5LiFECLXWLbM+Ow+c6ZRf1nkHhafPU5rvUkpFQpsAaoCQ4FawOeWPlZaVK5s3P/3Hzz2WPwZ6eJcRwshcqjq1avj7OwMgKOjI08++SRKKZydnc31Yfz9/c29jNq1a0dYWBg3b94EoGPHjhQuXJjChQtTsWJFLscdV2vi7+9Pnz59sLW1pVKlSnh6ehIQEJBoqM+OHTvYsGGD+XGZMmUA+PLLL1mxYgXR0dFcunSJo0ePmnua9O7dO9HxQkJCqF69OnXq1AFg0KBBLFmyhDFjxsRb7/Dhw7zzzjuEh4cTGRlJx44dzc/16tULGxsbateuTY0aNThuKkbXvn17ypUz5mno3r07/v7+PPXUU1SrVo1mzZqler6ffPIJbdq0YcGCBdSsWTPZ16Vv377MnDmTM2fOxFueXK+w1CRVyyi1Hj5J6dSpk/n9UalSJZydnYmIiMDR0ZHQ0FAuXLjA0aNHadmyJQD379+nefPmAOzatYs5c+Zw584drl+/jqOjI506dQKMtgRo1KiR+X1Xt25dgoKCLHJOTZs25ciRIxw7doxBgwbxzDPPYGdnl+y+e/XqxZdffsnEiRPx8/Mzt3tK5xD3vdivXz/69euX6diTW69Dhw4EBATQokULKlSoQPPmzVNMoAkhLG/AAPjgA2Nmus6dpaCuECL3iYyE99+Hp54CLy9rRyPSK0uu/LTWgUqppsBWoCFGTafmWXGs1MT2bIrtRFGvnnEfEgLt21sjIiFyr927d5t/LliwYLzHRYsWjfe4VKlS8R6XL18+3uPKsZngVBQuXNj8s42NjfmxjY2NufZMSh+M425va2ubZL2apLYHWLJkCZ988gkAP/zwA1rrRB+4z5w5w7x58wgICKBMmTJ4e3ubexkBFCtWLM3HS8jb25stW7bg6uqKr69vvPZLGEfs4+SWx40jpeMfOnSIcuXKcfHixRRjK1CgAOPHj+eDDz6It7x3795JDq8bN25cvB5nCdnb28c7vwsXLuCVgauKuO+PhO+d6OhobG1tad++PV988UW87aKiohgxYgSBgYE8/vjjTJ06Nd7rGLuvuO+hkJCQJJOJYPyu2Nvbc+HChXjnVLVq1RTjr1+/PsWKFePw4cN4eHgku17v3r3p2bMn3bt3RylF7dq1Uz2HuO+BdevWMXfu3ET7rVWrFps2bUrz62Fvb8/58+ext7cnOjqamzdvUrZsWQAmTZrEpEmTACM5Wbt27RTPXQhhWQUKwLRpxhThGzZACvllIYTIkRYtgqtXjV5NIvfJsvJaWut/gdbA1xiFwwunvEXWiP08G9uZoVIlY1pYmZFOiLyjTZs2rFu3DjA+5JcvX56SJUsmu36JEiWIiIiIt72fnx8xMTFcvXqVvXv30qRJE0aOHElQUBBBQUFUrVqVDh068NFHH5m3u3HjBrdu3aJYsWKUKlWKy5cv8+OPP6Yab7169QgNDeXUqVMAfPbZZ3h6eiZaLyIigipVqvDgwQPz+cXauHEjDx8+5PTp0/zzzz/UNXXb/Pnnn7l+/Tp3795ly5Yt5h48CdsrqfM9e/YsH374IQcPHuTHH39k3759KZ6Ht7c3O3bs4OrVq+Zlfn5+5jaLe0sp0QRGD7Tt27dz48YNbty4wfbt2809ud566y2LzdDWrFkzfvvtN3Pb37lzhxMnTpiTMuXLlycyMjJNM6XF9mxK6la6dGmqVKlCiRIl+PPPP9Fas3btWrp06ZJoP2fOnDEnsM6ePUtISAgODg4ADBw40FybLK6aNWtia2vLjBkzzAmv9JxDv379kow7dpuUXo+4OnfubJ6pbtOmTbRr1w6lFDExMYSFhQEQHBxMcHAwHTp0SLVNhRCW1bMnuLoaQ+pi65cKIURucOMGzJ1r9MyMU6pS5CIZ6dl0DtDAndRW1FrfBXoopd4D3s7AsTItYc8mpYzeTceOWSMaIURWmDp1KoMHD8bFxYWiRYsmO017rHLlytGyZUucnJx45plnmDNnDn/88Qeurq4opZgzZ06SPa/eeecdRo4ciZOTE7a2tkyZMoXu3bvj7u6Oo6MjNWrUSDK5k5CdnR2rV6+mZ8+eREdH07hx4yRnVJsxYwZNmzalWrVq5uFgserWrYunpyeXL19m+fLl5iFXrVq1YsCAAZw6dYq+ffvi4eHB4cOH4+23W7duic63UqVKtG/fnnnz5lG1alVWrVqFt7c3AQEByQ7nKlSoEKNGjWL06LTPBREQEEC3bt24ceMG3377LVOmTOHIkSOULVuWd999l8aNGwMwefJkcw+ZQ4cOWWz2sgoVKuDr60ufPn3MRdnfe+896tSpw8svv4yzszMODg7mODJr2bJleHt7c/fuXZ555hmeMVW2/OabbwgMDGT69On4+/sze/ZsChYsiI2NDUuXLqV8+fKAkaipUqVKkvvu3bs3Pj4+5qGMpUuXttg5pPR6TJ48GQ8PDzp37sxLL73EgAEDqFWrFmXLljUPM33w4AGtW7cGoGTJknz++ecyjE4IK7CxMQrrdu4Mq1fDK69YOyIhhEibefPg1i3jb5jInVRah3Nk+kBKuQGlALTWe7L6eFWrVtWxw0BKlQJvb6MbHhgzdHz9NVy7lneLjO3evTtDQ1DyEmmDzLfBsWPHqF+/vuUCsoKIiAhKlChh7TAsytvbm+eff95czDmWr68vgYGB8XpfQe5vg44dO7Jt27ZEy5Nrh4Ry6/nfunWLl156KdFMhhmR09ogra9dXEn9PVJKHdBaJz/eUGS7unXr6ozMVCmSl9n/5VpDy5Zw9iycPAlFi1outtxIrg8tK3bSjLiz8YrMkfcoXLoENWtC166wfn3m9ydtanlpuQbLsmF0CWmtg7TWe7Ij0ZRQ5cqPejYBeHjA9euQoK6tEEKIHCipRBMYdcHeffddli9fns0RZY+SJUtaJNGU0/Tr1489e/akWABdCGE5SsHs2XDxIvzvf9aORgghUjdtGkRHw3vvWTsSkRn5ok97pUqPajYBxI4sCAiAGjWsE5MQQmSUr69vksu9vb3x9vbO1lisaVFsd1WRqySsPyaEyHpt2sBzzxmzOr38MphGxQohRI5z4gSsXAnDh8tn9dwu23o2WVPCnk3OzlC4sJFsEkKkLLuG2gohRHLk75AQmff++0b9k/fft3YkQgiRvEmToEgRePdda0ciMitfJJuqVoULF4wx6wAFC4KbGwQGWjUsIXI8Ozs7wsLC5IOeEMJqtNaEhYXJsDshMsnZGQYONIbSnT9v7WiEECKx/fth0yZ44w2oWNHa0YjMyhfD6Bwc4PZtCAsD0wQ/eHjAmjUQEwO2tlYNT4gcy97engsXLsSb2j63iYqKyvcfUvN7G+T384fc3wZ2dnbY29tbOwwhcr1p0+CLL2DKFPj0U2tHI4QQj2gNEyZAhQowbpy1oxGWkCuSTUopO2AvUBgj5k1a6zRPeVC9unF/5syjZFPjxrBkCYSEQIMGlo5YiLyhYMGCVI/9Bcqldu/ejbu7u7XDsKr83gb5/fxB2kBkXGavwUTOUq0avPYaLFwI48eDo6O1IxJCCMO2bbB7t9H7MgdNoCsyIbcMo7sHtNNauwJuwNNKqWZp3djBwbgPDX20LG6RcCGEEEIIkaRMXYOJnOftt6F4ceNeCCFygocPjV5NNWrAK69YOxphKbki2aQNkaaHBU23NBeRiU02nTnzaFndulCsmNRtEkIIIYRITmavwUTOU66c8aHum2/A39/a0QghBKxfD8HB8N57UKiQtaMRlqJyS+FfpZQtcACoBSzRWk9IYp1XgFcAqlSp0mj9+vXm5zp3bknbtlcYO/akedno0W48eGDD0qV/ZXX42S4yMpLixYtbOwyrkjaQNgBpA5A2yO/nD3m3Ddq2bXtAa+1h7TjyutSuweJef1WoUKHRl19+mf1B5mFZ8ft7964NAwY0pXLlKP73v4MoZdHd52h59e+htezZswcAT09PK0eSd+S39+j9+zYMHNiEkiUfsHz5AWyyoDtMfmvT7JCWa7BcUbMJQGsdA7gppUoDm5VSTlrrwwnWWQGsAKhatar28vIyP1e7Nty//xheXo+Zl7VvDx99BC1aeOW5DOru3buJe/75kbSBtAFIG4C0QX4/f5A2EJmT2jVY3OuvunXranmvWVZW/f7Ong0vv1yYa9e86NnT4rvPseTvoWXFJpukTS0nv71H58yBy5dh3To72rXzypJj5Lc2zSnSnTdUSrUx3cqmc7vSsdum95hxaa3Dgd3A0+nZzsEhfs0mMOo23bsHhw8ntYUQQgghhIiV0WswkTMNHgzOzsaQunv3rB2NECI/unYNZs6E556DJ5+0djTC0jLSSW03sAtolc7tmpq2/SW9B1RKVTB9m4ZSqgjwFHA8PfuoXt1INsUdNehh6vQldZuEEEIIIRKzxDWYyJlsbWHePKOm6ZIl1o5GCJEfTZsGt28bvZtE3mONAuEZGRVeBdillAoGAoCftdbfpWcHDg4QFWV00YtVo4ZRJPG33zIQkRBCCCFE3pfpazCRc3XoAB07wowZEBZm7WiEEPlJSAgsXw4vvwwNGlg7GpEVsrNmU2ySKd0VybXWwYB7Zg5evbpxf+YMVK5sCkgZ3fV27DB6POWn4ohCCCGEEKmxxDWYyNnmzQNXV2MWqAULrB2NECK/mDABihQxejeJvCk7ezaVN93fzsZjmsUmmxLWbWrfHi5ehKNHsz0kIYQQQgghrMrJCV56yRhKd+qUtaMRQuQHe/bA1q0wcSJUrGjtaERWyZZkk1KqMDDI9DA0O46ZULVqxv2ZM/GXt29v3P/8c/bGI4QQQgghRE4wfToUKmR88BNCiKz08CGMHw/29jB2rLWjEVkpxWF0SqlBPEoSJfSeUmpMKvtXQDGgnuleAzvTGaNFFCsGlSrB6dPxl1erBnXqGMmmMWOsEZkQQgghhBDWU7myMaRl8mTw94dW6Z0GSAgh0uiLL+DAAVi71hhGJ/Ku1Go2OQBeJK6zpADHdBwnthrSFWBeOrazqAYN4PDhxMvbt4fVq41pXwsXzv64hBBCCCGEsKbx441ivePGwZ9/go01phESQuRpd+7AW29Bw4bQr5+1oxFZLa3/RlScW1LLkrsBRALBwAKgodb6YubDzhhnZzhyxOi6F1f79sYb/48/rBOXEEIIIYQQ1lS0KMyeDQEB8Pnn1o5GCJEXzZsH588bkxFIQjvvS/El1lpP01rbxL3FPgV0TfhcEjdbrXUprbWb1nq8NRNNYBRAvH0bzp6Nv7xtW7C1lbpNQgghhBAi/+rXD5o0MWo3RURYOxohRF5y/ryR0O7ZE9q0sXY0IjtkNJ+oUl8l53FyMu4PHYq/vGRJaNYMtm/P/piEEEIIIYTICWxsYNEiuHQJ3n/f2tEIIfKSCRNAa5gzx9qRiOyS7mRTnF5L32RFQFnJ0VRlKqm6TR06GIXKwsKyNyYhhBBCCCFyimbNYMAA+PBD+Ocfa0cjhMgLfvvNKAzu4wMODtaORmSXfDVSsmRJY/a55IqEaw07rTJXnhBCCCGEEDnD++9DwYLGB0MhhMiMhw9h9Gh47DGjd5PIP/JVsgmMoXQJh9EBNG4MpUpJ3SYhhBBCCJG/PfaYMWPU11/DL79YOxohRG62Zo0xguiDD6BYMWtHI7JTgfRuoJSanNmDaq2nZ3YfGeXsDNu2wf37UKjQo+UFCkC7dkaySWtQubIqlRBCCCGEEJk3bhysXAljxsBffxnXykIIkR63bhmJ6+bNoW9fa0cjsltG/m1MxZiNLjOslmxycoLoaDhx4lHB8FhPPw2bN8Pff4Obm1XCE0IIIYQQwuqKFDGmKe/RAz75BIYPt3ZEQojcZuZMuHwZvv1WOnPkR5mZjS6jN6uKTTAlVbepe3fjW5svvsjemIQQQgghhMhpuncHLy945x2ZREcIkT4nTsDChTBokFGyRuQ/GenZ1DYN69gA5YGmwECgHLABWJGB41lUvXpga5t0sql8eejY0Ug2vf++Mf2rEEIIIYQQ+ZFSsHgxuLvDpEmwfLm1IxJC5AZaw6hRYGcHs2dbOxphLelONmmt96Rj9Y1KqRkYiaYXgeNa6xnpPaYlFS4MdeokXSQcjLGk339vTM/YunX2xiaEEEIIIURO4uwMr78OixbB0KHg4WHtiIQQOd2WLUad5IULoXJla0cjrCXL++5orW8CLwAXgSlKqeZZfczUuLtDQICRcU2oc2coWhTWr8/+uIQQQgghhMhppk6FSpVg5EhjGnMhhEjOnTvGxALOzsbfDJF/ZctAMa31HWC16XivZccxU9KyJVy6BKGhiZ8rXhy6dIEvvzRmrBNCCCGEECI/K1UK5s6F/fvh00+tHY0QIiebNQvOnYMlS2QWy/wuO6sSHTHdt8rGYyaplSkCf/+kn+/bF65fh59/zr6YhBBCCCGEyKn69TNKTEycaFwnCyFEQidPGonpAQOkJI3I3mRTIdN9xWw8ZpIcHaFkyeSTTR06QNmyMpROCCGEEEIIMIqFL1kC4eFGsXAhhIhLa6O+m50dzJlj7WhETpCdyaaOpvub2XjMJNnaQosWRhHwpBQqBD17GoXNbt/O1tCEEEIIIYTIkZyd4bXX4OOPITDQ2tEIIXKS2KLg06dLUXBhyJZkk1JqJNAH0MC+7Dhmalq1giNHku8G3LevUdzsm2+yNy4hhBBCCCFyqmnToGJFo/BvTIy1oxFC5AS3b0tRcJFYukt2KaUmp3HVQkBVwAuoBiiMZNP/0nvMrNCypXH/xx/w3HOJn2/VCuztjaF0ffpkb2xCCCGEEELkRKVKwbx5Rk2WFStg+HBrRySEsLbp042i4L/+KkXBxSMZeStMxUgapYcy3U/XWu/IwDEtrkkT4xfB3z/pZJONDbz4IixcCGFhUK5ctocohBBCCCFEjtOvH/j6wltvQdeuUKWKtSMSQljLoUMwfz689NKjibiEgIwPo1PpuD0AfgKe0lpPy2zAllK0KDRqlHyRcDD+kUZHw9q12ReXEEIIIYQQOZlSsHQpREXB2LHWjkYIYS0PH8Irr0CZMlIUXCSWkZ5NbdO43j0gHDiltY7OwHGyXMuWxqwa9+5B4cKJn3dzM7KzixcblfWlS6AQQgghhBBQp44xK93kyeDtDU8/be2IhBDZbcUK+PNPo3NG2bLWjkbkNOnu2aS13pPG259a6+M5NdEERiLp3j04cCD5dcaNg9BQ2Lw528ISQgghhBAix3vzTahXD0aMMCbWEULkH//9BxMnQrt20L+/taMROVG2zEaXU8UWCU9pKF3nzlCzJnz4Iej0VqoSQgghhBAijypcGJYvhzNnYMYMa0cjhMhOY8caQ2mXLTOG1gqRUL5ONlWsCI6O8NNPya9ja2v8Iu3bZ8xcJ4QQQgghhDB4esLgwcYMdYcOWTsaIUR2+Okn2LAB3n7bGFIrRFIynWxShiZKqZFKqZlKqUWm+5Gm5Tk6z9m5M+zdC9evJ7+Ot7dR9OzDD7MtLCGEEEIIIXKFuXOhdGl49VWjYLAQIu+6c8cYOlu3LkyYYO1oRE6W4WSTUspGKTUWCAX+ABYDE4HXTPeLTctDlVJjlFI5shdVly4QEwM//JD8OsWKwbBhRt2m06ezLzYhhBBCCCFyunLljC9l//jDGFYnhMi7pk41hs4uX570JFtCxMpQAkgpVRbwB+YB9oBK4fY48CHgr5QqY4GYLapxY6hSBbZuTXm9114zZqNbtCh74hJCCCGEECK3GDAAOnQwejqcO2ftaIQQWSEw0Egsv/wyeHlZOxqR06U72WTqofQj0AwjmfQQ+AF4A+gKtDfdvwF8D0Sb1msK/JDTejjZ2ECnTsa403v3kl+valXo0wc+/RRu3Mi++IQQQgghhMjplIKPPzYm1Bk2TCbWESKvuX8fhgyBypWNobNCpCYjiZ9XgMaABo4Ablrr57XW87XW32itd5ru52utOwFuwGGMhFMT4GULxW4xXbpAZCTs2pXyeuPGwe3bsGJF9sQlhBBCCCFEbuHgAO+/Dz/+CJ9/bu1ohBCW9MEHxiQAy5dDqVLWjkbkBhlJNvU33V8D2mqtj6S0stb6KPAkcNW0aEAGjpml2rUz6jKlNpTO1RWefBIWLzYyu0IIIYQQQohHRoyAFi1gzBi4fNna0QghLOHIEZgxA1580RgVJERaZCTZVB+jV9NKrfW1tGygtb4KrMTo3dQgA8fMUnZ20LEjfPNN6jNojB8PFy/C+vXZE5sQQgghhBC5ha0trFxpjBoYNcra0QghMismBl56CUqWNDpdCJFWGUk2xdacD07ndrHrF0zvAZVSjyuldimljimljiilRqd3H6np0sVIIh04kPJ6Tz8N7u4weTLcvWvpKIQQQgghco7suAYTeU/9+jBlCnz5JWzZYu1ohBCZ8b//wb59RqKpQgVrRyNyk4wkmy6Y7oumc7vY9S+kuFbSooHxWuv6GIXJRyqlLNpD6rnnjG9iUhtKp5RRgf/8eVi40JIRCCGEEELkOFl+DSbyJh8fowTFiBEyuY4QudU//8CkScZn5T59rB2NyG0ykmz6AWM4XId0btcRY/jdD+k9oNb6ktb6L9PPEcAx4LH07icl5cpBq1apJ5sA2rY1ekLNmiVj0YUQQgiRd2XHNZjImwoWNGZxvnLFqN8khMhdHj6EwYONDhnLlhmdLoRID6XTOS+pUqoa8DdQHOiqtf4uDds8B3wDhAPuWutz6Q/VvC8HYC/gpLW+leC5VzBmy6NKlSqN1qezsNKmTY+xZEltPv00gOrVb6e47vnzRRg8uDHPPPMf48efSNdxskNkZCTFixe3dhhWJW0gbQDSBiBtkN/PH/JuG7Rt2/aA1trD2nHkF8ldg8W9/qpQoUKjL7/80joB5lG5/fd39WoH1q51YMaMQ7RqFWbtcHJ9e+Y0e/bsAcDT09PKkeQdOeU9ummTPUuW1OLNN4/zzDP/WTucTMkpbZqXpOUaLN3JJgClVHvADygGzAUWmYqAJ1yvAjAK8AFuAz211r+k+4CP9lcc2APM1Fp/ndK6VatW1RcvXkzX/q9dg8ceg1dfTVvxszFjjDGsQUHg7JyuQ2W53bt34+XlZe0wrEraQNoApA1A2iC/nz/k3TZQSkmyKZuk9Rqsbt26OiQkJPsCywdy++/v/fvQtKlRG/XIEShf3rrx5Pb2zGmmTZsGwJQpU6wcSd6RE96jISHg5gZPPWVMopXbezXlhDbNa9JyDVYgAzv91PRjEOAFvAW8qZQ6ApwC7mDUZ6oFOAK2cdbvr5Tqn8yutdb6pRSOWxD4CliXWqIpo8qXhxdegLVrYfZsKJpKVarJk411x4+Hbdty/y+hEEIIIURC2XENJvKuQoWM6+VGjYz6TdLxTYicLToavL2hSBFYsUI+44qMS3eyCfDGqL1EnPsCgIvpFpeKs45XGvadZLJJKaWAVcAxrfX8dMSabq++Cl98Yfwj9PZOed2yZY2E09ix8NNP8MwzWRmZEEIIIUT2ys5rMJF3OTvDtGnw9tvg5we9e1s7IiFEcubNgz//ND4TV6li7WhEbpaRAuFgJJHi3pJaltLy5NZNTktgANBOKRVkuj2bwdhT1KYN1KsHH3+ctvVHjIBateCNN4wssBBCCCFEHpJt12Aib/PxgSZNjGvnS5esHY0QIimHDsGUKdCjhySFReZlpGdTdYtHkQqttT+pJ6QsQil45RUYNw6Cg8ElYV+tBAoVgrlzoVs3WLkShg3LjiiFEEIIIbJedl6DibytQAFYswbc3Y1r7bxQB0aIvOTBAxg0CEqXhqVL5fdTZF66ezZprc9m1S0rTjAjBg2CwoXT3rupSxfw9DSG1N28mbWxCSGEEEIIkRvVqwezZsF338Hq1daORggR14wZcPCg8Rm4QgVrRyPygowOo8vTypaFnj3h88/h9u3U11cK5s83ZrObOjXLwxNCCCGEECJXGj0avLxg1Cg4dcra0QghAH77DWbONDpddO1q7WhEXpHuZJNSaqDpZp/O7arGbpveY1rDq6/CrVuwYUPa1m/YEIYPh0WLYNeurI1NCCGEEEKI3MjGxpidrmBB6N/fGLojhLCeW7eM38Vq1WDxYmtHI/KSjPRs8gVWAw3TuZ2zadtPM3DMbNeyJTRokPahdABz5kDt2kZGWIbTCSGEEEIIkdjjjxvX2Pv2GUN3hBDW89prcP48rFsHJUtaOxqRl1hjGF2uKDWmlNG7KSAADhxI2zbFisFnn8HFi/D661kbnxBCCCGEELlVr17GF7QzZxpDeIQQ2W/DBuPz6zvvQPPm1o5G5DXZmWyKPdbDbDxmpgwcCKVKpe8blyZNjF/Wzz6DjRuzLjYhhBBCCCFys8WLjaE7/fsbQ3mEENnn3DljJvVmzYzPr0JYWnYmm6qY7iOy8ZiZUro0vPEGbN1q9HBKq0mToHFj45f34sUsC08IIYQQQohcq2RJY+jO+fPGUB4hRPaIiTE6VsTEGJNiFShg7YhEXpQtySZTMfHhpoens+OYljJ6NJQvn75sb8GCRs+mu3dhyBDQOuviE0IIIYQQIrdq3vzRqIC0TswjhMicOXNgzx743/+gZk1rRyPyqhSTTUqp0Uqpf+Le4jy9IuFzSdzOKKWuAGcxCopr4McsPB+LK1ECJk6E7dth7960b1e3LsybB9u2wbJlWRefEEIIIYQQudk770CLFvDKK3A6V30tLUTu8/vv8O670LOnUTdNiKySWs+m0oADUM1072BaroCKcZYld6sGlDetr4ATwIeZjjqbDR8OVaoY/wjT00tp+HDo2NEYihcSknXxCSGEEEIIkVsVKADr1xv3vXrBvXvWjkiIvOn6dXjxRXjiCfjkE2NSLCGySmrJpnCMXknnTPdnTcs1cDXOsuRuZ4BDwDfAaMBDa33TomeQDYoWNeow/for/Pxz2rdTCj79FIoUgQED4MGDrItRCCGEEEKI3KpaNVi9Gv76C95809rRCJH3aA2DB8N//4GfnzERlhBZKcVkk9Z6kda6etxbnKdfTvhcEreaWmtXrXVXrfX/tNa3s/h8sszQocY/wUmT0te7qWpV+Phjo8D4lClZF58QQgghhBC5WZcuRr3UxYthyxZrRyNE3rJ4MXzzjVGvqXFja0cj8oOMFAg/Z7rdsXAsOVrhwjB5MgQGGr+k6dGjh5Gsev99Y8YNIYQQQgghRGJz5oCHh9ED4+zZ1NcXQqQuIAB8fKBzZyOhK0R2SHeySWvtYOq1tCMrAsrJBg6E2rWNgmoPH6Zv2yVLwNPTmJ3ut9+yJj4hhBBCCCFys0KFjFnpHj40astIGQohMufmTejdGypXNoaqSp0mkV0y0rMp3ypQAKZNg0OHjCKG6VGoEHz1lTEUr1s3OHMma2IUQgghhBAiN6tZ0yhe/Oef8NZb1o5GiNxLa2OEzblzRhK3bFlrRyTyE0k2pVPv3sYY13Hj4Nq19G1brhx89x1ER8PzzxtZZiGEEEIIIUR8vXrBiBHw4YfGF7ZCiPRbsAA2bYJZs6BFC2tHI/KbAundQCn1aSaPqbXWL2VyH1ZjYwOrVkGjRsZ41/TWYKpTx/iH2aGDkbj67jujx5QQQgghhBDikfnzjXqpgweDkxPUrWvtiITIPfbuNWZ27NbNqNckRHbLSJrDG0jHfGxJyrXJJgBnZ3jnHWN2ud69jUJr6dG2LSxbBi+/DGPGwEcfZUmYQgghhBBC5FqFCxu9Mho2hO7dYd8+KF7c2lEJkfNdvGj0DqxZE3x9pU6TsI6MDqNT6byR4Odcb+JEcHGBYcMgPDz92w8dCm+8YRQOl2STEEIIIYQQiT3+uFFr5vhx4/pZZ/YrbyHyuAcPjERTRAR8/TWULGntiER+lZFkU/U03GoCTYFRwDGMJNMXpuU1Mh11DlCoEHz6KVy5AuPHZ2wfs2c/mn7yxx8tG58QQgghhBB5wZNPwsyZ4OcHixdbOxohcjYfH2P281WrwNHR2tGI/CzdySat9dk03M5orQO01h8BroAv8CIwQWt91sLnYDWNGhnjYD/9FLZvT//2trZGzScXF2M43uHDlo9RCCGEEEKI3G7CBOjSxRgZ4O9v7WiEyJk2bIBFi4zODC++aO1oRH6X5bPRaa2jgZeBk8DLSqmns/qY2WnyZKhXz6i/FBGR/u2LF4dvvzXu27eHY8csH6MQQgghhBC5mVKwZg1Urw49esCFC9aOSIicJSgIXnoJWraEuXOtHY0Q2ZBsAtBaxwBrMIbTDc+OY2YXOzujZ9P580Ydp4ywt4cdO4wx6G3bwtGjlo1RCCGEEEKI3K5UKdiyBe7cga5djXshhFHapUsXKFvWKKpfsKC1IxIim5JNJqdM9x7ZeMxs0by5Mavc0qWwe3fG9tGggbGtjQ14ecmQOiGEEEIIIRJq0ADWr4e//jJ6cUjBcJHf3b8PL7wAV6/C1q1QubK1IxLCkJ3JphKm+3LZeMxs8957ULs29OmT8W699eoZCaeCBY0eTn//bdEQhRBCCCGEyPWefx7ef9+oT/P++9aORgjr0RpGjjTqmK1eDQ0bWjsiIR7JzmRTd9P9tWw8ZrYpWtTo1nv7ttGt9+7djO2nTh0j4VS4MLRrZ4y9FUIIIYQQQjzy5pvQty9MmmT05hAiP1qyBFauNH4Peve2djRCxJflySalVFGl1FzgWUADv2b1Ma2lQQNjdrnMduutXRv27IFixYyE019/WTZOIYQQQgghcjOljA/ZHh7Qv7+UoBD5z86dRimXLl1g+nRrRyNEYgXSu4FS6tM0rloIqAo0Boqalj0EPkzvMXOTTp1g1ix46y1wccl40fCaNY2EU9u28OSTsH07NG5s2ViFEEIIIYTIrYoUMUYWeHgY1+D79kHFitaOSoisFxICPXsaZVg++8yo+ytETpPuZBPgjdFDKa2U6f4+MEJrHZiBY+YqEyZAcDC8/TY4Ohr//DKienVjSF3bttC+PWzbBk2bWjRUIYQQQgghcq3HHjOG0Xl5QefO8MsvRnkLIfKqq1fh2WehQAH45hsoUSL1bYSwhozmQFU6bqHAcsBNa53WXlEWpbVGZ+NUFUrBqlVGgba+feHIkYzvy8HB6OFUrhx06AC//WaxMIUQQgghhMj1mjQxSlns3w8DBsDDh9aOSIiscfeukVS9eBG+/RZq1LB2REIkLyPJpuppvFUFimqta2itR2itj1sm5PTRWjNmzBhmzJiRrceN7dZbrJjxByEsLOP7euIJo4dTxYrGkLp16ywVpRBCCCGEELlft24wfz58/bVRPFyIvObhQyOZum+f8XlQRryInC7dw+i01mezIpCsorVGKYWXl1e2H9veHjZvNrr19uoFP/0EBQtmbF+PPw5//AEvvGAUQTx2zCgEJ+NzhRBCCCGEgNGj4Z9/4MMPjR4fI0ZYOyIhLGfiRPjqK+P93b176usLYW15PlVhY2PDwoULadOmDQDr16/nxIkT2Xb85s1hxQpj/Pjw4Znr1lu+PPz8MwwZAjNnGgms27ctF6sQQgghhBC5lVKwYIFRL/X11+H7760dkRCWsWwZzJ0LI0fC2LHWjkaItMnzyaa4bt++zfjx45k7d262HnfQIHjnHaOO06uvZi7hVKiQMc3rhx8a3YTbtIF//7VcrEIIIYQQQuRWtrbwxRfg7m58Mbtvn7UjEiJztm6F116D55+HhQuNpKoQuUFGZqOLRylVEugANAWqACWACOAisB/YrrW+ldnjWEKxYsUICAhAmX5D//nnHzZv3sywYcMoVqxYlh57+nTj/r33ICbGSBhldAicUjBuHNSpA336QOPGxkwEHh6Wi1cIIYQQQojcqFgxo1dTy5bGrF3+/lC/vrWjEiL99uyB3r2Nz3tffGHMQCdEbpHhnk1KqcJKqQ+AC4AfMA7oAzxvuh9vWn5BKTVbKVXYAvFmmr29PY899hgAmzZtYtKkSdy9exeAO3fuZNlxlTISTlOmwOrVxlC4mJjM7fP55+H3343eTm3awKZNlolVCCGEEEKI3KxSJdi+3bhO7tABzp2zdkRCpM/Bg8ZEUzVqGMnT4sWtHZEQ6ZOhZJNSqizwJ/AGUBxQKdyKAz7AH0qpMhk83qdKqStKqcMZ2T45b775JseOHaN8+fIA9OnTh27dulnyEPEoBVOnwrRpsGYNDB6c+YSTs7Mxzau7O/TsafSc0toi4QohhBAin8uqazAhskONGsYEPRERRsLp2jVrRyRE2pw6BU8/DaVKwbZtUK6ctSMSIv0y2rPpK8AVI5l0B1gF9Abcgdqm+17ASuC2aT1XIKN9b3yBpzO4bYqqV69u/vnpp582z1qntaZTp06sWbPG4secPBlmzIDPPjPqOUVHZ25/FSvCzp3GLHXvvgv9+sG9e/mqHJcQQgghsoYvWXQNJkR2cHWFb7+Fs2eNIXV379paOyQhUhQWVogOHYxOCdu3G7OSC5EbpXvUp1KqK+AJaOAA0ENrnVTH1L+BTUqpGRhJpsaAl1Kqi9Z6a3qOqbXeq5RySG+s6TV8+HDzz5GRkdy5c4d79+6ZH/fv35833niDVq1aZfpY77xjFDB8+22jYPjatZkbg2tnZ+yjQQNjn3/80YhvvjF6PgkhhBBCZER2XYMJkZVat4Yvv4Ru3WDyZEfatYPCOaLAhxDx3bgBb77pwpUrxmzm9epZOyIhMk7pdI65Ukr5AT2B/4AGWuvwNGxTBjgKVAS+0lr3SnegxoXOd1prpxTWeQV4BaBKlSqN1q9fn97DJCs0NJR3332XUaNG0bhxY86cOcPHH3/Mq6++SvXq1dFamwuPp8cXXzzOihU1adv2CpMmHcPWNvNj4AICyjBrVl1u3y7E8OGn6Nr1Yr6ctSAyMpLi+Xxws7SBtAFIG+T384e82wZt27Y9oLWW6TGyWGrXYHGvvypUqNDoyy+/zMbo8r68+vtrDT/9VJkPPqhHixbXmDr1CAULSu2JzNqzZw8Anp6eVo4k94uMtMXHx5VTp4rx/vuH8fC4Ye2Q8gz5O2p5abkGy0hfmqYYvZo+TUuiCUBrfUMptRKYZNo+S2itVwArAKpWrapjh8RZire3tzmppLXm1q1btGvXjmrVqrFhwwYmTpzInj17qFatGlevXuXhw4dUqlQpxX16eRmzyr3xRkWKFavIunVQsmTm4vTyglq1fmPlypYsXlyH0NA6rFoFptJU+cbu3bux9Hsgt5E2kDYAaYP8fv4gbSCyVtzrr7p161r8+iu/k99fy/HygqioEyxaVIflyz3ZsAEKFrR2VLlbbLJJ3qOZExFh1Gg6dQqmTTvEG2+4WjukPEX+jlpHRgr7VDTdH0rndrGFJStk4Jg5RmzvpbZt23L06FGqVasGQOXKlWnRogVVq1YFYNmyZVSpUoXIyEgAdu7cyccff0xSPcnGj4elS+HHH6F5c+OPTGaVKfOA776DhQuNwoiurkZXTCGEEEIIIfKrrl0vsmABfP01DByY+cl6hMisO3egUyfYtw82bIAWLcKsHZIQFpGRZNN9032RdG4Xu/79FNfKQv9n777Do6i6AA7/Jr1DSAgk9C4QkN5L6IIIgkhREJAiAipFEQWlqBRFRP0QBKVKF1RAQJBiofcO0iGEXhPSk/P9McuQpUgxJCQ57/PMs3OzU+7c3Ww5e++5Dztk8GGEhIQwc+ZMnG0/jzRv3pzvvvvO6q43a9Yshg4dagWr+vXrR9OmTZPsv5+pU49x7hyUL28mg/uvDAPeest84fL2hrp14b33IC7uvx9bKaWUUkqptKhXLxg50vxinxyzQyv1qKKioGlT+Osvc/KoF15I7RoplXweJdh0ynZb6yH3q33b/g/MMIxZwHqgiGEYoYZhdHrYYwBMmTKFVq1aERUV9Si7P5Tg4GBeffVVqzxhwgR27NhhlbNly0auJFMLvPHGG3z9dRs2bzZnHGjQ4F2efXYYN+NjBw8e5PLly49Ul1KlYOtW6NQJRoyAatXgyJFHOpRSSimlMpDk+gym1JOmX79bs0O/9po5YY9SKSkmBpo3N2cVnzwZ2rRJ7RoplbweJWfTSqA40MYwjAkisvZ+OxiGUQVog5nraeXDnlBEkuVf79q1a5w/fx43NzcAzpw5Q/bs2R8psffDcnBwIGvWWyMI+/bta3f/sGHDiIqKIl8+WLcOihY9wZIlWejQAb79Fpo0aULJkiWZN28eAG+++SblypXjlVdeAWDHjh3kzJkT/3skZvL0hIkToUED6NIFSpc2h+61bft4rlcppZRSaV9yfQZT6kk0cCDExppBJxGYMMGcLVqpxy0qygw0LVtmfkezfaVTKl15lJ5N44EEwBFYahhGV8Mw7hq0MgzD0fYL2BLb9gm2/VNFr169WLlyJYZhEBkZScmSJendu3dqVcdOhQoVrFkcvLzgxInZDB36DdOmQc2aMHDgF7z55puAORxw7dq1/PPPP1a5SpUqDB8+3Cr36dOH6dOnW+Wff/6ZkydP0qIF7Nxp5nBq1w5at4Zz51LhgpVSSimllEplQ4bAoEEwaZL52VjTTajHLSICnn0WfvsNvvsOOndO7Rop9Xg8dLBJRA4AwwAD8ATGAWGGYcw1DONjwzDes93OAcIwZyfxwezVNMy2f6pxcDAv2TAMRowYQatWrQCzl1Px4sVZvXp1albP4uAAH3wAP/0E+/bBu+82wtm5OmDWfevWrXz88ceAGUyaO3cu7du3ByAqKgoRIcE2AP3y5cs0a9aM+fPnA+DpeYkTJ3Lz4ouz+ekneOqpazz//BB27zZzuMfGxhIaGkp8fHxKX7ZSSimllFIpxjBg8GAYPhxmzYJWrczeTko9DteumSNN/vwTfvjBTHOiVHr1KD2bEJFBwEhb0QD8gReA94CPbbctbH83gERghIgM/o/1TTbu7u506tSJypUrA3D+/Hly5cplDUNbvXo1lSpV4ujRowDExcU91gTj9/L887B+Pbi7mz2cxo+H26vh4OBA48aNKVmyJAAeHh588cUXdOjQAQAfHx+2bdtmBdbi4+OpVasWPXoEsmMH5Mt3il9+GUybNvs5dAj27dtHrly5+OWXXwDYv38/zzzzDNu2bQPg3LlzzJs3j0uXzJkSEhISSNSB7koppZRSKo3q3x++/NL8obdZM3OYk1LJ6dIlqFMHNm+GOXPgpZdSu0ZKPV6PFGwCEJH3gGrAz0AMZlDp9iUWWABUFZEB/7Wy/9XkyZPvGRR5+umnWbZsGSVKlADMgIyDg4MVfBo/fjxZs2a1knSfPHmSf/75J0UCUMHBsGkThITA669Dw4YQGvrg+zs7O1O6dGmCgoIAMzn51KlTqVmzJkWLwpYtwYwdG8OpU00pUQLmzg3if/8bT/ny5QG4ceMGly9ftnJbbd68mZYtW3LElmX8119/xcXFxUqAvnbtWtq0acPp06cBOHr0KL/88guRkZGAGZxKjcCdUkoppZRS9/Lmm2au1KVLoXFjc7iTUsnh3DmoVQv27DEDmjrrnMoIHjnYBCAi60WkOZAJqAg8D7Sz3VYEMolICxHZ+B/r+Z/Fx8dz+vRpaxjdjz/+yJkzZ+65fb169Vi3bh0+Pj6AObtc27Zt8fX1BeCzzz6jbNmy1vbTp0/nk08+scrJ3dPHz8984xs71pwaMzjYnD0jOWI2Dg7QvbsLBw648NxzMHx4AOPHv0ZYWG4AypUrx6ZNmyhdujQAtWrVYteuXQQHBwNQoEAB+vfvT86cOQG4cOECW7Zssdp62bJlPP/881y/fh2AcePG4e7ubvWM+uWXX2jXrp01S+DOnTv58ccfrWGAN27cICYm5r9fqFJKKaWUUv+ia1eYOhXWrIHateHChdSukUrrjhyBqlXN28WLzXxNSmUE/ynYdJOIxIrIZhFZKCIzbLebReSJGfHs5OTEwIEDAXMYWMuWLZk4cSJgDpHbvn27Fdy4m1q1ajFmzBird8/rr7/OjBkzrPIff/xh5UQCaNmyJXXq1LHKs2bNsoalAY/Us8cMCpkJvkuUMGctaNYs+RJ8BwbCvHnwyy9w9SpUqQJvvAG2GJHF09OTEiVK4OHhAUDx4sX5+OOPrV5gzz//PIcOHSIwMBCANm3asGXLFms2vtKlS/Pmm2+SOXNmAE6fPs26detwdXUFYPbs2bRp08YKVg0ZMoTMmTNbbfbll1/yQpKfA3777TcmT55slcPCwjh79mzyNIpSSimllMpQ2rUze5/s3m0GCWxZNZR6aFu3mt+prl6FlSuhbt3UrpFSKSdZgk1pTbZs2dizZw9dunQBYNOmTZQpU4aFCxcCZjDqjz/+sHra3E2xYsVo0qSJVf7uu+/YvHmzVa5Xrx7PPfecVR41ahQTJkywypUrV7ZyKgH873//Y8mSJVb54sWL9wx+FSxo/toyapQ5XWbx4vDjjw927Q+iSRMzKXnPnmZPqmLFwNY0j8TX15eyZcviaJtLtmrVqnz66adWuXv37hw5csQKLvXr14+dO3dagbxGjRoxfPhwqxwfH2+XvHzatGlWsnSAPn36WDP7AXTr1o1mzZpZ5f/973+MGTPGKq9du9busYuOjtZhfkoppZRSGViTJmZw4OJFM1iwfXtq10ilNStWmGlQ3N1h7VqoVCm1a6RUysqQwSYwg0U3e94ULVqUH374gZCQEACWLl1KSEgIJ06cAGD9+vV8/PHH1jCwe7kZPAF47bXX6NWrl1Vev34906ZNs8pNmza1C4gMGzbMrudT0aJF6dGjh1Vu164ds2fPtsqrVq2gZctTbNsG+fLBiy+aSeZsKaX+M29v+OorMzl5lizQtKk5dv1ACswl6OvrS7FixaxySEiIXVv27dvXrq0mT57Mpk2brHKPHj0YMWKEVS5QoABFixa1yqtWrWLZsmVW+Z133uH999+3yjVq1KBx48ZWuVOnTnbBrG+//ZalS5da5Z07d1r5qZRSSimlVPpQpYoZJHBxMSfq+f331K6RSit++AEaNYICBWDdOihSJLVrpFTKy7DBpqSyZMnCyy+/bOVjatKkCUuWLKFQoUKA2fNl6NChuLi4ADBy5EiKFClCXFwcANu3b+f333//194wLi4u+Pn5WeX33nuPjh07WuVTp04xevRowBxi99FHH9nNHrdjxw7CwsIAs+dN/fr1mT59OsWKwcqVUbi5+TJnzre2Xk43+OKLL1i7di0AMTEx/Pnnn1y8ePGh26ZiRbP756efmrmiSpQwkyfa0i09EW5v2+rVq9v1ZHrnnXcYNmyYVV6wYIFdsGny5Ml8+eWXVrlr1660a9fOKkdFRdnljProo4+YN2+eVW7QoAFDhgyxynnz5rULXrVp04YZM2ZY5XHjxrF161bAfKz3799/30CmUkoppZRKeUWLmj++5sljBg+mT0/tGqknmQiMHGkOxaxeHf74A2xzNCmV4Wiw6S6yZMlCw4YNrZ5Kb7/9NleuXMHNzQ0we8qEhITg7OwMmMOy2rZtaw3z6tevH88myfy2YsUKfv31V6t8t6CUo6Mjnp6eABiGQbdu3ahVqxZg5pvavXs3ffr0scpr167lJWu+zDi6dGnH+PGFyZoVXnzxMkuXrmXDBnO2uJMnT1KzZk2rN87BgwfJmjUrixYtAuD48eO0b9/emk3u4sWLzJs3j/Pnz1vH79EjkkOHoHNnc2hdoUIwZgzEPjFZuR5dkSJF7HpSde7cmdatW1vlmTNn8tFHH1nlo0eP8tVXX1nladOm0b17d6vcqlUrypUrB5iP9YEDB7hgyy4ZGxtL9+7drcciOjqaYsWK8c033wAQHh5Ojhw5rBxU169fp23btqxZswaAiIgIJk2aZM0EGBsby7Fjx4iOjk629lBKKaWUUrfkyGH+6Fq1qpkz9f33IZnnAlLpQEwMdOgA/ftDq1bm5E6ZMqV2rZRKPRpsekA3A0EALVq04Ntvv7XKw4YNsxtWFRQURP78+a3yqFGj7Hq+NGrUiEaNGlnlkSNHWsEGgG3btnH0XzIROjk5UaVKFfLmzQuAj48PX331FV261GLzZhg6NBeOjucYMOAV3n8fvL2DWLFihZWw3N3dnRYtWpArVy4ALl26xJo1a7h27RoAu3btomXLluzfvx8wh515enpy6NBaxo2DyZP/BmrRu/dhgoPh66/3MGTIUCugEhYWxl9//WUFQBISEtJVDiQXFxe8vLyscv369SlVqpRVHjlyJM2bNwfMwOH27dutYYDOzs5cuHCBN954AwAHBwdmzpxp5fdKSEigYcOG5M5tzgQYHh7OunXrrITnYWFhdOrUiY0bzQkeDx06RP78+a18Y3v27CFv3rysXLkSMJOvv/rqq+zduxeAM2fOMH36dCuQGBkZSWhoqNVLTymllFJK3SlzZvjtN+jSBYYPN6euj4hI7VqpJ8X581CnDkybBoMHw6xZYJv7SKkMS4NNySBbtmyULl3aKvfq1Yuvv/7aKs+ePZu5c+da5eeee86u59Pvv//OX3/9ZZXbtWvHO++8Y5WrV69O3759rfL777/PnDlzrPKKFSs4dOgQYL6oDRiQyLRpm2jZ0nwzLF3ak1On6pI9u9mHM3fu3IwbN84KkJQtW5YTJ05YOaQqVarErl27KFu2LAAFCxZk+PDhFCxY0LZ/PMWLxzNpkhOOjvDmmzsYPHgQmzeb77hLliyhRo0aVvBp4sSJODs7c842bd7cuXOpW7cu4eHhAPz555988sknVsDj0KFDrF692gpQ3T6MLS0zDAN/f38y2X7mcHV1pU2bNhQvXhyAzJkz891331mBwRw5cnD06FGrp1X+/Pk5fvy4lVMqe/bsTJ48mQoVKgDg5uZGjRo1rJn/rl69yooVK6xhejt37uSVV16xgpkrV64kV65cVq+2pUuXUqhQIQ4ePAiYuca6du1qPXb//PMPM2fO5MaNGwBcu3aNM2fOkKg/7ymllFIqnXNxgW+/NXv3L1wI1arByZOpXSuV2nbtggoVYNs2mDsXBg0C24AXpdIXEYi+AFd2PNDmGmxKAb6+vlYvJDBnX0ua/HvFihXMmjXLKk+cONEu50/FihV56qmnrPKCBQvsEmI3a9aMcePGWWUfHx8WLRrHtGmwfr0QFdWQV1+dRYUK8McfCYwYMcKafS0hIYH169dbgSERwcPDgxIlSli9dwoUKED//v3Jli0bYCbs/uuvv+jYMS+7dsHXX7fF1zeOZ5/NQ5cuUKFCY37//Xdr+9KlS9O/f38yZ85snTMyMtIalrhmzRo++OADa9ji5MmTqV+/vnU9gwYNsvYF+OSTT6hevbpVnjp1Kv369bPKa9as4cck0/OdPHmS48eP3/nApEFOTk7kyZMHHx8fAPz8/OjQoYP1/CpYsCDTpk2jZMmSABQvXpxTp05RuXJlAGrWrMmhQ4d4+umnAShZsiQTJkygQIECgBnsKl++vBUMO3XqFIsXL7Zm//v99995+eWXibD9lDd16lSCgoK4cuUKYCZPL1KkiBWMWrhwId26dbP23759O3PnzrUCiVeuXHmkXGJKKaWUUqnBMOCtt+DXX+HYMTPIsG5datdKpZaFC83hlXFx8Oef5qRNSqVJCTEQcQzO/w0n5sD+0bCtL/zdGlZUg1/ywRw3WBAAS0vf/3hosOmJVKVKFatXEZjD8Lp06WKVDxw4wOeff26VV69eTc+ePQEzkNOnTx9KlCgBQKlSMRQtepUuXaI4exZCQq7z3nvvsWiRmTz88uXLVKlSxeopdebMGdzc3JgyZQoAZ8+epX79+tawrPPnz/PBBx9Yw7IiI6+RJ88iNmy4TO/eDkyZEkPlygarV9cgKspMqF6xYkU+/vhjXG19Sdu0acO6deusnFcffvgh0dHRODiYT8du3bqxatUqKwdWo0aNGD58uHW9AQEBVnAEzGF/N+sHZsAjabCuT58+dj3JXnjhBbtgVe/eve2Cf19++aXdsMZff/2V1atXW+VDhw7ZzT6XloYIuru7U7BgQdzd3QHIkycPXbp0IUuWLABUrlyZmTNnkj17dgBatmxJWFgYOXLkAMxedwcOHMDf3x+A2rVrM378eCs4FRgYSOnSpa3jHzp0iMWLF1uBxBkzZtCxY0frsR0yZIjdkNMPP/zQbpbGKVOm8OGHH1rldevWsWLFCqt85coVK7CllFJKKZVSnnkGNmwALy9zprqvvjJ/9FcZQ3w8vPeeOWP3U0/Bpk1gS9mq1JNFBGIuw5VdELYUDn8Hu4fAxq6w5llYUgrmZzUDSQvzw+/VYW1r2N4XDo2Dy1vBcAL/KlDkLSgzBqrNu99ZAXB6rBemUkT58uWtdUdHR4YOHWollHZzc2P9+vUA3LgBn37qy8iRUXz6qfm8e+stb5YuXWr1nHJ1daVXr17WsK6oqCiuX79OQkICYOYM+uSTTyhXrhzFixfnwIEDNGnShMWLFzN69LNUqLCFNm2q8cknv/HNN/Vp2XItS5a8xI8/zqNChQps27aN4cOHW8PyDhw4wIIFC+jUqRPZsmUjNDSU3bt3WwGH8PBwChYsSLVq1axr7NKli13wLWngDeCbb74hIiLCSqLdp08fKx8VwLPPPmsN4bvZZk5Ot/4VlixZgqurq5X0+8MPPyQoKMhK2N68eXMKFSrEggULAAgODqZ8+fJWgK558+aUK1fOCnj169eP0qVL06ZNGwC+//57ihYtSpUqVQBzqFrOnDmtHFrXr1/H09PTCtA8Sby9vSmSZO7W4OBggoODrXKTJk1o0qSJVe7bt+8dQ0CTPnYtW7a0emEB5MyZ0y5Z++bNm9m0aRNDhw4FzMf64MGD7NmzB4AOHTpw8uRJtm/fDpgzCcbGxlqPxdixYzl27BghISGA2daenp7WOePi4qygp1JKKaXUwyhaFDZvhvbtzd5O69bBxIng7Z3aNVOP07lz0KYNrF5t5vD66iuwDdhQKmUlxkHUGYgMhajTEHn67rcJd5lMyi0A3HOARy7wr2Rbz3Hr1iMHOGf+T2NCNdiUgXh6wpAh0KmTG/37w8cfw/jxbvTt+wxVq5rb+Pn5MWLECGuffPnysWHDBqtcqlQpu4TfwcHBbN682crnVL16XsaOHUuBAsX53//g2299cHUN4Zdf/ChRwszxs3fvXis/086dOxkwYADNmjUjW7ZsrFmzhnbt2nHo0CEKFizIvHnz6NSpE8ePHydPnjx899139OvXj/3795MtWzbmzp3LN998w8KFC/Hx8WH58uUsWbKEkSNHcuTIETZv3szevXvp1KkTAEeOHKFw4cJW8OratWu89957+Pn5Wdf422+/2bXbokWL7HISff7553YJ4zt06EDOnDmtspubGy4uLlZ58eLFAFaw6a233uK1116zgk0hISH07t2bESNGICJkzpyZgQMHMnToUOLj4ylYsCD9+/enW7duREdH07p1a1599VWaNGlCVFQUw4cP57nnnqN8+fJERUWxePFiypcvT968eYmLi2P//v3kzJkTb29v63EzUmkgeZYsWaxeVGD24rvZDmAGi5IaO3asXfnrr7+2CxR26dLFGtIHZg6rpMnO58+fT2RkpFXu3r07uXLlshKqlylThmLFilk9+9q1a0fJkiWtnGljx46lcOHC1KtXD4Ddu3eTLVs2AgICHq0BlFJKKZWu+PrCzz/Dp5/CgAGwcyfMnw9JfjtT6cjff0PLlnDlCkyZYgYalUp2IhB3/bbAUeidQaTo88BtXSodXG8FjfzKg/vztuBRzluBJLdAcHS525mT+zokXS6BgYGSka1evfq+26xfL9KggQiIZMkiMnSoyJUryVuP9etF6tY1zxEUJDJ2rEhMzK37ExMTJTo6WhISEkRE5NKlS7Jp0yaJjo4WEZGDBw/KxIkT5caNGyIi8ueff0rPnj2t8pw5c6RGjRoSFRUlIiKff/65ZMqUSeLi4mT16tUycOBAMQxDEhMTRUTk3XffFVdXV+v8vXv3Fi8vL6vct29fKVy4sFUeNmyYNGvWzCpPmDBB3nvvPav8yy+/yJQpU6zyhg0b5M8//7TKx48fl5MnT1rlmJgYOXfunFyxNXRiYqKsWLFCDhw4ICIi8fHx8vnnn8vff/8tIiJRUVHyyiuvyMKFC0VE5MqVK1KyZEmZNm2aiIiEhYUJIOPHjxcRkWPHjgkgkyZNEhGR6dOnCyDTp08XEZG9e/eKg4OD/PjjjyIism/fPilZsqSsWbNGRET++ecfeemll2Tnzp1W/YcNGyYnTpwQEZFz587JwoUL5fLlyyIiEh4eLkePHpWYpA/qE2bVqlXW+q5du2T37t1W+euvv5Y5c+ZY5WbNmsnQoUOtcpYsWaR79+5W2cfHR958802rXLBgQRk5cqSImI/l66+/LkuXLrXKixcvttouMTHRep6ntAd5PUjPMvr1i6TfNgC2yBPwmUOXW0vS91CVPNLr/29qeZztuWqVSECAiKenyA8/PLbTPFEGDx4sgwcPTu1qPHYJCSKffSbi6ChSsKCI7aPyY6H/88nviWrThDiRG6dELmwQOTlf5MBXItvfFVnbVuT3WiILC4vM8RSZwZ3Lj34iv5YUWdVQZENnkZ2DRA5NEAn9VeTyDpHoiyK2772P24N8Bkv1DyWPa9Fg0+oH3nbjRpHGjc1ng4+PyAcfiFy6lLz1WbNGpFo18xx58oh8/71IXFzynuN2q1evloiICAkNDbX+duTIEbvgw19//SUTJkywyrNnz5b+/ftb5c8++0zatGljlXv06CFVq1a1ys2aNZMSJUpY5UaNGkmZMmWscr169aRSpUpWuWbNmlKjRg2r/Pzzz0v79u2t8uuvvy4ffvihVR4yZIh89913Vvn777+XZcuWWeUVK1bIjh07JD4+XkREdu7cKatXr5aLFy+KiMiPP/4oM2bMkGPHjomIGZwaMGCA7NmzR0TMYF7Tpk1l8+bNIiKyadMmKVCggBXsWr58uQBWefHixQLIxo0bRURkwYIFAsj27dtFRGTu3Lni7u4u+/btExGRRYsWSdmyZeXUqVMiIrJy5Upp166dXLI9wTZv3iwjRoyQiIgIETGDXYsWLZLY2FgREbl48aIcOXLECtIkPsKL5395c4mJibHqJmIGF29ea0JCgnTq1EnmzZsnImZgMCAgQEaNGiUiIlevXhXAKl+6dEkcHBzkm2++scpNmjSR33//XUTMwN3s2bOttkpISEi24NQT9QabCjL69Yuk3zbQYNOTt2iwKfml1//f1PK42/P06VufeV96Kfl/yH3SZIRgU2jorR/PmzcXuXr18Z5P/+eTX4q1aex1kav7Rc78LnJkqsieYSKbeoj88bzI0nIiCwJFZjrcGUSa5Szycx6R36qI/PWiyJZeIvs+Ezk2U+TcHyLXD4vERabMNTygDB1syhGUXeTcX8nRjmnSo/xDbdtmvoCCiJeXSP/+IufPJ1+dEhNFfvtNpHx58xyFColMn/74gk4p8aISHR0t165ds8qHDx+2Ajk367B8+XKrPHXqVJk6dapVHjx4sHz66adW+ZVXXpF+/fpZ5SpVqkinTp2scp48eeSVV16xykFBQdK5c2er7OfnZ9cTx8PDQ3r16mW3/7Bhw0TEDNxUqVLFCmbFx8fLSy+9ZPWiiomJkQEDBsiqVaskLi5OoqOj5X//+5/MnTtXIiIiJDo6WmbNmiVjxoyRy5cvS1xcnPz666/Sq1cvuXDhgiQmJsry5culUaNGct72RPrhhx8kT548cuHCBRERGT16tABWT68RI0YIYPVc++ijjwSwgk8ffPCBeHh4WEGn0aNH2wXzpkyZIl26dLHKixcvlh49eljlTZs22QXrTp48KUePHrXKydnzKDY2VjZs2GAFj65evSoDBw6UDRs2iIjIiRMnpESJEvLLL7+IiNnrCpC5c+eKiMiOHTvEyclJFi1aJCJmIK5t27ZWz6wLFy7IkiVLrLb7Nxn9Q0tGv36R9NsGGmx68hYNNiW/9Pr/m1pSoj3j4swRA46OIrlzi/zxx2M/ZapJ78GmH380R4B4eIh8+23KdBrR//nk95/bNCFeJDJM5OJmkVM/ixwcK7LjfZF17UVW1hVZVFRkjvfdeyPNzSyyuLjIyvoi618V2fmByD/jRUIXiVzaJhJ1TiQxdUY//BcP8hks3eZs8nG6BqvrQ63fIKD6/XdQlC5tjjHfvRs++QRGjjQT3nXrBm+/DYGB/+34hgH160O9erBoEXzwAbRrB4MGwbvvmmOebRPWpRmurq7WLHuA3Sx5gJWY+qZXXnnFrjxo0CC78tSpU+3Ka9eutSvv2bMH83/btGzZMry8vKzyd999ZyUaB2jfvj2NGze2yg0bNrSSwScmJuLl5WXll4qNjWXjxo3WTH03btxg2LBhZM2alVq1anHp0iV69uzJN998g6enJ6dOnaJNmzZMnDgRX19fjhw5wrPPPsvUqVPx9/dn//79NGjQgNmzZ5M1a1b27dvHBx98wMSJE637Fy5cyJo1a8iUKRMHDx5k+/btzJkzB3d3d44ePUpYWBijR4/G2dmZ0NBQoqKi6Nq1K4ZhcOHCBc6dO0eg7YkZERHBzp072bZtm3V98+fPZ9GiRfzvf/8D4KuvvmLt2rUcPXoUgHfeeYcdO3Zw4MABAF588UWOHj1qJRzv1q0b165dY9asWYA5e15CQoKVsPy7777DxcXFelyXL1+Oh4cH1apVw9nZGV9fX6vtM2XKxKBBg6xk9Llz52bXrl3W/YULF2bPnj0EBQUB4OvrS79+/ShcuDAAFy9e5O+//7Zmnty4cSONGzdmw4YNVKxYkSVLltC5c2eWL19OcHAwe/fuZdmyZXTs2BGAmJiYO5LhK6WUUir5OTmZn3Pr14e2bSEkxPysO2QIuKRAmhT134WHm0nfJ082Z5mbMQNsH8lUehMfee/E2jdvo86AxNvvZziCe6CZBylTUche1z4v0s1bJ4/Uua4nQLr91nE93gc8MsGqelB6FBR6HRyevNm9nkQlSsDs2WYQaNgwGDMGvvnGfLN84w1IMnnYIzEMaNIEGjeGhQvNwNZrr5lvwG+/DV27msnM1Z2SBpYASpQoYVd+/vnn7cotW7a0C3iNGzfOWnd0dLRLhu7u7s7hw4etsq+vr10yeH9/f44fP07mzJkByJo1K6tWrbKCIf7+/nz33XdWwu8sWbIwcOBAa3Y5d3d3qlWrZiVjT0hIIDExEXd3dwzD4PLly6xbt4633noLwzA4dOgQ48aNs2ZT3LZtG6NGjWLLli0A/PHHH4wcOdIK2CxcuJAvvvjCChxNmzaNyZMnWwG8H374gVWrVlmBo3nz5nHgwAErcLR48WLOnTtHe1umx1WrVnHgwAEqVqwIwKZNm/jtt9+sZPj79+/niy++IFeuXLzyyiuEhYXRq1cva/bEyMhInn/+eYoWLcr8+fMBKFasGOXLl2fGjBkA1K5dmypVqvDxxx/j6urK6NGjqVSpEl26dCF37tx4enpy9OhRChcuTOXKlfn000/x8DDfsKpVq8a0adPIli2b9Xg0aNDASl6+du1a3n77bVq3bg3A5MmT6dGjB6GhoQQGBrJixQqWLFnCJ598goeHB5GRkbi6uj6RsyAqpZRSaVHFirB9O/TuDSNGwLJlMGmS+QOvenKtXGnOMnfihJn0fdAg0MmL0yBJhJiLEHkav+j1cOjA3YNJcVfv3NfZ51awyKc2uAclCSDlNNddAzS+cD/36/qUVpfAwECRqAsiqxqY3dd+LSFy9AeRhNj/3mcsDUjO7peHDol06SLi7i4CItWri8ydKxKbTE2ZmCiyfLlISIh5fD8/kY8++u9j3LULatpvg/j4eGtoW2RkpBw9etRKHn/+/HlZtWqVlVPp8OHD8v3331vDGrdt2yYffvihNQxt5cqV0r59e+v++fPnS61ataz9v/32W8mfP7+VbP7jjz8WR0dH6/zvv/++ODk5WXV7++23xcPDw8qX9eabb4q3t7ccP35cRES6desmmTJlkrVr14qIme8rKChI5s+fLyIi/fv3lzx58si4ceNERGT48OESGBhoJSgfN26cuLq6Sp8+fUTEzIfl6Oho5RRbsWKFAPLBBx+IiMjWrVsFkOHDh4uImZ+scOHCMmXKFFm9erWsXr1aihcvbg0jHD58uLi5ucm2bdtERKRfv37i7u5uJTRftWqVfPvtt1Z7pGVp/f8gOaTXNkCH0T1xiw6jS37p9f83taRWe/70k0j27ObQun79RCKfrPQrjyw9DaO7dEmkY0fz+0jBgiJJ5vxJUfo//wDio0TCj4ic+1Pk2CyRfaNEtvQ28x39VsXMfzTL+c4hbTMdRBYEiSwtb+ZR2tTDzKt0ZKqZZ+naAZHY8NS+ujThQT6DpfqHkse1WAnCExNFjs82x1HOQORHf5FN3UXOrhaJf3Jn0PqvHseL1KVL5iwM+fKJNbvc0KEiZ88m3znWrhV59lnz+N7eZt6oc+ce7Vj6Qq1tIJJ8bRARESGnT5+2yidPnrQSpYuYwa2ffvrJKi9fvtxKBi5i5qtKmvx91KhR0q1bN6vct29feeGFF6xy69atJSQkxApm1alTR0qXLi1nzpwREZFq1apJ8eLFrRxO5cuXlwIFCsgftsQQJUuWlOzZs8svv/wiq1evliJFioiXl5f8YJsep0KFCgLI5MmTRUSkXLlyAlj3586d2y6HVNmyZcXJyUmWLFkiImY+rbJly8qmTZtERGTy5MnSqVMnOXz4sCQmJsoff/whEydOtPJ3nTt3Tvbv328FC1OS/h+k3zbQYNOTt2iwKfml1//f1JKa7Xn5skinTubn3AIFRFauTLWqJJv0EGxKTDR/SM+WzQwG9u+fusHADP0/n5hozqh2eafI6SUihyaK7BossqGLyOpG5kxsP/rdPTfSbA+RhYXMGd3WtjVneDvwlcjJ+bLlt7HmDHAJj3mGqgzkQT6DpdthdBbDgDytIPeLELYMjk2Fo5Pg0Dfg5AXZakO2EPCvDL6lwTGNJQ1KQVmymMPceveGpUvh66/hww/ho4+gZUtziJ1txNEjq1IFFi+GHTtg+HAzb9SYMdC5M/TpA/nyJceVKPXwPD098UwyvjNXrlx2+bFKly5N6ST94uvVq0e9evWs8ssvv2x3vL59+9qVR40aZVe+Odzvpl9//ZX4+HirDjNmzCAxMZG8efMC8PXXX+Po6Ei5cuUAMx+Yh4cHzzzzDGvWrOH1118nICCANm3aAFC1alVefvllXnrpJQBy5sxJpUqVqF+/PgDe3t7UrFnTOt6uXbvw9vYmd+7c1vGzZMmCg4MDIkLHjh1xdnamU6dO5MqVi5o1awLw9NNP4+bmZg3327FjB3ny5CFPnjxER0eza9cu/P39qVy5Ms7OzqxYsQJnZ2datmyJv78/EydOJC4ujvfee48iRYrw5ptvEhERwZQpU6hSpQoVK1YkPDyc9evXU7ZsWbJmzUpkZCQnT54kd+7ceHh4kJCQQExMDC4uLhiG8S+PslJKKfX4+PrCd9/BSy+ZaSPq1IGOHc0hdrZR8CqFHTsGvXqZqT3KlDGHOpYqldq1SqcSYiEq7D65kcIgIfq2HQ1wCzCHsHnmMb+33y03knMm87v/XYQfWWPuo1JU+g823WQ4QI5G5hIXDmdXwpnf4OxyOL3Q3MbB1Qw4+T4NmUvabkuYYzaVxdHRzLfUuDEcPAhjx8KUKWbivPLloUcPePFF8PgPudBKlYI5c2DoUPMN+NtvzbxRLVrAO++YifqUykhuT0Z/M+hzU8XbIr3Nmze3K7/11lt25dGjR9uVf/rpJ7vynj177MqxsbEkJibi4OBAXFwc/v7+tGzZkrJlyyIirF27lqCgIPLmzUt8fDyTJk3C39+f4OBgDMPg3XffxcPDg7x582IYBvXq1cPBwQF/f38SExPx8fEhLi4OFxcXIiMjOXDgANeuXSMhIYGLFy8ydepU4uPjee211zh58iRvv/02YCayP3DgAA0bNiRbtmyEhoaydetWatSoQZ06dVixYgU7duygbt269O3bl1GjRrFq1SratGnD+PHjadasGX/++SfvvfceU6ZMoVChQqxfv56xY8cycuRIcuTIwfbt2/npp5/o1asXWbJk4eDBg2zcuJEXXngBT09PwsLCOHHiBOXKlcPZ2ZmIiAiioqLw8/PDwcHhIR5lpZRSGUHt2uaEPEOGwOefmxP0DBoEPXtqAvGUEhFh/rD9+efmd5tPPzV/UNd5VB6BCMRdMwNGkaH3CCKdhujzd+7r6HYrWORX0T4vkhVMCgQHTZqVFmXMfydnb8j1vLmAmV3+4npzubQZTsyBw9/e2t49CHyKgHdh220R8MpvRlad3FPjCp4YRYqYM9Z98glMnw7/+x906GD2cnrxRXOGuWrV4FG/bxUpYs4C8dFHZk+q8eNh7lyoWdMMOjVs+OjHVko9nJuBE2dnZ1atWsXBgwcBMAzDSgwP4OTkZM2Cd9OIESPsyj/++KNd+Wbi95vOnDljrfv5+XH+/HlOnz6Nl5cXJUqUYOXKlezZswd3d3eKFy/O8OHD2b17N05OThQpUoQ2bdqwc+dODMMgMDCQihUrMmnSJEaNGoWfnx++vr507dqVZs2aYRgGJ0+epFWrVmzbto2LFy/y22+/kSVLFr766it27tzJRx99RHBwMC1btmTVqlV0796dOnXq4OnpyY8//shbb73FxYsX8fPzY/z48bzzzjtcv34db29vPv30Uz755BMuXLiAi4sL33zzDZMmTWLz5s0YhsEPP/zAsmXL+OGHHwAzWf327dv54IMPAFi/fj2hoaG8+OKLABw9epQbN25YEwRERkbi6OhoF4xUSin1ZHN3N39Q7dDB7L3ft6/54+ro0dCo0T07aKj/KDERfvgB+veHM2fMCZBGjIAcOVK7Zk+oxHiIPmsfPLpbQCkh8s59Xf1vBYyylLPvhXQzmOTiq0/2dCxjBptu5x4IuZqbC5jR2chQuLrLXK4fNJeTcyH2iv2+btnBMy945TNvPXPbMtTnBPec4OqXIf6BvL2he3d4/XX480+YOtUMCk2aBHnzwiuvQLt2YJvI66HlzGkOqRswwOx+PGaM2bOqaFFzaN/LL4N+z1Lq8UlMTOTw4cPW7IPvvfceu3fvtoI1j5uvry++vr6AGfSqXbs2tWvXBsxZGvv3729tGxAQwMyZM61yUFAQa9asITw8HDCH9s2ePZvTp08DUL16dQYPHmzNxvjcc8/RrFkzdu/eDUCHDh2YM2cOn332GS1btqRt27bMmDGDF198kXXr1vH888+zYcMGJk6cSP/+/albty5vv/02YWFhFClShNKlS1vDDAF8fHzImTOn1W5nz55l3759Vn1XrVrFDz/8YAWbJk+ezKJFi6xg09ChQ1m1ahUnT54EoEuXLmzatIlDhw4B0LVrV06cOGHNNvnhhx+yd+9ea2bK8ePHEx8fT8+ePQEzuOXk5MQzzzwDmDMturu7W0M0RUSHHyql1GPy1FOwZIm59Oljfr5t0MDsdaOz1iWv1avNINOmTeZojPnzoXLl1K5VKoq7fu/hbDdvo8+Zs7ol5eBya3Y239IQ1PgugaQgTU+jNNh0V4YBnrnMJcez9vdFX4TwfyDiGNw4Zrs9Dhc3mMEoSbDf3tHNDDrd/Kdzz24Gt9wCzVv3QPNvzpnTRVDKMMxeRzVrmr2cfvrJDDx99JE5JK5qVTPw1LIlZM788Mf38THfiN94wwxmffYZdOpkBqHeeAO6dTNzSyml/psjR47w22+/0blzZ1xcXPj0008ZNGgQFy5cwMfHhxEjRuDj45NmghBubm64ublZ5VKlSlEqSVKGTp062W0/YcIEu/L48eOJjDR/tfP29qZHjx4kJJiv97lz5yYmJsYK9pQqVYqXXnqJo0ePMn/+fOrVq8eoUaMYNGgQQ4cOpW3bthQrVoxr166RKVMm3n77bWtYIJhDHD///HOrPGLECN5//32r3KdPH9q1a2eVW7dubQWSAEqUKEFAkuQf4eHh3LhxwyovXryY6OhoK9g0bNgwPD09rWBTu3btCAgIYMmSJYCZj6xw4cLMnTsXgFatWlG0aFEGDx4MmPm7nnrqKSsf2Lx588ibNy/ly5cH4NixY/j7++Pt7Y1SSqm7a9QI6tY101MMHWrmD3rhBXOoXfHiqV27tG3dOvjgA1i1CoKCzPQf7dql49ERiQlmkOieQaRQ8zY+4s59XXxvDWPzffrOvEjuOWydKdJr46nkpMGmh+Xmby5Zq9x5X2K8+Y8dGXpribq5fgoubTCH7CVE3bmvoxu4ZQPXADMBmls2221Akr8FgGtWs0ui45M/oNvDw+xx9PLLcPq02WV16lR47TV4801o2tR8oa9X7+F7JTk7m8d96SVYudIMOg0YYA7n69ABbktPo5S6TXR0NIcPHyZPnjx4e3vz999/8+677/LDDz+QL18+1q9fT48ePQgJCaFYsWLUrl2boKAgnGzJDIoVK5bKV5Cy8uTJY1e+GVi5af78+XblKVOmWD2Zbu6fNWtWABISEqhRowavvvoqX331FSLC+PHjadSokXWepEG8LFmykCVJFL1kyZJ253ruuefsym+88YZd+YsvvmDNmjVWefHixXb3//LLL1bgDODzzz+3q/urr76Kn5+fVXZ3d7cL3P3444/UqlXLapNu3brRpk0bK9hUqlQpOnbsyJgxYwAzePXqq6/yxhtvICK89957NGjQgFq1aiEi/P333xQuXNhKKq+UUhmFi4uZN6hjR/jiC3NZsABat4bBg8HWuVg9oC1bzMmMli41E7B/8YX5PcQ9LWdBib9x/95IUWfu7ABhONk6OeSATMEQ+MxdAklB4PQfku4qdRsNNiUnBydb18EcwD2mZRMxuyxGnzVfCG4u0WfMpGnR583ylR0Qcx4S4+5+HGcfM+h0M/jkZru1LX5RZ+C8kxl5dvUDlyxm/VJJjhzw7rvQrx9s3QrTpsHMmWbvJG9vs8vwCy/AM89Akgm/7sswzF+B6tY1Ey2OGWMOsxs3DipXDmbYMKhRI110GlPqody4cYO//vqL4OBgAA4dOkT37t0ZMmQIVapUYfPmzdSoUYPffvuN+vXr4+7ujpOTExER5q9cTZo0ITQ0lKCgIAAqVKhAhQoVUu160prb2yppTykRYf78+QQGBgIQFhZG9+7d+eijjxg4cGCK1hOwgmA33ZxJ8KY333zTrjxlyhS78t69e+3KW7dutYJRIsI333xDoUKFADPQVrhwYSt4FRUVxZdffkmWLFmoVasW169fp0aNGnz++ef06dOH8PBw6taty8CBA3nuueeIjY1l7969FClSBI//MguFUko9wTJnNns0vfkmjBpl5kedM8f8rNy373+f/Tk9E4EVK8zE38uXmyMeRowwk68/zHeMFCeJEH0Bok7jF70ODh24ezAp7uqd+zr73AoY+dSxz4lk9UbKCg6OKX5ZKmPTYFNKMwxwyWQuPkX+fdubmf1vBqGiz0HMRYi5YN5G226jwszcUjEXrKkiSwD8ftvxnDPZgk/+4OJnH4i6162zT7JGagzDnEmuXDnzzXPlSnO89M8/w6xZ5i8NDRuab6aNG5vD5h5UiRLw/fcwbJg5c92XX/oQEmJ2Q+7Tx0xYrjN8qLRKRDh37hwuLi5kyZKF6OhovvnmG6pWrUrFihU5f/48ISEhDBgwgJdffpnz58/TsGFDvv/+e/Lnz4+rqyvXr18nOtp8jQgODmb27Nk8/fTTAJQtW5Y//vjDOp+Pjw8+D/MPqB6Yo6Mj9evXxzAMFi5cyLhx4/jnn38oUKBAalctWdzM9QRmD62XX37ZKjs6OjJnzhyr7OHhQVRUFImJZj4Id3d3li9fTkFbgr9r167h7e2Ni+3F+8CBA5QpU4bZs2fTqlWrFLgapZRKPX5+Zu6m3r3NxOHjx8O8eWZair59oUkTcyY1BTEx5neJ0aPNH6CzZzdHPPTs+XDfJx6LhOj7J9iOPmN1MigBcBlzqJpboBkw8i4M2WrdfVibs1dqXp1S96TBpieZYYBLZnPxecB+s/E3IPoCW9b9RrkS+SDmkrnEXrq1HnPR7DV1fT/EXjZ7Wt2zDk7gmsUMPCUNQt1cv9t9rlnAyfu+QSoXFzOw1LCh+eb5119m4GnBAnNxcTGH2L3wgvlmmmQUx7/Kls38NahKlQ2cPFmDL74wZ5p4911zeF3XrpAp04MdS6nHKSoqitjYWDLZnpBTpkwhX7581KxZExGhfv36PP/88/To0YP4+HgCAwMZPHgwgwYNwsHBgb59+/LRRx9RsWJFMmfOzFNPPWX1GMmZMydr166laNGi7Ny5k9y5c7Nx40br3L6+vvpl/TEREUQEBwcHTp8+zbJly2jSpAlZs2Zl4cKFdOrUiW3btpErVy4iIyO5ePEi3t7e1mx/GdHNa3dxcaFevXrW33PmzMnChQvZvXs3V69eJXfu3PTq1Yu+fftSo0aN1KquUkqlqIAAs3fOwIHm5DtjxkDz5lCggDks7JVXzM+/GdHx4+bM1RMnmrPLlShhltu0SYHJg0TM71Z3HdKWJKAUe/nOfZ08b/U+CqhpF0Dauv8sZas1NdOqaG8klYZpsCm9cfIEL08iXIpAYMiD7ZMYZ86yF3PJfDFMenv73yJPwZWdZvAq/sa9j2kFqfyS3CbpNWWt+4OrH06u/tSq4UetWi589RVs2GAGnubPh19/NRP4VaxoDrNr2BDKlr1/Uj9X10S6dDETiP/2m9mdtl8/M1l5ly5m4Cl37gduWaXuKzQ0lNjYWPLnzw/AtGnT8PDwoEWLFoCZeDlfvnwMHToUgMKFC1O/fn2+//57wJzhrXHjxtSsWRPDMHB1dbW+hDs7OzNx4kTKli0LmF/Kr1y5YgWqXFxcWLBggVUXZ2dnqlS5S2459Z9ER0eza9cu8uXLR9asWQkNDeWLL76gY8eOBAcHs27dOurUqcOSJUuoVasWBw4coHPnzqxevZqQkBDy5s1LkyZNiI+PB8zk3q1bt07lq0pZIsLly5dxdXXFy8uL8PBwfvzxR6pWrUrhwoU5efIkvXr1ok+fPlSrVo0dO3ZQtWpVFi9ezLPPPkvHjh35559/OHjwYGpfilJKpSgvL3NoXffu5qiAMWPMz7bvvw/PPmt+5m3YEJzS+Te86GhzEqLvvzdHSRiGOYPflCnmD9XJMigjIcYcPRJ52ry9PaAUGWr+PTHmth0NM8+uew7wzAdZq92jN9K9R4+EH1kDHkHJcBFKpa50/lKkHoiD860E5A8jIcYMUtkFqC7belHddnvjOFzZZm53twTpNzn74ODqTxVXf6o09mPUC/6cv+bPnkP+bNgRwKaFASyZHkC8YwClKmalVn0vGjQw8Pf/l8tzuNWDats2M+j05Zfm0ro1vP02JJmUSmVwsbGx1pCd3bt3c+XKFasHxXfffcfly5fp168fAO3btyciIsJKDt2yZUs8PDz4/XdzDOvYsWPx9fW1gk1OTk44JunvPnjwYHIniXhu27YNX19fq3x7IufOnTvblTM/ypSOGZyIEB4ejoODA15eXsTGxvLTTz8RHBxM8eLFuXbtGm+99RYvvfQS9evXJzQ0lNKlS/P555/zyiuvcOrUKSpWrMi0adNo164dkZGRjBs3jmrVqhEcHEyePHno2bOnlY+pcuXKHDt2jBw5cgBmcu+bwcW07OzZs9aQThFh4cKFFChQgODgYOLj4xk8eDC1atWiTp06hIeH88wzz/D666/Ttm1bzp07R2BgIGPHjqV79+5cv36dV199lfHjx1O4cGEcHBw4dOgQ165dA8w2W7hwIRVtSUpKlizJr7/+mpqXr5RSqcrJCVq0MJcDB8zeTtOmwS+/mMPHWrUyez5VrZp+htnFxpqzyS1YYA4lvHoV8uY1Z+7r0AFy5XrAA4mYeY8iQ/890XbMhTv3dXS/FTDyr3xnAMkjh5mE28H5zn2VyoA02KQenaMruGc3l4cRH5Wk59TFJEP8LiZZLkHMBYzr+8kWc5Fs/hHUqQvUtT9UVKwb52cGcD4+AEevALyyBhGQOxBnnyD8oi7CJU9zZgW3bODgRJkyMGOGOf59zBizy+2MGeYwvUGDzPxOKv04e/YsBw8etKaFX7VqFTt27KBPnz4AfPnll/z5559WsKhDhw789ddfHDlyBIBPPvmE7du3Wz0oVq1axalTp6xgU7FixawcSABDhw61m8Xr999/t0tiPHnyZLv6derUya58M0Ch/t2JEydwcnKyAjhz5swhR44cVKtWDTATWleuXJk2bdogInTp0oVu3brRt29fEhMTyZQpkzUcUURo3bo1H3/8McWLF8fJyYk1a9ZYSbJvBgtv9lbLlSsXixYtooztxaJQoULcuHHDmj0uR44cfPbZZ1ZdPTw87HIYpaTExESrZ9zZs2c5ceKENdvdzefmzd5vY8eOJSgoiGbNmgHmDHSlSpWykoOXKFGCxo0bM3z4cAAKFixIt27dGDVqFIZh0LJlS/r06cPw4cNxdHTk008/xc3NjTp16uDh4YG7u7sVxPXz82PMmDHW45U9e3aOHj1K9uzme0nOnDnZvXu3dR1eXl53zLinlFLK9NRT8OmnZn6iJUvMIWTjx5s/qmbNCs8/bwaeatVKgWFlyezGDXN0woIFsGgRXL9u9u5q2hRefRVCQm4b6ZAYB1Fnbw1ju1cw6W4/fLtmvRU08qtgCx4lSbLtkQOcM+usQ0o9BA02qZTn5A5ON2fte0AJ0baE6OethOmJUee5dvI8V2POE3njPG7RYWSK34rjjfPgIGZyvd8+sB3AMH9p8MwLnnnJ7ZWX0d3zMbR7XibNK8igT/NQtqzBc8+ZQSfbSCWVysLDwwkNDaVQoUI4OTmxd+9e1qxZQ5cuXXBxcWHRokVMmTKF2bNn4+zszOeff87HH3/MpUuXcHBw4Msvv+Szzz6ja9euGIbBsmXL+Prrr61gU0JCArGxsdb5mjVrRunSpa3y4MGD7e6fOXOmXf3effddu3LduvbRUG9v72Rri7Ts4sWLxMTEWMGhtWvXEh8fbwV0JkyYgIuLCx06dADMYJG/vz8ffvghAFWqVOGpp55i0qRJgDlbWs2aNZk6dSoAffr0oWHDhlbwYuXKldbwQsMwyJs3L9lsySwcHR354osvrF4yrq6u7N2716qbp6cnx48ft+ru6enJuHHjrLKbmxuNGze2ysYjfuiMjo4mKirK6sl2/Phxrl27ZiVsX7duHZcvX7bONWfOHC5fvszrr78OwLBhwwgPD7eCP6+++ipxcXFMnz4dgOrVq+Pp6cmyZcsA+PDDDylSpAiLFi0CoHfv3hQqVMgaevnVV19RunRpK9gUFhZm1+uuQYMGlChRwiqPHTuWp556yipv3LjRCpYahkFMTIzVNo6OjlZvPzCHeL711ltW2dHRkXz58j1SOyqllDI5O5tBmKZNISICli41gzSzZpk/rrq7mz2datc2l7Jln7zhdtHRZiqN1avNXkwbN0JcHPj5Ce1aXefFxmFULnUal3hb0GjrbQGl6HOA2B/UweVWwChLWfBokiSAZAsmuQeaP6IrpZLVE/YSc2+GYTwDfAk4At+JyIhUrpJKSY5u4JnLXGwcgOzF4Wa/quvXYe1a+OuPePZsOce5E6fJ5nOWHFnOULZYGCUKnCKP/3H8rq/DKW4OhiTgBbyZB9741odT4SX5bdPT/K9PWbKVeY6BH/njpZM7/CcxMTGEhYWRPXt23N3dOXXqFMuXL6dp06b4+/uzadMmvvzyS0aOHEnOnDn56aef6N69O+vXrydv3rzMnj2brl27cvLkSXLlysWff/5Jz549ad68OYGBgVy6dImDBw8SGRlJpkyZCA4Opn379sTFxeHq6kq7du3IlCkTIoJhGAwZMoRPPvnEql+fPn2swBNA06ZN7eqf9Mt0epeQkGAN8Tt79iwXL14kODgYgM2bN3Py5EleeOEFAObOncvRo0fp378/YPYAO3LkiBUMateuHSdOnODPP/8E4OWXX+b69eusX78egIEDBxIfH89ff/0FmLmtvLy8rGDT5cuXcUryCbhRo0YEBd3KXfDVV19ZwSMwAzOZkmT937t3r921DRgwwOrdBtCrVy+7+4sVK0ZUVBRhYWFky5YNR0dHzp49y5EjR6hUqRKOjo7s27ePLVu20LZtWxwcHPjjjz9YtWoVQ4YMsdrk119/tQJgX3/9NQsWLGD16tUA9O/fn/nz53Po0CEAevbsydKlSzl9+jRgBoP++usvjh07Zu2/bds2K9g0b948Dh06ZAWbTpw4wdWrV61ryJMnj5UHCswhni5Jpt/s3LmzXQ6vH3/80a7X3e7du+165d0MUt00atQou3L79u3tyqVuG4v8qEE49WTSz2BKpS1eXuYszC++aAZwVq6EFSvMAM7775vbeHtDpUpmr/7Spc2lYMH750RNLvHx5hDAHdsTOLz7LGePnebK6dNk9TpNTr/TvFfzNEXahZI902k8jNMY8TcgAvg7yUFcstzqjeRb6u65kVz9tTeSUqnl5qw5T/KC+eHmCJAfcAF2AsX+bZ/AwEDJyFavXp3aVUh1S5b8KcuXiwwYIFKtmoibm4g5UFvEN3OctGp8XMYOWiPrp4+XsIXdJWZxVUmc4y0yA4md6iTLBzaR4/tDU/sy/pP/+jyIi4uTEydOyLVr10RE5MqVKzJlyhQ5evSoiIgcO3ZM2rdvL1u3bhURkS1btkju3Lnljz/+EBGRlStXCmCVly1bJoCsXbtWRESWL18uBQoUkD179oiIyKZNm6Rz585y+vRpERE5fPiwzJo1S65fvy4iItevX5dz585JQkJCirXBkygiIkKOHTsm8fHxImI+Dr/88ovExsaKiMiGDRvk448/lri4OBER+eijj6R169aSmJgoIiJff/21PP3009bx3nnnHfH09LTKPXv2FF9fX6vctWtXCQgIsMqdO3eWIkWKWOUPPvhAWrdubZUnTJggw4cPt8rLli2TRYsWWeWDBw/KkSNHrHJCQoLExcXJhQsXJCoqSkREwsPDZcuWLXL16lURETl37pzMnTtXzp8/LyIiR48elZEjR1rPlZ07d8rrr78uJ0+eFBGRv/76S5555hk5fvy4rF69WhYuXChFihSREydOiIjIlClTxMXFRU6dOiUiImPHjhVAzp07JyIiX3zxhQBy5coVEREZOXKkABIREWG1KWC1+eeffy6FCxe22njixInSpEkT6xrnzp0r/fr1s8orVqyQCRMmWOVt27bJypUrrfKpU6es/zMRkfj4eOvYjyI9/h+IiABb5An4nJKel4f9DFa4cOEHeejUQ0iv/7+pJaO357lzInPmiLz2mkjp0iLOzrc+H3t5iVSsKNK6tch774lMmCCyYoXIgQMi58+LxMTcebzBgwfL4MGD7/h7dLTIudBwObztgGxcuFJ+nzhNfv1suCwZ2lNWDm4mmz8qL6FfB0n8dAeRGdgtiTOdRH7KLfJbZZE/W4hs6SWy7zORYzNFzv0hcv2wSFxkCrRW6sjoz9HHQds0+T3IZzDD3O7JZhhGZWCwiDSwld8DEJHh99onKChIXnvttRSqoUoLEhIMLlzISlhYEGfOBBEWFsjZs9lJSLjVg8LFJZr2NacyoUM3AKZta8cx7wKpVeX/TMRMhuzk5ISHhwcJCQns2bOHbNmykT17dmJiYli2bBnFixenYMGCRERE8N1331GrVi2efvpprly5wpdffknTpk0pXbo0ly5d4uuvv6Z58+aULFmSixcvMn36dBo3bkyhQoW4cuUKa9asoVKlSgQGBhIREcGhQ4coWLAg3t7exMbGEhkZiZeXl13PlfQmPj6eiIgIPD09cXZ2JjIyktOnT5MjRw48PDy4cuUK+/bto2TJknh7exMWFsamTZuoVasWmTJl4siRI6xcuZKWLVuSOXNmdu3axaJFi+jRoweZM2dmy5YtLF68mD59+uDj48PGjRtZunQp77zzDp6enqxbt47ly5fTv39/3Nzc2LRpExs3bqRbt244Ozuze/du9u/fbyUuP3r0KKdPn6Z06dI4Oztz9epVrl69iqenJz4+Pjg6Otr1UgsICCAuLo4NGzaQL18+cubMSXR0NCtWrCA4OJh8+fIRERHBzz//TKVKlShYsCBXrlxhxowZ1K1bl6eeeorz588zceJEmjVrRrFixQgLC2PChAm0adOGIkWKcOrUKb7//nvatm1LwYIFOX78OFOmTKF9+/bky5ePI0eOMH36dF599VVy587N4cOHWbBgAe3atSMwMJBjx47x+++/07x5c/z8/Dh58iQbN26kQYMG+Pj4cPr0afbv30+VKlXw8PDg/PnznDx5kpIlS1oz/V2+fJk8efLg5OREZGQk0dHRZM6cGQcHBxITEzEMQ3vwpLLBgwdvFZFyqV2P9OxhP4Pp5y+l0pb4eAcuXAjgzJnsnD0byIUL/ly9mplr1zKRmHhndnFn51jc3SPJ6RdKYOYzBGY6Q2Dms2TPdIbsPmfJ5nOO7JnOkiNzGJk9r92x/7VIH85HBHAl2peIRC9iHF2Jc3biRqI31+O9CY/34UaCB+YYBqXUk+pBPoOllW97OYBTScqhQMXbNzIMoyvQFTTRrrqTo6OQPft5smc/D2zDyzECH8fruMdF4ed4kSD3MPJlPo6PWzgJiQ5sPlWeE86573vcx+3GjRuAmTsGYP/+/Xh6elr5VJYuXUpQUJCV62Xs2LGULFmS6tWrIyKMHj2aGjVqULt2bQB++uknatWqRfbs2XFwcODIkSNWvhoXFxdy585t5Rry8vKiSZMm1rkyZ87Mm2++ad3v7+9P7969rbr6+vpaOV9u7p80B5KLi4vd0J7UkpiYyLVr13Bzc8Pd3Z24uDiOHTtG1qxZ8fX1JTo6mq1bt1KgQAGyZ89OeHg4K1eupGzZsuTKlYvLly8zf/586tSpQ/78+Tlz5gyTJ0/mxRdfpFChQpw+fZrJkydbgZJz584xY8YMK1By6dIlVqxYQVBQEC4uLkRGRnL06FGKFy9OQkKCFRw8ffo0N27cwN/fn3LlynH06FG8vb3JmzcvTZs2ZefOnWTOnJlixYqRM2dO/vjjD7JmzUqFChWoUKECP/74Izlz5qRatWpUqFCBcePGUaRIEWrXrk2JEiUYNmwY5cqVo379+hQsWJAhQ4ZQrVo16tSpQ7Zs2Rg6dCghISGEhITg5ubG//73P+rUqUNAQAAJCQmsXLmS+vXrkzNnThITEzlw4AA5c+YEzGFUkZGR1tAuZ2dnAgICcHNzA8zE2eXLlydLliwAZMqUiYYNG5I1a1bAfG61adPGShodFBTE66+/buU4yps3L++//74VtCxYsKCVuB0gX758dOnSxSrnzp3bLgdRjhw5rOc9QEBAAAEBt2bk9PX1tZsZ0MPDw27YmUNKjTNQKvXd9zOYfv5SKu1yckokMPAsgYFngR04GXF4O13Hy4jAOT4Ol4QYvBxukMnlGr6ul/HzuIyfxyWcHePtjhOf6MjFCH8u3vDnYmRW/jlemGtxmbke50O0oxsJLo4kuDiQYNz2OTAOiEYplQ6llZ5NLwINRKSzrdwOqCAib9xrn6CgIAkLC0upKj5x1qxZY5ejJEORRIi5yOa/FlK+eA6IOgNRYRB5CiKOw41jcOMEJN5K/IyjB2QuAb5Pg28ZyPk8uGe71xkeSlRUFNHR0dYX1z///JOEhARq1aoFwMiRI/H09KRnz54ANG7cmNy5c/PNN98AkD9/fqpUqcIPP/wAmF+a69SpY81sVrJkSZ577jkrF1GXLl2oXbs2bdq0Yc2aNRw9epRSpUpZs2cdPnyYbNmyPZHJq0XE6ily4sQJXFxcrC8uy5YtI3v27FZumNGjR1OiRAnq1asHQMeOHXnmmWdo1aoViYmJVKxYkc6dO1OkSBEqVqyIn58fgwcPpl+/fly7do3MmTMzfPhw2rVrh4uLCwEBAQwZMoQGDRqQK1cucuTIwYABAyhbtixly5alWrVqtG/fnqCgIBo3bkznzp0pV64cTk5OvPbaa9asXFFRUQwePJhFixaxfv16rl27xnfffcf+/fsZOXIk169fZ9myZURHR9OkSRMSEhKs3EbVqlXDzc3NSqZcoUIF/P39WbJkCWDmxcmbNy8///wzAMHBwTz99NPMmDEDgJCQEMqXL2/Nhvbiiy9SqVIlypYtS0hICD179qRSpUq0bdsWgI8//phy5crxzDPPADBp0iRKlixJuXLmjxTLly+nYMGC5M+fHxHh0KFDBAQEkDlzZkSEmJgYXFxcnvjAS4Z+PbRJr21gGIb2bHrMHvYzWJEiReTmDJ4qeaTX/9/UkmHbU8Sc8dludra7zNgWe+XOfZ287GdmS3I7ccYSrsd70/f9T8Hhzp5Q6uFl2OfoY6Rtmvwe5DNYWunZFArkSlLOCWTcSFJGlBhnvkFG35qNjpgLttubfztnBpWizoLEUx5gTZJjuPqDZz4zgWDO58Ernzk7nVcBc/mXN8i4uDgree7evXs5f/68FSyaMWMGp0+ftnpV9OnTh9OnTzNnzhwAnnvuOaKioli7di0AH3xgzpB3c/81a9bg6+trBZuKFy9u9eYAGD58uF0y5NWrV5M5c2arvGvXLru6Tpw40a786quv2pULFix4z+u8n6TBoNOnTxMTE2NNCf/3338THx9vvZBPmTIFJycnK7AxYMAAMmfOzNtvvw3ACy+8QM6cOenTpw+BgYGUKlWKEiVK0KNHD8qVK0e1atWoVKkSzz77LC+88AKvvPIKNWrUIDg4mL59+/LRRx8REhLCzJkz+frrr9m0aRNxcXGMHz+eX3/9lcDAQDZu3MiQIUM4duwY3bt3Z//+/Tg5OREVFcWkSZNYu3Yt+fPn58aNG2zYsIEpU6ZQt25drl27xvXr1+nfvz+dO3fm0qVLnDx5ktdee43vvvuO119/nd9++81KZj5kyBBGjx5N//79OXr0KAEBAXTq1Inz589z7tw5MmXKRKVKlWjQoAE3btzA2dkZZ2dnunfvTkJCgtW+Q4cOtRteOGnSJLueYMuXL7cr79mzx+7xWbNmjV153rx5dn//3//+Z3f/wIED7cq3P1fq169vrRuGQeHChe3KN3spKaXSNf0MptSTLiHG9sPqbYGjyNMQdTOgFGb/Qytgztac3QweeReAgBp3Jtj2yAHOPvc8dVjMTnNFA01KqduklWDTZqCQYRj5gNNAa+Cl1K2SemSJceavJjGXbMtFc4lNsh598dZ6zEWIu3r3YxlO4JYVXAPALQB8iprTl7oHsffoZYqXqwfuQeYbqaP5xfjy5cuEhoZSslBJwJzJasOGxdasZBMmTGDJkiVW75EePXrw008/cbOn3Oeff86KFSs4dcocVbB8+XJ27dplBZv8/PzsZoXq0aMHcXFxVvn777+3CxgsXbrU7pJGjhxpV27VqpVduUCBB8shdeXKFWumKzCDZCdPnqRhw4bWeQ8ePEjr1q3x8vJixowZ7N69m5deeokCBQowevRoq1y1alXefvttDh06RIsWLXjxxRfp3bs3Z8+epXTp0rz11lsMGjSIK1eu4OPjw6hRo/j++++Jiopi4MCBzJkzh/379xMdHU2/fv3YuHEjuXLl4sqVK+TLl49t27bRpUsXTp06RUhICHv27OGrr75i586ddOzYkapVq/L777+zYsUK3n77bTp27EhYWBhz587lww8/JDIykr179zJ37lzGjh1LfHw8CxcuZNGiRYSGhiIijBo1ilWrVpEjRw4cHBzo2LEjxYoVo2LFijg5OVGxYkV8fHxo3rw5Dg4OeHt7M2DAALsp2seMGcOYMWOs8s3eZzeNGGE/QdN7771nV+7WrZtd+cUXX7Qr3xzqeNPN2eBuSjrMSymlUoh+BlMqtYhA7OV7BJGS3MZcvHNfR/dbwSL/KmbPpNsDSe7ZwcH5zn2VUioZpIlgk4jEG4bRE/gNc1aUSSKy9z67qcctMcEMAsVctgWKLptviLGXbwWSbq5b91+CuOv3PqajG7hmNXshufqBV17bur8ZTLIFleKdsuDgng0HtyyEng5j8+bNNKzdEDc3N1avXs20L6fRqlUrimetwoQJExg0aBDHjh2z8s4MGjSI2NhYnJ2dWb58OUOHDuWtt96yEiFfv37d6sXTqFEj8ubNa1XxvffeswtATJkyxS5J8IABA+wuKWkOI7jVsyghIYHw8HC8vLwwDIOLFy9y4MABgoKC8Pb25vz586xZs4ZChQqRO3duq7dU6dKlefrppzl06BDjxo2jSpUq1KtXj23btvHZZ59Rq1YtXnrpJbZs2cL//vc/hg8fTu/evdm5cyfTpk0jNjaWTz/9lL179zJv3jx69+7N+PHjOXLkCJs3b2bs2LF8//33BAQE4OvrS7t27Zg+fTrNmzdn3759DBo0iKeeeor+/fvzzz//8Mknn/DSSy/x7bffcvjwYUaMGEFiYiIrV67kyJEjjBw5Eh8fHxYsWMDhw4f54YcfCAwM5Msvv+TkyZPUrl2bXLly0adPH86fP0+TJk3IkycPxYsXp06dOrRv356cOXPi7OxM8eLF6d27tzVsq3379nZTsLds2ZKWLVta5eeeew5vb2+rB07t2rXtAjoVK1akYsVbqUeKFi1K0aJFrXJQUJDdY+fu7n7v565SSqVD+hlMqcckMc5M9RAZ+u+BpIS7JDRyC7AFjXKBf6U7eyJ55ADnzKCTWCilUlGaCDYBiMgSYElq1yNdkkSIu2YLEF22DwxZAaPbAkoxl+7d2wgAA1wyg4sfuGYxg0Q+RcElixlEcvWz1hOcfLkY7kCmgHy4eWUhNDSUJUuW8PzzzxMQEMCGDRv4ePDHfP311+TLnY85c+bQunUN/vnnHwoV8mflypV06NCBI0eOkD9/fkJDQ/n999957rnnADNRcJMmTYiLi8PNzY0WLVrY9Rh55513ePfdd3F0NLv/vvHGG7zxxq1UFFWqVKFs2bLExsZy/vx5Ll68iKOjIxcvXmTt2rVcuXKFTJkyERwczPTp0wEzSFGqVCmGDRtGpkyZKFy4MKVLl6ZHjx7kypWLcuXKUapUKTp27EiOHDmoV68elStX5rXXXsPf39+a7e2tt94iU6ZMtGvXjuLFi7N8+XLmzJlD165dqVChAgEBAcycOZOsWbNSsWJFunfvzvLlywkPD6d169Y4Oztz6NAh/Pz86Nu3L+3atWPevHmUKlWKLl268NlnnzF9+nSqV6/Oa6+9RnR0NH/88QclSpQgKCiI2NhYBg8eTGBgIF5eXiQmJjJkyBBrqFdISAhdu3a12qpgwYJW/h8wgzdTpkyxu3/w4MFWOXfu3HTo0MEq356k2cfHBx+fW123bz5GSimlUo5+BlPqIYiYP6zeDBjdK5gUfR64LXeug+utoJFfeXB/3hY8SpIvyS0QHFN/shWllLqfNBNsUg8oIQZiLuEZdwTOSZIeRpduG7Zm+1vsZXNImyTe+5guvrbFFiTyLmQGkG4Gklyy3AoiuWQh0TkzVyIEV3cPvLy8uHTpErNnz6Z+/foUKlSIAwcO0LVzV4YPH07VqlX5+48/CAkJ4ffff6dOnTr8888/vPbaaxQuXJiAgADi4+M5c+YMERERAJQoUYLBgwdbCa6rV6/O4sWLrZmlypQpw7fffoubmxtnzpwhPDyc4OBgHB0d+fnnn9m/fz8XL16kZs2ajBkzhrNnz3L16lU+++wzunfvTlxcHOHh4UyYMIF69eqRK1cuHBwc+OKLL6hWrRqlSpXC09OTjz/+mOeff54SJUrg5+fH+++/z8cff0yZMmXInz8/RYsWJTQ01OrBlC1bNmrVqoWLiwsFChSgQoUKjB49msjISIoVK0b58uVZuXIlZ86coWDBggQHB9O6dWsOHz5M9uzZyZMnD926dePixYt4enri7u5O69at7R6qBg0a2A3Di4iIYPjwW7NT58mTh/Lly1tlV1dXXn/9davs5uZGgwYNbj30Li4UKlTIKjs4ODzxyaCVUkoppR6LxHiIPmsfOLILJoWZ6/E37tzX1c82dC0HZClzW28k2xA3lyzaG0kplW5osOlJFxeRJAH2zaTYF5LkM0qyHn0B4sMBzOTYK287lqOHrVeRbYiaZx67HkZ3vXXxBQdH4uLiiI+Px93dnejoaKZPn07ZsmUpU7IMly9fpmXLlvTo0YNmzSpy4tgx8ufPz6RJk+jYsSNXrlyhZ8+eTJ48mUKFCnHjxg0iIiKIjr7VLbhVq1bkzp0bEeHGjRu0bduWChUqsGXLFjZu3IirqyvFihXjq6++Yvfu3cybN4/33nuPNm3acOPGDVauXMm5c+coUqQI+fPnZ+vWrUybNo2goCCqVavGwYMHadGiBc2aNaNu3bpERkZy48YNPvnkE1q0aEGmTJlwcHDgwoUL1KhRg2zZsuHn50ezZs2sXj6FCxdmwoQJ5MmTh8DAQPLmzcvWrVvx9/fH19cXT09PEhIS7IbUbdu2ze4hSNrLB6BYsWJ25ZvTxt/k6emJn5+f3d/8/f0f/PmjlFJKKaXuLy78Pgm2T5uT0dz+A62Ds5kf1COnOQlN0LN3DmlzD7JyhyqlVEahwabUEB9p/ioSdebWEn3WNpvaOfvgUkLk3Y/h6J4kt5G/rbeRv7XsPXyO4mVq3OqN5Or3r29ya9euJXPmzBTPXxwRoVOnTtSuXZu2bdty7do1smTJQv/+/fnkk084c+YMXbt25d1336VMmTIcPnyYPXv2cO7cOUSEHTt2kDNnTnLkyMHmzZutadurVq3Kl19+yb59+9i+fTtFihShRYsWxMXFsXDhQr788kuyZctGsWLF2LdvH3FxcdSqVYvq1avj6elJXFwc7777Lo0bN6ZTp044ODiwY8cOmjRpQosWLXB3d6dmzZrUqlWLL774ggsXLjBu3DjKly9PiRIlcHBwYNu2beTJk4csWbIgIncEhzZv3mzXLuPHj7crd+nSxa5cpkyZh3nklVJKKaVUSkpMMD9b2wJGQTdWw84VSQJKtmCS7QdbO86Zbw1jy1zy7jO1ufqDob2+lVLqdhpsSk6SaPYwigy9c4kKtXWtPXP3BNmGI7hlu5UE27uIuX5zuTnbmltWM8jk5PGvVTkfupp83hXx8PAgNjaWz0Z8Ro4cOejQoQOXL1+mQoUKVKlShWnTpnHs2DHq1KnDM888w88//8y2bduYNm0aIkK1atVYvXo1iYmJZM2alVmzZlkBmbp16/Lmm29y8uRJEhMTqVChApUqVcLJyYlSpUpRsGBBmjVrhp+fH0OHDsXX15cJEyZQuHBhli5dip+fH87Ozjz99NOMHz8ef39/3nnnHYoVK8azzz4LwIIFC8iTJ4815XpYWBheXl44O5szZ+zfv9/uuqdOnWqtr1mz5o7Zv0qXLn2rybWbslJKKaVU2hUfeWfvo8gw+95JUWdAbs0SXBjguqNt9uIckKkYZK9nnxfp5u19Pm8rpZS6Nw02PazYaxD+D0QcgxvHbLfHbbcnIDHGfnvDKckvIk9D9ga2N7dAcMt+a93V719/FUk6jC0+Pp45M2aQNWtW6tevz40bN6hXrx5Fixbl+++/58KFC9SrV48iRYqwd+9eTp8+zcCBAwkODqZUqVJs3LiRI0eOUK1aNSZNmsTff/9Njhw5aN68Oa+//jobNmzg9ddfp2vXrvTq1YtDhw4xZ84catasSefOnQkLC+PYsWMEBgayZMkS8ufPz88//wxA165dcXd356WXzFmRv//+e7y8vHjqqacA2LVrl12S51mzZtld5zvvvGNXrlevnl3Z19f3YR4tpZRSSimV1lg/4N7W++j2IW53m6zG2edWsMin9h29kdbtOEGVWs+Dg046opRSj5MGm+4l6ixc3WUu1w+aS/g/5lC3pFz9wDOv2bU2ZxPwyG1L8pfLvHULuGcQKTEx0Uq2vGTJEvz8/Kxp2Fu1akWZMmV49913ERHc3d0pW7YsGzduRERo27Yt/v7+bNiwgc2bN7N9+3YuX77M/PnzmTNnDiVKlKBRo0b079+fsWPHMnXqVKpVq8aYMWOYPn06Fy9eJFOmTAwYMIB9+/Zx5MgRABISEggICGDIkCEAvP/++8TExFC9enUAfvzxR1xcXKxeQaNHj7a7pk6dOtmVy5UrZ1fW2cSUUkoppTKwhGizt3/kaftgkl1vpDBIjLPfz3Cw/VCbw0wfERByl2FtOcHZ619PH+sYoYEmpZRKARpsAjOx9sUNcHE9XN5sBpiiz9+63zUr+BQxE/75FAHvwuBdwAwyOXvf9ZDXrl0j4nIEOXKYwaTPP/8cLy8vXnvtNQCefvppSpYsyfTp0wHo0KEDfn5+bN++nRMnTrB27Vp++eUXatWqxYwZM6hcuTJnzpzh22+/pWfPnowZM4YsWbLw888/8/bbb3P16lUyZcrE2LFj2bdvH6NHj6Z+/fqsWLECb29v2rZti4ODA++++y5vvPGGlXQ66cxlAB07drQrV6hQwa7s6ur6yM2slFJKKaXSKbHNgnx70CjpjG1Rp81tbufocWskQNbqd8+N5JYdHPSri1JKpRUZ8xU7PhLOrYYzv8HZ5WavJTCHvGUuCUGNzVvfpyFzCbP30m3i4uK4ePEigYFmsOmzzz7j0qVLjBgxAoBnn30WFxcXVq1aBcD8+fMBeOGFFzhw4AD58uVjzpw5dOzYkWHDhtG0aVN++ukn5syZQ4cOHZg2bRoxMTEcOXKEKVOmsGXLFgoVKsSGDRt4++23ad++PZkzZ+bs2bPUr18fT09PAHr06EGPHj1Ys2YNYA5DSzoULUeOHI+lSZVSSimlVDqVEGvLPXr7TG2nkwSTwu5MJ4Fh9vJ3z2HOguxf5e6BJOdMoLk0lVIqXck4wSYROPs7HJsKoT9D/A1zRreAmpD/VfCvDFnK3jMR4PLly9m6dSvvvfceAO3atWPr1q0cOnQIgGPHjnHmzBliY2M5ePAgzz77LEuXLmXNmjUMGzaMBg0aMHjwYBYvXkzHjh0ZPXo0BQsWRESIiIigW7duTJw4kVOnTjF9+nQaNWpkzZjWpk0bqx6VKlWiUqVKVjl79uxkz5798bWbUkoppZRKn0Qg7tq9cyLd7I2UtMf/TY5ut4JF/pXsh7JZwaRAcHBO+etSSimV6tJ/sEnEDC7tHgRXd5tTmOZ5CXK3gIAa5hulTWJiIjezK82YMYOxY8fy999/4+DgwOrVqxk/fjzvvvsuDg4OvPrqq9SqVYtTp07x9ddfU7ZsWT766CNmzpxJx44dGTBgAKdOneLatWtcuXKF4OBgtm/fTq5cuVi6dCkVKlQgS5YsANSpU8eqQ65cuWjbtq1V1hnTlFJKKaXUQ0uMN2diu1dvpJu3CZF37uvqfytglKWcfSDp5rqLr/ZGUkopdU/pO9gUewXWt4fTi8CnKFSaDHnagOOtvEMigmEYLFiwgE6dOrFv3z4CAwNxdnbGx8eHa9eu4ejoSKdOnejduzcnTpzgmWee4dlnn2XMmDGMGjWK8ePH069fPypWrEjBggWZNWsWVatW5eOPPwagadOmdtV65plnUrQZlFJKKaVUOhJ3/S6Bo9t6J0WfA8R+PwcXcA8yA0a+pc3UEUmHs3nkNHsjJfkxVimllHoU6TbY5GAkwvKqEHEYyoyGwm/YJRXcs2cPrVq1YsKECVStWpVChQrRokULYmNjOXv2LIUKFWLhwoWcP3+eatWqUalSJZYuXcpLL71Ew4YNqVatGrly5aJ+/fr06tXLmlVOKaWUUkqpR5KYYAaJkgSR8l1fB+sn28q2gFJ8xJ37uvjeChr5lrozL5J7DrPHkvZGUkoplQLSbbDJx+k6RFyFWr9BtlqICKtWrsTNzY2qVauSJ08egoKCSExMJD4+HgcHByZOnEh8fDz16tXj6tWruLu74+rqyqeffkpgYCDPP/88hQsXpkyZMql9eUoppZRSKi2Jj7w1K9u9kmxHnwVJsNstF46QGGQGizKVgMBn7hJICrpn3lGllFIqNaTbYNP1+ExQaxZkCwEgISGBzp07U7JkSX755Re8vb1ZsWIFAD179mT69On069ePyZMnM3XqVNzd3Tlx4gTOzs40btw4Fa9EKaWUUko9sSQRoi/cGsp2r2BS3LU793X2uRUwyl43yVC2W8GkPzfsI6RW7ZS/LqWUUuo/SLfBpkQxrEATgJOTE7/++iv58+dn06ZNvP7668yaNYvly5fTqlUratc238QbNGhAqVKl8PT01B5MSimllFIZWUL0nb2Pbg8iRZ+BxDj7/QwHcAs0A0beRSBb7bsPa3P2un8djAOP59qUUkqpxyjdBptuJyLkz58fNzc3AgICSEhIYM2aNbzxxhvMnj2bVq1aAdC8efNUrqlSSimllHqsRCDmIkSF3dYL6bYk27GX79zXyfNW76OAmndJsJ0D3LKBg2PKX5dSSin1hMgQwSYR4cUXX8TFxYVOnTpx+PBhtm/fjmEYVKlSheDg4NSuolJKKaWUSg4JMXcJIt0eTAqDxNjbdjTALcAMGHnmg6zV7tEbyUeTbCullFL3kSGCTYZhUKFCBZydnfnyyy85c+YMXbt2BdBAk1JKKaVUWiACsVfunRPpZs6kmIt37uvofitg5F/lzgCSRw5wDwQH55S/LqWUUiodyhDBpoiICHr06IGnpyft27fHzc0NQ3+RUkoppZR6MiTGQdTZf0+wHXUaEqLu3Nc1662gkV8FW/AoSZJtjxzgnFl7IymllFIpKN0HmxITE2nUqBEeHh4sXbqULFmypHaVlFJKKaUyBhGIu35n76Pbg0jR5wGx39fB5VbAKEtZ8GhyZ24k90BwdE2VS1NKKaXUvRkicv+t0iDDMMKBg6ldj1TkD9ylH3mGom2gbQDaBqBtkNGvH9JvG+QRkaypXQl1i37+eizS6/9vatH2TH7apslL2zP5aZsmvyIi4v1vG6Tnnk0HRaRcalcitRiGsSUjXz9oG4C2AWgbgLZBRr9+0DZQKSpDf/56HPT/N3lpeyY/bdPkpe2Z/LRNk59hGFvut41DSlREKaWUUkoppZRSSmUMGmxSSimllFJKKaWUUskmPQebJqR2BVJZRr9+0DYAbQPQNgBtg4x+/aBtoFKOPteSn7Zp8tL2TH7apslL2zP5aZsmv/u2abpNEK6UUkoppZRSSimlUl567tmklFJKKaWUUkoppVKYBpuUUkoppZRSSimlVLJJc8EmwzCeMQzjoGEYhw3D6H+X+w3DML6y3b/LMIwyD7pvWvEAbfCy7dp3GYaxzjCMp5Pcd9wwjN2GYex4kOkKn1QP0AYhhmFcs13nDsMwPnzQfdOCB7j+d5Jc+x7DMBIMw8hiuy+9PAcmGYZx3jCMPfe4PyO8FtyvDdL1a8EDXH+6fh2AB2qDdP9aoJ48hmF8ZHvd2WEYxnLDMIJSu05pnWEYnxmGccDWrj8ZhpE5teuUlhmG8aJhGHsNw0g0DEOnQ39E6eW99Elxv/d09fAMw8hlGMZqwzD22/7n30rtOqVlhmG4GYaxyTCMnbb2HPKvO4hImlkAR+AIkB9wAXYCxW7bphGwFDCASsDGB903LSwP2AZVAF/besObbWArHwf8U/s6UqANQoDFj7Lvk7487DUAzwGr0tNzwHYdNYAywJ573J+uXwsesA3S+2vB/a4/3b4OPGgb3LZtunwt0OXJWwCfJOtvAuNTu05pfQHqA0629ZHAyNSuU1pegKJAEWANUC6165MWl/T0XvqkLA/znq7LA7dpIFDGtu4N/KPP0//UngbgZVt3BjYCle61fVrr2VQBOCwiR0UkFpgNNL1tm6bANDFtADIbhhH4gPumBfe9DhFZJyJXbMUNQM4UruPj9l8ey/TwPHjYa2gDzEqRmqUgEfkTuPwvm6T314L7tkF6fy14gOfAvWSY58Bt0uVrgXryiMj1JEVPQGej+Y9EZLmIxNuK6e71PKWJyH4ROZja9Ujj0s176ZPiP3yuUfcgImdEZJttPRzYD+RI3VqlXbbvVRG2orNtued7fFoLNuUATiUph3Lnk+Ve2zzIvmnBw15HJ8zeHTcJsNwwjK2GYXR9DPVLCQ/aBpVtXfyWGoZR/CH3fZI98DUYhuEBPAPMT/Ln9PAceBDp/bXgYaXH14IHkV5fBx5KBn8tUKnAMIxPDMM4BbwMfHi/7dVDeRX713OlUkOGey9VaZthGHmB0pi9cdQjMgzD0TCMHcB5YIWI3LM9nVKsVsnDuMvfbo+k3WubB9k3LXjg6zAMoxbmF8xqSf5cVUTCDMMIAFYYhnHAFkVPSx6kDbYBeUQkwjCMRsDPQKEH3PdJ9zDX8BywVkSS/kqSHp4DDyK9vxY8sHT8WnA/6fl14GFl5NcC9RgYhvE7kP0udw0QkV9EZAAwwDCM94CewKAUrWAadL82tW0zAIgHZqRk3dKiB2lP9Z9kxPdSlUYZhuGF+YNbr9t636qHJCIJQClb7sCfDMMIFpG75hlLa8GmUCBXknJOIOwBt3F5gH3TggdpAwzDKAl8BzQUkUs3/y4iYbbb84Zh/ITZBTatfbm4bxskfRERkSWGYXxjGIb/g+ybBjzMNbTmtmEz6eQ58CDS+2vBA0nnrwX/Kp2/DjysjPxaoB4DEan7gJvOBH5Fg033db82NQyjPdAYqCO2hBnq3h7iOaoeTUZ8L1VpkGEYzpiBphkisiC165NeiMhVwzDWYPacv2uwKa0No9sMFDIMI59hGC6YH54X3rbNQuAVw1QJuCYiZx5w37TgvtdhGEZuYAHQTkT+SfJ3T8MwvG+uYyabTIuzHTxIG2Q3DMOwrVfAfK5fepB904AHugbDMDIBNYFfkvwtvTwHHkR6fy24rwzwWvCv0vnrwAPT1wKV0gzDKJSk2AQ4kFp1SS8Mw3gGeBdoIiKRqV0fpchg76UqbbJ9Dvwe2C8io1O7PmmdYRhZbT2aMAzDHajLv7zHp6meTSISbxhGT+A3zBkQJonIXsMwutnuHw8swZyF6jAQCXT8t31T4TL+kwdsgw8BP+Ab2/eseBEpB2TD7OoG5mM/U0SWpcJl/CcP2AYtgNcNw4gHooDWtl8B0/zz4AGvH6AZsFxEbiTZPV08BwAMw5iFOduYv2EYoZi/mjtDxngtgAdqg3T9WvAA159uXwdueoA2gHT+WqCeSCMMwygCJAIngG6pXJ/04H+AK+aQV4ANIqLt+ogMw2gGfA1kBX41DGOHiDRI5WqlKenp89ST4m7v6SLyferWKs2rCrQDdhtmniGA90VkSepVKU0LBKYahuGI+SPuXBFZfK+NDe2Fq5RSSimllFJKKaWSS1obRqeUUkoppZRSSimlnmAabFJKKaWUUkoppZRSyUaDTUoppZRSSimllFIq2WiwSSmllFJKKaWUUkolGw02KaWUUkoppZRSSqlko8EmpVSaZBhGGcMwEgzDEMMwyibzsR0NwzhoO/bw5Dy2UkoppZRSSqV3GmxSSqVVYzFfwxaJyNbkPLCIJAAf24p9DMMomJzHV0oppZRSSqn0TINNSqk0xzCM5kAlW3HwYzrNTOAfwAX46DGdQymllFJKKaXSHQ02KaXSosG222Uisu1xnMDWu+lTW7GVYRjFHsd5lFJKKaWUUiq90WCTUipNMQyjAVDCVpz2mE83D4gGDKDXYz6XUkoppZRSSqULGmxSSqU1r9tuI4BfHueJROQ6sMhWbGsYhvfjPJ9SSimllFJKpQcabFJKPVaGYYTYZnUTwzAG2/5WwjCMCYZhHDEMI8owjAuGYfxuGEab+xzLD2hkK/4kIpH32G5wknM+6BJyj9POsN26Ay0e9vqVUkoppZRSKqPRYJNSKkUZhtEO2Ax0AfIDboA/UAeYaRjGYsMw3O6xeyPA2ba++nHX1WYNILb1pil0TqWUUkoppZRKs5xSuwJKqQylPPC+bX0S8CeQYPt7J8ATeBb4gbv3IqqXZH3Tv5xnNrDjPnXxBb7BDHYBXLvbRiJyzTCMA0BRoI5hGI625OFKKaWUUkoppe7CEJH7b6WUUo/INjwtaS+kcKC+iGy4bbtCmL2Igmx/aiEi82/b5iBQ2HaMzCKS+Ih1cgJ+A2rb/vSJiAz8l+0nAx1sxadFZNejnFcppZRSSimlMgIdRqeUSmnv3B5oAhCRQ5i9m256O+n9hmG4AoVsxUOPGmiyGcutQNN84IP7bL8/yXrJ/3BepZRSSimllEr3NNiklEpJV4DJ97pTRJYB+2zFSoZhZE9ydy7AsK1fftQKGIbRC+hqK24DXpH7d/G8kmQ9z6OeWymllFJKKaUyAg02KaVS0l8iEnufbVYlWS+fZD1LkvVHCjYZhtEQGGUrngGa3GtGu9tcSrLu+yjnVkoppZRSSqmMQoNNSqmUdPghtwlKsu6aZD38YU9sGEZxzMThjkAU0FRETj/g7teTrLs/7LmVUkoppZRSKiPRYJNSKiU9SC+iG0nWvZKsxyRZ93mYkxqG4Q8ssu0nQAcR2fwQh8iUZD3qYc6tlFJKKaWUUhmNBpuUUinJ4wG28UyyHpFkPenQuaRD6v6VYRguwE9APtufhojI3Afd/y7ne+R8UUoppZRSSimVEWiwSSmVkgo+5DZhSdZPAjdnoHvgYBMwAahmW58jIkMeYt+bkp7vxCPsr5RSSimllFIZhgablFIpqZqtp9G/qZVk3RrqZkssfshWLGgYxn1fvwzDeBdobytuAjo8eFXtFE2yvusRj6GUUkoppZRSGYIGm5RSKSkLt4I/dzAMoz5Q3FZcLyJnb9tko+3WGyj2bycyDKMpMMxWDMVMCB790DU2VbTdhgP7HvEYSimllFJKKZUhaLBJKZXSRhmGUf72PxqGUQCYlORPn99l3xVJ1ivc6wSGYZQCZmC+xt0AmtwlcPVADMPIBBSxFVeKSMKjHEcppZRSSimlMgqn1K6AUipDWQLUA9YahjEV+AtIAMoDnbg1+9wCEZl/j/1jARcgBPvgVFJTuZVofC6QxzCMPPep298icvEufw8BDNv6z/c5hlJKKaWUUkpleIaIpHYdlFLpmGEYIcBqW3EIcBj4DnC9xy5LgBfuNeTNMIyfgOcxZ6rLJiKRd9nmOHC/4NLtaonImrscaw7QEoiynS/8IY+rlFJKKaWUUhmKDqNTSqUoEfkBsyfTd8BRIBq4DKwCXhaRZ++TW+kb260XZtDpsTEMwxt4zlb8QQNNSimllFJKKXV/OoxOKZXiRGQ30OUR911hGMYuoCRmsvGZd9km73+q4C0vAu6AAGOS6ZhKKaWUUkopla5pzyalVFo02HZb3zCMso/jBIZhOAL9bMU5IqKz0CmllFJKKaXUA9Bgk1IqzRGRn4D1tuLgx3SaNpiz0MUCHzymcyillFJKKaVUuqPBJqVUWtUTSAQaG4ZRLjkPbOvVNNBWHC0ih5Pz+EoppZRSSimVnmnOJqVUmiQi2wDHx3TsBOCpx3FspZRSSimllErvNNiklFJKKaWSRebMmaVgwYKpXY105caNG3h6eqZ2NdINbc/kFRYWBkDWrEGcOwfnz4MIuLmBqyu4uICTE8TFQUyMucTGmn/Lnh2yZgUHHWtjR5+jyU/bNPlt3br1oohk/bdtNNiklHqsRGQNYKR2PZRSSj1+2bJlY8uWLaldjXRlzZo1hISEpHY10g1tz+T1zjujWLu2Cjt2VCEmBl55BQYOhH+LOf/1FwwZAitXQnw8vPsuvPYauLunXL2fZPocTX7apsnPMIwT99tG48hKKaWUUkoppR7Y+fPwzjswZsxbbNhQiRdfhAMHYMqUfw80AVSvDr//Dn/+CcWKQe/ekD8/jBkDUVEpUXulVErQYJNSSimllFJKqQcybx7kywejR0OxYvvo0WMsU6dCoUIPd5zq1c3eTX/8AUWLmkGnQoVg587HU2+lVMrSYJNSSimllFJKqfuaORNat4ZSpWDfPmje/Gf8/S//p2PWqAGrVsGaNWAYULs2bNuWLNVVSqUizdmklFJKKaWUUupfTZsGHTuaPZIWLwYvr+Q9fs2aZi+nWrWgTh1YvhzKl0/ec6RFcXFxhIaGEh0dndpVSbMyZcrE/v37U7saaZKbmxs5c+bE2dn5offVYJNSSimllFJKqXuaNAk6dzZ7HS1cCB4ej+c8+fObAafataFuXfjtN6hU6fGcK60IDQ3F29ubvHnzYhg6586jCA8Px9vbO7WrkeaICJcuXSI0NJR8+fI99P46jE4ppZRSSiml1F19+y106gT168OiRY8v0HRT3rxmwClrVvOca9c+3vM96aKjo/Hz89NAk0pxhmHg5+f3yL3qNNiklFJKKaWUUuoOY8dCt27w7LPw88/g7p4y582Vyww4BQZCgwbmekamgSaVWv7Lc0+DTUoppZRSSiml7IwZAz17QtOmMH8+uLml7Plz5DCDTLlzQ8OGZhJxpVTaocEmpZRSSimllFKWsWOhd2944QWYNw9cXVOnHtmzm7PUFShg9q7666/UqUdGV6VKlWQ/5vHjx5k5c2ayHze5eD1ABvzBgwczatQoAD788EN+//33e277888/s2/fvnveP378eKZNmwZASEgIW7ZseeC6Xr16lW+++cYqh4WF0aJFiwfe/3HRYJNSSimllFJKKQC2bTMDTc89B7NmwSNMQpWsAgJg9WpzaN1LL8GVK6lbn4xo3bp1yX7MxxlsSkhIeCzH/TdDhw6lbt2697z/34JN8fHxdOvWjVdeeeWRzn17sCkoKIgff/zxkY6VnDTYpJRSSimllFKKyEh4+WUzOffkyakfaLrJ3x9mzoSzZ80cUiKpXaPU0asXhIQk79Kr1/3Pe7OXz5o1awgJCaFFixY89dRTvPzyy4jtwcibNy/vvvsuFSpUoEKFChw+fBiADh062AU+bh6rf//+/PXXX5QqVYovvvjC7nz/dp6VK1dSunRpSpQowauvvkpMTIx1/qFDh1KtWjXmzZtH3rx5ef/996lcuTI1a9Zk27ZtNGjQgAIFCjB+/HgAIiIiqFOnDmXKlKFEiRL88ssv922LTz75hCJFilC3bl0OHjxo/T3pdfbv359ixYpRsmRJ3n77bdatW8fChQt55513KFWqFEeOHCEkvRrUjQAAP0RJREFUJIT333+fmjVr8uWXX9r1kgL44YcfqFKlCsHBwWzatAngjm2Cg4M5fvw4/fv358iRI5QqVYp33nmH48ePExwcDJgJ5jt27EiJEiUoXbo0q1evBmDKlCk0b96cZ555hkKFCtGvX7/7XvvDckr2IyqllFJKKaWUSnP69YMDB2DFCvDzS+3a2CtXDoYMgQEDoHFjaNcutWuUMW3fvp29e/cSFBRE1apVWbt2LdWqVQPAx8eHTZs2MW3aNHr16sXixYvveZwRI0YwatSoe25zt/OUK1eODh06sHLlSgoXLswrr7zCuHHj6GWLmLm5ufH3338DZsAnV65crF+/nh49etChQwfWrl1LdHQ0xYsXp1u3bri5ufHTTz/h4+PDxYsXqVSpEk2aNLlnUuytW7cye/Zstm/fTnx8PGXKlKFs2bJ221y+fJmffvqJAwcOYBgGV69eJXPmzDRp0oTGjRvbDW+7evUqf9iy3w8ePNjuODdu3GDdunX8+eefvPrqq+zZs+df23LPnj3s2LEDMHuN3TR27FgAdu/ezYEDB6hfvz7//PMPADt27GD79u24urpSpEgR3njjDXLlynXP8zwsDTYppZRSSimlVAa3ZImZq6lPH/iX0UCp6t13Ydky6NEDqlWDfPlSu0Ypa8yY1K4BVKhQgZw5cwJQqlQpjh8/bgWb2rRpY9327t072c/j7e1Nvnz5KFy4MADt27dn7NixVrCpVatWdsdo0qQJAMWLFyc2NhZvb2+8vb1xc3Pj6tWreHp68v777/Pnn3/i4ODA6dOnOXfuHNmzZ79rnf766y+aNWuGh4eH3fGT8vHxwc3Njc6dO/Pss8/SuHHje17j7fVN6mZb1qhRg+vXr3P16tV7bvtv/v77b9544w0AnnrqKfLkyWMFm+rUqUOmTJkAKFasGCdOnEjWYJMOo1NKKaWUUkqpDOz8eejYEUqUgGHDUrs29+boCNOmgWGYPZvi41O7RhmPa5Js8Y6OjsQneRCS9gi6ue7k5ERiYiIAIkJsbOwjn0fuM37S09PzrsdwcHCwO56DgwPx8fHMmDGDCxcusHXrVnbs2EG2bNmIjo7+13Pcq9fTTU5OTmzatIkXXniBn3/+mWeeeeaB6/tv5zEMw64tgfvWFfjXNvu3xzI5aLBJKaWUUkoppTIoEejcGa5dM/MipdbMcw8qb16zB9batTByZGrXRiU1Z84c67Zy5cqAmUtp69atAPzyyy/ExcUB4O3tTXh4+EMd/6mnnuL48eNWPqjp06dTs2bNR67vtWvXCAgIwNnZmdWrV3PixIl/3b5GjRr89NNPREVFER4ezqJFi+7YJiIigmvXrtGoUSPGjBljDW172Ou92ZZ///03mTJlIlOmTOTNm5dt27YBsG3bNo4dO3bfY9eoUYMZM2YA8M8//3Dy5EmKFCnywPX4L3QYnVJKKaWUUkplUBMmwKJF5hAtW07hJ97LL8Ovv8LgwVC/PpQvn9o1UgAxMTFUrFiRxMREZs2aBUCXLl1o2rQpFSpUoE6dOlZvnpIlS+Lk5MTTTz9Nhw4dHmjYnZubG5MnT+bFF18kPj6e8uXL061bt0eu78svv8xzzz1HuXLlKFWqFE899dS/bl+mTBlatWpFqVKlyJMnD9WrV79jm/DwcJo2bUp0dDQiYiU/b926NV26dOGrr756oJnifH19qVKlCtevX2fSpEkAvPDCC0ybNo1SpUpRvnx5azihn58fVatWJTg4mIYNG9KjRw/rON27d6dbt26UKFECJycnpkyZYtej6XEy7tcVTSmllFJKqQdRpEgRSTo7j/rvbs7KpJKHtqe9gwehdGmoXh2WLgWHhxz3MmTIEAAGDRr0GGr3765cgaefBjc32LYNbJOcpXm3P0f3799P0aJFU69CDyhv3rxs2bIFf3//1K7KHcLDw/H29k7taqRZd3sOGoaxVUTK/dt+OoxOKaWUUkoppTKY2Fizh5CHB0ye/PCBptTm62vmbzp82ExqrpR6sqSxlxSllFJKKaWUUv/VkCGwdStMnAhBQaldm0cTEgLvvGNew88/p3ZtMrbjx48/kb2aVOrRYJNSSimllFJKZSB798KIEfDqq9CsWWrX5r/56CMoVQp69IAbN1K7No+Hpr5RqeW/PPc02KSUUkoppZRSGcg774C3N3z6aWrX5L9zcYH//Q/CwuDzz1O7NsnPzc2NS5cuacBJpTgR4dKlS7i5uT3S/jobnVJKKaWUUkplECtWmMnAP/sM/PxSuzbJo2pVeOEFM3jWpQsEBqZ2jZJPzpw5CQ0N5cKFC6ldlTQrOjr6kQMmGZ2bmxs5c+Z8pH012KSUUkoppZRSGUBCArz9NuTLB2+8kdq1SV4jR8LChfDhh2YOp/TC2dmZfPnypXY10rQ1a9ZQunTp1K5GhqPD6JRSSimlMiDDMJ4xDOOgYRiHDcPof5f7QwzDuGYYxg7b8mFq1FMplXymToVdu8x8Ta6uqV2b5FWgAPTsCZMmwe7dqV0bpZQGm5RSSimlMhjDMByBsUBDoBjQxjCMYnfZ9C8RKWVbhqZoJZVSySoiAgYOhMqV4cUXU7s2j8fAgZApk9l7SymVujTYpJRSSimV8VQADovIURGJBWYDTVO5Tkqpx2jUKDhzxkyibRipXZvHI0sWcxjd8uWwbFlq10apjE1zNimllFJKZTw5gFNJyqFAxbtsV9kwjJ1AGPC2iOy9fQPDMLoCXQGyZs3KmjVrkr+2GVhERIS2aTLKqO158aILI0dWpGbNS8TE7CO5m+BJatPixQ2Cgirw+uuJfPfdFhwd09Ysbhn1Ofo4aZumDg02KaWUUkplPHfr13D7N7JtQB4RiTAMoxHwM1Dojp1EJgATAIoUKSIhISHJW9MMbs2aNWibJp+M2p6dOkFiIkyaFED+/AHJdtw//vgD4Ilr06++ghYt4OjRmnTpktq1eTgZ9Tn6OGmbpg4dRqeUUkoplfGEArmSlHNi9l6yiMh1EYmwrS8BnA3D8E+5KiqlksPOnTB5sjn7XP78qV2blNG8OVSrBh98AOHhqV0bpTImDTYppZRSSmU8m4FChmHkMwzDBWgNLEy6gWEY2Q3DzOxiGEYFzM+Nl1K8pkqpRyZiJsv29YUBA1K7NinHMMzcVOfOwaefpnZtlMqYNNiklFJKKZXBiEg80BP4DdgPzBWRvYZhdDMMo5ttsxbAHlvOpq+A1iKStpKfKJXBLV0Kv/8OgwaZAaeMpEIFaNPGDDqFhqZ2bZTKeDTYpJRSSimVAYnIEhEpLCIFROQT29/Gi8h42/r/RKS4iDwtIpVEZF3q1lgp9TDi481eTYUKQbdu998+PRo2zMxVlZF6dSn1pNBgk1JKKaWUUkqlMz/8APv3w8iR4OKS2rVJHXnzwltvwfTpsPeOuTSVUo+TBpuUUkoppZRSKh1JSIARI6BUKXj++dSuTerq1w88PMygm1Iq5WiwSSmllFJKKaXSkQUL4OBBeP99M1l2RubnB6+9BjNnwtGjqV0bpTIODTYppZRS/2/vzsPtnO7+j7+/mQwZNAg1UzSEEqmEGCo0TU2tqUXEEFMSxPTQSnUwlLbqoYSIpImaghqiVWJqNUolhJoFv5iaoGjFEEOIrN8f987jSE+Sk2Sfs/bwfl3XufbZe69978+5ZbA/WWvdkiTViJSKvYq6doW9986dpjKcdBK0bg3nnps7iVQ/LJskSZIkqUbccQc89hgMG1YULILVV4dDD4XLLoPXX8+dRqoPlk2SJEmSVCN+8QtYe20YMCB3ksrywx8WV+g7//zcSaT6YNkkSZIkSTXgvvvg/vvhBz+Atm1zp6ksX/kK9O8PI0fC22/nTiPVPssmSZIkSaoBZ58Nq6wChx+eO0llGjYMPvgAhg/PnUSqfZZNkiRJklTlHnkE7rwT/ud/YLnlcqepTJtuCnvuWZRN77+fO41U2yybJEmSJKnK/fKXsMIKcNRRuZNUth/9CGbOhFGjcieRaptlkyRJkiRVsalTYfx4OPZY6NQpd5rK1qsX9O0L550HH3+cO41UuyybJEmSJKmKnXNOsXTu+ONzJ6kOp54K//oXXH557iRS7bJskiRJkqQq9fLLcPXVMHgwrLxy7jTVoU8f6N27KOk+/TR3Gqk2WTZJkiRJUpU691xo1QpOOil3kuoRUcxuevlluO663Gmk2mTZJEmSJElV6F//grFjYeBAWGON3Gmqy267wWabFRurz52bO41UeyybJEmSJKkKXXBBsQzshz/MnaT6RBRXpps6Ff74x9xppNpj2SRJkiRJVeaDD2DUKNhnH9hgg9xpqtP3vw/rrluUdpLKy7JJkiRJkqrM1VfDO+94Bbql0bo1DB0Kf/sbPPZY7jRSbbFskiRJkqQqkhIMHw49esA22+ROU90OOwyWX744n5LKx7JJkiRJkqrIX/4CzzxTzGqKyJ2munXuDIccAtdcA2+9lTuNVDssmyRJkiSpilx4IayyCuy3X+4kteHYY2H2bBg9OncSqXZYNkmSJElSlZg2DW67DYYMgWWWyZ2mNmy8MfTrB5dcUlzdT9LSs2ySJEmSpCpx8cXQpk1RNql8jj8eXnsNbropdxKpNlg2SZIkSVIVeO89uOwy2HdfWG213Glqy847w4YbFksUJS09yyZJkiRJqgJXXAHvv1/MwlF5tWpV7N00eTI89FDuNFL1s2ySJEmSpAo3dy5cdBFsvTX07Jk7TW0aOBA6doThw3MnkaqfZZMkSZIkVbg77oD/9/+c1dScOnaEww6D66+H11/PnUaqbpZNkiRJklThLrwQVl8d9tknd5LaNnQozJkDI0fmTiJVN8smSZIkSapgU6fCXXfB0UdD27a509S2DTaA3XaDSy+F2bNzp5Gql2WTJEmSJFWwiy6CZZaBQYNyJ6kPxx8Pb70F112XO4lUvSybJEmSJKlCzZxZXIXugAOgS5fcaerDN78J3boVSxdTyp1Gqk6WTZIkSZJUoS67DD78EI47LneS+hFRnO9HH4W//z13Gqk6WTZJkiRJUgX67DO4+GL4xjege/fcaerLgQdC584wfHjuJFJ1smySJEmSpAp0553w8stwzDG5k9Sf9u3hsMPg5pvh9ddzp5Gqj2WTJEmSJFWgkSNh1VVhzz1zJ6lPgwfDnDkwdmzuJFL1sWySJEmqQxGxc0Q8FxHTImLYQsb1jIjPIuJ7LZlPqnevvAK33QZHHAHt2uVOU5823BD69oXRo4sljZKazrJJkiSpzkREa2AEsAvQDegfEd0WMO4c4M6WTSjpt78tbo88Mm+OejdkCEyfDhMm5E4iVRfLJkmSpPrTC5iWUnoxpfQJcB2wRyPjjgVuAt5syXBSvfv0UxgzBnbbDdZZJ3ea+vbd78Jqq8Gll+ZOIlWXNrkDSJIkqcWtAUxvcH8GsFXDARGxBrAXsBPQc0EHiohBwCCALl26MHHixHJnrWuzZs3ynJZRtZzPiRO78MYbm7DNNk8wceLbueMsUjWc06XRt++6XH31Olx77YOsttrHzfpe1fJrtJp4TvOwbJIkSao/0chjab77FwCnpJQ+i2hseOlFKY0GRgN07do19enTp0wRBcWHeM9p+VTL+fz5z4sZTT/84Wa0bp07zYLde++9AFVxTpfG+uvDuHHw5JNb079/875XtfwarSae0zxcRidJklR/ZgBrNbi/JvDafGO2BK6LiJeB7wGXRMSeLZJOqmPPPQf33AODBlHRRVM9WWst2H334qp0n3ySO41UHSybJEmS6s8UYMOIWC8i2gH7A7c0HJBSWi+ltG5KaV3gRuDolNIfWjypVGdGjYI2beDww3MnUUNHHQVvvgk335w7iVQdLJskSZLqTEppDjCU4ipzU4HrU0pPR8SQiBiSN51Uvz76CC6/HPbeG1ZdNXcaNdSvH6y3HowcmTuJVB3cs0mSJKkOpZQmABPme6zR6y2llAa2RCap3l1/PcycWcyiUWVp1QoGD4Zhw2DqVNh449yJpMrmzCZJkiRJqgAjR8JGG8EOO+ROosYceii0bQuXNlrLS2rIskmSJEmSMnv0UXjwQRgyBBZyAUhltMoq8L3vwRVXwIcf5k4jVTbLJkmSJEnK7NJLYbnl4OCDcyfRwgwZAu++C9ddlzuJVNksmyRJkiQpo/feg3HjYP/9oXPn3Gm0MNtvD926uZROWhTLJkmSJEnKaNw4+OCDYtaMKltE8d9pyhR45JHcaaTKZdkkSZIkSZmkVGwM3qMH9OyZO42a4uCDYfnlnd0kLYxlkyRJkiRlMmkSPPmkG4NXkxVWgP794Zpriv2bJP03yyZJkiRJymTUKOjYsSgvVD2GDCmuSDduXO4kUmWybJIkSZKkDGbOhOuvhwEDoEOH3Gm0OL7+ddhii6IsTCl3GqnyWDZJkiRJUgZXXw0ffwyDBuVOosUVUfx3e+KJYrNwSV9k2SRJkiRJLSylYlZMz57FDBlVnwMOgPbtYfTo3EmkymPZJEmSJEktbNIkePppZzVVs06dir22rr3WjcKl+Vk2SZIkSVILGz262Bh8//1zJ9HSGDSo2Cj8mmtyJ5Eqi2WTJEmSJLWgmTPh9793Y/BasOWWbhQuNcaySZIkSZJakBuD1455G4U//rgbhUsNWTZJkiRJUgtJqVhCN29GjKqfG4VL/82ySZIkSZJayKRJ8NRTMHhw7iQql4Ybhb/3Xu40UmWwbJIkSZKkFjJ6dLFPkxuD1xY3Cpe+yLJJkiRJklqAG4PXri23hO7d3ShcmseySZIkSZJagBuD1655G4U/9hg8/HDuNFJ+lk2SJEmS1Mwabgzeo0fuNGoOAwbA8su7UbgElk2SJEmS1OwmTy42BndWU+1yo3Dpc21yB5AkSdIXRcQqQC9gM2AdoDOwHPAR8DbwCvAE8FBK6a1cOSU13ahRbgxeDwYNgrFji43ChwzJnUbKx7JJkiSpAkTE+sCBwB7A5ovxuseAPwBXp5ReapZwkpbKvI3BDzkEOnbMnUbNqWfPzzcKHzy42MtJqkcuo5MkScooIvpFxB3A88DPKIqmWIyv7sDpwLSIuD0ivtXCP4KkRXBj8PrhRuFSwZlNkiRJGUTEdsCvgN7zHird/gd4CHgQmArMLD32HrACsGLpa2NgK4rldiuWXtsP6BcRDwDDUkp/b/6fRNLCpFTMcvn6190YvF4MGAAnn1z8d+/ZM3caKQ/LJkmSpBYWEeOA/fm8YJoBXAuMSyk9sQTH2ww4AOgPrAVsC/wtIq5NKR1YntSSlsQDD8DTT8Nvf5s7iVpKp05wwAHFvk3nnQcrrJA7kdTyXEYnSZLU8vpTFE33AH1TSmunlE5ZkqIJIKX0REppWEppHaBv6bhReh9JGY0aVezT5Mbg9WXwYPjwQxg3LncSKQ/LJkmSpJZ3D7B9SqlvSumech44pXRPSqkvsH3pfSRl8vbbcP31cOCBxZXoVD+23LJYNnnppcVSSqneWDZJkiS1sFLJ1Kz7KaWU/p5ScrNwKaMrroDZs4tZLqo/gwfDk0/C5Mm5k0gtz7JJkiRJksps3sbgW28Nm2+eO41y6N+/mNE2alTuJFLLs2ySJEmSpDL729/gueec1VTPOnYsllD+/vcwc2buNFLLsmySJEmqEBGx4lK+ftdyZZG0dEaNKq5Ctu++uZMop8GD4eOP4aqrcieRWpZlkyRJUuV4MiJ2WtwXRUS7iLgI+FMzZJK0mN56C268EQ45BJZfPnca5dS9O/Tq5Ubhqj+WTZIkSZVjNeCuiDgnIto05QURsSnwMHD04rxRROwcEc9FxLSIGNbI83tExBMR8VhEPBwR2y3O8aV6dvnl8OmnLqFTYfBgmDoV7r8/dxKp5Vg2SZIkVY7PgABOBiZFxAYLGxwRxwIPAZuUXvdcU94kIloDI4BdgG5A/4joNt+wvwCbp5S6A4cBY5r+Y0j1a+5cGD0attsOus3/u0p1ab/9iiWVbhSuemLZJEmSVDm2B16mKI56AI9GxKHzD4qILhFxK3ABsGxp/Bhgyya+Ty9gWkrpxZTSJ8B1wB4NB6SUZqX0f4s+2gMuAJGa4K9/hWnTYMiQ3ElUKdq3h4MOKpZW/vvfudNILaNJ07MlSZLU/FJKkyNic2AkMICi5BkTETsDg1JK75a+/x2wCkXJNBM4MqU0fjHeag1geoP7M4Ct5h8UEXsBvyy9126NHSgiBgGDALp06cLEiRMXI4YWZdasWZ7TMmqJ8/nzn3ejU6fOdOkyiYkT5zbre1UKf40uWo8e7Zk9uyc/+9k09t13xgLH+Xu+/DyneURylzJJkqSKExH9gUuAFShmFU2nWNo2kKJkApgIHJRSenUxj/194NsppSNK9w8CeqWUjl3A+G8AP0sp9V3Ycbt27Zqee65JK/nURBMnTqRPnz65Y9SM5j6f//oXrLUWHHccnHdes71NxTjjjDMAOO200zInqQ7bblvMbHr2WYhofIy/58vPc1p+EfFISmmhs6ldRidJklSBUkrXAlsAD1CUS2vzedH0CXAq8M3FLZpKZgBrNbi/JvDaQrL8DVg/IlZegveS6sbvfgdz5sCgQbmTqBINGQLPPw9OslE9sGySJEmqUCmll4Fr591tcHsHcF5a8inqU4ANI2K9iGgH7A/c0nBARGwQUfzbe0T0ANoB/1nC95Nq3ryNwXfcEbp2zZ1Gleh734POnd0oXPXBskmSJKkCRUTniBgPDKcomILPr1b3HeChiNhoSY6dUpoDDAXuBKYC16eUno6IIRExb1vjfYCnIuIxiivX7bcU5ZZU8+66C15+ubjMvdSY5ZaDQw6B8ePhzTdzp5Gal2WTJElShYmIHYEnKK4QF8A7wL4Um3g/X3psM+CRBuXQYkkpTUgpfTWltH5K6ezSY5emlC4tfX9OSmmTlFL3lFLvlNL9S/2DSTVs1Cjo0gX22it3ElWyQYPg00+LJZdSLbNskiRJqhAR0SYifgXcDaxOUSr9Ddg8pXRjSulRin2cxpaeWw4YERF/jIiVcuWW6t306XDLLXDYYdCuXe40qmQbbww77ACXXgqffZY7jdR8LJskSZIqxyTgBxT/j/YZ8DNgx5TS/10nO6X0UUrpSOB7wNsUpdPuwJMR8a2Wjyxp1ChIqdgAWlqUY44pllzefnvuJFLzsWySJEmqHF+nKI9eArZPKZ21oH2SUkrjge7AvaXXfBmY0EI5JZXMng2//S3svjusu27uNKoGe+4Jq68OI0bkTiI1H8smSZKkynI10D2l9OCiBpZmPO0E/Bj4FP/fTmpxN91UbPZ8zDG5k6hatG1b7N10xx0wbVruNFLz8H9IJEmSKsfBKaWDU0rvN/UFqfBLYDvgheaLJqkxI0bABhvAt1zEqsUwaBC0aQMjR+ZOIjUPyyZJkqQKkVK6eileO4Vi83BJLeTRR+GBB+Doo6GVn6y0GFZbDfbeGy67DD78MHcaqfz8I1GSJKlGpJQ+yJ1BqicjRsByy8HAgbmTqBodcwy88w5cc03uJFL5WTZJkiRJ0mKaObMoCQYMgM6dc6dRNdp+e9h006K0bPxSEFL1smySJElqYRHRIsvdIqJHS7yPVI9+9zv46CM3BteSi4ChQ+Gxx2DSpNxppPKybJIkSWp5D0fEzRGxeXMcPCK2iIg/Ag81x/Glejd3LlxyCWy7LXTvnjuNqtmAAdCpUzG7Saollk2SJEl5fBf4R0TcGhH7RcSyS3OwiFg2IvaPiNuBh4HvAC7MkJrBXXfBCy84q0lLr0OHYs+vG26AN97InUYqH8smSZKklteTYtZRALsA1wBvRMTlEXFIRGzclINERLeIGBgRlwNvAOOAfqXjTgJ6NUd4qd6NGAGrrgr77JM7iWrB0UfDp5/CmDG5k0jl0yZ3AEmSpHqTUvoH0Dsi9gZOBzYFOgIHlb6IiPeB/we8Xfp6H+gErFj62qD0mnmidPsEcHpK6Q/N/XNI9eill+C22+DHP4Z27XKnUS3o2hX69oVLL4Wtt45Fv0CqApZNkiRJmaSUxgPjI6IfcBSwK9C29HQnYGEbfDf8RPIJMAG4JKX05+bIKqkwciS0agWDB+dOolpyzDGw117w97+vxDe/mTuNtPRcRidJkpRZSumulNJewGrAwcBVwPOlp6ORrwQ8B1xJMRNqtZTS3hZNUvP66CMYOxb22APWXDN3GtWS3XeHtdaCP/xhjdxRpLJwZpMkSVKFSCm9DVxd+iIi2gFrUSybWwaYTbGk7p8ppU9z5ZTq1e9/D2+/7cbgKr82bWDIEPjxjzszdSps3KSd+6TK5cwmSZKkCpVS+iSl9EJKaUpK6f7S7QsWTVIeI0YUJcCOO+ZOolp0xBHQtu1cLrkkdxJp6Vk2SZIkSdIiTJ4MDz9cXDks3MNZzWCVVaBPnze54gp4773caaSlY9kkSZJUwSJilYjYLSKOjIgTS7e7RcQqubNJ9eQ3v4EVVoBDDsmdRLVsn31e5f33i73BpGrmnk2SJEkVKCL2Ak4Gtl7ImEnA/6aU/tBSuaR69PLLcOONcNJJ0LFj7jSqZV27vs/228OFF8KxxxZ7OUnVyJlNkiRJFSQi2kXE9cCNFEVTY1ejm/fVG7gpIq4vbSYuqRlcdFGxdO7YY3MnUT34n/+BV16Bm2/OnURacvakkiRJleUmYFeKMgngGeAeYBrwAdAe2ADYEdikNGYfYFnguy2aVKoD770Hv/0t7LtvcWl6qbl95zuw/vpw/vnw/e/nTiMtGcsmSZKkChER+wO7AQl4DTg8pXTnQsb3A8YCawC7RcR+KaXft0hYqU6MHQvvv1/MNpFaQuvWcMIJxUy6SZOgd+/ciaTF5zI6SZKkynF46fYDYIeFFU0AKaW7gD7ArNJDRzRfNKn+zJlT7J2z/faw5Za506ieDBwIX/pSMbtJqkaWTZIkSZVjc4pZTWNTSi805QWlcWMplt11b75oUv25+eZi7xxnNamldegAgwfD+PHw0ku500iLz7JJkiSpcnQo3U5ZzNfNG798GbNIde/884u9c77zndxJVI+GDoVWrWD48NxJpMVn2SRJklQ5Xivdtl7M180b/9pCR0lqskmTYPLkYu+c1ov7O1IqgzXXhP32gzFj4N13c6eRFo9lkyRJUuW4p3S7/WK+bnuK5Xf3LGqgpKY5//xiz5yBA3MnUT078USYNasonKRqYtkkSZJUOYYDnwAHR0TPprwgIrYEDgFml14vaSm99FKxV87gwcXeOVIuX/867LBDsVH9nDm500hNZ9kkSZJUIVJKTwFHUmz2fXdEHBERbRobGxFtIuJw4G6KWU1HpJSebrm0Uu0aPrzYK2fo0NxJpGKD+unT4aabcieRmq7R/3mRJElSy4uIn5W+vRvYFRgF/Coi7gOmAR9SbAK+AbAdsGJp/ARggwav/y8ppTObK7dUS959t1iytN9+xZ45Um677w4bbADnnQf77gsRuRNJi2bZJEmSVDlOp5ilRIPbFYHvNjI2GozZtfS1MJZNUhOMGVPskXPiibmTSIVWrYpfj8ccAw88ANtumzuRtGguo5MkSaosMd9XY48t7PEFjZW0CHPmFHvj7LBDsVeOVCkOOQQ6dy42rpeqgTObJEmSKseOuQNI9eymm4q9cS6+OHcS6Yvat4ejjoJf/hJeeAHWXz93ImnhLJskSZIqRErp3twZpHqVUvFBfsMNiz1ypEpzzDHwv/8L554Ll16aO420cC6jkyRJqkMRsXNEPBcR0yJiWCPPD4iIJ0pfD0TE5jlySi3lttvg8cfh1FOLPXKkSrP66nDYYfC738GMGbnTSAvnH6OSJEl1JiJaAyOAXYBuQP+I6DbfsJeAHVJKmwE/B0a3bEqp5aQEZ50F664LAwbkTiMt2CmnwNy5xQwnqZJZNkmSJNWfXsC0lNKLKaVPgOuAPRoOSCk9kFKaWbo7GfAi8KpZf/kLPPggDBsGbdvmTiMt2LrrwkEHwejR8MYbudNIC+aeTZIkSfVnDWB6g/szgK0WMv5w4PbGnoiIQcAggC5dujBx4sQyRRTArFmzPKdltKDzefLJ3Vl55eVYb73JTJyYWj5YlfPXaPk05ff8jjsuxxVX9OKEE6YzePCLLROsivnnaB6WTZIkSfUnGnms0U/YEbEjRdm0XWPPp5RGU1pi17Vr19SnT58yRRQUH+I9p+XT2Pm8775ir6YLLoB+/XbIkqta3XtvcU0Df42WT1N/z99+O/zpT2tz8cVrs9JKzZ+rmvnnaB4uo5MkSao/M4C1GtxfE3ht/kERsRkwBtgjpfSfFsomtaizz4YuXeDII3MnkZru1FNh1iwYPjx3Eqlxlk2SJEn1ZwqwYUSsFxHtgP2BWxoOiIi1gfHAQSml5zNklJrdlClw551w0kmw/PK500hNt+mmsNdeRdn07ru500j/zbJJkiSpzqSU5gBDgTuBqcD1KaWnI2JIRAwpDfsZsBJwSUQ8FhEPZ4orNZuzzoLOneGoo3InkRbfj38M77wDl1ySO4n039yzSZIkqQ6llCYAE+Z77NIG3x8BHNHSuaSW8vjjcMstcPrp0KlT7jTS4vv612GXXeD88+G446B9+9yJpM85s0mSJElS3fnFL6Bjx+JDulStfvpT+Pe/YfTo3EmkL7JskiRJklRXnn0WbrgBhg4tltFJ1ap3b9hpJzj3XPj449xppM9ZNkmSJEmqK7/8JSy7LJx4Yu4k0tL7yU/g9dfhsstyJ5E+Z9kkSZIkqW68+CKMGwdDhkCXLrnTSEuvTx/YZhs45xz45JPcaaSCZZMkSZKkunHOOdC6NZx8cu4kUnlEFLOb/vlPuOqq3GmkgmWTJEmSpLrw6qvLcdllcMQRsPrqudNI5bPzzrDllnDmme7dpMpg2SRJkiSpLowdux7t2hWzQKRaElHsRfbPf8LIkbnTSJZNkiRJkurAww/DX/+6CiedBKutljuNVH59+0K/fnDWWfDuu7nTqN5ZNkmSJEmqaSnBKafACit84l5Nqmm/+hW8/Tb8+te5k6jeWTZJkiRJqml33QX33AMHHfQKnTrlTiM1ny22gAMOgN/8Bl57LXca1TPLJkmSJEk1a+7cYlbTeuvBd77jp2/Vvp//HObMgdNPz51E9cyySZIkSVLNuvZaePzxYh+bdu1S7jhSs/vKV+Coo2DsWHj22dxpVK8smyRJkiTVpNmziyvPbbEF7L9/7jRSy/nJT6B9ezj11NxJVK8smyRJkiTVpJEj4eWX4ZxzoJWffFRHunSBH/wAbr4ZJk3KnUb1yD9yJUmSJNWcd98tls717Qvf+lbuNFLLO/FEWHXVYs+y5ApStTDLJkmSJEk159xz4T//KS4FL9WjDh3gtNPgvvvgtttyp1G9sWySJEmSVFNefx3OP7/Yp+nrX8+dRsrniCNgww1h2DD47LPcaVRPLJskSZIk1ZQzzigu/X722bmTSHm1bQu/+AU8/TRcdVXuNKonlk2SJEmSasYzz8CYMTBkSHEJeKne7bMP9OoFP/0pzJqVO43qhWWTJEmSpJqQEhx1FHTqVHywlgQRxbLSGTPgzDNzp1G9sGySJEmSVBOuvBL+9jc455zi0u+SCttuC4cdBr/5DTz1VO40qgeWTZIkSZKq3ttvw8knQ+/ecPjhudNIleecc4pZf0cdBXPn5k6jWmfZJEmSJKnq/ehHMHMmjBwJrfyUI/2XlVeGX/8a7r8frrgidxrVOv8YliRJklTVJk+G0aPhuONg881zp5Eq16GHwjbbwA9+AP/5T+40qmWWTZIkSZKq1pw5xZXn1lgDzjgjdxqpsrVqVcz+e+cdGDYsdxrVMssmSZIkSVXr4ovh8cfhggugY8fcaaTKt9lmcMIJMGYMPPBA7jSqVZZNkiRJkqrSq6/CT38Ku+wC++yTO41UPU4/HdZcs5gV+OmnudOoFlk2SZIkSapKJ5xQLKO7+GKIyJ1Gqh4dOsDw4fDkk8WtVG6WTZIkSZKqzh13wI03wo9/DF/5Su40UvXZc0/YbTc47TSYPj13GtUayyZJkiRJVeWjj+CYY6Br1+KqWpIWXwRcdBHMnVvMEpTKybJJkiRJUlU54wx48UW45BJYZpncaaTqtd568JOfwPjxcPPNudOollg2SZIkSaoaEyfCr38Nhx8OO+2UO41U/U4+GXr0gCOPhNdey51GtcKySZIkSVJVmDkTDjoINtgALrggdxqpNrRrB+PGwYcfwsCBxbI6aWlZNkmSJEmqeCnB4MHwr38VH4w7dMidSKodG20Ev/kN3H03XHhh7jSqBZZNkiRJkirelVfCDTfAmWdCz56500i1Z9Ag+O53YdgwePzx3GlU7SybJEmS6lBE7BwRz0XEtIgY1sjzG0XEpIiYHREn58gozfPCCzB0KHzjG/DDH+ZOI9WmCBgzBlZcEQ44oLjqo7SkLJskSZLqTES0BkYAuwDdgP4R0W2+YW8DxwH/28LxpC/49FMYMABat4arripuJTWPLl3giivgmWcsdrV0LJskSZLqTy9gWkrpxZTSJ8B1wB4NB6SU3kwpTQE+zRFQmuess+DBB2HUKFh77dxppNrXrx+ceCJcfDFMmJA7japVm9wBJEmS1OLWAKY3uD8D2GpJDhQRg4BBAF26dGHixIlLHU6fmzVrVl2f0yef7MRZZ21Bv35vsOqqz7K0p6Lez2dz8ZyWT6X8Gt1551b88Y89OPDAdowZM4UVV6zef3eolHNabyybJEmS6k808lhakgOllEYDowG6du2a+vTpsxSxNL+JEydSr+f03Xfh0ENhnXXghhu+TKdOX17qY9bz+WwO9957L4DntIwq6dfoLbfAllvC2LHbcuutxZ5O1aiSzmk9cRmdJElS/ZkBrNXg/prAa5mySP8lJTjqKJg+HcaNg06dcieS6s8mm8C55xZL6S68MHcaVRvLJkmSpPozBdgwItaLiHbA/sAtmTNJ/+dXv4Jrr4Uzz4TevXOnkerXMcfAHnvAySfDXXflTqNqYtkkSZJUZ1JKc4ChwJ3AVOD6lNLTETEkIoYARMSXI2IG8D/ATyJiRkQ4v0TNbvx4OPXU4tLrP/pR7jRSfYuAq68uZjl9//vFVeqkpnDPJkmSpDqUUpoATJjvsUsbfP8viuV1Uot55BE48EDYemsYO7Z694iRakmHDvCnP0GvXvCd7xRXh1x55dypVOmc2SRJkiQpu1dfhe9+F7p0gT/8AZZdNnciSfOsvTb88Y/F79O994bZs3MnUqWzbJIkSZKU1QcfFEXTe+/BrbfCqqvmTiRpflttBZdfDvfdB0OGFBv5SwviMjpJkiRJ2cydCwcfDI8+Wlxq/Wtfy51I0oLsvz88+yyccQZsvDH88Ie5E6lSWTZJkiRJyuYnPyk2BT/vPNh999xpJC3KaacVhdOwYfDVr8Kee+ZOpErkMjpJkiRJWVx5Jfzyl3DkkXDiibnTSGqKCPjd76BnTxgwoJiVKM3PskmSJElSi5swoSiZdtwRRozwynNSNVluuWLD8JVWgt12g+efz51IlcaySZIkSVKL+tOfYK+9YNNN4aaboG3b3IkkLa4vfxluvx3mzIE+fYqlddI8lk2SJEmSWswf/wj77AObbw5//jN07pw7kaQltckmMHFisdF/nz7wzDO5E6lSWDZJkiRJahHjx8P3vgc9esDdd1s0SbWgW7eicIooCqennsqdSJXAskmSJElSs7vhBth3X+jVC+66C1ZYIXciSeWy0UZF4dS2bbEP2xNP5E6k3CybJEmSJDWr666D/v2hd2+44w7o1Cl3Iknl1rVrUTgts0xROHmVuvpm2SRJkiSp2YwbV1wefdtti82EO3bMnUhSc9lwQ7j3XmjfHr75TXjkkdyJlItlkyRJkqSySwlGjoSDD4YddoAJE6BDh9ypJDW39dcvCqdOnaBvX/jrX3MnUg6WTZIkSZLKavZsGDQIjj4adt4Zbr21mOkgqT6st15ROH35y/Ctb8GFFxYFtOqHZZMkSZKksnntteKKVGPGwKmnwi23wPLL504lqaWtsw48+CDsthuccAIMHAgffZQ7lVqKZZMkSZKkspg0CbbcEp58srj63NlnQ+vWuVNJyqVTJ7j5ZjjtNLjySvjGN2D69Nyp1BIsmyRJkiQttTFjir2ZlluuKJ2+973ciSRVglat4PTTi9Lp2WeLQvq++3KnUnOzbJIkSZK0xD75pNib6cgji+VzU6bA176WO5WkSrPnnsWyuhVWgJ12Ki4g4D5OtcuySZIkSdISefpp2H774kPjD35QXHFuxRVzp5JUqbp1g4cegn79ipL6gAPgrbdyp1JzsGySJEmStFhmzy6WxWyxBbzwAlx/Pfz619CmTe5kkirdl75UXDjgzDPhpptg443h6qud5VRrLJskSZIkNdmkSdCjB5xxBuy7L0ydCt//fu5UkqpJ69bw05/Co4/ChhvCQQfBrrvCK6/kTqZysWySJEmStEjvvw/HHgvbblt8f9ttxWyELl1yJ5NUrTbZBO6/H4YPLzYN32QTuPBC+Oyz3Mm0tCybJEmSJC3UhAnFh8ARI2Do0GKvpl13zZ1KUi1o3boosuftAXfCCUWp/eSTuZNpaVg2SZIkSWrUvfcWV5jbbTfo0OHzGQgdO+ZOJqnWrLNOUWxffTVMmwbdu8OBB8Lzz+dOpiVh2SRJkiTpC+6/H775zaJoeu45uOCCYm+VbbbJnUxSLYuAAQPg2WfhpJNg/PhiA/FDDikKKFUPyyZJkiRJQLH5d79+xVKWp56C88+HF1+E44+HZZbJnU5SvVh55eIKly+9VCyru/562GgjOOyw4s8kVT7LJkmSJKmOzZ0Ld98Nu+xSzFx67DE499ziA92JJ8Jyy+VOKKlerboqnHde8efR0KFwzTXQtSsccQQ8/njudFoYyyZJkiSpDs2YAT//Oay/fjGb6eGH4Ve/Kj7UnXwytG+fO6EkFVZbrVjO+8ILMGRIsa9T9+7QsyeMGgXvvZc7oeZn2SRJkiTViU8/hZtvLjb8Xmcd+NnPirLp2mth+nQ45ZRiI3BJqkRrrAEXXQSvvgoXXggff1yUT6utBoceCn//O6SUO6XAskmSJEmqaZ98An/5S7HvyVprwd57F0vlfvSjYpbAn/8M++8Pyy6bO6kkNc1KK8Fxx8ETT8CDDxabit94I2y3HXTrBmeeCf/4h8VTTm1yB5AkSZJUXm++WVxC/Lbb4M474f33iw2+d9652Otk552hjZ8EJFW5COjVq/g6/3y44Qa47DI4/XQ47bRixlOPHl/l3Xehb1+XB7ck/4qRJEmSqtx778GUKcUSkgkT4KGHin/RX3116N8fdt8ddtrJD1qSaleHDsVSukMPhbfegttvh1tvhQkTVuG224rCfccd4dvfht69YYstoF273Klrl2WTJEmSVEXmzoXnn4dJk2Dy5OL2qac+Xy7SqxeccUZRMHXvXvzLvyTVky5d4OCDi68///nvtG69A7feCn/6U3GVTSjKpx49iuKpd2/YemtYc828uWuJZZMkSZJUgVKCt95ahrvvhmeegalTi9snn4R33inGfOlLsNVWsM8+xQelrbYqHpMkFdq0SfTpU8xqOu+8YnPxyZM/L+tHjCiW4EExG3TTTYt9nzbe+PPblVbK+iNUJcsmSZIkqYKceWaxFO6ZZ+D993v/3+OdOxcffPbdtyiVeveGrl2hlZf8kaQmW2ONoqDfZ5/i/iefwOOPF8XTlClFsT96NHz44eevWWWV4s/fwYOLCypo0SybJEmS6lBE7AxcCLQGxqSUfjXf81F6flfgQ2BgSukfLR60Dv3738XeSoccAq1bP8+ee36VjTcuPuy4JE6SyqtdO+jZs/iaZ+5c+Oc/P59ROu/2gw/y5aw2lk2SJEl1JiJaAyOAbwEzgCkRcUtK6ZkGw3YBNix9bQWMLN2qmQ0f/vn3Eye+Rp8+X80XRpLqUKtWsO66xdcuu+ROU50izdtJUJIkSXUhInoDp6eUvl26/yOAlNIvG4wZBUxMKV1buv8c0Cel9PqCjrv66qunwYMHN2t2SZKU1+mnn/5ISmnLhY1xZpMkSVL9WQOY3uD+DP571lJjY9YAvlA2RcQgYFDp7uzTTz/9qfJGrXsrA//OHaKGeD7Lz3NaXp7P8vOcll/XRQ2wbJIkSao/je38M/9096aMIaU0GhgNEBEPL+pfOrV4PKfl5fksP89peXk+y89zWn4R8fCixnjtCkmSpPozA1irwf01gdeWYIwkSdJ/sWySJEmqP1OADSNivYhoB+wP3DLfmFuAg6OwNfDuwvZrkiRJmsdldJIkSXUmpTQnIoYCdwKtgctSSk9HxJDS85cCE4BdgWnAh8ChTTj06GaKXM88p+Xl+Sw/z2l5eT7Lz3Nafos8p16NTpIkSZIkSWXjMjpJkiRJkiSVjWWTJEmSJEmSysaySZIkSWUTET+PiCci4rGIuCsiVs+dqdpFxLkR8WzpvN4cEV/KnamaRcT3I+LpiJgbEV4OfQlFxM4R8VxETIuIYbnzVLuIuCwi3oyIp3JnqRURsVZE/DUippZ+zx+fO1M1i4hlI+KhiHi8dD7PWOh492ySJElSuUREp5TSe6XvjwO6pZSGZI5V1SKiH3BPaWP3cwBSSqdkjlW1ImJjYC4wCjg5pfRw5khVJyJaA88D3wJmUFzhsn9K6ZmswapYRHwDmAVcmVLaNHeeWhARqwGrpZT+EREdgUeAPf11umQiIoD2KaVZEdEWuB84PqU0ubHxzmySJElS2cwrmkraA/7L5lJKKd2VUppTujsZWDNnnmqXUpqaUnoud44q1wuYllJ6MaX0CXAdsEfmTFUtpfQ34O3cOWpJSun1lNI/St+/D0wF1sibqnqlwqzS3balrwX+HW/ZJEmSpLKKiLMjYjowAPhZ7jw15jDg9twhVPfWAKY3uD8DP8SrgkXEusAWwIOZo1S1iGgdEY8BbwJ3p5QWeD4tmyRJkrRYIuLPEfFUI197AKSUfpxSWgsYBwzNm7Y6LOqclsb8GJhDcV61EE05n1oq0chjzmJURYqIDsBNwAnzzb7VYkopfZZS6k4xw7ZXRCxwyWebFkslSZKkmpBS6tvEodcAtwGnNWOcmrCocxoRhwC7A99Mbrq6SIvxa1RLZgawVoP7awKvZcoiLVBpb6GbgHEppfG589SKlNI7ETER2BlodFN7ZzZJkiSpbCJiwwZ3vws8mytLrYiInYFTgO+mlD7MnUei2BB8w4hYLyLaAfsDt2TOJH1BaUPrscDUlNL5ufNUu4joMu9qqBGxHNCXhfwd79XoJEmSVDYRcRPQleJqX68AQ1JKr+ZNVd0iYhqwDPCf0kOTvcLfkouIvYCLgC7AO8BjKaVvZw1VhSJiV+ACoDVwWUrp7LyJqltEXAv0AVYG3gBOSymNzRqqykXEdsB9wJMUfycBnJpSmpAvVfWKiM2AKyh+z7cCrk8pnbnA8ZZNkiRJkiRJKheX0UmSJEmSJKlsLJskSZIkSZJUNpZNkiRJkiRJKhvLJkmSJEmSJJWNZZMkSZIkSZLKxrJJkiRJklpYRKwbEan0dXnuPJJUTm1yB5AkSZIk1aeI2BPoXrp7QUrpnWxhJJWNZZMkSZIkKZc9gUNK318OvJMriKTysWySJEmSpBaWUnoZiNw5JKk5uGeTJEmSJEmSysaySZIkSZIkSWVj2SRJkiRJLawpV6OLiInzxjR4bL+IuDsi/hURsyPilYj4XURstIj3+8KxIqJNRBwVEfdHxFsR8VFEPB8RF0bEWos41sulY73chJ+z0bERcXkpyyENHn6pwTlZoiv1RcRBDV77SES0W8jYrSPi09LY1yNi5cV5L0kLZtkkSZIkSRUuIpaNiJuB64C+wKpAO2BtYCDwWETs0sRjdQYmApcA2wIrA8sCGwLHAU9HxK5l/hFaRErpKmBc6W4P4KzGxkVEx9K4NkACDk4p/btFQkp1wA3CJUmSJKnyXUZx5bZHKAqnf1KURAOAbYBlgKsjomsTSpPLKEqmZ4ArgFeALwP9ga2AjsD4iNgupfRw+X8UAIYDf6Aot3YsPTYYeHO+cf9cgmMfTXFO1gNOjog7U0p/mW/MJcBXSt+fn1K6ewneR9ICWDZJkiRJUuXrD5wN/DSl1HBZ3aXATRRF1IrAYcCvF3GsPYFrgIEppU8bHGs4cA7wA4ry6rKI2Lzh+5VLSukfwD8iYs8GD99Vukrf0h77vYg4ALiP4jPvlRGxWUrpPwAR0R84sDT8UeDUpX1PSV/kMjpJkiRJqnz3pJR+Mn/xk1KaS1EOzfPtJhzrZeDwhkVT6VgJOAWYVHroa0C/JU6cUUppMnBm6e7qwFgo9soCRpYe/xDon1L6pMUDSjXOskmSJEmSKt+FC3oipTQNmF66260JxxqRUvp4AcdKwG8aPLRXkxNWnrOBv5W+3yMihlLs07RC6bHjU0rPZUkm1TjLJkmSJEmqfJMX8fyrpdvOTTjW/PsXLez5nk04XkUqzfo6EJhZeugiir2cAG5KKY3JEkyqA5ZNkiRJklT5FrXp9+zS7TJNONa0hT2ZUnobeKd0d/UmHK9ipZSmU2w83tB04MgMcaS6YdkkSZIkSRWuNEunXD5swpgPSrcdyvi+uUwD5jS4/5eU0swFDZa09CybJEmSJKm+LN+EMe1Lt7OW8r2yfuaMiOWBa/nildgHRsSumSJJdcGySZIkSZLqywYLezIiVgS+VLr7WiND5i3Za7eI4wSw4uKGK7MLga6l7/8EzLsC3+8iYtU8kaTaZ9kkSZIkSfVlp8V4fkojz79Tul05Itou5Dib8vkMqQVpuDwwFjF2sUTE3sARpbtPAt8HTivdX4WicCrre0oqWDZJkiRJUn05OiIWtpH4iQ2+H9/I88+UbtsC2y/kOMc1IUvDZXqLKqaaLCLWBH5buvsx0D+lNBs4B5hYenyXJmaUtJgsmyRJkiSpvnwF+G1ENNzHiCj8Atim9NATwN2NvP6OBt//vLHiKiKO4PNZRQvzUoPvezRh/CJFRCvgKj5fwndySulp+L+N1g8C5m0Qfk5EbFaO95X0uTaLHiJJkiRJqiF/oChctoiIK4B/AqsC/YHepTGzgcNTSmkBr59GsffTNsCUiBhLsb/Tl4E9KZbi3QesD6y+kCx/afD9ryOiC/Acn1897tWU0pOL9+NxCtCn9P1tKaURDZ9MKc2IiCOBG4FlgGsiYsuU0seL+T6SFsCySZIkSZLqy6FAF2Bb4NxGnn+fYtnZw429OKU0OyL2p5j11Bn4GnDBfMMeBPah8T2fGh7riYi4lqLoWhX43/mGXAEMXNgxGoqInsAZpbtvUPysjb3vTRExhmL21Sal9x3a1PeRtHAuo5MkSZKkOpJSegfYETgGeAD4D8VMpheAi4BNUkq3LeIYj1CUTBdRzHL6mGJp2qTScbdPKb3VxEgHAUdR7KX0bz6f1bRYIqIDcA3FXlIJGLiIDCdQzKICOCYidl+S95X036LxWZGSJEmSpFoREROBHQBSSl6BTVKzcmaTJEmSJEmSysaySZIkSZIkSWVj2SRJkiRJkqSysWySJEmSJElS2Vg2SZIkSZIkqWy8Gp0kSZIkSZLKxplNkiRJkiRJKhvLJkmSJEmSJJWNZZMkSZIkSZLKxrJJkiRJkiRJZWPZJEmSJEmSpLL5/9codAdnLVY+AAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "x_range, x_num = (-3., 3.), 100\n",
+ "x_mean, x_sigma = 0.1, 0.5\n",
+ "\n",
+ "ekf_visu = EKF_Visualization(\n",
+ " model=f,\n",
+ " model_taylor=f_taylor_order_1,\n",
+ " x_mean=x_mean, x_sigma=x_sigma,\n",
+ " x_model_range=x_range,\n",
+ " samples_num=100,\n",
+ " monto_carlo_sizes=[10, 10, 10])\n",
+ "\n",
+ "ekf_visu.update_plot()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "id": "f8df6d63",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABJsAAAJ8CAYAAABZZqAdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeVhU1RvA8e8BVNxy1yBNXBFZ3S0F0dw1c8ncUpGstMW0RGlT1DRLyyxNs0y0NMm91Fxzo/qpmLjjllgqmakg7ojn98cdJpAdBobl/TzPPDNz5y7vvTMwd957znuU1hohhBBCCCGEEEIIISzBxtoBCCGEEEIIIYQQQoiCQ5JNQgghhBBCCCGEEMJiJNkkhBBCCCGEEEIIISxGkk1CCCGEEEIIIYQQwmIk2SSEEEIIIYQQQgghLEaSTUIIIYQQQgghhBDCYiTZJIQQQgghhBB5lFLKVymlTbcga8cjMk4pFWl63yJzYVsJn5HtFlpfP6XURqXUP0qpuETr726J9YuCT5JNQgghhBBCiByR6AdqRm+fWDvmnKaUKquUCjLduls7HmtTSm1/4DNwKBPL9kjhM+Sbc9EWDkqpOcASoD1QCbCzbkQiP5IPjRBCCCGEEELknrLAeNPjhcBqq0WSN7kppRpprfdlYF6/nA6msFFKNQSGmZ7+C3wKnADumKbttkZcIv+RZJMQQgghhBAiN/TIwDynczyKfEZrvR1Q1o4jl9zD+I3qB6SZbFJKVQI6PbCcyL7OiR6/qrVearVIRL4mf5BCCCGEEEKIHKe1Xm3tGESetwHoCvRTSr2htb6bxrzPAkWA+8BGoEsuxFcYVEv0eL/VohD5ntRsEkIIIYQQQgiRFwSb7isAT6Yz72DT/VbgXE4FVAgVS/T4TqpzCZEOSTYJIYQQQggh8pzMjOSV3rxKqeBEBaSdTNM6KKVWK6XOKaXuKKUuKKWWKaWaZSLGukqpD5VSe5VSl0yjdsUopX5XSs1WSj2hlFKmeZ2UUho4k2gVg1MplO6UaBsZHo1OKVVCKTVKKbVNKfW3ab/+UUqFKqXeVEqVSWf5oAcLbSulmiulFiulziZa31qlVMeMHqdM+AU4aXo8OLWZlFINAE/T0+DMbEApVU0pNdX0Hl0x7dN5pdSPSik/pZRtBtdTUSn1vlLqqFLqhmlde5VSo5VSJTITk2l9rkqpj5VS4Q/E9YNSaoBSKsd+uyd8Nk2fz8TH/cwDn8vgnIpBFDySbBJCCCGEEEIUJjZKqc8xumw9BTwCFAUcgKeBX5VSz6W1AqWUnVJqBnAUCAAaAxUxypQ8BDQAXgK2AD45tB8PxtQcI1HzMeALVMHYr0pAC2AKcFop1T4T63wLIwHUH3g00fq6AD8ppSZYcBcSLDTdd1JKVU5lHj/TfQywKqMrVkq9CBwHxmK8R+Uw9skRo/veAmB/4mRfKut5DDgGBAIuQAnTuhoD04A9SqnqGYzJTik1EzgIjMJIoiWO60ngW+A3pdTDGd1XIaxNajYJIYQQQgghCpP3gH4YI2wtAk4BpYGeGAWnbYDPlVK/aK0jHlzY1FJpBdDNNCkeY0S5bcA/GIkHF6AD4MV/xb3/wSiSXhn4wjRtG8ZoXw/6JzM7pJTyAn4Gipsm7ccYuv5P4GHgGYyEUwVgrVKqvanweFpewDhO5zFaDx3BSIB0BPqY9mucUmqH1vrnzMSbjkXARIzfqs9iJM/MlFJFMJJfAN9rrW+ZGo+lyZRompto0o/AOiAaqAsMAWoA7kCoUqqB1vpSCuuphZGofMg06ZAp5r8wEpb9gKbA9xg1pdKKSZnmSyiefwn4DuP9uwFUxzjWjU3r3KqUaqK1vpnuDmdOwmcTYATQ2vT4RZJ+Fv+08HZFASbJJiGEEEIIIURh0g8jOfCc1vpeoulfmVqYjMBIqozAaJ30oAD+SzT9CXTVWh9KYb5ApVQjjOHjMSUIVj/QaubP7BZON3Wv+pb/Ek0zgde11vcTzfapUupdjCROEWCRUqqu1vp2GqvuB2wGemitbySavlAptYf/kkCjMRJdFqG1/ksp9TPQFqMF08cPzNIVoxUZZLALnemYzzA9jQf6a62/f2Ce6cAyjFZbjwCfA71TWN0X/JdoWgC8kPhzZPoMTQdez0BoI/gvybMaGKy1vvbAPNOVUpOBt4D6wDiMFlUWk/DZBFBKdU/00iatdaQltyUKD+lGJ4QQQgghhMhxqdQmskY9mAjg+QcSTQneAW6ZHnd48EWlVCmMLlgAd0k90QSA1nqf1vpsNuNNT1fA1fT4f8CoBxJNCbFMwmjJA8aIY8+ms97LQJ8HEk0JZvJfK5c2SilLN2IINt27K6UaPvCan+n+hNb61wyubwT/JeM+ejDRBKC1voXRYirKNKmXUqpu4nmUUp7AEwnbB4Y9+DnSWmuMBNyetAJSStljJJDA+Ez2SSHRlLDOt4FdpqfDTcsKkadJskkIIYQQQghRmMzRWt9N6QWtdSwQZnpaI4Uf9Z2A8qbHS9JKNOWinokeTzMlO1IzNZXlUrJIa301pRdMyawdpqfFgFrpRpk5K4GExItfwkRTDafOpqcLybiEfb0HfJTaTKZkz+cJmwO6p7IegM/S+BzptLZj0gGjSyXAp6mtK5FvTfcPAc3TmVcIq5NudEIIIYQQQojc0COd13OrHsz/0nn9vOleAWWBvxO91jLR4x8sGFN2NDXda4xub2n5FbgOlALSG3Uvo8cJjILWFmOqw/Q9MBTop5R6Q2sdh9Eayw64j9EVMl2mBFVCse4DWuv06mFtAiaZHj94jJokerw1nfWk97p3oselHui+lpJHEj12AbanM78QViXJJiGEEEIIIUSOy25tIgv6N53X7yR6/GDLpqqJHh+zTDjZ5mC6/9vUMitVWuv7SqnTGCOelVdKFU2jRU12jpMlBGMkmypidBVcBQw2vbZVa30ug+txSPT4RAbmTzyPwwOvOSZ6fDqtlWitLyulojESlilxSvT4wwzElZhFk3tC5ATpRieEEEIIIYQoTJLVM8qEhxI9vp7dQCyktOk+pdpKKUkcd+lU58recco2rfUvwEnTUz9T7SYP0/PgTKwq8T5m5BildXxKme7vZaDbW3rbK5OB5VNTNBvLCpErpGWTEEIIIYQQIr/LrYvoiQs4l0p1rtwVi9F6pmQG508cd5otofKAhcB7GHWabpqmXcNo5ZRRifcxI8coreOTkIiyS6dVWEa2lzip5ZQLheSFyFXSskkIIYQQQgiRFyV000qzFYdSSvFf0e6clrjrlksubTM9CaOnPayUSqulUsKxSijmfTmDrXOsaRFGCys7oK9pWohp5LiMikr0uE4G5k88z4UHXkv8PM2i6EqpCqTehQ6S1rxyTXUuIfIpSTYJIYQQQggh8qJo031FpVSRNOZzI+OterJrV6LH3bK4jsTd01Q2YkmwJ9G6nkhn3sf5r+XOnrRmzAu01n8BPz8wOTiT6/gHSGg15KWUqpTOIu0TPX7wGCV+3iad9aT3XuxI9Di94vlC5DuSbBJCCCGEEELkRUdN90VIOnLXg0bkQiwJfgKumB73V0q5Z2EdibtPWSJJtiLR49Gm1kupGZvKcnnZLGC36faj1vrXLKwjYV/tgJGpzWRqGfaS6akmeXe9xM9fSS0JanoPRqUT03r+K8I+SCklrZtEgSLJJiGEEEIIIURetCHR40lKqWIPzqCUGooxYlmu0FrfAKaanhYFfkwr4aSU8lJKVX9gHVeAGNNTr3SSQxmxDjhietwCmKaUSvY7Tyn1FvCk6elfwOJsbjdXaK3XaK2bm25ZbU32GZDQ9W6MUqrXgzMopeyBb/lvxLkVWuuTiefRWh8Atpie1gM+V0rZPrAeBXwANE8rINNnaYLpaVFgvVKqcVrLKKWaKKUyO3KdEFYhBcKFEEIIIYQQedFq4BRQG6P7116l1HyMujkPA90xujLtwqif45jiWixvOtASoxtddWC/UmoVsB34BygOOGN0x2oMtOa/blwJfsboOlULCFFKreS/boMAOzJal0hrfV8pNRD4xbTtN4DWSqnFGDWmqgDPmGIGiAMGaa1vZ3yX8zetdaRSahQwF+M38HKl1BqM1kXRGHWa/IGapkXOAy+nsrrhwD6MkQmHAk2VUoswEngPA/2BZhhd7qqSxudSaz1LKdUEGAQ8CuxRSm0AtmK8dwqoCLhjdMurBZwGxmT6IAiRyyTZJIQQQgghhMhztNZ3lFJ9gc1AOYwf3J88MNtuoBewNxfj0kqpp02xDANsgadNt5TcT2HaRKAjRnKot+mWWA0gMhMx7VdKPYHRXcwBaGi6PegK0F9rvT2j6y4otNZfmFodzQDsgadMtwcdBp401XpKaT2nlFKdgDUYiSAPjARkYkcw3tOdGQjNDzgJvAMUAzqZbqk5l8ZrQuQZ0o1OCCGEEEIIkSdprfdhJJk+w2jldBu4CvyG0fLEW2t9yQpxxWmtXwY8gZnAIYwWMvGm+32mmH201skSDlrrcKAR8BVwHLhpgZh+w2ih8zpG8elLGK2YLmMcr7eBWlrrjdndVn6ltZ4L1MXo5haO8V7dxRixbj0wBPDSWkems55fMUYjnApEYHTRi8Z438cATbXWf2YwJq21fg8jwTgO47372xTXbYzk0hZgEvCY1to3Y3srhHUprbW1YxBCCCGEEEIIIYQQBYS0bBJCCCGEEEIIIYQQFiPJJiGEEEIIIYQQQghhMZJsEkIIIYQQQgghhBAWI8kmIYQQQgghhBBCCGExdtYOIKeUKFFCP/JIfU6dgnr1oGRJa0dUcN24cYOScoBzhRzr3CXHO/fIsc5dBeV479u371+tdSVrxyH+U7ZsWV27dm1rh2FV587BxYvg7g5Fi2Z/fQXl7zWvkONpWRcuXADA0dHRypEUHPIZtTxLHNMbNyAiAqpVg8qVLRRYPpaRc7ACm2wqW7Ys334bRvPm8NFH0LmztSMquLZv346vr6+1wygU5FjnLjneuUeOde4qKMdbKXXW2jGIpKpUqUJYWJi1w7Cqs2ehVi3o0AGmTcv++grK32teIcfTsiZMmADA+PHjrRxJwSGfUcuzxDHt3Rv+/huOHoVSpSwTV36WkXOwAt2NrmJF4/7ff60bhxBCCCGEKByqV4enn4Z58+DaNWtHI4QQIrtOn4aVK+HFFyXRlBmSbBJCCCGEEMKCRo82Ek1ffmntSIQQQmTXjBlgawsjRlg7kvylQCebHnoI7Owk2SSEEEIIIXJP48bg6wuffAJxcdaORgghRFZdvgxffw0DBoCUJsucAluzCUApqFDB+IAIUVjExcVx7tw5bt++be1Q8r0yZcpw7Ngxa4dRKMixzl357Xjb29tTtWpVihQpYu1QhMiwgADo0gVCQuDZZ60djRCiIJHz/czJznlPTIzRhc7REfLRqZPFZOccrEAnm8DoSictm0Rhcu7cOUqXLo2TkxNKKWuHk6/FxsZSunRpa4dRKMixzl356Xhrrbl8+TLnzp2jRo0a1g5HiAzr2BHq14fp040r4vKVLISwFDnfz5ysnvfcvw8HDxqDPtSpkwOB5XHZPQcr0N3oQJJNovC5ffs2FSpUkC8eIUSBoJSiQoUKcvVW5Ds2NkbtpgMHYMsWa0cjhChI5Hw/d1y+DPfuQZUq1o7EOrJ7DibJJiEKIPniEUIUJPI/TeRX/fuDg4PRukkIISxJvhtzltZw8SKUKAH5pDF4jsjO56zAJ5ukZpMQQgghhLCGYsWM0Ys2bTJaOAkhhMgfYmLg9m14+GHpBp1VBT7ZlNCySWtrRyKESE1wcDAXLlzI8vKRkZEsWbLEghFZVqlSpdKdJygoiOmmS9/jxo1jSxp9LlavXs3Ro0dTfX3u3LksWrQIAF9fX8LCwjIca3R0NJ9//rn5+YULF3j66aczvLwQQoikXnwRSpaU1k1CCJGf/P03FC0K5cpZO5L8q1Akm+LjjcykECJvysvJpvj4+BxZb1omTpxI27ZtU309rWTTvXv3GDZsGIMGDcrSth9MNjk6OrJ8+fIsrUsIIYTxQ2XoUFi6FP76y9rRCCFE3ubn52c+9xw6dGiaF1hzyvXrxq1Kley1anJycuLfdGr6pDbPsmXLcHFxoXXr1gDs37+foUOHprmuWbNmsWDBgqwHbGGFItkEUrdJiNz08ccf4+bmhpubG5988glgJITc3NzM80yfPp2goCCWL19OWFgYAwYMwMvLi1u3buHk5MTYsWNp2rQpTZs25dSpU0DSLx/4r8VQYGAgu3btwsvLixkzZiSJZfv27fj6+vL0009Tr149BgwYgDY1ddy6dSsNGjTA3d0df39/7ty5Axj/9CdOnEj79u1ZtmwZTk5OvPXWWzz22GM0btyY33//nQ4dOlCrVi3mzp0LwPXr13niiSdo2LAh7u7urFmzJt3jNHnyZJydnWnbti3Hjx83T0+8n4GBgdSvXx8PDw9Gjx7Nr7/+yg8//EBAQABeXl6cPn0aX19f3nrrLVq1asXMmTOTtJIC+Pbbb3n88cdxc3Njz549AMnmcXNzIzIyksDAQE6fPo2XlxcBAQFJ3rfbt28zZMgQ3N3dadCgAdu2bQOMZGHPnj3p2LEjderUYcyYMenuuxBCFCYjRxqt7GfOtHYkQgiRf3z11VfUr18/x9Z/7969FKdfvAi2tv/lEqxh/vz5fP755+bz7SlTpvDqq6+muYy/vz+ffvppboSXIXbWDiCnJU421a5t3ViEyG0jR0J4uGXX6eUFpvxRivbt28eCBQvYvXs3WmuaNWtGq1atKJdKG9Snn36aWbNmMX36dBo3bmye/tBDD7Fnzx4WLVrEyJEjWbt2barbnDp1KtOnT091nv3793PkyBEcHR1p0aIFv/zyC40bN8bPz4+tW7dSt25dBg0axJw5cxg5ciQA9vb2bNq0idKlSxMYGEi1atX47bffGDVqFH5+fvzyyy/cvn0bV1dXhg0bhr29PatWreKhhx7i33//pXnz5nTr1i3Vonr79u1j6dKl7N+/n3v37tGwYUMaNWqUZJ4rV66watUqIiIiUEoRHR1N2bJl6datG127dk3SvS06OpodO3YARiIpsRs3bvDrr7+yc+dO/P39OXz4cJrH8vDhw4SbPjiRkZHm12bPng3AoUOHiIiIoH379pw4cQKA8PBw9u/fT7FixXB2dubVV1+lWrVqqW5HCCEKEycneOYZ+OILePtt6ZYhhLAca5zvR0ZG0qlTJ1q2bMmvv/7KI488wpo1ayhevDjh4eEMGzaMmzdvUqtWLb7++mvKlSuHr68vzZo1Y9u2bURHRzN//ny8vb3TjMPX19f8G6FUqVK89tprrF27luLFi7NmzRqqVKnCpUuXGDZsGH/++ScAn3zyCS1atGDPnj2MHDmSW7duUbRoURYtWoSzszPBwcGsW7eO27dvc+PGDX7++eck+9WhQ0dcXFpy7Nj/aNzYkyFDhjB+/Hj++ecfFi9eTNOmTbly5Qr+/v788ccflChRgnnz5uHh4cHly5fp168fly5domnTpuYL3GBc/P3000+5e/cuzZo14/PPP8fW1jbF/Z44cSKhoaGcOXOGbt26MW7cOA4ePIinpycAI0aMoGLFiowbN46NGzcyefJktm/fTokSJXBycmLPnj00bdo03ff5448/5vDhw3z99dccOnSIfv36sWfPHkqUKJHushlR4Fs2Vahg3EuRcCFyR2hoKD169KBkyZKUKlWKnj17smvXrkyvp1+/fub73377LVsxNW3alKpVq2JjY4OXlxeRkZEcP36cGjVqULduXQAGDx7Mzp07zcv06dMnyTq6desGgLu7O82aNaN06dJUqlQJe3t7oqOj0Vrz1ltv4eHhQdu2bTl//jwXL15MNaZdu3bRo0cPSpQowUMPPWRef2IPPfQQ9vb2DB06lJUrV6b5j//BeBNLOJY+Pj5cu3aN6OjoVOdNS2hoKAMHDgSgXr16VK9e3ZxseuKJJyhTpgz29vbUr1+fs2fPZmkbQghRUI0ZY3TLmDPH2pEIIUT2nTx5kpdffpkjR45QtmxZVqxYAcCgQYP44IMPOHjwIO7u7kyYMMG8zL1799izZw+ffPJJkukZcePGDZo3b86BAwfw8fHhyy+/BOC1115j1KhR7N27lxUrVpi7mtWrV4+dO3eyf/9+3n77bd566y3zun777TcWLlyYJNGU4PTpU/Tr9xoHDx4kIiKCJUuWEBoayvTp05kyZQoA48ePp0GDBhw8eJApU6aYy1dMmDCBli1bsn//frp162ZOgB07doyQkBB++eUXwsPDsbW1ZfHixanu67hx42jcuDGLFy9m2rRphIWFJekhMnXqVEJCQti2bRsjRoxgwYIF2NgYqZ3GjRubf3tNmzYNLy+vZLcRI0YAMHLkSE6dOsWqVasYMmQIX3zxhcUSTVDIWjYJUdikdUUip+hUqvHb2dlx//598/Pbt2+nuZ7ELYISHideh9aau3fvZiimYsWKmR/b2tpy7969VONMULJkyRTXYWNjk2R9NjY23Lt3j8WLF3Pp0iX27dtHkSJFcHJyytQ+psTOzo49e/awdetWli5dyqxZs1L8Ukwp3rS2o5TK9PsBqb+3kPIxFkII8R8vL+jY0fhuHjUKihe3dkRCiILAGuf7ADVq1MDLywuARo0aERkZSUxMDNHR0bRq1QowLub27t3bvEzPnj2TzJ8ZRYsWpWvXrublN2/eDMCWLVuS1HW6du0asbGxxMTEMHjwYE6ePInWOkkd1nbt2lG+fPlk27h7Fxwda9C8uTvFioGrqytPPPEESinc3d3NMYeGhpqTa23atOHy5cvExMSwc+dOVq5cCUCXLl3MPTu2bt3Kvn37aNKkCQC3bt2icuXKGd73qKgoKlWqZH5eokQJvvzyS3x8fJgxYwa1atUyv1a5cmUiIiIACAgIICAgINX12tjYEBwcjIeHBy+++CItWrTIcEwZUeBbNiW8J2k0MBBCWJCPjw+rV6/m5s2b3Lhxg1WrVuHt7U2VKlX4559/uHz5Mnfu3EnS5a106dLExsYmWU9ISIj5/rHHHgOMWkr79u0DYM2aNcTFxaW6fHrq1atHZGSkuR7UN998Y/5izIqYmBgqV65MkSJF2LZtW7ote3x8fFi1ahW3bt0iNjaWH3/8Mdk8169fJyYmhs6dO/PJJ5+Yu7Zldn8TjmVoaChlypShTJkyODk58fvvvwPw+++/c+bMmXTX7ePjY74Kc+LECf7880+cnZ0zHIcQQhR2gYFw6RLkofqtQgiRJVm50JiwTOL5hwwZgpeXF507d05z2SJFipgvoCZe/v79+/z222+Eh4cTHh7O+fPnKV26NO+++y6tW7fm8OHDhISEJLmwmtpF2suXoUiRYjz8sPE88UXmhAvMkPIF2ITYUrqYrLVm8ODB5hiPHz+erOxFWooXL57swvChQ4eoUKFCskGWbt++TXHT1Yz0WjaB0UKtVKlS2RqsKTUFPtlUujQ89BCcP2/tSIQoHBo2bIifnx9NmzalWbNmDB06lAYNGlCkSBHGjRtHs2bN6Nq1K/Xq1TMv4+fnx7Bhw8wFwgHu3LlDs2bNmDlzprno9/PPP8+OHTto2rQpu3fvNn9ReHh4YGdnh6enZ7IC4amxt7dnwYIF9O7dG3d3d2xsbBg2bFiW93vAgAGEhYWZm7wm3r+UNGzYkD59+uDl5UWvXr1S7LMeGxtL165d8fDwoFWrVuZ969u3L9OmTaNBgwacPn063djKlSvH448/zrBhw5g/fz4AvXr14sqVK3h5eTFnzhxzd8IKFSrQokUL3Nzckl0Jeemll4iPj8fd3Z0+ffoQHByc5ERDCCFE2nx8oHlzmDYNpAGoEKKgKVOmDOXKlTN348rIxdwFCxYQHh7O+vXrs7TN9u3bM2vWLPPzhIuzMTExPPLIIwBpdllLcO+ekWyytYX0Tm8TX4Ddvn07FStW5KGHHkoy/aeffuLq1auAUW5i+fLl/PPPP4BRlzUzJSdcXFzMF8gBzp49y0cffcT+/fv56aef2L17t/m1EydOmLvcBQQEmBNciW8JRcRjYmJ47bXX2LlzJ5cvX7b8CNRa6wJ5c3Bw0AlcXbXu0UOLHLJt2zZrh1BoZORYHz16NOcDyWHVq1fXly5dsnYY+tq1a9YOodCQY5278uPxTul/GxCm88A5h9z+u9WtWzfZ+ySSWr1aa9B68eKMzS/nWZYlx9OygoKCdFBQkLXDKFDyw/n+mTNntKurq/n5tGnT9Pjx47XWWu/fv183a9ZMu7u766eeekpfuXJFa611q1at9N69e7XWWl+6dElXr149xXUPHjxYL1u2LNkyJUuWNM+zbNkyPXjwYPO6nnnmGe3u7q5dXFz0iy++qLXW+tdff9V16tTRjz/+uA4ICDBvb8GCBfrll19Ott0LF7Res+aMdnH5b78Sx5J4ny9fvqy7deum3d3ddbNmzfSBAwe01lr/+++/ul27drpBgwZ65MiR+tFHHzX/plm6dKn29PTU7u7uumHDhvq3337TWqf+uyfxvmuttZubm7527Zq+f/++fuKJJ/SaNWu01lqHhYVpNzc3fevWLa211g0aNMjw76ghQ4bomTNnaq21/vPPP3WtWrX0xYsXk82X1XMwZcxX8Dg6OuqEpmAdO8KVK2Aa8VtYWMLQ8iLnZeRYHzt2DBcXl9wJKIc4OTkRFhZGRWuON4rRsqh06dJWjaGwkGOdu/Lj8U7pf5tSap/WunEqiwgrcHZ21sePH7d2GHna/fvg5gZFihgjSKVTvk/OsyxMjqdlJRR5Hj9+vJUjKTgKy/l+bkrvvOf+fTh4EEqUAFNj/zxnxowZlC5d2lwAPSX79+/n448/5ptvvrHotrN6Dlbgu9EBVK0K585ZOwohREZFRkZaPdEkhBBC5AQbGxg71vhhs2GDtaMRQgjx779GNzoHB2tHkrrhw4enW77i33//ZdKkSbkUUfoKTbLp77/BVEtYCCGEEEIIq+nXD6pVg6lTrR2JEEIUblobg4mVLAmlSlk7mtTZ29szcODANOdp164dTk5OuRNQBhSaZJPWEBVl7UiEEEIIIURhV7QovPEG7NwJv/5q7WiEEKLwunIF7twxWjWl161ZZE6hSTaBdKUTQgghhBB5w9ChUL68tG4SQghr0droAWVvD2XKWDuagkeSTUIIIYQQQuSykiVhxAj48Uc4dMja0QghROETEwO3bsHDD0urppwgySYhhEVdvnwZLy8vvLy8ePjhh3nkkUfMz+/evZuhdfj5+bF8+fIsx7Bs2TJcXV2xsbEhLCwszXmjo6P5/PPP05wnNDSUpk2bUq9ePerVq8e8efMyHEupbHb+9vX1xdnZGQ8PD+rVq8crr7xCdHS0+fXHH388zeWnTJmS5uudO3cmOjqayMhI3NzcMhXb9u3b+TVR/4+5c+eyaNGiTK1DCCEKs1dfNWqEpPOvWggh8pxPP/0UFxcXBgwYwA8//MDUTDTTjIyMZMmSJRaNJ7O/HxLK7BQtarQyffC8NrOCgoKYPn16lpdPzZ07d2jbti1eXl6EhIQkeS0iIgIvLy8aNGjA6dOnuXXrFq1atSI+Pj7V9R06dAg/Pz+Lx5mSQpFsKlPGuHokySYhcl6FChUIDw8nPDycYcOGMWrUKPPzokWL5sg2H/yH6ubmxsqVK/Hx8Ul32fSSTX///Tf9+/dn7ty5REREEBoayhdffMG6deuSzXvv3r3MB5+I1pr79+8nm7548WIOHjzIwYMHKVasGE899ZT5tfS+FFNLNiVsa/369ZQtWzZL8T74pTxs2DAGDRqUpXUJIURhVL48vPQSfP89nDhh7WiEECLjPv/8c9avX8/ixYvp1q0bgYGByeZJ7dw4u8mmtJIpGXX16j1u3DBaNdnYZD/ZlFkZ/d2wf/9+4uLiCA8Pp0+fPkleW716NU899RT79++nVq1afP311/Ts2RNbW9tU1+fu7s65c+f4888/sxV/RhSKZJNSxogfkmwSwjq+/PJLmjRpgqenJ7169eLmzZvExsZSo0YN4kzDRF67dg0nJyfz8wRbt26lQYMGuLu74+/vz507dwBwcnJi4sSJtGzZkmXLliVZxsXFBWdn52RxHDlyhKZNm+Ll5YWHhwcnT54kMDCQ06dP4+XlRUBAQLJlZs+ejZ+fHw0bNgSgYsWKfPjhh+arN35+frz++uu0bt2asWPHcubMGR577DGaNGnCu+++m2Rd06ZNo0mTJnh4eDB+/HjA+LJ1cXHhpZdeomHDhvz111+pHseiRYvy4Ycf8ueff3LgwAHgv5ZTUVFR+Pj44OXlhZubG7t27SIwMJBbt27h5eXFgAEDUtyWk5MT//77L2B86Q0ePBgPDw+efvppbt68aT7WCfOEhYXh6+tLZGQkc+fOZcaMGXh5ebFr164kV3TCw8Np3rw5Hh4e9OjRg6tXrwJGS62xY8fStGlT6taty65du1LdXyGEKAxef924si61m4QQ+cWwYcP4448/6NatGzNmzCA4OJhXXnkFSH5uvGPHDnMvhwYNGhAbG0tgYCC7du3Cy8uLGTNmJFm31pqAgADc3Nxwd3c3t+bZvn07rVu3pn///ri7u6O15pVXXqF+/fp06dKFf/75x7yOffv20apVKxo1akSHDh34+++/AeM89K233qJVq1Z88MFMihSBihVJ8bz2xx9/pFmzZjRo0IC2bdty8eJF7t+/T506dbh06RIA9+/fp3bt2ubz5ARpnQcnbH/mzJlJlrly5Qrdu3fHw8OD5s2bc/DgQf755x+effZZwsPD8fLy4vTp0+b5169fzyeffMJXX31F69atAeMCdcJF6VWrVtG2bVu01kRFRVG3bl3zcXjyySdZunRpNj4BGWOX41vII6pWlWSTKIT2jYSr4ZZdZzkvaPRJphbp2bMnzz//PADvvPMO8+fP59VXX8XX15d169bRvXt3li5dSq9evShSpIh5udu3b+Pn58fWrVupW7cugwYNYs6cOYwcORIwhgANDQ3NcBxz587ltddeY8CAAdy9e5f4+HimTp3K4cOHCQ8PT3GZI0eOMHjw4CTTGjduzJEjR8zPT5w4wZYtW7C1taVbt24MHz6cQYMGMXv2bPM8mzZt4uTJk+zZswetNd26dWPnzp08+uijHD9+nAULFqTbnQ/A1tYWT09PIiIi8PT0NE9fsmQJHTp04O233yY+Pp6bN2/i7e3NrFmzzPsWGRmZ5raOHz/O/PnzadGiBf7+/nz++eeMHj06xTicnJwYNmwYpUqVMs+zdetW8+uDBg3is88+o1WrVowbN44JEybwySefAEZSa8+ePaxfv54JEyawZcuWdPdbCCEKqipV4PnnYc4cGD8eqle3dkRCiHzFCuf7c+fOZcOGDWzbto2KFSsSHByc5PXE58ZPPvkks2fPpkWLFly/fh17e3umTp3K9OnTWbt2bbJ1r1y5kvDwcA4cOMC///5LkyZNzL0V9uzZw+HDh6lRowYrV67k+PHjHDp0iIsXL1K/fn38/f2Ji4vj1VdfZc2aNVSqVImQkBAmTpzIN998Axi9Gtat20FEhPH/18Ym5fPaq1ev8r///Q+lFF999RUffvghH330Ec8++yyLFy9m5MiRbNmyBU9PTypWrJhkH9I6D46OjmbHjh3J9nv8+PE0aNCA1atX8/PPPzNo0CDCw8P56quvUjxWnTt3ThLz3bt3+eOPP3BycgKgR48erFixgtmzZ7NhwwYmTJjAww8/DBi/ZaZOncqYMWNSfY8toVC0bAJJNglhTYcPH8bb2xt3d3cWL15sTtQMHTqUBQsWALBgwQKGDBmSZLnjx49To0YN6tatC8DgwYPZuXOn+fUHm5Km57HHHmPKlCl88MEHnD17luLFi6e7jNYalULFwMTTevfubW6u+ssvv9CvXz8ABg4caJ5n06ZNbNq0iQYNGtCwYUMiIiI4efIkANWrV6d58+YZ3g+tdbJpTZo0YcGCBQQFBXHo0CFKly6d4rJpbatatWq0aNECgGeffTZTibzEYmJiiI6OplWrVkDy961nz54ANGrUiMjIyCxtQwghCpKAAKMl/ocfWjsSIYTIvsTnxi1atOD111/n008/JTo6Gju7tNu7hIaG0q9fP2xtbalSpQqtWrVi7969ADRt2pQaNWoAsHPnTvN8jo6OtGnTBjB+Pxw+fJh27drh5eXFe++9x/nz583r79OnD1FRYGcHlSqlHse5c+fo0KED7u7uTJs2zfz7xd/f31yj9Ouvv072+yW98+DUfr+Ehoaafzu0adOGy5cvExMTk+axSuzff/9NVhrjs88+4/3336dYsWLm3ycAlStX5sKFCxled1YVqpZNFy5AfDyk0YVRiIIlky2Qcoqfnx+rV6/G09OT4OBgtm/fDhhfPpGRkezYsYP4+PhkBapTSqokVrJkSQCGDBnC/v37cXR0ZP369anO379/f5o1a8a6devo0KEDX331FTVr1kwyz9tvv22ux7Rr1y5cXV0JCwujW7du5nn27dtH/fr1k8WRIKXklNaaN998kxdffDHJ9MjIyGTLpyU+Pp5Dhw7h4uKSZLqPjw87d+5k3bp1DBw4kICAgBTrJ6W1rQfjTnhuZ2dnriV1+/btDMeammLFigFGK63s1rkSQoiCoFo1GDwY5s+Hd94BBwdrRySEyDfyyPl+YonPNwMDA+nSpQvr16+nefPm6bZoT+v8P6Pn3K6urvz222/mabGxsebHtrYliYmBRx5JOy/w6quv8vrrr9OtWze2b99OUFAQYFycrVKlCj///DO7d+9m8eLFae5PevuQOO4HpbR/qSlevHiy8/Tz589jY2Nj7gJoY2O0Nbp9+3aGLrpnV6Fq2RQfb1ScF0LkrtjYWBwcHIiLi0v2D3nQoEH069cv2VUBgHr16hEZGcmpU6cA+Oabb8xXCRJbsGAB4eHhaSaaAP744w9q1qzJiBEj6NatGwcPHqR06dJJvoAmT55sLmgO8PLLLxMcHGx+fvnyZcaOHZtqs9MWLVqY+0An3tcOHTrw9ddfc/36dcD455+4b3lGxMXF8eabb1KtWjU8PDySvHb27FkqV67M888/z3PPPcfvv/8OQJEiRZLVwUrNn3/+af5i/u6772jZsiVgNC3et28fACtWrDDP/+CxS1CmTBnKlStnrseU2vsmhBDiP2PHQlwcfPyxtSMRQgjLOX36NO7u7owdO5bGjRsTERGR6jkkGBdQQ0JCiI+P59KlS+zcuZOmTZumON/SpUuJj48nKiqKbdu2AeDs7MylS5fM57RxcXEcO3bMvNy//xpJpgdbNT0YU0xMDI888ggACxcuTDLv0KFDefbZZ3nmmWeSFePO6nmwj4+P+bfD9u3bqVixIg899FC6yyUoV64c8fHx5oTTvXv3GDJkCEuWLMHFxYWPE325nDhxItOjUGdFoUk21a5t3Jt6rQghctGkSZNo1qwZ7dq1o169ekleGzBgAFevXk3StDOBvb09CxYsoHfv3ri7u2NjY8OwYcPS3d6qVauoWrUqv/32G126dKFDhw4AhISE4ObmhpeXFxEREQwaNIgKFSrQokUL3NzcUiwQ7uDgwLfffsvzzz9PvXr1ePzxx/H39+fJJ59McdszZ85k9uzZNGnSJEnT1/bt29O/f38ee+wx3N3defrpp1P9kn3QgAED8PDwwM3NjRs3brBmzZpk82zfvt1ceHHFihW89tprALzwwgt4eHgwYMCAdLfj4uLCwoUL8fDw4MqVKwwfPhww+pC/9tpreHt7J/lCffLJJ1m1apW5kGJiCxcuJCAgAA8PD8LDwxk3blyG9lUIIQqr2rWhXz+jdtPly9aORgghLOOTTz7Bzc0NT09PihcvTqdOnfDw8MDOzg5PT89kBcJ79OiBh4cHnp6etGnThg8//NBca+jB+erUqYO7uzvDhw83J3SKFi3K8uXLGTt2LJ6ennh5ebF7924A7t+Ha9egcmWjG11iD57XBgUF0bt3b7y9vZPVZOrWrRvXr19P8WI5ZO08OCgoiLCwMDw8PAgMDEyW4MqI9u3bm8tgTJkyBW9vb7y9vfn444/56quvzEm3bdu20aVLl0yvP7NUet1U8itHR0eduB/iuXNGE+XPPwfT7ydhIdu3b8fX19faYRQKGTnWx44dS9bFKi9bvnw5a9asMRfty0tiY2NTrX0kLEuOde7Kj8c7pf9tSql9WuvGVgpJpMDZ2VkfP37c2mHkW0eOgJsbvPsuTJxoTJPzLMuS42lZEyZMADCPsiuyryCe71tbwnnPmTNw9Sq4u0OiMYkyLSwsjFGjRuW5UZX379/Pxx9/nObvqjt37tCqVStCQ0PTrZ+VIKvnYIWmZtMjj0DJkiDnP0LkHa+++io//fRTut3fhBBCiMLA1RV69IBPP4U33oAyZawdkRBCFAx37hitRqtUyV6iaerUqcyZMyfTtZpyQ4MGDWjdujXx8fHJuvcl+PPPP5k6dWqGE03ZUaC70Z06ZfR7v3zZGOHD2VmSTULkJZ999hmnTp0yjzYnhBBCFHbvvgsxMUbCSQghhGVERRk5gSpVsreewMBAzp49a65tmtf4+/unmmgCqFOnTq617izQyaZjx4yrQn/8YTx3doaICOvGJIQQQgghRGoaNIAnn4QZM4zaIkIIkZKCWg4nJ9y9q7h82SgKXrSotaPJX7LzOctXySallK1Sar9Sam1G5q9c2bhPGPDJ2RnOnoVbt3IqQiGEEEKIgiWz518i+8aPN+qKfPaZtSMRQuRF9vb2XL58WRJOGXTlipFhSqHOuEiD1prLly9jb2+fpeXzW82m14BjQIbGAEwp2aS10b3O3T1nAhRCCCGEKGAydf4lsq9RI+jSxSgH0aBB6t0hhBCFU9WqVTl37hyXLl2ydih53r17cP68pnRpxenT1o4m/7G3t6dq1apZWjbfJJuUUlWBLsBk4PWMLJNSsgmMuk2SbBJCCCGESFtWzr+EZYwfD02bwqpVj9C5s7WjEULkJUWKFKFGjRrWDiNfeOEFCA6+zx9/2JDFnInIonyTbAI+AcYAqY7VrJR6AXgBwMHBgb17t1OsmDe//36B7dtPc+uWDeDDTz+doWLFs7kSdGFw/fp1tm/fbu0wCoWMHOsyZcoQGxubOwHloujoaJYtW8bzzz+fa9uMj49nwIABdOzYke7du+fadi1t8eLFvPTSS/zyyy+4ubkB0KxZM77//nuqV6+e7vK//PILgYGBHD58mAULFiQ5FosXL2batGkABAQEMGDAAAAiIyMZMmQIV69excvLi3nz5lG0aFG01owZM4ZNmzZRokQJ5syZg5eXF/Hx8axcuZKxY8cSHx/P4MGDef31tH/XTpkyhYULFzJw4EDeeeedLB6dnJXacUjs4MGDjBo1itjYWGxtbRk9ejS9evUCjObLkyZNYtWqVdja2vLcc88xfPjwbMcVHx+f5f8TV65cYciQIZw9e5bq1asTHBxMuXLlks330ksvsWHDBipVqsTu3bvN0ydNmsT69euxsbGhYsWKzJ07FwcHB3799Vdee+01bGxsksyf4Pbt2/JdYx2fkInzr0qVKsn7ZEHNmrkTElKVnj13Ubx4vLXDKRDkvDVnyDG1HPmMWs7ffxfj66+b0aHDn5w6FcmpU9aOqJDRWuf5G9AV+Nz02BdYm94yDg4OWmutq1fXeuBAbVatmtbPPquFBW3bts3aIRQaGTnWR48ezflArODMmTPa1dU1V7d59epVPXjwYL1s2bJc3e6D7t+/r+Pj47O8/IIFC3S1atX0M888Y57m6uqqz5w5k6Hlz5w5ow8cOKAHDhyY5FhcvnxZ16hRQ1++fFlfuXJF16hRQ1+5ckVrrXXv3r31d999p7XW+sUXX9Sff/651lrrdevW6Y4dO+r79+/r3377TTdt2lRrbRzrmjVr6tOnT+s7d+5oDw8PfeTIkTTjGj9+vJ42bVqGj4M1pHYcEjt+/Lg+ceKE1lrr8+fP64cfflhfvXpVa631119/rQcOHGh+/y9evGiRuK5du5Zs2r179zK0bEBAgH7//fe11lq///77esyYMSnOt2PHDr1v375kf7cxMTHmxzNnztQvvvii+Xlaf+cp/W8DwnQeOE8pqLesnH/VrVs3hXdPZNXu3VqD1lOnWjuSgkPOWy0rKChIBwUFWTuMAkU+o5bz4otaFymidUjIr9YOpcDJyDlYfikQ3gLoppSKBJYCbZRS32ZkwcqV/+tGB0ZXuuPHcyJEIQQYLTnq1avH0KFDcXNzY8CAAWzZsoUWLVpQp04d9uzZAxitI7p3746HhwfNmzfn4MGDAAQFBeHv74+vry81a9bkU9PYz4GBgZw+fRovLy8CAgLQWhMQEICbmxvu7u6EhISkGM/169cZMmQI7u7ueHh4sGLFCgCGDx9O48aNcXV1Zfz48eb5nZycmDhxIi1btmTVqlVJ1rV161YaNGiAu7s7/v7+3LlzJ9n2vvzyS5o0aYKnpye9evXi5s2bAPj5+TFs2DC8vb2pW7cua9cadXaDg4N56qmn6NixI87OzkyYMMF8HF1cXHjppZdo2LAhf/31V4r7O2LECCZOnAjAxo0b8fHx4f79+8ni6tq1K0eOHOF4Fv4BOjk54eHhgY1N0q+MjRs30q5dO8qXL0+5cuVo164dGzZsQGvNzz//zNNPPw3A4MGDWb16NQBr1qxh0KBBKKVo3rw50dHRREVFERYWRu3atalZsyZFixalb9++rFmzJlNxBgUFMXjwYNq3b4+TkxMrV65kzJgxuLu707FjR+Li4gDYt28frVq1olGjRnTo0IGoqCgg7fduxIgRPP7449SsWZPly5dnKJ60jkNidevWpU6dOgA4OjpSuXJlcw2GOXPmMG7cOPOxr5zQPzwVffr0Yf369ebnfn5+rFixgsjISLy9vWnYsCENGzY0txzavn07rVu3pn///rhnsH/5mjVrGDx4cJr7BODj40P58uWTTX/oof/K/ty4cQOlVIa2K6wiy+dfwjKaNoWmTS8zbRpcv27taIQQIv/480/4+mt47jmoXDn5ObvIefki2aS1flNrXVVr7QT0BX7WWj+bkWVTSjZFRBiFwoUoDHx9fQkODgYgLi4OX19fvv3W+K1w8+ZNfH19zYmLmJgYfH19WblyJQD//vsvvr6+/PjjjwD8/fffGdrmqVOneO211zh48CAREREsWbKE0NBQpk+fzpQpUwAYP348DRo04ODBg0yZMoVBgwaZl4+IiGDjxo3s2bOHCRMmEBcXx9SpU6lVqxbh4eFMmzaNlStXEh4ezoEDB9iyZQsBAQHmpEFikyZNokyZMhw6dIiDBw/Spk0bACZPnkxYWBgHDx5kx44d5mQXGIXwQkNDzUkCMLrw+Pn5ERISwqFDh7h37x5z5sxJtr2ePXuyd+9eDhw4gIuLC/Pnzze/FhkZyY4dO1i3bh3Dhg3j9u3bAOzZs4fFixcTHh7OsmXLCAsLA+D48eMMGjSI/fv3ExYWluL+Tp06lZCQELZt28aIESNYsGBBsqQQgI2NDWPGjDEf/8T69OmDl5dXstuiRYvSfJ/Pnz9PtWrVzM+rVq3K+fPnuXz5MmXLlsXOzi7J9LSWiYqKSnF6Zp0+fZp169axZs0ann32WVq3bs2hQ4coXrw469atIy4ujldffZXly5ezb98+/P39efvtt4G037uoqChCQ0NZu3YtgYGBAMTGxqZ43Ly8vDh69GiaxyE1e/bs4e7du9SqVcu8PyEhITRu3JhOnTpx8uTJNJfv27ev+e/57t27bN26lc6dO1O5cmU2b97M77//TkhICGPGjEmyzcmTJ3P06FEAvL29U9ynLVu2AHDx4kUcHBwAo8v6P4m/ZDPo7bffplq1aixevNicLBV5T3bOv4TlDB58lsuX4fPPrR2JEELkH1OnGvdvvmndOAqz/FSzKUsqVYIDB/57Xq8exMbC33+D6VxZCGFhNWrUMLeScHV15YknnkAphbu7O5GRkQCEhoaaWxm1adOGy5cvExMTA0CXLl0oVqwYxYoVo3Llyly8eDHZNkJDQ+nXrx+2trZUqVKFVq1asXfvXrp165Zkvi1btrB06VLz84TaMt9//z3z5s3j3r17REVFcfToUTw8PAAj+fKg48ePU6NGDerWrQsYLTpmz57NyJEjk8x3+PBh3nnnHaKjo7l+/TodOnQwv/bMM89gY2NDnTp1qFmzJhEREQC0a9eOChUqAEbCIzQ0lO7du1O9enWaN2+e7v5++eWX+Pj4MGPGDHOSIiX9+/dn8uTJnDlzJsn01FqFpUenkLVXSqU6PavLZEanTp0oUqQI7u7uxMfH07FjRwDzZ+/48eMcPnyYdu3aAUbtooTESVrvXffu3bGxsaF+/frmz2Pp0qUJDw9PNZaURohJa5+ioqIYOHAgCxcuNCcM79y5g729PWFhYaxcuRJ/f3927dqV5v6PGDGCO3fusGHDBnx8fChevDgxMTG88sorhIeHY2try4kTJ8zLNG3aNEmR0bTWbymTJ09m8uTJvP/++8yaNcvcok8IkVz9+tdo3x6mTYOXX4aSJa0dkRBC5G1//QVffQX+/vDoo/DHH9aOqHDKd8kmrfV2YHtG509o2aQ1KJV0RDpJNonCIHGBwSJFiiR5XqJEiSTPy5Qpk+R5xYoVkzx/+OGHM7TNYsWKmR/b2NiYn9vY2HDv3j0g9aTDg8vb2tqal0kspeUBZs+ezZdffgnA+vXr0Von+4F/5swZpk+fzt69eylXrhx+fn7mVkYAJVM4k09tew/y8/Nj9erVeHp6EhwcnOT4PRhHwvPUpieOI63tHzp0iAoVKnDhwoU0Y7Ozs+ONN97ggw8+SDK9T58+KXave/3115O0OHtQ1apVk+zfuXPn8PX1pWLFikRHR3Pv3j3s7Ow4d+4cjo6O5mX++uuvJMs4Ojpy9erVFKdnVuLPWpEiRczHMuGzp7XG1dWV3377Ldmyab13iT+TCe9FbGws3t7eKcaxZMkSXFxcUj0OD7p27RpdunThvffeMycYwTheCcXCe/TowZAhQ9Lcf3t7e3x9fdm4cSMhISH069cPgBkzZlClShUOHDjA/fv3sbe3Ny/z4Ofd29s7xeLh06dPp23btlSpUoWoqCgcHByIiopKt2tfWvr370+XLl0k2ZQPZPb8S1hWUBA8/jjMmgVjx1o7GiGEyNsmTzbupVWTdeWLbnTZUbky3L0L164Zz+vVM+6PHLFeTEIIo57L4sWLASMhVrFixSS1XB5UunTpJD+AfXx8CAkJIT4+nkuXLrFz506aNm3Kyy+/THh4OOHh4Tg6OtK+fXtmzZplXu7q1atcu3aNkiVLUqZMGS5evMhPP/2Ubrz16tUjMjKSU6ZhLL755htatWqVbL7Y2FgcHByIi4sz71+CZcuWcf/+fU6fPs0ff/yBsyn7vXnzZq5cucKtW7dYvXo1LVq0SPF4pbS/Z8+e5aOPPmL//v389NNPKY7ilZifnx9btmxJ0uomJCTEfMwS39JKNAF06NCBTZs2cfXqVa5evcqmTZvo0KEDSilat25trm20cOFCnnrqKQC6devGokWL0Frzv//9jzJlyuDg4ECjRo04efIkZ86c4e7duyxdutTcSm3WrFlJ3sPscHZ25tKlS+ZkU1xcHEdMXwhpvXcpSWjZlNKtfv36aR6HxO7evUuPHj0YNGgQvXv3TvJa9+7d+fnnnwHYsWOHuWXdnj17Un1/+vbty4IFC9i1a5e5dVZMTAwODg7Y2NjwzTffEB+f+qhWu3btSnGf2rZtCxjv4cKFC9Pcp7Qk7gr4ww8/UC/hi1kIkarHHoOOHeHDD/87pxVCCJHcmTMwfz4MHQoZGHRZ5KBCkWyC/+o2Va1qTNu713oxCSGMYs5hYWF4eHgQGBho/vGamgoVKtCiRQvc3NwICAigR48eeHh44OnpSZs2bfjwww9TbHn1zjvvcPXqVdzc3PD09GTbtm14enrSoEEDXF1d8ff3TzG58yB7e3sWLFhA7969cXd3x8bGhmHDhiWbb9KkSTRr1ox27dol+xHt7OxMq1at6NSpE3PnzjW3LmnZsiUDBw7Ey8uLXr160bhx42TrTWl/q1SpwnPPPcf06dNxdHRk/vz5DB06NEkrrQcVLVqUESNGZKrOzt69e6latSrLli3jxRdfxNXVFYDy5cvz7rvv0qRJE5o0acK4cePMBaE/+OADPv74Y2rXrs3ly5d57rnnAOjcuTM1a9akdu3aPP/883xuKkJiZ2fHrFmz6NChAy4uLjzzzDPm7URERJi7GWZX0aJFWb58OWPHjsXT0xMvLy9+/fVXIO33LqtSOw5hYWEMHToUMLp07ty5k+DgYHN9pITueYGBgaxYsQJ3d3fefPNNvvrqKwD+/PNPihcvnuI227dvz86dO2nbti1FixYF4KWXXmLhwoU0b96cEydOpNh6L6MCAwPZvHkzderUYfPmzeYaVhcuXKBz587m+fr168djjz3G8ePHqVq1qrkGVmBgIG5ubnh4eLBp0yZmzpyZ5ViEKEwmToQrV0D+ZIQQInWTJoGtLZhKcgorUhntGpLfODo66gsXLrBxo3El6JdfjObHAE8+CadPg6kWqsim7du34+vra+0wCoWMHOtjx47h4uKSOwEVcLGxsZQuXdoi6/Lz86Nr165Jio6DMRpdWFiYxVru5FdpHeuuXbuycuVKc+IkQVBQEKVKlWL06NG5EWKeEhAQwMCBA811xjLLkp9tS4qMjKRr164cPnw42Wsp/W9TSu3TWifPzgqrcXZ21lkZ9VKkLvF3f/fusH27ceXeVIJQZJKct1pWQjfoxCP7iuyRz2jWnTwJLi7w6qswY8Z/0+WYWl5GzsEKfMumSpWM+8QX8Zs2NUakM9UiFkIIkYetXbs2WaIJoFSpUsybN49x48ZZISrrmjZtWpYTTXnVrl27ePLJJ6lYsaK1QxEiz5o40Th//fhja0cihBB5z4QJUKwYmBpdCyvLdwXCMyuhG13iwayaNjUKhu/bB6ZR0IUQIkcFBwenON3Pzw8/P79cjaWgGD16dKFs1VRQeXt7c+jQIWuHIUSe5uEBvXvDJ5/Aa6+B5GaFEMJw9CgsWQIBAVClirWjEVAIWjZVqQI2NnD+/H/TmjQx7vfssU5MQgghhBBCZEVQENy4YRQLF0IIYQgKgpIljWSTyBsKfLKpSBFwdISzZ/+bVr481K4tySYhhBBCCJG/1K8P/fvDrFnw99/WjkYIIazvwAFYtgxGjpQWn3lJgU82ATg5JU02gdGVTpJNQgghhBAivxk/Hu7ehalTrR2JEEJY3/jxUKYMvP66tSMRiRWKZFP16iknm86fT9q9TgghhBBCiLyuTh0YNAjmzoVz56wdjRBCWE9YGKxZA2+8IaN05jWFJtl07hzEx/83rWlT437vXuvEJITInOjoaD7//PNc366fnx/Lly/P9e1aUnBwMDY2Nhw8eNA8zc3NjcjIyAwtv3PnTho2bIidnV2yY7Fw4ULq1KlDnTp1WLhwoXn6mTNnaNasGXXq1KFPnz7cvXsXAK01I0aMoHbt2nh4ePD777+bl9mwYQPOzs7Url2bqRm4XB8UFMQjjzySp0ejS+04JBYeHs5jjz2Gq6srHh4ehISEmF/TWvP2229Tt25dXFxc+PTTT3Mz/BRduXKFdu3aUadOHdq1a8fVq1dTnM/f35/KlSvj5uaWZPq7776Lh4cHXl5etG/fngsXLgDGaHT169dPNr8QImXjxsH9+zBpkrUjEUII63n7bahQwRg0QeQthSbZdO8emM5nAfDyAjs76UonRH5hjWRTfOIMtRVprbl//3621lG1alUmT56cpWUfffRRgoOD6d+/f5LpV65cYcKECezevZs9e/YwYcIEc+Jh7NixjBo1ipMnT1KuXDnmz58PwE8//cTJkyc5efIk8+bNY/jw4YBxrF9++WV++uknjh49ynfffcfRo0fTjW3UqFFMnDgxS/uVG1I7DomVKFGCRYsWceTIETZs2MDIkSOJjo4GjEThX3/9RUREBMeOHaNv3745FmtGP+9Tp07liSee4OTJkzzxxBOpJgb9/PzYsGFDsukBAQEcPHiQ8PBwunbtan7/vL29Wb9+fdZ3QIhCxskJXnwR5s+HEyesHY0QQuS+bdtg0yZ46y146CFrRyMeVGiSTQCJL+IXL24MHyvJJiEsKzIyknr16jF06FDc3NwYMGAAW7ZsoUWLFtSpU4c9pj+6K1eu0L17dzw8PGjevLm51U1QUBD+/v74+vpSs2ZNc0uOwMBATp8+jZeXFwEBAWitCQgIwM3NDXd39yStQRK7fv06Q4YMwd3dHQ8PD1asWAHA8OHDady4Ma6urowfP948v5OTExMnTqRly5asWrUqybq2bt1KgwYNcHd3x9/fnzt37iTb3pdffkmTJk3w9PSkV69e3Lx5EzB+eA8bNgxvb2/q1q3L2rVrASOZ8NRTT9GxY0ecnZ2ZMGGC+Ti6uLjw0ksv0bBhQ/76668U93fEiBHmH+sbN27Ex8cnxcRU165dOXLkCMePH8/I25iEk5MTHh4e2Ngk/crYuHEj7dq1o3z58pQrV4527dqxYcMGtNb8/PPPPP300wAMHjyY1atXA7BmzRoGDRqEUormzZsTHR1NVFQUYWFh1K5dm5o1a1K0aFH69u3LmjVrMhVnUFAQgwcPpn379jg5ObFy5UrGjBmDu7s7HTt2JC4uDoB9+/bRqlUrGjVqRIcOHYiKigLSfu9GjBjB448/Ts2aNTPc0i2t45BY3bp1qVOnDgCOjo5UrlyZS5cuATBnzhzGjRtnPvaVK1dOc5t9+vRJkrDx8/NjxYoVREZG4u3tTcOGDWnYsCG7d+8GYPv27bRu3Zr+/fvj7u6eof1as2YNgwcPTnOfAHx8fChfvnyy6Q8lOhu8ceMGSqkMbVcIkdw770CxYkYrJyGEKEy0hjffhKpV4aWXrB2NSEmhSjalVLdp716jCbIQBZWvry/BwcEAxMXF4evry7fffgvAzZs38fX1NScuYmJi8PX1ZeXKlQD8+++/+Pr68uOPPwLwdwaHvTl16hSvvfYaBw8eJCIigiVLlhAaGsr06dOZMmUKAOPHj6dBgwYcPHiQKVOmMGjQIPPyERERbNy40dxaJi4ujqlTp1KrVi3Cw8OZNm0aK1euJDw8nAMHDrBlyxYCAgLMSYPEJk2aRJkyZTh06BAHDx6kTZs2AEyePJmwsDAOHjzIjh07knQxs7e3JzQ01JwkALh9+zZ+fn6EhIRw6NAh7t27x5w5c5Jtr2fPnuzdu5cDBw7g4uKSpCVLZGQkO3bsYN26dQwbNozbt28DsGfPHhYvXkx4eDjLli0jLCwMgOPHjzNo0CD2799PWFhYivs7depUQkJC2LZtGyNGjGDBggXJkkIANjY2jBkzxnz8E+vTpw9eXl7JbosWLUrzfT5//jzVqlUzP69atSrnz5/n8uXLlC1bFjs7uyTT01omKioqxemZdfr0adatW8eaNWt49tlnad26NYcOHaJ48eKsW7eOuLg4Xn31VZYvX86+ffvw9/fn7bffBtJ+76KioggNDWXt2rUEBgYCEBsbm+Jx8/Ly4ujRo2keh9Ts2bOHu3fvUqtWLfP+hISE0LhxYzp16sTJkyfTXL5v377mv+e7d++ydetWOnfuTOXKldm8eTO///47ISEhjBkzJsk2J0+ebG5J5u3tneI+bdmyBYCLFy/i4OAAgIODA//880/G3pxE3n77bapVq8bixYvzdMs0IfK6KlVg1CgICYH9+60djRBC5J41a2D3bggKAnt7a0cjUmJn7QByw6OPGvcpJZvmzjWaHterl/txCVFQ1ahRw9xKwtXVlSeeeAKlFO7u7uY6QaGhoeZWRm3atOHy5cvExMQA0KVLF4oVK0axYsWoXLkyFy9eTLaN0NBQ+vXrh62tLVWqVKFVq1bs3buXbt26JZlvy5YtLF261Py8nKly4Pfff8+8efO4d+8eUVFRHD16FA8PD8BIvjzo+PHj1KhRg7p16wJGi47Zs2czcuTIJPMdPnyYd955h+joaK5fv06HDh3Mrz3zzDPY2NhQp04datasSUREBADt2rWjQoUKgJHwCA0NpXv37lSvXp3mzZunu79ffvklPj4+zJgxw5ykSEn//v2ZPHkyZ86cSTI9tVZh6dFaJ5umlEp1elaXyYxOnTpRpEgR3N3diY+Pp2PHjgDmz97x48c5fPgw7dq1A4yuYwmJk7Teu+7du2NjY0P9+vXNn8fSpUsTHh6eaiwJrZMyuk9RUVEMHDiQhQsXmhOGd+7cwd7enrCwMFauXIm/vz+7du1Kc/9HjBjBnTt32LBhAz4+PhQvXpyYmBheeeUVwsPDsbW15USiPjdNmzalRo0a5udprd9SJk+ezOTJk3n//feZNWuWuUWfECLzRo+Gzz836pZIT1QhRGEQH2/8z3N2BlNja5EHFYpkU4kSUKlSyskmgF9/lWSTKLi2b99uflykSJEkz0uUKJHkeZkyZZI8r1ixYpLnDz/8cIa2WaxYMfNjGxsb83MbGxvu3bsHpJ50eHB5W1tb8zKJpbQ8wOzZs/nyyy8BWL9+PVrrZD/wz5w5w/Tp09m7dy/lypXDz8/P3MoIoGTJkhne3oP8/PxYvXo1np6eBAcHJzl+D8aR8Dy16YnjSGv7hw4dokKFCuZCy6mxs7PjjTfe4IMPPkgyvU+fPil2r3v99deTtDh7UNWqVZPs37lz5/D19aVixYpER0dz79497OzsOHfuHI6OjuZl/vrrryTLODo6cvXq1RSnZ1biz1qRIkXMxzLhs6e1xtXVld9++y3Zsmm9d4k/kwnvRWxsLN7e3inGsWTJElxcXFI9Dg+6du0aXbp04b333jMnGME4Xr169QKgR48eDBkyJM39t7e3x9fXl40bNxISEkK/fv0AmDFjBlWqVOHAgQPcv38f+0SXAB/8vHt7exMbG5ts3dOnT6dt27ZUqVKFqKgoHBwciIqKSrdrX1r69+9Ply5dJNkkRDaULWt0JRkzBnbuBB8fa0ckhBA5a/FiOHoUli0z6jCLvKlQdKMDoyvdg8mm+vXBwQE2brROTEIUZj4+PixevBgwEmIVK1ZMUsvlQaVLl07yA9jHx4eQkBDi4+O5dOkSO3fupGnTprz88suEh4cTHh6Oo6Mj7du3Z9asWeblrl69yrVr1yhZsiRlypTh4sWL/PTTT+nGW69ePSIjIzl16hQA33zzDa1atUo2X2xsLA4ODsTFxZn3L8GyZcu4f/8+p0+f5o8//sDZ2RmAzZs3c+XKFW7dusXq1atp0aJFiscrpf09e/YsH330Efv37+enn34y1+JJjZ+fH1u2bEnS6iYkJMR8zBLf0ko0AXTo0IFNmzZx9epVrl69yqZNm+jQoQNKKVq3bm2ubbRw4UKeeuopALp168aiRYvQWvO///2PMmXK4ODgQKNGjTh58iRnzpzh7t27LF261NxKbdasWUnew+xwdnbm0qVL5mRTXFwcR44cAdJ+71KS0LIppVv9+vXTPA6J3b17lx49ejBo0CB69+6d5LXu3bvz888/A7Bjxw5zy7o9e/ak+v707duXBQsWsGvXLnPrrJiYGBwcHLCxseGbb75Jsxj4rl27Utyntm3bAsZ7mDDyYGr7lJbEXQF/+OEH6snVHiGy7ZVXwNHRSDpl8NqIEELkS3fuGHXqGjUC0/U4kUcV6mSTUtCxo1HBPoWGE0KIHBQUFERYWBgeHh4EBgaaf7ympkKFCrRo0QI3NzcCAgLo0aMHHh4eeHp60qZNGz788MMUW1698847XL16FTc3Nzw9Pdm2bRuenp40aNAAV1dX/P39U0zuPMje3p4FCxbQu3dv3N3dsbGxYdiwYcnmmzRpEs2aNaNdu3bJfkQ7OzvTqlUrOnXqxNy5c82tS1q2bMnAgQPx8vKiV69eNG7cONl6U9rfKlWq8NxzzzF9+nQcHR2ZP38+Q4cOTdJK60FFixZlxIgRmaqzs3fvXqpWrcqyZct48cUXcXV1BaB8+fK8++67NGnShCZNmjBu3DhzQegPPviAjz/+mNq1a3P58mWee+45ADp37kzNmjWpXbs2zz//vHmEQTs7O2bNmkWHDh1wcXHhmWeeMW8nIiLC3M0wu4oWLcry5csZO3Ysnp6eeHl58euvvwJpv3dZldpxCAsLY+jQoYDRpXPnzp0EBweb6yMldM8LDAxkxYoVuLu78+abb/LVV18B8Oeff1K8ePEUt9m+fXt27txJ27ZtKVq0KAAvvfQSCxcupHnz5pw4cSLF1nsZFRgYyObNm6lTpw6bN28217C6cOECnTt3Ns/Xr18/HnvsMY4fP07VqlXNNbACAwNxc3PDw8ODTZs2MXPmzCzHIoQwFC9u/Pj69VdYt87a0QghRM6ZN8/4XT9livF7XuRdKqNdQ/IbR0dHnbhLyRtvwJw5cONG0g/lsmXwzDOwaxe0bGmFQAuA7du34+vra+0wCoWMHOtjx47h4uKSOwEVcLGxsZQuXdoi6/Lz86Nr165Jio6DMRpdWFiYxVru5FdpHeuuXbuycuVKc+IkQVBQEKVKlWL06NG5EWKeEhAQwMCBA811xjLLkp9tS4qMjKRr164cPnw42Wsp/W9TSu3TWifPzgqrcXZ21lkZ9VKkLqPnWXFxRqv94sUhPBxSGCtCIOetlpbQDTrxyL4ie+Qzmrrr16FWLXB1ha1bM55skmNqeRk5Bys0X0PVq8OtW/Dgxfx27cDWFjLQi0YIIYQVrF27NlmiCaBUqVLMmzePcYVwzO9p06ZlOdGUV+3atYsnn3ySihUrWjsUIfKlIkVg0iQ4dAiWLLF2NEIIYXkzZhi/56VVU/6Q6WSTUuoP022fUso9E8u1My13OrPbtARTaRQevNhWtiw8/rgkm4QQOSs4ODhZqyYwWjwV9lZNWTV69GhOnDjBxIkTrR2KsABvb28OHTqUpDC7ECJznnkGGjaEd96BNHpUCyFEvvPPP/Dhh9C9OyQaS0XkYVlp2eQEVAcaAL8opZ7M4HIlTMs6ZWGb2WYq/UEKLfPp1An274e//87dmIQQQgghhLAUGxvjx9jZszB7trWjEUIIy5k40eipNHWqtSMRGZXdbnSlgFVKqQBLBJOTHnkEypRJPdkEsGFD7sYkhBBCCCGEJT3xhDEAznvvwZUr1o5GCCGy7+RJ+OILeOGF/3osibwvO8mmr4DrpnVMVUp9rZSys0xYlqcUuLmBaYTrJDw9wcEB1q/P/biEEEIIIYSwpA8+gJgYeP99a0cihBDZ99ZbUKwYSB36/CU7yaa1gDfwF6CAwcBWpZRlxqfOAa6uRsumBwfgU8po3bR5M9y7Z53YhBBCCCGEsAQPDxg0CD77zOhSJ4QQ+dX//gfLl0NAAFSpYu1oRGZkqxud1voA0BTYjZFwagnsVkrlyXHX3dyM5sQXLyZ/rVMniI42PsxCiLwnOjqazz//PNe36+fnx/Lly3N9u5YUHByMjY0NBw8eNE9zc3MjMjIyQ8vv3LmThg0bYmdnl+xYLFy4kDp16lCnTh0WLlxonn7mzBmaNWtGnTp16NOnD3fv3gVAa82IESOoXbs2Hh4e/P777+ZlNmzYgLOzM7Vr12ZqBjrkBwUF8cgjj+Tp0ehSOw6JhYeH89hjj+Hq6oqHhwchISHm17TWvP3229StWxcXFxc+/fTT3Aw/RVeuXKFdu3bUqVOHdu3acfXq1RTn8/f3p3Llyri5uaX4+vTp01FK8e+//wLGaHT169dPdX4hROZMmmTcv/uudeMQQois0vq/JNMbb1g7GpFZ2a3ZhNb6IuALLMVIONUAflNKdczuui0trSLh7dqBra2MSidEXmWNZFN8fHyubi81Wmvu37+frXVUrVqVyZMnZ2nZRx99lODgYPr3759k+pUrV5gwYQK7d+9mz549TJgwwZx4GDt2LKNGjeLkyZOUK1eO+fPnA/DTTz9x8uRJTp48ybx58xg+fDhgHOuXX36Zn376iaNHj/Ldd99x9OjRdGMbNWpUnh6NLrXjkFiJEiVYtGgRR44cYcOGDYwcOZLo6GjASBT+9ddfREREcOzYMfr27ZtjsWb08z516lSeeOIJTp48yRNPPJFqYtDPz48NqRRD/Ouvv9i8eTOPPvqoeZq3tzfrpT+7EBZTrRqMHAnffmsMhCOEEPnNDz9AaChMmAClSlk7GpFZ2U42AWit72it+wMJvSgfAn5USr1mifVbSsLF0pSSTWXKQIsWkmwSIrsiIyOpV68eQ4cOxc3NjQEDBrBlyxZatGhBnTp12LNnD2AkKrp3746HhwfNmzc3t7oJCgrC398fX19fatasaW7JERgYyOnTp/Hy8iIgIACtNQEBAbi5ueHu7p6kNUhi169fZ8iQIbi7u+Ph4cGKFSsAGD58OI0bN8bV1ZXxiTqAOzk5MXHiRFq2bMmqVauSrGvr1q00aNAAd3d3/P39uXPnTrLtffnllzRp0gRPT0969erFzZs3AeOH97Bhw/D29qZu3bqsXbsWMJIJTz31FB07dsTZ2ZkJEyaYj6OLiwsvvfQSDRs25K+//kpxf0eMGGFOtmzcuBEfH58UE1Ndu3blyJEjHD9+PCNvYxJOTk54eHhgY5P0K2Pjxo20a9eO8uXLU65cOdq1a8eGDRvQWvPzzz/z9NNPAzB48GBWr14NwJo1axg0aBBKKZo3b050dDRRUVGEhYVRu3ZtatasSdGiRenbty9r1qzJVJxBQUEMHjyY9u3b4+TkxMqVKxkzZgzu7u507NiRuLg4APbt20erVq1o1KgRHTp0ICoqCkj7vRsxYgSPP/44NWvWzHBLt7SOQ2J169alTp06ADg6OlK5cmUuXboEwJw5cxg3bpz52FeuXDnNbfbp0ydJwsbPz48VK1YQGRmJt7c3DRs2pGHDhuzevRuA7du307p1a/r374+7u3uG9mvNmjUMHjw4zX0C8PHxoXz58im+NmrUKD788EOUUhnaphAiawIDoVw5GDvW2pEIIUTm3Ltn/A9zdobnnrN2NCIrLJJsSqC1ngT0AW4BtsDHSqkvlFK2ltxOVlWuDJUqpVwkHIyudPv3g+l3hxAFgq+vL8HBwQDExcXh6+vLt99+C8DNmzfx9fU1Jy5iYmLw9fVl5cqVAPz777/4+vry448/AvD3339naJunTp3itdde4+DBg0RERLBkyRJCQ0OZPn06U6ZMAWD8+PE0aNCAgwcPMmXKFAYNGmRePiIigo0bN5pby8TFxTF16lRq1apFeHg406ZNY+XKlYSHh3PgwAG2bNlCQECAOWmQ2KRJkyhTpgyHDh3i4MGDtGnTBoDJkycTFhbGwYMH2bFjR5IuZvb29oSGhpqTBAC3b9/Gz8+PkJAQDh06xL1795gzZ06y7fXs2ZO9e/dy4MABXFxckrRkiYyMZMeOHaxbt45hw4Zx+/ZtAPbs2cPixYsJDw9n2bJlhIWFAXD8+HEGDRrE/v37CQsLS3F/p06dSkhICNu2bWPEiBEsWLAgWVIIwMbGhjFjxpiPf2J9+vTBy8sr2W3RokVpvs/nz5+nWrVq5udVq1bl/PnzXL58mbJly2JnZ5dkelrLREVFpTg9s06fPs26detYs2YNzz77LK1bt+bQoUMUL16cdevWERcXx6uvvsry5cvZt28f/v7+vP3220Da711UVBShoaGsXbuWwMBAAGJjY1M8bl5eXhw9ejTN45CaPXv2cPfuXWrVqmXen5CQEBo3bkynTp04efJkmsv37dvX/Pd89+5dtm7dSufOnalcuTKbN2/m999/JyQkhDFjxiTZ5uTJk80tyby9vVPcpy1btgBw8eJFHBwcAHBwcOCff/7J2Jtj8sMPP/DII4/g6emZqeWEEJlXtqzRjW7zZti40drRCCFExn39NUREGAMe2OXZYchEWiz+tmmtlyulIoHVgCMwFKgNfGvpbWVFQpHwlDz1FLz5JoSEGM2OhRBZU6NGDXMrCVdXV5544gmUUri7u5vrBIWGhppbGbVp04bLly8TExMDQJcuXShWrBjFihWjcuXKXEyh0FpoaCj9+vXD1taWKlWq0KpVK/bu3Uu3bt2SzLdlyxaWLl1qfl6uXDkAvv/+e+bNm8e9e/eIiori6NGjeHh4AEby5UHHjx+nRo0a1K1bFzBadMyePZuRD/yzOHz4MO+88w7R0dFcv36dDh06mF975plnsLGxoU6dOtSsWZOIiAgA2rVrR4UKxtgKPXv2JDQ0lO7du1O9enWaN2+e7v5++eWX+Pj4MGPGDHOSIiX9+/dn8uTJnDlzJsn01FqFpUc/ONoCoJRKdXpWl8mMTp06UaRIEdzd3YmPj6djR6NHd8Jn7/jx4xw+fJh27doBRtexhMRJWu9d9+7dsbGxoX79+ubPY+nSpQkPD081loTWSRndp6ioKAYOHMjChQvNCcM7d+5gb29PWFgYK1euxN/fn127dqW5/yNGjODOnTts2LABHx8fihcvTkxMDK+88grh4eHY2tpy4sQJ8zJNmzalRo0a5udprT+7bt68yeTJk9m0aVOObUMIkdTw4fDppzB6NLRta5SNEEKIvOzaNSNR3rIlPHBqL/KRHMkRaq3DlFLNgDVAQ4yaTo/lxLYyy80NFi40io09eM7v4gLNmhlZ1NdeS/66EPnR9u3bzY+LFCmS5HmJEiWSPC9TpkyS5xUrVkzy/OGHH87QNosVK2Z+bGNjY35uY2PDPdOQj2klFxIvb2tra14msZSWB5g9ezZffvklAOvXr0drnewH/pkzZ5g+fTp79+6lXLly+Pn5mVsZAZQsWTLD23uQn58fq1evxtPTk+Dg4CTH78E4Ep6nNj1xHGlt/9ChQ1SoUIELFy6kGZudnR1vvPEGH3zwQZLpffr0SbF73euvv56kxdmDqlatmmT/zp07h6+vLxUrViQ6Opp79+5hZ2fHuXPncHR0NC/z119/JVnG0dGRq1evpjg9sxJ/1ooUKWI+lgmfPa01rq6u/Pbbb8mWTeu9S/yZTHgvYmNj8fb2TjGOJUuW4OLikupxeNC1a9fo0qUL7733njnBCMbx6tWrFwA9evRgyJAhae6/vb09vr6+bNy4kZCQEPr16wfAjBkzqFKlCgcOHOD+/fvY29ubl3nw8+7t7U1sbGyydU+fPp22bdtSpUoVoqKicHBwICoqKt2ufYmdPn2aM2fOmFs1nTt3joYNG7Jnz54M/38RQmROsWLw4YfQuzfMnw8vvGDtiIQQIm1Tp8I//8DatfKbPD+zaDe6xLTW5wFvYCVG4fBiaS+RO1xdITYWEv2mScLfHw4dgn37cjcuIQobHx8fFi9eDBgJsYoVK/LQQw+lOn/p0qWT/AD28fEhJCSE+Ph4Ll26xM6dO2natCkvv/wy4eHhhIeH4+joSPv27Zk1a5Z5uatXr3Lt2jVKlixJmTJluHjxIj9loFhbvXr1iIyM5NSpUwB88803tGrVKtl8sbGxODg4EBcXZ96/BMuWLeP+/fucPn2aP/74A2dnZwA2b97MlStXuHXrFqtXr6ZFixYpHq+U9vfs2bN89NFH7N+/n59++slciyc1fn5+bNmyJUmrm5CQEPMxS3xLK9EE0KFDBzZt2sTVq1e5evUqmzZtokOHDiilaN26tbm20cKFC3nqqacA6NatG4sWLUJrzf/+9z/KlCmDg4MDjRo14uTJk5w5c4a7d++ydOlScyu1WbNmJXkPs8PZ2ZlLly6Zk01xcXEcMfWtTuu9S0lCy6aUbvXr10/zOCR29+5devTowaBBg+jdu3eS17p3787PP/8MwI4dO8wt6/bs2ZPq+9O3b18WLFjArl27zK2zYmJicHBwwMbGhm+++SbNYuC7du1KcZ/atm0LGO9hwsiDqe1Tatzd3fnnn3+IjIwkMjKSqlWr8vvvv0uiSYgc1quX0ULg3XeNFgNCCJFXRUbCxx/Ds89CkybWjkZkR1aSTX+abjfTm1FrfUtr/TQwBSPhZHVpFQkH6NMHihc3WjcJIXJOUFAQYWFheHh4EBgYaP7xmpoKFSrQokUL3NzcCAgIoEePHnh4eODp6UmbNm348MMPU/zB+s4773D16lXc3Nzw9PRk27ZteHp60qBBA1xdXfH3908xufMge3t7FixYQO/evXF3d8fGxoZhw4Ylm2/SpEk0a9aMdu3aUa9evSSvOTs706pVKzp16sTcuXPNrUtatmzJwIED8fLyolevXjRu3DjZelPa3ypVqvDcc88xffp0HB0dmT9/PkOHDk3SSutBRYsWZcSIEZmqs7N3716qVq3KsmXLePHFF3E1De1Zvnx53n33XZo0aUKTJk0YN26cuSD0Bx98wMcff0zt2rW5fPkyz5kqO3bu3JmaNWtSu3Ztnn/+efMIg3Z2dsyaNYsOHTrg4uLCM888Y95ORESEuZthdhUtWpTly5czduxYPD098fLy4tdffwXSfu+yKrXjEBYWxtChQwGjS+fOnTsJDg4210dK6J4XGBjIihUrcHd358033+Srr74C4M8//6R48eIpbrN9+/bs3LmTtm3bUrRoUQBeeuklFi5cSPPmzTlx4kSKrfcyKjAwkM2bN1OnTh02b95srmF14cIFOnfubJ6vX79+PPbYYxw/fpyqVaumOBKfECJ3KGX8ePvnH3j/fWtHI4QQqQsMBBsb+V9VEKiMdg3J9oaU8gLKAGitd+T09hwdHXVKXUpiYoxROYKCYNy4lJcdOBB+/NEoFJ7KubxIZPv27fj6+lo7jEIhI8f62LFjuLi45E5ABVxsbCylS5e2yLr8/Pzo2rVrkqLjYIxGFxYWZrGWO/lVWse6a9eurFy50pw4SRAUFESpUqUYPXp0boSYpwQEBDBw4EBznbHMsuRn25IiIyPp2rUrh1O4IpTS/zal1D6tdfLsrLAaZ2dnnZVRL0XqLHmeNWgQfP+9UXTXyckiq8x35LzVshJG0U08sq/InsL8Gf31V2OE+HHjwPTRsojCfExzSkbOwXKsG92DtNbhWusduZFoSkuZMuDhAaGhqc/j728kpR4Y9VwIIYQVrF27NlmiCaBUqVLMmzePcaldOSjApk2bluVEU161a9cunnzySSpWrGjtUIQosKZMMVoMjB1r7UiEECKp+/dh1ChwcICAAGtHIywhXwwiqJSyB3Zi1H2yA5ZrrbOcPm/Z0igSfu9eysMotmoFNWrAggXQv39WtyKEEP8JDg5Ocbqfnx9+fn65GktBMXr06ELZqqmg8vb25tChQ9YOQzzA0udgwrqqVjV+xE2caAyG8/jj1o5ICCEMS5fCnj3Gb/BSpawdjbCEXGvZlE13gDZaa0/AC+iolGqe9iKpa9kSrl+HAwdSft3GBoYMga1bjQJlQuQ3udU9VgghcoP8T7Mqi56DCesbM8ZoOTBqlNGSQAghrO3mTaNWU8OGRndfUTDki2STNlw3PS1iumX5zLNlS+M+ra50gwcb9+nULBYiz7G3t+fy5cvy40wIUSBorbl8+bK5oL7IXZY+BxPWV7Kk0Z1uzx747jtrRyOEEDBjhjFa/McfGw0/RMGQL7rRASilbIF9QG1gttY62fjeSqkXgBcAHBwc2L59e6rrq1KlOatWXcPT82iq8zRq5MGcOSXw9v6ffOjTcP369TSPtbCcjBxrpRQlS5bkr7/+yp2gCjCtNUrliYE0Czw51rkrvx3v+Ph4bty4wdmzZ60dSqGU3jlY4vOvSpUqyTmBheXEedajj0KdOo0YObIo5cvvpnjxwtPESc5bc4YcU8spbJ/RS5eK8d57TfH2voLWR8iJXS9sxzSvyLXR6CxFKVUWWAW8qrVOPlyNSWqj0SUYOBA2bzZGnEvtfHvpUujXD7ZsgSeeyF7cBZlU9889cqxzlxzv3CPHOncVlOMto9Hlroycg8lodJaXU3+vv/xitPZ/+2147z2Lrz7PKij///IKGY3O8grbZ3TAAFixAo4dM+om54TCdkxzQ54ajc5StNbRwHagY3bW07IlXLwIp0+nPk/37lC2LHz9dXa2JIQQQgiR/1nqHEzkDS1awLPPwvTp8Mcf1o5GCFEYhYbCkiXGwAU5lWgS1pMvkk1KqUqmq2kopYoDbYGI7KwzI3Wb7O2N0ehWroQrV7KzNSGEEEKI/CcnzsFE3vHBB8bIzG+8Ye1IhBCFTXw8jBhhjJIZGGjtaEROyBfJJsAB2KaUOgjsBTZrrddmZ4UuLlCuHOzalfZ8w4fD7dtG0TIhhBBCiELG4udgIu9wdIR334XVq2HTJmtHI4QoTObPh/37jdaVJUtaOxqRE/JFgXCt9UGggSXXaWNjtG5Kq2UTgJsbPP00zJxpDBFbvrwloxBCCCGEyLty4hxM5C0jR8JXX8Frr8HBg1CkiLUjEkIUdFevwltvgY8PPPOMtaMROSXTLZuUUj6mW6bSLkqpsgnLZnabOaVlSzhxAv75J+35xo2D2FhjKEYhhBBCCCEKimLFjBb8EREwa5a1oxFCFAbjxxsJp08/TX2wLpH/ZaUb3XZgG9Ayk8s1My37cxa2mSMS6jbt3Jn2fO7u0Lu30brp8uWcj0sIIYQQQojc0qULdOoEQUHGADpCCJFTDh+Gzz+HYcPA09Pa0YicZI2aTXkmd9mkiTHa3I8/pj/vuHFw44a0bhJCCCGEEAWLUkbrplu3jK4tQgiRE7Q2ioI/9BBMnGjtaEROy81kU0KSSefiNtNUpAh06wY//AB376Y9r5ub0brp00/h339zJz4hhBBCCCFyg7OzUZ/066/ht9+sHY0QoiAKCYFt22DyZKhQwdrRiJyWm8mmiqb7G7m4zXT16gXR0bB9e/rzJrRu+uijnI5KCCGEEEKI3PXuu8Yw5MOHw7171o5GCFGQXLsGr78OjRvDCy9YOxqRG3Il2aSUKgYMNj2NzI1tZlS7dsZQiytXpj+vq6tRLf+zz6R1kxBCCCGEKFhKlYJPPoEDB2D2bGtHI4QoSMaPh7//Nuo12dpaOxqRG9JMNimlBiulfk58S/Tyew++lsJtm1JqD3AJaIPRhW5rDu5PphUvDp07w+rVEB+f/vzjxsHNmzB9eo6HJoQQQgghRK7q2RM6djRaOUVFWTsaIURBcOCAUY7mxReNusmicLBL53UnwJfkdZYU4JqJ7STUa/oHyHNpmp49Ydkyo396y3TG2KtfH/r0MYaGfeMNqFQpd2IUQgghhBAipylltOJ3czPOdZcssXZEQoj87P59eOklKF/eqNUkCo+MdqNTiW4pTUvtBnAdOAjMABpqrS9kP2zL6twZihbNWFc6kNZNQgghhBCi4KpdG8aOhe++g59/Tn9+IYRIzcKF8Ouv8OGHRsJJFB5pJpu01hO01jaJbwkvAd0ffC2Fm63WuozW2ktr/UZeTDSBMfRi+/ZGsklnYKw8Fxfo189o3XTxYs7HJ4QQQgghRG4KDISaNeHll9MftVkIIVJy5QqMGQMtWsDgwenPLwqWrBYIV+nPkr/07Alnz8Lvv2ds/nHjIC7OqKgvhBBCCCFEQVK8uNGdLiICPv7Y2tEIIfKjt96Cq1eNouA2uTI0mchLMv2WJ2q19ENOBGQtTz5pVMXPaFc6Z2d4+22jH/vatTkbmxBCCCGEELmtc2fo0QMmToQzZ6wdjRAiP/ntN5g3D159FTw8rB2NsAbJL5pUrAitWmU82QTw5ptG8cRhwyAmJudiE0IIIYQQwhpmzjQuyA4fnrFyE0IIERcHL7wAjzxiJKtF4STJpkR69jSaCh8+nLH5ixaF+fONYWHHjs3Z2IQQQgghhMht1aoZI0ht3AhLl1o7GiFEfjB9uvGbevZsKF3a2tEIa7HL7AJKqXHZ3ajWOk/mN595xhji9fPPjVtGNG0Ko0bBRx9B377g65ujIQohhBBCCJGrXn4Zvv0WRo6EDh1kRCkhROpOnTJaM/XqBd26WTsaYU2ZTjYBQRij0WVHnkw2VaoE/fsbwzNOmQJly2ZsuYkTYfVqGDoUDh6EEiVyMkohhBBCCCFyj60tfPklNGpkjCz11VfWjkgIkRdpbZSYKVoUPv3U2tEIa8vOaHRZveVpI0bAzZtG97iMKlHC+NI9fdoYpU4IIYQQQoiCxNPT6AEwfz7s3GntaIQQedG338LWrTB1Kjg6WjsaYW1ZadnUOgPz2AAVgWbAIKACsBSYl4Xt5SovL/DxgVmzjKbCtrYZW87XF158EWbMMLrjNW2ag0EKIYQQQgiRy8aPh2XLjMK/Bw5AsWLWjkgIkVf8+y+8/jo89pjxu1iITLds0lrvyMBtm9Z6mdZ6NFAH2AT0BXy01jssvROW9tprEBkJP/6YueU++AAcHMDfH+7ezZHQhBBCCCGEsIoSJWDOHDh+HN5/39rRCCHyktGjIToa5s0DGxmGTJALo9FprWOAXsAFYLxS6rGc3mZ2desGjz6a+X6mZcrAF1/AkSNGzSchhBBCCCEKkg4djBqnU6YY57xCCLFli1H3OCAA3NysHY3IK3Il56i1vgksMG3vldzYZnbY2cErr8C2bUbB78zo0uW/L+BDh3ImPiGEEEIIIazlk0+Mi6zPPQfx8daORghhTdevGwNlOTvDu+9aOxqRl+RmA7eEax8tc3GbWfbcc1C8OHz2WeaXnTnT+AIeNMgoNi6EEEIIIURBUamScY68e7dx3iuEKLzefBP+/NMYPKB4cWtHI/KS3Ew2FTXdV87FbWZZ+fJGsujbb41iZ5lRsSIsWGAUThwyxBgCUgghhBBCiIKiTx+j9MTbb8PJk9aORghhDbt2GQNrjRgBLVpYOxqR1+RmsqmD6T4mF7eZLa++Crdvw1dfZX7Zrl2NIR+//x4mTbJ8bEIIIYQQQliLUkax8GLFjC409+9bOyIhRG66dcvoDVSjBkyebO1oRF6UK8kmpdTLQD9AA7tzY5uW4OoKTzwBs2dDXFzmlw8IMFpHjR8Py5dbPj4hhBBCCCGsxdERZsyAnTth7lxrRyOEyE3jxxutGr/8EkqWtHY0Ii+yy+wCSqlxGZy1KOAI+ALVAYWRbMpCFSTref11o+j3vHnw8suZW1YpY3S6kyeNpFPNmtCwYc7EKYQQQgghRG7z84OlS2HsWOOcuXp1a0ckhMhpe/bARx/BCy8YjTOESEmmk01AEEbSKDOU6X6i1npLFrZpNZ06QevWMG4c9Otn1HLKDHt7WLkSmjaFp54y/jAdHHImViGEEEIIIXKTUsZFWTc344fnhg3GNCFEwXTnDvj7Gy0bP/zQ2tGIvCyr3ehUJm5xwAagrdZ6QnYDzm1KGcO7RkfDxIlZW8fDD8MPP8CVK9Cjh1EHSgghhBBCiIKgenX44APYtClrtU6FEPnHhAlw5IjRg6dMGWtHI/KyrLRsap3B+e4A0cAprfW9LGwnz/DwMAofzp4Nw4ZBvXqZX4eXF3zzDfTqZazrm2/kqo8QQgghhCgYhg2DFSuMEhRt2xpFg4UQBcv//mcklv39oXNna0cj8rpMJ5u01jtyIpC8btIk+O47GD0a1q7N2jp69jTW8+67RlPjwEDLxiiEEEIIIYQ12NjAggXg7m7Ucdq2zZgmhCgYbt6EwYOhWjVjYAAh0iNfARlUubKRJFq3DjZuzPp63n4b+vaFt96CNWssF58QQgghhBDW9OijMHOmMTrdzJnWjkYIYUmBgXDihJFUfugha0cj8gNJNmXCiBFQqxaMGgX3stgxUCn4+mto1AgGDICDBy0boxBCCCGEENYyeDB06wZvvgnHjlk7GiGEJWzdCp99Zvwebp3Rojqi0Mt2skkZmiqlXlZKTVZKzTTdv2yaXmAqExUrBtOnG1+cX3yR9fUUL260aipTxhgi9uRJy8UohBBCCCGEtSSMTle6NAwaBHFx1o5ICJEdMTFGjaa6deH9960djchPspxsUkrZKKVGAZHAb8CnQCDwiun+U9P0SKXUSKVUdrZVTSm1TSl1TCl1RCn1WlbXlV1PPWVkc8eNg6tXs74eR0dYv94Ymc7Hx6joL4QQQgiRl+SlczCRf1SpAnPmQFiY/DgVIr8bNQrOnYNFi6BECWtHI/KTLCWAlFLlgVBgOlAVUGncqgEfAaFKqXJZjPMe8IbW2gVoDryslKqfxXVli1JGQbToaJg4MXvr8vSEHaZy676+sH9/dqMTQgghhLCoPHMOJvKXp5+G/v2NwXHCwqwdjRAiK374wajR9Oab0KyZtaMR+U2mk02mFko/YZxwKOA+sB4YDXQH2pnuRwPrME5SFNAMWJ+VFk5a6yit9e+mx7HAMeCRzK7HUjw9YehQmDULDh/O3rrq1zeKKBYvDm3awO7dlolRCCGEECK78to5mMhfZs2Chx826pTeuGHtaIQQmREVBc89B15eRq8eITJLaa0zt4BSw4DPAQ0cBfpqrVPtBGa6+rUUcDMt85LWOssVj5RSTsBOwE1rfe2B114AXgBwcHBotGTJkqxuJl1XrxbhueeaUKZMHHPm7MPe/n621vf338V44w0vrl4twpQph/DyirFQpDnv+vXrlCpVytphFApyrHOXHO/cI8c6dxWU4926det9WuvG1o6jsEjtHCzx+VelSpUaff/999YJsIDK73+v4eFlef11Tzp3jmL06BPWDiffH8+8Zoepm0arVq2sHEnBkRc+o/fvw9ixHhw6VIZ58/bx6KM3rRpPduWFY1rQZOQcLCvJplDgceAS4Kq1/jcDy1QCDgMVgd+01i0ztdH/1lMK2AFM1lqvTGteR0dHfeHChaxsJsM2b4YOHWDIEJg/P/vru3ABnngCzp6F1auhffvsrzM3bN++HV9fX2uHUSjIsc5dcrxzjxzr3FVQjrdSSpJNuSSj52DOzs76+PHjuRdYIVAQ/l7ffBOmToWVK6FHD+vGUhCOZ14yYcIEAMaPH2/lSAqOvPAZnTEDXn8d5s6FF1+0aigWkReOaUGTkXOwrNRscsFoofRVRhJNAFrrS8BXGN3pstTPXylVBFgBLE4v0ZRb2rWDt96Cr7+Gb7/N/vocHY0aTnXrwpNPGn1khRBCCCGsKS+eg4n8ZcIEaNTIKENx/ry1oxFCpOXAAQgMhG7d4IUXrB2NyM+ykmwqZro/mMnlEuYvktkNKqUUMB84prX+OLPL56SgIPD2hmHDwBIX8ipXhp9/NupC9eoFISHZX6cQQgghRFbk5XMwkX8ULQqLFxujMA8ebHTREULkPbduGYX9y5eHr74yBscSIquykmw6Z7rP7MCHCfOfS3OulLUABgJtlFLhplvnLKzH4uzsYMkSsLeHZ54x/kCzq3x52LIFmjc3/tgXLsz+OoUQQgghsiDPnoOJ/MXZGWbOhK1bjS46Qoi8JyAAjh41fn9WqmTtaER+l5Vk03qM7nCZrSjUAaP73frMblBrHaq1VlprD621l+mW6fXklKpV4Ztv4OBBGDXKMut86CHYsMEYoc7Pz+gvK4QQQgiRm/L6OZjIX557zqjZ9Oab8Pvv1o5GCJHY2rUwe7bxeza/1A4WeVtWkk0zgWtAb6VU14wsoJTqAvQGok3LFzidOsGYMfDFF5br+layJPz4I3TtCsOHw+TJkMl67kIIIYQQQuQJSsGXXxplI/r0gWvX0l9GCJHz/vrL6OLq6QlTplg7GlFQZDrZpLU+i5E4ugasUEq9ZxptLhmlVCWl1CSMopLRQG+t9Z/ZiDdPe+89eOwxeP55OHXKMuu0t4cVK4zudO+8Az17QkyMZdYthBBCCCFEbqpQAb77Dv74wxjlSi6kCmFd9+5Bv35w9y58/73x+1MIS7DL7AJKqa9ND8MBX+BNYIxS6ghwCriJUZ+pNuAK2Caa/1ml1LOprFprrZ/LbDx5SZEisHQpeHkZV2t+/RWKFUt3sXQVLWqMdtekidGPtnFjIwHl4ZH9dQshhBBCCJGbvL1h4kTjQmqbNsaFWiGEdYwbB7/8YhTxr1vX2tGIgiTTySbAD6P2Eonu7QAP0y0xlWge3wysO18nmwAefRSCg+Gpp+C112DOHMtU8VcKRo40Ek3PPGMUD583D55NLXUnhBBCCCFEHvXmm7BjB4wYAc2ayUVUIaxh40Z4/32jnlr//taORhQ0WanZBEYSKfEtpWlpTU9t3gKhWzcYO9ao3zRunGXX3bKlUVCxSRMYOBBefhnu3LHsNoQQQgghhMhJNjbGADtlyxoXUq9ft3ZEQhQuFy4Yvyfd3ODTT60djSiIstKyqYbFoyiA3n8frlwx6jiVKGFcvbGUhx+GLVvgrbdg+nTYtw+WLYNq1Sy3DSGEEEIIIXJSlSpG1522beGll4zh1i3RI0AIkbb4eBgwAG7cMOo0lShh7YhEQZTpZJOpQLhIh1JGF7qbN42kUIkSRrc6SylSBKZNM7rTDRkCDRsaxRbbtrXcNoQQQgghhMhJbdoYPQEmTABfX/D3t3ZEQhR8EybA9u1G+RcXF2tHIwqqrHajExlga2v8AffsadRb+vJLy2+jVy/Yu9cYQrZDB2Ooyvv3Lb8dIYQQQgghcsK77xpJp5deMspFCCFyzrp1MGkS+PnB4MHWjkYUZJlONimlBpluVTO5nGPCspndZn5mZ2e0OOrc2Rje9dtvLb8NZ2fYvdvo7/7229C9O0RHW347QgghhBBCWJqtrXG+XKmScSH1yhVrRyREwfTHH8YAU15e8Pnn1o5GFHRZadkUDCwAGmZyOXfTsl9nYZv5WtGisHw5tG5tZI9XrLD8NkqVgiVLYOZM+OknaNQIDhyw/HaEEEIIIYSwtMqVjfPl8+eNH8PSUl8Iy7p1y0jmgvF7tHhx68YjCj5rdKMrlGX/iheHNWuMGkv9+hnNFy1NKWP42O3b4fZtYxjZqVMhLs7y2xJCCCGEEMKSmjUzRsX66Sejm48QwjK0huHDITzcKMpfs6a1IxKFQW4mmxK2VWivU5QqBevXg4eHkVXeujVnttOihdHfvWtXYxS8Jk2Muk5CCCGEEELkZS++aPQEmDDBOG8WQmTfvHnGaI/jxxvlXYTIDbmZbHIw3cfm4jbznDJlYONGqFMHunWDX37Jme1UqWI0RV61Ci5dMlpUvf66MbylEEIIIYQQeZFSRi0ZDw9jaPY//rB2RELkb7t3w6uvQqdOxsiPQuSWXEk2mYqJDzc9PZ0b28zLKlSAzZuhalVo3x5Wrsy5bXXvDkePGleJZswANzcj2SWEEEIIIUReVKLEfzVOe/SA69etG48Q+dXffxs9ah55xBioykbGohe5KM2Pm1LqNaXUH4lviV6e9+BrKdzOKKX+Ac5iFBTXwE85uD/5xsMPG7WV3NyMfwATJxp9aXNCmTLGFaJdu8DeHjp2NAovXrqUM9sTQgghhBAiO2rVgqVL4fBhY4h2KRguRObcuWMka69ehdWroXx5a0ckCpv0cptlASeguuneyTRdAZUTTUvtVh2oaJpfASeAj7IddQHh4AA7dsDAgUb/2T59crabW8uWRlG4cePg++/BxQW++SbnklxCCCGEEEJkVYcOMG2a0cpJCoYLkXFaw7Bh8L//waJF4Olp7YhEYZResikao1XSn6b7s6bpGriUaFpqtzPAIeAH4DWgsdY6xqJ7kM/Z2xvF2j780Kix5O0Nf/6Zc9srVswouLh/P9StC4MGGS2dzpzJuW0KIYQQQgiRFaNGGeerQUE5W3pCiILkk08gONho0NCrl7WjEYVVmskmrfVMrXWNxLdELz//4Gsp3GpprT211t211p9praU8dQqUgoAAWLsWTp82Ro/79dec3aarK4SGwqxZxrbc3ODjj+HevZzdrhBCCCGEEBmlFHzxBTRrZvQGOHjQ2hEJkbdt2gSjR0PPnlIQXFhXVkqE/Wm63bRwLIVe585GU8fSpaF1ayMbnZNsbODll40C4k88AW+8YYxaFx6es9sVQgghhBAio+ztjRGWy5Y1RnOWuqNCpOzECaM0i5ub0XtGCoILa8r0x09r7WRqtbQlJwLKKTdu3CA2NtbaYaTLxQX27DG60w0ZAq+/nvOtjapVgzVrjDpO585B48bG6HXnz+fsdoUQQgghhMgIBwejyHHC6Fp37lg7IiHylqtXjWSsnZ3x265UKWtHJAq7QpPrLFq0KDExRrmoqKgoK0eTtvLlYcMGePVVmDEDunaF6Oic3aZS0Ls3HDsGL70ECxZA7doQGGj84xJCCCGEEMKamjQxWv7v2gVDh8ogN0IkuHvX6DZ35oxRUN/JydoRCVGIkk1//fUX9evX55VXXsHJyYkdO3ZYO6Q02dnBp5/CvHnw889GP/Vjx3J+u+XKGds9ftxIPn34IdSsCVOnwk3pOCmEEEIIIayob1947z349lujaLgQhZ3WRvJ1+3b4+mvw8bF2REIY7DK7gFLq62xuU2utn8vmOjLt0UcfpWnTpmitGTVqFM2aNQMgNjaW0qVL53Y4Gfb881CvnpGpbtjQGPZ11Ciwtc3Z7daoYQyTOXo0vP02vPmmkYQaPx78/aFIkZzdvhBCCCGEECl56y344w+YONG4KDp4sLUjEsJ6Jk2Cb74x/h4GDLB2NEL8J9PJJsAPyG6j1VxPNtna2lKrVi3u3LnDZ599hq+vL127diU4OBgfHx/mzp2b2yFlmLe3MfLG8OHGqHXLlhnd3OrXz/lte3jAjz8aI9cFBsKwYfDRR8YVpaeflqJzQgghhBAidykFc+fC2bPGhdlHHzUG1xGisPn2W6MxgJ8fvPOOtaMRIqmspgpUJm888DjXKaX44osv+OKLL7h58yblypVj586d+Pn50bFjR27evMmdO3dYunQpd/JgxUEHB2MUjiVL4PRpaNAApkyBuLjc2X7Llkb/+B9/hGLFjFEOmjQxhtaU/vJCCCGEECI3FSkCy5dDnTrQo0fulJsQIi/ZscPocdKmDXzxhZGEFSIvyUqyqUYGbrWAZsAI4BhGkuk70/Sa2Y46G2xtbSlVqhS+vr6Ehobi5+dHbGws1apVY/bs2fTr1489e/YAcOvWLe7fv2/NcJNQCvr1g6NH4amnjO5tzZrBgQO5t/2uXSE83Ohid/kydOgAb7zhiemQCSGEEEIIkSvKloX168HeHjp1ggsXrB2RELnjyBEjyVq7tlEQvGhRa0ckRHKZTjZprc9m4HZGa71Xaz0L8ASCgb7AWK31WQvvQ5aMGjWKEydOULlyZerXr0/ZsmW5fv06mzdv5ty5c6xatYoPP/yQGjVqcDOPVcauXBm+/964mnP+PDRubDSfvHs3d7ZvawsDBxpFxGfOhDNnStKsmTEMbURE7sQghBBCCCFE9eqwbp1xEbRjx5wfwVkIa/vzT+OCv729kWwtW9baEQmRshyvuKO1vgc8D5wEnldKdczpbWZU5cqVAfD09KRFixaULFmStm3b8tlnn/Huu+/i7OzMs88+y4EDB7hx4wavvPIKo0aNsnLU/+nVy2jl1LevURCuUSMIC8u97RcrBiNGwOLFuwkKMrrUuboazTkl6SSEEEIIIXJDo0ZGuYmICOjWDW7dsnZEQuSMf/81Ek3Xr8OGDeDkZO2IhEhdrpR31lrHAwsxutMNz41tZoadnR2LFi3ijTfeAGDatGkcOXIEpRRvvfUWbdu25aWXXsLGxgYbGxsOHTrE/fv3eeaZZ6xeWLxCBWP0gR9/hCtXjG51gYFw+3buxVCiRDzjxxujgrz6Knz3Hbi4wJNPGn2JpaaTEEIIIYTISW3bGsWSQ0ONshP37lk7IiEs68YNo6RJZKTx28/Dw9oRCZG23BxL7JTpvnEubjNLHn/8cQ4cOECXLl2wt7fn5ZdfZtGiRQwbNozhw4fj4eHBRx99RHR0NNHR0URERHDnzh08PT357rvvANBaE5db1bsx/vEcOQJDhsAHH4CXF/z6a65tHoBKleCTT4yRQcaPh//9D3x9oWlTCAmRL30hhBBCCJFznnkGPvsM1qwxRlCWC56ioIiLM0YC37vX+F3l7W3tiIRIX24mm0qb7ivk4jazRCmFh4cHpUqVwtbWlldeeYVPP/0UFxcXKlWqRJcuXXjnnXf44YcfcHd3x8XFhaVLl1K9enVu3rzJunXrOHr0KA899BCrVq0C4Pr160RERHAvBzMuZcvCV1/Bxo1G8+EWLYwrO6dOpbuoRVWuDEFBRn/iuXMhJsbo6le7tpGMio3N3XiEEEIIIUTh8PLL8O67MH++MZiOEPnd/ftGg4ING/7P3n2HR1F1ARz+3fQe0iihhd5776GIIgjSFEGqoIgoojQLCiIIVgQRQakKUhRQUEGKdJDepH30TugppOd+f9zNJqEGSLIkOe/zzLMzm5mds0NIJmfPPRcmTzZDRYXIDDIy2dTG8ng5A8+ZJgoUKMDrr7+OUgpvb28++ugjJkyYgIuLC1WqVKFixYoMHz6c33//nbCwMFq0aMGGDRvo06cPN27cYMSIEaxcuZJSpUqx0VJutH//fsaMGcPly2l/OZo2hX37zC/Y3383Q9peew0uXEjzU92Tqyu88ooZP79oEeTPD/37m8chQ0xzcyGEEEIIIdLS8OHmHvSTT2D0aFtHI8TD09r8HTdrFowaBS+9ZOuIhEi9dE82KaXclFKfAU8DGliX3udMb5UrV6Znz54A5M6dm8mTJzNu3DgAevbsSaFChfj999/54osvOH78OCNHjuTEiRPMmDGD5cuX8/TTT7Np0yaGDBnCkSNHuHDhArNmzaJmzZpcuXIFgHPnznHs2DH0Q9b/enrCxx+bqqZevUwWvEgReP99U2mUkezsoFUrWLfODK1r2hQ++wwKFYJu3WDv3oyNRwghhBBCZF1KwYQJ0LEjvPOOqawXIrPRGt56y4wUGTLELEJkJg+cbFJKTU3l8pNSahVwEXjLcngC8EVavoHHQbVq1WjRogUAHh4ebN26lfHjxwMwbNgwSpYsyalTp+jSpQt+fn6sXbuWS5cucf36dcaMGUPVqlW5efMm3t7ezJ8/n6lTpzJ+/HhKlChhHXb3448/0r9/f2vy6erVq0RHR983tjx54Ntv4cAB07B75EiTdPryy4xtIp6oRg2YNw/+9z8zln7+fNPc7sknYflyGVsvhBBCCCEenb09zJhhZm/u3x8mTbJ1REKkntZmlMrYsdCvn6lqUsrWUQnxYBwe4phumAql1Er8bxED9NFab3vQEyqlpgItgBCtddkHPT6j+fn54ednWlMppdi1a5c1SdSnTx+OHDlCiRIl8Pb25tVXX2XRokVcv36dZcuW0aBBAw4ePMioUaOYNWsWDRo0IH/+/BQqVIjVq1fz448/UqhQISZPnsz69es5fvw4ADNnziQmJsZacRUeHo67uzvK8lOpaFGYMwcGDTKf8Lz9tvnhNXw4dOlifiFnpMKFYdw409tp0iSz3rSpSTwNGADPPw9OThkbkxBCCCFSymz3YEIk5+AAs2dDmzbmQ04XFyhY0NZRCXF/H39shoG+8gp89ZUkmkTm9LDD6NQDLCeA74CKWuupD3m+6cBTD3nsYyEx6ePk5MQ333xD69atAWjYsCHbtm3jhRdeAGD69OkEBAQQEBDAc889R9WqVZk3bx6VK1dm586d9O/fn5dffpm6devywQcfUKJECQYNGsTPP//Mjz/+yPTp09m3bx/NmzenSZMm1vOPHj2aadOmUbmyaSD+88+nCQi4SY8eJsHz22+2qSry9TXJrxMnYOpUM2Ndly5miN3QoWDJpQkhhBDCNqaTye/BRPbm5AS//AJNmkCPHrBqVYCtQxLinubOzc8HH5i/ib79VhJNIvN6mMqmQqncLxq4rrV+5MFaWuu1SqmgR32dx5GjoyNVqlSxbhcqVIh9+/ZZt99//31KlixJjRo1AJg1axYvvvgiFSpUoHr16ixYsIDPPvuMDRs2ULJkSfz8/KhevTodO3bE29sbHx8fBg4cyO+//06RIkU4deoUrVq14t1321CjRk369ZvIyJHePPvsyxQtWpcpU7pQvz5s2rSJggULEhgYmCHXwdnZzLLQrZtJhn39tRny9/HH5uagZ0949lmznxBCCCEyRla+BxPZh4uLmaymWTMYObI0ZcvCc8/ZOiohbvfVV/Ddd0V47jkzo6JdRk7nJUQaUw/bgDqjWW50ltyrhFsp9TLwMkCePHmqzJ49O4Ois53z58+zefNmmjRpgoeHB4sXL+b7779n6tSpuLq6MnToUHbt2sW8efOIjY2lU6dOFC5cmHbt2uHg4MCoUaNo1+451q7dR2hoU6KirlOmTGcOHnyS1q2f5YknniBv3rz06dOHtm3b0rJlSxISEpg7dy5Vq1alWLFihIaGopTCw8PDWsGVFkJCnPnrr9z89VceLl50wcsrlqZNL/D00xcoVCgizc6TmYSHh+Ph4WHrMLINud4ZR651xsoq17thw4bbtdZVbR1HVne/e7Dk918BAQFV5s2bl4HRZX1Z5f/r4+DmTXsGDizNwYO+DBlygCeeCLF1SJnemjVrAGjQoIGNI8n8fv45P5MnF6FOnXMMG/Y/HBwyx9/pmYH8HE17qboH01pnigUIAvaldv88efJoofWhQ4f0Dz/8oGNjY7XWWk+dOlVXrFhRx8XF6ZCQEN24cWNtZ2en4+Li9Pr127Szs5eGfBqW66Cg6RrQPXu+op9//nn98ccf6xIlSuhffvlFA3ro0KH6008/1VOmTNGA/uqrr/TFixf1hQsXdJs2bfTatWu11lqHhobqxYsX64sXL2qttU5ISHig9xAfr/Xff2v93HNaOzpqDVrXqKH1999rHRqattfrcffPP//YOoRsRa53xpFrnbGyyvUGtunH4B4lqy8Pcg9WvHjx+/2ziQeUVf6/Pi7+/HOtDg7WWimtp0+3dTSZ37Bhw/SwYcNsHUam99FH5m+cjh21XrFita3DyXLk52jaS809mBTmZXHFixfnpZdewsHBjJjs3r07O3fuxN7enoCAAH7++Wc2b96Mvb09depUYebM73n55ZZ8910THByaA42ZMuV3ypWbQ/XqTYmMjOSNN94gNDSUoKAgBg0axKRJk/jyyy+JiIggV65cTJgwgQMHDrBy5UoaN27MunXreOaZZ5g3bx6zZ89m/fr1uLu788cffxAVFcWBAwfo3r07hw8fBuDixYssXbqU0NBQAJTSPPEEzJ0L586ZmfTCwqBXLzPbXs+esHmzzGQnhBBCCCHuzdU1nj/+gMaNTQuH77+3dUQiO9Pa9KlN7NE0cybY28sfNSJreORkk1LKSynVTin1mVLqJ6XUb5bHTy3Pe6VFoCJ9BAQEUK1aNev2c889x6RJE3jlFTh0yJ8//1xOw4aHeP99aNmyGuXL/8Rbb32Fp6cn3bt355133sHf35/+/fvTrl07ihcvzt9//83+/fspW7YsW7duZfjw4WzZsoWLFy/SqVMnZs2axauvvsrKlStxdXVl8eLFLF++nJ9++okmTZqwYsUKmjVrxvz585k6dSq//PIL3t7ebN68GTu7q1Srtp7atV/mzz8v0aEDzJ59nFq1/qJMmSi++gouXIhL/CRWCCGEEEKIFNzcYPFieOopePll04RZiIymNQwZYnrU9uwJ06Zl/AzhQqSnh2kQDoBSyhn4CHgVcL/HrhFKqW+BD7XW0Q95rp+BYMBfKXXG8lpTHua1ROrZ2UGzZopmzTz57z/TtPvHH+uxZIlp4t2/v+Ljj0exdu1qAEqUKMGuXbsIDw8HoF27dtYeTtWqVaNkyZLs3bsXd3d3Pv/8czZu3MiPP/7Ijh07OHPmDBMmTGDDhg34+Piwfv16pk2bxo8//sjLL79Mt27dmDhxIgsXLqRPnz4sXvw73t5enDy5m7ffbsDHHw8lOnoab70FAwdeISFhCBMmbKFJEy+2bv2X+fPnM2/ePBwdHdm0aRP79++nR48eKKW4fPky8fHx5MqVy1aXWgghhHgsyT2YyKpcXGDhQmjfHl57zVTNDxokM3+JjBEfD2+8YRKdr74K33wjzcBF1vNQySallC+wEigP3O9HsgcwEGiqlGqstb72oOfTWr/w4FGKtFSmDEyeDKNGwaRJMGECPP00lCwJzZoFUq0auLuDq6srrq6u1uPatm1rXff09GTRokXW7dq1a3Pw4EHi4+MBeO2118iRIwe5c+emTp06VKlShStXrlCyZElee+011q5dy5w5c9Bac+HCBUaPHs3KlSspU6YMGzduZMSIEZw6tYKyZftw8OAg+vQZjJ3dLqpU6Uh4+CnatGlDSEgIZcuWZe7cuZw6dQoHBwcuXbrEzJkz+emnn8iRIwcrV65kw4YNzJo1C09PT37//XfOnj1L//79Adi7dy+xsbFUrlwZgISEBOzkt4MQQogsSO7BRFbm7Ay//AJdu5oKk0uX4NNP5Y9+kb5iYsyQublzYcAA8z0nSU6RFT1sZdOvQAXL+k3gZ+Bv4DAQjkkwFQOaAi9gKp8qAL8AjR8hXmFj/v7w3nswcCDMn2+m5/zqq+JMnw6vvGI+GcqXL/Wv5+fnl2K7U6dO1nUXFxcWLlxo3a5fvz6RkZHExsYCMHDgQMqWLUuhQoUoU6YMv/zyC3369KFduyY88UQLhg9fxuefd2LbtlJoPZaQkA+5cuUjmjTpxKFDH9G9e3eWL1/OkCFDGDduHP379+fy5ct07NiR/PnzU7NmTZycnChatChHjx7lr7/+Im/evISEhHD69Gnat29PhQoV+OGHH7hy5QrDhw8nKCiI7y2D/4cNG4aLiwuzZ8/G1dWVNm3aAHDgwAE8PDzInz//Q/4rCCGEEEKItODkBLNmmXvcL76Ay5dNHydHR1tHJrKi8HBo0waWLzdJpoEDbR2REOnngZNNSqlngQaABrYD7bTWp+6w627gF6XUCEySqRoQrJRqpbX+7eFDFo8DJyfo1Ak6doRvvtnJ6tWV+PRT+Pxz8wO0e3do0gQcHnqg5p3Z2dnh7OwMgL29PS1atLB+zc3NjenTp1u3R416klGjLhMSAr/+Cj///D7r1j3PqFE5+fNPf1q2nEvNmjPp0OEJSpcuTbFixXj//ffp0KED9erV46OPPmLEiBF8/vnnPPXUUzRv3pzp06czadIkypcvT7Nmzbh+/TpDhgwhf/78NG/enNy5c1OrVi1y5MiBp6cntWvX5saNG+TNm5eRI0fStGlTlixZQlBQECVLlqRFixYMHjyYcuXK0bZtW8qVK8cnn3xCmTJl6NGjB87OzsycOZOiRYtSu3ZtAA4dOoS/v/9tiTohhBBCCPHg7Oxg3DjImdM0ar5yxVSduLnZOjKRlVy+bEaG7NgBU6eav5eEyMoeJhWQWE59EWiqtb5+r5211qeVUk8B+4GcQCdAkk1ZhFJQrtwNXn8djh+H8eNh+nSYNw9y5zYJqS5doHx528WYM6cZC/3qq46cPVua+fPNDcRHH/kA/fj7b3j+eXjuuVqsXLnSetwHH3zA0KFDAVBKMW/ePHbt2kW5cuXw8fFh69atTJ8+nVdeeYV8+fLh4ODApEmT+OijjyhcuDBhYWHMnj2bXbt2kStXLpo2bcro0aOZOXMm/v7+tGzZks8//5x+/fpRsGBBmjVrRuHChcmVKxdaa1xcXGjWrBn//vsvLVu25LXXXqNKlSrMmzePDh064OHhwQsvvEDr1q3p0aMHVatWpUaNGvTt25d27drxxBNP4OnpycSJE6lfvz4VK1YkPj6effv2UaBAAXx8fGz0LyKEEEII8XhRyswKFhAAffpA06amibjcLom0cOqU+Z46eRIWLICWLW0dkRDp72FGJNfAVDVNvV+iKZGlT9MPmP5ONR7inCITKFQIvvwSzp83lUQ1apim4hUqmOWLL8zXbClvXnjzTdi0ySTHxowx46bfegvy54f69U2jvpAQs79Sytrk3MvLi/r161uTNEWLFuXjjz8mf/78KKV4+eWX2b59O8WLF8fBwYFZs2YRGxtLuXLlyJ07NytWrGDVqlW0b9+eZs2asWXLFj788ENGjhxJnz59+OSTT8iTJw/Lly9nxIgRNG/enOXLl7Njxw5ef/11wsLCmDJlCpMnT6ZBgwaMGzeO6tWr07JlS9zc3GjVqhV169bl4MGD/Pvvv/j5+dGmTRv69evHDz/8QMGCBRk2bBgVK1Zk9OjRvPDCCyxatIgcOXLwxRdfMH36dA4fPkyrVq1YvHgxhw8f5sKFC3z++eccPnwYgPDwcDZv3sz169cB0FrLzH9CCCGEyDJ69zYfmm7dCrVqwdGjto5IZHZbt0L16nDhgplkSRJNIrt4mMqmnJbHvQ943D7LY8BDnFNkIs7OZihdmzamXHTuXJg50zTAGzTIZPU7d4Znn7VteXJQkIln0CA4fNjE+fPPpu/U669Do0bQoQO0bg2+vg93Dodk4whz5sxJzpw5rduVKlWiUqVK1u0hQ4YwZMgQANzd3VmyZAlaa5RSFCxYkPXr17NgwQI6dOhgiT+ILVu20L9/f8LDw4mKiuLAgQPW5ud79+7lf//7H5cvX2b//v0sWbKEKVOm8Ouvv3L16lXGjx/PmjVr6Nq1K2FhYQwYMICSJUvi7OzMqlWraNmyJc2bN+ePP/7gxIkTzJw5kx49evD111/z/vvvs3btWtq1a0f//v358ssvuXr1Kg0bNmTo0KEMHjwYDw8PAgIC+PHHH+nRowf58+fnypUr7Nq1i3r16uHl5UVkZCTR0dF4eXlJk3UhhBBCPBbatYNcucy9ao0asGgR1K1r66hEZrRgAbz4ohlpsXKlmXRJiOziYZJNMYAz4Hq/HW+RuH/MQ5xTZFL+/iZ589prcPAg/Pgj/PSTGV7n6Wl+mXfpYiqKbJlrKF7clE6//z7s22cST3PmQM+eZghe06ZmqN0zz0COHBkXl0o2NUXu3LkpXbq0dbtOnTrUqVMHAA8PD4YNG2b9WoECBVi+fLl1u169euzevZuwsDDyWTq4ly9fnkuXLtG8eXMiIyNxd3cnLi6Od955h2PHjnHo0CF8fHy4ceMGW7ZsYdGiRfz777/8+eefHDt2jG3bthETE8OQIUM4fvw4Y8eOZenSpbi4uLB48WImTZpEs2bN+Pvvv7l48SIzZsygS5cuTJ8+nX79+rF48WLatWvHp59+ypgxY9ixYwf16tVj4sSJDBs2jIiICPLmzcv8+fN57bXXcHV1JTIykh07dtChQwdcXFwICQnh+vXrFC1aVJJVQgghhEgz9erB5s3QvDk0bgzTpplepUKkhtaml+3gwaaq6bffTAJTiOzkYZJNp4HSQENg+gMc1yjZ8SIbKlkSRo6EESNg7VpT7TR/vvnlXaCAyfp37mz2sxXTg8osI0aYBn5z5pjk0x9/mIbn9eub8teWLc3QwczC29sbb29v63b16tWt666urgxMNh1G4cKF+fPPP63bTZo04cyZM8THx2Nvbw9A48aNSUhIoHTp0mitqVixIj4+PrRs2ZJTp04RGhpKjRo1+OOPP1izZg3r16/Hw8ODf//9lx07djBp0iSOHTvGl19+ycmTJ/nll1+4efMmJUqUYN68efzyyy80btyYvXv3cunSJf7880+eeOIJlixZwm+//cb69etp2rQps2fP5s0332Tbtm2ULVuWX375hQ8//JBTp06RK1cu1q9fz6uvvoqTkxMRERHs37+fDh064Orqyrlz57hx4wb16tUDICwsDAcHB1xdHzSXLoQQQoisplgxk3Bq08Z8UPq//5kG4jJNvbiX2FjzQfv330P79jBjBsitpciOHibZtBIoA7yglJqstd5wvwOUUrUxjcW15XiRjdnZQXCwWb75xmT6Z86E0aNh1CiT/X/xRTN8zVKEYxNKQZUqZhkzBv79F37/3SxvvmmWcuWSEk9Vq9q2OisjJCaaAEomywoqpejatat1u0CBAsyePdu6HRwcbO37BCbR1aVLFxISEvDw8ACgbdu2BAQEULJkSUJDQylZsiTBwcE0atSIf//9l8uXL9O6dWu+/vprVq5cyZo1a6zn2bRpE+vXr6d48eJ07dqVhQsXsmrVKlq3bs2NGzcYPHgwu3bton79+hw+fJjp06dz5swZqlWrxuHDh8mZMydhYWEULlyYw4cPU6NGDaKjo4mIiGDs2LFUrVoVNzc3oqOjiY+Pp1KlShQsWJATJ04AULVqVby9vTlz5gzOzs4UKFAgvf4JhBBCCJGBfH3h77+hVy8YNgwOHIApU8Dd3daRicfRpUtmNMQ//8C775oPr7P63wdC3M3DJJu+A14D7IG/lFIDMM3C427dUSllD3QDvrDsH2c5XgjA9Gx64QWznD8Ps2eboXZvvGGWqlWhVSuzlC1ru0+S7OxMk8hateCTT8wnW4sXm8TTJ5+Yiq08ecwwu5YtTb8n+QTj3txuadiVWF0Ephn7Rx99ZN2uUaMGa9eutW4XLlyYXr16Wbeff/55hg4diouLC56enkRHR7Ny5UpKlSpFoUKF2LNnD9OnT+fFF1+kXLlyzJo1i8mTJ9O9e3eKFy/OzJkz+emnn+jQoQPt27dn+vTprFu3jqeeeooiRYrw1VdfcfXqVRo3boyLiwujR48mIiKC8uXL4+Pjw+bNm/Hy8iIwMBB/f3/2799P/vz5iY+PJygoiNDQUAoVKkRERARFixYlNjaW4sWLc/78eYKCgvD29qZMmTIcPHiQ3LlzU6BAATw9Pbl69Sqenp64uLik47+EEEIIIe7FycnMtlyqlEkg7N8PCxdCkSK2jkw8TrZtM1VwISHm+yXZ57BCZEvqYWaSUkoNB4ZiKpUArgCrgcNABOAOFAOCAX/MLHQaGKG1HvaIMadKYGCgPnfuXEacKttbvXo1wcHBafqaBw6YiqdFi0xFEZgha61amWaNdeqYIW2PgytX4K+/TLxLl0J4uEmiNW1qEk8tWphpdNNCelxrcbu4uDguX77M7t27efLJJ7ly5QobNmygVq1aBAQEsGTJElasWEGPHj0ICAhg/PjxrF27lt69e5M3b15Gjx7N1q1befnllylYsCCjR4/m1KlTtGjRguLFi/Pll18CULBgQWrWrMncuXMB00S+cePG/Pzzz+TPn5+IiAiaN2/OypUrKV26NOfPn6dly5bs2LGDChUqcO7cOYKDgzl58iSVKlXi9OnTVKhQgfj4eMqXL8+JEyfIly8fvr6+ODo6Ain7gD1O5Hs7Y2WV662U2q61rmrrOESSEiVK6EOHDtk6jCwlq/x/fVw86vX8+28zgYzW5kPSZs3SLrbMaPjw4QB8+OGHNo7EtqZPNzMZ5splmoJXqfLwryX/59OeXNO0l5p7sIf6c11r/aFSygkYhEkk+QNt7xYHkACMyahEk8j8SpUyy5AhpuJp8WKTzJk4EcaONSXNLVqY5NOTT9q2lNnPzwz7e/FFiI6G1auThtstWmSqsWrXNomnVq2gRAnbxSpSx8HBgdy5c3Pw4EEA/Pz8aJlsntoWLVrQokUL6/aoUaNSHN+wYcMU2z169ODq1asEBATg4OBAnz592LNnD0899RQATzzxBP/99x/PP/88zs7OuLq6cvToUdq3b0+uXLk4cOAAO3fupHnz5vj4+LB161aWLVtG8eLF8fX1Zdy4cSil0Frz8ssvM3nyZJycnIiJieGVV15h0qRJlC5dmsOHD9OvXz/mzZtHzZo1uXjxIm3btmXp0qXUq1eP0NBQatWqxZ49e6hWrRrR0dEUKVKEyMhIihcvTmxsLF5eXtbElRBCCJHdNG2aVMHSvDl89JGpdpKhUtlTTAz07w/ffmtGNsyZk3YfMgthc3ERcPMcRJ6DyPOWR8uSCg9dG6K1fkcp9TswEGiGmaHuVtHAH8BnWut/H/ZcInvLkwdeftks4eGwbJlJ4ixebHo9OTtDkyam4umZZ2w704Ozs0l+Pfmk6Ue1c2dS4mnwYLMUL24ST08/bSq0nJxsF6/IGM7OzuTJk8e6XaRIEYokq71/6aWXUuw/ZcqUFNvt2rVLsf36669z48YNcuXKRXx8PJ07d+bs2bPUrVuXiIgIChUqRHh4ODVq1MDNzY0LFy6glKJVq1YULlwYZ2dn9u/fj7+/P1euXOGff/5h9+7dXLp0iZ49ezJx4kTy58/P6dOnefXVV5k4cSKFChXi+PHj9O7dm++//57g4GBOnTrFiy++yLRp02jRogVhYWE0aNCAhQsX8swzz2BnZ0eRIkXYunUrjRs3xsPDAw8PD27evEmRIkUe2yorIYQQ4l4KF4aNG00fp6FDTRX+tGlmFmaRfZw4YVqBbN4MAwaY1hqPy8gLIe4p7ubtyaM7bceG3n6svQu4BqbqNI/030FrvQloY6lyqgDkATyBMOA8sFtrHfMo5xAiOQ8PaNvWLLGxsH69qXj67TczW5xSULNmUp8nW89sV7myWYYNg1Onkvo8ff21mQ7V3R0aNjTJqaeegqJFbRevyDxcXFysfZzs7e2pWrUqVauaKlY/Pz+GDBmSYv/GjRun2O7Zs2eK7SFDhnDz5k18fX25efMmrVq1QmuNv7+/dXa+XLly4eLiQt68edm9ezcFChQgICAAd3d3wsPD2bdvH0ePHsXLy4slS5Zw7tw5tm/fTvfu3Zk2bRrVqlVj69atdO3alZkzZ1KrVi2OHj1K69at+fHHH6lVqxYTJkygSpUq/Pjjj7zwwgt4eXmRJ08elixZQtu2bcmfPz/29vbs37+f4OBgcufOTXR0NA4ODima1wshhBDpzc0NfvrJ3HcOGAAVKphhdQ0a2DoykRF++QV69jTDKefNM7POCWFz8VEpE0d3q0qKvXH7sXbOJonkFgje5SD3k2bdJY95dLUsjt6WRsr3/9A4TXKvloTS1rR4LSFSy9HRJGoaNoSvvoI9e5IST0OGmKV4cZPEadLE/PL38rJdvAUKmGlQX3sNwsJg1SpTpbVsGSxZYvYpXDipMqpRI/D0tF28IvtwdXXF1dLR3t3dnSeffDLF1ytWrJhiu23blKOm33777RTbH3/8MeHh4cTGxuLo6EjDhg3x9fXl+vXr5LNMMVmyZEmOHz9OlSpVWL9+PQ4ODvz3338ULlyYU6dO8c8//7Bq1SratGnDwoULOXbsGOvXr6dVq1b8/vvv1K1blx07dtCwYUOWLFlC69atiY6OJn/+/CxcuJDu3buTM2dOEhIS+PPPP3n55ZcpVaoUp06dYvv27XTp0oXChQtz/Phxbty4QYkSJazXQAghhEgNpeD1102leocO5t7t/fdNtZNUuGRNkZFm2NykSWYG7Z9/NvfvQqSr+OhkCaNbK5CSPRdz7fZj7ZzANY9JFHmXhtxNLNt5wDWvJYmUB5x80nw2LvkxKLIEpcwnShUqwAcfwOnTScPXJk+GcePA3t78UmjSxCw1a9puCJunZ1L1FcCRI0mJp5kzTW8qBwfT6ymx6umWv/eFeGx5eXnhlSyz27lz5xRfb3DLx749e/ZM0bhxzJgxxMXFcePGDby9vTl16hTXr1/n1KlTFClShDp16uDt7U3NmjWpWLEiCQkJ5M+fn927d1tn79u5cyfbtm2jUqVKrF27ltjYWA4fPkzOnDnZt28fK1eu5Nq1a8TFxXHo0CHat29Pzpw52bJlC/v27aN///6UL1+epUuXsnPnToYOHUq1atX4/fffOXToEG+99RaFChVi586dXL58mZo1a+Lp6UnipBsyRFAIIbKPypVh+3bo29f0cPrnH5g1C/Lnt3VkIi399x88/7x5HDQIPv7YfPgtxEOLj4GoC3dOICVWJUWdh+grtx+rHJISRZ7FIWdwUiVSYoWSayA4+dpsSndJNoksKX/+pCqiqCjYtAlWrICVK2HkSBgxwpQ/169vEk+NG0P58rZr7li0qFlee800GtywISn59N57ZgkIgAoVSnH6tGlOacveVEKkNwcHB/z8/AAobPnIsHLlygCUK1cuxb4dO3ZMsf3ZZ5+htebmzZu4W2YP+O+//zh37hxFihTh2LFjHDt2jJCQEAoXLsyuXbu4du0aZ8+epWrVqri4uLB69Wr+/vtvYmNjOXfuHJ988gmOjo7s27eP8PBwtm/fTr58+ViyZAmRkZF07tyZChUqMGbMGK5cucIXX3xBrVq1ePfdd7l06RI//fQTpUuX5sMPP+Tq1asMHz4cf39/1q1bR1hYGI0bN8bV1ZXo6GjA9PkSQgiReXh6wowZ5r7y1VehXDnTNqFLF5v9nSfSSHw8fPmlqVjz9jazT99SBC5ESgmxEHXRJIyi7jGkLfrS7ccqe3DJbRJFnkUgZ72kIWyJFUqugeDsB+rxnpkg6yebbp4zWT2Rbbm4JA23GzkSrl83M8atXGkSUAMGmP38/U3SqXFjc6NQqJBt4nVySop39Gi4cAGWL08cbufDihVmv4oVk4bc1a5tmpMLIQyllDXRBFCmTBnKlCkDJCWvEt2arAKIjIzk5s2b1oTX2rVriYmJoXTp0kRHRzNnzhycnZ154oknuHnzJsuWLWP//v00atSI2NhYvvnmG9avX8///vc/HB0dadmyJdWrV2f+/PkAnD17lpo1a/Lee+8BMHr0aEqXLk337t25cuUKW7ZsIVeuXPTs2ZMLFy6wbt067OzsmDhxIpcuXeLjjz/G0dGR48ePc+nSJapXr46dnR1aa6mqEkIIG+rcGWrVgu7doVs309tn0iQIlD9HMqVDh8y/5aZNZkTCd99B7ty2jkrYTEIcRIXcu6l25DmzDzrlscrOkkTKA+4FwL9myuSRNYnkD3ZZoxdp1k42nVkM69tBqYFQehA42rBhj3hs5MhhZq579lmzffZsUuJpxQqYO9c8X7hwUuKpUSPbzTCSO7e5cencGVat2oi3d7C16umLL2DMGJNQq1vXxNmoEVSpIr0ChHgUyftYAdSvXz/F1995550U2/369UuxfezYMZRSFLJkrb/99lsCAwMZP348Tk5OdOzYkfj4eL799lu8vLzo1asX3bp1o3r16gQGBlKnTh26du3Kpk2bKFSoEPXr16dly5Z8/PHHgGkEHxgYSNeuXVFKERISwtmzZ2nTpg3Xr1/nypUrnDx5kiFDhhAfH8+8efOsSbGIiAhr76xz58zUtYHyV5AQQqSZokXNB5vjx8M770DZsma9Y0epcsos4uNNG4533wVXV9MMXv79srCEeIgOSZk8SqxKupksmRQdAjrhloMVuORKShb5Vk0axpa8ubZzziyTREqtrP3nqG8VKPAc/DcSDo2Dwt2g4AvgX+OxLzkTGSdvXlPi3KWLmVHi4MGkIXdz58L335v9KlaEevVME8jatW0zDt/OziSSqlQxv/xCQ83NzKpVZnn3XbOfl5dpiJ6YfCpb1nZDBIXIjm6tnurTp0+K7b/++ivFdrNmzVBK4ePjQ3x8PHXr1qVMmTJ8//33REZG0rFjR4oVK8amTZvw9va2Dsnr27cvxYsXJyAggLfffhulFM2aNaN169ZUqVKFOXPmUKFCBf744w8uXLhAz549CQwMZNasWaxYsYIuXbrg7OzM8ePHOXz4MG+88Qaurq4sXLiQuLg45s6dS0JCgrXv1unTp3Fzc7NWfAkhhLgze3t4801o1sxUxrz4opm1bPx4M2mMeHzt2we9e5u2Fi1aSGVapqYTIOoSHrH/g7M371yFFHnO9E26YxIpIFkSqZIleZQ35bA2l1xgl7XTKg8ra18Vt0Co/SOU6AcHv4Ij38Hh8abrep4nIGcDs7gHSZpaAObboFQps7z+OsTFwbZtJvG0ciVMmWJuEsAkm2rXTko+VaiQ8dVEXl7QsqVZAEJCUiafFi82z/v7m2F5icmnYsXkW16Ix4mvr6913d7enm7dulm3E5M/yYWGhmJnZ4e7uzvXr18nPj6exo0b8/nnn3PkyBGeffZZevTowYULFzhx4gQ1a9bk22+/ZcyYMRQtWpS2bdvy1ltv4enpyauvvsq3337L5cuXWbZsmTUxNm7cOAYMGEDt2rXp3LkzCxcupHfv3pQqVYrVq1dz4sQJXn/9dUqWLMlnn30GwIwZM8iTJw9NmzYF4OLFi/j5+eEgpZZCiGyqRAlYt87MnPzBB+Ye84MPzIxmtpqoRtxZeLhp8P7VV+Yee/p06bn12NIJpmn23ZJH1l5JF0DHURVgTbLjnQOShrDlKGeZlS3ZkDa3QEsSSTrAP4rscffnVxXqzIKYCXB2CZxZCGd+h2PTzded/cGnIvhUMo9epcCzGDh62DBo8ThwcDCz1tWsaZp0x8bCnj3mk46NG81j4rA7NzeoUSMp+VSrlhmyl5Fy5oTnnjMLmFn5EhNPK1eCpV0M+fIlJZ4aNZLZUoTIbDw9Pa3rOXLk4M0337RuFy1alH379lm3PTw82LRpE8WLF8fX15eDBw9Ss2ZN2rVrx3vvvceCBQto27Yta9eupW3bthw/fpzixYvz4YcfMnDgQDp37sxff/3F4cOHUUoxZMgQAL7++muWLl1KlSpVADNUcPDgwbRu3ZqmTZty4sQJ6tSpQ+PGjZk5cyYAAwYMoE6dOrRu3RqA8+fPkzNnTuzts1dZuRAie7G3Nz1C27eHfv1gyBAz+/C335pKdGFbWsOiRebf5vRpeOkl0zfVVi00sjWtTRLp1uFrt/VHOg867vbjnXyTKo9ylDGPLnnYd+waZas9YalEygP2kunNCNkj2ZTIKQcUetEsOgFu/Ach6+DaDri6Ew59DQkxSfu75gWv4ibx5B4E7gXBrYB5dA3MdmMuhZneNHEY2xtvmOdOnzZJp8QE1CefmHHeSkHp0knJpzp1oEiRjP10JH9+6NrVLFrDkSNJyac//zQ3OmB6CzRsaG54GjQwySghRNbg7u5OzZo1rdslS5Zk4MCBlChRAoDWrVtz9uxZ/P39cXJy4urVq1SoUIGnn36aTp068fXXX/Pmm28SEhLC4MGDmT17Nq1ateLdd9+lcePGtGjRAoALFy5QrVo1xo0bB5jEUkJCAl27dgVME/Tvv/8eV1dXWrduTVxcHAUKFGDQoEGMHDmS+Ph4XnvtNTp06EBwcDAAcXFxUhUlhMgyChY0SY3Fi819ZHCwGV73ySdy72UrBw/C22+b++Jy5eDnn809u0hjWkPs9TskkO6QREr+93giJ5+kqiOvkndorJ0HXHODvcsdT3/5/GrTkFtkqOx7B6fsTMlcjmRTaMfHQNghCD2c7PEwnF4A0ZdvOd4h2XhNS4bU9ZbFJbeZklDK77K0/PmhQwezgCnB3bIlKfk0dy5Mnmy+ljOnSTzVrg3Vq0OlSqZMNyMoZYbPFSsGr7wCCQnw339JQwTnzUvqT1W4cFLiqX59CAqSEmIhsiqlVIoG4fXq1aNevXrW7S5dulC1alX8LR/xxsbGEhISQrVq1bCzs2Ps2LEcPXqUcePGpZgJ7+2336Zbt240btwYgH379tG0aVM++ugjwMwC2KxZM1paxgFfuXKFBQsWULlyZYKDg7lw4QJFixZlypQpPP/888THxxMfH4+TjDsRQmRyzzxjJqEZORI+/9zMWNe/PwweDN7eto4ue7hwAYYNgx9+MKMTvvzStNCQzzcekNYQe+Pus7IlH9IWH3X78Y7eSQmjgPq3N9VO/DvbwfX2Y8VjT/47JWfvdHsCKlFcBEScMsvNkxBx0qxHnofQg3BhlcnW3oljDtNczDkg6dE5wAzfc/YHZ1+TrXXytSw+UtqXiXl4JA1PA5PU2b8/5dC7RYuS9i9ePKlaqkoVqFw5YxJQdnbmE5xy5UwDy/h4M0RwzRqz/PYbTJtm9s2fPyn51KCBqYSS5JMQ2YOPjw91kn3M27VrV2u1EpgZ7Y4fP25NNI0ePZqePXtSq1atFK/z008/Wde11jg5OVG5cmVq1KiB1po2bdrw6quv0qtXL8BUNXXv3p3SpUsDsGHDBpo1a8by5cupXbt2ur1fIYTICG5uJtnUqxe8/76pbpo82fRz6t1b+jmll/BwM5vzZ59BdDT06QNDh0JAgK0je8xoDXFhd56R7dbEUnzk7cc7eCYljPxrJUseBSarSsoDDu4Z/95EhpFkU2o5uIN3KbPcTVyk6WQfed4sURch+pKpioq6ZNbDj8OVLWb7TuNMk5/PmoBKfMxhsr+O3uCU+JjsueTP2zun9RUQD8nOzswGV7asqSgC08h72zbYvt0s69aZst1ExYrdnoBK70+67O1NpVWlSib5lFj5tHatST79/beZ9hUgTx5T8ZSYfCpVSpJPQmRXn376qXU9Li6OBQsWsHLlSpYvX37XY5RSKZJPN27cwMfHxzorH0C+fPkYnzgjA+Dv789LL71EqVLm9/CKFSvS+q0IIUSGCwoy91dvvQUDB5q+QePGmQRUp06mhYN4dDdvmmTemDGmqqldO5PgK1rU1pHZQGz4PYaxJduOi7j9WAf3pESRX/Xbk0eJjbal97FAkk1py8EVPAqZ5X60hthQk4iKuQYxVyH6KsReM4+JzyU+hv3PVE7F3DBZ5vuxdzFJJwdPcPQER69k67duJ1t3sGw7eoCDZbF3lUxCGsuZE55+2iyJQkKSkk/bt5sKqDlzkr5etCjkz1+arVuTElDp2YA8eeXTa6+Zb9lDh5Iqn9asSWqOHhAA9eqZBFS9emZmPun3K0T2cf36df7++29atmzJb7/9RkhIyAMd7+XlRf369VM0Pr9V6dKlrf2gzpw5wxNPPPFIMQshxOOkcmVYsQKWLoV334Xu3WH4cHjnHdN701k+R34oYWEwcaKpZgoJMX2yFi40k/9kOXERSYmixEqkO1Ul3elvSXvXpESRT2UIbHGHIW2B5u9FIVJJkk22opSpQnJ6iHKVhHjzQyLmuhkjG3vDJKGs68mejw0zS1woRJ6FUMt6bNidSx7vHKxJOiVPQCUujh6UuBYG2xYk7WPvbrLed1w8ktbtXU3vLAGYBFSzZmZJFBICO3YkJaA2bvTin3+Svl6kiEk8lS9vKqfKlTOfkNmlw2VVCkqWNMsrr5jk07FjSYmntWthwQKzr5eX6UuVmHyqVk1ukoTISuLi4ti8eTPFihUjV65cbNy4keeff56///6bJ554gjx58tz3NaZNm0ZcXBy9evXCzs6O77//nuXLl7N06VLsLD/EtNbWSqevvvqKOXPm8O+//5IvXz62bNlC9erV0/V9CiFERlLK3Ac+9RT88QeMGGHuuUaMMP2cuncHdxl1lCpXr5rZ/r76yqw3bWqGy9Wta+vIHkLczWTVR/fojRQbevux9i5JVUc+FSGw2R2GswWaYgMpLhBpTJJNmZGdvRk+55Tj0V4nIc4krRITUrGhlu1QkxmPCzdLbHjSevLt6EsQcRyf6CtwfLM5Vsc/WAz2bndOStm7g4Pla/ZuZt267/3Wkx1nl7m/xXPmNDccTz1ltlev3kyZMsEpElBbtpjm3ok8PKBMGZN4SkxAlSuX9mPRlTLJriJFoEcP89zp02ZI4Nq15vHdd83zzs5Qo0ZS8qlWLbhHAYMQ4jGRkJCAnZ0dUVFRjB07llq1atGgQQNOnjxJvXr1+Oabb3jttdcIDg5m06ZNVKtWzXpsZGQkFy5coFAhU+37ww8/sG/fPsaOHQvAggULiIiIsPZoWrlyJUeOHCE6OhpXV1dmz57NwIEDOXToEB4eHgQEBFC8eHGioqJwcXFJcS4hhMhKlIIWLaB5c1i+3CSbXn/dJEteeslUnBdKxUCK7GjvXhg/3gxNjIw01/H998196GMnPur2mdgiz1Hy2g5Y+XFSVdKd+gLbOScli7zLQu6md6lE8pYkkrCZzP2XuHg0dg6WflA+j/Qym1evNtNUa22mqowLtySrblni7/Cc9Ws3U27HnEt6Lv6myeinuhIr+Xt0TEpcWZNWrrdsP+qjS4ZWaAUEwJNPmiVRWJjpr7R3b9KycKGZYSNRrlwpk0/lykHp0mn7CVn+/NCxo1kALl+G9euTElCffAIff5zUH6p+/aQElK9v2sUhhHhw8+fPJyAggODgYBISEggKCqJTp0588sknODk5MXz4cAYPHkyDBg0oUqQIv/32G8WLFwfAzc2NK1eu0LdvXyZOnAjAgAEDmD17NteuXQNg//79rFy5kqtXr+Lr68vAgQP54IMPOHjwICVLluTff/+lffv27Nq1iwoVKlCgQAGaNGlCaGgoHh4evPjii7z44os2uz5CCJHRlDIVOU88YSaZGTcOxo41M6e1aGESUI0bp09Fe2YSFwe//26STKtXg6ur6Xf1+uum+j/DxUcn9fC9V2+kmGu3H2vnSA7lC/GFwask5Gp0exWSa6D5+02SSOIxJ8kmkXaUMo3J7Z3B2S/tX18nmIRT3C1JqBTJqpu3rEeYxu3WhFWyx5jzd37+Ydi73DspldoE172+Znf3cWienmbsefLx51rDxYtJyad9+8zjpEnmkx4w/2SFC5vEU5kyUKKEGSZXokTazIjn7w/PPmsWMEmxTZuSkk8TJpgbJjAxJDYcr1fPJMeEEA8vOjqa8PBw/PzMz+Off/4ZOzs7nn/+eQCeffZZ8ufPb23CPWTIEKpXr05wcDB2dna0bt0aBwcHIiMjcXV1ZeHChcyYMYPQ0FC8vLw4ePAgrVq14tKlS/j7+7Nz507mzZtH7969qVChAk2aNGHNmjX8888/NGzYkOeff56vvvqKjRs30qJFC7y9vYmNjSUiwjQgbdCgAStXrqRIkSIA1K1bl7qZcryDEEKkLaWgTh2znD0L331n7ucWLzbtEzp3NkuxYraONONoDbt3w8yZMHu2uectWBA+/dRUf6XLh5gJsRB54S7D2ZIt0VduP1Y5gGtu0xfJszjkDLYkkCxNtROrkpz92LxmjfkgX4hMTpJNIvNQdknD7Ein+Um1NiWtd0pCxUUkJbusj7fud4fEVvTlO+z/EFVayo66OMMCz7skpBKHIJp15eBObgc3chdw54nC7tDWPB+v3Dl70Y3Dx9zZf8idPfvd2LHbnSVL3IiLS/poLHfulMmnxCUo6OGbf3t6mk/omjY129HRZhhgYs+nqVPhm2/M10qWNImnxFnv8uZ9uHMKkVXt2bOHkJAQmjRpAsCYMWM4f/68dZjaU089RVxcHOvWrQPg22+/JTIykmaWxnABAQHs3r2bkydPUrBgQYYOHcqAAQPYvXs3FSpUoHr16rz44otUqVKFZ599lsuXL7N48WKCg4N55ZVXqFq1KgAzZ87krbfeonv37gwdOpTNmzdToUIFatSogYeHB9HR0QCUKVOGpUuXWo+rUKECGzZssL6fgIAAGjVqlCHXTgghMqu8ec2wuvfeg19/NcmWkSPNczVrQpcu0LatacWQFZ06ZdpHzJxpPkR1dIRnnjFN1Js3f8h71IQ4M4v4naqQkjfajrrD5BfKHlxymWoj90LgXyepEsktb9K6s7/0qhXZjiSbhEhOKTOroINr+lRnJdIJJql1x4TVrRVbSc+dP3GI/Hn8bk+CRV+Gm6eSDUW8e5WWPVDAsjQJAoIAy6x4CXZuxCR4EBnnQVikB9fDPbhy3Z1rpzy4fNiDE/M9iIz1wMXDHfccHuTw88A3lwe58nqQp4AHXr5eyWY39DLJr3uU+Do7myqmevXMdmys6UO1dq1JQP38s/nkDkxvqEaNTCl548Yy7E5kDXFxcTg4mF/Fhw8f5vDhw7Ro0QKAefPmsX79eusMbIMGDeKPP/5g79692NnZMXr0aP755x+2bt1Kvnz5OHbsGP/88w9dunShcuXKtG7dmlGjRjFnzhw6dOjA0KFDefLJJ/n222+pWbMmXbp0oVGjRowbN44vvviCKlWqEBoaysSJE/nuu+9o0qQJ9vb2bNy4kWeffZYXXniB0aNHW+OtX78+I0aMoH79+gDkzp2bo0ePEhgYCEBgYCCbN2+2vlcPDw+eTD7+VwghxENzcTFDxTp1gnPnTHXPjBnQp4/p6VSrFrRsaZaSJTPviCutzWQ5v/9ull27zPO1apkG4M89B353u2VPiDMJotsqkW6pSooKAXTKY5VdsiRSAfCvYemHlDflsDbnANNPVwhxG0k2CWELyi5p2NwDOHptNfmrB6du51uHHd7aG+vWPllxEdjFReASF45LXDg+cREUiAuH2DDios8TFxmBjgvHXofjZHdLZdZFy3KLBG1HvJ1JPDm4eKIcLcko6+IJjjnA2RecfHB08qVmER9qlvJl0Os+xNv7sHufE2vWmDH4c+fC99+bG6YqVUzi6YknzMx3MtudsLW4uDiuXr2Kn58f9vb2HDp0iLVr19K1a1ecnJz47bff+P7771m4cCGOjo6MHDmSDz74gPPnz5MzZ06mTZvGp59+yqZNm6hevTq7du1i6tSp1KhRg06dOlGoUCEOHjzIgAED+PLLL+nduzc///wzAwYMYM6cObzzzjtMmTKFgQMHsnLlStq2bct7773HlClT6NChA9WrVydnzpxs27aNmjVrUrduXerVq4evJXNbrlw5hg4dam28nStXLnbt2mVNHtnb27Nv3z7r+3VwcOD999+3btvb21O4cOEMvOJCCCEAAgNhwAB4+23Yswd++80kZoYMMUvRomaymcRemY97q4KTJ5M+eFy61AwdtLMz93uffgrPtoqnWP5LScmiI8mSRzctVUiR50y1kk645dUVuORM6n3kWzVlP6TE5trOAZl+oiEhbC3T/A9SSj0FfI0pzPhBaz3axiEJ8XhLw2GHDtzywyIhHuJvEhsZzunj4Zw6Gs6FM2FcDQkj9EooN2+EEhsRiqtjGF6uoXi5huLtFkpOn1D8vEPJ4X4GD+dQXB1u4EjYXc9rD1R2cKdyIR/6l/Al4Y1cXA7Pw+HTedi+Pw+bVufhgwV5uBaVh+IV8vHcCy60bAluD5bDE8IqPt7MqGlvb8+VK1fYsWMH1atXx9vbm/379zNjxgzefPNN8uTJw99//83AgQOZMmUKVatWZcaMGfTs2ZP58+fTrl07Vq9eTe/evblw4QJDhw4lLCyMFStW0LFjR+bPn0+dOnXQWtO2bVvWrVvHK6+8wujRo+nWrRv79+/no48+Yvz48XzwwQd06tSJl156idGjR7NixQoAatWqRfXq1a09j4KCghg8eDD+/v4A5M2blx9//NG6nSNHDvbs2YOnpydbtmxBKcWqVatSvP+hQ4em2C5btmy6Xm+ROcg9mBCZg1JQoYJZPvgAzpyBJUtM4mnatKRWBSVKmKRTrVpm39KlTaWULUREmOFwu3fDxg0J/LfjEnHh5wnMcY6iec/xeddzVCp5nqDc53COtySUtl+EbXeYATsxieSSB3wqJqtESpZMcsklSSQhMkim+J+mlLIHJgBPAGeArUqp37XW+20bmRDZlJ092Hni6OhJ4QpQuMLtu8THm7Lu48fh2DHYfQyO/c+sHztmGjkC2Kl4crhfx8/jGkULXKVogWsUzHON/LmuktvnGgHeV8nhdA1PruISfYEAfYic/uepWzeWfsl6B8fF27P/RGkWDa4EPpWo2KIlpatLlUV2pLVGKUVUVBS7d++mUKFC5MyZk4sXL/LDDz/Qtm1bSpYsyYEDB3j55Zd56623aN26NWssDTlHjRrFO++8w44dO2jatCkdOnRg9uzZnDhxgs8++4xly5axa9cu3NzcOHToEG3atOHUqVPUqVMHNzc3XnrpJdq1a0eHDh145513GDVqFEOHDuXFF1/k448/Zvny5QAEBwdTt25dzp8/D5hk0cCBA62ztzk4ODBlyhQiLR39nZyc+Pvvv3F0dATA0dGRf//9N8V7HzlyZIrtZxO781vketw/zhaPHbkHEyLzypcPevc2S2ws7NxpqoXWrDF9j77/3uxnb2+G2lWoYCaMKVgwaQkMfPhenYliYxI4d+IKISfPcf38eW5eOcfNK+dIiDiHmzKJpad9ztHjiQs4PhV3+ws4+0OsJVmUo1xSU+3kw9lccoG906MFKoRIU0prff+9bEwpVQsYprV+0rL9DoDW+pO7HRMYGKhfeeWVDIpQCPGgYmIcuXYtB6Gh3oSGeiVbPK3r0dG3f8ymVAJubhHk9T9LgYBT5Pc/TT6/swT5Hade0HqK5ToCQFikB18cfQvlLM0YM5OEhAS01tjb25OQkMDp06fx8vLCx8eH2NhYNm3aRP78+SlUqBCRkZHMmTOHokWLUq9ePW7cuMH48eMpXrw4bdu25fr164wfP56cOXPy0ksvERoayoQJE3B1deWNN97g5s2bfPfddwD079+f2NhYJk2axM2bNxk8eDAAkyZN4vr167zzzjs4OTkxY8YMTpw4wXvvvYejoyMLFizg6NGjvP3229jZ2bFp0ybOnDlD+/btAThx4gRXr16lcuXKAFy/fp3Y2FgCAtJpkoNsZtiwYdu11lVtHUdW9qD3YHL/JUTmkJCguHrVh4sXc3PhQi4uXszFhQu5CQ31TrGfnV08Hh7huLpG4uIShbNztOUxBqUS8HIJJcD9Ev7ul/F3u0wOl+v4ul7B3+0KAR6XCPC8RG7vCzg5xN4Ww7WbObgW5UNYnCfRypkoOxfC4z0Ii/MkLN6TsDhPIuI9iNeZoj5CiGwlNfdgmeV/bl7gdLLtM0CNW3dSSr0MvAyQJ0+ejIlMCPFQnJxiyZXrErlyXbrrPtHRToSGehAd4QzRClcViYd9OJ4OoeRwvoGP61X83K6S0yOEIP8TeLuFWo/ddLIWOGbSbpiZWGxsLPHx8bhY6vGPHTuGq6ur9WfyqlWr8PDwoGrVqtjZ2fHDDz/g4+NDq1atsLe35+OPP8bX15fu3bvj6urKtGnTcHZ2pnfv3nh6erJq1SqUUrz66qvkyJGDixcvcvLkSYoUKYKfnx/u7u7s37+funXrEhAQQL58+Thz5gzXrl0jZ86cVKhQgd27dxMeHk5AQAB16tRh7969xMXF4e3tTYsWLfjf//4HgKurKx07duTChQvY2dmhlOK5554jNjYWe8vHvG3atEnx/mvVqpViOygoiKCgIOt2jhw50unKC5Fu7nsPJvdfQmQ+dnYaf/+r+PtfpUyZpELFmBgHbtzwIibcCYfYeJzio/GwD8fHkkQKcL9MTs8QcnldJLf3BZwdY2577Ws3cxASlpMrEX7suVCetafqcVO7E6WciXd0IMHFjkhcideOGfmWhRAZLLNUNrUHntRa97Rsdwaqa61fv9sxgYGB+ty5cxkVYra2evVqgoODbR1GtpApr7XWpgF5bKhZ4sKS1mNDIeY6xFyFmGvJHpOtR18FfYeSamuDxzxmTL5HEPhUBt9K4F0W7B+9Y3imvN6P6OzZs0RFRVGkSBEAlixZQmhoKO3atcPJyYl3332XkJAQPv30U3x9fWnSpAnnz59nzpw5lCtXjsDAQCIiIli0aBENGzbEz8+P69evM2/ePNq2bUuOHDm4ceMGM2fOpHPnzhQrVowjR44wcOBAPv30U+rWrcuGDRuYPXs2L7zwAt26dWPGjBksWLCA1q1bM27cOIYPH86iRYuoV68eS5Ys4euvv2bcuHGUKlWKAwcO8Ndff9GxY0dy587NlStXOHLkCOXKlcPNzY34+HiUUtjZZe+Kt6zyva2UksqmdPag92AlSpTQhw4dysgQs7ys8v/1cZGtr6fW5t7rbrOyJd+Oj7r9eEevpN5HlqFsS9fuISzOk/Zd+iXdkzm4Zvx7y0Ky9fdoOpFrmvZScw+WWSqbzgD5k23nAySTJER6SIiFuHCIDTePcRGWx7s8l/xr1oRSYjIpzCSXbpsJ5A4cvcHJzEqHsy+45TPric85+YBL7mRj83NKg0dMQ+ubN2/i6ekJwKFDhzh16hQNGjTAycmJ+fPns379egYPHkxgYCDvv/8+ixcv5quvvqJRo0a0atWKf/75h7Fjx9KjRw/atGnD9u3bGTZsGO+//z7vvfcee/bsYevWrXz11VcsX76cbdu2YWdnx+TJk3Fzc2P//v1MnjyZ8ePH06ZNGyZMmMDy5ctp2LAhI0aM4O233yYx+f/XX3/Rp08fvL1Nmf7SpUv5+uuvKVasmHV7zZo1VKlSBYDvv/+ezz//3FoR9MYbb/DGG29Y33+LFi1o0aKFdbtUqVKUKlXKuu3n54dfsjmR7R+18YQQ2Y/cgwmRGcSG3T4j281ztyeT4m/efqyDp5mFzSUP+NWwNNW2bLsle3Rwv+3Qf38fblYC6qTzGxRCZDaZ5S+1rUAxpVQh4CzQAeho25CEsJGEWIi7aW4W4m6axE+85TEuwvK1ZOu3fv2u+1qWhNvLoe/KzgkcPCyLu0kYOXqamxRHL7M4eCatOyZft3zNKQc45jBNx7Oh69evc/r0aUqWLImjoyO7du3il19+oXv37hQpUoQFCxYwatQoBg0axHPPPceYMWMYOXIkb7/9Nh9++CEvv/wy06ZNo3PnzsyYMYPhw4fz888/07RpU5YtW8acOXNYsGABW7ZsYdOmTYSEhLBnzx6GDx9Oo0aNqFy5MosXL+bXX3+lR48e9O3bl969e3Pq1CkAfvjhB7p3707+/OZvzb///ptBgwZZG08vXLiQxYsXW2ctGz9+PO+88w6+vr4A9OnThz59+ljfb61atdi5c6d1u0iRIowbN47Vq1cD4OHhQfPmza1fd3R0tM6mJoSwCbkHE8KWYsPvX4UUec7cw93K3i1pNja/asmqkhIrkywf4Dl6Zvz7EkJkeZki2aS1jlNK9QWWYabdnaq1/s/GYQmRkk6A+MhkiaDIpITQQz1G3PZc/dgImHOHqV7vSZlEkIMb2LsnrTu4mxuMxHUH92SJIw9wTJZEuu15d/Na2XDWj/j4eG7cuIGnpyeOjo5cvHiRxYsXU6lSJapUqcLevXsZNGgQTzzxBG+99RbLli2ja9euPPnkk8yYMYMpU6bQq1cvatWqxYYNG5gyZQoDBgygSJEiHDlyhKVLlzJy5Eh++OEHLly4wOHDh9m+fTtvv/02zz33HH5+fkRERPDjjz/y4Ycf8uyzzzJ//nxOnjwJwMCBA9m7dy9FixYFYMqUKeTKlYtKlSoB8O233/L0009bk0cffvghPXv2tFZGde7cmc6dO1vfb7Vq1di3b59128fHh+8Tp6/BVAoln/FMKUXevHnT5+ILITKc3IMJkU7iIpIljM6nrEqKTFaZFBd2+7H2rkkJI5/KENgiKXHkmicpweTgCUr6VwohbCNTJJsAtNZ/An/aOg6RCWltxp3fN8ET+YAJoVuSSXca254a9m6WRJBbsqSQmxk25po32dfcOH32EgULl7plX9dkySL3ZF+zrNu7yI1GMlFRUWzevBl3d3eqVq3K5cuX+eCDDwgICOCDDz7g+PHjtG3blty5czN48GA2b95M48aNyZUrF0ePHmXp0qW0aNECd3d3wsPD2bRpE7169cLe3p64uDgOHjzI0qVLWblyJW+99Rbx8fFcvnyZefPmMWPGDEqVKoW3tzdnz54FzDCwmTNnWpM/r7zyCidPniR37twADBkyhLJly+Lh4QFAz549adWqFU5OJtH3zDPPEBqa1Bi9UqVK7N2717qdI0cOvv32W+u2g4NDiuQQIMkhIcQ9yT2YEA8gLvIOQ9juUJUUe+P2Y+1dkhJGOcpDnqduqUKyDG9z9JJ7OyHEYy/TJJtEFpYQl3IY1x2HgN1jPf4++95pbHpq2LumSPQkJXU8TL8ge9dbEkWWx1uPu9Pzia/1gImg42GrKVg2+OHeTyaltebixYuEh4dTuHBh4uPjmTBhApcvX2bw4MEopejQoQNhYWH8+uuvaK2pUqUKsbGx7Nixg8jISIoVK4a9vT3Hjx/nxo0bNGzYEIBz584REhLCd999B5h+QBERERw4cIC9e/fyxhtvEBgYiJubGyEhIURHR1O2bFmqVq1KTEwMCQkJ1K9fn1dffZW4ONPEvE2bNixbtoybN8333dNPP83ly5et76d27dpcu3bNul2iRAl2795t3fbx8WHixIkprkHynkQAAQEBaXiFhRBCCHFf8VGWpNEtiaPE/kiJ67HXbz/WzikpaeRdFnI/cctwtkDTE8kxhySRhBBZhiSbROokVgfdoTm0f+RmOH4mZaPoW/sA3TGZ9BA9goCUw8LcUlbzuOS6vUIoxbrb3ZNEKR5dQGXv2aoeVXx8vHW6+I0bN7Jt2zY6dOhAzpw5+eCDD9i4cSMTJ06kWLFiNGzYkAMHDrB06VIqVKhAzpw5uXbtGmvWrKF69erWqbT/+ecfatSoQf/+/QFo1qwZ5cqV448//gDg2LFjFC9enMjISEJDQ7l+/TqBgYFUqVLFmvApUKAAvXr14urVq7i6ulKqVCkWLlzI9evX8fT0pGLFily7do2YmBh2795NqVKluHTpkvV9FSxYkK1bt1q3fX19U1QO2dvb07Rp0xTXQqa7F0IIIR5T8TEQdeH2YWy3ViXFXL39WDtH0zzbNRC8SkKuRskmMsmT1GjbyUeSSEKIbEeSTVlZfMwtU82HPcD6LTONxYXfdUaxsgCbbnnytqFdlkfXPCmfT/61uw0FuzVpZOcsv7DTWVRUFHv37iV//vzkzp2bFStWMHPmTF599VVq1arFsGHDmDFjBp999hnt2rXj6aefZuXKlXz99df07t2bggULcurUKcaMGcOgQYNo1qwZoaGhaK3p168fX375JREREaxatYpixYqxb98+rly5wtGjR6lYsSJBQUHWKeodHR3p3r07hw4dIn/+/Li4uDB9+nTOnDlDqVKl8PT0JDQ0lMjISHx9fXFwcEiRHALYsmVLiu3Jkyen2L51WFnikDUl32dCCCFE5pQQC1EXb0selbi+A/4Zk/Rc9OXbj1X2ZgZct7zgWRRy1k9ZhZS4OPvKh5NCCHEXkmx6XGltqn5irplPUmKuQsx1M7475obl0bKduCQ+H3vdrCdEp+5c9q7JZg2zLK55bmkSfafG0WbZtvsgVWsGJ3vOTX7x2kh8fDz29vZERUUxf/58ihUrRs2aNdmwYQPDhg3jhRdeoEePHowbN44RI0bQu3dvRowYQffu3ZkxYwbdunVj6tSp1K1bl+3bt/Piiy/y448/0r9/f/bt24eDgwO1atVi7ty5nDhxgg0bNtCuXTtu3ryJUoqEBJOQbNq0Kf/88w/ly5cH4JNPPmHLli089dRTAGzatIkbN25Ym1bfmhxKXjkEMHXq1BTbXbt2TbHt6elpbXAthBBCiCwsIc4kke43Q1vUJUCnPFbZ4at8wKUQuAeBf61kSaS8ZiibSx5wCZB7WSGEeESSbMoICfEQc8V8chJ1CaItS9Rl81yKhNK1pMeE2Hu/rnWqecvi7AsehSxTyXvfYep5z5Trjl4mOWT3aN8G4Y5x5lMf8UhiYmKIiIjAx8eHuLg4vvvuO3LlykX79u3Zv38/PXr0ICgoiODgYObPn89LL71EgwYNWLx4McOGDWP48OFUqlSJHTt20K1bN+bOnUv16tX5999/+fzzz1mxYgWRkZH06NGDFStWcOXKFY4fPw6Au7s7Xl5eFC9eHIBu3brh6OhIhw4dAPjmm2/YsmULzz33HADbtm3D2dkZBwfzvZM4bX2i5LOVAfTp04c+ffpYt8uVK5cu11AIIYQQmVRCPESH3DKU7Q7JpKiL3CmJhHNOS+IoH/hVv0slUgCb1q4jODjYFu9QCCGyFUk2PSytTRWR9RdhsiXqfNIvw+hLEH2V234pJnL0Aidfy+IDOfIlrSc+Oidu+yRLLnk9cpJIpK3IyEiuXr1qndlr1qxZXLt2jb59+3Lp0iU6duyIj48P8+bNY9u2bTRt2pQ8efLw33//MW/ePJ5//nkCAgIICQlhzJgxvP/+++TJk4f27dszd+5c/v33X+v09jt27CA8PNw6zMvX1xd/f39atWoFQIcOHQgNDaVfv34AfPzxx7z44ovWXkILFy7E3t7eGvs333zDN998Y93u27cvffv2tW43aNCABg0aWLfd3d3T4xIKIYQQIqtJiDf3w/eqQoo8Z+6bb2vZoMykLImJI98qKSuRrP2Rcsp9sRBCPGbkp/K9xIZC6GEI+x9EnDTLzVNJ63Hhtx/j4G5pFGiZbcIlAJwti0sAOPsnrTv5gb1Txr8vcUdaayIiInB3d0cpxbp169izZw99+vQhMjKSvn37curUKZYvX86pU6do0KAB4eHhXL58mX///Zd69eqRkJBAXFwcCxYs4MUXX8TR0ZG+ffuybNkyVqxYgZeXFwD79u3j2rVrFCpUCAAXFxdy585NmzZtAHjiiSfYs2cPXbp0AaBXr1489dRT1hnORo0axSeffGKN/Y033uCNN96wbj/77LMp+hCVKVOGMmXKWLeTJ5qEEEIIIR6YTjAV+slnZLt5h2RS1AXQ8bcf7xyQVHHkU9HSUDswZSWSS07ThFsIIUSmI8kmMM2wr++Bazvh2m4IO2SSTFEXUu7n5AvuBcGzGORuAm4Fkn26YlkcpW/M4+L8+fNs27aNRo0a4e7uzsyZM1myZAmTJk3C2dmZtm3bsnPnTvbt20dMTAwVKlTg8uXLXLlyhbNnz9KwYUPi4+Pp3Lkze/fuZdq0adjZ2REVFcXJkyc5efIkBQoUICEhAa01vr6+1K1bF4CSJUvStm1ba8KnSZMmLFu2jNq1awPQuXNnunbtaq1MatmyJS1btrTGXr16debOnWvdzpcvH/ny5bMOV5PG1UIIIYRIFzoBoq/cUnl0a1XSOYi8ADru9uOd/ZPuj3OUvb0KyTXQMnuwfOAqhBBZWfZMNt08CxdXQ8gauLQOQg9hHebm7AdepSDwafAqDp7FTXLJPcg0xhYZKjo6GqUUTk5OHD16lEWLFtGxY0dy587N119/zZQpU5g/fz5FixalYcOGbNy4kS1btlCiRAnKly/P5cuX2blzJ3ny5LE2lR42bBheXl4sXboUNzc3YmJiiI2N5ebNm1SsWBFHR0f8/Pxo0KABderUwc3NjdKlS/PTTz8RHByMq6srtWrV4saNG3h6eqKUombNmly4kJScLF26NL/88ot1O3fu3OTOndu6LZVFQgghhMhQWpueoLcmjW6tSoo6f+e+oU6+Sckir1K3N9V2CzQzuNk7Z/x7E0II8djJPsmmyPNw/Ec49Qtctcx05egNAfWg4AvgUwl8K5lfmlI1ki601ly6dAlnZ2e8vb05ceIE33zzDZ06daJSpUr89NNPvPPOO0yePJlmzZrRsmVLFi9ezLx582jfvj0NGjTg7NmzFC5cmFatWvHWW2+htSYkJITixYuzYcMGfHx88PHxwcXFBQ8PD6pUqULhwoVxcXGhb9++NGzYkNKlSxMXF8fmzZspWrQofn5+AERERFhj9fT0ZOXKldZtHx8fOnXqZN12dHTE0VHKuoUQQghhYyn6iN5nSNudZip2zJE0fM0r+Pam2q6B4Job7F0y+p0JIYTIxLJ+siniNOwZCidnm09pfKtChU8gz5OQozzYSYXJo4iOjiYyMhKA8PBwvvrqK+rXr0+DBg3YsGEDHTp0YPDgwfTt25c33niDb775hqFDh/LRRx/x/PPPs2XLFry8vKhUqRL9+vXj6tWrXLp0CYBNmzbh4+Nj7WtUvHhxatSoQaNGjbCzs2PixIlUqFCBmjVrAnD69Gn8/PxwcTE3Q4kzrSUaP368dd3BwYEaNWqk+/URQgghhHgoWkNsKG6xp+DCqnsPaYuPuv14R6+k4Wz+tcAt7y0ztFkeHdwy/r0JIYTI8rJ2sunMYtjQAUiAor2h+OvgVczWUWUaWmsWLFhAjhw5aNy4MSEhIbRo0YJmzZoxfPhw5s6dywsvvEDDhg1p1qwZb7zxBtOmTaNDhw40aNCAV199lTNnznD58mUA1q9fj5eXF/Xq1QOgaNGi5MuXz9rYevz48eTJk4eGDRsCcPDgQby8vKwVRKtWrUoR3yuvvJJiO3EWOCGEEEKIx1ps2O3Jo+TD2BLX429SHSD5LZCDR1LFkV+NlBVIiUPaXPNI+wchhBA2lbWTTb5VIN+zUGEkeATZOprHQkREBGFhYeTOnZu4uDiGDx+Ot7c3AwYM4PTp01SsWJGKFSuycuVKvv/+e1555RVq1KhB48aNGTx4MFu3bqVAgQIAzJ49GwcHB8qVKweAk5MTlSpVYvTo0YDpjaS1pm3btgCsWLECd3d3a+XRrFmzUsTWsWPHFNuJw9uEEEIIITKF2PBUNNY+f+cZje3dkhJGvlXArSW4BrL/+DVKV2mSVIkkk9EIIYTIBLJ2ssktEOrMuv9+Wcjp06e5cOEC1apVQ2tN165diYmJYc6cOYSEhFC4cGECAgI4fvw4v/76Kx9//DGFCxdmwIABfPXVV1y9etWaTDp06BAuLi58+umnADRq1AgvLy+++uorAL744gtGjx7NxYsXAfjuu+9SxNKmTZsU25I8EkIIIUSmFHfzLsmjZNs3z0Fc2O3H2rsmVR75VILA5smqkSxVSG55wcHzjn1DQy6upnSu4PR/j0IIIUQaytrJpizowoULHDlyhLp16wLQp08f9u7dy7p167h06RKlS5dGa014eDgrVqzgp59+Il++fADMnz+fiIgInn/+ecBUORUoUICFCxcC0KlTJypXrmz9+pgxY/jiiy+s5+7cuTOdO3e2bhctWhTAmmwSQgghhMhU4iKThq3dral25DnTgPtWds5JCaMc5SHPU7f0Q8prGc7mLZPPCCGEyHYk2fSYiYmJ4ejRo5QoUQI7OztGjBjBL7/8wvbt24mPj6d27docP36c2NhY9u7dy5QpU3Bzc0NrzcaNGwkPD6dr164A2NnZUaVKFX744QcAmjdvTqFChQgODgagR48e9OjRw3ruKlWqUKVKFeu2g4N8ewghhBAiE4qPhqgLtySP7jCcLeba7cfaOSUljLxLQ+4mKauQXPOa6nnHHJJEEkIIIe5Csgk2orVGKcWuXbv49ttvGTVqFP7+/rRp04Y//viDU6dO4ejoyNixY7l58yahoaGcPHmS48eP07hxYwCcnZ0pW7Ysn332GUop6tevz8aNGylfvjwAjRs3ZuvWrdZzBgUFERQUZIu3K4QQQgjx6OJjTBLpXsPZIs9B9JXbj7VzTGqe7VkCcjY0SSNXS1PtxHUnX0kiCSGEEI9Ikk3pLDY2lv3795M/f358fX357rvvePvtt1mxYgXVqlWjR48e7Ny5k5deegmlFH/++ScFCxbEy8uLhIQEHB0d+fLLL/H19cXFxYW5c+dSr149HBwcKF26NNu3b7eey8fHh1q1atnw3QohhBBCPISEWIi6eOcZ2ZInk6Iv3X6ssgeX3CaJ5FEYAuomJY9cLP2QXAPB2Q+UXca/NyGEECIbkmRTGgsPD2fatGnUrl2bKlWqMGnSJF5//XV++OEHXnrpJb777jsiIyOxs7PDzs6OgwcP0rRpU6pVq4ZSihEjRtC0aVO8vb0B06MpkZubG88995yt3poQQgghxINJiIOokHtXIUWeg6hLgE55rLIDl1wmUeReAPxrJhvOFpi0OPuDnb1N3p4QQggh7kySTY8oJiaGXr160aBBA3r06MGSJUt444036Nu3L1WqVOH777/Hy8uLChUqAJArVy7eeecdatSoAcCOHTsoUKAAdnbmk7b33nvPZu9FCCGEEOJRuMRfhNXPJEsiXeS2JBIKXHJaGmjnA99qSUkkt7xJySTnnJJEEkIIITIpSTY9hD59+pAjRw5GjRrF0qVLmTlzJtHR0fTo0YNJkybh6+tL//79AdOE293dnapVqwKwbNmyFK9VsmTJDI9fCCGEECI9OCSEQ+QZkyzyrXznSiSXnGAnt6BCCCFEVia/6VNh/Pjx7N27l8mTJ3Pq1CkmTpxorUz666+/cHJy4rPPPgNMZVJERASFCxcGoF+/fjaLWwghhBAiI4U7FoFmO20dhhBCCCFsTLok3sHBgwcZPXo0WmsSEhIYMmQIixYtIiEhgd9//x2AkSNHAvD222/z77//kjdvXgCaNGlCq1atbBa7EEIIIYQQQgghhC1JZZNFREQETk5OODo60r9/f5YuXcpzzz3HqVOnuHnzJh999BF2dna0adOG4sWLU6dOHQCKFi1q48iFEEIIIYQQQgghHh9S2QRs376dgIAAfv31V27evMnRo0epVasWBQsWpHbt2owdO5bOnTsDEBgYSNOmTXFxcbFx1EIIIYQQQgghhBCPn2xb2XT9+nWOHDlC1apV2bVrF5GRkYSFheHm5kb58uVp1qwZ9vb22NvbS98lIYQQQgghhBBCiFTKlsmmhIQE6tSpw6VLlzh37hzLli3D29vbWr30yy+/2DhCIYQQQgghhBBCiMwpWw2ju3btGrGxsWituXHjBmXKlMHBwYEPP/yQVatWydA4IYQQQgghhBBCiEeUbZJN165do1SpUgwZMoSjR49y4cIFmjRpAkCZMmWoXLmyjSMUQgghhBBCCCGEyPyyzTC6y5cvc/HiRcLCwihevDhr1qyhZs2atg5LCCGEEEIIIYQQIkvJNsmm06dP4+rqynPPPQdAnTp1bByREEIIIYQQQgghRNajtNa2jiFdKKXCgEO2jiOb8Acu2zqIbEKudcaS651x5FpnrKxyvQtqrQNsHYRIIvdf6SKr/H99XMj1THtyTdOWXM+0J9c07ZXQWnvea4esXNl0SGtd1dZBZAdKqW1yrTOGXOuMJdc748i1zlhyvUU6kvuvNCb/X9OWXM+0J9c0bcn1THtyTdOeUmrb/fbJNg3ChRBCCCGEEEIIIUT6k2STEEIIIYQQQgghhEgzWTnZNNnWAWQjcq0zjlzrjCXXO+PItc5Ycr1FepHvrbQn1zRtyfVMe3JN05Zcz7Qn1zTt3feaZtkG4UIIIYQQQgghhBAi42XlyiYhhBBCCCGEEEIIkcEk2SSEEEIIIYQQQggh0kymTjYppZ5SSh1SSh1RSg25w9eVUmqc5et7lFKVbRFnVpGK693Jcp33KKU2KqUq2CLOrOB+1zrZftWUUvFKqXYZGV9WkpprrZQKVkrtUkr9p5Rak9ExZiWp+DnirZRarJTabbne3W0RZ1aglJqqlApRSu27y9fld6RIF0qpEZbvqV1Kqb+VUoG2jimzU0p9ppQ6aLmuC5VSOWwdU2amlGpv+R2ToJSS6dAfUmrvV0Xq3O/3tnhwSqn8Sql/lFIHLP/n+9k6psxMKeWilNqS7D59+L32z7TJJqWUPTABaAaUBl5QSpW+ZbdmQDHL8jIwMUODzEJSeb2PAw201uWBEUgjtoeSymuduN8YYFnGRph1pOZaW27ovwVaaq3LAO0zOs6sIpXf268B+7XWFYBg4AullFOGBpp1TAeeusfX5XekSC+faa3La60rAkuAD2wcT1awHChrucc6DLxj43gyu31AG2CtrQPJrFJ7vyoeyHTu/XtbPLg44G2tdSmgJvCafJ8+kmigkeU+vSLwlFKq5t12zrTJJqA6cERrfUxrHQPMAVrdsk8rYKY2NgM5lFJ5MjrQLOK+11trvVFrfc2yuRnIl8ExZhWp+d4GeB34FQjJyOCymNRc647AAq31KQCttVzvh5ea660BT6WUAjyAq5gbBfGAtNZrMdfvbuR3pEgXWuvQZJvumP/X4hForf/WWif+LJR7rEektT6gtT5k6zgyudTer4pUSsXvbfGAtNbntdY7LOthwAEgr22jyrws94zhlk1Hy3LX3/GZOdmUFzidbPsMt3/jpGYfkToPei1fAv5K14iyrvtea6VUXqA18F0GxpUVpeb7ujjgo5RarZTarpTqkmHRZT2pud7fAKWAc8BeoJ/WOiFjwst25HekSDdKqZFKqdNAJ6SyKa31QO6xhO3J7xCRqSilgoBKwL82DiVTU0rZK6V2YQoelmut73o9HTIsqrSn7vDcrVm11OwjUifV11Ip1RCTbKqbrhFlXam51mOBwVrreFMAIh5Saq61A1AFaAy4ApuUUpu11ofTO7gsKDXX+0lgF9AIKAIsV0qtu6VSQqQN+R0pHppSagWQ+w5fek9r/ZvW+j3gPaXUO0Bf4MMMDTATut81tezzHqbac1ZGxpYZpeZ6ikciv0NEpqGU8sCMCHlT7ikfjdY6HqhoaTWyUClVVmt9xz5jmTnZdAbIn2w7H+aT8AfdR6ROqq6lUqo88APQTGt9JYNiy2pSc62rAnMsiSZ/4GmlVJzWelGGRJh1pPbnyGWtdQQQoZRaC1TA9MwQDyY117s7MFprrYEjSqnjQElgS8aEmK3I70jx0LTWTVK562zgDyTZdF/3u6ZKqa5AC6Cx5WekuIcH+B4VD0d+h4hMQSnliEk0zdJaL7B1PFmF1vq6Umo1ps/YHZNNmXkY3VagmFKqkKV5bAfg91v2+R3oYplxpyZwQ2t9PqMDzSLue72VUgWABUBnqfp4JPe91lrrQlrrIK11EPAL0EcSTQ8lNT9HfgPqKaUclFJuQA3MeG/x4FJzvU9hqshQSuUCSgDHMjTK7EN+R4p0oZQqlmyzJXDQVrFkFUqpp4DBmMkqbto6HiFI3e90IWzK0gN0CnBAa/2lrePJ7JRSAYmzoSqlXIEm3ON3fKatbNJaxyml+mJm4rIHpmqt/1NK9bZ8/TvgT+Bp4AhwE/OJuXgIqbzeHwB+wLeWips4rbVMJ/uAUnmtRRpIzbXWWh9QSi0F9gAJwA93KxUV95bK7+0RwHSl1F5Mif5grfVlmwWdiSmlfsbM6OevlDqDqSxxBPkdKdLdaKVUCczPzJNAbxvHkxV8AzhjhhYDbNZay3V9SEqp1sB4IAD4Qym1S2v9pI3DylTu9jvdxmFlanf6va21nmLbqDK9OkBnYK+lzxDAu1rrP20XUqaWB5hhmY3SDpintV5yt52VVOEKIYQQQgghhBBCiLSSmYfRCSGEEEIIIYQQQojHjCSbhBBCCCGEEEIIIUSakWSTEEIIIYQQQgghhEgzkmwSQgghhBBCCCGEEGlGkk1CCCGEEEIIIYQQIs1IskkIkSkppSorpeKVUlopVSWNX9teKXXI8tqfpOVrCyGEEEIIIURWJ8kmIURmNQHzM2yx1np7Wr6w1joe+Niy+ZZSqmhavr4QQgghhBBCZGWSbBJCZDpKqTZATcvmsHQ6zWzgMOAEjEincwghhBBCCCFEliPJJiFEZjTM8rhUa70jPU5gqW761LL5vFKqdHqcRwghhBBCCCGyGkk2CSEyFaXUk0A5y+bMdD7dfCAKUMCb6XwuIYQQQgghhMgSJNkkhMhsXrU8hgO/peeJtNahwGLL5otKKc/0PJ8QQgghhBBCZAWSbBJCpCulVLBlVjetlBpmea6cUmqyUuqoUipSKXVJKbVCKfXCfV7LD3jasrlQa33zLvsNS3bO1C7BdzntLMujK9DuQd+/EEIIIYQQQmQ3kmwSQmQopVRnYCvQCygMuAD+QGNgtlJqiVLK5S6HPw04Wtb/Se9YLVYD2rLeKoPOKYQQQgghhBCZloOtAxBCZCvVgHct61OBtUC85fmXAHegOfATd64ieiLZ+pZ7nGcOsOs+sfgA32KSXQA37rST1vqGUuogUAporJSytzQPF0IIIYQQQghxB0prff+9hBDiIVmGpyWvQgoDmmqtN9+yXzFMFVGg5al2Wutfb9nnEFDc8ho5tNYJDxmTA7AMaGR5aqTW+v177D8N6GbZrKC13vMw5xVCCCGEEEKI7ECG0QkhMtrAWxNNAFrr/2GqmxINSP51pZQzUMyy+b+HTTRZTCAp0fQrMPQ++x9Itl7+Ec4rhBBCCCGEEFmeJJuEEBnpGjDtbl/UWi8F9ls2ayqlcif7cn5AWdavPmwASqk3gZctmzuALvr+JZ7Xkq0XfNhzCyGEEEIIIUR2IMkmIURGWqe1jrnPPquSrVdLtu6bbP2hkk1KqWbA55bN80DLu81od4srydZ9HubcQgghhBBCCJFdSLJJCJGRjjzgPoHJ1p2TrYc96ImVUmUwjcPtgUigldb6bCoPD0227vqg5xZCCCGEEEKI7ESSTUKIjJSaKqKIZOseydajk617PchJlVL+wGLLcRroprXe+gAv4Z1sPfJBzi2EEEIIIYQQ2Y0km4QQGcktFfu4J1sPT7aefOhc8iF196SUcgIWAoUsTw3XWs9L7fF3ON9D94sSQgghhBBCiOxAkk1CiIxU9AH3OZds/RSQOANdqpNNwGSgrmV9rtZ6+AMcmyj5+U4+xPFCCCGEEEIIkW1IskkIkZHqWiqN7qVhsnXrUDdLY/H/WTaLKqXu+/NLKTUY6GrZ3AJ0S32oKZRKtr7nIV9DCCGEEEIIIbIFSTYJITKSL0nJn9sopZoCZSybm7TWF27Z5V/LoydQ+l4nUkq1AkZZNs9gGoJHPXDERg3LYxiw/yFfQwghhBBCCCGyBUk2CSEy2udKqWq3PqmUKgJMTfbUF3c4dnmy9ep3O4FSqiIwC/MzLgJoeYfEVaoopbyBEpbNlVrr+Id5HSGEEEIIIYTILhxsHYAQIlv5E3gC2KCUmgGsA+KBasBLJM0+t0Br/etdjo8BnIBgUiankptBUqPxeUBBpVTB+8S2Xmt9+Q7PBwPKsr7oPq8hhBBCCCGEENme0lrbOgYhRBamlAoG/rFsDgeOAD8Aznc55E+g7d2GvCmlFgLPYmaqy6W1vnmHfU4A90su3aqh1nr1HV5rLvAcEGk5X9gDvq4QQgghhBBCZCsyjE4IkaG01j9hKpl+AI4BUcBVYBXQSWvd/D69lb61PHpgkk7pRinlCTxj2fxJEk1CCCGEEEIIcX8yjE4IkeG01nuBXg957HKl1B6gPKbZ+Ow77BP0SAEmaQ+4AhoYm0avKYQQQgghhBBZmlQ2CSEyo2GWx6ZKqSrpcQKllD0wyLI5V2sts9AJIYQQQgghRCpIskkIkelorRcCmyybw9LpNC9gZqGLAYam0zmEEEIIIYQQIsuRZJMQIrPqCyQALZRSVdPyhS1VTe9bNr/UWh9Jy9cXQgghhBBCiKxMejYJITIlrfUOwD6dXjseKJkery2EEEIIIYQQWZ0km4QQQgghRJrIkSOHLlq0qK3DyFIiIiJwd3e3dRhZhlzPtHXu3DkAAgICuXgRQkJAa3BxAWdncHICBweIjYXoaLPExJjncueGgACwk7E2Kcj3aNqTa5r2tm/ffllrHXCvfSTZJIRIV1rr1YCydRxCCCHSX65cudi2bZutw8hSVq9eTXBwsK3DyDLkeqatgQM/Z8OG2uzaVZvoaOjSBd5/H+6Vc163DoYPh5UrIS4OBg+GV14BV9eMi/txJt+jaU+uadpTSp283z6SRxZCCCGEEEIIkWohITBwIIwd24/Nm2vSvj0cPAjTp9870QRQrx6sWAFr10Lp0tC/PxQuDGPHQmRkRkQvhMgIkmwSQgghhBBCCJEq8+dDoULw5ZdQuvR+XnttAjNmQLFiD/Y69eqZ6qY1a6BUKZN0KlYMdu9On7iFEBlLkk1CCCGEEEIIIe5r9mzo0AEqVoT9+6FNm0X4+199pNesXx9WrYLVq0EpaNQIduxIk3CFEDYkPZuEEEIIIYQQQtzTzJnQvbupSFqyBDw80vb1GzQwVU4NG0LjxvD331CtWtqeIzOKjY3lzJkzREVF2TqUTMvb25sDBw7YOoxMycXFhXz58uHo6PjAx0qySQghhBBCCCHEXU2dCj17mqqj338HN7f0OU/hwibh1KgRNGkCy5ZBzZrpc67M4syZM3h6ehIUFIRSMufOwwgLC8PT09PWYWQ6WmuuXLnCmTNnKFSo0AMfL8PohBBCCCGEEELc0aRJ8NJL0LQpLF6cfommREFBJuEUEGDOuWFD+p7vcRcVFYWfn58kmkSGU0rh5+f30FV1kmwSQgghhBBCCHGbCROgd29o3hwWLQJX14w5b/78JuGUJw88+aRZz84k0SRs5VG+9yTZJIQQQgghhBAihbFjoW9faNUKfv0VXFwy9vx585okU4EC0KyZaSIuhMg8JNkkhBBCCCGEEMJqwgTo3x/atoX588HZ2TZx5M5tZqkrUsRUV61bZ5s4srvatWun+WueOHGC2bNnp/nrphWPVHTAHzZsGJ9//jkAH3zwAStWrLjrvosWLWL//v13/fp3333HzJkzAQgODmbbtm2pjvX69et8++231u1z587Rrl27VB+fXiTZJIQQQgghhBACgB07TKLpmWfg55/hISahSlM5c8I//5ihdR07wrVrto0nO9q4cWOav2Z6Jpvi4+PT5XXv5aOPPqJJkyZ3/fq9kk1xcXH07t2bLl26PNS5b002BQYG8ssvvzzUa6UlSTYJIYQQQgghhODmTejUyTTnnjbN9ommRP7+MHs2XLhgekhpbeuIbOPNNyE4OG2XN9+8/3kTq3xWr15NcHAw7dq1o2TJknTq1Alt+ccICgpi8ODBVK9enerVq3PkyBEAunXrliLxkfhaQ4YMYd26dVSsWJGvvvoqxfnudZ6VK1dSqVIlypUrR48ePYiOjrae/6OPPqJu3brMnz+foKAg3n33XWrVqkWDBg3YsWMHTz75JEWKFOG7774DIDw8nMaNG1O5cmXKlSvHb7/9dt9rMXLkSEqUKEGTJk04dOiQ9fnk73PIkCGULl2a8uXLM2DAADZu3Mjvv//OwIEDqVixIkePHiU4OJh3332XBg0a8PXXX6eokgL46aefqF27NmXLlmXLli0At+1TtmxZTpw4wZAhQzh69CgVK1Zk4MCBnDhxgrJlywKmwXz37t0pV64clSpV4p9//gFg+vTptGnThqeeeopixYoxaNCg+773B+WQ5q8ohBBCCCGEECLTGTQIDh6E5cvBz8/W0aRUtSoMHw7vvQctWkDnzraOKHvauXMn//33H4GBgdSpU4cNGzZQt25dALy8vNiyZQszZ87kzTffZMmSJXd9ndGjR/P555/fdZ87nadq1ap069aNlStXUrx4cbp06cLEiRN505Ixc3FxYf369YBJ+OTPn59Nmzbx2muv0a1bNzZs2EBUVBRlypShd+/euLi4sHDhQry8vLh8+TI1a9akZcuWd22KvX37dubMmcPOnTuJi4ujcuXKVKlSJcU+V69eZeHChRw8eBClFNevXydHjhy0bNmSFi1apBjedv36ddZYut8PGzYsxetERESwceNG1q5dS48ePdi3b989r+W+ffvYtWsXYKrGEk2YMAGAvXv3cvDgQZo2bcrhw4cB2LVrFzt37sTZ2ZkSJUrw+uuvkz9//rue50FJskkIIYQQQgghsrk//zS9mt56C+4xGsimBg+GpUvhtdegbl0oVMjWEWWssWNtHQFUr16dfPnyAVCxYkVOnDhhTTa98MIL1sf+/fun+Xk8PT0pVKgQxYsXB6Br165MmDDBmmx6/vnnU7xGy5YtAShTpgwxMTF4enri6emJi4sL169fx93dnXfffZe1a9diZ2fH2bNnuXjxIrlz575jTOvWraN169a4ubmleP3kvLy8cHFxoWfPnjRv3pwWLVrc9T3eGm9yideyfv36hIaGcv369bvuey/r16/n9ddfB6BkyZIULFjQmmxq3Lgx3t7eAJQuXZqTJ0+mabJJhtEJIYQQQgghRDYWEgLdu0O5cjBqlK2juTt7e5g5E5QylU1xcbaOKPtxTtYt3t7enrhk/wjJK4IS1x0cHEhISABAa01MTMxDn0ffZ/yku7v7HV/Dzs4uxevZ2dkRFxfHrFmzuHTpEtu3b2fXrl3kypWLqKioe57jblVPiRwcHNiyZQtt27Zl0aJFPPXUU6mO917nUUqluJbAfWMF7nnN7vVvmRYk2SSEEEIIIYQQ2ZTW0LMn3Lhh+iLZaua51AoKMhVYGzbAmDG2jkYkN3fuXOtjrVq1ANNLafv27QD89ttvxMbGAuDp6UlYWNgDvX7JkiU5ceKEtR/Ujz/+SIMGDR463hs3bpAzZ04cHR35559/OHny5D33r1+/PgsXLiQyMpKwsDAWL1582z7h4eHcuHGDp59+mrFjx1qHtj3o+028luvXr8fb2xtvb2+CgoLYsWMHADt27OD48eP3fe369esza9YsAA4fPsypU6coUaJEquN4FDKMTgghhBBCCCGyqcmTYfFiM0TL0lP4sdepE/zxBwwbBk2bQrVqto5IAERHR1OjRg0SEhL4+eefAejVqxetWrWievXqNG7c2FrNU758eRwcHKhQoQLdunVL1bA7FxcXpk2bRvv27YmLi6NatWr07t37oePt1KkTzzzzDFWrVqVixYqULFnynvtXrlyZ559/nooVK1KwYEHq1at32z5hYWG0atWKqKgotNbW5ucdOnSgV69ejBs3LlUzxfn4+FC7dm1CQ0OZOnUqAG3btmXmzJlUrFiRatWqWYcT+vn5UadOHcqWLUuzZs147bXXrK/Tp08fevfuTbly5XBwcGD69OkpKprSk7pfKZoQQgghhBCpUaJECZ18dh7x6BJnZRJpQ65nSocOQaVKUK8e/PUX2D3guJfhw4cD8OGHH6ZDdPd27RpUqAAuLrBjB1gmOcv0bv0ePXDgAKVKlbJdQKkUFBTEtm3b8Pf3t3UotwkLC8PT09PWYWRad/oeVEpt11pXvddxMoxOCCGEEEIIIbKZmBhTIeTmBtOmPXiiydZ8fEz/piNHTFNzIcTjJZP9SBFCCCGEEEII8aiGD4ft2+H77yEw0NbRPJzgYBg40LyHRYtsHU32duLEiceyqknYjiSbhBBCCCGEECIb+e8/GD0aevSA1q1tHc2jGTECKlaE116DiAhbR5M+pPWNsJVH+d6TZJMQQgghhBBCZCMDB4KnJ3z6qa0jeXROTvDNN3DuHHzxha2jSXsuLi5cuXJFEk4iw2mtuXLlCi4uLg91vMxGJ4QQQgghhBDZxPLlphn4Z5+Bn5+to0kbdepA27YmedarF+TJY+uI0k6+fPk4c+YMly5dsnUomVZUVNRDJ0yyOxcXF/Lly/dQx0qySQghhBBCCCGygfh4GDAAChWC11+3dTRpa8wY+P13+OAD08Mpq3B0dKRQoUK2DiNTW716NZUqVbJ1GNmODKMTQgghhMiGlFJPKaUOKaWOKKWG3OHrwUqpG0qpXZblA1vEKYRIOzNmwJ49pl+Ts7Oto0lbRYpA374wdSrs3WvraIQQkmwSQgghhMhmlFL2wASgGVAaeEEpVfoOu67TWle0LB9laJBCiDQVHg7vvw+1akH79raOJn28/z54e5vqLSGEbUmySQghhBAi+6kOHNFaH9NaxwBzgFY2jkkIkY4+/xzOnzdNtJWydTTpw9fXDKP7+29YutTW0QiRvUnPJiGEEEKI7CcvcDrZ9hmgxh32q6WU2g2cAwZorf+7dQel1MvAywABAQGsXr067aPNxsLDw+WapqHsej0vX3ZizJgaNGhwhejo/aT1JXicrmmZMorAwOq8+moCP/ywDXv7zDWLW3b9Hk1Pck1tQ5JNQgghhBDZz53qGm79i2wHUFBrHa6UehpYBBS77SCtJwOTAUqUKKGDg4PTNtJsbvXq1cg1TTvZ9Xq+9BIkJMDUqTkpXDhnmr3umjVrAB67azpuHLRrB8eONaBXL1tH82Cy6/doepJrahsyjE4IIYQQIvs5A+RPtp0PU71kpbUO1VqHW9b/BByVUv4ZF6IQIi3s3g3TppnZ5woXtnU0GaNNG6hbF4YOhbAwW0cjRPYkySYhhBBCiOxnK1BMKVVIKeUEdAB+T76DUiq3Uqazi1KqOua+8UqGRyqEeGham2bZPj7w3nu2jibjKGV6U128CJ9+autohMieJNkkhBBCCJHNaK3jgL7AMuAAME9r/Z9SqrdSqrdlt3bAPkvPpnFAB6115mp+IkQ299dfsGIFfPih7MYYaAAANlpJREFUSThlJ9WrwwsvmKTTmTO2jkaI7EeSTUIIIYQQ2ZDW+k+tdXGtdRGt9UjLc99prb+zrH+jtS6jta6gta6ptd5o24iFEA8iLs5UNRUrBr1733//rGjUKNOrKjtVdQnxuJBkkxBCCCGEEEJkMT/9BAcOwJgx4ORk62hsIygI+vWDH3+E/26bS1MIkZ4k2SSEEEIIIYQQWUh8PIweDRUrwrPP2joa2xo0CNzcTNJNCJFxJNkkhBBCCCGEEFnIggVw6BC8+65plp2d+fnBK6/A7Nlw7JitoxEi+5BkkxBCCCGEEEJkEVqbXkUlSkCbNraO5vHw9ttgbw+ffWbrSITIPiTZJIQQQgghhBBZxNKlsGsXDBliEiwCAgOhe3eYOhXOn7d1NEJkD5JsEkIIIYQQQogsYtQoKFAAOnWydSSPl0GDzAx9X35p60iEyB4k2SSEEEIIIYQQWcC6dbB+PQwcCI6Oto7m8VK4MLzwAkycCFev2joaIbI+STYJIYQQQgghRBYwciTkzAkvvWTrSB5PQ4ZARASMG2frSITI+iTZJIQQQgghhBCZ3PbtsGwZvPUWuLraOprHU9my8OyzJtkUFmbraITI2iTZJIQQQgghhBCZ3CefgLc3vPqqrSN5vL3zDly7BpMm2ToSIbI2STYJIYQQQgghRCZ24AAsWACvvw5eXraO5vFWvTo0aQJffAFRUbaORoisS5JNQgghhBBCCJGJjRljhs7162frSDKHd9+FCxdg+nRbRyJE1iXJJiGEEEIIIYTIpE6cgJ9+gldeAX9/W0eTOQQHQ61aJkkXG2vraITImiTZJIQQQgghhBCZ1GefgZ0dvP22rSPJPJQy1U0nTsCcObaORoisSZJNQgghhBBCCJEJXbgAU6ZAt26QN6+to8lcmjeH8uVNY/WEBFtHI0TWI8kmIYQQQgghhMiExo41w8AGDbJ1JJmPUmZmugMH4LffbB2NEFmPJJuEEEIIIYQQIpOJiIBJk6BtWyha1NbRZE7t20NQkEnaCSHSliSbhBBCCCGEECKT+eknuH5dZqB7FPb20LcvrF0Lu3bZOhohshZJNgkhhBBCCCFEJqI1jBsHlStD7dq2jiZz69ED3NzM9RRCpB1JNgkhhBBCCCFEJrJyJezfb6qalLJ1NJmbjw907QqzZ8OlS7aORoisQ5JNQgghhBBCCJGJfP015MwJzz9v60iyhtdfh+homDzZ1pEIkXVIskkIIYQQQgghMokjR+CPP6B3b3B2tnU0WUOpUtC0KXz7rZndTwjx6CTZJIQQQgghhBCZxDffgIODSTaJtNOvH5w7B7/+autIhMgaJNkkhBBCCCGEEJlAaChMnQrPPQd58tg6mqzlqaegWDEzRFEI8egk2SSEEEIIIYQQmcCMGRAWZqpwRNqyszO9mzZvhi1bbB2NEJmfJJuEEEIIIYQQ4jGXkADjx0PNmlCtmq2jyZq6dQNPTxg3ztaRCJH5SbJJCCGEEEIIIR5zS5fC//4nVU3pydMTevSAefPg/HlbRyNE5ibJJiGEEEIIIYR4zH39NQQGQtu2to4ka+vbF+LiYOJEW0ciROYmySYhhBBCCCGEeIwdOAB//w19+oCjo62jydqKFoXmzeG77yA62tbRCJF5SbJJCCGEEEIIIR5j48eDszO8/LKtI8ke+vWDS5dgzhxbRyJE5iXJJiGEEEIIIYR4TF27Zmah69gRAgJsHU320LgxlC5thi5qbetohMicJNkkhBBCCCGEEI+pqVPh5k144w1bR5J9KGWu986dsGGDraMRInOSZJMQQgghhBBCPIbi4+Gbb6B+fahY0dbRZC8vvgg+PjBunK0jESJzkmSTEEIIIYQQQjyGli2DEyfgtddsHUn24+4OPXrAwoVw/rytoxEi85FkkxBCCCGEEEI8hiZOhFy54NlnbR1J9vTKKxAXB1Om2DoSITIfSTYJIYQQQmRDSqmnlFKHlFJHlFJD7rFfNaVUvFKqXUbGJ0R2d/Ik/PEH9OwJTk62jiZ7KlYMmjSByZPNkEYhROpJskkIIYQQIptRStkDE4BmQGngBaVU6bvsNwZYlrERCiG+/9489upl2ziyu9694fRp+PNPW0ciROYiySYhhBBCiOynOnBEa31Max0DzAFa3WG/14FfgZCMDE6I7C42Fn74AZo3h4IFbR1N9tayJeTJA999Z+tIhMhcHGwdgBBCCCGEyHB5gdPJts8ANZLvoJTKC7QGGgHV7vZCSqmXgZcBAgICWL16dVrHmq2Fh4fLNU1DmeV6rl4dwMWLZahdew+rV1+1dTj3lRmu6aNo0iSIn34qyM8//0uePFHpeq7M8j2amcg1tQ1JNgkhhBBCZD/qDs/pW7bHAoO11vFK3Wl3y0FaTwYmA5QoUUIHBwenUYgCzB/xck3TTma5niNGmIqmQYPKY29v62jubs2aNQCZ4po+iiJFYNYs2Lu3Ji+8kL7nyizfo5mJXFPbkGF0QgghhBDZzxkgf7LtfMC5W/apCsxRSp0A2gHfKqWezZDohMjGDh2CVavg5Zd5rBNN2Un+/NCihZmVLibG1tEIkTlIskkIIYQQIvvZChRTShVSSjkBHYDfk++gtS6ktQ7SWgcBvwB9tNaLMjxSIbKZSZPAwQFeesnWkYjkXn0VQkJg4UJbRyJE5iDJJiGEEEKIbEZrHQf0xcwydwCYp7X+TynVWynV27bRCZF9RUbC9OnQpg3kymXraERyTZtCoULw//buPNzKqvz/+PtmcmAwVJzH1HBKEQUlNdGMHFOzVMQBJ8Ak02+UpqZoWg5pTogQaA5oOWA5YGoZpgmK5oDzD4cEbTBnHFBi/f54NnHEA5wD+5y1h/fruva1p7Wf/TkP5xzYN2vda+TI3Emk6mDPJkmSpDqUUpoATJjvsUb3W0opDWyNTFK9u+EGePvtYhaNKkubNjB4MJx4Ijz7LGy0Ue5EUmVzZpMkSZIkVYCRI2HDDWGHHXInUWMOOwzat4fLGy3LS2rIYpMkSZIkZfbYY/DQQzBkCCxkA0hltNJK8O1vw1VXwYcf5k4jVTaLTZIkSZKU2eWXwzLLwCGH5E6ihRkyBN59F37zm9xJpMpmsUmSJEmSMnrvPRg3Dg44ALp2zZ1GC7P99rDxxi6lkxbFYpMkSZIkZTRuHHzwQTFrRpUtovhzmjIFHn00dxqpcllskiRJkqRMUioag/fsCb165U6jpjjkEFh2WWc3SQtjsUmSJEmSMpk0CaZOtTF4NVluOejfH667rujfJOnzLDZJkiRJUiajRkHnzkXxQtVjyJBiR7px43InkSqTxSZJkiRJyuDtt+GGG2DAAOjUKXcaNceWW8IWWxTFwpRyp5Eqj8UmSZIkScrg2mvh449h0KDcSdRcEcWf25NPFs3CJX2WxSZJkiRJamUpFbNievUqZsio+hx4IHTsCKNH504iVR6LTZIkSZLUyiZNgqefdlZTNevSpei1df31NgqX5mexSZIkSZJa2ejRRWPwAw7InURLYtCgolH4ddflTiJVFotNkiRJktSK3n4bfvtbG4PXgq22slG41BiLTZIkSZLUimwMXjvmNgp/4gkbhUsNWWySJEmSpFaSUrGEbu6MGFU/G4VLn2exSZIkSZJayaRJ8NRTMHhw7iQql4aNwt97L3caqTJYbJIkSZKkVjJ6dNGnycbgtcVG4dJnWWySJEmSpFZgY/DatdVW0KOHjcKluSw2SZIkSVIrsDF47ZrbKPzxx+GRR3KnkfKz2CRJkiRJLaxhY/CePXOnUUsYMACWXdZG4RJYbJIkSZKkFjd5ctEY3FlNtctG4dI87XIHkCRJ0mdFxEpAb2AzYG2gK7AM8BHwFvB34Eng4ZTSG7lySmq6UaNsDF4PBg2CsWOLRuFDhuROI+VjsUmSJKkCRMR6wEHAXsDmzXjd48DvgGtTSi+3SDhJS2RuY/BDD4XOnXOnUUvq1Wteo/DBg4teTlI9chmdJElSRhHRLyL+ALwAnEpRaIpmXHoAw4FpEXFnRHy9lb8ESYtgY/D6YaNwqeDMJkmSpAwiYjvgbKDP3IdK128CDwMPAc8Cb5ceew9YDli+dNkI2Jpiud3ypdf2A/pFxIPAiSmlv7b8VyJpYVIqZrlsuaWNwevFgAEwbFjx596rV+40Uh4WmyRJklpZRIwDDmBegWkGcD0wLqX05GIcbzPgQKA/sCawLfCXiLg+pXRQeVJLWhwPPghPPw2/+lXuJGotXbrAgQcWfZvOPx+WWy53Iqn1uYxOkiSp9fWnKDTdC+ycUlorpXTC4hSaAFJKT6aUTkwprQ3sXDpulN5HUkajRhV9mmwMXl8GD4YPP4Rx43InkfKw2CRJktT67gW2TyntnFK6t5wHTindm1LaGdi+9D6SMnnrLbjhBjjooGInOtWPrbYqlk1efnmxlFKqNxabJEmSWlmpyNSi/ZRSSn9NKdksXMroqqtg1qxilovqz+DBMHUqTJ6cO4nU+iw2SZIkSVKZzW0Mvs02sPnmudMoh/79ixlto0blTiK1PotNkiRJklRmf/kLPP+8s5rqWefOxRLK3/4W3n47dxqpdVlskiRJqhARsfwSvn63cmWRtGRGjSp2Idtvv9xJlNPgwfDxx3DNNbmTSK3LYpMkSVLlmBoROzX3RRHRISIuAW5rgUySmumNN+Cmm+DQQ2HZZXOnUU49ekDv3jYKV/2x2CRJklQ5VgXujohzIqJdU14QEZsCjwDfbc4bRcQuEfF8REyLiBMbeX6viHgyIh6PiEciYrvmHF+qZ7/+NXz6qUvoVBg8GJ59Fh54IHcSqfVYbJIkSaoc/wUCGAZMioj1FzY4Ir4HPAxsUnrd8015k4hoC4wAdgU2BvpHxMbzDfsTsHlKqQdwODCm6V+GVL/mzIHRo2G77WDj+X+qVJf2379YUmmjcNUTi02SJEmVY3vgFYrCUU/gsYg4bP5BEdEtIm4HLgSWLo0fA2zVxPfpDUxLKb2UUvoE+A2wV8MBKaWZKf1v0UdHwAUgUhP8+c8wbRoMGZI7iSpFx45w8MHF0sr//Cd3Gql1NGl6tiRJklpeSmlyRGwOjAQGUBR5xkTELsCglNK7pdtXAitRFJneBo5KKY1vxlutDkxvcH8GsPX8gyJiH+DnpffavbEDRcQgYBBAt27dmDhxYjNiaFFmzpzpOS2j1jifP/3pxnTp0pVu3SYxceKcFn2vSuH36KL17NmRWbN6ceqp09hvvxkLHOfPfPl5TvOIZJcySZKkihMR/YHLgOUoZhVNp1jaNpCiyAQwETg4pfRaM4/9HeAbKaUjS/cPBnqnlL63gPFfBU5NKe28sON27949Pf98k1byqYkmTpxI3759c8eoGS19Pv/5T1hzTTj2WDj//BZ7m4px+umnA3DaaadlTlIdtt22mNn03HMQ0fgYf+bLz3NafhHxaEppobOpXUYnSZJUgVJK1wNbAA9SFJfWYl6h6RPgJOBrzS00lcwA1mxwfw3g9YVk+QuwXkSsuBjvJdWNK6+E2bNh0KDcSVSJhgyBF14AJ9moHlhskiRJqlAppVeA6+febXD9B+D8tPhT1KcAG0TEuhHRATgAuLXhgIhYP6L4v/eI6Al0AN5czPeTat7cxuA77gjdu+dOo0r07W9D1642Cld9sNgkSZJUgSKia0SMBy6mKDAF83ar2xN4OCI2XJxjp5RmA0OBu4BngRtSSk9HxJCImNvWeF/gqYh4nGLnuv2XoLgl1by774ZXXim2uZcas8wycOihMH48/PvfudNILctikyRJUoWJiB2BJyl2iAvgHWA/iibeL5Qe2wx4tEFxqFlSShNSSl9KKa2XUjqr9NjlKaXLS7fPSSltklLqkVLqk1J6YIm/MKmGjRoF3brBPvvkTqJKNmgQfPppseRSqmUWmyRJkipERLSLiLOBe4DVKIpKfwE2TyndlFJ6jKKP09jSc8sAIyLi9xGxQq7cUr2bPh1uvRUOPxw6dMidRpVso41ghx3g8svhv//NnUZqORabJEmSKsck4IcU/0b7L3AqsGNK6X/7ZKeUPkopHQV8G3iLoui0BzA1Ir7e+pEljRoFKRUNoKVFOeaYYsnlnXfmTiK1HItNkiRJlWNLiuLRy8D2KaUzF9QnKaU0HugB3Fd6zSrAhFbKKalk1iz41a9gjz1gnXVyp1E12HtvWG01GDEidxKp5VhskiRJqizXAj1SSg8tamBpxtNOwMnAp/hvO6nV3Xxz0ez5mGNyJ1G1aN++6N30hz/AtGm500gtw3+QSJIkVY5DUkqHpJTeb+oLUuHnwHbAiy0XTVJjRoyA9deHr7uIVc0waBC0awcjR+ZOIrUMi02SJEkVIqV07RK8dgpF83BJreSxx+DBB+G734U2frJSM6y6KnzrW3DFFfDhh7nTSOXnr0RJkqQakVL6IHcGqZ6MGAHLLAMDB+ZOomp0zDHwzjtw3XW5k0jlZ7FJkiRJkprp7beLIsGAAdC1a+40qkbbbw+bbloULRvfCkKqXhabJEmSWllEtMpyt4jo2RrvI9WjK6+Ejz6yMbgWXwQMHQqPPw6TJuVOI5WXxSZJkqTW90hE3BIRm7fEwSNii4j4PfBwSxxfqndz5sBll8G220KPHrnTqJoNGABduhSzm6RaYrFJkiQpj28Cf4uI2yNi/4hYekkOFhFLR8QBEXEn8AiwJ+DCDKkF3H03vPiis5q05Dp1Knp+3Xgj/OtfudNI5WOxSZIkqfX1oph1FMCuwHXAvyLi1xFxaERs1JSDRMTGETEwIn4N/AsYB/QrHXcS0Lslwkv1bsQIWHll2Hff3ElUC777Xfj0UxgzJncSqXza5Q4gSZJUb1JKfwP6RMS3gOHApkBn4ODShYh4H/h/wFuly/tAF2D50mX90mvmitL1k8DwlNLvWvrrkOrRyy/DHXfAySdDhw6506gWdO8OO+8Ml18O22wTi36BVAUsNkmSJGWSUhoPjI+IfsDRwG5A+9LTXYCFNfhu+InkE2ACcFlK6Y8tkVVSYeRIaNMGBg/OnUS15JhjYJ994K9/XYGvfS13GmnJuYxOkiQps5TS3SmlfYBVgUOAa4AXSk9HI5cEPA9cTTETatWU0rcsNEkt66OPYOxY2GsvWGON3GlUS/bYA9ZcE373u9VzR5HKwplNkiRJFSKl9BZwbelCRHQA1qRYNrcUMItiSd2rKaVPc+WU6tVvfwtvvWVjcJVfu3YwZAicfHJXnn0WNmpS5z6pcjmzSZIkqUKllD5JKb2YUpqSUnqgdP2ihSYpjxEjiiLAjjvmTqJadOSR0L79HC67LHcSaclZbJIkSZKkRZg8GR55pNg5LOzhrBaw0krQt++/ueoqeO+93GmkJWOxSZIkqYJFxEoRsXtEHBURx5eud4+IlXJnk+rJL38Jyy0Hhx6aO4lq2b77vsb77xe9waRqZs8mSZKkChQR+wDDgG0WMmYS8IuU0u9aK5dUj155BW66CX7wA+jcOXca1bLu3d9n++3hoovge98rejlJ1ciZTZIkSRUkIjpExA3ATRSFpsZ2o5t76QPcHBE3lJqJS2oBl1xSLJ373vdyJ1E9+L//g7//HW65JXcSafFZJ5UkSaosNwO7URSTAJ4B7gWmAR8AHYH1gR2BTUpj9gWWBr7ZqkmlOvDee/CrX8F++xVb00stbc89Yb314IIL4DvfyZ1GWjwWmyRJkipERBwA7A4k4HXgiJTSXQsZ3w8YC6wO7B4R+6eUftsqYaU6MXYsvP9+MdtEag1t28JxxxUz6SZNgj59cieSms9ldJIkSZXjiNL1B8AOCys0AaSU7gb6AjNLDx3ZctGk+jN7dtE7Z/vtYautcqdRPRk4EL7whWJ2k1SNLDZJkiRVjs0pZjWNTSm92JQXlMaNpVh216Plokn155Zbit45zmpSa+vUCQYPhvHj4eWXc6eRms9ikyRJUuXoVLqe0szXzR2/bBmzSHXvgguK3jl77pk7ierR0KHQpg1cfHHuJFLzWWySJEmqHK+Xrts283Vzx7++0FGSmmzSJJg8ueid07a5P5FSGayxBuy/P4wZA+++mzuN1DwWmyRJkirHvaXr7Zv5uu0plt/du6iBkprmgguKnjkDB+ZOonp2/PEwc2ZRcJKqicUmSZKkynEx8AlwSET0asoLImIr4FBgVun1kpbQyy8XvXIGDy5650i5bLkl7LBD0ah+9uzcaaSms9gkSZJUIVJKTwFHUTT7vicijoyIdo2NjYh2EXEEcA/FrKYjU0pPt15aqXZdfHHRK2fo0NxJpKJB/fTpcPPNuZNITdfoP14kSZLU+iLi1NLNe4DdgFHA2RFxPzAN+JCiCfj6wHbA8qXxE4D1G7z+c1JKZ7RUbqmWvPtusWRp//2LnjlSbnvsAeuvD+efD/vtBxG5E0mLZrFJkiSpcgynmKVEg+vlgW82MjYajNmtdFkYi01SE4wZU/TIOf743EmkQps2xffjMcfAgw/CttvmTiQtmsvoJEmSKkvMd2nssYU9vqCxkhZh9uyiN84OOxS9cqRKceih0LVr0bheqgbObJIkSaocO+YOINWzm28ueuNcemnuJNJndewIRx8NP/85vPgirLde7kTSwllskiRJqhAppftyZ5DqVUrFB/kNNih65EiV5phj4Be/gPPOg8svz51GWjiX0UmSJNWhiNglIp6PiGkRcWIjzw+IiCdLlwcjYvMcOaXWcscd8MQTcNJJRY8cqdKsthocfjhceSXMmJE7jbRw/hqVJEmqMxHRFhgB7ApsDPSPiI3nG/YysENKaTPgp8Do1k0ptZ6U4MwzYZ11YMCA3GmkBTvhBJgzp5jhJFUyi02SJEn1pzcwLaX0UkrpE+A3wF4NB6SUHkwpvV26OxlwE3jVrD/9CR56CE48Edq3z51GWrB11oGDD4bRo+Ff/8qdRlowezZJkiTVn9WB6Q3uzwC2Xsj4I4A7G3siIgYBgwC6devGxIkTyxRRADNnzvScltGCzuewYT1YccVlWHfdyUycmFo/WJXze7R8mvIzv+OOy3DVVb057rjpDB78UusEq2L+Hs3DYpMkSVL9iUYea/QTdkTsSFFs2q6x51NKoyktsevevXvq27dvmSIKig/xntPyaex83n9/0avpwguhX78dsuSqVvfdV+xp4Pdo+TT1Z/7OO+G229bi0kvXYoUVWj5XNfP3aB4uo5MkSao/M4A1G9xfA3h9/kERsRkwBtgrpfRmK2WTWtVZZ0G3bnDUUbmTSE130kkwcyZcfHHuJFLjLDZJkiTVnynABhGxbkR0AA4Abm04ICLWAsYDB6eUXsiQUWpxU6bAXXfBD34Ayy6bO43UdJtuCvvsUxSb3n03dxrp8yw2SZIk1ZmU0mxgKHAX8CxwQ0rp6YgYEhFDSsNOBVYALouIxyPikUxxpRZz5pnQtSscfXTuJFLznXwyvPMOXHZZ7iTS59mzSZIkqQ6llCYAE+Z77PIGt48EjmztXFJreeIJuPVWGD4cunTJnUZqvi23hF13hQsugGOPhY4dcyeS5nFmkyRJkqS687OfQefOxYd0qVr95Cfwn//A6NG5k0ifZbFJkiRJUl157jm48UYYOrRYRidVqz59YKed4Lzz4OOPc6eR5rHYJEmSJKmu/PznsPTScPzxuZNIS+6UU+Af/4ArrsidRJrHYpMkSZKkuvHSSzBuHAwZAt265U4jLbm+feErX4FzzoFPPsmdRipYbJIkSZJUN845B9q2hWHDcieRyiOimN306qtwzTW500gFi02SJEmS6sJrry3DFVfAkUfCaqvlTiOVzy67wFZbwRln2LtJlcFikyRJkqS6MHbsunToUMwCkWpJRNGL7NVXYeTI3Gkki02SJEmS6sAjj8Cf/7wSP/gBrLpq7jRS+e28M/TrB2eeCe++mzuN6p3FJkmSJEk1LSU44QRYbrlP7NWkmnb22fDWW3DuubmTqN5ZbJIkSZJU0+6+G+69Fw4++O906ZI7jdRyttgCDjwQfvlLeP313GlUzyw2SZIkSapZc+YUs5rWXRf23NNP36p9P/0pzJ4Nw4fnTqJ6ZrFJkiRJUs26/np44omij02HDil3HKnFffGLcPTRMHYsPPdc7jSqVxabJEmSJNWkWbOKnee22AIOOCB3Gqn1nHIKdOwIJ52UO4nqlcUmSZIkSTVp5Eh45RU45xxo4ycf1ZFu3eCHP4RbboFJk3KnUT3yV64kSZKkmvPuu8XSuZ13hq9/PXcaqfUdfzysvHLRsyy5glStzGKTJEmSpJpz3nnw5pvFVvBSPerUCU47De6/H+64I3ca1RuLTZIkSZJqyj/+ARdcUPRp2nLL3GmkfI48EjbYAE48Ef7739xpVE8sNkmSJEmqKaefXmz9ftZZuZNIebVvDz/7GTz9NFxzTe40qicWmyRJkiTVjGeegTFjYMiQYgt4qd7tuy/07g0/+QnMnJk7jeqFxSZJkiRJNSElOPpo6NKl+GAtCSKKZaUzZsAZZ+ROo3phsUmSJElSTbj6avjLX+Ccc4qt3yUVtt0WDj8cfvlLeOqp3GlUDyw2SZIkSap6b70Fw4ZBnz5wxBG500iV55xzill/Rx8Nc+bkTqNaZ7FJkiRJUtX78Y/h7bdh5Eho46cc6XNWXBHOPRceeACuuip3GtU6fw1LkiRJqmqTJ8Po0XDssbD55rnTSJXrsMPgK1+BH/4Q3nwzdxrVMotNkiRJkqrW7NnFznOrrw6nn547jVTZ2rQpZv+98w6ceGLuNKplFpskSZIkVa1LL4UnnoALL4TOnXOnkSrfZpvBccfBmDHw4IO506hWWWySJEmSVJVeew1+8hPYdVfYd9/caaTqMXw4rLFGMSvw009zp1EtstgkSZIkqSodd1yxjO7SSyEidxqpenTqBBdfDFOnFtdSuVlskiRJklR1/vAHuOkmOPlk+OIXc6eRqs/ee8Puu8Npp8H06bnTqNZYbJIkSZJUVT76CI45Brp3L3bVktR8EXDJJTBnTjFLUConi02SJEmSqsrpp8NLL8Fll8FSS+VOI1WvddeFU06B8ePhlltyp1EtsdgkSZIkqWpMnAjnngtHHAE77ZQ7jVT9hg2Dnj3hqKPg9ddzp1GtsNgkSZIkqSq8/TYcfDCsvz5ceGHuNFJt6NABxo2DDz+EgQOLZXXSkrLYJEmSJKnipQSDB8M//1l8MO7UKXciqXZsuCH88pdwzz1w0UW506gWWGySJEmSVPGuvhpuvBHOOAN69cqdRqo9gwbBN78JJ54ITzyRO42qncUmSZKkOhQRu0TE8xExLSJObOT5DSNiUkTMiohhOTJKc734IgwdCl/9KvzoR7nTSLUpAsaMgeWXhwMPLHZ9lBaXxSZJkqQ6ExFtgRHArsDGQP+I2Hi+YW8BxwK/aOV40md8+ikMGABt28I11xTXklpGt25w1VXwzDMWdrVkLDZJkiTVn97AtJTSSymlT4DfAHs1HJBS+ndKaQrwaY6A0lxnngkPPQSjRsFaa+VOI9W+fv3g+OPh0kthwoTcaVSt2uUOIEmSpFa3OjC9wf0ZwNaLc6CIGAQMAujWrRsTJ05c4nCaZ+bMmXV9TqdO7cKZZ25Bv37/YuWVn2NJT0W9n8+W4jktn0r5Ht1llzb8/vc9OeigDowZM4Xll6/e/3eolHNabyw2SZIk1Z9o5LG0OAdKKY0GRgN079499e3bdwliaX4TJ06kXs/pu+/CYYfB2mvDjTeuQpcuqyzxMev5fLaE++67D8BzWkaV9D16662w1VYwduy23H570dOpGlXSOa0nLqOTJEmqPzOANRvcXwN4PVMW6XNSgqOPhunTYdw46NIldyKp/myyCZx3XrGU7qKLcqdRtbHYJEmSVH+mABtExLoR0QE4ALg1cybpf84+G66/Hs44A/r0yZ1Gql/HHAN77QXDhsHdd+dOo2pisUmSJKnOpJRmA0OBu4BngRtSSk9HxJCIGAIQEatExAzg/4BTImJGRDi/RC1u/Hg46aRi6/Uf/zh3Gqm+RcC11xaznL7znWKXOqkp7NkkSZJUh1JKE4AJ8z12eYPb/6RYXie1mkcfhYMOgm22gbFjq7dHjFRLOnWC226D3r1hzz2L3SFXXDF3KlU6ZzZJkiRJyu611+Cb34Ru3eB3v4Oll86dSNJca60Fv/998XP6rW/BrFm5E6nSWWySJEmSlNUHHxSFpvfeg9tvh5VXzp1I0vy23hp+/Wu4/34YMqRo5C8tiMvoJEmSJGUzZw4ccgg89lix1fqXv5w7kaQFOeAAeO45OP102Ggj+NGPcidSpbLYJEmSJCmbU04pmoKffz7ssUfuNJIW5bTTioLTiSfCl74Ee++dO5EqkcvoJEmSJGVx9dXw85/DUUfB8cfnTiOpKSLgyiuhVy8YMKCYlSjNz2KTJEmSpFY3YUJRZNpxRxgxwp3npGqyzDJFw/AVVoDdd4cXXsidSJXGYpMkSZKkVnXbbbDPPrDppnDzzdC+fe5EkpprlVXgzjth9mzo27dYWifNZbFJkiRJUqv5/e9h331h883hj3+Erl1zJ5K0uDbZBCZOLBr99+0LzzyTO5EqhcUmSZIkSa1i/Hj49rehZ0+45x4LTVIt2HjjouAUURScnnoqdyJVAotNkiRJklrcjTfCfvtB795w992w3HK5E0kqlw03LApO7dsXfdiefDJ3IuVmsUmSJElSi/rNb6B/f+jTB/7wB+jSJXciSeXWvXtRcFpqqaLg5C519c1ikyRJkqQWM25csT36ttsWzYQ7d86dSFJL2WADuO8+6NgRvvY1ePTR3ImUi8UmSZIkSWWXEowcCYccAjvsABMmQKdOuVNJamnrrVcUnLp0gZ13hj//OXci5WCxSZIkSVJZzZoFgwbBd78Lu+wCt99ezHSQVB/WXbcoOK2yCnz963DRRUUBWvXDYpMkSZKksnn99WJHqjFj4KST4NZbYdllc6eS1NrWXhseegh23x2OOw4GDoSPPsqdSq3FYpMkSZKkspg0CbbaCqZOLXafO+ssaNs2dypJuXTpArfcAqedBldfDV/9KkyfnjuVWoPFJkmSJElLbMyYojfTMssURadvfzt3IkmVoE0bGD68KDo991xRkL7//typ1NIsNkmSJElabJ98UvRmOuqoYvnclCnw5S/nTiWp0uy9d7GsbrnlYKedig0E7ONUuyw2SZIkSVosTz8N229ffGj84Q+LHeeWXz53KkmVauON4eGHoV+/okh94IHwxhu5U6klWGySJEmS1CyzZhXLYrbYAl58EW64Ac49F9q1y51MUqX7wheKjQPOOANuvhk22giuvdZZTrXGYpMkSZKkJps0CXr2hNNPh/32g2efhe98J3cqSdWkbVv4yU/gscdggw3g4INht93g73/PnUzlYrFJkiRJ0iK9/z5873uw7bbF7TvuKGYjdOuWO5mkarXJJvDAA3DxxUXT8E02gYsugv/+N3cyLSmLTZIkSZIWasKE4kPgiBEwdGjRq2m33XKnklQL2rYtCtlze8Add1xR1J46NXcyLQmLTZIkSZIadd99xQ5zu+8OnTrNm4HQuXPuZJJqzdprF4Xta6+FadOgRw846CB44YXcybQ4LDZJkiRJ+owHHoCvfa0oND3/PFx4YdFb5StfyZ1MUi2LgAED4Lnn4Ac/gPHjiwbihx5aFKBUPSw2SZIkSQKK5t/9+hVLWZ56Ci64AF56Cb7/fVhqqdzpJNWLFVcsdrh8+eViWd0NN8CGG8Lhhxe/k1T5LDZJkiRJdWzOHLjnHth112Lm0uOPw3nnFR/ojj8ellkmd0JJ9WrlleH884vfR0OHwnXXQffucOSR8MQTudNpYSw2SZIkSXVoxgz46U9hvfWK2UyPPAJnn118qBs2DDp2zJ1Qkgqrrlos533xRRgypOjr1KMH9OoFo0bBe+/lTqj5WWySJEmS6sSnn8IttxQNv9deG049tSg2XX89TJ8OJ5xQNAKXpEq0+upwySXw2mtw0UXw8cdF8WnVVeGww+Cvf4WUcqcUWGySJEmSatonn8Cf/lT0PVlzTfjWt4qlcj/+cTFL4I9/hAMOgKWXzp1UkppmhRXg2GPhySfhoYeKpuI33QTbbQcbbwxnnAF/+5uFp5za5Q4gSZIkqbz+/e9iC/E77oC77oL33y8afO+yS9HrZJddoJ2fBCRVuQjo3bu4XHAB3HgjXHEFDB8Op51WzHjq2fNLvPsu7Lyzy4Nbk3/FSJIkSVXuvfdgypRiCcmECfDww8X/6K+2GvTvD3vsATvt5ActSbWrU6diKd1hh8Ebb8Cdd8Ltt8OECStxxx1FwX3HHeEb34A+fWCLLaBDh9ypa5fFJkmSJKmKzJkDL7wAkybB5MnF9VNPzVsu0rs3nH56UWDq0aP4n39JqifdusEhhxSXP/7xr7RtuwO33w633VbssglF8alnz6Lw1KcPbLMNrLFG3ty1xGKTJEmSVIFSgjfeWIp77oFnnoFnny2up06Fd94pxnzhC7D11rDvvsUHpa23Lh6TJBXatUv07VvMajr//KK5+OTJ84r1I0YUS/CgmA266aZF36eNNpp3vcIKWb+EqmSxSZIkSaogZ5xRLIV75hl4//0+/3u8a9fig89++xVFpT59oHt3aOOWP5LUZKuvXhTo9923uP/JJ/DEE0XhacqUorA/ejR8+OG816y0UvH7d/DgYkMFLZrFJkmSpDoUEbsAFwFtgTEppbPnez5Kz+8GfAgMTCn9rdWD1qH//KforXToodC27QvsvfeX2Gij4sOOS+Ikqbw6dIBevYrLXHPmwKuvzptROvf6gw/y5aw2FpskSZLqTES0BUYAXwdmAFMi4taU0jMNhu0KbFC6bA2MLF2rhV188bzbEye+Tt++X8oXRpLqUJs2sM46xWXXXXOnqU6R5nYSlCRJUl2IiD7A8JTSN0r3fwyQUvp5gzGjgIkppetL958H+qaU/rGg46622mpp8ODBLZpdkiTlNXz48EdTSlstbIwzmyRJkurP6sD0Bvdn8PlZS42NWR34TLEpIgYBg0p3Zw0fPvyp8kateysC/8kdooZ4PsvPc1pens/y85yWX/dFDbDYJEmSVH8a6/wz/3T3powhpTQaGA0QEY8s6n861Tye0/LyfJaf57S8PJ/l5zktv4h4ZFFj3LtCkiSp/swA1mxwfw3g9cUYI0mS9DkWmyRJkurPFGCDiFg3IjoABwC3zjfmVuCQKGwDvLuwfk2SJElzuYxOkiSpzqSUZkfEUOAuoC1wRUrp6YgYUnr+cmACsBswDfgQOKwJhx7dQpHrmee0vDyf5ec5LS/PZ/l5TstvkefU3egkSZIkSZJUNi6jkyRJkiRJUtlYbJIkSZIkSVLZWGySJElS2UTETyPiyYh4PCLujojVcmeqdhFxXkQ8Vzqvt0TEF3JnqmYR8Z2IeDoi5kSE26EvpojYJSKej4hpEXFi7jzVLiKuiIh/R8RTubPUiohYMyL+HBHPln7mv587UzWLiKUj4uGIeKJ0Pk9f6Hh7NkmSJKlcIqJLSum90u1jgY1TSkMyx6pqEdEPuLfU2P0cgJTSCZljVa2I2AiYA4wChqWUHskcqepERFvgBeDrwAyKHS77p5SeyRqsikXEV4GZwNUppU1z56kFEbEqsGpK6W8R0Rl4FNjb79PFExEBdEwpzYyI9sADwPdTSpMbG+/MJkmSJJXN3EJTSUfA/9lcQimlu1NKs0t3JwNr5MxT7VJKz6aUns+do8r1BqallF5KKX0C/AbYK3OmqpZS+gvwVu4ctSSl9I+U0t9Kt98HngVWz5uqeqXCzNLd9qXLAv+Ot9gkSZKksoqIsyJiOjAAODV3nhpzOHBn7hCqe6sD0xvcn4Ef4lXBImIdYAvgocxRqlpEtI2Ix4F/A/eklBZ4Pi02SZIkqVki4o8R8VQjl70AUkonp5TWBMYBQ/OmrQ6LOqelMScDsynOqxaiKedTSyQaecxZjKpIEdEJuBk4br7Zt2qmlNJ/U0o9KGbY9o6IBS75bNdqqSRJklQTUko7N3HodcAdwGktGKcmLOqcRsShwB7A15JNVxepGd+jWjwzgDUb3F8DeD1TFmmBSr2FbgbGpZTG585TK1JK70TERGAXoNGm9s5skiRJUtlExAYN7n4TeC5XlloREbsAJwDfTCl9mDuPRNEQfIOIWDciOgAHALdmziR9Rqmh9Vjg2ZTSBbnzVLuI6DZ3N9SIWAbYmYX8He9udJIkSSqbiLgZ6E6x29ffgSEppdfypqpuETENWAp4s/TQZHf4W3wRsQ9wCdANeAd4PKX0jayhqlBE7AZcCLQFrkgpnZU3UXWLiOuBvsCKwL+A01JKY7OGqnIRsR1wPzCV4u8kgJNSShPypapeEbEZcBXFz3wb4IaU0hkLHG+xSZIkSZIkSeXiMjpJkiRJkiSVjcUmSZIkSZIklY3FJkmSJEmSJJWNxSZJkiRJkiSVjcUmSZIkSZIklY3FJkmSJElqZRGxTkSk0uXXufNIUjm1yx1AkiRJklSfImJvoEfp7oUppXeyhZFUNhabJEmSJEm57A0cWrr9a+CdXEEklY/FJkmSJElqZSmlV4DInUOSWoI9myRJkiRJklQ2FpskSZIkSZJUNhabJEmSJKmVNWU3uoiYOHdMg8f2j4h7IuKfETErIv4eEVdGxIaLeL/PHCsi2kXE0RHxQES8EREfRcQLEXFRRKy5iGO9UjrWK034OhsdGxG/LmU5tMHDLzc4J4u1U19EHNzgtY9GRIeFjN0mIj4tjf1HRKzYnPeStGAWmyRJkiSpwkXE0hFxC/AbYGdgZaADsBYwEHg8InZt4rG6AhOBy4BtgRWBpYENgGOBpyNitzJ/Ca0ipXQNMK50tydwZmPjIqJzaVw7IAGHpJT+0yohpTpgg3BJkiRJqnxXUOzc9ihFwelViiLRAOArwFLAtRHRvQlFkysoikzPAFcBfwdWAfoDWwOdgfERsV1K6ZHyfykAXAz8jqK4tWPpscHAv+cb9+piHPu7FOdkXWBYRNyVUvrTfGMuA75Yun1BSumexXgfSQtgsUmSJEmSKl9/4CzgJymlhsvqLgdupihELQ8cDpy7iGPtDVwHDEwpfdrgWBcD5wA/pCheXRERmzd8v3JJKf0N+FtE7N3g4btLu/Qt6bHfi4gDgfspPvNeHRGbpZTeBIiI/sBBpeGPASct6XtK+iyX0UmSJElS5bs3pXTK/IWflNIciuLQXN9owrFeAY5oWGgqHSsBJwCTSg99Gei32IkzSilNBs4o3V0NGAtFryxgZOnxD4H+KaVPWj2gVOMsNkmSJElS5btoQU+klKYB00t3N27CsUaklD5ewLES8MsGD+3T5ISV5yzgL6Xbe0XEUIo+TcuVHvt+Sun5LMmkGmexSZIkSZIq3+RFPP9a6bprE441f/+ihT3fqwnHq0ilWV8HAW+XHrqEopcTwM0ppTFZgkl1wGKTJEmSJFW+RTX9nlW6XqoJx5q2sCdTSm8B75TurtaE41WslNJ0isbjDU0HjsoQR6obFpskSZIkqcKVZumUy4dNGPNB6bpTGd83l2nA7Ab3/5RSentBgyUtOYtNkiRJklRflm3CmI6l65lL+F5ZP3NGxLLA9Xx2J/aBEbFbpkhSXbDYJEmSJEn1Zf2FPRkRywNfKN19vZEhc5fsdVjEcQJYvrnhyuwioHvp9m3A3B34royIlfNEkmqfxSZJkiRJqi87NeP5KY08/07pesWIaL+Q42zKvBlSC9JweWAsYmyzRMS3gCNLd6cC3wFOK91fiaLgVNb3lFSw2CRJkiRJ9eW7EbGwRuLHN7g9vpHnnyldtwe2X8hxjm1ClobL9BZVmGqyiFgD+FXp7sdA/5TSLOAcYGLp8V2bmFFSM1lskiRJkqT68kXgVxHRsI8RUfgZ8JXSQ08C9zTy+j80uP3TxgpXEXEk82YVLczLDW73bML4RYqINsA1zFvCNyyl9DT8r9H6wcDcBuHnRMRm5XhfSfO0W/QQSZIkSVIN+R1FwWWLiLgKeBVYGegP9CmNmQUckVJKC3j9NIreT18BpkTEWIr+TqsAe1MsxbsfWA9YbSFZ/tTg9rkR0Q14nnm7x72WUpravC+PE4C+pdt3pJRGNHwypTQjIo4CbgKWAq6LiK1SSh83830kLYDFJkmSJEmqL4cB3YBtgfMaef59imVnjzT24pTSrIg4gGLWU1fgy8CF8w17CNiXxns+NTzWkxFxPUWha2XgF/MNuQoYuLBjNBQRvYDTS3f/RfG1Nva+N0fEGIrZV5uU3ndoU99H0sK5jE6SJEmS6khK6R1gR+AY4EHgTYqZTC8ClwCbpJTuWMQxHqUoMl1CMcvpY4qlaZNKx90+pfRGEyMdDBxN0UvpP8yb1dQsEdEJuI6il1QCBi4iw3EUs6gAjomIPRbnfSV9XjQ+K1KSJEmSVCsiYiKwA0BKyR3YJLUoZzZJkiRJkiSpbCw2SZIkSZIkqWwsNkmSJEmSJKlsLDZJkiRJkiSpbCw2SZIkSZIkqWzcjU6SJEmSJEll48wmSZIkSZIklY3FJkmSJEmSJJWNxSZJkiRJkiSVjcUmSZIkSZIklY3FJkmSJEmSJJXN/wcSEkgzPITzigAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "x_range, x_num = (-3., 3.), 100\n",
+ "x_mean, x_sigma = 0.1, 0.5\n",
+ "\n",
+ "ekf_visu = EKF_Visualization(\n",
+ " model=f,\n",
+ " model_taylor=f_taylor_order_1,\n",
+ " x_mean=x_mean,\n",
+ " x_sigma=x_sigma,\n",
+ " x_model_range=x_range,\n",
+ " samples_num=100,\n",
+ " monto_carlo_sizes=[10000, 10000, 10000])\n",
+ "\n",
+ "ekf_visu.update_plot()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "id": "d07b9515",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABJsAAAJ8CAYAAABZZqAdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3iT1RfA8e9tC5QNsmSXvdpSVgEZLbIUARUZYhkFQQGVoSK4WIo/FBRcgAMZWgXZKk6QqSizsodIQYaMQtmzvb8/bhLSnbRp0nE+z5MnefOuk7dpe3Ny77lKa40QQgghhBBCCCGEEK7g5ekAhBBCCCGEEEIIIUT2IckmIYQQQgghhBBCCOEykmwSQgghhBBCCCGEEC4jySYhhBBCCCGEEEII4TKSbBJCCCGEEEIIIYQQLiPJJiGEEEIIIYQQQgjhMpJsEkIIIYQQQohMSikVqpTSlts4T8cjHKeUirL83KLccC7re2SNi47XUyn1k1LqtFLqlt3xH3LF8UX2J8kmIYQQQgghRIaw+4Dq6G2ap2POaEqpIkqpcZbbQ56Ox9OUUmsSvAd2OrHvw0m8h0IzLtqcQSk1A/gSaAeUAHw8G5HIiuRNI4QQQgghhBDuUwQYa3k8F1jmsUgyJ3+lVAOt9VYHtg3P6GByGqVUfWCQZfEs8B5wALhhee5PT8Qlsh5JNgkhhBBCCCHc4WEHtjmU4VFkMVrrNYDydBxuchvzGTUcSDHZpJQqAdyfYD+Rfh3sHj+jtZ7vsUhElia/kEIIIYQQQogMp7Ve5ukYRKb3I9AR6KmUek5rfTOFbXsBuYA44CfgATfElxOUt3u83WNRiCxPajYJIYQQQgghhMgM5ljuiwGdUtm2r+V+FXAsowLKgfLYPb6R7FZCpEKSTUIIIYQQQohMx5mZvFLbVik1x66AtJ/lufZKqWVKqWNKqRtKqRNKqYVKqcZOxFhdKfWWUmqzUuqMZdauC0qpbUqpD5VSrZVSyrKtn1JKA4ftDtE3mULpfnbncHg2OqVUPqXUCKXUaqXUf5bXdVoptUEp9aJSqnAq+49LWGhbKdVEKRWhlDpid7zvlFL3OXqdnPAbcNDyuG9yGyml6gF1LYtznDmBUqq8UmqS5Wd0zvKajiulvlVKhSulvB08TnGl1P+UUnuUUlcsx9qslHpeKZXPmZgsx6ujlHpHKRWZIK5vlFJhSqkM++xufW9a3p/21/1wgvflnIyKQWQ/kmwSQgghhBBC5CReSqnpmCFbDwJlgdxAaaAr8LtS6vGUDqCU8lFKTQX2ACOBhkBxTJmSQkA9YAiwEmiZQa8jYUxNMImad4BQoBTmdZUAmgFvAIeUUu2cOOZLmATQY0AFu+M9APyglBrvwpdgNddyf79SqmQy24Rb7i8ASx09sFLqSWA/MArzMyqKeU1lMMP3ZgPb7ZN9yRynKbAXGA3UAvJZjtUQmAxsUkpVdDAmH6XUu8AOYAQmiWYfVyfgC2CjUupuR1+rEJ4mNZuEEEIIIYQQOcnrQE/MDFvzgL+BgkAXTMFpL2C6Uuo3rfW+hDtbeiotBjpbnorFzCi3GjiNSTzUAtoDQdwp7n0aUyS9JPCR5bnVmNm+EjrtzAtSSgUBvwJ5LU9tx0xdfxS4G+iOSTgVA75TSrWzFB5PyROY63Qc03toNyYBch/Qw/K6xiil1mqtf3Um3lTMAyZgPqv2wiTPbJRSuTDJL4CvtdbXLJ3HUmRJNM20e+pbYAUQA1QH+gGVgABgg1Kqntb6TBLHqYJJVBayPLXTEvO/mIRlTyAY+BpTUyqlmJRlO2vx/DPAV5if3xWgIuZaN7Qcc5VSqpHW+mqqL9g51vcmwFCgleXxk8R/Lx518XlFNibJJiGEEEIIIURO0hOTHHhca33b7vlPLT1MhmKSKkMxvZMSGsmdRNNRoKPWemcS241WSjXATB+PJUGwLEGvmaPpLZxuGV71BXcSTe8Cz2qt4+w2e08p9SomiZMLmKeUqq61vp7CoXsCvwAPa62v2D0/Vym1iTtJoOcxiS6X0Fr/q5T6FWiD6cH0ToJNOmJ6kYGDQ+gs13yqZTEWeExr/XWCbaYACzG9tsoC04FuSRzuI+4kmmYDT9i/jyzvoSnAsw6ENpQ7SZ5lQF+t9cUE20xRSk0EXgJqA2MwPapcxvreBFBKPWS36metdZQrzyVyDhlGJ4QQQgghhMhwydQm8kQ9mH3AwASJJqtXgGuWx+0TrlRKFcAMwQK4SfKJJgC01lu11kfSGW9qOgJ1LI//AEYkSDRZY3kN05MHzIxjvVI5bjTQI0Giyepd7vRyuVcp5epODHMs9wFKqfoJ1oVb7g9orX938HhDuZOMezthoglAa30N02PqpOWpR5RS1e23UUrVBVpbzw8MSvg+0lprTAJuU0oBKaV8MQkkMO/JHkkkmqzHfBlYb1kcbNlXiExNkk1CCCGEEEKInGSG1vpmUiu01peALZbFSkl8qL8fuMvy+MuUEk1u1MXu8WRLsiM5k5LZLynztNbnk1phSWattSzmAaqkGqVzlgDWxEu49UlLDacOlsW5OM76Wm8Dbye3kSXZM916OuChZI4D8H4K7yOd0nks2mOGVAK8l9yx7HxhuS8ENEllWyE8TobRCSGEEEIIIdzh4VTWu6sezB+prD9uuVdAEeA/u3XN7R5/48KY0iPYcq8xw95S8jtwGSgApDbrnqPXCUxBa5ex1GH6GhgA9FRKPae1voXpjeUDxGGGQqbKkqCyFuv+S2udWj2sn4HXLI8TXqNGdo9XpXKc1Na3sHtcIMHwtaSUtXtcC1iTyvZCeJQkm4QQQgghhBAZLr21iVzobCrrb9g9TtizqZzd472uCSfdSlvu/7P0zEqW1jpOKXUIM+PZXUqp3Cn0qEnPdXKFOZhkU3HMUMGlQF/LulVa62MOHqe03eMDDmxvv03pBOvK2D0+lNJBtNbRSqkYTMIyKX52j99yIC57Lk3uCZERZBidEEIIIYQQIidJVM/ICYXsHl9ObyAuUtByn1RtpaTYx10w2a3Sd53STWv9G3DQshhuqd0UaFme48Sh7F+jI9copetTwHJ/24Fhb6mdr7AD+ycndzr2FcItpGeTEEIIIYQQIqtz15fo9gWcCyS7lXtdwvSeye/g9vZxp9gTKhOYC7yOqdN01fLcRUwvJ0fZv0ZHrlFK18eaiPJJpVeYI+ezT2r5uaGQvBBuJT2bhBBCCCGEEJmRdZhWir04lFKKO0W7M5r90K1abjpnaqyzp92tlEqpp5L1WlmLeUc72DvHk+Zhelj5AI9anltgmTnOUSftHldzYHv7bU4kWGe/nGJRdKVUMZIfQgfxa17VSXYrIbIoSTYJIYQQQgghMqMYy31xpVSuFLbzx/FePem13u5x5zQew354mkpHLFab7I7VOpVt7+FOz51NKW2YGWit/wV+TfD0HCePcRqw9hoKUkqVSGWXdnaPE14j++V7UzlOaj+LtXaPUyueL0SWI8kmIYQQQgghRGa0x3Kfi/gzdyU01A2xWP0AnLM8fkwpFZCGY9gPn3JFkmyx3ePnLb2XkjMqmf0ysw+APy23b7XWv6fhGNbX6gMMT24jS8+wIZZFTeLhevbLTyeXBLX8DEakEtP33CnC3kcpJb2bRLYiySYhhBBCCCFEZvSj3ePXlFJ5Em6glBqAmbHMLbTWV4BJlsXcwLcpJZyUUkFKqYoJjnEOuGBZDEolOeSIFcBuy+NmwGSlVKLPeUqpl4BOlsV/gYh0ntcttNbLtdZNLLe09iZ7H7AOvXtBKfVIwg2UUr7AF9yZcW6x1vqg/TZa67+AlZbFmsB0pZR3guMo4E2gSUoBWd5L4y2LuYHvlVINU9pHKdVIKeXszHVCeIQUCBdCCCGEEEJkRsuAv4GqmOFfm5VSszB1c+4GHsIMZVqPqZ9TJsmjuN4UoDlmGF1FYLtSaimwBjgN5AVqYIZjNQRacWcYl9WvmKFTVYAFSqkl3Bk2CLDW0bpEWus4pVRv4DfLuZ8DWimlIjA1pkoB3S0xA9wC+mitrzv+krM2rXWUUmoEMBPzGXiRUmo5pndRDKZOU3+gsmWX48BTyRxuMLAVMzPhACBYKTUPk8C7G3gMaIwZcleOFN6XWusPlFKNgD5ABWCTUupHYBXmZ6eA4kAAZlheFeAQ8ILTF0EIN5NkkxBCCCGEECLT0VrfUEo9CvwCFMV84J6WYLM/gUeAzW6MSyululpiGQR4A10tt6TEJfHcBOA+THKom+VmrxIQ5URM25VSrTHDxUoD9S23hM4Bj2mt1zh67OxCa/2RpdfRVMAXeNByS2gX0MlS6ymp4/ytlLofWI5JBAViEpD2dmN+puscCC0cOAi8AuQB7rfcknMshXVCZBoyjE4IIYQQQgiRKWmtt2KSTO9jejldB84DGzE9T1porc94IK5bWuungLrAu8BOTA+ZWMv9VkvMLbXWiRIOWutIoAHwKbAfuOqCmDZieug8iyk+fQbTiykac71eBqporX9K77myKq31TKA6ZphbJOZndRMzY933QD8gSGsdlcpxfsfMRjgJ2IcZoheD+bm/AARrrY86GJPWWr+OSTCOwfzs/rPEdR2TXFoJvAY01VqHOvZqhfAspbX2dAxCCCGEEEIIIYQQIpuQnk1CCCGEEEIIIYQQwmUk2SSEEEIIIYQQQgghXEaSTUIIIYQQQgghhBDCZSTZJIQQQgghhBBCCCFcxsfTAWSUfPny6cqVa7N7N1SqBHfd5emIco4rV66QP39+T4eRY8n19xy59p4l199zPHXtt27delZrXcLtJxbJKlKkiK5ataqnw/CoY8fg1CkICIDcudN/PPnb5lpyPV3rxIkTAJQpU8bDkWQf8h51PVdc0ytXYN8+KF8eSpZ0UWBZmCNtsGybbCpSpAirV2+hZEkYMQKeecbTEeUca9asITQ01NNh5Fhy/T1Hrr1nyfX3HE9de6XUEbefVKSoVKlSbNmyxdNheNTRo1C5Mtx3H7z1VvqPJ3/bXEuup2uNHz8egLFjx3o4kuxD3qOu54pr2q0b/Pcf7NkDBQq4Jq6szJE2WLYeRnfXXaAUnD3r6UiEEEIIIUROUKECdO0KH30EFy96OhohhBDp9c8/sGQJPPGEJJqcka2TTd7eJuF05oynIxFCCCGEEDnF88+bRNOnn3o6EiGEEOk1darJLQwb5ulIspZsnWwCKFFCkk1CCCGEEMJ9GjaEkBCYNg1u3fJ0NEIIIdIqOho++wzCwkBKkzkn29ZssipRQobRiZxFKcXhw4e5fv26p0PJcQoXLszevXs9HUaOJdffczL62vv6+lKuXDly5cqVYecQwtVGjoSOHeHrr82HFCGEcJVbt25x7Ngxae87KD3tlAsXYPFiKF0acmIzMz1tsGyfbCpeHA4c8HQUQrhP/vz5KViwIH5+fiilPB1OjnLp0iUKFizo6TByLLn+npOR115rTXR0NMeOHaNSpUoZcg4hMsL990OtWjBlCjz2mKkjKoQQrnDs2DFp7zshre2UuDjYudOU5qlePQMCy+TS2wbLEcPopGeTyEm8vb0pVqyY/OMRQmQLSimKFSsm396KLMfLC557DiIj4ddfPR2NECI7uX79urT33SA62gyFvvtuT0fiGeltg2X7ZFPx4ibZFBfn6UiEcB/5xyOEyE7kb5rIqsLCoFQpmDzZ05EIIbIb+d+YsbSGU6cgXz7IyR3n0/M+y/bJphIlIDYWYmI8HYkQQgghhMhJfH1h6FD46SfYscPT0QghhHDUhQtw/br5wkDyemmTI5JNIEPphMjM5syZw4kTJ9K8f1RUFF9++aULI3KtAgUKpLrNuHHjmDJlCgBjxoxh5cqVyW67bNky9uzZk+z6mTNnMm/ePABCQ0PZsmWLw7HGxMQwffp02/KJEyfo2rWrw/sLIYSIb9Ag8834O+94OhIhhBCOOnUKcueGokU9HUnWle2TTcWLm/szZzwbhxAieZk52RQbG5shx03JhAkTaNOmTbLrU0o23b59m0GDBtGnT580nTthsqlMmTIsWrQoTccSQghhCss+/jh8+SUcP+7paIQQInMLDw+3tT0HDBiQ4hesGeXKFbh0yfRq8kpHxsTPz4+zqfR6SW6bhQsXUqtWLVq1agXA9u3bGTBgQIrH+uCDD5g9e3baA3axbJ9skp5NQrjfO++8g7+/P/7+/kybNg0wCSF/f3/bNlOmTGHcuHEsWrSILVu2EBYWRlBQENeuXcPPz49Ro0YRHBxMcHAwf//9NxD/nw/c6TE0evRo1q9fT1BQEFOnTo0Xy5o1awgNDaVr167UrFmTsLAwtNYArFq1inr16hEQEED//v25ceMGYP7oT5gwgebNm7Nw4UL8/Px46aWXaNq0KQ0bNmTbtm20b9+eKlWqMHPmTAAuX75Mp06dqF+/PgEBASxfvjzV6zRx4kRq1KhBmzZt2L9/v+15+9c5evRoateuTWBgIM8//zy///4733zzDSNHjiQoKIhDhw4RGhrKSy+9REhICO+++268XlIAX3zxBffccw/+/v5s2rQJINE2/v7+REVFMXr0aA4dOkRQUBAjR46M93O7fv06/fr1IyAggHr16rF69WrAJAu7dOnCfffdR7Vq1XjhhRdSfe1CCJGTjBhhyjq8+66nIxFCiKzj008/pXbt2hl2/Nu3byf5/H//gbf3nY4rnjBr1iymT59ua2+/8cYbPPPMMynu079/f9577z13hOcQH08HkNGkZ5PIyYYPN7PguFJQEFjyR0naunUrs2fP5s8//0RrTePGjQkJCaFoMn1Qu3btygcffMCUKVNo2LCh7flChQqxadMm5s2bx/Dhw/nuu++SPeekSZOYMmVKstts376d3bt3U6ZMGZo1a8Zvv/1Gw4YNCQ8PZ9WqVVSvXp0+ffowY8YMhg8fDoCvry8bNmwATMKnfPnybNy4kREjRhAeHs5vv/3G9evXqVOnDoMGDcLX15eIiAjKli3L2bNnadKkCZ07d062qN7WrVuZP38+27dv5/bt29SvX58GDRrE2+bcuXMsXbqUffv2oZQiJiaGIkWK0LlzZzp27BhveFtMTAxr164FTCLJ3pUrV/j9999Zt24d/fv3Z9euXSley127dhFpeeNERUXZ1n344YcA7Ny5k3379tGuXTsOHDgAQGRkJNu3bydPnjzUqFGDZ555hvLlyyd7HiGEyEkqVYKuXeGjj+Dll6FwYU9HJITILjzR3o+KiuL++++nefPm/P7775QtW5bly5eTN29eIiMjGTRoEFevXqVKlSp89tlnFC1alNDQUBo3bszq1auJiYlh1qxZtGjRIsU4QkNDbZ8RChQowLBhw/juu+/Imzcvy5cvp1SpUpw5c4ZBgwZx9OhRAKZNm0azZs3YtGkTw4cP59q1a+TOnZt58+ZRo0YN5syZw4oVK7h+/TpXrlzhV7vpQqOiomjf/j5q1WrO3r1/0LBhXfr168fYsWM5ffo0ERERBAcHc+7cOfr3788///xDvnz5+PjjjwkMDCQ6OpqePXty5swZgoODbV9wg/ny97333uPmzZs0btyY6dOn4+3tneTrnjBhAhs2bODw4cN07tyZMWPGsGPHDurWrQvA0KFDKV68OGPGjOGnn35i4sSJrFmzhnz58uHn58emTZsIDg5O9ef8zjvvsGvXLj777DN27txJz5492bRpE/ny5Ut1X0fkmJ5NkmwSwj02bNjAww8/TP78+SlQoABdunRh/fr1Th+nZ8+etvuNGzemK6bg4GDKlSuHl5cXQUFBREVFsX//fipVqkT16tUB6Nu3L+vWrbPt06NHj3jH6Ny5MwABAQE0btyYggULUqJECXx9fYmJiUFrzfjx4wkMDKRNmzYcP36cU6dOJRvT+vXrefjhh8mXLx+FChWyHd9eoUKF8PX1ZcCAASxZsiTFP/wJ47VnvZYtW7bk4sWLxKRxxoQNGzbQu3dvAGrWrEnFihVtyabWrVtTuHBhfH19qV27NkeOHEnTOYQQIrsaNQouXgRLh1ghhMjSDh48yFNPPcXu3bspUqQIixcvBqBPnz68+eab7Nixg4CAAMaPH2/b5/bt22zatIlp06bFe94RV65coUmTJvz111+0bNmSTz75BIBhw4YxYsQINm/ezOLFi21DzWrWrMm6devYvn07L7/8Mi+99JLtWBs3bmTu3LnxEk1Whw79Tc+ew/jrrx3s27ePL7/8kg0bNjBlyhTeeOMNAMaOHUu9evXYsWMHb7zxhq18xfjx42nevDnbt2+nc+fOtgTY3r17WbBgAb/99huRkZF4e3sTERGR7GsdM2YMDRs2JCIigsmTJ7Nly5Z4I0QmTZrEggULWL16NUOHDmX27Nl4Wcb7NWzY0PbZa/LkyQQFBSW6DR06FIDhw4fz999/s3TpUvr168dHH33kskQT5ICeTXnzQv78MoxO5EwpfSORUewz+PZ8fHyIi4uzLV+/fj3F49j3CLI+tj+G1pqbN286FFOePHlsj729vbl9+3aycVrlz58/yWN4eXnFO56Xlxe3b98mIiKC6Ohotm7dSq5cufDz83PqNSbFx8eHTZs2sWrVKubPn88HH3yQ5D/FpOJN6TxKKad/HpD8zxaSvsZCCCHuqF8f2rY1/5uHDTMz1QkhRHp5or0PUKlSJYKCggBo0KABUVFRXLhwgZiYGEJCQgDzZW63bt1s+3Tp0iXe9s7InTs3HTt2tO3/yy+/ALBy5cp4dZ0uXrzIpUuXuHDhAn379uXgwYNorePVYW3bti133XVXonPcugVlylSiSZMAfH2hTp06tG7dGqUUAQEBtpg3bNhgS67de++9REdHc+HCBdatW8eSJUsAeOCBB2wjO1atWsXWrVtp1KgRANeuXaNkyZIOv/aTJ09SwtqLBsiXLx+ffPIJLVu2ZOrUqVSpUsW2rmTJkuzbtw+AkSNHMnLkyGSP6+XlxZw5cwgMDOTJJ5+kWbNmDsfkiGzfswmgZEkz7lIIkfFatmzJsmXLuHr1KleuXGHp0qW0aNGCUqVKcfr0aaKjo7lx40a8IW8FCxbk0qVL8Y6zYMEC233Tpk0BU0tp69atACxfvpxbt24lu39qatasSVRUlK0e1Oeff277x5gWFy5coHjx4uTKlYvVq1en2rOnZcuWLF26lGvXrnHp0iW+/fbbRNtcvnyZCxcu0KFDB6ZNm2Yb2ubs67Veyw0bNlC4cGEKFy6Mn58f27ZtA2Dbtm0cPnw41WO3bNnS9i3MgQMHOHr0KDVq1HA4DiGEyOlGjzZtUsuEoUIIkWWl5YtG6z722/fr14+goCA6dOiQ4r65cuWyfYFqv39cXBwbN24kMjKSyMhIjh8/TsGCBXn11Vdp1aoVu3btYsGCBfG+WE3uS9qzZyFXrjyUKmWW7b9ktn7BDEl/AWuNLakvk7XW9O3b1xbj/v37E5W9SEnevHkTfTG8c+dOihUrlmiSpevXr5M3b14g9Z5NYHqoFShQIF2TNSUnRySbypeHf//1dBRC5Az169cnPDyc4OBgGjduzIABA6hXrx65cuVizJgxNG7cmI4dO1KzZk3bPuHh4QwaNMhWIBzgxo0bNG7cmHfffddW9HvgwIGsXbuW4OBg/vzzT9s/isDAQHx8fKhbt26iAuHJ8fX1Zfbs2XTr1o2AgAC8vLwYNGhQml93WFgY27dvt3V5tX99Salfvz49evQgKCiIRx55JMkx65cuXaJjx44EBgYSEhJie22PPvookydPpl69ehw6dCjV2IoWLco999zDoEGDmDVrFgCPPPII586dIygoiBkzZtiGExYrVoxmzZrh7++f6JuQIUOGEBsbS0BAAD169GDOnDnxGhpCCCFS1qoVNGwIkyebguFCCJGdFC5cmKJFi9qGcTnyZe7s2bOJjIzk+++/T9M527VrxwcffGBbtn45e+HCBcqWLQuQ4pA1q9hYOHfOFAZPreep/Rewa9asoXjx4hQqVCje8z/88APnz58HTLmJRYsWcfr0acDUZXWm5EStWrVsX5ADHDlyhLfffpvt27fzww8/8Oeff9rWHThwwDbkbuTIkbYEl/3NWkT8woULDBs2jHXr1hEdHe36Gai11tnyVrp0aW0VFqa1n58WbrJ69WpPh5Cjbdu2zdMhpFvFihX1mTNnPB2G0y5evOjpEHI0uf6e445rv2fPnkTPAVt0JmhzyO3OrXr16ol+TiK+RYu0Bq2//tqx7aVd5VpyPV1r3Lhxety4cZ4OI1tx5D2a1P9Edzp8+LCuU6eObXny5Ml67NixWmutt2/frhs3bqwDAgL0gw8+qM+dO6e11jokJERv3rxZa631mTNndMWKFZM8dt++ffXChQsT7ZM/f37bNgsXLtR9+/a1Hat79+46ICBA16pVSz/55JNaa61///13Xa1aNX3PPffokSNH2s43e/Zs/dRTTyU678mTWi9ffljXqnXnddnHYv+ao6OjdefOnXVAQIBu3Lix/uuvv7TWWp89e1a3bdtW16tXTw8fPlxXqFDB9plm/vz5um7dujogIEDXr19fb9y4UWud/Oce+9eutdb+/v764sWLOi4uTrdu3VovX75ca631li1btL+/v7527ZrWWut69eo5/DmqX79++t1339Vaa3306FFdpUoVferUqUTbpbUNpsx22U+ZMmW0tSvYiy/C22/DtWsmUykylnWqeeEZ27dvp169ep4OI138/PzYsmULxT0532gaXLp0iYIFC3o6jBxLrr/nuOPa7927l1q1asV7Tim1VWvdMJldhAfUqFFD79+/39NhZGqxsVC7NhQoAFu2QCrl+6Rd5WJyPV3LWuR57NixHo4k+3DkPZrU/0SRvNTaKXFxsHOnqfds6eyf6UydOpWCBQvaCqAnZfv27bzzzjt8/vnnLj13WttgOWYY3a1bkMLEUEKITCQqKirLJZqEEEIIR3h7wwsvwLZtsHKlp6MRQggRHW3yBXff7elIkjd48OBUy1ecPXuW1157zU0RpS5HJJsqVDD3UrdJCCGEEEJ4Wq9eUKYMvPmmpyMRQoicTWszcUO+fJCZO8j7+vrSu3fvFLdp27Ytfn5+7gnIATki2VS+vLmXZJMQQgghhPC0PHlgxAhYtQo2b/Z0NEIIkXOdPw83bpheTakNaxbOyVHJpqNHPRuHEEIIIYQQAE88AUWKSO8mIYTwFGuvpjx5oGhRT0eT/eSIZFPRopA/v/RsEkIIIYQQmUOhQvDUU7BkCezd6+lohBAi57l4Ea5elV5NGSVHJJuUMr2bJNkkROY0Z84crLNHpkVUVBRffvml0+tc6caNG3Tu3JmgoCAWLFiQ4edLyrhx45gyZYpHzm21Zs0aOnbs6NEYhBAiqxg2zMx+NGmSpyMRQgjn3HPPPS4/ZnLt9gYNGnDz5k2nj7ds2TL27NmT7PqTJyFXLihWLOn1MTExTJ8+3enzZoTQ0FC2bNni6TCckiOSTWCSTTKMTogkRESAnx94eZn7iAi3h+CpZNPt27fTfM6Etm/fzq1bt4iMjKRHjx4O7RMbG+uy8wshhMh6SpQww+kiIuDwYU9HI4TItjKgvf/777+n+xgJJdVuj4qKomzZsuTOndvp46WUbLp0CS5fNr2avJLJimSmZFNWlKOSTdKzSYgEIiJMK/fIETNo+ciRO63edHjnnXfw9/fH39+fadOmAeYfhb+/v22bKVOmMG7cOBYtWsSWLVsICwsjKCiIa9eu4efnx6hRowgODiY4OJi///4bgPDwcBYtWmQ7RoECBQAYPXo069evJygoiKlTp8aLJeG6OXPm0K1bNzp16kS7du24fPkyrVu3pn79+gQEBLB8+XJbvLVq1WLgwIHUqVOHdu3ace3aNQDee+89ateuTWBgII8++iinT5+mV69e7Ny5k6CgIA4dOsSqVauoV68eAQEB9O/fnxs3bgDg5+fHhAkTaN68OQsXLsTPz4+XXnqJpk2b0rBhQ7Zt20b79u2pUqUKM2fOtL2OyZMn06hRIwIDAxk7dqzt+YkTJ1KjRg3atGnD/v37k/x5LFy4EH9/f+rWrUvLli1tr69FixbUr1+f+vXr2xoMa9asISQkhO7du1O9enVGjx5NREQEwcHBBAQEcOjQIdvPYtCgQbRo0YLq1avz3XffJTrvlStX6N+/P40aNaJevXq2a7t7926Cg4MJCgoiMDCQgwcPJv9mEkKIbO7558HbG956y9ORCCGypQxq71vb4WvWrCE0NJSuXbtSs2ZNwsLC0FoDuKRN/8MPP3DfffcB8NVXXxEQEIC/vz+jRo1KtD/AokWLCA8P5/fff+ebb75h5MiRNGvWjEOHDhEaGsrw4cO55557aNDAn337NlG8eOLRAf7+/kRFRTF69GgOHTpEUFAQI0eOjPf6r1y5wgMPPEDdunXx9/e3jWyYMGECjRo1wt/fnyeeeMJ2LUJDQxkxYgQtW7akVq1abN68mS5dulCtWjVeeeUVwLTPa9asSd++fQkMDKRr165cvXo10bX/+eefadq0KfXr16dbt25cvnzZdv2sn1Gef/55536gGUFrnS1vpUuX1vbGjdMatL5+XYsMtnr1ak+HkKNt27bN8Y0rVjS/GAlvFSum+fxbtmzR/v7++vLly/rSpUu6du3aetu2bfrw4cO6Tp06tu0mT56sx44dq7XWOiQkRG/evNkurIr69ddf11prPXfuXP3AAw9orbXu27evXrhwoW27/Pnza63Ne866TUIJ182ePVuXLVtWR0dHa621vnXrlr5w4YLWWuszZ87oKlWq6Li4OH348GHt7e2tt2/frrXWulu3bvrzzz/XWmtdunRpfd3yx+T8+fO287Rv315rrfW1a9d0uXLl9P79+7XWWvfu3VtPnTrV9trefPPNeK91+vTpWmuthw8frgMCAvTFixf16dOndYkSJbTWWv/000964MCBOi4uTsfGxuoHHnhAr1271natr1y5oi9cuKCrVKmiJ0+enOga+Pv762PHjsWL98qVK/ratWtaa60PHDigGzRoYHsdhQsX1idOnNDXr1/XZcqU0WPGjNFaaz1t2jQ9bNgw28+iffv2OjY2Vh84cECXLVtWX7t2Ld71fvHFF23X7Pz587patWr68uXL+umnn9ZffPGF1lrrGzdu6KtXryb5s3PWxYsXXXIc4Tx3XPs9e/Ykeg7YojNBm0Nud27Vq1dP9HMSqXvySa1z59ba8qc6HmlXuZZcT9caN26cHjdunKfDyFYceY8m9T8xWRnQ3tc6fju8UKFC+t9//9WxsbG6SZMmev369ZZTp79N37lzZ33o0CF9/PhxXb58eX369Gl969Yt3apVK7106dJ4+2ut9cKFC3Xfvn3jncfaTgkJCdEDBgzQly9r/dFHa3WNGuazydixY+O1oevUqaMPHz6c6POLvUWLFukBAwbYlmNiYrTW2vYZQ2ute/Xqpb/55hvbuV944QWttWlTly5d2tbeLlu2rD579qw+fPiwBvSGDRu01lr369fPFpf189KZM2d0ixYt9OXLl7XWWk+aNEmPHz9eR0dH6+rVq+u4uDit9Z02vyuktQ2Wo3o2ARw/7tk4hMhUkhtbmo4xpxs2bODhhx8mf/78FChQgC5durB+/Xqnj9OzZ0/b/caNG9McT1Latm3LXXfdBZiE+0svvURgYCBt2rTh+PHjnDp1CoBKlSoRFBQEmLHiUVFRAAQGBhIWFsYXX3yBj49PouPv37+fSpUqUb16dQD69u3LunXrbOsTDrPr3LkzAAEBATRu3JiCBQtSokQJfH19iYmJ4eeff+bnn3+mXr161K9fn3379nHw4EHWr1/Pww8/TL58+ShUqJDtOAk1a9aM8PBwPvnkE9vQvVu3bjFw4EACAgLo1q1bvC7GjRo1onTp0uTJk4cqVarQrl07W3zWawDQvXt3vLy8qFatGpUrV2bfvn3xzvvzzz8zadIkgoKCCA0N5fr16xw9epSmTZvyxhtv8Oabb3LkyBHy5s2b/A9LCCFygFGjIDYW3n7b05EIIbKdDGjvJxQcHEy5cuXw8vIiKCgoXnsxPW36mzdvcuzYMSpXrszmzZsJDQ2lRIkS+Pj4EBYWFq997aiePXty8iQ0atSSq1cvEhMT4/QxwLSLV65cyahRo1i/fj2FCxcGYPXq1TRu3JiAgAB+/fVXdu/ebdvHvs1fp04dW3u7cuXK/GsZhlW+fHmaNWsGQK9evdiwYUO88/7xxx/s2bOHZs2aERQUxNy5czly5AiFChXC19eXAQMGsGTJEvLly5em1+VKOS7ZJEPphLBToYJzzzvAJLoT8/HxIS4uzrZ8/fr1FI+j7KaEsD62P4bWOk2FAgHy589vexwREcGZM2fYunUrkZGRlCpVyhZbnjx5bNt5e3vbajytWLGCp556iq1bt9KgQYNEtZ+SuwZJnd/+PF5eXvHO6eXlxe3bt9Fa8+KLLxIZGUlkZCR///03jz/+OBD/OiVn5syZvP766/z7778EBQURHR3N1KlTKVWqFH/99RdbtmyJdy0TxmAfn/1rTXjuhMtaaxYvXmyL++jRo9SqVYvHHnuMb775hrx589K+fXt+/fXXVF+DEEJkZ5UqwWOPwUcfwdmzno5GCJGtZEB7P6Hk2syQvjb9+vXrad68uW275NifI7XPGDdvKmJioGTJO/s6+zkFoHr16mzdupWAgABefPFFJkyYwPXr1xkyZAiLFi1i586dDBw4MN6xUmvzJ3wtSS1rrWnbtq2tfb1nzx5mzZqFj48PmzZt4pFHHmHZsmW2oYeelGOSTdbfJSkSLoSdiRMhYdY7Xz7zfBq1bNmSZcuWcfXqVa5cucLSpUtp0aIFpUqV4vTp00RHR3Pjxo14NX4KFizIpUuX4h3HOu55wYIFNG3aFDDjvrdu3QrA8uXLuXXrVrL7p3RsexcuXKBkyZLkypWL1atXc+TIkRRfX1xcHP/++y+tWrXirbfeIiYmxjZO2qpmzZpERUXZxqV//vnnhISEpHjclLRv357PPvvMdp7jx49z+vRpWrZsydKlS7l27RqXLl3i22+/TXL/Q4cO0bhxYyZMmEDx4sX5999/uXDhAqVLl8bLy4vPP/88TcXKFy5cSFxcHIcOHeKff/6hRo0aieJ+//33bY2D7du3A/DPP/9QuXJlhg4dSufOndmxY4fT5xZCiOzmxRfh2jWwlDoUQgjXyID2vjPS06b/8ccfuf/++wFo3Lgxa9eu5ezZs8TGxvLVV1/Z2telSpVi7969xMXFsXTpUtv+SX0OmDdvAV5ecPDgBgoXLkzhwoXx8/Nj27ZtAGzbto3DlhkbUvocceLECfLly0evXr14/vnn2bZtmy2xVLx4cS5fvhyvLpWjjh49ausB9tVXX9mSbVZNmjTht99+s33OuHr1KgcOHODy5ctcuHCBDh06MG3aNCIjI50+t6slHv+RTVWqZIovJlM/V4icKSzM3L/8ssnEVqhg/vFYn0+D+vXrEx4eTnBwMAADBgygXr16AIwZM4bGjRtTqVIlatasadvHWmw6b968tj+uN27coHHjxsTFxfHVV18BMHDgQB588EGCg4Np3bq1rYdQYGAgPj4+1K1bl/DwcEaMGGE7dsJ1RYsWTXAJwujUqRMNGzYkKCgoXlxJiY2NpVevXly4cAGtNSNGjKBIkSLxtvH19WX27Nl069aN27dv06hRIwYNGpSGq2m0a9eOvXv32v5BFyhQgC+++IL69evTo0cPgoKCqFixIi1atEhy/5EjR3Lw4EG01rRu3Zq6desyZMgQHnnkERYuXEirVq0S9bZyRI0aNQgJCeHUqVPMnDkTX1/feOtfffVVhg8fTmBgIFpr/Pz8+O6771iwYAFffPEFuXLl4u6772bMmDHOXxQhhMhmatWCLl3g/fdN0fAE/1qEECJtMqC974z0tOnXrFnDhAkTAChdujT/+9//aNWqFVprOnTowIMPPgjApEmT6NixI+XLl8ff39/2Be2jjz7KwIEDmTZtGkuWLCEuDnLnLsoTT9zD9esX+eyzzwB45JFHmDdvHkFBQTRq1MhWCqNYsWI0a9YMf39/7r//fiZPnmx7XTt37mTkyJF4eXmRK1cuZsyYQZEiRWxlKvz8/GjUqJHT16tWrVrMnTuXJ598kmrVqjF48OB460uUKMGcOXPo2bOnbQKi119/nYIFC/Lggw9y/fp1tNaJJk3yBJXacI+sqkyZMjrhVOo1aoC/Pyxe7KGgcgjrjATCM7Zv325L7mRVfn5+bNmyheLFi3s6FKdcunSJggULejoMtwgPD6djx4507drV06HY5KTrn9m449rv3buXWrVqxXtOKbVVa90wQ08snFKjRg2d3MyYInXbt0P9+vD66+ZzIUi7ytXkerrW+PHjAeLNlCvSx5H3aFL/EzOj9LTpjx07xsCBA/nhhx/SHYe1ndKkSShPPTWFHj0akjt3ug/rclFRUXTs2JFdu3Z5OpR40toGyzHD6ABq1oS9ez0dhRBCCCGEEInVqwcdOsDUqZBghLYQQuQo5cqVc0miyermTbh1y/QazYyJpuwoWyeboqNh3rw7RcFr1YK//zZvMiFE5hUVFZXlejXlNHPmzMlUvZqEECK7eOUV04adMcPTkQghRPpkpjb9yZPw8cdraNcu83aI9vPzy3S9mtIjWyebjh+Hvn3hjz/Mcq1aJtH0zz+ejUsIIYQQQoikNG0KbdvC5Mlw9aqnoxFCiKzv1i3F2bNQrBjYTQInMliWSjYppbyVUtuVUt+lvjWUKmXuT50y99ZhhjKUTgghhBDCMc62v0T6jR0LZ87AzJmejkQIIbK+c+fMuLnSpT0cSA6TpZJNwDDA4VRR8eKgFJw+bZatk0xJskkIIYQQwmFOtb9E+jVrBq1bw1tvwfXrWa25LoQQmcfNm3DhQi7p1eQBWea/l1KqHPAA8Kmj+3h7m4STtWdToUJQtqwkm4QQQgghHJGW9pdwjbFjTRv2u+/KeDoUIYTIsv77D7SWXk2e4OPpAJwwDXgBSHZuZaXUE8ATAKVLl2bNmjUUKNCQ3buvs2aNKbR1992BbNrkw5o129wQcs50+fJl1qxZ4+kwcqxChQpx6dIlj50/Ojqazp07A3Dq1Cm8vb1thQFXr15Nbgemfxg0aBD33XcfDz30UJpiWLp0Kf/73//Yv38/q1evpn79+sluGxMTw8KFCxk4cGCy22zcuJEXX3zRdl2ffvpp+vXrl2i72NjYRNe+dOnSnDx5Mk2vA6BDhw78999/5MmTh5s3bxIaGsqrr75KkSJFAGjTpg0rV65Mdv8pU6bw/PPPJ7v+kUceYdasWVy4cIHu3bvz559/Ohzb+vXryZ07N40bNwZg1qxZ5M2bl8cee8zhY7hSUtdfuIc7rv3169flf4tnTMOJ9leJEiXk5+RCQUF1+fLLcnTqtI48eeI8HU62IO3UjCHX1HUceY8WLlzY422eGTNmMGvWLOrWrcsjjzzCvn37ePbZZx3a98iRI/z55590797dZfEk9fnh9m3FmTP5KVToJjdv3uTmzeT3T9iuddYbb7xBgQIFGDp0aJr2T86NGzfo1q0b0dHRPPvsszzyyCO2dQcOHKBfv34opZg3bx6lS5emS5cufPfdd3h7eyd5vN27d/P+++8z04lx2mltg2WJZJNSqiNwWmu9VSkVmtx2WuuPgY8BypQpo0NDQ6lcGa5eLUBoqNntnntg9mwICQlFqYyPPSdas2aN7XoL99u+fTsFCyb7mSDDFSxYkB07dgAwbtw4ChQokGKyIym5cuUib968Dr+O2NjYeH9QGzVqxLJly3jyySfJnz9/iseJjo7ms88+S/af43///ceAAQNYtmwZ9evX5+zZs7Rv354qVarwwAMPxNv2/PnzSZ7L0dehtUZrjZfXnU6n3t7efPXVVzRs2JCbN2/y4osv0qtXL9auXQuQanLo7bffZvz48cme6+effwbMNfTy8nLqvbNp0yYKFChAmzZtABg+fLjD+2aES5cuefS9n5O549r7+vpSr169DD2HiC8t7a8aNWpoaQO4ztSp0KoVHDjQkmee8XQ02YO0U13L2h6Ra+o6jrxH9+7d6/E2z2effcaPP/5IpUqVkt3m9u3b+PgkTjmcPXuWpUuX8vjjj6fp3Anb/pD054d//zW9mooVu5XoeiWMLWG71ll58uQhT548Dv9ckrs2Ce3evZu4uDjb5yt7v/zyCw8//LCtrf/hhx/SrVs325fSSWnSpAmvvPIK58+fp0KFCg7FmtY2WFYZRtcM6KyUigLmA/cqpb5IaYcyJ0+Cnx8PX42wDaMDUyT88mU4diwjwxVC2Pvkk09o1KiR7ZuPq1evcunSJSpVqsStW7cAuHjxIn5+frZlq1WrVlGvXj0CAgLo378/N27cAMzUoBMmTKB58+YsXLgw3j61atWiRo0aieLYvXs3wcHBBAUFERgYyMGDBxk9ejSHDh0iKCiIkSNHJtrnww8/JDw83NY7qnjx4rz11ltMmjQJgPDwcJ599llatWrFmDFjOHz4ME2bNqVRo0a8+uqr8Y41efJkGjVqRGBgIGPHjgXMlLC1atViyJAh1K9fn3///TfZ65g7d27eeustjh49yl9//QVAgQIFADh58iQtW7YkKCgIf39/1q9fz+jRo7l27RpBQUGEhYUleS4/Pz/Onj0LmH96ffv2JTAwkK5du3LVMg2S/TZbtmwhNDSUqKgoZs6cydSpUwkKCmL9+vWMGzeOKVOmABAZGUmTJk0IDAzk4Ycf5vz584BpjI4aNYrg4GCqV6/O+vXrk329QgiPc7r9JVwrNBQCA2OYNAmuX/d0NEIIYQwaNIh//vmHzp07M3XqVObMmcPTTz8NxG8bjxo1irVr1xIUFERQUBD16tXj0qVLjB49mvXr1xMUFMTUqVPjHVtrzciRI/H39ycgIIAFCxYAJgnXqlUrHnvsMQICAtBa8/TTT1O7dm0eeOABTlsLNQNbV60ipGFDHmpXi5eeuYcLRw4Aph360ksvERISwrvvvmvbPql27bfffkvjxo2pV68ebdq04dSpU8TFxVGtWjXOnDkDQFxcHFWrVrW1k61SagcndX6Ac+fO8dBDDxEYGEiTJk3YsWMHp0+fplevXkRGRhIUFMShQ4ds23///fdMmzaNTz/9lFatWgEQERHBgw8+CJiRHm3atEFrzcmTJ6levTr//fcfAJ06dWL+/Plp+dE7JUv0bNJavwi8CGD5Zu15rXWvVHc8coSBx59gixdAGBB/Rrry5TMiWiEyka3D4Xyka49ZNAgaTHNqly5dutiGqb3yyivMmjWLZ555htDQUFasWMFDDz3E/PnzeeSRR8iVK5dtv+vXrxMeHs6qVauoXr06ffr0YcaMGbYeNL6+vmzYsMHhOGbOnMmwYcMICwvj5s2bxMbGMmnSJHbt2kVkZGSS++zevZu+ffvGe65hw4bs3r3btnzgwAFWrlzJ1atXCQsLY/DgwfTp04cPP/zQts3PP//MwYMH2bRpE1prOnfuzLp166hQoQL79+9n9uzZTJ8+PdXX4O3tTd26ddm3bx9169a1Pf/ll1/Svn17Xn75ZWJjY7l69SotWrTggw8+sL22qKioFM+1f/9+Zs2aRbNmzejfvz/Tp09Ptlean58fgwYNitdzbdWqVbb1ffr04f333yckJIQxY8Ywfvx4pk2bBpik1qZNm/j+++8ZP358isMAhRCek+b2l3Cpvn2jeO65IGbNgqee8nQ0QohMxwPt/ZkzZ/Ljjz+yevVqihcvzpw5c+Ktt7aNvb296dSpEx9++CHNmjXj8uXL+Pr6MmnSJKZMmcJ33yWe5HTJkiVERkby119/cfbsWRo1akTLli0B0/to165dVKpUiSVLlrB//3527tzJqVOnqF27Nv379+fWf//xzLPPsnzKFEoULcqCn3/mtXHjmD17NmBKaFh75Fkl1a49f/48f/zxB0opPv30U9566y3efvttevXqRUREBMOHD2flypXUrVvXVjLEKqV2cFLnBxg7diz16tVj2bJl/Prrr/Tp04fIyEg+/fTTJK9Vhw4d4sV88+ZN/vnnH/z8/AB4+OGHWbx4MR9++CE//vgj48eP5+677wbMZ5lJkybxwgsvJPszdoWs0rMpzXLfvsrYmy9z5YpZtk82CSHcY9euXbRo0YKAgAAiIiJsiZoBAwbY/vDPnj07UR2k/fv3U6lSJapXrw5A3759WbdunW19jx49nIqjadOmvPHGG7z55pscOXKEvHnzprqP1hqVxJhb++e6detm68r722+/0bNnTwB69+5t2+bnn3/m559/pl69etSvX599+/Zx8OBBACpWrEiTJk0cfh1a60TPNWrUiNmzZzNu3Dh27tyZbBfelM5Vvnx5mjVrBkCvXr2cSuTZu3DhAjExMYSEhACJf25dunQBoEGDBkRFRaXpHEIIkVPUqxdD8+bwv/+BpXOvEEJkavZt42bNmvHss8/y3nvvERMTk+rQsQ0bNtCzZ0+8vb0pVaoUISEhbN68GYDg4GDbsL1169bZtitTpgz33nsvAPt/+41dhw7R9qmnCHrsMV7/7DOOnz4Nx48Djn9+OHbsGO3btycgIIDJkyfbPr/079+fefPmAWYoYcLPL6m1g5M7/4YNG2yfHe69916io6O5cOGCQ7GCGZqYcPjc+++/z//+9z/y5Mlj+3wCULJkSU6cOOHwsdMqS/Rssqe1XgOscWafChzlyGmoVAlKloSiRSXZJHIIJ3sgZZTw8HCWLVtG3bp1mTNnjq3AXLNmzYiKimLt2rXExsbi7+8fb7+kkir28ufPD0C/fv3Yvn07ZcqU4fvvv092+8cee4zGjRuzYsUK2rdvz6effkrlypXjbfPyyy+zYsUKwHSBrVOnDlu2bLEVPQfYunUrtWvXThSHVVLJKa01L774Ik8++WS856OiohLtn5LY2Fh27txJLWvm3KJly5asW7eOFStW0Lt3b0aOHEmfPn0S7Z/SuRLGbV328fEhLs4Upr3ugnEceSzzznp7e3P79u10H08IkfHS0v4SrqGUmZmubVv49FPp3SSESCCTtPft2bc3R48ezQMPPMD3339PkyZNUu3RnlL736E2961b1KlcmY2ffRZ/haU6uKPt7meeeYZnn32Wzp07s2bNGsaNGweYL2dLlSrFr7/+yp9//klERIRDx0vuNdjiTuJ1J/X6kpM3b95E7fTjx4/j5eVlGwJorQt7/fp1h750T69s37MJ4CgVbHWblILatWHXLs/GJEROcunSJUqXLs2tW7cS/UHu06cPPXv2THJ2t5o1axIVFcXff/8NwOeff277lsDe7NmziYyMTDHRBPDPP/9QuXJlhg4dSufOndmxYwcFCxaMN5vHxIkTiYyMtA09e+qpp5gzZ45tOTo6mlGjRiXb7bRZs2a2MdD2r7V9+/Z89tlnXL58GTB//O3Hljvi1q1bvPjii5QvX57AwMB4644cOULJkiUZOHAgjz/+ONu2mRk3c+XKlagOVnKOHj3Kxo0bAfjqq69o3rw5YLoWb926FYDFixfbtk947awKFy5M0aJFbfWYkvu5CSGEcEzr1tCiBUycCNeueToaIYRw3KFDhwgICGDUqFE0bNiQffv2JduGBPMF6oIFC4iNjeXMmTOsW7eO4ODgJLebP38+sbGxnDx5ktWrVwNQvWo1zpw/z0ZLQe1bt2+z+9AhSGVG7IQxXbhwgbJlywIwd+7ceNsOGDCAXr160b1790SFytPaDm7ZsqXts8OaNWsoXrw4hQoVSnU/q6JFixIbG2tLON2+fZt+/frx5ZdfUqtWLd555x3btgcOHEj0JX9GyPbJpljffLzEROw/0zVqBNu2gYOfv4QQ6fTaa6/RuHFj2rZtS82aNeOtCwsL4/z58/G6dlr5+voye/ZsunXrRkBAAF5eXgwaNCjV8y1dupRy5cqxceNGHnjgAdq3bw/AggUL8Pf3JygoiH379tGnTx+KFStGs2bN8Pf3T7JAeOnSpfniiy8YOHAgNWvW5J577qF///506tQpyXO/++67fPjhhzRq1Che19d27drx2GOP0bRpUwICAujatavDU9aGhYURGBiIv78/V65cYfny5Ym2WbNmja3w4uLFixk2bBgATzzxBIGBgYSFhaV6nlq1ajF37lwCAwM5d+4cgwcPBswY8mHDhtGiRYt4/1A7derE0qVLbYUU7c2dO5eRI0cSGBhIZGQkY8aMcei1CiGESEwpeO01OHkSnJitWgghPG7atGn4+/tTt25d8ubNy/33309gYCA+Pj7UrVs3UYHwhx9+mMDAQOrWrcu9997LW2+9Zas1lHC7atWqERAQwODBg20JnUuF/Fgw6S1GffABdR97jKDHHuO3nTvBkjhKTsJ27bhx4+jWrRstWrRIVJOpc+fOXL58OckvyyFt7eBx48axZcsWAgMDGT16dKIElyPatWtnK4Pxxhtv0KJFC1q0aME777zDp59+yl7L8K7Vq1cnmlU7I6jUhqlkVQ2V0lsqViT62YkUHxbGxx+DpT4xCxbAo4/C1q1gmWBKuJBMKetZ27dvz1LTgy9atIjly5fz+eefezqUdHPH9O8ieXL9Pccd137v3r2Jho8qpbZqrRtm6ImFU2rUqKH379/v6TCyFft2VZs2sHMn/PMPODECW9iRdqprWadct86yK9LPkfdoUv8ThRkpt3MnVCgQTYkbx80TuXNzrVgx8qaSbHLGli1bGDFiRKabVXn79u288847KX6uunHjBiEhIWzYsCHV+llWaW2DZbmaTY46Ubo0REWR/zowDNswOoCmTc39xo2SbBLCk5555hl++OGHVIe/CSGEEML0brrnHvjgAxg1ytPRCCFE5nLypLkv5FcM8hSzPX/bwdEEjpg0aRIzZsxwulaTO9SrV49WrVoRGxubaHif1dGjR5k0aZLDiab0yPbD6Hx9oXDh+Mmm8uWhdGn44w/PxSWEMDMk/P3337bZ5oQQQgiRvKZN4f774a234OJFT0cjhBCZx40bcPYsFC8OlrloMsTo0aM5cuSIrbZpZtO/f/9kE00A1apVc1vvzmyfbAIzPPPYsTvLSkGTJpJsEkIIIYQQWcuECXDuHLz7rqcjEUJ4UnYth5NW1l5NpUt7No7sJj3vsxyRbKpUCaKi4j/XpAn8/TecOeORkIQQQgghhHBaw4bQuTO8/TacP+/paIQQnuDr60t0dLQknCyuXze9mkqUSHXSOeEErTXR0dH4+vqmaf9sW7PJnp8fWIqy21jrNv35J3Ts6PaQhBBCCCGESJMJEyAoCN55x9RxEkLkLOXKlePYsWOckZ4TgEk0Xb1qSuhYJlyL5/r162lOmOR0vr6+lCtXLk375ohkU6VKcOECxMRAkSLmuQYNwNvbDKWTZJMQQgghhMgq6taFrl1h2jQYNszUKBFC5By5cuWiUqVKng4jU9i7F0JD4bnnTD27pKxZsyZLzdadXeSIYXR+fubefihdvnzmH/XGjZ6ISAjhrJiYGKZPn+7284aHh7No0SK3n9eV5syZg5eXFzt27LA95+/vT1TC8cXJWLduHfXr18fHxyfRtZg7dy7VqlWjWrVqzJ071/b84cOHady4MdWqVaNHjx7cvHkTMN1xhw4dStWqVQkMDGTbtm22fX788Udq1KhB1apVmTRpUqpxjRs3jrJlyzJmzBiHXocnJHcd7EVGRtK0aVPq1KlDYGAgCxYssK1r0aIFQUFBBAUFUaZMGR566CE3Rp+0c+fO0bZtW6pVq0bbtm05n8w4nv79+1OyZEn8/f2TXD9lyhSUUpw9exaA9evXU7t27WS3F0LEN348XLkCb77p6UiEEMJzxowxn+1feMHTkYiEclSy6fDh+M83bQqbNkFsrNtDEkI4yRPJpthM8sdBa01cXFy6jlGuXDkmTpyYpn0rVKjAnDlzeOyxx+I9f+7cOcaPH8+ff/7Jpk2bGD9+vC3xMGrUKEaMGMHBgwcpWrQos2bNAuCHH37g4MGDHDx4kI8//pjBgwcD5lo/9dRT/PDDD+zZs4evvvqKPXv2pBrbiBEjmDBhQppelzskdx3s5cuXj3nz5rF7925+/PFHhg8fTkxMDGASMJGRkbaEVJcuXTIsVkff75MmTaJ169YcPHiQ1q1bJ5sYDA8P58cff0xy3b///ssvv/xChQoVbM+1aNGC77//3vnAhcihateG3r3hgw/g+HFPRyOEEO63dSssWmR6NUkPz8wnRySbrD0MkyoSfvkyOPB5RgjhoKioKGrWrMmAAQPw9/cnLCyMlStX0qxZM6pVq8amTZsAk6h46KGHCAwMpEmTJrZeN+PGjaN///6EhoZSuXJl3nvvPcBMM3ro0CGCgoIYOXIkWmtGjhyJv78/AQEB8XqD2Lt8+TL9+vUjICCAwMBAFi9eDMDgwYNp2LAhderUYezYsbbt/fz8mDBhAs2bN2fhwoXxjrVq1Srq1atHQEAA/fv358aNG4nO98knn9CoUSPq1q3LI488wtWrVwHzwXvQoEG0aNGC6tWr89133wGm19GDDz7IfffdR40aNRg/frztOtaqVYshQ4ZQv359/v333yRf79ChQ23Jlp9++omWLVsmmZjq2LEju3fvZv/+/Y78GOPx8/MjMDAQL6/4/zJ++ukn2rZty1133UXRokVp27YtP/74I1prfv31V7p27QpA3759WbZsGQDLly+nT58+KKVo0qQJMTExnDx5kk2bNlG1alUqV65M7ty5efTRR1m+fLlTcb7xxhv07duXdu3a4efnx5IlS3jhhRcICAjgvvvu49atWwBs3bqVkJAQGjRoQPv27Tlpmb4kpZ/d0KFDueeee6hcubLDPd1Sug72qlevTrVq1QAoU6YMJUuWTFSD4dKlS/z666+p9mzq0aNHvIRNeHg4ixcvJioqihYtWlC/fn3q16/P77//Dphu5a1ateKxxx4jICDAode1fPly+vbtm+JrAmjZsiV33XVXkutGjBjBW2+9hVLKoXMKIZI2frz50jQT59yFECLDvPQSFCsGzz7r6UhEUnJEsqloUShYMOlkE8hQOpG9hYaGMmfOHABu3bpFaGgoX3zxBQBXr14lNDTUlri4cOECoaGhLFmyBICzZ88SGhrKt99+C8B///3n0Dn//vtvhg0bxo4dO9i3bx9ffvklGzZsYMqUKbzxxhsAjB07lnr16rFjxw7eeOMN+vTpY9t/3759/PTTT7beMrdu3WLSpElUqVKFyMhIJk+ezJIlS4iMjOSvv/5i5cqVjBw50pY0sPfaa69RuHBhdu7cyY4dO7j33nsBmDhxIlu2bGHHjh2sXbs23hAzX19fNmzYwKOPPmp77vr164SHh7NgwQJ27tzJ7du3mTFjRqLzdenShc2bN/PXX39Rq1ateD1ZoqKiWLt2LStWrGDQoEFcv34dgE2bNhEREUFkZCQLFy5ky5YtAOzfv58+ffqwfft2tmzZkuTrnTRpEgsWLGD16tUMHTqU2bNnJ0oKAXh5efHCCy/Yrr+9Hj162IZq2d/mzZuX4s/5+PHjlC9f3rZcrlw5jh8/TnR0NEWKFMHHxyfe8yntk9zzzjp06BArVqxg+fLl9OrVi1atWrFz507y5s3LihUruHXrFs888wyLFi1i69at9O/fn5dffhlI+Wd38uRJNmzYwHfffcfo0aMBkwBK6roFBQWxZ8+eFK9DcjZt2sTNmzepUqVKvOeXLl1K69atKVSoUIr7P/roo7bf55s3b7Jq1So6dOhAyZIl+eWXX9i2bRsLFixg6NCh8c45ceJEW08y+6F79reVK1cCcOrUKUpb5hUuXbo0p0+fTvmHksA333xD2bJlqVu3rlP7CSES8/ODJ5+EWbPgwAFPRyOEEO6zejX8/LNJOKXSPBIekm0LhJc5edL8B544ERUWRqVKiYfRValiutv98Qc88YRHwhQiW6pUqZKtl0SdOnVo3bo1SikCAgJsdYI2bNhg62V07733Eh0dzYULFwB44IEHyJMnD3ny5KFkyZKcOnUq0Tk2bNhAz5498fb2plSpUoSEhLB582Y6d+4cb7uVK1cyf/5823LRokUB+Prrr/n444+5ffs2J0+eZM+ePQQGBgIm+ZLQ/v37qVSpEtWrVwdMj44PP/yQ4cOHx9tu165dvPLKK8TExHD58mXat29vW9e9e3e8vLyoVq0alStXZt++fQC0bduWYsWKASbhsWHDBh566CEqVqxIE0tWPKXX+8knn9CyZUumTp2aKElh77HHHmPixIkcTvDHMLleYalJarpdpVSyz6d1H2fcf//95MqVi4CAAGJjY7nvvvsAbO+9/fv3s2vXLtq2bQuYoWPWxElKP7uHHnoILy8vateubXs/FixYkMjIyGRjSWqGmJRe08mTJ+nduzdz585NlDD86quvGDBggEOvf+jQody4cYMff/yRli1bkjdvXi5cuMDTTz9NZGQk3t7eHLD7VBocHByvyOj69etTPU9aXb16lYkTJ/Lzzz9n2DmEyGleeQU++8zULbH7dyeEENlTRAT6pZcJOXqUf70rUPKuiUCYp6MSSci2ySYAjhyxZZH8/MISJZuUMr2bfvvNA7EJ4SZr1qyxPc6VK1e85Xz58sVbLly4cLzl4sWLx1u+++67HTpnnjx5bI+9vLxsy15eXty+fRtIPumQcH9vb2/bPvaS2h/gww8/5JNPPgHg+++/R2ud6AP+4cOHmTJlCps3b6Zo0aKEh4fbehkB5M+f3+HzJRQeHs6yZcuoW7cuc+bMiXf9EsZhXU7uefs4Ujr/zp07KVasGCdOnEgxNh8fH5577jneTFBNtkePHkkOr3v22Wfj9ThLqFy5cvFe37FjxwgNDaV48eLExMRw+/ZtfHx8OHbsGGXKlLHt8++//8bbp0yZMty8eTPJ551l/17LlSuX7Vpa33taa+rUqcPGJLq0pvSzs39PWn8Wly5dokWLFknG8eWXX1KrVq1kr0NCFy9e5IEHHuD111+3JRitoqOj2bRpE0uXLk319fv6+hIaGspPP/3EggUL6NmzJwBTp06lVKlS/PXXX8TFxcWb/jfh+71FixZcunQp0bGnTJlCmzZtKFWqFCdPnqR06dKcPHmSkiVLphqX1aFDhzh8+LCtV9OxY8eoX78+mzZtcvjvixAivlKlYPhweOMNGDUKZMIlIUS2FREBTzyBunoVBZSLPQJPPQG5gDBJOGU22X8Y3dWr8PLLVKpkhtEl/LzWpo3pdnzokEeiEyLHatmyJREREYBJiBUvXjzFIUIFCxaM9wG4ZcuWLFiwgNjYWM6cOcO6desIDg7mqaeeshVULlOmDO3ateODDz6w7Xf+/HkuXrxI/vz5KVy4MKdOneKHH35INd6aNWsSFRXF33//DcDnn39OSEhIou0uXbpE6dKluXXrlu31WS1cuJC4uDgOHTrEP//8Q40aNQD45ZdfOHfuHNeuXWPZsmU0a9YsyeuV1Os9cuQIb7/9Ntu3b+eHH37gzz//TPF1hIeHs3Llyni9bhYsWGC7Zva3lBJNAO3bt+fnn3/m/PnznD9/np9//pn27dujlKJVq1a22kZz587lwQcfBKBz587MmzcPrTV//PEHhQsXpnTp0jRq1IiDBw9y+PBhbt68yfz582291D744IN4P8P0qFGjBmfOnLElm27dusXu3buBlH92SbH2bErqVrt27RSvg72bN2/y8MMP06dPH7p165Zo/cKFC+nYsWO8BNGmTZuS/fk8+uijzJ49m/Xr19t6Z124cIHSpUvj5eXF559/nmIxcPui5Pa3Nm3aAOZnaJ15MLnXlJyAgABOnz5NVFQUUVFRlCtXjm3btkmiSYh0GjnSlI2wjAoWQojs6eWXzed7e5bP+yLzyf7JJoCjR/Hzg0uX4Ny5+Ks6djT3llq9Qgg3GTduHFu2bCEwMJDRo0fbPrwmp1ixYjRr1gx/f39GjhzJww8/TGBgIHXr1uXee+/lrbfeSvID6yuvvML58+fx9/enbt26rF69mrp161KvXj3q1KlD//79k0zuJOTr68vs2bPp1q0bAQEBeHl5MWjQoETbvfbaazRu3Ji2bdtSs2bNeOtq1KhBSEgI999/PzNnzrQlD5o3b07v3r0JCgrikUceoWHDhomOm9TrLVWqFI8//jhTpkyhTJkyzJo1iwEDBsTrpZVQ7ty5GTp0qFN1djZv3ky5cuVYuHAhTz75JHXq1AHgrrvu4tVXX6VRo0Y0atSIMWPG2ApCv/nmm7zzzjtUrVqV6OhoHn/8cQA6dOhA5cqVqVq1KgMHDrTNMOjj48MHH3xA+/btqVWrFt27d7edZ9++fbZhhumVO3duFi1axKhRo6hbty5BQUG2Ytkp/ezSKrnrsGXLFtuwuK+//pp169YxZ84cW30k++F58+fPt/VQsjp69Ch58+ZN8pzt2rVj3bp1tGnThty5cwMwZMgQ5s6dS5MmTThw4ECSvfccNXr0aH755ReqVavGL7/8YqthdeLECTp06GDbrmfPnjRt2pT9+/dTrly5JGfiE0K4RpEiplfTDz9ABo6EFUIIzzp61LnnhUcpR4eGZDUNldJbrAsVK7JsWhQPPwxbtkCDBvG3rV0bypaFX35xd5TZ05o1awgNDfV0GDnW9u3bqSd96D3i0qVLFCxYMMl14eHhdOzY0TYzmdWcOXPYsmWLy3ruZEcdO3ZkyZIltsSJ1bhx4yhQoADPP/88kPL1z25GjhxJ7969bXXGPM1V1z4qKoqOHTuya9euROv27t1LrVq14j2nlNqqtU6cnRUeU6NGDZ2WWS9F8hxtV129ClWrQuXKJuEkkz0mTdqprmWdRdd+Zl+RPvIeTZ6u6Ic6eiTxiooVE88GZkeuqes50gbL/j2bcueGiROx1j5NWLcJoFMnWLsWLl50b2hCCCFS99133yVKNAEUKFCAjz/+mDFjxnggKs+aPHlypkk0ucr69evp1KkTxYsX93QoQmRJ+fKZIuG//SY99oUQ2UxEhJn86+gR4kiQSc+XDyZO9EhYImVOJ5uUUv9YbluVUgFO7NfWsp97qyNZem5VrWq+4dm7N/EmHTvCrVtm6kQhhMgIc+bMSdSrCUyPJ+nVlDbPP/88Bw4cYMKECZ4ORbhAixYt2LlzZ7zC7EII5zz+uGnzvvgipFCaTQghsg5LUXCOHEEBXmi0tetmxYrw8cdSHDyTSkvPJj+gIlAP+E0p1cnB/fJZ9vVLwznT7tYtePll8uc33Yp37ky8SdOmpqiifAsksovsOjxWCJEzyd80IRyTKxf873+wezekUgpRCCGyhiSKgiut7wydk0RTppXeYXQFgKVKqZGuCCbDWAqGBQbCjh2JV/v4QIcOsGKFfAsksr7Y2Fiio6Plw5kQIlvQWhMdHR1vNj4hRPIeeQQaN4ZXX008aZMQQmQ5UhQ8y/JJx76fAo9iEk6TlFK1gCe01rddEpkrVagAQEAALF8O165Bwkl8OnY0PfQ2bTI9nYTIqq5cucKlS5fiTW0v3OP69evygdiD5Pp7TkZfe19fX8qVK5dhxxciO1EK3noLQkLg3XfNkDohhMiyKlSAI0kUBbd8xheZV3qSTd8BHwLfAOWBvkAVpVQXrXW0K4JzCUuBcDDJprg4U7epfv34m7VvD97e8O23kmwSWZvWmkrWivjCrdasWSMzAXqQXH/PkWsvRObSsqWZAGfSJBg4EKTuvhAiy4mIgJdfRh85gkbhhd2oDSkKniWkaxid1vovIBj4E1BAc+BPSy+nzMFuKJF14p6khtIVLQotWkjdJiGEEEIIkfVNmgSXL8Prr3s6EiGEcJIUBc8W0luzCa31KSAUmI9JOFUCNiql7kvvsV3CUiAcoEoVM3wuqSLhYIbS7dyZdC89IYQQQgghsoratc3sdNOnwz//eDoaIYRwghQFzxbSnWwC0Frf0Fo/Boy1PFUI+FYpNcwVx083S/Ewb2+oUyfpnk1gkk0gvZuEEEIIIUTWN26cmQjH8r2rEEJkDVIUPFtwSbLJSmv9GtADuAZ4A+8opT5SSnm78jxOsyseFhCQfM+mGjWgWjVTt0kIIYQQQoisrEwZeO45mD8fNm/2dDRCCOGg5Ip/S1HwLMWlySYArfUiIAQ4gRlWNwD4GbjL1edySILiYQEBcOoUnD6d9OYPPQSrVplthBBCCCGEyMpGjoQSJeD55+OVMhVCiEzr9viJXFX54j8pRcGzHJcnmwC01luAxsA2TMIpFDNznXslUTzMWiQ8ud5N/fvD7dswZ07GhyeEEEIIIURGKlQIJkyAdetg2TJPRyOEEKl7/1wYA/THXCtZEZSSouBZVIYkmwC01seBFsASTMIpT0adyxkBAeY+ubpNNWua6WI/+QTi4twXlxBCCCGEEBlhwABTt3TkSLhxw9PRCCFEMiIiiC3vx7BnvZjq+zJ535loPpRLUfAsKS3JpqOW29XUNtRaX9NadwXewCSc3OvIEejXz0ydaFGyJJQqlXzPJjCzLB46BKtXuyFGIYQQQgghMpCPD7z9tmnffuj+sQZCCJG6IUOgd2+8jx3BC02p60fMB3O7z/Iia3E62aS19tNaV9Jar3Rin1eA+kAr4F5nz5kut27BsPiT4gUFpVwk8ZFHoGhR01NPCCGEEEKIrK59e7jvPjOk7uxZT0cjhBB2IiJg5szEheWuXpXpNLOwDBtGl5DWOlJrvVZrvdZd57SJjo632KIF7NqV6GkbX1/o2xeWLk2+kLgQQgghhBBZydtvw+XLMH68pyMRQgg7L7+c/AwGR4+6NxbhMm5LNqWHUspXKbVJKfWXUmq3Uipd/yJDQsz9+vXJbzNwoOkUNXdues4khBBCCJF1uboNJjyrdm0zKmXGDNi3z9PRCCGERUoJpQoV3BeHcKkskWwCbgD3aq3rAkHAfUqpJg7vXaxYvMVGjUzvpbUp9LGqXRuaNzdD6WSaWCGEEELkUOlrg4lMZ/x4yJ/fFAsXQojMQJdPJqGkFEyc6N5ghMtkiWSTNi5bFnNZbo6lgHLnhnffjfdUnjzQtGnKySYw3/z8/TesWeNsxEIIIYQQWV+62mAiUypRAl55Bb77DlY6XIFVCCEyzuq2E7lCvvhPKgWDBsksdFmY0lmk245SyhvYClQFPtRaj0pimyeAJwAaQIMNpUrxz4ABnG7TJtHx5s6tyNy5fnzzzW8UKHA7yXPeuOFF165NCQ4+x6uv7nXly8nWLl++TIECBTwdRo4l199z5Np7llx/z/HUtW/VqtVWrXVDt584h0mtDWbf/ipRokSDr7/+2v1BZmMZ8ft186YiPDyYPHni+PTTLXh7Z43PA64g/ytca63l2/sQa50SkW457T16+bI3ffo0ZmD+eYy7+Qq+Z05zo2TJZD/Hp+0cOeuauoMjbTAfdwWTXlrrWCBIKVUEWKqU8tda70qwzcfAxwANldK+Z89S+9w5aoeGJnnMOXMAmpPMagD694eZM0tRp04pSpRI/+vICdasWUNoShdVZCi5/p4j196z5Pp7jlz77C21Nph9+6tGjRpa3guulVG/Xx9+CF26wN69ITz9tMsPn2nJ3yvXsiab5Jq6To55jw4ZAh9/jI6N5TTenGv9BHkX/geAL1DbcnOFHHNNM5ksMYzOntY6BlgD3JfqxrGxpgLikCGJVjVubEbYpTaUbuBAuHkT5s1LS7RCCCGEENmDU20wkek99BC0aQOvvgpnz3o6GiFEjjJkiPmcHhuLAnyIpeSipD+3i6wrSySblFIlLN+moZTKC7QBHJ9D4+OPEz2VNy8EB6eebPL3h3vuMYeIi3MiaCGEEEKILC7dbTCRaSllyppeumRqOAkhhNt89FHSzyfxuV1kXVki2QSUBlYrpXYAm4FftNbfObx3bGyST4eEwLZt5p9sSp56Cg4cgMWLHT6jEEIIIUR2kL42mMjUateGp582n++2b/d0NEKIHCEiIvleHMl8bhdZU5ZINmmtd2it62mtA7XW/lrrCa44bkiIeT//9lvK2/XoAXXqmG7Gt5OuJS6EEEIIke1kVBtMZB7jxkGxYjB0KGSReYOEEFnZsGHJr/P2dl8cIsM5nWxSSrW03O5ycr8i1n2dPWdGuece8PFJfSidtze8/jrs3y+1m4QQQgghRPZRpAj873+wYQPMn+/paIQQ2VpEBERHJ7/+iSfcF4vIcGnp2bQGWA00d3K/xpZ9f03DOdMnmQxp/vzQsCGsWZP6IR58EBo1Mt/+3Ljh0uiEEEIIIYTwmH79oH59GDkSrlzxdDRCiGzr5ZeTX5c/P0yf7r5YRIbzxDA65fYzpjD2s317+PNP+O+/lA+hFLzxBvz7b/L1zIQQQgghhMhqvL3hvfeg5fEIbpbxAy8v8PMzvRCEEMJVjh5Nfp18yM523JlssiaZ3D8avFixZFd162bGpztS/Lt1a2jVCiZOhMuXXRifEEIIIYQQHtQsKoLZ3k9Q9OIR0zg+csQMaZGEkxDCRa6XrJD0imLFICzMvcGIDOfOZFNxy32m6pxbp46ZiWPhwtS3Vcokmk6fNt/+CCGEEEIIkS28/DJ5Yq/Gf+7q1ZSHvQghhINu3YIxPhO5qvLFX5EvH7z7rmeCEhnKLckmpVQeoK9lMcod54zn3LkUV3fvDuvWwcmTqR+qaVPo1AneegvOn3dRfEIIIYQQQnhScsNbUhr2IoQQDnr3XZh8PIy9Iz6GihVNT46KFeHjj6VXUzaVYrJJKdVXKfWr/c1u9esJ1yVxW62U2gScAe7FDKFblYGvJ2kVkumuZ+HMUDowM9NdvAiTJ7sgNiGEEEIIITwtufayl5cMpRNCpMuxY2airY4docHbYRAVBXFx5l4STdlWaj2b/IBQIMTuBqb+Up0Ezyd1awk0AApY9jkDTHFh/I7p0CHF1bVrm+F0jgylAwgMhJ49TXY2tcLiQgghhBBCZHoTJ5rhLAnFxkrtJiFE2kREgJ8fZcp7sfuKH7Nay9+RnMTRYXTK7pbUc8ndAC4DO4CpQH2t9Yn0h+2kr79OdZPu3WH9ejjhYHTjx8ONG+b/shBCCCGEEFlaWJgZzuLtnXid1G4SQjirTRvo1QuOHMELTUWOUPJlSVznJCkmm7TW47XWXvY36yrgoYTrkrh5a60La62DtNbPeSTRBBAdneomzg6lq1oVHn/czNAYFZW+8IQQQgghhPC4sDAztCUpUrtJCOGoIUNgVRLVcyRxnaOktUC4Sn2TrKVWLfD3d3woHcCrr4KPDzz9tElUCSGEEEIIkaUlV7tJa/Dzk14JQojUffRR8uskcZ1jOJ1ssuu19E1GBORJ3bvDhg1w/Lhj25crB//7H6xYAbNnZ2xsQgghhBBCZLjkajcBHDki9ZuEEClr0yb5HpKQ6uRdIvtIa8+mbMnZoXQAzzwDISEwfLj5/yuEEEIIIUSWZa3dVLFi0utlGIwQIjlt2iQ9fM6eFD3OMSTZZKdmTQgIgAULHN/Hy8v0atLa1HBKKYkrhBBCCCFEphdmmZpcJVM5Q4bBCCESiohIPdHUurX5+yJyBB9nd1BKjUnvSbXWE9J7jIzSuze88AJERkJQkGP7VKoEb78NTz4JM2eaemhCCCGEEEJkaRUqJN11X4bBCCESSq3HY/78sHKle2IRmYLTySZgHGY2uvTItMmmgQNhwgSTPPr8c+f2W7IERo6Edu3MbHVCCCGEEEJkWRMnmhpNV6/antIo1JEjplj4xInSS0EIYXo1pVZTJqWi4SJbSs9sdGm9ZWpFipjhcPPnw7Fjju+nFMyaBblzQ3g4xMZmVIRCCCGEEEK4QYL6TXEolPU7ZykWLoQA8zegT5+Ut8mTRxLTOVBakk2tHLi1BnoA7wBnMT2hvrKsuzfdUWewYcNM7aX333duv7Jl4b334LffYNq0DAlNCCGEEEII97HWb6pYEa+EgxukWLgQ4sknUy5cbO2VIXIcp4fRaa3XOrH5QqXUa8B84FFgn9b6NWfP6W6VKkHXrqan3yuvQMGCju/bq5cZTvfyy3D//VC7dsbFKYQQQgghhFskVxRcioULkXNFRMCVKylv8/nn0qsph8rw2ei01heAR4ATwFilVNOMPqcrPPccXLjgfBJWKVMkvGBB6NsXbt/OmPiEEEIIIYRwm+SKgkuxcCFyrl69Ul5fsaIkmnKwDE82AWitrwKzLed72h3nTK/gYGje3AyHczZhVKoUzJgBW7bApEkZEp4QQgghhBDuM3Ei5MsX76nr3vnM80KInKdo0dS3kb8POZpbkk0Wuy33zd14znR57jlT+3DJEuf37doVevaE8eNh0ybXxyaEEEIIIYTb2BcLV4qYwhX5NLYvV0e8DF5eZnY6KRYuRM4wZAjExKS8zeDB0qsph3Nnsim35b6kG8+ZLp06QdWqMGUKaJ369gl98AGULw+dO5u6ikIIIYQQQmRZ1mLhcXEUeG8ij6u55DtzxDSUZXY6IXKOmTNT32b69IyPQ2Rq7kw2tbfcX3DjOdPF2xtGjIDNm2HDBuf3v+suWLECbtyADh1ST/4KIYQQQgiRFfiMeZm8+mr8J2V2OiGyvyFDUu+JMXiwe2IRmZpbkk1KqaeAnoAG/nTHOV0lPNwkjd5+O23716oFS5fC33/DI4/AzZsuDU8IIYQQQgj3S24WuiNHpHeTENlVRETqvZqKFJFeTQIAH2d3UEqNcXDT3EAZIBSoCChMsul9Z8/pSfnywVNPweuvm9pLwcHOHyM01Mxq16eP6V08e7aZtU4IIYQQQogsqUIFk1hKSu/e8Ntv8oFTiOymd+/UezWdP++eWESm53SyCRiHSRo5w5pamaC1XpmGc3rU88/DJ5/A00/DH3+YGojO6t0b/vkHxo2DKlXg1VddHqYQQgghhBDuMXGi+Rb16tXE67Q2UzM3ayYFgoXILsqWTT3R9MUX7olFZAlpHUannLjdAn4E2mitx6c3YE8oVAgmTza1mz77LO3HGTPG9G4aM0Z+D4UQQgghRBZmnZ0uJY8/7p5YhBAZ78SJlNfL7HMigbT0bGrl4HY3gBjgb6317TScJ1MJC4OPPoLRo6FLF1PHyVlKmR5S//4L/fubmepCQlwfqxBCCCGEEBkuLMwUBE9uON2NG6bGi3wAFSJrq1Mn5fWDB8uwWZGI0z2btNZrHbz9obXelx0STWASRR98YIagpmcIXO7csHgxVK0KDz0E+/a5LEQhhBBCCCHca+LElNfL7HRCZG1t2sCePSlvI4kmkQS3zEaXXdSta2Z6nDkTtm9P+3GKFoXvvzeJpw4d4PRp18UohBBCCCGE24SFpTzzTXKz1gkhMr8hQ2DVqpS3kZmvRDIk2eSk116DYsVMsfC4uLQfx88Pvv0W/vsPOndOuraiEEIIIYQQmd6gQcmv09o0fCMi3BaOEMJFZsxIfZvPP8/4OESWlO5kkzKClVJPKaUmKqXetdw/ZXk+W6U6ixSBSZPg99/TX+Q7OBi+/BI2bYJHH4Xr110SohBCCCGEEO4zfTq0bp38+iNHzMx1knASIutIrU4TQO3aUpNNJCvNySallJdSagQQBWwE3gNGA09b7t+zPB+llBqulErPucorpVYrpfYqpXYrpYal9ViuEB4OjRvDCy/AhQvpO9ZDD8GHH5peTh06wMWLrohQCCGEECL9MlsbTGRiK1eab2IrVkx6/dWrUr9JiKxiyJDU6zTVrg27d7snHpElpSkBpJS6C9gATAHKASqFW3ngbWCDUqpoGuO8DTynta4FNAGeUkrVTuOx0s3LyySITp+GsWPTf7zBg03vw3Xr4N574cyZ9B9TCCGEEMIFMlUbTGRyYWEQFZV8DRep3yRE1uDI8DlJNIlUOJ1ssvRQ+gHT4FBAHPA98DzwENDWcv88sALTSFFAY+D7tPRw0lqf1Fpvszy+BOwFyjp7HFdq0MD0Bv7gA9ixI/3H69ULli83v7PNm8v/YiGEEEJ4XmZsg4ksoEIF554XQmQe3t6pb1NbvnMQqVNaa+d2UGoQMB3QwB7gUa11smlNy7df8wF/yz5DtNYfpTlgpfyAdYC/1vpignVPAE8ANIAGWyzPa2Dt6tVpPWWyLlzwITw8mEKFbjFjxjby5YtN9zF37izMiy8GkDdvLJMn/4WfX9arHH758mUKFCjg6TByLLn+niPX3rPk+nuOp659q1attmqtG7r9xDlUcm0w+/ZXiRIlGnz99deeCTCbyop/20quXEmNKVPwvnHD9twNH18OjXqO023aeDCyrHk9M7O1a9cCEBIS4uFIsg9PvkcbhIdT4MgRkiu6rIFb+fPz+3ffuTOsdJPfe9dzpA2WlmTTBuAe4AxQR2t91oF9SgC7gOLARq11c6dOeuc4BYC1wESt9ZKUtm2olN5i/4STr9NRv/4KbdtC164wf75rZn7csQPat4ebN+H77019qKxkzZo1hIaGejqMHEuuv+fItfcsuf6e46lrr5SSZJObONoGq1Gjht6/f7/7AssBsuzftogIePll9NGjnPGtwPM3J/L8tjACAz0bVpa9npnU+PHjARjritoiAvDwezS1D7Pe3nD7tnticSH5vXc9R9pgaanZVAuT1PzUkUQTgNb6DPApZjhdmvrcKaVyAYuBiNQSTe50770wcSJ8/TW8+65rjhkYCBs2mJnvWreGX35xzXGFEEIIIZyVWdtgIpOz1G9ScXGoI1H8XDyMiAciiKvgZwqg+vnJ7HRCZCaO9DqcOzfj4xDZRlqSTXks985WKrJun8vZEyqlFDAL2Ku1fsfZ/TPaqFHw4IMwcqRJErlClSrmWFWqwAMPwMKFrjmuEEIIIYSjMnsbTGQNJUrAT30iGHPsCbz+PWJGHBw5YgqgSsJJCM+rUwdWrUp5myJFTBJZCAelJdl0zHKfz8n9rNsfS3GrpDUDegP3KqUiLbcOaThOhlDKJHn9/KB7d/jvP9cct3RpWLvWDKPr0QNmznTNcYUQQgghHJSp22Ai66j79cvkJ0Et0qtXYdgwzwQkhDDatIE9e1Lf7vz5jI9FZCtpSTZ9jxkO187J/dpjht997+wJtdYbtNZKax2otQ6y3Jw+TkYqXBgWL4aYGJMYunXLNcctUgR++gk6dIDBg82QvQwqPyWEEEIIEU9WaIOJLCK5qZajo2HIEPfGIoQwIiJS79EE8MUXGR+LyHbSkmx6F7gIdFNKdXRkB6XUA0A3IMayf7YUGAgffwzr1sGLL7ruuPnywdKl0Ls3vPIKDB+eJeuyCSGEEEKInKpCheTXzZjhWL0YIYRr9e6d+jaDB8vwOZEmTiebtNZHMImji8BipdTrltnmElFKlVBKvYYpKhkDdNNaJ/O1RvbQq5f5cubtt2HRItcdN1cumDMHRoyA994zhcmPpWVAohBCCCGEEO42cWLK61etkh5OQrhT2bKpD5nJnRumT3dPPCLb8XF2B6XUZ5aHkUAo8CLwglJqN/A3cBVTn6kqUAfwttu+l1KqVzKH1lrrx52NJzN65x3YuhX69QN/f6hZ0zXH9fIyx65fHwYNgqAgmDfPDLETQgghhBAi0woLM/WZoqOT3+bjj+WDrRDu0KYNnDiR+naffZb6NkIkw+lkExCOqb2E3b0PEGi52VN224Q6cOxskWzKk8fMHle/PnTpAn/+CQULuu74vXpBo0amGPkDD5hZ8CZONL2fhBBCCCGEyJTefdc0ZJMTG+u+WITIyRyp09S6tQyfE+mSlppNYJJI9reknkvp+eS2zTbKl4f58+HAAdPz6PJl1x6/Rg344w948kmYPBlatjQzyAohhBBCCJEphYVB/vwpb1O8uClaLITIGLlzp76NUrByZcbHIrK1tCSbKmXQrXI6Xkem1Lq1+V+5cSPcf7/rE05588LMmSaptXs31KsHy5e79hxCCCGEEEK4zEcfmQ+yyYmOvlMEVQjhWko5Nm36559nfCwi23N6GJ2lQLhwUI8e5j4szCScfvgBChRw/TkaNDD3Dz1khsO/9ZZjSWshhBBCCCHcxjos58kn4cqV5LebMQOaNZNhPEK4iqMfDmX4nHCRtA6jE07o0SNjezgBVK0Kv/8OzzxjhsM3awb//OP68wghhBBCCJEuYWGmQZxSDyeAAQPcE48Q2V1EhGM9mooUkeFzwmWcTjYppfpYbuWc3K+MdV9nz5kduCPhlCcPvPceLF4MBw+aYXWLFrn+PEIIIYQQQqRbhQopr79+3UzPLoRIn5QK89s7fz5j4xA5Slp6Ns0BZgP1ndwvwLKvZ+ZPzASFBt2RcAIzA9727aaIeLdu8NRT5n+1EEIIIYQQmcbEialvc+KE1G8SIj2KFnVsuy++yNg4RI7jiWF0npl5ztFsbgZzV8KpUiXYsAGefRamT4cmTWDz5ow5lxBCCCGEEE4LC4PBg1PfbsYMSTgJkRZt2kBMTOrbDR4sdZqEy7kz2WQ9V5wbz5kpuSvhlDs3vP02fPMNnD4NjRub/9OO/L0RQgghhBAiw02f7liPCkk4CeG8VatS36Z1a/N7KISLuTPZVNpyf8mN58y03JVwAujUCfbtg6FDzWyzNWqY/+laZ9w5hRBCCCGEcEhYmPnAm5oZMzI+FiGyi9QK8FtJQXCRQdySbLIUE7f2kT3kjnMmydHpHt3EPuHUpo0Zkp5RChWCadNgyxYzxK53b7j3Xti7N+POKYQQQgghhENWroQyZVLfTgqGC5E6RxNNUqdJZKAUk01KqWFKqX/sb3arP064LonbYaXUaeAIpqC4Bn7IwNeTMkeme3SzHj1g4ULYtQsaNID16zP2fPXqwe+/w8yZEBkJdevCSy/B1asZe14hhBBCCCFSdPw45M+f8jZSMFyIlDmaaKpdW+o0iQyVWs+mIoAfUNFy72d5XgEl7Z5L7lYRKG7ZXgEHgLfTHXV6ZLLeTQAPPwx//AEFCpjeRu+/n7FD3Ly84MknYf9+eOwx+N//zN+ab7/NuHMKIYQQQgiRqo8+Sn2bGTMyxUzTQmQ6jiaacuWC3bszNhaR46WWbIrB9Eo6ark/YnleA2fsnkvudhjYCXwDDAMaaq0vuPQVOOvWrUz5bYi/v5kt7v77TW2lvn0zvrdRyZIwZw6sXWu+ROrcGR56CI4ezdjzCiGEEEIIkaSwMPMtaGp69ZKEkxD2nBlievNmxsUhhEWKySat9bta60r2N7vVAxOuS+JWRWtdV2v9kNb6fa31lQx+PY7JpN+GFCkCy5bBhAlm+Ow998A//6S2V/q1bGmG1L35JvzyC9SqZR7L3yAhhBBCCOF2u3ebhnFqevXK8FCEyBKGDHG8ALDMEiXcJC0Fwo9ablm7yk+vXqYqdybj5QWvvgrffQdHjkDDhvDjjxl/3ly54IUXYM8eaNsWRo829Z3Wrs34cwshhBBCCBHP+fOOFQwvWjTjYxEis3N0psbBg1PfRggXcTrZpLX2s/RayvpzJK5a5fi4Vjfr0MHMHFeunHk8cSLExWX8eStWNL2rvvnGDOMLDTW9mf/+O+PPLYQQQgghhM3x46lvExOTKb9AFsJtHP0827o1TJ+esbEIYSctPZuyrNvAq8D5hCuUypTD6qpUgY0boWdPeOUV6NIFLrip4lWnTqYH80svwdKlULMmDBhgelsJIYQQQgjhFq1bp77NqlWZsi0vRIZzNNFUpgyszPp9RUTWkm2TTSdKl0703CbgTeDnpHbo1cv8smay4uH585v6TdOmmaF1wcFmqJs75MtnelT98w889ZSJo1o10/vy2DH3xCCEEEIIIXKwlStNvYfU9OqV6drxQmQoZ4aQOtJLUAgX83F2B6XUZ+k8p9ZaP57OYzh6pnjZ3nuA/YC1yvmvQB2glP0+M2aYW+3amWY6SKVg2DAICoLu3aFRI3jtNTNrnY/TP0Hn3X03vPsujBwJb7wBn34Ks2fDk0/Ciy+a9UIIIYQQQmSImzchd24zq3RKZswwBUczSRteiAxTtqwZQuoIKQguPCQtqYpwIL3vWPckmyBRwsmaaLoBhAHBwPKk9tuz585+gwdnivGtISGwbRsMGgTPPWd6C3/8MTRo4J7zlytnLsMLL8Drr8OHH8Inn5heTy+8ACVKuCcOIYQQQgiRw9y86diQoT17TA0nGTIksqt8+eDaNce2lUST8KC0DqNTTt5I8Ni9kvglywOsBaZYlk8DTwH/JrX/jBnmn1vZshkVocPKljXFuxcuNLNbBgfDs8/C5cvui8HPz/Ru2rcPunWDd96BSpVMfadz59wXhxBCCCGEyEEcnUlr1aqMjUMITylaVBJNIstIS7KpkgO3KkBjYCiwF5Nk+sryfOV0R50WWkORIvGeqg5Uszz+A/gMuGpZPgVcSniMEydM0kkp8PLyWCFCpaBrV9i7F554AqZOhTp1YMUK98ZRtSrMnWt6KnfqBJMmmaTTnDl+bitkLoQQQgghcojp0x1POGXSGaeFSLOICMeHzjlSWF+IDOZ0sklrfcSB22Gt9Wat9QdAXWAO8CgwSmvtufnMzp9P9h9UZ+A/oIZleTzgB1hHhifKC2t9p6i4h5JPRYqYTlfr10OBAtCxI/ToAf/959YwqFkTvvoKduwwvZbnzvXDz88UF7+UKGMnhBBCCCFEGk2fbmqrOkISTiI76dXL8W1lGKnIBDJ8Njqt9W1gIHAQGKiUui+jz5mi6dNNoqhMmUSrCts9DscMsbPOfdEZeD6l4yZMPilluhu5QfPmsH27KRq+fDnUqmVqOcXFueX0Nv7+sHgxfPzxFlq0gFdeMT2dJk+GixfdG4sQQgghhMimdu82X/Q6QhJOIjtw5n0sw+dEJpHhySYArXUsMBcznM7Bvq8Z7Phx84uYTE+nYKCf5bHGDLcrZbdcH/ggtXNYi4xbbwULZljvp9y5TXJnxw4za92TT5qC4nv3ZsjpUlSt2mW++Qb+/BMaNjTFw8uVg+HD4dAh98cjhBBCCCGymdhYSTiJnEESTSKLckuyyeJvy31DN54zddaeTimM/1bAO8BIy/IVoBZgnXwtBlOM6lvL8m3LNolcvpy495OLh+BVrw6//gqffWZyXXXrwrhxcOOGSw7vlOBg+PFH2LQJOnc2l7paNfN41Sr5WyiEEEIIIdIhNhZy5Up9OwBv74yNRYiMIIkmkYW5M9lU0HJfzI3ndJw16aR1qgXVCgARQA/LcgwQBNxlWd4KFAJ+tiyfxRQgTzbfk9QQvHQMw1MK+vUzvZq6d4fx4yEgABYscP/QOoBGjeCLL+DIEdP76o8/TG2nwED45BO4ejX1YwghhBBCCJHIzZuObRcXlylmlhbCYZJoElmcO5NNXSz3Z914zrRZufJO4imJ2k4J+QGLgWaW5ZLAq0CgZfkHoCl3unb9CUwEUi1jlHAYnvXm4+NQT6iSJU2S56efIE8eePRRM8Ru6VLP/D0qXRomTICjR2H2bPMynngCypeHF1+Ef/91f0xCCCGEECKLc3SGuhMnCHjuuYyNRQhXkESTyAYyPNmklMqnlJoMdMCUO1qf0ed0KWttJ60dnvmiEjAOuNuyfD+wBKhpWf4NGMOd4uNvA/7c6fm0H9hBEjPgWcXGJt0Tyv7Wpo1t83bt4K+/zIxxN29Cly6mltKKFZ752+TrC+HhsG0brF0LoaHw1lummHiPHvD77/I3UwghhBBCOGj6dIener9r2zZT7FSITKplq1aOb/zFFxkXiBDp5OPsDkqpzxzcNDdQBmgE5LM8F4fJrWRNu3fHX65Tx/Q+SkVx4GG75WeBQUBey3IFzEXKY1meAiwDzliWPwCOAZMsy8cxYxILpXTSVaviZcS9gEe5M/TvxjZf+nf8lNcah/HaayY35e7aiUpBy5bmFhUFH34In34KX39tkmHDhplhgNIeEEIIIYQQKVq5EoYMgRkzUtxMAdy6ZWo4xca6JTQhHKYUDn8kK1MGwsIyMhoh0iUtPZvCgb4O3HoCIUB+zN/1m8CTWustzp5QKfWZUuq0UmpXGuLNOLt33+n15MSwO7iTfQPoBsy2Wx4FzLdb3gtss1seANjnu98k/sx4pzFFypOiLDdfrhNBLzb+qWjTToGXQifVQ2rIEIdeT3r5+cHkyXDsmPly6vJl6N0bKlY0Q+9OnXJLGEIIIYSwk2nbYEIkZfp0h9vixMVBvnypbyeEu1i++Xco2VSmjBmBI0QmltZhdMqJWxQwEwjSWjvaKyqhOcB9adzXveyH3aUyy11yqgL2HYE/5E6xcYARmGF4VmuADXbL92ISWFYvAPYdLHcB0ST9w0pkxoyUh+ulo5B5UvLnN5ds924zk129ejB2LFSoAH37woYNMsROCCGEcKM5ZJU2mBBg2uKOJpyuXZOEk8gcnBliUqSIJJpElpCWZFMlB29lgHxa68pa6yFa631pDVJrvQ44l9b9Pcp+ljv7m4P1n5LSDnjQbvkH4Cu75dHAQLvln4FIu+VmwIQEx5tjt7wEOOxMQAkKmYe0apV8YsrBnlJeXtC+PXz/PezbBwMHwpIl0KIFVKsGr71mZrcTQgghRMbJ0m0wkXM5m3Dy9s7YeIRIibO1TM6fz5g4hHAxpbNINxGllB/wndbaP4VtngCeAChdunSDL7/80k3RuU6D8HAKpJJFSU9pJQ18C5QH6mHGNrYHegGPY2bIKwy8BYy0LNcG/gf0Bi5hakd1A4Is+0dZjpeX1Dnybov19cX7xg1ulCzJPwMGcNpS7PzaNS/Wry/Bjz/ezfbtRQGoV+887dv/R8uWZ8ibN86Bo2d/ly9fpkCBAp4OI0eSa+9Zcv09x1PXvlWrVlu11g3dfuIcJrU2mH37q0SJEg2+/vprN0aX/cnftrRr3r493jdvptp21pbbutWr3RBV9rJ27VoAQkJCPBxJ1tSyVavkR5jY0YBWinW//uqGqLIf+Tvqeo60wbJVsslemTJl9IkTJzI2KE9woPBhetwGdgMlMF3TzmKSTn0wdaIOYJJPn2OKcu3GzKQ3H1N8fD+mqNcUTA+qk8ByoLPleDeBWBxLTKUkpXetHjQYrxnT03mGrGvNmjWEhoZ6OowcSa69Z8n19xxPXXullCSb3MCZNliNGjX0/v37Mz6oHET+tqVT7tymILijsshno8xi/PjxAIwdO9bDkWRBzvZokvdmmsnfUddzpA2W1ppNwlOSG5bnomkvfYC6mMQQmJn0ZnOnIHl1TMLIWhOqNCbx1NSyfAsoAPhalncAg7kzLG8Vpjj6H5blDUAnTO8ogIOW812wLF+xPE74pzXFQmEzZ6BVMgXPk7t5e7utGLoQQgghhHCTmzchrxNfc7p7emaRM0miSeQA6U42KaUKKaW6KqUmK6W+UEott9y/ZXm+kCsCFakIC0s6CZWGmfJS44VJSgHchRmCV8Gy7A/8AjSwLLcGjtstVwXeAKpYlq9Y1ltHyq8F+mOG74FJZBXB9JACWGA5pnX9n5iZ+KzfV0UD/1keO/UnPC7OsWLoCW8FCkBEhDNnEkIIIYQQ7nT1qikI6ihJOImMJIkmkUOkOdmklMqjlHoTOIbJATyLGVnV0XL/nOX5Y0qpSUqpPOk411fARqCGUuqYUurxtB4rR0s4U14aC5dru1tqfDC9pKw9naoBL2KG6YGpF7UNU/MJTOLqMHd6Vt0DvI3pYWU993VM7yiAFcAw7ryR37Y7FpjaU/fYLS8ifnH0nZg3llWsA68pnitXoFcv55NU1pulHpUQQgiRGUkbTGQbsaaV5/DHdkk4iYwgiSaRg/ikvkliSqm7MCOiAkm9A0kBTNmfdkqp1lprp8vna617Oh+lSJPdu1PdxPoDjytaFGJiUtzGWb6An91yoOVm9ajlZjUGeJo7PaMewSS0rOcvxp1eVGB6Tn1v2Q9MMuo34B/Lci9MHaodluXxwHlgmmV5ieW+i+X+MKb+1N2pv7SkrVqVvsZMrlyme7gQQgiRAaQNJrIVrdFKOd5OVUo+7AvXcbDNr7F8lpH3nsji0tqzaTGmtI8CrgKzMPWh62E+69cDugOfYkZKKcv2i9IZr8hEvM6fR2kNcZoN6zSPdtfk9tF4qzge6KD54XtNXKylx1Tr1hkSgw9Q0m65AdDPbvlxzFA8q/eBv+2WxwJf2S0/CAywWz6PGZpn9S7wnt1yL8vNqkOC/UcDH9otf42pU2V12HKONLt1K1FvqZBWrRzvWeXjI8MAhRBCCJFjOD3jnPRwEukVEeHU+0iDJJpEtuB0skkp9RAQgvk92ALU1loP1Fov1Fr/pbU+ZLlfpLV+AjN52WZMwilUKfWgC+MXmYBS0KIFLFgAUVHQu/cRtm6FDh2gRg145x04/eXK1IfwWW+DB2foP3b7I1cFGtstPwoMtVueRvxk1Q+YTKvVOMywQKtg4vfE2gLss1t+HvjMbrkZMMpuOQDTm8pqALDQbvkz4C+75b+By8Tn1JWLjU3fMEAZDiiEEEKIrEZrKFLE8e2VkolkRNq0aWPa2k5wOiEqRCaVlp5N1u7Up4B2WuujKW2stf4XuM+yPUBYGs4psoiyZaFfvyiOHoWvvoJSpeC550xt8vvug3nz4OLFVA4yfbop2O1ocioDe04llA8zNM+qLaZgudU44ierVmJ6U1ltAv5ntzwNCLdbboGZ8Q9MNnc9d2byu4XpqfWNZfk6phvhB5blS5jZAWdZli8CXTEF263rpwF77fbfDMTYnS/NrMMBXXGTxpwQQgghMtp5J/uWz5hhGrpCOEop00Z2hvRoEtlIWpJNjTGfSz/TWsc4soOlTtOnmE4XjVPZXGQDuXPDo4/Chg2wcye88ALs2wd9+5oEVPfusGwZ3LjhohOudKLnlPX2xReJelBpB27pcTdQym65O/ELmE/nTjZXAfuBFyzLPsC/wFN26+cBD9jF3ok7Na+uAHu4M0zvJDAC2GpZPoTpifWTZXkHkAf41rK8B7gXk5ACk/Qaw53k1xnLvhcsyzcxvazS/S8yLbMCJnWrUye9kQghhBAiO3P2g/2JE6aRK0Rq0jJKQxJNIptJS7LJWiJnp5P77bLcl0hxK5Ht+PvDG2/A4cPw++8wYACsWQMPP2wSTwMGwK+/2iYJcZ+wsEQ9qJTdLeac5vO5mgc7aXxza7zQlCujmdvuC+KUd/qTKk5SQDngLstyHqA3ZugdQCHgY+70tCqNSRh1tyxXBc5hiqiDmbXvG6C5ZfkuTDKqmmX5FiaBZP1XeQh4HZO0AvgT02XxgGV5BVCQO8P8VgD+3Cm+vgEzLPCMZXk3d4q6AZzG/JG4bVlO9/Xds8d1va0kcSWEEEJkT85+wLfWyxQiOc6+P8qUkUSTyJbSkmyyTn2V18n9rNvL1Fk5lFLQtCm8/775YujHH+HBB02tp9atoXx5ePZZ2Lw5c/y9LVoU+vSBb76BM2dMbb/GjWHQujC89W1Kl9IMGaxZ/avm9q009Kry9XXr6/ECinLnF7EQpieUtUN4eWASUNOyXBeTIGpoWW6DSQQ1sSw3t6yvZVmujZndr7xluSBQA8hvWf4X+BGw5hR/BQYC1yzLX2ASZ9bk01uYqSyt62dbYrDu/z3wqt3r+8vynNU54Gziy5A2DiauHCrOLvWthBBCiMwlLSUZJOEkkuLs+0JrOH48Y2IRwsPSkmz613Lfysn97k2wv8jBfHygfXuYOxdOn4avvzaJnA8/hOBgqF4dxo6F/fs9HalRqBA89hgsWWISTwsWQMuWJv5774W774bevWH+fAdLAISFwbVrzg/9s09WFSuW5KEzMk/nxZ0/GkUwBc4LWJZrACO5U9OqJaaYunXYYE/gGGYoIZheTke501OrM6YYekHLciPgScCakovDJJq8LcsbuFOvCkwvqd52yy9helZZDSf+kMUpxK+vtQiT0LLayp0hh2BqYKU26tOh5oUr61tJjyshhBDCNawlGZyhlMzqK4yiRdOWaBIiG0tLsmkV5jNVT6VUM0d2UErdg/msqS37C2GTNy906wZLl8KpUzBrFlSsCK+9BjVrQoMG8PbbcOyYpyM1ChQwNae+/toknhYvhvvvhx9+gJ49oUQJk4h6803YtSuD/o+EhcHZs0kmotauXu3YjH8elhfTC8r6R6gqpqC5dfle4G3uJHAeB+zn5ngD03vJ6iVMbymrxzC9o6wCMAkwq/8wyS6r2ZiaWVajgaftlh/EFIS36o7pmWX1MqYAu9Xn3KmHBSZxddhu+SaZbKigFGYXQgghnG+49eoF3t6pbyeyL6UgJsa5fSTRJHKAtCSbZnKng8EPSqknlFI+SW2olPJWSj2OGd3ibdlvZlqDFdlfkSLQv7/5cunYMZg61fz/fv55M8yuUSMYPx62bjXlljwtXz7o0gU+/9wkyn7/HUaPhkuXzH1AAFSqZD7Hr1gBV696OmKL6dPT3qvKPmHl4caV/fdHpTFD/6xaAn3slh/HDBO0mgIss1v+FlhrtzwN+NBueTB3irODmTWwst3yX8A+u+XxmALuVl0wsxVa+WF6blmFWGKyehpYYrf8KbDNbnkbd+pfuaJ4vcsKs0viSgghRFbnbCIgLk6G1eVUUghciGQ5nWzSWu/DdCpQmHIsM4ATSqmvlVKvK6VetNwvAE5gahYXwnwWesOyvxCpKlMGhg+HTZvg4EGYOBFy5TLJpoYNoVw5GDgQli+HK1dSPVyG8/Y2Nalefx22bzfJso8/hqAgmDcPOnY0I98eeMDkeo4c8XTE6TR9Oty+nf6kVZkynn4lgPljmM9uuQ5Q3265O9DDbvl14EW75e+In0nfTvxk1efAs3bLz2OGDlqVxgxNBPPH8jtgr2U5FtOLyjpT4A2gAfCJZfkKZrbCdy3LFzC1tZbYLQ8F/rAsX7LEE2V3vP3cqZeVbq5MXMlQQSGEEJ6QloSAJJxyFkk0CZGiJHskpUZrPVYplRszK7sCinNnkquEFKbcypta63FpOZ8QVavCSy+Z25kzZsjad9+ZoWyffgp58kCrViaR07Ej+Pl5OmIoW9YkwwYOhBs3YO1a07tpxQr4/nt46inzOfqBB8ztnntMLascx5VFEevUMUPLMoGCCZZbJlh+NsHyfLvHijuJIDCJsBPcqV/lBSzH1Mmybv8id4q53wIK8//27jw+yvLc//jnykI2Agk7YccFBVkERVHUKLhb9x4XUFGrRdQuv3qq1dYF69G2djn2iNZWqxZcatWqra0KirtVcS0oFBUUcGGLBELIdv/+uGeSSUgyk2T2+b5fr3nNPDP3PHPlISQz39z39UBuYLsCHy7thw+h1uBnfd2Hn2G1AhiH75l1Kj4oOxR4EDgSf+bA7wM/A/bGn5nwbvxsseHAl8DrwEH4wKwK2Irv39XluW/BpYIROKS9B0ePhqVLu1qNiIhkEuc6HiiY+an6ETXxlJTU2VBRQZOksoY6qP4Ktq/zlwh0+qOtc+5HZvY4vifw0fgzsbe0A38G9F845/7V2dcSCdW3rz9L3Nln+7PPvvSSD57+9je49FJ/GTPGh07HHQf775/4ECcvD444wl9+8xtYsaIpePrVr+DnP/fvS4480gdPRx3lv07poGiFCQsW+PWcNR07eaYjwibhHWT4mU9BuTSfFVWEn2kV1Ifm/aKGAaFveXcB/gMEv8UGAQvwYRT4wOgcYGhgewd+NlTwLdJHwA3Acfiw6TXgRHxfqon4ddPfBN7D98p6FB9WPQeMwDfuuwPf4L0vPtx6Fpgd+Fo+DVz2C3ytNfjQKlxw1e6x70Bo1aZp0/waXxERyRzO+enrHenfUFHhf+coXEg/Cpok3TTUw471sP3zpiApeKkKub3jK3Ad62PTpY/gzrlXgZMDs5zG4z8PFeM/l3wOvOuc69inNZEOyM31M5oOPdQ3EQ+GOH/7m9/+2c+gVy/fwPu443yYU1qa2JrNYNQof/l//w+2bIFnnmma8fTgg37c3nvD4YfD9OkwdapvpC5xMmOGv3TQ84sXU15evvMDc+b4pWVJohu+IXtQL3xD9aARNC3JAx8gvRqyfQR+aV/wbVM58AawR2B7Aj5IGhLY7oefdRSc7bUJ3+Mq+HbtefyywvPwYdOD+Gmzlfiw6WZ8A/Zq/F815uH7Yb2Cn+X1V+Bl4BeB/b2Bn711UmD7K6AO6PKCzeCZBLsiKwvq67taiYiIxFN9fedmTytwSh8dDRyD5s/v1HtKkS5zDbBjQ/MQKRgeVX8ecvsLcK28N83vBwVlkD8Qeu3tbzdeBgKTw5YQlfkegUDpjWjsS6Qrdt/dX77/ffj6a3j6aR88Pfmkn6ySnQ0HHuiDp+nTYfx4/9kvkXr0gFNO8ZeGBnjrLfjnP/0Eil//2s96ysvzdQfDp733TnhvbumIefP8JRqmT/ehR4IZTWFRT5qW8IEPskLDrAMDl6BvBi5B38EHTcEw6nT8Xy+KAtsHA3Npmj7bHehPU9PBJfhliMGw6S7gYZrCpiuBfwDBBZsX42dTvRLY/gV+meKvA9sPA9uBmYHtf+NnVe0Z2O7SDLauNpHVhxYRkcQIzp7uzLI60M/vVKbZTJJMnIOaTW2HR42Xz8HV7fz8vD4+LMofCCV7NYVHjdeDIL8/ZHfrcqmZ2CFGMkTPnvDNb/pLfb1vNB5cbvfDH/oxpaVw8MFNs6P22iux4VNWlm9+vs8+8OMf+8bnL7zgg6eFC+FHP/KX0lI47LCm8GnkSPWkzBjRXMa1YAGcc07CZ9pk4c8iETSEpllRAFMDl6CzaX6mwesDl6C5wPdCts8DDg/ZngiETnBcB4T26/89vs9VMGz6Ln4p4UuB7XJ8M/l/BLbn4Jcuzg1s/w6/PPDkwPbr+NljwQCugc6dChbo/H909awSEYmOzvRxAs1ySlUKmiRenIPaiqaZSDuFRyEhUkMri8e6lTYFRj0O2zlEKhwE+QMgu7XuR7GhsEkyQvBMcVOm+LParVkDixfDc8/5y2OP+XF9+sAhhzSFT3vumdgQp6jILwE8+mi//eWXflLLwoV+6d3DD/v7hw9vCp7y8nLb3J9IM51cLtiqOXPg9tuT4s1VX5r6UQEc0OLx81ts/7rF9hP4JXtBP8c3XQ86g6bm6+AbooeO/xU+0AqGTafhm6ffG9gehu93FVxYeTx+aeIlge3/wfermhbYfhG/tHEwXdCZnlXqUSUi0rquBE7B50ty0x93JFqcg9otzcOiluFR8HZ99c7Pz+3ZNOOo78E7B0jBWUo5yddzRWGTZKTBg2HmTH8BWL3ah07BACoY4vTvD+XlTeHTbrslNnzq3x/OPNNfnPM9qoKznh58EH7/e4AD1e9J4i9aSwW70N8qWg3ac2keJk1q8fjsFtt3t9j+AN/UPGgBzc9OeClNZxIEH2QFu0A44Dp8D6tp+N5YhwA/Cdxfi2/g/lN80/Vq/Ays8/Fn6qjGn2XwIGC3wPM34M8M2OFf+B3oUXUw6MOTiGQW5/yph9dFdlamZjTLKXktWND0AaGj9G+aeWorW4RHLYKk4Oyk+qqdn5tT3BQc9d4fCgP9kRpDpECglFO083NTRHqHTbVb4MVvwpgroX+7J8WWDDdsGMya5S/OwSefNM16eu65pqbdZWU+dAoGUIlcvhbaaPzii6GuDt58E37/+0/46KMRzfo9TZniZ2yVl/uz8+XnJ6ZmkbC6EFo1a9CewN5WWUDof7GWM6t+2GL7HyG3Dd8vKnRh4yKalhXW4ZftjQ9sb8WHWxsD21/hg6c/4MOmVfjle3fjzzD4Cb5f1s/wYdbn+BlWM4HdA/v7BH/GwsKwX2nzuiP6YZib2+GzPIqIJK21gW6AmuWUHtRTUYLqtvmgaKdeSC3CpLqtOz83u7ApMOq9T/Om2qG3c4t3fm6aSe+waevHsOVDWFQOAw6H3S+BsqMhS8uMpG1mPkQaORLOP9//7vjPf5pmPS1c6P/oATBkSFP4dMABfuZTono+5eT4IKm6ejXl5SPYtg1efNEvt1u8GObOheuug27d/LjQ8KmwI58qRVJBtJZ/JSC0yqKpp1M2cGjIYwU0NUIH3ysqdLJ+GT4sKglsl+LPDDglsF2PPztg8L/8KvwsqYPwYdObgddbBByGP8vfpfiwahywEvgbMAO/VHEbvp9VxCf5rK0N/2Zeb9hFJNV0dlkdaJZTMujqX47175c66rY3BUitNtUOXGq37Pzc7Hw/86hwEJROgLJjAgFSYIlbY4jUQ810A9I7bCqdAMd9CCtugeW/hRdOgNwSGHQsDDwa+h0ERUMTXaUkObOms9xdeKH/ffLhh02znp58Eu4NNGMpLYX99vMBzv77w+TJ/r5EKCqCo47yF4CKCnjpJXj+eR8+3XADXH+9n2gwebIPng45xIdmRak7W1MkuroaWnXmVNldkAMMD9nuhT/7XtCuwJMh21No3o9qNPBnfLAU3F8ZTcsA/4VfvncMPmx6GD9j6j+Bff8N3yD9j/gg7AN8QHUETWcTDKutN2h6My8iycy5zi/B0iynxNFspvRQvyMw66hlPyR/2XfDf+AvW6Bm887PzerWFBT1HOMnqQQDpMKyptlIuT0VInVQeodN4Btljb4c9vgBrPsHrHkU1j4OqwJTUwqHQp8pUDoeSsb764IyfSNJm8x84/A99/TtZRoaYPlyeO21psvcuf5+gD32aAqf9t/ff/bMScD/vJISOO44fwHYsqUpfHr+ebjpJh9A5eTAvvs2zXw68EDo3j3+9Yqkha42Ce3Wzc8GiqHskNv98MvsgvbDB0hBZ+J7Q/UMbO+Lb7BeFtjeBqyhaRnho8BVgfsB5uF7Sj2H74u1FNgMHEgE/bb0e1lEkl3wxBtdmeUECjHiQbOZUkN9DVR/Eb6x9o6NOz/XchqXrlXlDKVoyLid+yEVlEG3XnqPESPpHzYFZeXA4G/4S0M9VLwH61+C9S/Cxn/Bpw82jc0tgeLdWlx28cFUwQCwBK2TkqSUldUUPp17rr+vshLeeKMpfPr73+Huu/1jRUU+zNl/f99Lab/9fOPveOvRA445xl+CNb/yStPMp5tv9gFUdjZMmtR85lNJSfzrFclIne1v1NmmtWEYfrZU0J6BS9BpgUvQHPyspuCyvSL8jKfgYvbfAn/BNzEHuAFYhm+qDj6I6knTssKWJu3cv11EJPGc81PbKyo693yFTrHT1VBh/vzonck3kzXUQfWXrQdHoUvbdqzf+bmW3XQGtu4joe/UwPK2kFlIBWWQ17vxc/vSxYsp37c8vl+jZFDYFCorG3rt7S+jLvX31XztA6jN78KWZVD5H9jwMqy+H39+oOBzcwNT6ob4JXiFQwLf0AMgP3ApGAA53ZWQZrDiYjjsMH+BpqbjobOfbr7ZN/UGGDGi+eynCRP8hIZ413zkkf4CsG1bU/j0/PM0Nhw3g7Fj/VnuDjrIXw/u0jnZRSTqgk1rOyIGs6hKgH1Cts8JXIKuBM4O2XY0+43LDGAL8FJgexO+P5R+u4pI0tscWK7Tlc8DZv6vmvX14cdK+6LxuUzhX3gN9bDjq51Do5azkqq/ovlvfHwwlN/ff7YuGgp99g/phxTSXDuvj/88L0kvM8Om1nTr6Xs49Tuo+f311b7R+NaPoeoz2PZp0/X6l6FqDbi6nfeXXRgSQPX1/yny+kC33k23g5f8PoE1oJoxla5Cm46feaa/b/t2eOutpvDpxRfh/vv9Y926+eV2e+/ddBk/Pr7L2YqK4PDD/QWgqgr+9S+/9O6ll3yfquBJw4YNax4+7bln4hqli0gndWQWVYu+JI7OBUBDA5egH7d4/Gx8A/KgfYFy4M5OvJaISEI417WTTTQ0+DeSBQX+zZh0jEKm6HANUL0+/HK26i/82GYM8vs1hUW9JjWfgVRY5mcm5ffzq5EkbehfM5zsfOg52l9a4xr8GtHqL2D7F61fb/0ENr4BOzZAQxtv5i3LB07dSlu/5Ja02O7hx+f28EFZdqFmUqWYggLfD+nAA5vuW7PGBzqvvw5vvw2PPw533eUfM/NnuwsNoPbeG/r2jU+9hYX+zHuHBk6NVVcH773ng6cXX/TvoYJn6evVy39dU6f6y6RJkBdxd2ARSXrBviQBzy9eTHl5+c7jujhb6vSQ2w3AD2hqgL6p03sVEYmz4MkmuvJefft2La/riGh9Lkr3Y+2c/yzbVnjUePmi9QkWeX2bZh2VjN25qXbBQD9bSWeDz0gKm7rKsvzMpfy+/j9Ye5yDuq0+dGp22egvNZubX6rWNN1uK6RqrCM7EEAFQ6iezQOp3B6QWww5xYHr7s23g/flFPuATcFVQgwe7C+nnOK3nfOrYd5+u+ny2mvwYEiLsUGD/LK7YPi0Y0d+l87AG6mcHJg40V++8x1f68cfN4VPL70ETzzhx+bl+TPeHXSQD6GmTEncWfpEJI7CzZYqLPQfoCKQhe8BBfA4cBawWxdKExGJu2Bw0dU3aQqd2qaQyXPOf4bcKTT6vPkSt+rPoaGVPwrl9fazjQrKoMeeIU21g421Az2TsuPc90NSisKmeDJrCna6j4j8ec5B/faQIKoCardA7dftX2//HLYsb9pu2BH2pXyd2YEQqntIOFUUCKPau/a3S3b8Bza28lhWN4VYHWTWFEB94xtN92/aBO++2zyE+sc/gmfA2585c5oHUOPGwahRkJ/fxgtFqdZddvGXcwJNWb76Cl5+uWnp3c9/3tSnasyYppldBx7olxjq20MkzXWyYa4DZgJ7AT8CjgH+B/hjNGsTEYmXrjYQD1Lo5M2ZA7fdFp19lZQ09dtKRs75z3bthUfB26199sstaZp5VHzIzk21g0FSdgw/NEjGUNiUCswgp9BfCgd1fj8NtVBb6WdX1VZCXWUb25VQu7X543Xb/Eyrum1N23Vbwe3csHACwFOtfR3ZfrlfTlHg6ylq2m55f8v7soPXhc2vW96XIet8e/VqvqQN/OSA99+HBx5YTlXVKN5+2//era72j2dlwa67wujRPugJXkaNit0St3794KST/AV80/HXX/cB1Msv+xlad9zhH+vfvyl4OuAAP2Mq3k3SRaQLupgWbwHWA7sEtq8DvgTm4ftB1QHB3zg5wMUobBKRFBaNBuJBofvIpOAp2n+lTPSxq62E7eso2fE2fLK2lVlJgXCpvpUZwbk9msKivge0CJDKmpa65RTE/+uSjJUZn8zFy8qFvF7+Eg3O+eV9oeFT3TbeefMlJuy1mw+s6rcFrqsCY6r8fXWB7eD9NZubj6nbFvlMrJZfY3YhZBe0Hk6FXjeOCbnOLvQ/hBvHFbQ+Nisv6abhFBT4pWpVVZ9TXj4K8LOIli+Hf/8bli5tujzxRNOJTbKzfQgVGkCNGQO77x79sKeoqHlI1tDg6wmGTy+/DI884h/Lz4d9920eQPWK0reuiHRABD/rDolgN3XAF0Dw5JX3A68B/xvYvhBYAvwnsL0BCJ3YH7J6WEQkfURraV1QugdPsXj/HevjVLs1fGPt7ev85x8Cf7h/NfDcnKKms7H13q/1AKlgoF+RIpJkFDZJ55lBdp6/5PVuvLsibxsMKu/6/hvqAwFUMKDaBnXbQ+7r4HX1l/4vAY1BV2BfO50xIaIvvu2wKrsgfJDV6v0tHgs+3oVgKyenKTwKtWMHrFjRPID697/hr38NLsXzIdRuuzUPoEaP9sFUtJbjZWXB2LH+Mnu2v+/zz+GVV5rCp5tvhptu8o+NGdPUdHzqVH8WvCTL/ESSW3Z203/yKDJgI7Ac2B/fX2kh8Ahwa+DxHwG/BaoCjy8DFtF0Jrs5NG/6/duoVykiksSiHTq13FcqB0+xerPX1WNSV9V6M+2WS9rqKnd+bnZBU1BUOhHKjmsMj95Z8SUTphzrH88t7lqNIgmksEmSV1Y2ZBXH9oesc355YX1VUxDVeN3ivvqqprCrrTHB65qNge0W4+nMLzVrEUy1mLnV4vbIrzfAe4tbzNBqfp2XU8TYYYWM3aUQTipsnK1VvcNYvtyHT8uW+ev33oNHH236fGoGQ4f6mU+77+4DqeDtYcN8wNUVAwf6BunBJulVVfDGG77n08svw/33w+9+5x8bNMiHTgcd5K/32st/lhbJCDFOWmuAz4EBQB4+HPoLcAnQCx8k/RB4KTDmfuBS/NK3fsCHgfHXA72BU4FR+KVwWYH7rw95vYNj+tWIiKSIWIROLfeXCsFTLH/Hhfv666ubh0hVLXohBWcl1Vbs/NysvKYQqWQcDDgypC/SwMAspTK/7K2Nr7Fi9WLoMarLX6ZIoilsksxm5s+ikN0NKIntawWXHbYaWm1vO9hqdl+LoKtuK1R/1Wxfg2q2wr/DnAGqNZZFfnYh43MKGV9UCFOKYKoPouqtkMqqQjZVFrGxooivNhWx9svufPp5ER9+WMSSHUVsre7OjvoievYuou/A7gwYXMTg4UUM26U7I3cvYtDg7E69bygshEMO8Rfwy//+/e+mpuMvvth0dr4ePfxyu6lTobzcLyvM1ZlWJZnFcWpeDbAKHwz1wAdJDwInAsOBt4Dv42cUjQP+CZwAvAHsg5+1dA1wPD5s6gtMBoLzpI4DdgWCfx64JHAJ2i9wiYrAB4UlZkuitUsRkaQSq9CptX0mQ/gUj9+HddVQ/QVseK35DKSWS9pqNu383Kxcf/a1wkHQczQMmNbKcrYy6FaqafciAQqbROIldNlht9KYvcyLixdTfsjB/q8yzWZfbWu+rLCxZ1bwvhaP1zeNya5dT0lWFSVF2xiZtw16b4WR1ZEV9KW/VNfmUV1XRG1Dd+qyekBOMTkFxeQVFVPQo5jcgh5NZ2sMngUxt0fz27klZHcrZfz4bowfDxdf7N8fffqpD52CAdSPf+xfuqjIz3o67DB/mTBBM58kyuL8htLhZwblADuA54HdgBH4ZWxzgdOAA4CPgSOAX+JDow/wfSAeBk4G1uHDpZH4sCnYoi0YVU8C/gAMCWwfG3jN4LiDApeg4YFLVCXDByARkUSKZegU1Nq+Y/nzN9pfSzbQE/9349KQS3D7kHE+RHqwlT4QlgMFAwJnZ9sV+h3cdEa24CykgjLfMkQhkkiHKGwSSUeW1dT3KVYae2oFG8QHL367oXYbFRu2svGLbVRs2EZlxVaqtmyjrnorVldJUbctFOdXUFzwGcX5lfQs3EL3/EqyLII3N9mF0K0EupVi3UoZ1q2UYSNLmLlHKcwpZVtdKUs/6serbw/g6RcHcsO1A/jhD3tSUmKUl8O0aXDiiTB4cJjXkfSWoDeNwR5FAO/g3x+PCNz/G2AivuF2HXAK8F/ADGAr/j3zjcBl+N5HRwK/wodGDcDdwN74sKknfuZRsKPeCGA+fpYS+NlLG2ma07kXPrwKGgScH7Ids5NDKlASEQkv+LNyzBjf6yDWIv0dee21HX9OpLLYOUQqaXFdip9Sm9XiuZYN+f2bmmv3OaD5LKTg0ra8Pv59s4hEXcqETWZ2FP6kNdnAH5xzNyW4JJHMFqanVhbQa6RfbtOSc/Dll7BqFbz7ib/+5H1YtcrxxZoqNq+vJD+7kh4FWyguqKQ4v5KhA7cwbGAFg/pupn+vzfTpUUFp0WaK8zZTkP0ZefYeVrcZq91CEf5D9uS94Lt7+desJ4/N2wfw6fqBfLKyjLv/32hqCsezx5TxHH7SLvTtpzcaGaOLb4ZDw6KlgdujA9t34r/nTwpsnwuMwYdDALsAR+GbZgOUA2cDtwT28xPg2/iwKQc/+yjYVrQI3yMpuBStJ75f0m6B7b7A1yF19gbuC9nugQ+tgnJp/f9nZ4Qek+YPKEhKB3oPJpJEli5tup0EM22uDoZNoaFTOIb/pdQyNGp5uyc7h0gNwBZgM/6sEh8HblcErhcuCYRIff17VRFJmJQIm8wsG//e/HBgDfCGmT3unItDrC8i0WYGAwb4y/77N3sEKKKhoYh16wb4ECoQRq1aBc+ugXWvw9q1sKmV5fSFhTB4UD2jRlQwouwrhvb9goGlX9C/xxf0KfqckqIvGN7zC3YZuowTGx4jO6veP3EhvJT1KFNPPzHGX7kkWq0ZVfj3rwDv4d+zTg1s34cPd74d2L4cv6zs14HtQ4F84B+B7bPwM4CeCGz/Lz5QCoZNFfgZSUGzaAqmwPdMGhKyvRYIPXnxGyG3DbghZDsLOLC1LzLWLroI5s1rdtfzixdTXl6eiGokxvQeTCSJhQb6CQqerOVGd1oPj0K3e+Kj65a+xgdGm/FNBkNDpOBlC03NAoP0hw2RpGQuBf5zmtkU4Frn3JGB7R8BOOdubOs5ZWVl7tvf/nZbD4tIiqutzaGyspjKymK2bCmmsrJHyO1itm8vYPv2AnZUd6O0sIKBpZ8zoOcXDCj5gsG91jB55OscP+mJxv098M5/sbxodDuvKMmgqqqKrVu30q9fPwDWrl3L+vXrmTBhAgDvvfce69at46ijjgLg2Wef5dNPP2XWrFkAfHjttSwBVgT2dyq+l1Hw78Qn4AOfNwPb38H3KQqcAJHb8MvJgsvLXsLPONo7sL0NKGDnP8TGQ2d+mzvg+o78NTrJXHvttUucc/uEHymd1dH3YHr/JZJ4P7n22mYhUFRiqGCIVELrAVJJ4NLaVIbgTKQKdg6Qgre/xjclbINrcTuVf3eJpINI3oOlxMwm/B+OPwvZXkMrJ7UxswuBCwEGDhwYn8pEJC6MBvKydpCftZ2C7GryC6rJL91OQVY1+VnV5Gf723nZ1RRkbacoexvdc7ZSlL2t1T5QX27rx5tfTGLNtsGs3T6IDYV9EvBVpb+6ujqqq6spKCggOzubr7/+mi+++IJddtmFnJwc1qxZw/Llyzn44IPJzc1l6dKlLFmyhDPPPJOcnBxefvllnn/+ea644gqysrJ45ZVXeOWVV/jJT36CmbF06VJef/31xrBp/fr1fPTRR42vX1xcTK9eTYvFZuKnZwT9lKaG2OCbZ4f+YrylxddzUYvtqS22izpwbFrTlT//1AM36M23RF/Y92B6/yWSXEKDmJ+08nuhWfhUSPiZSCX4tdctbaUpMFoXuN5E81CpAt+EsINa/j5UwCSSelJlZtM3gSOdc98KbJ8FTHbOXdrWc8rKyty6deviVaKEWKzlFAmVNMe/oR7qd24cTu1WqKuE2i1QWxm4Xdn6fbVbQh7f2v7rWY4/y1+gcTj5/SF/gD/DSOP1wKbtnIKof8lJc+y7qKamhqysLHJyctiyZQvvvfcee+21FyUlJaxatYqHH36YM888k4EDB/Lmm2/yi1/8gp/97GcMHz6cv//971x88cUsXLiQXXfdlbvvvptzzz2Xjz76iJEjR/KHP/yBCy64gE8//ZQhQ4Zw2223cckll7Bu3Tr69+/PggUL+L//+z+efvppiouLefrpp3nqqae48cYb6datG++99x4rVqzg5JNPJisri40bN7Jjxw7KysoiO/5J0N8irBT4vdxSor73zUwzm2Kso+/BRo0a5ZYvXx7PEtNeuvxuSRYZcTyd8++htq9rcfkc7vnf5mFSa2d/2Ebrs49azk6qjcPXkYEy4ns0znRMoy+S92CpMrNpDc3bWgzG5+ci0lmuAeq3Q11V4Kxy20Jut3Ffy+Ao9HZ9y+3qyGvJ6ga5PSAn0HA8t9ifHaT7SH87eH+30p0vuSX+OqcoNYKEGHHOYWbU1taybNkyBg4cSL9+/diyZQsPPvggBx98MKNGjeLzzz/nmmuu4Vvf+haTJ09m+fLlnHbaafzyl79k2rRpvPbaa0yZMoV//OMfHHXUUbzzzjsccsghLFy4kGnTpvHRRx9x2WWXse+++zJw4EC2bt3Ku+++y5YtWwDo168f5eXldOvm371OmTKFW2+9ldLSUgCOP/54JkyY0LgM7sILL2T27NlY4N9uxowZzJjR1Mb6iCOO4IgjjmjcHjduHOPGjWvc7t27N0knQ98cS9rSezCRZFJb2RQcBUOkqnVQ/XnT7e3r/Hu3lnKK4YhRvoF2/kB/ZrbCQXDu/2s+E2lHXL8iKCvzDTlFJK2kStj0BrCbmY3At9M4HTgzsSWJxEhDvQ+B6reHBD8hoVCzgKjFmPoqRlV8BC/f0cpzW4ZJ2ztem2VDTncf7DReF0FeL8gZ2rQd+ljo7ewiyO3ePFjKKYbsmJ1UPSV89NFHFBYWNi4/uf/++9l9992ZNGkS9fX1XHbZZRx++OEcc8wxbN++ncMPP5wLL7yQs88+m02bNjFgwAB+8Ytf8N3vfpdNmzYxYcIEbr31VubMmcOWLVu48MIL+f3vf8+oUaPYsWMHTzzxBEceeSSTJ0+msLCQoUOHkp+fD8Dw4cP56U9/yi677AL4cOfpp59m7719V6KDDjqIr7/+mu7dfRvr8vJyPvzww8avZd999+Xuu+9u3B41ahSjRo1q3O7Xr19j0ASQnR3nM8U4134oqaBIpCW9BxOJh7ptTUFRaJC0vcV9rc30zi70AVJhGfSaBIXH++3Gy0B/ndt95+cCvPr9yGps5fdn8Ldmm79Z9XtVJGOlRNjknKszs0uAp/DnLrjLObc0zNNEomenAGjnkKfxvsZwZ3uL2y0ea+v+hprw9bQmOx+yC+hVlw2bSiG7wL/5yCnwbzByCv0luzAQ/IRut3Zf0c6PZ7W2YD/zbNiwgbq6OgYMGAD4JtTBsAbgl7/8JQMHDuTMM/3nsTPPPJPx48dz+eWXA7DrrrtyzDHHcMstviPQxIkTOffcc/nNb34DwPnnn8/FF1/MpEmTyMrK4t5776Vfv34cc8wx5OXlkZ+fT26u/7coLi7mBz/4Afvs42ex9urVi4cffrgxHBo4cCCfffYZffr4nlTDhw/n888/b6x1yJAhPP74443bAwYM4KqrrmrcLikp4fDDm7ocdevWrXHWUsrSG1+RiOk9mEgX1W33s46qWgmOQi+1W3Z+bnZ+U2BUOh7KjmkeHgVnJuUUx2d2dyu/P+dedx0A11xzTexfX0RSSkqETQDOuSeBJxNdhySZhroWy75a3N7penvr97Ua/IQESJ0NgLJyfViTXRAIbkICoLzeLe5vebsoZHzoPlrczgmMN3/+q1e1Jnkn1dXVVFVVNTaKfu+996ioqODggw8G4M9//jMVFRVceOGFgH/DtG3bNm6++WYATj75ZAAeeeQRAI4++mj69OnDP/7xDwB+8IMfMHToUL7/ff+XwXvuuYfx48c3hk11dXXU1zedYmXmzJmMGTOmcfvOO+9snEkUrC+4PMzM2LhxY+NjWVlZLFy4sHE7NzeXG2+8sdl2sF7wM4cGDx7ciaMmIuLpPZhIK+p3hIRGrc1ECixpq63Y+blZ3ZpCpJ5jYMDhTduFgSVuhWW+VUAGtwgQkdSWMmGTpCDnfN+euq3N+//UbWvRD2hb24+FbrcWIDV0ojOhZbeYwVPQFOB0K4XsslYCnoKdQ6NmwU+LUCh4ydJ/sc6qr69vXGK1bt06PvvsM/bbz58A6ZVXXuGdd95hzpw5APzpT3/ipZde4ne/8yeo//GPf8yiRYt49dVXAfjWt77Fq6++2niWshtuuIF33323cfnXAw88wMqVKxvDpg0bNrB1a9M09QMPPLCxp1Bw/6Ezme6//36Kiooa9//uu+82G//nP/+52dd2bYuzqZx66qnNtnfdddeIj5OIiIhEUX0NVH/R+iyk0N5IOzbu/Nys3EAvpDIoHgX9D9t5JlLBIP9+UyGSiKQ5fRIWr6Eu5AxggTN/hZ4FrFlT6JCzitW3uK7bxpSqTfDnWn+fa+hYHVl5Ib1+Cn2Pn5xCf4ax7LLmy7ravS5o+3EtBYu5qqoqvvjiC4YMGUJubi4ff/wxr732GieddBIFBQW89NJL/PnPf+amm26isLCQ+++/n1//+te88MIL5Ofnc+ONN3LllVdSW1tLTk4Ot99+Oz/96U+pr6/HzHjiiSf41a9+1Rg2rVq1ijfffLPx9UeOHElFRUXj9tlnn8306dMbt6+77jpqappmqz3wwAONy9IAbr311mZfzw9+8INm2yeccEKz7T322AOgMWwyvYEUERFJLg21UP0lxTUfwpqvm4dHoUvcdqzf+bmW7YOi/IH+5CV9p+7cD6mgzM9aD8w0FxHJdAqbUplrCIQ+X/t13jWB69q2rgOnlK/bGhIqBa4bOnDaicZ+Pi0aRRf1hpzubGz4mrIhu/v7crsHAqOQAKmxN1CLQCm7ELLi3CxYGjnncM6RlZVFZWUlS5cuZY899qCkpITVq1fz0EMPccYZZzBo0CDefPNNbrjhBm6++WZ22WUX/va3v3HuuefywgsvsOeee/LII49w1llnsWLFCnbbbTeef/55zjvvPD755BOGDx/O8uXLmT9/PldeeSWFhYXk5eXRu3dvampqyM/PZ+rUqVx33XXU19eTk5PDjBkzOPDAAxvPuHbllVdyxRVXNG7/5Cc/4Sc/+Unj13Leeedx3nnnNW6Hns0MmsKhoJTvQSQiIpKpGuphx1fNz8TW2tK26q8AxySAFwLPtSzI7+9DpKKh0Gf/5iFS4SD/WH5fhUgiIh2ksCnRGuqgZpOfiluzucWlwl/XtnJ/7ZZAI8FwjW4tcCr5Fmf/6t6n+XZusQ+NWt3uHnIpDPvLdsXixZRNKo/O8ZGIOOfYsmVL4+yc7du389xzzzFmzBiGDRvGhg0b+NWvfsWpp57KxIkT+fjjjzn33HO57rrrKC8vZ8mSJey333489thjHHvssbz33ntMnTqVp556iiOOOIJPPvmE//7v/2bSpEkMGjSIHTt28NFHHzUuNRs8eDCnnHIKRUVFABxwwAHcc8899O3bF4ATTzyRAw44gEGDBgG+Afb555/fWP/JJ5/crM/QQQcdxEEHHdS43fKMZsXFxTE6kiIiIpIUXANUr2/9jGyh29VftDKT3nyIFJx11GufxgDp/Y82MHbyUYGZSP30h04RkRhR2BRtDbX+LyfVX8D2L/z1jg1Nl+oNzbdbaxoYKqe7X9fdrcRfdx/pmwXm9oRuPX2IlNvKdfCxnO76S0yKqKysBHyQ4pzjiSeeYMSIEYwdO5ba2lp++MMfcsQRR3D00Uezbds2DjzwQL7zne9w3nnnsWHDBvr168ctt9zC2LFjqaio4Nhjj+W2225j9uzZVFVV8fOf/5w99tiDiRMnkpubi5nR0ODfnA0aNIjLL7+cESNGADBmzBiefPJJJk6cCPieRaGnuz/wwAN57733GmufMGECt99+e+P2yJEjGTlyZON2aWkppaWlsT2AIiIikvxcg/8ja2vBUbPtL8DV7fz8vL5NvY9Kxrdoqj3Ib+f3b7Nv5sa1i6HXpNh+jSIiorCpQ2q+hqpPYdtn/rrqM3+7+vPmwVJrsvP9L8e8Pn49d/fhgduBS7degVAp9FKi/kIppKqqitraWnr27AnAokWL6N69e2NT67lz5zJy5EhmzpwJwGGHHUZ5eTlXX301AGVlZVxwwQX86le/wsw47bTT+M53vsPPfvYzcnJyuOeee+jfvz9HH300BQUFDB06tDHAKSkp4eabb2bq1Kl8/fXX9O3bl1dffbWx0fSQIUOora1t7CU0ZMgQFi9e3Fj7gAEDuOGGGxq3S0pKOProoxu3c3Nzm/U0EhEREWnGOT8Dv7UzsoWGSdWft36Cl269Qs7QNjoQGoUESAUDIX8AZGvpu4hIKlDY1NKOTfD1Mqj8T/PL1o99f6NQlu3/qlJQBsW7BpoFDvC/CIPX+f0hv59ffiZJL9gDCODDDz9k27ZtTJrk//r1xz/+kdra2sYzlp1//vnk5+c3NpOeMmUKI0eO5NFHHwXg0ksvZcyYMTz00EMAPPLII0yZMqUxbBo+fHjjMjOAX/ziF4wePbpx+7XXXmPAgAGAbzi9adOmxseysrJ4/PHHG7dzc3Mbm1gvXryYnJwc9t9//8bH1bBaREREOsU53/+zrfAodGZSaz1Ac0sCgdFA6FG+c1PtgjL/vjk7f+fniohIysrssKl6Pax/GTa9AZvfhYp3oWpN0+OWA91HQPFu0O9g3ziwcCgUDoGiIf6vLVrnnbS2bNnCpk2bGD58OAAvvfQSH3/8MWeffTYAt9xyCx988AG33XYbAGeddRbLli1jyZIlAFx22WV8/vnnjdsPPvgg27dvbwybSktLycvLa3y9yy+/vFkvob/85S/Ntt95551m9d11113NtmfPnt1se/z48Z390kVERETa55z/Q2prZ2Rreamv3vn5OcVNs476HhgSIg1qvrQtpyD+X5uIiCRcZoVN9TXw1fOw5q/w5bOw5UN/v+VAjz2g3yF+7XfJXj5gKhre5npvib9NmzbxySefMHHiRMyMF154gUWLFnHdddcBPjy69957efPNNwH48Y9/zJ/+9Cc2b94MwH333cdDDz3UGDZ9+eWXfPLJJ437P+KIIxg3blzj9ty5cxt7GgH8/e9/Jzu7KVy8+eabm9V35plnNtsOnaUkIiIiEje1W8M31t6+zp/VuKWcoqbAqPf+TaFRMEAKhko5RfH/ukREJGVkRpKy9WNYcSt8/Ee/ljy7APofCiPOgX4H+SaBmrobd5s2bWLp0qXss88+FBQU8MYbb3Dfffdx3XXX0aNHD+bPn89VV13Fu+++S0lJCXfeeSc//OEPqayspHv37rz88svccMMNXHHFFRQUFNCrVy9GjBhBQ0MDWVlZnHnmmY39kgCuv/565s6d27gd2qMI/MymUMHm2EGhQZOIiIhI3NVVtRIcrWuanRS83bL1A/j3vwWDfGBUOhHKjm3eDym4pC1XZ3wVEZGuS++wqWYzvD8XVvyf3x5yMgyfAQOmq4dSDOzYsYPVq1dTVVUFwMqVK7nrrruYPXs2Q4cO5ZlnnmHWrFk8/fTTjBkzhmeeeYbTTz+dpUuXMnr0aFasWMEf/vAHLrnkEnr06EFZWRnl5eXU19cDcMIJJ7D77rs3Nqq+7LLLuPzyy8nK8mfbmzlzZmM/JID999+/Wd+i3r17x+tQiIiIiESuvrp5iBSypG38hmXwt+1+u/brnZ+bldc066hkHAw4MmQGUshMpNyeoB6OIiISJ+kdNm37DP5zK+xyHux1jf/FKx1SXV2Nc46CggIqKip44IEHOPTQQxk1ahQrVqzgnHPO4cYbb6S8vJwlS5Zw4IEHctNNN3HMMcfwxRdf8Itf/IIjjjiCoUOHMnDgQI466qjGPkeHHHIITz/9NEOHDgX8MrQZM2Y0vvZhhx3GYYcd1ri9++67s/vuuzdu6+xoIiIiktTqd/izFVeFWdJWs2nn52Z1g4IyslyRPzvbgGmB5W0Dm4dI3UoVIomISNJJ77CpdBwcv0ohUxsaGhr46KOPKCoqoqysjK1bt/LDH/6QE044gSOPPJK1a9cyePBgfve733HhhReyZcsWLrroIn7/+98zatQoioqKKC4ubjzT2Z577sn8+fMbw6QDDjiAHTt2NM482muvvbjzzjsbX3/AgAGNZ1sDnTFNREREUkRDLWz/ovUlbaGXHRt3fq7lNAVGwZPQBHskhTbWzusNZry9eDHlB5XH/UsUERHpivQOmyDjg6Znn32WkpISJk6ciHOOE044gaOPPpqLLrqIhoYG9thjD6666irmzp1Lfn4+Dz30EKNHj+bII4+kf//+zJ07l3333ReAQYMGsW7dOvr27du4/fTTTze+VmlpKTNmzGDx4sUAjSGTiIiISEpoqIPqr1oPjkL7IlWvB1zz51o25A/wgVHRCOg71YdGhS2Ws+X1AdN7JBERSW/pHzaluTfeeIO6ujqmTJkCwMknn8wuu+zCL37xCwDOOeccpk+fzh//+EfMjJqaGmpqagDIycnh/vvvZ6+99mrcXr9+feO+c3Jy+MlPftK4nZ2dzcCBA+P1pYmIiIhER0M97Fjf+hnZQpe47fgKXEPz51oW5PcPnJFtEPSe3KKpduD+vL6QpZOJiIiIgMKmpPef//yH9evXc8ABBwDwgx/8gC1btvD73/8egO985zsUFhayaNEiwM82Cs48Anj88cfp169f4/Y///nPZvv/r//6r1h/CSIiIiKx4Rpgx4Y2m2s3Xqq/BFe/8/Pz+/nAKH8g9JrYfAZSMETK7wdZesssIiLSEfrNmQSqq6vJz88H4E9/+hOvv/46v/3tbwG48soreffdd1mxYgUAeXl5jT2RAG6//XaKi5tOURt8XtDee+8d6/JFREREoss53++ovabawWtXt/Pz8/o0hUYl43Zuql1QBgUDIEsnGxEREYkFhU1xtnLlSl588UVmzZqFmXHttddy8803s2XLFrKyslixYgUvvfQSzjnMjKuvvpra2trG5//P//xPs/2NHz8+3l+CiIiISOc4BzWb2wmPQrYbanZ+frdeTWFRjz12nolUOMj3TcrO2/m5IiIiEjcKm2LszTff5NZbb+U3v/kNPXv25J///CeXXnopRx11FAMHDuTggw8mNzeXmpoa8vPzuf7667n++usbnz927NgEVi8iIiISuSxXA18sar2pdnB5W8OOnZ+Y27Np2Vrfg0OaagfuC4ZJ2fnx/6JERESkwxQ2RUFDQwP19fXk5uby5ptvcsEFF3DXXXex9957s3HjRp588km+//3vM27cOE4//XSOOeYY+vfvD8Bhhx3GYYcdluCvQERERKTriupWwbPTm+7I7dE0E6nvAU0BUn5gFlJwO6cwYTWLiIhI9Cls6gTnHDU1NeTl5bFy5Ur2228/5s2bx2mnnUbfvn3p169f49K3ww8/nC+++AIzA6BPnz706dMnkeWLiIiIxER19kCYdn9TiJTbPdEliYiISAJkJbqAVNHQ4E+DW11dzdChQ/nZz34GwPDhwzn11FMZNmwYAMOGDeOpp55i8uTJAGRlZTUGTSIiIiLprDarGPofAj12U9AkIiKSwTSzKQKnnnoq3bt35+677yY/P5+ZM2cyadIkAHJycvjd736X4ApFRERERERERJKDwqZWPProozz77LP89re/BXyT7sLCpl4CN954Y6JKExERERERERFJagqbAj755BOGDRtGVlYWH374IQsXLmTbtm0UFRVxzTXXJLo8EREREREREZGUoJ5NwHPPPccuu+zCM888A8Bll13GsmXLKCoqSnBlIiIiIiIiIiKpJWPDps8//5wlS5YAcOCBBzJ37lzGjRsHQG5urpp6i4iIiIiIiIh0QkYuo3POccIJJ1BVVcX7779Pt27d+PGPf5zoskREREREREREUl5GhU2VlZUUFRWRlZXFrbfeSmlpqWYwiYiIiIiIiIhEUcYso9u0aRP77LMP119/PQD77rsvu+66a4KrEhERERERERFJL+acS3QNMWFmlcDyRNeRofoAGxJdRAbT8U8cHfvE0vFPnEQd+2HOub4JeF1pg95/xYR+tkWXjmf06ZhGl45n9OmYRt8o51xxewPSeRndcufcPokuIhOZ2Zs69omj4584OvaJpeOfODr2EkLvv6JM/7+iS8cz+nRMo0vHM/p0TKPPzN4MNyZjltGJiIiIiIiIiEjsKWwSEREREREREZGoSeew6Y5EF5DBdOwTS8c/cXTsE0vHP3F07CVI3wvRp2MaXTqe0adjGl06ntGnYxp9YY9p2jYIFxERERERERGR+EvnmU0iIiIiIiIiIhJnCptERERERERERCRqUjpsMrOjzGy5ma00sytaedzM7JbA4++Z2cRE1JmuIjj+MwLH/T0ze8XMxieiznQU7tiHjNvXzOrN7NR41pfuIjn+ZlZuZu+Y2VIzez7eNaarCH7u9DSzJ8zs3cCxPzcRdaYjM7vLzL4ys3+38bh+5woAZnZ94HvgHTN72szKEl1TqjOzX5jZh4Hj+qiZlSS6plRmZt8M/I5oMDOdDr2TIn0/KpEJ93tWOs7MhpjZc2b2QeD//HcTXVMqM7N8M3s95H32de2NT9mwycyygVuBo4HRwBlmNrrFsKOB3QKXC4Hb4lpkGovw+H8CHOKcGwdcjxqzRUWExz447mfAU/GtML1FcvwDHwLmAcc758YA34x3nekowu/9i4FlzrnxQDnwSzPrFtdC09fdwFHtPK7fuRL0C+fcOOfcBOBvwNUJricdPAPsFXhPtQL4UYLrSXX/Bk4GXkh0Iakq0vej0iF30/7vWem4OuAHzrk9gf2Bi/V92iU7gMMC77MnAEeZ2f5tDU7ZsAmYDKx0zn3snKsBHgBOaDHmBOBe570GlJjZwHgXmqbCHn/n3CvOuc2BzdeAwXGuMV1F8r0PcCnwMPBVPIvLAJEc/zOBR5xznwI45/RvEB2RHHsHFJuZAd2BTfg3GtJFzrkX8MezLfqdKwA457aEbBbh/19KFzjnnnbOBX+W6T1VFznnPnDOLU90HSku0vejEqEIfs9KBznnPnfOvRW4XQl8AAxKbFWpK/Aeb2tgMzdwafN3fCqHTYOAz0K217DzN04kY6RzOnpszwf+EdOKMkfYY29mg4CTgNvjWFemiOR7f3eg1MwWm9kSMzs7btWlt0iO/f8BewLrgPeB7zrnGuJTXsbT71xpZGY3mNlnwAw0synazkPvqSTx9DNfUoqZDQf2Bv6V4FJSmpllm9k7+AkNzzjn2jyeOXGrKvqslftapmqRjJHOifjYmtmh+LBpakwryhyRHPvfAJc75+r9BA+JokiOfw4wCZgGFACvmtlrzrkVsS4uzUVy7I8E3gEOA3YBnjGzF1vMtJDY0O/cDGJmC4EBrTx0lXPuMefcVcBVZvYj4BLgmrgWmILCHdPAmKvwszUXxLO2VBTJ8ZQu0c98SRlm1h2/4uN7ek/YNc65emBCoG3Io2a2l3Ou1T5jqRw2rQGGhGwPxv8lu6NjpHMiOrZmNg74A3C0c25jnGpLd5Ec+32ABwJBUx/gGDOrc879NS4VprdIf/ZscM5tA7aZ2QvAeHyfDem8SI79ucBNzjkHrDSzT4A9gNfjU2JG0+/cDOKcmx7h0PuAv6OwKaxwx9TMzgGOA6YFfsZJOzrwPSqdo5/5khLMLBcfNC1wzj2S6HrShXOuwswW4/uMtRo2pfIyujeA3cxsRKD56+nA4y3GPA6cHThDzv7A1865z+NdaJoKe/zNbCjwCHCWZnREVdhj75wb4Zwb7pwbDvwFmKOgKWoi+dnzGHCQmeWYWSGwH36NuHRNJMf+U/yMMsysPzAK+DiuVWYu/c4VAMxst5DN44EPE1VLujCzo4DL8SeeqEp0PSJE9jtZJKECPTzvBD5wzv0q0fWkOjPrGzwbqpkVANNp53d8ys5scs7Vmdkl+DNtZQN3OeeWmtnswOO3A08CxwArgSr8X7wlCiI8/lcDvYF5gRk2dc45nV62iyI89hIjkRx/59wHZvZP4D2gAfhDW9NLJXIRfu9fD9xtZu/jp/hf7pzbkLCi04iZ3Y8/w18fM1uDn6mSC/qdKzu5ycxG4X/+rQZmJ7iedPB/QB5+aTDAa845HddOMrOTgN8CfYG/m9k7zrkjE1xWSmnrd3KCy0pprf2edc7dmdiqUt6BwFnA+4E+QwBXOueeTFxJKW0gcE/gbJRZwJ+dc39ra7BpFq6IiIiIiIiIiERLKi+jExERERERERGRJKOwSUREREREREREokZhk4iIiIiIiIiIRI3CJhERERERERERiRqFTSIiIiIiIiIiEjUKm0QkJZnZRDOrNzNnZpOivO9sM1se2PeN0dy3iIiIiIhIulPYJCKp6lb8z7AnnHNLorlj51w98NPA5v8zs12juX8REREREZF0prBJRFKOmZ0M7B/YvDZGL3MfsALoBlwfo9cQERERERFJOwqbRCQVXRu4/qdz7q1YvEBgdtPPA5unmdnoWLyOiIiIiIhIulHYJCIpxcyOBMYGNu+N8cs9BFQDBnwvxq8lIiIiIiKSFhQ2iUiquShwvRV4LJYv5JzbAjwR2JxpZsWxfD0REREREZF0oLBJRGLKzMoDZ3VzZnZt4L6xZnaHmX1kZtvNbL2ZLTSzM8LsqzdwTGDzUedcVRvjrg15zUgv5W287ILAdQFwake/fhERERERkUyjsElE4srMzgLeAC4ARgL5QB9gGnCfmf3NzPLbePoxQG7g9nOxrjVgMeACt0+I02uKiIiIiIikrJxEFyAiGWVf4MrA7buAF4D6wP3nA0XAscB8Wp9FdHjI7dfbeZ0HgHfC1FIKzMOHXQBftzbIOfe1mX0I7AlMM7PsQPNwERERERERaYU558KPEhHppMDytNBZSJXAEc6511qM2w0/i6gscNepzrmHW4xZDuwe2EeJc66hkzXlAE8BhwXuusE59+N2xv8RmBXYHO+ce68zrysiIiIiIpIJtIxOROLtv1sGTQDOuf/gZzcFXRb6uJnlAbsFNv/T2aAp4FaagqaHgZ+EGf9ByO1xXXhdERERERGRtKewSUTiaTPwx7YedM79E1gW2NzfzAaEPDwEsMDtTZ0twMy+B1wY2HwLONuFn+K5OeT2sM6+toiIiIiISCZQ2CQi8fSic64mzJhnQ27vG3K7V8jtToVNZnY0cHNg83Pg+LbOaNfCxpDbpZ15bRERERERkUyhsElE4mllB8eUhdzOC7ld2dEXNrMx+Mbh2cB24ATn3NoIn74l5HZBR19bREREREQkkyhsEpF4imQW0baQ291Dbu8Iud2jIy9qZn2AJwLPc8As59wbHdhFz5Db2zvy2iIiIiIiIplGYZOIxFNhBGOKQm5vDbkdunQudEldu8ysG/AoMCJw13XOuT9H+vxWXq/T/aJEREREREQygcImEYmnXTs4Zl3I7U+B4BnoIg6bgDuAqYHbDzrnruvAc4NCX291J54vIiIiIiKSMRQ2iUg8TQ3MNGrPoSG3G5e6BRqL/yewuauZhf35ZWaXA+cENl8HZkVeajN7htx+r5P7EBERERERyQgKm0QknnrRFP7sxMyOAMYENl91zn3RYsi/AtfFwOj2XsjMTgD+J7C5Bt8QvLrDFXv7Ba4rgWWd3IeIiIiIiEhGUNgkIvF2s5nt2/JOM9sFuCvkrl+28txnQm5PbusFzGwCsAD/M24bcHwrwVVEzKwnMCqwucg5V9+Z/YiIiIiIiGSKnEQXICIZ5UngcOBlM7sHeBGoB/YFzqfp7HOPOOcebuP5NUA3oJzm4VSoe2hqNP5nYJiZDQtT20vOuQ2t3F8OWOD2X8PsQ0REREREJOOZcy7RNYhIGjOzcuC5wOZ1wErgD0BeG095EjilrSVvZvYocCL+THX9nXNVrYxZBYQLl1o61Dm3uJV9PQj8F7A98HqVHdyviIiIiIhIRtEyOhGJK+fcfPxMpj8AHwPVwCbgWWCGc+7YML2V5gWuu+NDp5gxs2LgG4HN+QqaREREREREwtMyOhGJO+fc+8AFnXzuM2b2HjAO32z8vlbGDO9SgU2+CRQADvhNlPYpIiIiIiKS1jSzSURS0bWB6yPMbFIsXsDMsoEfBjYfdM7pLHQiIiIiIiIRUNgkIinHOfco8Gpg89oYvcwZ+LPQ1QA/idFriIiIiIiIpB2FTSKSqi4BGoDjzGyfaO44MKvpx4HNXznnVkZz/yIiIiIiIulMPZtEJCU5594CsmO073pgj1jsW0REREREJN0pbBIRERGRqCgpKXG77rprostIK9u2baOoqCjRZaQNHc8oWLIkPq8zKSZtOZOevkejT8c0+pYsWbLBOde3vTHmnItXPSIiIiKSxkaNGuWWL1+e6DLSyuLFiykvL090GWlDx7OLzOL7ehn4WVXfo9GnYxp9ZrbEOdduKxP1bBIREREREZG2mcU/aAq+roikJIVNIiIiIiIi0rpEBz5msGBBYmsQkQ5T2CQiIiIiIiI760rQlJvrl8GFXjpr5kwYM6bzzxeRuFODcBEREREREWmus0FTe6FS6GMd3f+yZTB9Oixc2Lm6UlRtbS1r1qyhuro60aWkrJ49e/LBBx8kuoyUlJ+fz+DBg8nNze3wcxU2iYiIiIiISJMOBEEOMOj4zCXnOh44LVrUsfFpYM2aNRQXFzN8+HAs0UsaU1RlZSXFxcWJLiPlOOfYuHEja9asYcSIER1+vpbRiYiIiIiIiNfBoMlB55fIdWZ5XYYFLtXV1fTu3VtBk8SdmdG7d+9Oz6pT2CQiIiIiIiIdVpWXx/XXXtv1HSlwapeCJkmUrnzvKWwSERERERGRjoU4znHzj34Uvdd2DkaPjny8AhiRpKawSUREREREJNN1MGiKiaVLO7ZvBU5xccABB0R9n6tWreK+++6L+n6jpXv37mHHXHvttdx8880AXH311Sxsp3n9X//6V5YtW9bm47fffjv33nsvAOXl5bz55psR11pRUcG8efMat9etW8epp54a8fNjRWGTiIiIiIhIJkuGoCnURRdFPlaBU8y98sorUd9nLMOm+vr6mOy3PXPnzmX69OltPt5e2FRXV8fs2bM5++yzO/XaLcOmsrIy/vKXv3RqX9GksElERERERCRTJVvQBDBvHmTpo2pL3/selJdH9/K974V/3eAsn8WLF1NeXs6pp57KHnvswYwZM3CB74nhw4dz+eWXM3nyZCZPnszKlSsBmDVrVrPgI7ivK664ghdffJEJEybw61//utnrtfc6ixYtYu+992bs2LGcd9557Nixo/H1586dy9SpU3nooYcYPnw4V155JVOmTOGQQw7hrbfe4sgjj2SXXXbh9ttvB2Dr1q1MmzaNiRMnMnbsWB577LGwx+KGG25g1KhRTJ8+neXLlzfeH/p1XnHFFYwePZpx48Zx2WWX8corr/D444/z3//930yYMIGPPvqI8vJyrrzySg455BD+93//t9ksKYD58+dzwAEHsNdee/H6668D7DRmr732YtWqVVxxxRV89NFHTJgwgf/+7/9m1apV7LXXXoBvMH/uuecyduxY9t57b5577jkA7r77bk4++WSOOuoodtttN374wx+G/do7KifqexQREREREZH0Eq+gKai+PvIgzCz+9WWot99+m6VLl1JWVsaBBx7Iyy+/zNSpUwHo0aMHr7/+Ovfeey/f+973+Nvf/tbmfm666SZuvvnmNse09jr77LMPs2bNYtGiRey+++6cffbZ3HbbbXwvkJjl5+fz0ksvAT7wGTJkCK+++ioXX3wxs2bN4uWXX6a6upoxY8Ywe/Zs8vPzefTRR+nRowcbNmxg//335/jjj2+zKfaSJUt44IEHePvtt6mrq2PixIlMmjSp2ZhNmzbx6KOP8uGHH2JmVFRUUFJSwvHHH89xxx3XbHlbRUUFzz//POCDpFDbtm3jlVde4YUXXuC8887j3//+d7vH8t///jfvvPMO4GeNBd16660AvP/++3z44YccccQRrFixAoB33nmHt99+m7y8PEaNGsWll17KkCFD2nydjlLYJCIiIiIikomSfQmacwqcQvzmN4muACZPnszgwYMBmDBhAqtWrWoMm84444zG6+9///tRf53i4mJGjBjB7rvvDsA555zDrbfe2hg2nXbaac32cfzxxwMwZswYampqKC4upri4mPz8fCoqKigqKuLKK6/khRdeICsri7Vr1/Lll18yYMCAVmt68cUXOemkkygsLGy2/1A9evQgPz+fb33rWxx77LEcd9xxbX6NLesNFTyWBx98MFu2bKGioqLNse156aWXuPTSSwHYY489GDZsWGPYNG3aNHr27AnA6NGjWb16dVTDJs1NFBERERERyTTJuHyuq6+9YEHs6hAA8vLyGm9nZ2dTV1fXuB06Iyh4Oycnh4aGBgCcc9TU1HT6dVyY74WioqJW95GVldVsf1lZWdTV1bFgwQLWr1/PkiVLeOedd+jfvz/V1dXtvkZbs56CcnJyeP311znllFP461//ylFHHRVxve29jpk1O5ZA2FqBdo9Ze/+W0aCwSURERERERFqXDLOFIq1h5szY1iHtevDBBxuvp0yZAvheSkuWLAHgscceo7a2FoDi4mIqKys7tP899tiDVatWNfaD+tOf/sQhhxzS6Xq//vpr+vXrR25uLs899xyrV69ud/zBBx/Mo48+yvbt26msrOSJJ57YaczWrVv5+uuvOeaYY/jNb37TuLSto19v8Fi+9NJL9OzZk549ezJ8+HDeeustAN566y0++eSTsPs++OCDWRAIYVesWMGnn37KqFGjIq6jK7SMTkREREREJJNEOqspGYKmjsqA5XTJaseOHey33340NDRw//33A3DBBRdwwgknMHnyZKZNm9Y4m2fcuHHk5OQwfvx4Zs2aFdGyu/z8fP74xz/yzW9+k7q6Ovbdd19mz57d6XpnzJjBN77xDfbZZx8mTJjAHnvs0e74iRMnctpppzFhwgSGDRvGQQcdtNOYyspKTjjhBKqrq3HONTY/P/3007ngggu45ZZbIjpTXGlpKQcccABbtmzhrrvuAuCUU07h3nvvZcKECey7776Nywl79+7NgQceyF577cXRRx/NxRdf3LifOXPmMHv2bMaOHUtOTg533313sxlNsWThpqKJiIiIiERi1KhRLvTsPNJ1wbMySXToeBJ50JSbC2GWPF133XUAXHPNNV2tKjLpHJIFtPwe/eCDD9hzzz0TV1CEhg8fzptvvkmfPn0SXcpOKisrKS4uTnQZKau170EzW+Kc26e952kZnYiIiIiIiDQXYW+duIo0REr2xuciGUDL6ERERERERDJBOswMivQMdVpOF1erVq1KdAmSZDSzSUREREREJN1Feqa2LH1EFJGu008SERERERGRdBfpmdrq62NbRzRoOZ1I0lPYJCIiIiIiks7SYflcSxddlOgKRKQdCptEREREREQktcybF9k4zW4SSQiFTSIiIiIZyMyOMrPlZrbSzK5o5fFyM/vazN4JXK5ORJ0i0kXpOKspKNKax4yJbR3JZMECGD7c994aPjzyXl3tOOCAA7q8j5ZWrVrFfffdF9HYWbNm8Ze//CXqNSSbdPs6FTaJiIiIZBgzywZuBY4GRgNnmNnoVoa+6JybELjMjWuRIhI/qRg0BUXS0HzZstjXkQwWLIALL4TVq/2/6erVfruLgdMrr7wSpQKbdCRsakt9KvQXy2AKm0REREQyz2RgpXPuY+dcDfAAcEKCaxKRaMuEJWSRBg6ZcCyuugqqqprfV1Xl7++C7t27A7B48WLKy8s59dRT2WOPPZgxYwYuEFQOHz6cyy+/nMmTJzN58mRWrlwJ7DxbJ7ivK664ghdffJEJEybw61//utnrOee45JJLGD16NMceeyxfffVV42PDhw9n7ty5TJ06lYceeojf//737LvvvowfP55TTjmFqqoq6uvrGTlyJM45Kioq6NmzJy+88AIABx10ECtXruTaa6/lvPPOo7y8nJEjR3LLLbfs9HXX19cza9Ys9tprL8aOHdtYZ2uvGfxaL7roIg499FBGjhzJ888/z3nnnceee+7JrFmzmh2DH/zgB0ycOJFp06axfv36nV57yZIlHHLIIUyaNIkjjzySzz//HIBbbrmF0aNHM27cOE4//fQO/CvGX06iCxARERGRuBsEfBayvQbYr5VxU8zsXWAdcJlzbmnLAWZ2IXAhQN++fVm8eHH0q81gW7du1TGNokw7nocA7UUsDnj+ueegi8ck0cf0gKIicrdtC/+1psC/fcvv0Z49e1JZWRnRc7t/+mmrx8B9+ilbI9xHWyorK6mqquLtt9/mX//6FwMHDuTwww/nmWeeYcqUKTjnyMvLY9GiRdx3331ccsklPPTQQ9TW1rJ9+/ZmX0NlZSVXX301t9xyCw899FDjfUGPP/44y5Yt45VXXuGrr75i8uTJnHHGGVRWVuKcw8z4xz/+AcDGjRsbQ5e5c+dy6623Mnv2bEaOHMkbb7zBqlWrmDBhAgsXLmT06NF89tln9O/fnx07drB06VL+/ve/s3XrViZOnMjMmTPJzc1trOPtt9/m008/5dVXXwWgoqKCyspKDj/88FZfs7a2lsrKSh577DGefPJJvvGNb/D000/z61//mvLycl5++WXGjRvHtm3b2HPPPbn22mu56aabuOqqq/jlL3/ZeKw2bdrEnDlzeOCBB+jTpw8PP/wwP/zhD5k3bx433ngj77//Pnl5eY31xFp1dXWn/o8rbBIRERHJPK1+Hmmx/RYwzDm31cyOAf4K7LbTk5y7A7gDYNSoUa68vDy6lWa44EwCiY6MOp4RzOQx6NLxeP7556GL+4iKrVvDfr0GlB96aNIvGWz5PfrBBx9QXFwc2ZOHDvVL51qwoUMj30cbiouLKSwsZPLkyeyxxx4ATJo0ia+++ori4mLMjFmzZlFcXMx5553HlVdeSXFxMbm5uRQUFDR7/eC+cnJyWq3rjTfeYObMmZSUlFBSUsJhhx3WuA8z4+yzz2583ltvvcVZZ51FRUUFW7du5cgjj6S4uJhDDz2UJUuW8Mknn/CDH/yA+fPn8+GHHzJ58mSKi4vJy8vj+OOPp0+fPvTp04f+/ftTVVXF4MGDG+sYO3Ysq1ev5sorr+TYY4/liCOOICsrq83XzM3N5ZhjjqFHjx5MnjyZ/v37s//++zfua/369RQXF5OVlcWsWbPIycnh/PPP5+STT252rNatW8cHH3zASSedBPgZVgMHDqS4uJjx48cze/ZsTjzxRE488cTGmWKxlJ+fz957793h52kZnYiIiEjmWQMMCdkejJ+91Mg5t8U5tzVw+0kg18z6xK9EEem0SHv0JHnw0iHp9LV01g03QGFh8/sKC/39UZKXl9d4Ozs7m7q6usZtCwn8grdzcnJoaGgA/PK4mpqaiF7H2gkPi4qKGm/PmjWL//u//+P999/nmmuuobq6GvDL5V588UVef/11jjjiCCoqKli8eDEHH3xwRF8LQGlpKe+++y7l5eXceuutfOtb32r3NUP3mZWV1Wz/WVlZO+2/ra/VOceYMWN45513eOedd3j//fd5+umnAfj73//OxRdfzJIlS5g0aVKb+0wGCptEREREMs8bwG5mNsLMugGnA4+HDjCzARZ4B2xmk/HvGzfGvVIR6biZMxNdQfJK595NM2bAHXfAsGH+6xw2zG/PmBGXl3/wwQcbr6dMmQL4HktLliwB4LHHHqO2thbws5vaWgJ28MEH88ADD1BfX8/nn3/Oc8891+ZrVlZWMnDgQGpra1kQErLut99+vPLKK2RlZZGfn8+ECRP43e9+x0EHHRTx17NhwwYaGho45ZRTuP7663nrrbfafc1INTQ0NPaxuu+++5g6dWqzx0eNGsX69esbl+/V1taydOlSGhoa+Oyzzzj00EP5+c9/3jizKllpGZ2IiIhIhnHO1ZnZJcBTQDZwl3NuqZnNDjx+O3AqcJGZ1QHbgdOd09QBkaSXibOagpxL7zApEjNmxC1camnHjh3st99+NDQ0cP/99wNwwQUXcMIJJzB58mSmTZvWOCtp3Lhx5OTkMH78eGbNmsX3v//9xv2cdNJJPPvss4wdO5bdd9+dQw45pM3XvP7669lvv/0YNmwYY8eObQyw8vLyGDJkSOMytoMOOoj777+fsWPHRvz1rF27lnPPPbdxZtaNN97Y7mtGqqioiKVLlzJp0iR69uzZGNIFdevWjb/85S985zvf4euvv6auro7vfe977L777sycOZOvv/4a5xzf//73KSkp6dBrx5PpPYOIiIiIRMOoUaPc8uXLE11GWsmoHkNxkBHHM5KwpawM1q7t8ktdd911AFxzzTVd3lfURBo2Jenn4NZ6Nu25556JKyhCw4cP580336RPn+RbbV1ZWdnlnlXR1L1796SekdRSa9+DZrbEObdPe8/TMjoREREREZF0EGnQEoWgKWklaYgkkmm0jE5ERERERCRTKIzxzHQsomjVqlWJLiFlpNKspq7QzCYRERERERFJH2kWIqn1jSRKV773FDaJiIiIiIikukiW0GVSaJEVwUfdFGgmnp+fz8aNGxU4Sdw559i4cSP5+fmder6W0YmIiIiIiKSyOXMSXUHyqa9PiTApnMGDB7NmzRrWr1+f6FJSVnV1dacDk0yXn5/P4MGDO/VchU0iIiIiIiKp7Lbbwo/JxJkxublQW9v+mCTv3ZSbm8uIESMSXUZKW7x4MXvvvXeiy8g4WkYnIiIiIiIi6aemJtEViGQshU0iIiIiIiKpSr2a2ldQEH5MGiy3E0k2CptEREREREQkPVVVJboCkYyksElERERERCQVaVZTZEpKwo/R7CaRqFLYJCIiIiIiIulr8+ZEVyCScRQ2iYiIiIiIpBrNaoq+bt0SXYFI2lDYJCIiIiIiIuktkuCttjb2dYhkCIVNIiIiIiIiqSSSWU1lZbGvQ0SkDQqbRERERERE0s3atYmuIPlEMrtJjcJFokJhk4iIiIiISKoYMybRFYiIhKWwSUREREREJFUsWxZ+jBqDt02zm0TiQmGTiIiIiIiIiIhEjcImERERERGRVBDJjBvNagpPs5tEYk5hk4iIiIiIiIiIRI3CJhERERERkWSnWU3RNXp0+DGlpbGvQyRNKWwSERERERGRzLJ0afgxFRUxL0MkXSlsEhERERERSWaa1SQiKUZhk4iIiIiIiGQeNQoXiRmFTSIiIiIiIslqzpzwY6ZNi30dIiIdoLBJREREREQkWd12W/gxCxfGvo50pdlNIjGhsElERERERERERKJGYZOIiIiIiEgyKi0NP0aNwbtu/vzwYwoLY1+HSBpR2CQiIiIiIpKMKioSXUFmmDEj/Jjt22Nfh0gaUdgkIiIiIiKSbLp1Cz9Gs5qiJ0sfjUWiSf+jREREREREkk1tbaIryCz19eHHqFG4SMQUNomIiIiIiKSakpJEVyAi0iaFTSIiIiIiIskkkhk0mzfHvo5ME8myRM1uEomIwiYREREREREREYkahU0iIiIiIiLJIpKZM2oMHjsXXZToCkTSgsImERERkQxkZkeZ2XIzW2lmV7Qzbl8zqzezU+NZn4hIQsybF36MltKJhKWwSURERCTDmFk2cCtwNDAaOMPMRrcx7mfAU/GtUCRDzZkTfoxmNYlIClDYJCIiIpJ5JgMrnXMfO+dqgAeAE1oZdynwMPBVPIsTyVi33ZboCgTUKFwkCnISXYCIiIiIxN0g4LOQ7TXAfqEDzGwQcBJwGLBvWzsyswuBCwH69u3L4sWLo11rRtu6dauOaRQl+/E8BGgrwnBAfbduvJSE9SfzMe2sg/H/Fu39ezwfg6872b9HU5GOaWIobBIRERHJPK19fmr5p/zfAJc75+qtnb/gO+fuAO4AGDVqlCsvL49SiQL+Q7yOafQk9fEMM1PGgJwdOyiPSzGRef755wGS95h2hXPt/psYUL52LcyYEdWXTerv0RSlY5oYWkYnIiIiknnWAENCtgcD61qM2Qd4wMxWAacC88zsxLhUJyKSCmbOTHQFIklLYZOIiIhI5nkD2M3MRphZN+B04PHQAc65Ec654c654cBfgDnOub/GvVKRTFBaGn6MGoPH3+idzpsgIhHSMjoRERGRDOOcqzOzS/BnmcsG7nLOLTWz2YHHb09ogSKZpqIi0RVIa5YuDd8I3ExBoEgrFDaJiIiIZCDn3JPAky3uazVkcs7NikdNItKG3NxEVyAi0iFaRiciIiIiIpIo3bqFH1NTE/s6pHWRzFoaNCj2dYikGIVNIiIiIiIiiVJb2/7jWfrIlvTWtTy/gojoJ5eIiIiIiEgizJkTfkx9fezrkPZNm5boCkRSjsImERERERGRRLjttkRXIJFYuDD8mHCNxEUyjMImERERERGRZHTRRYmuQESkUxQ2iYiIiIiIxFskM2HmzYt9HRIZNQoX6RCFTSIiIiIiIiJdpUbhIo0UNomIiIiIiMTTggXhx0Qyk0biq6ws0RWIpAyFTSIiIiIiIvE0c2aiK5DOWLs2/JgxY2Jfh0gKUNgkIiIiIiKSTNQYPHmVlLT/+LJlcSlDJNkpbBIREREREYkXNQZPbZs3hx9TWhr7OkSSnMImERERERERkWipqEh0BSIJp7BJREREREQkHiLp56PG4MlPyxxFwlLYJCIiIiIiEg/q55MeIlnmGMlySZE0prBJREREREQkGWjGjIikCYVNIiIiIiIisZadHX6MGoOnjkiWOw4aFPs6RJKUwiYREREREZFYa2hIdAUSb+vWJboCkYRR2CQiIiIiIhJL06eHH6PG4Kln9OhEVyCStBQ2iYiIiIiIxNKiRYmuQGJh6dLwYwoLY1+HSBJS2CQiIiIiIpJImtWUvrZvT3QFIgmhsElERERERCRWzBJdgcRSJEFhaWns6xBJMgqbREREREREEqWsLNEVSKxVVCS6ApG4y0l0ASIiIiLSnJn1AyYD44BhQClQAGwHNgGrgfeA151z6xNVp4iEEUlj8LVrY1+HxNZFF8FttyW6CpGkorBJREREJAmY2S7ATOAEYHwHnvcO8FdgvnPuk5gUJyKdo8bgmWHevPBhU3Y21NfHpx6RJKBldCIiIiIJZGZHmNk/gRXA1figyTpwmQBcC6w0s3+Y2eFx/hJEpLOmTUt0BRIvDQ2JrkAkrjSzSURERCQBzGwqcBMwJXhX4Hoj8DrwL+ADYHPgvi1AT6BX4LInsB9+uV2vwHOPAI4ws1eAK5xzL8f+KxGRVmVnhx+zcGHs65D4cC58M/gFC2DGjPjUI5JgCptERERE4szMFgCn0xQwrQHuBxY4597rxP7GAWcCZwBDgAOBF8zsfufczOhULSIdopks0tLMmQqbJGNoGZ2IiIhI/J2BD5qeBaY754Y65y7vTNAE4Jx7zzl3hXNuGDA9sF8LvI6IxNucOeHHOBf7OiS+tCxSpJHCJhEREZH4exY4yDk33Tn3bDR37Jx71jk3HTgo8DoiEm86M1lmimRZZLdusa9DJAloGZ2IiIhInAXCoFi/xsuAmoWLJCPNgElfBQWwfXvbj9fWxq8WkQTSzCYREREREZFoUWPwzFZVFX7MoEGxr0MkwRQ2iYiIiIiIRIsag0s469YlugKRmFPYJCIiIpIkzKxXF59/TLRqEZFOmB7BClk1Bk9/8+cnugKRhFPYJCIiIpI83jezwzr6JDPrZma/BZ6IQU0iEqlFixJdgSSDGTPCj9FSOklzCptEREREksdA4Gkz+5mZRXQiFzPbC3gTiOBc682ed5SZLTezlWZ2RSuPn2Bm75nZO2b2pplN7cj+RaQVagyeOcL9W2spnaQ5hU0iIiIiyaMeMOAy4FUz27W9wWZ2KfA6MCbwvOWRvIiZZQO3AkcDo4EzzGx0i2GLgPHOuQnAecAfIv8yRDKQWfgxagyeOSL5ty4tjX0dIgmisElEREQkeRwErMIHRxOBt83s3JaDzKyvmf0N+A2QHxj/B2CfCF9nMrDSOfexc64GeAA4IXSAc26rc43NZYoANZoR6YqCgkRXIMmmoiLRFYjETETTs0VEREQk9pxzr5nZeOA2YAY+5PmDmR0FXOic+zpw+49AP3zItBm4wDn3SAdeahDwWcj2GmC/loPM7CTgxsBrHdvajszsQuBCgL59+7J48eIOlCHhbN26Vcc0imJ1PPc79dTG1Lc1Dnj+ySchTf8t9T3aul1POIFBjz3W/vdFi2On//PRp2OaGOZ0NgQRERGRpGNmZwDzgJ74zySf4Ze2zaLpM+1i4Czn3NoO7vubwJHOuW8Fts8CJjvnLm1j/MHA1c65dk+1NWrUKLd8eUQr+SRCixcvpry8PNFlpI2YHc9IltCl4eeu6667DoBrrrkmwZUksXDfG2VlsLbpR7j+z0efjmn0mdkS51y7s6m1jE5EREQkCTnn7gf2Bl7Bh0tDaQqaaoArgWkdDZoC1gBDQrYHA212q3XOvQDsYmZ9OvFaIqLG4JlrdMt2eC2oUbikKYVNIiIiIknKObcKuD+4GXL9T+CXrvNT1N8AdjOzEWbWDTgdeDx0gJntaub/JG9mE4FuwMZOvp5I+srODj9GjcEz19Kl4cdMb3fSqEhKUs8mERERkSRkZqXAnfjG3Q4/o6kO//7tG8DrZnaGc+7Dju7bOVdnZpcATwHZwF3OuaVmNjvw+O3AKcDZZlYLbAdO60K4JZK+Ghrafzw3Nz51SOpatCjRFYhEnWY2iYiIiCQZMzsUeA8fNBlQAfwXvon3isB944AlwYCoo5xzTzrndnfO7eKcuyFw3+2BoAnn3M+cc2OccxOcc1Occy91+QsTSTeRnLq+pib2dUhyu+iiRFcgEncKm0RERESShJnlmNlNwDNAGT5UegEY75z7i3PubXwfpzsDjxUAt5rZY2bWO1F1i2QsnbpeIjFvXvgxkTSZF0khCptEREREkserwH/j36PVA1cDhzrn1gQHOOe2O+cuAE4FNuFDp+OA983s8PiXLCJt0owWCdJySskwCptEREREksckfHj0CXCQc+6nbfVJcs49AkwAng88ZwDwZJzqFJFu3cKPiWRGi2SGSJZTRrIsUyRFKGwSERERSS7zgQnOuX+FGxiY8XQYcBVQi97bicRPbW37j0+bFp86JH1oWaakEb0hEREREUkeZzvnznbOVUb6BOfdCEwFPopdaSLSqLAw/JiFC2Nfh6SWCE7o2U/fN5ImFDaJiIiIJAnn3PwuPPcNfPNwEYm17dvbf7ygID51SNrZ44YbEl2CSFQobBIRERFJE865bYmuQSTtzZkTfkxVVezrkNRUVtbuwzonnaQLhU0iIiIiIiKRuu22RFcgqWzt2vBj1Chc0oDCJhEREZE4M7O4LHczs4nxeB0RCaHG4NIFBmoULmlBYZOIiIhI/L1pZo+a2fhY7NzM9jazx4DXY7F/kYxlESxyUoNnCSeCRuERLdcUSWIKm0REREQS43jgLTP7m5mdZmb5XdmZmeWb2elm9g/gTeAbQASfaEQkasL04xGJmJZrSopT2CQiIiISf/viZx0ZcDRwH/Clmd1tZueY2Z6R7MTMRpvZLDO7G/gSWAAcEdjvq8DkWBQvkpEimWkSST8eEdByS0l7OYkuQERERCTTOOfeAqaY2cnAtcBeQDFwVuCCmVUC/wE2BS6VQA+gV+Cya+A5QcH1Pe8B1zrn/hrrr0Mko2imiUTTwoXhl2V26wY1NfGpRyTKFDaJiIiIJIhz7hHgETM7ArgIOAbIDTzcA2ivwXfop5Qa4ElgnnNODWNEEmH06ERXIKmmrAzWrWv78dra+NUiEmVaRiciIiKSYM65p51zJwEDgbOBPwErAg9bKxcHLAfuxc+EGuicO1lBk0iMFBaGH7N0aezrkPQSybLLBQtiX4dIDGhmk4iIiEiScM5tAuYHLphZN2AIftlcHrADv6TuU+ec/uQtEi/bt7f/eElJXMqQNJSb2/4MppkzYcaM+NUjEiUKm0RERESSlHOuBvgocBGRRCgtDT9m8+bY1yHpqaYmfO+mBQsUOEnK0TI6ERERERGRtlRUtP94lj5SSYzNnJnoCkQ6TDObRERERJKYmfUD9gXKgO7AVmAd8IZz7qtE1iaS9qZPDz+mvj72dUh6Gz0ali1LdBUiUaWwSURERCQJmdlJwGXA/u2MeRW42Tn313jVJZJRFi1KdAWSCZYuDb+Ubvp0WKhzQEjq0JxPERERkSRiZt3M7M/AX/BBU2tnowtepgAPm9mfA83ERSRaIjkL2Pz5sa9DMkNubvuPK/iUFKOZTSIiIiLJ5WHgGHyYBLAMeBZYCWwDioBdgUOBMYExpwD5wPFxrVQknUXSJ0dNmyVaImkUPmaMnwUlkgIUNomIiIgkCTM7HTgWcPi+TOc7555qZ/wRwJ3AIOBYMzvNOfdgXIoVyXRlZYmuQDKN+jpJCtEyOhEREZHkcX7gehtwSHtBE4Bz7mmgHN80HOBbsStNJIMUFoYfs3Zt7OuQzDJ/Pi7cmEiWd4okAYVNIiIiIsljPH5W053OuY8ieUJg3J34ZXcTYleaSAbZvr39x8P11xHpjEiWZUayvFMkCShsEhEREUke3QPXb3TwecHxEUzHEJF2dYug135NTezrkIxUW1SU6BJEokJhk4iIiEjyWBe4zu7g84Lj17U7SkTCq61t//EsfYSS2Hnlb38LP0hL6SQF6CeliIiISPJ4NnB9UAefdxB++d2z4QaKSDumTw8/pr4+9nVIZispaf9xLaWTFKCwSURERCR53ALUAGeb2b6RPMHM9gHOAXYEni8inbVoUaIrEIHNm8OPMYt9HSJdoLBJREREJEk45/4NXIBv9v2MmX3LzHJaG2tmOWZ2PvAMflbTt5xzS+NXrUiaiWRp0rRpsa9DBOCiixJdgUiXtPrmRURERETiz8yuDtx8BjgG+B1wk5m9CKwEqvBNwHcFpgK9AuOfBHYNef5OnHNzY1W3SFqIZGnSwoWxr0MEYN48uO229scMGgRr18anHpEOUtgkIiIikjyuxc9SIuS6F3B8K2MtZMwxgUt7FDaJdMXo0YmuQDLN6NGwbFnbj6/TOSEkeWkZnYiIiEhysRaX1u5r7/62xopIW7p1Cz9mqVapSpxF8j03Z07s6xDpBM1sEhEREUkehya6AJGMVFvb/uPhzg4mkii33eaX3IkkGYVNIiIiIknCOfd8omsQyTiFheHHRHJ2MJFYuOii8L2bFiyAGTPiU49IhLSMTkRERCQDmdlRZrbczFaa2RWtPD7DzN4LXF4xs/GJqFMk5rZvb/9x9WqSRIpk1lIkze1F4kxhk4iIiEiGMbNs4FbgaGA0cIaZtfxE/QlwiHNuHHA9cEd8qxSJA/VqklRw0UXhx0yfHvs6RDpAYZOIiIhI5pkMrHTOfeycqwEeAE4IHeCce8U5F1w79BowOM41isReuF5NIskgktlNixbFvg6RDlDPJhEREZHMMwj4LGR7DbBfO+PPB/7R2gNmdiFwIUDfvn1ZvHhxlEoUgK1bt+qYRlHo8Zx65JFk0/bpGh3wwVVX8ZWOf1j6Ho2etv7Pj504kV5vvdX+9+uPf8xXmuG0E/0cTQxzziW6BhERERGJIzP7JnCkc+5bge2zgMnOuUtbGXsoMA+Y6pzb2N5+R40a5ZYvXx6LkjPW4sWLKS8vT3QZaaPZ8bS2PrYHlJSoMXgY1113HQDXXHNNgitJH+3+nw/3PWsGDQ1RrynV6edo9JnZEufcPu2N0TI6ERERkcyzBhgSsj0YWNdykJmNA/4AnBAuaBJJKXPmhB+joEmSTUlJ+487F9n3tkgcKGwSERERyTxvALuZ2Qgz6wacDjweOsDMhgKPAGc551YkoEaR2Al3KvlwM0hEEiGSADTc97ZInChsEhEREckwzrk64BLgKeAD4M/OuaVmNtvMZgeGXQ30BuaZ2Ttm9maCyhWJrkhmfvzpT7GvQ6Qzpk0LP2bBgtjXIRKGGoSLiIiIZCDn3JPAky3uuz3k9reAb8W7LpGYi2Tmx4wZsa9DpDMWLgw/827mTH0PS8JpZpOIiIiIiGSESbNmhR80f37M6xDpkosuSnQFImEpbBIRERERkYzQffXq8IM0I0SS3bx54ceUlsa+DpF2KGwSEREREZH0N2hQ+DGR9MMRSQbhZjdVVKh3kySUwiYREREREUl/69YR9hxzCxfGoxKRrotkdtPMmbGvQ6QNCptERERERCS9TZ8efszo0bGvQySaIundFMnZF0ViQGGTiIiIiIikt0WLwo9ZujT2dYhEUySzmyI5+6JIDChsEhERERGR9BVJ3xrnYl+HSCyoz5gkKYVNIiIiIiKSvsL1rcnOjk8dIrEQSZ+xSJrji0SZwiYREREREUlPkfRquuee2NchEkvhZjetWxefOkRCKGwSEREREZH0FK5XU1YWzJgRn1pEYiWS2U2lpbGvQySEwiYREREREUk/kcxqqq+PfR0i8RBudlNFhc5MJ3GlsElERERERNJPuFlN+fnxqUMkHiKZ3aQz00kcKWwSEREREZH0MmZM+DF/+EPs6xCJp5KS8GPULFziRGGTiIiIiIikl2XL2n9cvZokHW3eHH6MmoVLnChsEhERERGR9BHJrCb1apJ0VVYWfoxmN0kcKGwSEREREZH0sGBBu7OaHMBFF8WtHJG4W7s2/BjNbpI4UNgkIiIiIiLpYebMdh92APPmxaUUkYQJd2Y6gNLS2NchGU1hk4iIiIiIpL4FC8IO+fCqq+JQiEiCLVwIo0e3P6aiAubMiUs5kpkUNomIiIiISOoLM6sJ4Kvp0+NQiEgSWLo0/Jjbbot9HZKxFDaJiIiIiEhqi6ThsXo1SaaJZDmdZjdJjChsEhERERGR1DVnTmQNj9WrSTLNwoXhx2h2k8SIwiYREREREUldkXxYnj8/9nWIJKNIZvRpdpPEgMImERERERFJTZH0YCoogBkzYl+LSDKKZEafZjdJDChsEhERERGR1LRoUfgxVVWxr0MkmUUys2/MmNjXIRlFYZOIiIiIiKSewsLwYyJpkCyS7iKZ2bdsmZbTSVQpbBIRERERkdQyfTps3x5+XCQNkkUyQSTBq5bTSRQpbBIRERERkdQSyfK5SBoji2SKhQshNzf8OC2nkyhR2CQiIiIiIqkjkqbg06ZF1hhZJJPU1IQfo+V0EiUKm0REREREJHVEMqtJy+dEWhdJs3Atp5MoUNgkIiIiIiKpIdJZTSLSuhkzoKQk/LhI/q+JtENhk4iIiIiIJL/p08PPaiop0awmkXA2bw4/ZtEiWLAg9rVI2lLYJCIiIiIiyS+S5XORfIgWkcga6H/727GvQ9KWwiYREREREUlupaXhx+jscyKRmzcPysraH7Ntm2Y3SacpbBIRERERkeQ1fTpUVLQ/5qKLdPY5kY5auzb8mLPOin0dkpYUNomIiIiISPKKZPmcgiaRzgk3I9A5MItPLZJWFDaJiIiIZCAzO8rMlpvZSjO7opXH9zCzV81sh5ldlogaRSI6I5aWz4l03rx5kJcXftygQbGvRdKKwiYRERGRDGNm2cCtwNHAaOAMMxvdYtgm4DvAzXEuT6RJuFlNZWWa1STSVXfeCdnZ7Y9Zty4+tUjaUNgkIiIiknkmAyudcx8752qAB4ATQgc4575yzr0B1CaiQJGIZlJE0nNGRNo3Ywbcc0/4cZrdJB2Qk+gCRERERCTuBgGfhWyvAfbrzI7M7ELgQoC+ffuyePHiLhcnTbZu3ZqRx/Sg6dPJqq+nrU4xDtg0cSLvd/DYZOrxjDUd0+hJ2PfooEHs17s3+Rs3tv3/bt066vPyeOmpp+JaWlfp/31iKGwSERERyTytfZZwndmRc+4O4A6AUaNGufLy8i6UJS0tXryYjDumpaVQX9/uECspofeSJZR3cNcZeTxj6PnnnwfQMY2ihH6PbtjQbjNwA3Jqaig/6STYvDl+dXWR/t8nhpbRiYiIiGSeNcCQkO3BgBpySOItWAAVFeHHpdAHXZGU4iL4u0NFBcyZE/NSJLUpbBIRERHJPG8Au5nZCDPrBpwOPJ7gmkTg298OP0ZnnxOJrWnTwo+57TYfDou0QWGTiIiISIZxztUBlwBPAR8Af3bOLTWz2WY2G8DMBpjZGuD/AT82szVm1iNxVUvaGzQItm1rf4zOPicSewsX+v9r4Zx1VuxrkZSlnk0iIiIiGcg59yTwZIv7bg+5/QV+eZ1I7I0ZE/7U6rm5OvucSLysXQtZWe0vq3POh8T6fymt0MwmERERERFJnOnTYdmy9seUlEBNTVzKEZGAP/0p/JhwIbFkLIVNIiIiIiKSGNOnw6JF7Y/JylJDcJFEmDED5s8PP657d/Vvkp0obBIRERERkfhbsCB80ASRNQ0XkdiYMSN8U/5t22DmTAVO0ozCJhERERERib+rrgo/Rg3BRRIv0v+DCpwkhMImERERERGJnwUL/LKb1avbHzd6tBoPiySLSJbTgQInaaSwSURERERE4mPOHP9hdNu29sdNmwZLl8anJhEJL5LldEHnnBPbWiQlKGwSEREREZHYW7AAbrst/Lhp02DhwtjXIyIdM29eZIFTfb1v/i8ZTWGTiIiIiIjE3ne/G37M/PkKmkSS2bx5PhAOZ9EinaUuwylsEhERERGR2FqwADZubH9MdrZfqiMiyW3hQigpCT8ueJa6OXNiXpIkH4VNIiIiIiISW5Gcee7CC2Nfh4hEx+bNkQVO4JfPalldxlHYJCIiIiIiMeVWf9r+gGnTIj+9uogkh82b/VkjI7FokQKnDKOwSUREREREomvBAhg+HLKy2NpnOBvo1fq4rCz1aRJJZUuXRtbDCXzgpB5OGUNhk4iIiIiIRM+CBX5J3OrV4BzdN66mp1XicnObjysshHvvVZ8mkVS3cGFkZ6mDyJbUSlpQ2CQiIiIiItFz1VVQVdXsrm6uBuvRA4YNAzN/fccdCppE0kWkZ6n7NMySWkkbCptERERERKRrpk/3IZIZbvXq1sds2gSrVkFDg79W0CSSXiKY4dRQ2qtxiS3Dh2tZXRpT2CQiIiIiIp03ZozvxRJgbY0bOjQu5YhIAs2bB861OsupmlzqNlc2LrFl9Wo46yyYMycBhUqsKWwSEREREZGOW7AA+vSBZcvCjy0shBtuiH1NIpIcFi70zf9Dls5acQ+6uZrm45yD227TmerSkMImERERERHpmGAT8I0bw49VfyaRzDRjRrOls3lbN7U9dtEizXBKMwqbRERERESkY1ppAt6qYcPUn0lEvHBLaW+7Tb2c0ojCJhERERERCW/BgsbGvm02AQ9lpqVzItLkhhv8z4X2qJdT2lDYJCIiIiIi7Qsumws09g3zcRGys+FPf9KMJhFpMmMGzJ4d2Vjn4PbbNcMphSlsEhERERGR1gVnM82cGdmyud69fVPgujoFTSKys3nzWj1TXauc8z97tKwuJSlsEhERERGRJsGAycwvZQm3ZC5wpinmz4cNGxQyiUj7Fi6Eiy7yMyAjsXq1n1mpwCmlKGwSEREREREvdLkc+JkF7Rk2rPFMUwqZRCRi8+b5GZDO+aA6XC+nqirNckoxCptERERERMR/gDvnnMiWywEUFqoBuIh0XbCXU7jACZqah5speEpyCptERERERDJdcEZTfX1k44cNgzvu0GwmEYmOefP8SQWGDQs/NjjjUsvrkprCJhERERGRDNbQANv/31WRzWgqLPRLXrRsTkSibcYM/7Nl/nz/syYSVVVw1VUxLUs6R2GTiIiIiEgGWrMGrr8edtkF8r76tO2BwaUtms0kIvEwY4b/WRPJLCfArf6ULVtC7gie5CArC4YPp9/ChTEpU9qnsElEREREJEPU1sKjj8Kxx/rPcVdf7cOm7X2Gtv6E7Gy/tMU5zWYSkfjpwCyn1Qxl4EA491xYfs0CXPAkB87B6tWMuvlmLbVLAIVNIiIiIiJprKYGFi2C730PhgyBk0+Gd96BH/0IPvrIn4W86Dc37PyBrrAQ7rlHAZOIJE7LWU4tmoi7wkLqrruBGTPgL3+BvLlXYS2WBGfv2KGldgmgsElEREREJM189RXcfTd885vQpw9Mnw633w777w9PPOH/6P/Tn8LIkYEnhH6gM9OSORFJHsFZTs41NREP/JyyO+5g16tncMcd8PnnMIzWlwS7Tz9l27b4lp3pchJdgIiIiIiIdM2WLfDGG/Dyy/Dkk/D66/5zWVkZnHEGHHccHHYYFBW1s5MZMxQuiUhya+fnVPfuwLChPk1vYbUbyh694dBD4cgjYcoU2Htv6NYtxvVmMIVNIiIiIiIppKEBVqyAV1+F117z1//+d9PZwCdPhuuu8wHThAk7rToREUlfN9wAF17Y7Oya9Xl5bPvBDVxc7Wd2fv/7/v68PJg40QdPU6b4mZ+DByeo7jSksElEREREJAk5B+vX5/HMM7BsGXzwgb9+/32oqPBjSkpgv/3glFP8B6X99vP3iYhkpOCsp6uugk8/haFDWT5zJmN+OoNfAr/8Jaxd64P6YFh/663wq1/5p5WVwV57wejRsOeeTde92Zx9AwAADCNJREFUeyfsK0pZCptERERERJLI3Ll+KdyyZVBZOaXx/tJS/8Hnv/7Lh0pTpsCoUf7s3iIiEtBiqd1XixczOuThQYN8QH/KKX67pgbefdcHT2+84YP9O+5oNjmKfv38z99vfxtOPz0+X0aqU9gkIiIikoHM7Cjgf4Fs4A/OuZtaPG6Bx48BqoBZzrm34l5oBtqwwfdWOuccyM5ewYkn7s6ee/oPO1oSJyISXd26wb77+ktQQ4OfGBWcURq8VpPxyClsEhEREckwZpYN3AocDqwB3jCzx51zy0KGHQ3sFrjsB9wWuJYYu+WWptuLF6+jvHz3xBUjIpKBsrJg+HB/OfroRFeTmswFOwmKiIiISEYwsynAtc65IwPbPwJwzt0YMuZ3wGLn3P2B7eVAuXPu87b2W1ZW5r797W/HtHYRERFJrGuvvXaJc26f9sZoZpOIiIhI5hkEfBayvYadZy21NmYQ0CxsMrMLgQsDmzuuvfbaf0e31IzXB9iQ6CLSiI5n9OmYRpeOZ/TpmEbfqHADFDaJiIiIZJ7WOv+0nO4eyRicc3cAdwCY2Zvh/tIpHaNjGl06ntGnYxpdOp7Rp2MafWb2ZrgxOneFiIiISOZZAwwJ2R4MrOvEGBEREZGdKGwSERERyTxvALuZ2Qgz6wacDjzeYszjwNnm7Q983V6/JhEREZEgLaMTERERyTDOuTozuwR4CsgG7nLOLTWz2YHHbweeBI4BVgJVwLkR7PqOGJWcyXRMo0vHM/p0TKNLxzP6dEyjL+wx1dnoREREREREREQkarSMTkREREREREREokZhk4iIiIiIiIiIRI3CJhERERGJGjO73szeM7N3zOxpMytLdE2pzsx+YWYfBo7ro2ZWkuiaUpmZfdPMlppZg5npdOidZGZHmdlyM1tpZlckup5UZ2Z3mdlXZvbvRNeSLsxsiJk9Z2YfBP7PfzfRNaUyM8s3s9fN7N3A8byu3fHq2SQiIiIi0WJmPZxzWwK3vwOMds7NTnBZKc3MjgCeDTR2/xmAc+7yBJeVssxsT6AB+B1wmXPuzQSXlHLMLBtYARwOrMGf4fIM59yyhBaWwszsYGArcK9zbq9E15MOzGwgMNA595aZFQNLgBP1fdo5ZmZAkXNuq5nlAi8B33XOvdbaeM1sEhEREZGoCQZNAUWA/rLZRc65p51zdYHN14DBiawn1TnnPnDOLU90HSluMrDSOfexc64GeAA4IcE1pTTn3AvApkTXkU6cc587594K3K4EPgAGJbaq1OW8rYHN3MClzd/xCptEREREJKrM7AYz+wyYAVyd6HrSzHnAPxJdhGS8QcBnIdtr0Id4SWJmNhzYG/hXgktJaWaWbWbvAF8Bzzjn2jyeCptEREREpEPMbKGZ/buVywkAzrmrnHNDgAXAJYmtNjWEO6aBMVcBdfjjKu2I5HhKl1gr92kWoyQlM+sOPAx8r8XsW+kg51y9c24CfobtZDNrc8lnTtyqEhEREZG04JybHuHQ+4C/A9fEsJy0EO6Ymtk5wHHANKemq2F14HtUOmcNMCRkezCwLkG1iLQp0FvoYWCBc+6RRNeTLpxzFWa2GDgKaLWpvWY2iYiIiEjUmNluIZvHAx8mqpZ0YWZHAZcDxzvnqhJdjwi+IfhuZjbCzLoBpwOPJ7gmkWYCDa3vBD5wzv0q0fWkOjPrGzwbqpkVANNp53e8zkYnIiIiIlFjZg8Do/Bn+1oNzHbOrU1sVanNzFYCecDGwF2v6Qx/nWdmJwG/BfoCFcA7zrkjE1pUCjKzY4DfANnAXc65GxJbUWozs/uBcqAP8CVwjXPuzoQWleLMbCrwIvA+/ncSwJXOuScTV1XqMrNxwD34//NZwJ+dc3PbHK+wSUREREREREREokXL6EREREREREREJGoUNomIiIiIiIiISNQobBIRERERERERkahR2CQiIiIiIiIiIlGjsElERERERERERKJGYZOIiIiIiEicmdlwM3OBy92JrkdEJJpyEl2AiIiIiIiIZCYzOxGYENj8jXOuImHFiEjUKGwSERERERGRRDkROCdw+26gIlGFiEj0KGwSERERERGJM+fcKsASXYeISCyoZ5OIiIiIiIiIiESNwiYREREREREREYkahU0iIiIiIiJxFsnZ6MxscXBMyH2nmdkzZvaFme0ws9Vm9kcz2yPM6zXbl5nlmNlFZvaSma03s+1mtsLM/tfMhoTZ16rAvlZF8HW2OtbM7g7Uck7I3Z+EHJNOnanPzM4Kee4SM+vWztj9zaw2MPZzM+vTkdcSkbYpbBIREREREUlyZpZvZo8CDwDTgf5AN2AoMAt4x8yOjnBfpcBiYB5wINAHyAd2A74DLDWzY6L8JcSFc+5PwILA5kTgp62NM7PiwLgcwAFnO+c2xKVIkQygBuEiIiIiIiLJ7y78mduW4AOnT/Eh0QzgACAPmG9moyIITe7Ch0zLgHuA1cAA4AxgP6AYeMTMpjrn3oz+lwLALcBf8eHWoYH7vg181WLcp53Y9xz8MRkBXGZmTznnFrUYMw8YGbj9K+fcM514HRFpg8ImERERERGR5HcGcAPwE+dc6LK624GH8UFUL+A84Odh9nUicB8wyzlXG7KvW4CfAf+ND6/uMrPxoa8XLc65t4C3zOzEkLufDpylr6v73mJmZwIv4j/z3mtm45xzGwHM7AxgZmD428CVXX1NEWlOy+hERERERESS37POuR+3DH6ccw34cCjoyAj2tQo4PzRoCuzLAZcDrwbuGgsc0emKE8g59xowN7BZBtwJvlcWcFvg/irgDOdcTdwLFElzCptERERERESS3/+29YBzbiXwWWBzdAT7utU5V93Gvhzw65C7Toq4wuRzA/BC4PYJZnYJvk9Tz8B933XOLU9IZSJpTmGTiIiIiIhI8nstzONrA9elEeyrZf+i9h7fN4L9JaXArK+ZwObAXb/F93ICeNg594eEFCaSARQ2iYiIiIiIJL9wTb93BK7zItjXyvYedM5tAioCm2UR7C9pOec+wzceD/UZcEECyhHJGAqbREREREREklxglk60VEUwZlvgunsUXzdRVgJ1IduLnHOb2xosIl2nsElERERERCSzFEYwpihwvbWLr5XQz5xmVgjcT/Mzsc8ys2MSVJJIRlDYJCIiIiIikll2be9BM+sFlAQ217UyJLhkr1uY/RjQq6PFRdn/AqMCt58Agmfg+6OZ9U9MSSLpT2GTiIiIiIhIZjmsA4+/0crjFYHrPmaW285+9qJphlRbQpcHWpixHWJmJwPfCmy+D3wTuCaw3Q8fOEX1NUXEU9gkIiIiIiKSWeaYWXuNxL8fcvuRVh5fFrjOBQ5qZz/fiaCW0GV64YKpiJnZYOD3gc1q4Azn3A7gZ8DiwP1HR1ijiHSQwiYREREREZHMMhL4vZmF9jHCvP8BDgjc9R7wTCvP/2fI7etbC67M7Fs0zSpqzychtydGMD4sM8sC/kTTEr7LnHNLobHR+llAsEH4z8xsXDReV0Sa5IQfIiIiIiIiImnkr/jAZW8zuwf4FOgPnAFMCYzZAZzvnHNtPH8lvvfTAcAbZnYnvr/TAOBE/FK8F4FdgLJ2alkUcvvnZtYXWE7T2ePWOufe79iXx+VAeeD2351zt4Y+6JxbY2YXAH8B8oD7zGwf51x1B19HRNqgsElERERERCSznAv0BQ4EftHK45X4ZWdvtvZk59wOMzsdP+upFBgL/KbFsH8Bp9B6z6fQfb1nZvfjg67+wM0thtwDzGpvH6HMbF/gusDml/ivtbXXfdjM/oCffTUm8LqXRPo6ItI+LaMTERERERHJIM65CuBQ4GLgFWAjfibTR8BvgTHOub+H2ccSfMj0W/wsp2r80rRXA/s9yDm3PsKSzgIuwvdS2kDTrKYOMbPuwH34XlIOmBWmhu/hZ1EBXGxmx3XmdUVkZ9b6rEgRERERERFJF2a2GDgEwDmnM7CJSExpZpOIiIiIiIiIiESNwiYREREREREREYkahU0iIiIiIiIiIhI1CptERERERERERCRqFDaJiIiIiIiIiEjU6Gx0IiIiIiIiIiISNZrZJCIiIiIiIiIiUaOwSUREREREREREokZhk4iIiIiIiIiIRI3CJhERERERERERiRqFTSIiIiIiIiIiEjX/H7wro9JynTyxAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "x_range, x_num = (-3., 3.), 100\n",
+ "x_mean, x_sigma = 0.1, 0.5\n",
+ "\n",
+ "ekf_visu = EKF_Visualization(\n",
+ " model=f,\n",
+ " model_taylor=f_taylor_order_1,\n",
+ " x_mean=x_mean,\n",
+ " x_sigma=x_sigma,\n",
+ " x_model_range=x_range,\n",
+ " samples_num=100,\n",
+ " monto_carlo_sizes=[10000]\n",
+ ")\n",
+ "\n",
+ "ekf_visu.update_plot()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "id": "3cf53ca1",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABJsAAAJ8CAYAAABZZqAdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3yN1x/A8c8JITY1Y1RUiZBlhhoJatXoQFEtoVbrV6Wt2SIU1Zpdqq0WLVqlNTqpPaolSO1ZoWjt2EGS8/vj3NwmkZ2bPBnf9+t1X/c+9z7j+zy5Sc793nO+R2mtEUIIIYQQQgghhBDCEZysDkAIIYQQQgghhBBCZB+SbBJCCCGEEEIIIYQQDiPJJiGEEEIIIYQQQgjhMJJsEkIIIYQQQgghhBAOI8kmIYQQQgghhBBCCOEwkmwSQgghhBBCCCGEEA4jySYhhBBCCCGEyKSUUgFKKW27BVkdj0g+pVSo7ecWmgHHin6PbHDQ/roppVYppc4rpe7F2P8Tjti/yP4k2SSEEEIIIYRIFzE+oCb3NtPqmNObUqqoUirIdnvC6nisppTaEOc9sDcF2z4Zz3soIP2izRmUUh8Bi4CWQEkgt7URiaxI3jRCCCGEEEIIkXGKAmNtj+cDyy2LJHPyVErV1lrvTMa6gekdTE6jlKoFDLAtXgTeA44Ad2zP/WFFXCLrkWSTEEIIIYQQIiM8mYx1jqd7FFmM1noDoKyOI4NEYD6jBgKJJpuUUiWBNnG2E2n3WIzHL2mtv7YsEpGlyS+kEEIIIYQQIt1prZdbHYPI9H4B2gHdlFKvaq3vJrLus4AzEAWsAtpmQHw5QYUYj3dbFoXI8qRmkxBCCCGEEEKIzGCe7b440D6JdXva7tcCp9MroBwob4zHdxJcS4gkSLJJCCGEEEIIkemkZCavpNZVSs2LUUDazfZcK6XUcqXUaaXUHaXUWaXUEqWUXwpirKqUekcptUMpdcE2a9dVpdQupdSHSqnmSillW9dNKaWBEzF20TOBQuluMY6R7NnolFL5lVJDlFLrlVL/2s7rvFJqi1JqpFKqSBLbB8UttK2Uqq+UWqiUOhljfz8opVon9zqlwFbgqO1xz4RWUkrVBHxsi/NScgClVAWl1GTbz+iy7ZzOKKW+V0oFKqVyJXM/JZRSbymlDiilbtr2tUMp9ZpSKn9KYrLtr4ZSarpSKiROXCuVUt2VUun22T36vWl7f8a87ifivC/npVcMIvuRZJMQQgghhBAiJ3FSSs3CDNl6HCgH5AFcgU7Ab0qp5xPbgVIqt1JqBnAAGArUAUpgypQUBmoCLwJrgCbpdB5xY6qPSdRMBwKA0pjzKgk0BCYBx5VSLVOwz1GYBNAzwIMx9tcW+FkpNc6BpxBtvu2+jVKqVALrBNrurwLLkrtjpVR/4DAwHPMzKoY5p7KY4Xtzgd0xk30J7KcBcBAYAXgA+W37qgNMAbYrpSomM6bcSql3gT3AEEwSLWZc7YEFwDalVJnknqsQVpOaTUIIIYQQQoicZALQDTPD1hfAMaAQ8BSm4LQTMEsptVVrfSjuxraeSt8CHWxPRWJmlFsPnMckHjyAVoAv/xX3Po8pkl4K+Nj23HrMbF9xnU/JCSmlfIF1QD7bU7sxU9efAsoAT2MSTsWBH5RSLW2FxxPTD3OdzmB6D+3HJEBaA11s5zVGKbVRa70uJfEm4QtgPOaz6rOY5JmdUsoZk/wC+EZrfdvWeSxRtkTT7BhPfQ/8CIQBVYFeQCXAC9iilKqptb4Qz34qYxKVhW1P7bXF/DcmYdkNqAd8g6kplVhMyrZedPH8C8BXmJ/fTaAi5lrXse1zrVKqrtb6VpInnDLR702AQUBT2+P+xH4vnnLwcUU2JskmIYQQQgghRE7SDZMceF5rHRHj+Tm2HiaDMEmVQZjeSXEN5b9E0ymgndZ6bzzrjVBK1cZMH48tQbA8Tq+ZU2ktnG4bXrWA/xJN7wKvaK2jYqz2nlJqNCaJ4wx8oZSqqrUOT2TX3YBfgSe11jdjPD9fKbWd/5JAr2ESXQ6htf5bKbUOeBTTg2l6nFXaYXqRQTKH0Nmu+QzbYiTwjNb6mzjrTAWWYHptlQNmAZ3j2d3H/Jdomgv0i/k+sr2HpgKvJCO0QfyX5FkO9NRaX4uzzlSl1ERgFFAdGIPpUeUw0e9NAKXUEzFeWq21DnXksUTOIcPohBBCCCGEEOkugdpEVtSDOQT0jZNoivYGcNv2uFXcF5VSBTFDsADuknCiCQCt9U6t9ck0xpuUdkAN2+PfgSFxEk3RsbyJ6ckDZsaxZ5PY7yWgS5xEU7R3+a+XSzOllKM7Mcyz3XsppWrFeS3Qdn9Ea/1bMvc3iP+ScdPiJpoAtNa3MT2m/rE91VEpVTXmOkopH6B59PGBAXHfR1prjUnAbU8sIKWUCyaBBOY92SWeRFP0Pl8HNtsWX7BtK0SmJskmIYQQQgghRE7ykdb6bnwvaK2vA8G2xUrxfKhvAzxge7wosURTBnoqxuMptmRHQiYnsF18vtBaX4nvBVsya6NtMS9QOckoU+Y7IDrxEhj9pK2G02O2xfkkX/S5RgDTElrJluyZFX044IkE9gPwfiLvI53YcWxaYYZUAryX0L5iWGC7LwzUT2JdISwnw+iEEEIIIYQQGeHJJF7PqHowvyfx+hnbvQKKAv/GeK1RjMcrHRhTWtSz3WvMsLfE/AbcAAoCSc26l9zrBKagtcPY6jB9A/QBuimlXtVa38P0xsoNRGGGQibJlqCKLtb9p9Y6qXpYq4E3bY/jXqO6MR6vTWI/Sb3eOMbjgnGGr8WnXIzHHsCGJNYXwlKSbBJCCCGEEEKku7TWJnKgi0m8fifG47g9m8rHeHzQMeGkmavt/l9bz6wEaa2jlFLHMTOePaCUypNIj5q0XCdHmIdJNpXADBVcBvS0vbZWa306mftxjfH4SDLWj7mOa5zXysZ4fDyxnWitLymlwjAJy/i4xXj8TjLiismhyT0h0oMMoxNCCCGEEELkJPfVM0qBwjEe30hrIA5SyHYfX22l+MSMu1CCa6XtOqWZ1norcNS2GGir3eRtW56Xgl3FPMfkXKPErk9B231EMoa9JXW8IsnYPiF50rCtEBlCejYJIYQQQgghsrqM+hI9ZgHnggmulbGuY3rPFEjm+jHjTrQnVCYwH5iAqdN0y/bcNUwvp+SKeY7JuUaJXZ/oRFTuJHqFJed4MZNabhlQSF6IDCU9m4QQQgghhBCZUfQwrUR7cSilFP8V7U5vMYdueWTQMZMSPXtaGaVUYj2Voq9VdDHvS8nsnWOlLzA9rHIDXW3PLbbNHJdc/8R4XCUZ68dc52yc12IuJ1oUXSlVnISH0EHsmlc1ElxLiCxKkk1CCCGEEEKIzCjMdl9CKeWcyHqeJL9XT1ptjvG4Qyr3EXN4mkpDLNG2x9hX8yTWfYT/eu5sT2zFzEBr/TewLs7T81K4j/NAdK8hX6VUySQ2aRnjcdxrFHO5WRL7SepnsTHG46SK5wuR5UiySQghhBBCCJEZHbDdOxN75q64BmVALNF+Bi7bHj+jlPJKxT5iDp9yRJLs2xiPX7P1XkrI8AS2y8w+AP6w3b7XWv+Win1En2tuYHBCK9l6hr1oW9TcP1wv5vL/EkqC2n4GQ5KI6Sf+K8LeQyklvZtEtiLJJiGEEEIIIURm9EuMx28qpfLGXUEp1QczY1mG0FrfBCbbFvMA3yeWcFJK+SqlKsbZx2Xgqm3RN4nkUHL8COy3PW4ITFFK3fc5Tyk1CmhvW/wbWJjG42YIrfUKrXV92y21vcneB6KH3g1TSnWMu4JSygVYwH8zzn2rtT4acx2t9Z/AGttiNWCWUipXnP0o4G2gfmIB2d5L42yLeYCflFJ1EttGKVVXKZXSmeuEsIQUCBdCCCGEEEJkRsuBY8DDmOFfO5RSn2Hq5pQBnsAMZdqMqZ9TNt69ON5UoBFmGF1FYLdSahmwATgP5APcMcOx6gBN+W8YV7R1mKFTlYHFSqnv+G/YIMDG5NYl0lpHKaWeA7bajv0q0FQptRBTY6o08LQtZoB7QA+tdXjyTzlr01qHKqWGALMxn4GXKqVWYHoXhWHqNPUGHrJtcgYYmMDuXgB2YmYm7APUU0p9gUnglQGeAfwwQ+7Kk8j7Umv9gVKqLtADeBDYrpT6BViL+dkpoATghRmWVxk4DgxL8UUQIoNJskkIIYQQQgiR6Wit7yilugK/AsUwH7hnxlntD6AjsCMD49JKqU62WAYAuYBOtlt8ouJ5bjzQGpMc6my7xVQJCE1BTLuVUs0xw8VcgVq2W1yXgWe01huSu+/sQmv9sa3X0QzABXjcdotrH9DeVuspvv0cU0q1AVZgEkHemARkTPsxP9NNyQgtEDgKvAHkBdrYbgk5nchrQmQaMoxOCCGEEEIIkSlprXdikkzvY3o5hQNXgG2YnieNtdYXLIjrntZ6IOADvAvsxfSQibTd77TF3ERrfV/CQWsdAtQG5gCHgVsOiGkbpofOK5ji0xcwvZguYa7X60BlrfWqtB4rq9JazwaqYoa5hWB+VncxM9b9BPQCfLXWoUns5zfMbISTgUOYIXphmJ/7MKCe1vpUMmPSWusJmATjGMzP7l9bXOGY5NIa4E2ggdY6IHlnK4S1lNba6hiEEEIIIYQQQgghRDYhPZuEEEIIIYQQQgghhMNIskkIIYQQQgghhBBCOIwkm4QQQgghhBBCCCGEw0iySQghhBBCCCGEEEI4TG6rA0gv+fPn16VKVefkSfDygjx5rI4oe7l58yYFChSwOoxsS65v+pLrm/7kGqcvub7Gzp07L2qtS1odh/hP0aJF9cMPP2x1GJY6fRrOnXNc+1N+3x1LrqdjnT17FoCyZctaHEn2Ie9Rx3PENb15Ew4dggoVoFQpBwWWhSWnDZZtk01FixZl+vRgOnaEL74AX1+rI8peNmzYQEBAgNVhZFtyfdOXXN/0J9c4fcn1NZRSJ62OQcRWunRpgoODrQ7DUqGhULkytGsHkyalfX/y++5Ycj0da9y4cQCMHTvW4kiyD3mPOp4jrukzz8DZs7B/PxQq5Ji4srLktMGy9TC64sXN/eXL1sYhhBBCCCFyBjc3ePxx+Phj8024EEKIrO3vv2HJEnj+eUk0pUS2TjY98IC5v3TJ2jiEEEIIIUTO8cor5svOL76wOhIhhBBp9cEHEBUFgwZZHUnWkq2TTdE9myTZJIQQQgghMkrDhlC3LsycaT6gCCGEyJpu3IBPPoGOHU3PVZF82bZmE/zXs0mG0QmROvfu3eP06dOEh4dbHYpDFSlShIMHD1odRrYm1zh95bTr6+LiQvny5XF2drY6FCGSRSnTu6lbN/jpJ1O/SQghHCW7ttHTS1raTdevw1dfQZkykIOaXnZpaYNl62STiwvkzy89m4RIrdOnT1OoUCHc3NxQSlkdjsNcv36dQjLgOl3JNU5fOen6aq25dOkSp0+fplKlSlaHI0SydewI5cvD9OmSbBJCOFZ2baOnl9S2m7SGffugYkXw8EiHwDK5tLbBsvUwOjBD6STZJETqhIeHU7x4cfknJoSwjFKK4sWLy7e3Istxdjb1Pdavh5AQq6MRQmQn0kbPGGFhcOcOlC5tdSTWSGsbLEckm2QYnRCpJ//EhBBWk79DIqvq2xcKFIAZM6yORAiR3cj/xvR37hzkyQPFilkdiXXS8j7L9smmBx6Qnk1CCCGEECLjFS0KvXubeh9nz1odjRBCiOS6edMUBy9VytThEymX7ZNN0rNJiJxl3rx5nE1Diz40NJRFixY5MCLHKliwYJLrBAUFMXXqVADGjBnDmjVrElx3+fLlHDhwIMHXZ8+ezRe2ubsDAgIIDg5OdqxhYWHMmjXLvnz27Fk6deqU7O2FECI7ePlliIiADz+0OhIhhBDJde4cODlBiRJWR5J15Yhkk/RsEiLnyMzJpsjIyHTZb2LGjx/Po48+muDriSWbIiIiGDBgAD169EjVseMmm8qWLcvSpUtTtS8hhMiqKleGJ56A2bPh1i2roxFCiMwtMDDQ3l7s06dPol+Kppe7d+HKFShZEnKnYUo1Nzc3Ll68mKp1lixZgoeHB02bNgVg9+7d9OnTJ9F9ffDBB8ydOzf1ATtYtk82PfCA6dmktdWRCCFSY/r06Xh6euLp6cnMmTMBkxDy9PS0rzN16lSCgoJYunQpwcHBdO/eHV9fX27fvo2bmxvDhw+nXr161KtXj2PHjgGx/5HBfz2GRowYwebNm/H19WVGnCIbGzZsICAggE6dOlGtWjW6d++Otv1xWbt2LTVr1sTLy4vevXtz584dwPwDGT9+PI0aNWLJkiW4ubkxatQoGjRoQJ06ddi1axetWrWicuXKzJ49G4AbN27QvHlzatWqhZeXFytWrEjyOk2cOBF3d3ceffRRDh8+bH8+5nmOGDGC6tWr4+3tzWuvvcZvv/3GypUrGTp0KL6+vhw/fpyAgABGjRqFv78/7777bqxeUgALFizgkUcewdPTk+3btwPct46npycnT55kxIgRHD9+HF9fX4YOHRrr5xYeHk6vXr3w8vKiZs2arF+/HjDJwqeeeorWrVtTpUoVhg0bluS5CyFEZvfKK6Y9ausoKoQQIhnmzJlD9erV023/ERER8T5//rzJH5QqlW6HTtJnn33GrFmz7G3kSZMm8dJLLyW6Te/evXnvvfcyIrxkSUOeLmsoXhwiI+HaNShSxOpohMi6Bg92/Gw6vr5gyx/Fa+fOncydO5c//vgDrTV+fn74+/tTLIEqfZ06deKDDz5g6tSp1KlTx/584cKF2b59O1988QWDBw/mq6++SvCYkydPZurUqfzwww/xvr579272799P2bJladiwIVu3bqVOnToEBgaydu1aqlatSo8ePfjoo48YPHgwAC4uLmzZsgUwCZ8KFSqwbds2hgwZQmBgIFu3biU8PJwaNWowYMAAXFxcWLZsGYULF+bixYvUr1+fDh06JFigb+fOnXz99dfs3r2biIgIatWqRe3atWOtc/nyZZYtW8ahQ4dQShEWFkbRokXp0KED7dq1izW8LSwsjI0bNwImkRTTzZs3+e2339i0aRO9e/dm3759iV7Lffv2EWJ744SGhtpf+9A2nmTv3r0cOnSIli1bcuTIEQBCQkLYvXs3efPmxd3dnZdeeokKFSokeBwhhMjsGjaEunVh+nTo188MzRBCCEewoo0eGhpKmzZtaNSoEb/99hvlypVjxYoV5MuXj5CQEAYMGMCtW7eoXLkyn3/+OcWKFSMgIAA/Pz/Wr19PWFgYn332GY0bN040joCAAHu7vmDBgrz88sv88MMP5MuXjxUrVlC6dGkuXLjAgAEDOHXqFAAzZ86kYcOGbN++ncGDB3P79m3y5MnDF198gbu7O/PmzePHH38kPDycmzdvsm7duljn1bp1azw8GrF//+/UretDr169GDt2LOfPn2fhwoXUq1ePy5cv07t3b/766y/y58/PJ598gre3N5cuXaJbt25cuHCBevXq2b+UBvOF7Xvvvcfdu3fx8/Nj1qxZ5MqVK97zHj9+PFu2bOHEiRN06NCBMWPGsGfPHnx8fAAYNGgQJUqUYMyYMaxatYqJEyeyYcMG8ufPj5ubG9u3b6devXpJ/pynT5/Ovn37+Pzzz9m7dy/dunVj+/bt5M+fP8ltkyPb/6srXtzcy1A6IbKeLVu28OSTT1KgQAEKFizIU089xebNm1O8n27dutnvt23blqaY6tWrR/ny5XFycsLX15fQ0FAOHz5MpUqVqFq1KgA9e/Zk06ZN9m26dOkSax8dOnQAwMvLCz8/PwoVKkTJkiVxcXEhLCwMrTWjRo3C29ubRx99lDNnznDu3LkEY9q8eTNPPvkk+fPnp3Dhwvb9x1S4cGFcXFzo06cP3333XaL/ROLGG1P0tWzSpAnXrl0jLCwswXUTs2XLFp577jkAqlWrRsWKFe3JpubNm1OkSBFcXFyoXr06J0+eTNUxhBAis1AKXn0Vjh6FlSutjkYIIdLu6NGjDBw4kP3791O0aFG+/fZbAHr06MHbb7/Nnj178PLyYty4cfZtIiIi2L59OzNnzoz1fHLcvHmT+vXr8+eff9KkSRM+/fRTAF5++WWGDBnCjh07+Pbbb+1DzapVq8amTZvYvXs3r7/+OqNGjbLva9u2bcyfPz9WoinasWPH6NLlZYKD93Do0CEWLVrEli1bmDp1KpMmTQJg7Nix1KxZkz179jBp0iR7yYlx48bRqFEjdu/eTYcOHewJsIMHD7J48WK2bt1KSEgIuXLlYuHChQme65gxY6hTpw4LFy5kypQpBAcHxxrVMXnyZBYvXsz69esZNGgQc+fOxcn2LUadOnXsn5emTJmCr6/vfbdBgwYBMHjwYI4dO8ayZcvo1asXH3/8scMSTZADejY98IC5v3QJHnrI2liEyMoS+3YjvegExr/mzp2bqKgo+3J4eHii+4nZIyj6ccx9aK25e/dusmLKmzev/XGuXLmIiIhIMM5oBQoUiHcfTk5Osfbn5OREREQECxcu5MKFC+zcuRNnZ2fc3NxSdI7xyZ07N9u3b2ft2rV8/fXXfPDBB/H+g40v3sSOo5RK8c8DEv7ZQvzXWAghsrqOHcHNDaZMMTWchBDCEaxoowNUqlQJX19fAGrXrk1oaChXr14lLCwMf39/wHwB27lzZ/s2Tz31VKz1UyJPnjy0a9fOvv2vv/4KwJo1a2LVdbp27RrXr1/n6tWr9OzZk6NHj6K1jlU7tUWLFjwQnSiIISoKypWrhK+vF4ULQ40aNWjevDlKKby8vOwxb9myxZ5ca9asGZcuXeLq1ats2rSJ7777DoC2bdvaR2OsXbuWnTt3UrduXQBu375NqRSM0fvnn38oWbKkfTl//vx8+umnNGnShBkzZlC5cmX7a6VKleLQoUMADB06lKFDhya4XycnJ+bNm4e3tzf9+/enYcOGyY4pOaRnkxAi02rSpAnLly/n1q1b3Lx5k2XLltG4cWNKly7N+fPnuXTpEnfu3Ik15K1QoUJcv3491n4WL15sv2/QoAFgaint3LkTgBUrVnDv3r0Et09KtWrVCA0NtdeD+vLLL+3/ZFPj6tWrlCpVCmdnZ9avX59kz54mTZqwbNkybt++zfXr1/n+++/vW+fGjRtcvXqVxx57jJkzZ9qHtqX0fKOv5ZYtWyhSpAhFihTBzc2NXbt2AbBr1y5OnDiR5L6bNGli/0bnyJEjnDp1Cnd392THIYQQWU3u3KZ202+/mZsQQmRlqflyMHqbmOv36tULX19fHnvssUS3dXZ2tn/pGXP7qKgotm3bRkhICCEhIZw5c4ZChQoxevRomjZtyr59+1i8eHGsL0MT+mL16lXInTsvZcqY5ZhfDEd/KQzxf2kaHVt8XwBrrenZs6c9xsOHD99XqiIx+fLlu+/L3L1791K8ePH7JkYKDw8nX758QNI9m8D0UCtYsGCaJlhKSLZPNrm6mvt//rE2DiFEytWqVYvAwEDq1auHn58fffr0oWbNmjg7OzNmzBj8/Pxo164d1apVs28TGBjIgAED7AXCAe7cuYOfnx/vvvuuveh337592bhxI/Xq1eOPP/6w/9Px9vYmd+7c+Pj43FcgPCEuLi7MnTuXzp074+XlhZOTEwMGDEj1eXfv3p3g4GB799mY5xefWrVq0aVLF3x9fenYsWO849+vX79Ou3bt8Pb2xt/f335uXbt2ZcqUKdSsWZPjx48nGVuxYsV45JFHGDBgAJ999hkAHTt25PLly/j6+vLRRx/ZhxMWL16chg0b4unped+3Ki+++CKRkZF4eXnRpUsX5s2bF6vRIoQQ2VHv3qbX/ZQpVkcihBCOV6RIEYoVK2YfxpWcL2Dnzp1LSEgIP/30U6qO2bJlSz744AP7cvQXqlevXqVcuXIAiQ5Zi6Y1XLxoauolVes55pemGzZsoESJEhQuXDjW8z///DNXrlwBTImIpUuXcv78ecDUUk1JmQgPDw/7l9oAJ0+eZNq0aezevZuff/6ZP/74w/7akSNH7EPuhg4dak9wxbxFFxG/evUqL7/8Mps2beLSpUuOnzVaa50tb66urlprrW/f1hq0njBBCwdav3691SFka5nl+h44cMDqENKsYsWK+sKFC7Geu3btmkXR5BxyjdNXTry+8f09AoJ1JmhzyO2/W9WqVe/7OYnY3nhDa6W0Pnw4eetnljZBdiHX07GCgoJ0UFCQ1WFkK8l5j1rdRj9x4oSuUaOGfXnKlCl67NixWmutd+/erf38/LSXl5d+/PHH9eXLl7XWWvv7++sdO3ZorbW+cOGCrlixYrz77tmzp16yZMl92xQoUMC+zpIlS3TPnj3t+3r66ae1l5eX9vDw0P3799daa/3bb7/pKlWq6EceeUQPHTrUfry5c+fqgQMH3nfcq1e1XrHihK5W7b/zihlLzHO+dOmS7tChg/by8tJ+fn76zz//1FprffHiRd2iRQtds2ZNPXjwYP3ggw/aP4d8/fXX2sfHR3t5eelatWrpbdu2aa3j/6wS99y11trT01Nfu3ZNR0VF6ebNm+sVK1ZorbUODg7Wnp6e+vbt21prrWvWrBnv/uLTq1cv/e6772qttT516pSuXLmyPnfu3H3rpbYNpsx62U/ZsmV1dFewEiXg6adh1iyLg8pGoqeAF+kjs1zfgwcP4uHhYXUYaeLm5kZwcDAlSpSwP3f9+nUKFSpkYVTZn1zj9JUTr298f4+UUju11nUS2ERYwN3dXR8+fNjqMDK1c+egYkXo2RM+/jjp9TNLmyC7kOvpWNFFnseOHWtxJNlHct6j2aGNnpGS0246cgRu3wYvr8w5Y+iMGTMoVKiQvQB6fHbv3s306dP58ssvHXrs1LbBMuFldLyyZSEdhiAKIbKA0NDQWIkmIYQQwkqlS0OPHjB/vkk8CSGEsNatW3DtGpQqlTkTTQAvvPBCkiUnLl68yJtvvplBESUtk15KxypXDs6csToKIYQQQggh4NVX4e5diFFmRAghhEX+/dckmWJM+JbpuLi48NxzzyW6TosWLXBzc8uYgJIhRySbpGeTEEIIIYTILNzdoUMHU+Lh5k2roxFCiJzr7l24csUkmnLntjqa7CVHJJvKlTPZymTMxiiEEEIIIUS6GzoULl+Gzz+3OhIhhMi5zp0zM9GVKmV1JNlPjkg2lS0LUVFgm2lQCCGEEEIISzVsCA0awPTp8oWoEEJYISICLlyABx6AJMohiVTIEcmmcuXMvdRtEiL7mzdvHmfTMG42NDSURYsWpfg1R7pz5w6PPvoovr6+LF68ON2PF5+goCCmTp1qybGjbdiwgXbt2lkagxBCpKfhwyE0FL75xupIhBAiZR555BGH7zOhtnbt2rW5e/duive3fPlyDhw4kODrFy6YTillysT/elhYGLMyyZT2AQEBBAcHWx1GiuSIZFPZsuZe6jYJkc4WLgQ3N1Nhz83NLGcwq5JNEQ78Wnr37t3cu3ePkJAQunTpkqxtIiMjHXZ8IYQQGaN9e6heHSZPNsM4hBAiXaRDG/23335L8z7iiq+tHRoaSrly5ciTJ0+K95dYsikqygyhK1IE8uePf/vMlGzKinJEskl6NgmRARYuhH794ORJ02I+edIsp/Gf2fTp0/H09MTT05OZM2cC5p+Op6enfZ2pU6cSFBTE0qVLCQ4Opnv37vj6+nL79m3c3NwYPnw49erVo169ehw7dgyAwMBAli5dat9HwYIFARgxYgSbN2/G19eXGTNmxIol7mvz5s2jc+fOtG/fnpYtW3Ljxg2aN29OrVq18PLyYsWKFfZ4PTw86Nu3LzVq1KBly5bcvn0bgPfee4/q1avj7e1N165dOX/+PM8++ywhISH4+vpy/Phx1q5dS82aNfHy8qJ3797cuXMHADc3N8aPH0+jRo1YsmQJbm5ujBo1igYNGlCnTh127dpFq1atqFy5MrNnz7afx5QpU6hbty7e3t6MHTvW/vzEiRNxd3fn0Ucf5fDhw/H+PJYsWYKnpyc+Pj40adLEfn6NGzemVq1a1KpVy9742LBhA/7+/jz99NNUrVqVESNGsHDhQurVq4eXlxfHjx+3/ywGDBhA48aNqVq1Kj/88MN9x7158ya9e/embt261KxZ035t9+/fT7169fD19cXb25ujR48m/GYSQohMxsnJ9G7auxd++snqaIQQ2VI6tdGj284bNmwgICCATp06Ua1aNbp37462Zc8d0Q7/+eefad26NQBfffUVXl5eeHp6Mnz48Pu2B1i6dCmBgYH89ttvrFy5kqFDh9KwYUOOHz9OQEAAgwcP5pFHHqF6dU/+/HM7Zcrc36Pf09OT0NBQRowYwfHjx/H19WXo0KGxzv/mzZu0bdsWHx8fPD097aMRxo8fT926dfH09KRfv372axEQEMCQIUNo0qQJHh4e7Nixg6eeeooqVarwxhtvAKZNXa1aNXr27Im3tzedOnXi1q1b91371atX06BBA2rVqkXnzp25ceOG/fpFf6547bXXUvYDTQ9a62x5c3V11dEiIrTOlUvr11/XwkHWr19vdQjZWma5vgcOHEj+yhUram3+hcW+VayY6uMHBwdrT09PfePGDX39+nVdvXp1vWvXLn3ixAldo0YN+3pTpkzRY8eO1Vpr7e/vr3fs2BEjrIp6woQJWmut58+fr9u2bauvXbume/bsqZcsWWJfr0CBAlprc+3btm0bbzxxX5s7d64uV66cvnTpktZa63v37umrV69qrbW+cOGCrly5so6KitInTpzQuXLl0rt379Zaa925c2f95Zdfaq21dnV11eHh4Vprra9cuXLfcW7fvq3Lly+vDx8+rLXW+rnnntMzZsywn9vbb78d61xnzZqltdZ68ODB2svLS1+7dk2fP39elyxZUmut9apVq3Tfvn11VFSUjoyM1G3bttUbN260X+ubN2/qq1ev6sqVK+spU6bcdw08PT316dOnY8V78+ZNffv2ba211keOHNG1a9fW165d0+vXr9dFihTRZ8+e1eHh4bps2bJ6zJgxWmutZ86cqV9++WWttdY9e/bUrVq10pGRkfrIkSO6XLly+vbt27Guw8iRI+3X7MqVK7pKlSr6xo0b+n//+59esGCB1lrrO3fu6Fu3bsX7s8turl27ZnUIGS6+v0dAsM4EbQ65/XerWrXqfT8nkbi7d7WuUEHrRo3ifz2ztAmyC7mejhUUFKSDgoKsDiNbSc571Oo2utax286FCxfWf//9t46MjNT169fXmzdvth36/na41jpF7fAOHTro48eP6zNnzugKFSro8+fP63v37ummTZvqZcuWxdpea62XLFmie/bsGes40e0mf39/3adPHx0ZqfXnn2/UDz9cQ0dFaT127NhY7d4aNWroEydO3PeZI6alS5fqPn362JfDwsK01tr+uUBrrZ999lm9cuVK+7GHDRumtTbtYFdXV3sbuVy5cvrixYv6xIkTGtBbtmzRWmvdq1cve1zRn3EuXLigGzdurG/cuKG11nry5Ml63Lhx+tKlS7pq1ao6KipKa/1fO90RUtsGyxE9m3LlAldX6dkkRLo6dSplzyfDli1bePLJJylQoAAFCxbkqaeeYvPmzSneT7du3ez327ZtS3U88WnRogUPPPAAYJL3o0aNwtvbm0cffZQzZ85w7tw5ACpVqoSvry9gxp2HhoYC4O3tTffu3VmwYAG545lv9fDhw1SqVImqVasC0LNnTzZt2mR/Pe4wuw4dOgDg5eWFn58fhQoVomTJkri4uBAWFsbq1atZvXo1NWvWpFatWhw6dIijR4+yefNmnnzySfLnz0/hwoXt+4mrYcOGBAYG8umnn9qH7t27d4++ffvi5eVF586dY3VXrlu3Lq6uruTNm5fKlSvTsmVLe3zR1wDg6aefxsnJiSpVqvDQQw9x6NChWMddvXo1kydPxtfXl4CAAMLDwzl16hQNGjRg0qRJvP3225w8eZJ8+fIl/MMSQohMyNkZXnsNtmwxNyGEcKh0aKPHVa9ePcqXL4+TkxO+vr6x2nhpaYffvXuX06dP89BDD7Fjxw4CAgIoWbIkuXPnpnv37rHaxMnVrVs3rlwBL68m3L59jatXw1K8DzBt2TVr1jB8+HA2b95MkSJFAFi/fj1+fn54eXmxbt069u/fb98mZju9Ro0a9jbyQw89xN9//w1AhQoVaNiwIQDPPvssW+L8Y/j99985cOAADRs2xNfXl/nz53Py5EkKFy6Mi4sLffr04bvvviN/QmMDM1COSDaBqdskNZuESEcPPpiy55PBJM3vlzt3bqKiouzL4eHhie5HKXXf45j70FqnquggQIECBeyPFy5cyIULF9i5cychISGULl3aHlveGFNc5MqVy17j6ccff2TgwIHs3LmT2rVr31f7KaFrEN/xYx7Hyckp1jGdnJyIiIhAa83IkSMJCQkhJCSEY8eO8fzzzwOxr1NCZs+ezYQJE/j777/x9fXl0qVLzJgxg9KlS/Pnn38SHBwc61rGjSFmfDHPNe6x4y5rrfn222/tcZ86dQoPDw+eeeYZVq5cSb58+WjVqhXr1q1L8hyEECKz6dMHSpQwtZuEEMKh0qGNHldC7VxIWzt88+bNNGrUyL5eQmIeI6nPBaD491/Il88MZVZKpfizBUDVqlXZuXMnXl5ejBw5kvHjxxMeHs6LL77I0qVL2bt3L3379o21r6Ta6XHPJb5lrTUtWrSwt4kPHDjAZ599Ru7cudm+fTsdO3Zk+fLl9qGHVsoxyaZy5aRnkxDpauLE+6vr5c9vnk+lJk2asHz5cm7dusXNmzdZtmwZjRs3pnTp0pw/f55Lly5x586dWDV+ChUqxPXr12PtJ3oM9eLFi2nQoAFgxpDv3LkTgBUrVnDv3r0Et09s3zFdvXqVUqVK4ezszPr16zl58mSi5xcVFcXff/9N06ZNeeeddwgLC7OPuY5WrVo1QkND7WPcv/zyS/z9/RPdb2JatWrF559/bj/OmTNnOH/+PE2aNGHZsmXcvn2b69ev8/3338e7/fHjx/Hz82P8+PGUKFGCv//+m6tXr+Lq6oqTkxNffvllqoqVL1myhKioKI4fP85ff/2Fu7v7fXG///779obG7t27Afjrr7946KGHGDRoEB06dGDPnj0pPrYQQlgtf34YNAh+/BHkz5gQwqHSoY2eEmlph//yyy+0adMGAD8/PzZu3MjFixeJjIzkq6++sreJS5cuzcGDB4mKimLZsmX27eNru3/55WJu34bQ0C0UKVKEIkWK4Obmxq5duwDYtWsXJ06cSHD7aGfPniV//vw8++yzvPbaa+zatcueWCpRogQ3btyIVZcquU6dOmXvAfbVV1/Zk23R6tevz9atW+2fDW7dusWRI0e4ceMGV69e5bHHHmPmzJmEhISk+NiOdv+YjWyqXDlYu9YMUE3Gl/dCiJTq3t3cv/666Zb74IPmn1j086lQq1YtAgMDqVevHgB9+vShZs2aAIwZMwY/Pz8qVapEtWrV7NtEF5vOly+f/Q/1nTt38PPzIyoqiq+++gqAvn378vjjj1OvXj2aN29u7yHk7e1N7ty58fHxITAwkCFDhtj3Hfe1YsWKxbkE3Wnfvj116tTB19c3VlzxiYyM5Nlnn+Xq1atorRkyZAhFixaNtY6Liwtz586lc+fOREREULduXQYMGJCKq2m0bNmSgwcP2v/ZFyxYkAULFlCrVi26dOmCr68vFStWpHHjxvFuP3ToUI4ePYrWmubNm+Pj48OLL75Ix44dWbJkCU2bNr2vt1VyuLu74+/vz7lz55g9ezYuLi6xXh89ejSDBw/G29sbrTVubm788MMPLF68mAULFuDs7EyZMmUYM2ZMyi+KEEJkAv/7H7zzjrktWGB1NEKIbCMd2ugpkZZ2+IYNGxg/fjwArq6uvPXWWzRt2hStNY899hiPP/44AJMnT6Zdu3ZUqFABT09P+5eqXbt2pW/fvsycOZPvvvsOgNy5i9GnzyNERFzj888/B6Bjx4588cUX+Pr6UrduXXv5iuLFi9OwYUM8PT1p06YNU6ZMsZ/X3r17GTp0KE5OTjg7O/PRRx9RtGhRe2kJNzc36tatm+Lr5eHhwfz58+nfvz9VqlThhRdeiPV6yZIlmTdvHt26dbNPGjRhwgQKFSrE448/Tnh4OFrr+yY6soJKaohGVlW2bFkdc/rzmTNhyBA4fx5KlrQuruwietYBkT4yy/U9ePAgHh4eVoeRJm5ubgQHB1OiRAn7c9evX6dQoUIWRpX9peQaBwYG0q5dOzp16pTOUWUfOfE9HN/fI6XUTq11HYtCEvFwd3fXCc1mKZL22mumzXr0KFSqZJ7LLG2C7EKup2ONGzcOINbstiJtkvMezSpt9Pja4cl1+vRp+vbty88//5zmOKLbTY0bB9C371Rat65DqVJp3q3DhYaG0q5dO/bt22d1KLGktg2WY4bRVali7mVWbCGEEEIIkRkNGWJqiMSYgVsIIXKk8uXLOyTRFNPdu2bysOLFHbpbkYAcM4wuZrLpkUesjUUIkXFizoYhMqd58+ZZHYIQQmQK5cpBz57w+ecwejSUKWN1REIIkXqZqR1+6xZ8+OEGypY1CafMyM3NLdP1akqLbN2z6fff4dVXITzcdEXOlUt6NgkhhBBCiMxr2DDz7fv06VZHIoQQ2cc//5h8QGYcPpddZetk07595h/1hQvg7AxubpJsEkIIIYQQmVeVKtC1K8yaBZcuWR2NEEJkfXfuOHHlikk05c4xY7usl6WSTUqpXEqp3UqpH5Je+79C4BcumPsqVSTZJIQQQgiREiltf4m0GzUKbt6Ed9+1OhIhhMj6Ll/Og5OT9GrKaFkq2QS8DBxM7srRRe8vXjT30cmmbDoBnxBCCCFEekhR+0ukXY0a0LEjvPce3LiRSYuLCCFEFhAeDteu5aZkSTPaSWScLJNsUkqVB9oCc5K7TXw9m27cgPPnHR+fEMLxLl26hK+vL76+vpQpU4Zy5crZl+/evZusfQQGBrJ06dJUx7BkyRJq1KiBk5MTwcHBia4bFhbGrFmzEl1ny5Yt1KtXj2rVqlGtWjU++eSTZMdSsGDBZK8bn4CAANzd3fH29qZatWr873//IywszP76I0nMnjBp0qREX3/ssccICwsjNDQUPz+/FMW2YcMGfvvtN/vy7Nmz+eKLL1K0DyGE46Wm/SUc4/XX4epVWL68nNWhCCHEfd577z08PDzo3r07K1euZPLkycneNjQ0lEWLFjk0noTa/P/+C0pB6dKJbx+3LZpSQUFBTE2HqUTv3LnDo48+iq+vL4sXL4712qFDh/D19aVmzZocP36c27dv4+/vT2RkZIL727t3L4GBgQ6PMz5ZacTiTGAYUCihFZRS/YB+AK6urhw6tAVoxLZtRylX7gy3bz8AePPNN7vx8rqaETFnWzdu3GDDhg1Wh5FtZZbrW6RIEa5fv27Z8fPkycPmzZsBk+goWLAggwYNAswf3jt37iS5j3v37nH79u1Y5xEZGZngeUVGRpIrxhQVlSpV4ssvv+Tll1/m5s2biV6P06dP88EHH/Dcc8/F+/q5c+fo1q0bixYtwtfXl0uXLvHkk09SrFgxWrduHWvdiIgIcsczqDy5Pw+tNVprnJz++04hMjKSTz75hFq1anH37l2CgoJo166dfVrZVatWJbr/SZMm8dJLLyV4rOh/gDdu3EBrnaL3zqpVqyhYsCBeXl4AdO/eHUj++eY0ib2Hs6vw8PBM8XcxB5pJCtpfJUuWlJ+TA9Wv78U335SnY8dN5MsXZXU42UJmaWNlN3JNHSc571Gr2+gAH3zwAd9++y1ubm4ANG3a9L6YEmrPHjhwgC+++IL27dun6thx2+sQf5v/3j3FpUsFKFz4Lnfu3CXmR4e4scVti6bUnTt3cHZ2TvbPJaFrE9f27dsJDw+3fyaKuf/FixfTunVrXn/9dQBmzZrFY489xq1btxLcn5ubGydPnuTAgQNUqFAhWbGmug0W/SEhM9+AdsAs2+MA4IektnF1ddWRkVrnyqX1669rrbXWx45pDVp//rkWabR+/XqrQ8jWMsv1PXDggNUh2I0dO1ZPmTJFf/LJJ7pOnTra29tbP/XUU/rmzZv62rVr2s3NTd+9e1drrfXVq1d1xYoV9d27d3XPnj31kiVLtNZar1mzRvv6+urq1avrXr166fDwcK211hUrVtTjxo3TDRs21F999VW8x/f399c7duywL+/bt0/XrVtX+/j4aC8vL33kyBHdpUsX7eLion18fPRrr7123z7eeOMNPXr06FjPrVmzRjdq1EhrrXXPnj31kCFDdEBAgH7llVf0X3/9pevXr6/r1Kmj33jjDV2gQAH7du+8846uU6eO9vLy0mPGjNFaa33ixAldrVo1/cILL2hfX18dGhqa6DlERERoNzc3HRISorXW9v2fPXtWN27cWPv4+OgaNWroTZs26eHDh2snJyft4+Ojn3nmmXiPVbFiRX3hwgV94sQJXaVKFd2jRw/t5eWlO3bsqG/evGm/1hcuXNBaa71jxw7t7++vT5w4oUuXLq3Lli2rfXx89KZNm+w/b6213r17t/bz89NeXl76iSee0JcvX7afz7Bhw3TdunV1lSpV9KZNm+L92WVH165dszqEDBff3yMgWGeCdkp2vaWm/VW1atV4fnoitX77zbRdp02zOpLsI7O0sbKLoKAgHRQUZHUY2Upy3qNWt9H79++vnZ2dtaenp54+fbqeO3euHjhwoNb6/vbshg0btI+Pj/bx8dG+vr762rVr2s/PTxcuXFj7+Pjo6dOnx9p3VFSUfu2113SNGjW0p6en/vrrr7XW5roEBATobt26aQ8PDx0VFaUHDhyoPTw89GOPPabbtGljb/MHBwfrJk2aaE/PWrp+/ZZ6//6jWmvTdhw5cqRu0qSJnjp1qv2Y8bVFV65cqevVq6d9fX118+bN9b///qsjIyP1ww8/rM+fP6+11joyMlJXrlxZX7hwIdlt1/iOr7XWly5d0o8//rj28vLSfn5++s8//9Tnzp3TlStXtl+rY8eO2df/8ccf7TEHBARorbVu0KCBPnHihNZa6++++043b95cR0VF6bNnz+oqVarof/75R2ut9cyZM/Xbb7+d7J93attgWaVnU0Ogg1LqMcAFKKyUWqC1fjaxjZycoHjx/2o2Vaxoqs9LkXAhUmHnYLgS4th9FvOF2jNTtMlTTz1F3759AXjjjTf47LPPeOmllwgICODHH3/kiSee4Ouvv6Zjx444xxiYHR4eTmBgIGvXrsXV1ZWBAwfy0UcfMXjwYABcXFzYsmVLsuOYPXs2L7/8Mt27d+fu3btERkYyefJk9u3bR0hISLzb7N+/n549e8Z6rk6dOuzfv9++fOTIEdasWUOuXLno0KEDL7zwAj169ODDDz+0r7N69WqOHj3K9u3b0VrToUMHNm3axIMPPsjhw4eZO3duksP5AHLlyoWPjw+HDh3Cx8fH/vyiRYto1aoVr7/+OpGRkdy6dYvGjRvzwQcf2M8tNDQ00WMdPXqUuXPn0rBhQ3r37s2sWbN47bXX4o3Dzc2NAQMGULBgQfs6a9eutb/eo0cP3n//ffz9/RkzZgzjxo1j5syZgPlWaPv27fz000+MGzeONWvWJHneQohkS1X7SzhOgwZQq9YVpkwpxosvgouL1REJITIdC9ros2fP5pdffmH9+vWUKFGCefPmxXo9Znu2ffv2fPjhhzRs2JAbN27g4uLC5MmTmTp1Kj/8cP+8E9999x0hISH8+eefXLx4kbp169KkSRPA9PLZt28flSpV4rvvvuPw4cPs3buXc+fOUb16dXr37s29e/d46aWXWLp0Bf/8U5Jt2xbz1lvj+PLLLwFT9mLjxo2xjhlfW/TKlSv8/vvvKKWYM2cO77zzDtOmTePZZ59l4cKFDB48mDVr1uDj40OJ6GLRNom1XeM7PsDYsWOpWbMmy5cvZ926dfTo0YOQkBDmzJkT77V67LHHYsV89+5d/vrrL3tPsyeffJJvv/2WDz/8kF9++YVx48ZRpkwZwHz+mDx5MsOGDUvwZ+wIWaJmk9Z6pNa6vNbaDegKrEtuQ6dkyf9qNuXODQ89JMkmIbKyffv20bhxY7y8vFi4cKE9UdOnTx/mzp0LwNy5c+nVq1es7Q4fPkylSpWoWrUqAD179mTTpk3217t06ZKiOBo0aMCkSZN4++23OXnyJPny5UtyG601Sqn7no/5XOfOne3dgrdu3Uq3bt0AYg3NW716NatXr6ZmzZrUqlWLQ4cOcdT2h61ixYrUr18/2edhvpiIrW7dusydO5egoCD27t1LoULxj55J7Fjly5enYcOGADz77LMpSuTFdPXqVcLCwvD39wfu/7k99dRTANSuXZvQ0NBUHUMIEb+0tL+E4zz33En+/Rc+/9zqSIQQInlitmcbNmzIK6+8wnvvvUdYWFiSQ8e2bNlCt27dyJUrF6VLl8bf358dO3YAUK9ePSpVqgTApk2b7OuVLVuWZs2aAabNv2/fPlq0aEG3br7Mnj2BM2fO2Pef3Db/6dOnadWqFV5eXkyZMsX+maN37972uqKff/75fZ85kmq7JnT8LVu22Nv7zZo149KlS1y9mvzSPxcvXqRo0aKxnnv//fd56623yJs3r/0zBUCpUqU4e/ZssvedWlmlZ1OqlSjxX88m+G9GOiFECqWwB1J6CQwMZPny5fj4+DBv3jz7+OGGDRsSGhrKxo0biYyMxNPTM9Z28SVVYipQoAAAvXr1Yvfu3ZQtW5affvopwfWfeeYZ/Pz8+PHHH2nVqhVz5szhoYceirXO66+/zo8//ghASEgINWrUIDg4mA4dOtjX2blzJ9WrV78vjmjxJae01owcOZL+/fvHej40NPS+7RMTGRnJ3r178fDwiPV8kyZN2LRpEz/++CPPPfccQ4cOpUePHvdtn9ix4sYdvZw7d26iokzdkfDw8GTHmpC8efMCppdWREREmvcnhBCZjY9PGA0bwuTJ0KcP5MljdURCiEwlk7TRY4rZRhwxYgRt27blp59+on79+kn2Qk+szZ7cdnL16jWYNWsbRYuaziYx6xwlt6380ksv8corr9ChQwc2bNhAUFAQABUqVKB06dKsW7eOP/74g4ULFyZrf0kdP77zju/8EpIvX7772tZnzpzBycmJc+fOERUVZa/lGh4enqwvytMqS/RsiklrvUFr3S6568fs2QQm2XTsGCTxuVMIkUldv34dV1dX7t27d98f9x49etCtW7f7vmEAqFatGqGhoRw7dgyAL7/80v6NQ0xz584lJCQk0UQTwF9//cVDDz3EoEGD6NChA3v27KFQoUKx/plNnDiRkJAQ+9CzgQMHMm/ePPvypUuXGD58eIJdWBs2bMjXX38NEOtcW7Vqxeeff86NGzcA84/kfAqn2bx37x4jR46kQoUKeHt7x3rt5MmTlCpVir59+/L888+za9cuAJydnbl3716y9v/333+zbds2AL766isaNWoEmG7KO3fuBODbb7+1rx/32kUrUqQIxYoVsxdFTOjnJoRIXyltfwnHUQreeAP+/htkkk4hRFZz/PhxvLy8GD58OHXq1OHQoUMJtvvAfOm5ePFiIiMjuXDhAps2baJevXrxrvf1118TGRnJP//8w/r16wFwd3fn338vEBKyDVdX0+Y9ePBgknHGjenq1auUK2dmA50/f36sdfv06cOzzz7L008/fV+h8tS2XZs0aWJv72/YsIESJUpQuHDhJLeLVqxYMSIjI+0Jp4iICHr16sWiRYvw8PBg+vTp9nWPHDly3xfz6SHLJZtSqkSJ+5NNN29CjJ50Qogs5M0338TPz48WLVpQrVq1WK91796dK1euxOomGs3FxYW5c+fSuXNn6tevj5OTEwMGDEjyeMuWLaN8+fJs27aNtm3b0qpVK8DM/uDp6Ymvry+HDh2iR48eFC9enIYNG+Lp6cnQoUPv25erqysLFiygb9++VKtWjUceeYTevXsnOBPHu+++y4cffkjdunVjdaNt2bIlzzzzDA0aNMDLy4tOnTole+aL7t274+3tjaenJzdv3mTFihX3rbNhwwb7NKrffvstL7/8MgD9+vXD29vbPlNcYtzd3Zk/fz7e3t5cvnyZF154ATDj0V9++WUaN24c659z+/btWbZsGb6+vvZ/ztHmz5/P0KFD8fb2JiQkhDFjxiTrXIUQIrto1Qr8/GDiRLh71+pohBAi+WbOnImnpyc+Pj7ky5ePNm3a4O3tTe7cufHx8WHGjBmx1n/yySfx9vbGx8eHZs2a8c4779hrDcVdr0qVKnh5efHCCy/YEzpOTnl4662lzJ49nPr1ffD19eWPP/5IMs64bdGgoCA6d+5M48aN76vJ1KFDB27cuBHvF9yQurZrUFAQwcHBeHt7M2LEiPsSXMnRsmVLe+mKSZMm0bhxYxo3bsz06dOZM2eOPem2fv162rZtm+L9p5RKamhJVlW2bFl99uxZxoz57x9zrlywdSs0agQrV0IqZ1oUmA+jAQEBVoeRbWWW63vw4MH7hlhlZkuXLmXFihX2AoAJuX79eoJ1iIRjyDVOXznx+sb390gptVNrXceikEQ83N3d9eHDh60OI1uJbhP88gu0aQOffmqG04nUySxtrOxi3LhxgPkySThGct6jWa2NnpHOnIF//oEaNSB6pJij203BwcEMGTLkvi9IrbZ7926mT5+e6GehO3fu4O/vz5YtW5KsnxUttW2wHNGzKSoKrlwxy76+ZpY62ygOIUQ28dJLLzFixAhGjx5tdShCCCGEw7VqBfXqSe8mIYRISEQEnDsHxYr9l2hytMmTJ9OxY0feeuut9DlAGtSsWZOmTZsSGRmZ4DqnTp1i8uTJyU40pUW2TzaVLGnuo4uEFygA1apJskmI7Ob999/n2LFj9tnmhBBCiOxEKQgKgtBQqd0khBDxOXfOdDQpWzb9jjFixAhOnjxpr0ea2fTu3fu+OlIxValSJcN6d2b7ZFP08MqYdZtq15ZkkxBCCCGEyFpat5beTUIII7uWw0mtjOjVlBOl5X2W7ZNNpUub+3///e+52rXNOM5//rEmJiGEEEIIIVJKejcJIcBMfHPp0iVJOMWQEb2achqtNZcuXcLFxSVV26f/QD2LVahg7v/++7/natc29zt3QjuZxFcIIYQQQmQRMXs39egBefJYHZEQIqOVL1+e06dPcyHm8J0cLDLSFAbPl88k4+MKDw9PdcIkp3NxcaF8+fKp2jbbJ5uKFjV1mmImm3x9zTdDkmwSQgghhBBZiVIwdiy0bWt6N8nMdELkPM7OzlSqVMnqMDKNN96ASZNgzx6Ib5K+DRs2ULNmzYwPLIfL9sPolIIHH4RTp/57rmBBKRIuRE4WFhbGrFmzMvy4gYGBLF26NMOP60jz5s3DycmJPXv22J/z9PQkNL6vkeKxadMmatWqRe7cue+7FvPnz6dKlSpUqVKF+fPnJ7mvwMBAKlWqxOzZs1N0Dhlp586deHl58fDDDzNo0KB4u7tv374dX19ffH198fHxYdmyZfbXXn/9dSpUqEDBggUzMuxEnThxAj8/P6pUqUKXLl24m0DhmNatW1O0aFHaxflWp3v37ri7u+Pp6Unv3r25d+8eAIsXL+bhhx++b30hxP3atIG6daV2kxBCXLoE770HnTuDp6fV0YiYsn2yCcxQupg9m0CKhAuRk129ejXDk02JTUGakbTWREVFpWkf5cuXZ+LEiana9sEHH2TevHk888wzsZ6/fPky48aN448//mD79u2MGzeOK1euJLm/KVOmMGDAgFTFkhFeeOEFPvnkE44ePcrRo0f55Zdf7lvH09OT4OBgQkJC+OWXX+jfvz8REREAtG/fnu3bt2dIrNHHTMrw4cMZMmQIR48epVixYnz22Wfxrjd06FC+/PLL+57v3r07hw4dYu/evdy+fZs5c+YA0KVLF/tjIUTiYtZumjfP4mCEEMJC06bBjRswerTVkYi4cnSy6ezZ2IXDhRCZS2hoKNWqVaNPnz54enrSvXt31qxZQ8OGDalSpYr9Q/jly5d54okn8Pb2pn79+vZeN0FBQfTu3ZuAgAAeeugh3nvvPQDGjh3L8ePH8fX1ZejQoWitGTp0KJ6ennh5ebF48eJ447lx4wa9evXCy8sLb29vvv32W8AkFOrUqUONGjUYO3asfX03NzfGjx9Po0aNWLJkSax9rV27lpo1a+Ll5UXv3r25c+fOfcf79NNPqVu3Lj4+PnTs2JFbt24BpkfPgAEDaNy4MVWrVuWHH34ATK+jxx9/nNatW+Pu7s64cePs19HDw4MXX3yRWrVq8ffff8d7voMGDWL8+PEArFq1iiZNmsSbmGrXrh379+/n8OHDyfkxxuLm5oa3tzdOTrH//axatYoWLVrwwAMPUKxYMVq0aBFvYiYxgYGBvPDCCzRt2pSHHnqIjRs30rt3bzw8PAgMDLSvt3r1aho0aECtWrXo3LkzN27cAGD8+PHUrVsXT09P+vXrZ++FFBAQwPDhw6lXrx5Vq1Zl8+bNyYrnn3/+4dq1azRo0AClFD169GD58uX3rZc/f35y5zaj2sPDw1FK2V+rX78+rq6uyb4Gfn5+7N+/374cEBDAzp072b59O4888gg1a9bkkUcesf/s5s2bR+fOnWnfvj0tW7ZMcv9aa9atW0enTp0A6NmzZ7znBNC8eXMKFSp03/OPPfYYSimUUtSrV4/Tp08n+/yEEP9p0wbq14c334TwcKujEUKIjHf+PLz7LnTtKr2aMqMckWx68EGTVIr5WS5mkXAhRPIEBAQwz/YV6r179wgICGDBggUA3Lp1i4CAAHvi4urVqwQEBPDdd98BcPHiRQICAvj+++8B+DeZmd5jx47x8ssvs2fPHg4dOsSiRYvYsmULU6dOZdKkSYBJHtWsWZM9e/YwadIkevToYd/+0KFDrFq1yt5b5t69e4wbN47KlSsTEhLClClT+O677wgJCeHPP/9kzZo1DB06lH/ima7yzTffpEiRIuzdu5c9e/bQrFkzACZOnEhwcDB79uxh48aNsYaYubi4sGXLFrp27Wp/Ljw8nMDAQBYvXszevXuJiIjgo48+uu94Tz31FDt27ODPP//Ew8MjVg+S0NBQNm7cyI8//siAAQMIt33S2L59OwsXLiQkJIQlS5YQHBwMwOHDh+nRowe7d++296KJe76TJ09m8eLFrF+/nkGDBjF37tz7kkIATk5ODBs2zH79Y+rSpQu+vr40bNjQPjTM19eXL5KYNunMmTNUiJ7RAdN76syZM4luE58rV66wbt06ZsyYQfv27RkyZAj79+9n7969hISEcPHiRSZMmMCaNWvYtWsXderUYfr06QD873//Y8eOHezbt4/bt2/bk3hgev1s376dmTNn2pN4hw8fjnWOMW9hYWGcOXMmVkHFxM7pjz/+oEaNGnh5eTF79mx78imlunbtyjfffAOYZNfZs2epXbs21apVY9OmTezevZvx48czatQo+zbbtm1j/vz5rFu3juvXryd4TgcOHODSpUsULVrUHl9qf05g/oZ8+eWXtG7dOlXbC5HTKQUTJsDp0/Dpp1ZHI4QQGW/yZJNsDwqyOhIRn2xfIBz+m5HuzBl46CHzOGaR8LZtLQtNCJGESpUq4eXlBUCNGjVo3rw5Sim8vLzsdYK2bNli72XUrFkzLl26xNWrVwFo27YtefPmJW/evJQqVYpz587dd4wtW7bQrVs3cuXKRenSpfH392fHjh106NAh1npr1qzh66+/ti8XK1YMgG+++YZPPvmEiIgI/vnnHw4cOIC3tzdgki9xHT58mEqVKlG1alXA9A758MMPGTx4cKz19u3bxxtvvEFYWBg3btygVatW9teefvppnJycqFKlCg899BCHDh0CoEWLFhQvXhwwyaotW7bwxBNPULFiRerXr5/k+X766ac0adKEGTNmULly5QR/Ls888wwTJ07kxIkTsZ6PTjZev3493l4tCYmvllHMHj7J1b59e/v7o3Tp0rHeO6GhoZw+fZoDBw7QsGFDAO7evUuDBg0AWL9+Pe+88w63bt3i8uXL1KhRg/bt2wPmWgLUrl3b/r5zd3cnJCTEIecU3SPp4MGD9OzZkzZt2qRq1pSnn36aFi1aMG7cOL755hs6d+4MmORvz549OXr0KEope50kwN6jDKBQoUKJnlN8s96k5ucE8OKLL9KkSRMaN26cqu2FENCsGQQEmNpNzz8P+fNbHZEQQmSMM2dg1izo2RNsTWqRyeSoZNPff/+XbCpUyLwppWeTEMm3YcMG+2NnZ+dYy/nz54+1XKRIkVjLJUqUiLVcpkyZZB0zb9689sdOTk72ZScnJ3uNmcQ+1MfcPleuXPHWpYlve4APP/yQT21fF//0009ore/7YH3ixAmmTp3Kjh07KFasGIGBgfZeRgAFChRI9vHiCgwMZPny5fj4+DBv3rxY1y9uHNHLCT0fM47Ejr93716KFy/O2bNnE40td+7cvPrqq7z99tuxnu/SpQuHDx8mKioqVq+oV155JVaPs7jKly8f6/xOnz5NQEBAojHEJ+b7I+57JyIigly5ctGiRQu++uqrWNuFh4fz4osvEhwcTIUKFQgKCor1c4zeV8z30OHDh+NNJoL5XYmeljjmOZUtWzbR+D08PChQoAD79u2jTp06KThzo1y5chQvXpw9e/awePFiPv74YwBGjx5N06ZNWbZsGaGhobGubcz3xvXr1xNM/ixatAgPDw/CwsKIiIggd+7cyTqn+IwbN44LFy7Y4xNCpI5SZhhd48bw4YcwdKjVEQkhRMaYOBGiomDMGKsjEQnJEcPoYiabYpIi4UJkD02aNGHhwoWA+ZBfokQJChcunOD6BQsW5Pr167G2X7x4MZGRkVy4cIFNmzZRr149Bg4cSEhICCEhIZQtW5aWLVvywQcf2Le7cuUK165do0CBAhQpUoRz587x888/JxlvtWrVCA0N5dixYwB8+eWX+Pv737fe9evXcXV15d69e/bzi7ZkyRKioqI4fvw4f/31F+7u7gD8+uuvXL58mdu3b7N8+XJ7D5641yu+8z158iTTpk1j9+7d/Pzzz/zxxx+JnkdgYCBr1qyJ1dtl8eLFhISEsHXrVvu1CwkJSTTRBNCqVStWr17NlStXuHLlCqtXr7b35Bo5cmSsGdrSon79+mzdutV+7W/dusWRI0fsiaUSJUpw48aNZM0aGN2zKb5b0aJFcXV1pVChQvz+++9orfniiy94/PHH79vPiRMn7AmskydPcvjwYdzc3BI99vfff8/IkSPjfa1r16688847XL161d6z6+rVq5QrVw7APhQ2PtE9m+K7Va9eHaUUTZs2tV+f+fPnx3tOiZkzZw6rVq3iq6++ineYphAiZRo1gtat4e234do1q6MRQoj0d+IEzJkDffpAEk0mYaEc0cpLKNlUv77pfhdnFIgQIosJCgoiODgYb29vRowYwfz58xNdv3jx4jRs2BBPT0+GDh3Kk08+ibe3Nz4+PjRr1ox33nkn3p5Xb7zxBleuXMHT0xMfHx/Wr1+Pj48PNWvWpEaNGvTu3Tve5E5cLi4uzJ07l86dO+Pl5YWTk1O8M6q9+eab+Pn50aJFC6pVqxbrNXd3d/z9/WnTpg2zZ8+2D7lq1KgRzz33HL6+vnTs2DHe3jHxnW/p0qV5/vnnmTp1KmXLluWzzz6jT58+sXr3xJUnTx4GDRrE+fPnkzznaDt27KB8+fIsWbKE/v37U6NGDQAeeOABRo8eTd26dalbty5jxoyxD+3au3dvsnvCJaVkyZLMmzePbt262QvKHzp0iKJFi9K3b1+8vLx44oknqFu3rkOO99FHH9GnTx8efvhhKleuTJs2bQBYuXIlY2xfxW3ZsgUfHx98fX158sknmTVrFiVKlABg2LBhlC9fnlu3blG+fHmCbEUJTpw4kWBCtVOnTnz99dc8/fTT9ueGDRvGyJEjadiwYZpnRnz77beZPn06Dz/8MJcuXeL5558HIDg4mD59+tjXa9y4MZ07d2bt2rWUL1+eVatWATBgwADOnTtHgwYN8PX1tRelF0Kk3ptvmum/333X6kiEECL9vfkmODnB669bHYlIjErucI6spmzZsjrmMJASJaBzZ4hZg/fgQaheHT7+GPr1syDILGzDhg2pGuIikiezXN+DBw/i4eFhdRgOl9J6QplNYGAg7dq1s88IFm3evHkEBwfH6n1lFUde41atWtkTFTEldB1ygi5duvDBBx9QsmRJq0NxqA0bNjB16tRYxdmjxff3SCm1U2ud8vGGIt24u7vr1MxUKRKW3DbBk0/CunXmS1Rbrl7EI7O0sbKL6EkzYs7GK9JG3qOJO3IEPDzg5ZfBNsdLkuSaOl5y2mA5omcTmN5NcXs2VasG5crBr79aE5MQQoikxZdoAlMXbPTo0cyePTuDI7LenDlzsl2iafHixbz44ov2wvtCiJQZPx6uX4dp06yORAgh0k9QELi4wIgRVkcikpLiAuFKqb9sD68AgVrrvcncrgXwMaC11glPcZROKlSAkyfjxgQtWsCKFRAZCblyZXRUQgiRcgnV3AkMDCQwMDBDY7HSuzJeJFvp0qVLggXXhRBJ8/KCLl3MULqXX4ZSpayOSAghHGvvXvj6a5Nokr9xmV9qeja5ARWBmsBWpVT7ZG6X37atWyqOmWYVK0JoKMQdNdiiBVy5Art2WRGVEJlfdh1qK4TIOuTvkBDJExQEt2/DpElWRyKEEI43erSZVf6116yORCRHWofRFQSWKaUy/USr7u5mho5//439/KOPmnsZSifE/VxcXLh06ZJ80BNCWEZrzaVLl+xF8IUQCXN3h169TI3S0FCroxFCCMf57TczImnYMKlLl1WkeBhdDHOArpiE02SllAfQT2sd4ZDIHCy6pujBg+Dq+t/zpUqBj49JNo0aZU1sQmRW5cuX5/Tp07Gmts8OwsPD5YNrOpNrnL5y2vV1cXGhfPnyVochRJYQFAQLFsDYsZDE5KxCCJElaG2GzpUuDYMHWx2NSK60JJt+AD4EVgIVgJ5AZaXUU1rrS44IzpGik00HDkCzZrFfa9HCjG+/eRMKFMj42ITIrJydnalUqZLVYTjchg0bqFmzptVhZGtyjdOXXF8hRELKl4eXXjKFwocOBU9PqyMSQoi0+fln2LwZPvxQPq9nJWkaRqe1/hOoB/wBKKAR8Ietl1Om4uoKhQubnk1xtWgB9+7Bpk0ZH5cQQgghhBCONHKkafdKr30hRFYXFWX+plWuDH37Wh2NSIm01mxCa30OCAC+xiScKgHblFKt07pvR1LK9G6KL9nUuDHkzSt1m4QQQgghRNb3wAOmrsn338PWrVZHI4QQqff117BnD7z5Jjg7Wx2NSIk0J5sAtNZ3tNbPAGNtTxUGvldKveyI/TtKQsmmfPmgUSNJNgkhhBBCiOzh5ZehTBlT50Tm+RBCZEV375oZ6Hx9oUsXq6MRKeWQZFM0rfWbQBfgNpALmK6U+lgplcuRx0ktDw8zG11Y2P2vtWgB+/bBP/9keFhCCCGEEEI4VIECMGYMbNkCP/1kdTRCCJFyn34Kf/0Fb70FTg7NXIiM4PAfmdZ6KeAPnMUMq+sDrAYsn6Aw5ox0cbVoYe7XrMm4eIQQQgghhEgvffqYOicjR5q6J0IIkVXcuAHjx4O/P7RqZXU0IjXSJT+otQ4G/IBdmIRTAGbmOksllmzy9YUSJWD16gwNSQghhBBCiHTh7AwTJsDevbBwodXRCCFE8s2cCefPw+TJpv6yyHrSrTOa1voM0Bj4DpNwyptex0quSpVMIfD4kk1OTtC2LaxcCbdvZ3xsQgghhBBCONrTT0OtWvDGGxAebnU0QgiRtHPn4O234cknoX59q6MRqZWaZNMp2+1WUitqrW9rrTsBkzAJJ0vlygVVq8afbAJ49lm4dg1++CFj4xJCCCGEECI9ODnBlClw6hS8957V0QghRNLGjTPJ8cmTrY5EpEWKk01aazetdSWtdbKrG2mt3wBqAU2BZik9piN5eMCBA/G/1rQpuLrCggUZG5MQQgghhBDppVkzeOwxmDQJLl2yOhohhEjYoUPwySfQv7/pKCKyrgyr6a61DtFab9Rab8yoY8bHwwNCQ+FWPP2ycuWCZ54xM3ZcvJjhoQkhhBBCCJEu3nkHrl+HN9+0OhIhhEjYiBGQPz+MHWt1JCKtctwEgt7eoDXs2RP/6889BxER8M03GRuXEEIIIYQQ6aVGDejdG2bNguPHrY5GCCHut2kTrFhhEk4lS1odjUirHJdsii4wtm1b/K97e4OnpwylE0IIIYQQ2cv48WaGupEjrY5ECCFii4qC116DcuVg8GCroxGOkCWSTUopF6XUdqXUn0qp/UqpcandV9my8OCDCSeblDKFwrdtk299hBBCCJGzObINJqzn6mo+zC1ZAr//bnU0Qgjxn2++gR07YMIEM4xOZH1ZItkE3AGaaa19AF+gtVIq1ZMgNmiQcLIJTN0mgIULU3sEIYQQQohswaFtMGG9oUOhdGmTdNLa6miEEALu3DE9Ln18TFkbkT1kiWSTNm7YFp1tt1T/e2zQAE6fNrf4VKgAAQFmKJ38ExZCCCFETuXoNpiwXsGCZjjd1q2wfLnV0QghBHz4oZnEa8oUM2mXyB5yWx1AcimlcgE7gYeBD7XWf8SzTj+gH4CrqysbNmyId1958hQCavPZZ/vx978Q7zp16pRhw4ZqzJ69Ew+P6445iWzkxo0bCV5fkXZyfdOXXN/0J9c4fcn1FRkpqTZYzPZXyZIl5b3pYOnx+165sqJixTr8739OFCiwnTx5ck7+UP5+pg+5po6T096jV686M3ZsPerWvY6z8x7S49Rz2jXNLJTOYl13lFJFgWXAS1rrfQmtV7ZsWX327Nl4X7t7F4oUgRdfhGnT4t8+LAzKlIF+/eC999IcdrazYcMGAgICrA4j25Lrm77k+qY/ucbpS66voZTaqbWuY3UcOUVy2mDu7u768OHDGRpXdpdev++//AJt2sDUqfDqqw7ffaYlfz8da9w4U8ZtrMxT7zA57T36v//B7Nnw559m1sz0kNOuaUZIThssSwyji0lrHQZsAFqndh958kDt2onXbSpaFNq3h6+/hnv3UnskIYQQQojswRFtMJF5tG4Njz1mhtRdiL+jvxBCpKv9+02iacCA9Es0CetkiWSTUqqk7ds0lFL5gEeBQ2nZZ4MGsHOnKUaWkOeeM/98V61Ky5GEEEIIIbKm9GiDicxj2jS4eRNGj7Y6EiFETqM1vPIKFCoEQUFWRyPSQ4qTTUqpJrbbAyncrmj0tik9JuAKrFdK7QF2AL9qrX9IxX7sGjQww+lCQhJep3VrM5Tu3XfTciQhhBBCiCzL4W0wkXlUqwYDB8Knn8KePVZHI4TISX7+GVavhrFjoUQJq6MR6SE1PZs2AOuBRinczs+27bqUHlBrvUdrXVNr7a219tRaj0/pPuKqb5u0N7GhdHnywJAhsGYNBAen9YhCCCGEEFlLerTBROYydqwpH/HKKzILsxAiY9y7Z/7mVK1q6iiL7MmKYXTKgmPep2xZePDBxJNNYMaPFi0Kb72VIWEJIYQQQgiRYR54AMaNg7Vr4fvvrY5GCJETzJoFhw+bobx58lgdjUgvGZlsik4yZZrvTBo0SDrZVLiwqZC/bBkckgoFQgghhBAim+nfHzw8zKx0idUzFUKItLp0ydRoatEC2ra1OhqRnjIy2RQ9EvNmBh4zUf7+8PffJquamEGDwMUF3n47Y+ISQgghhBAiozg7w/TpcOwYvP++1dEIIbKzoCC4ds38zVGZYsyTSC8ZkmxSSuUFetoWQzPimMnRrp25X7ky8fVKloS+fWHBAjh1Kv3jEkIIIYQQIiO1bg2PPQZvvgn//mt1NEKI7GjvXvjoI9Ob0tPT6mhEeks02aSU6qmUWhfzFuPlCXFfi+e2Xim1HbgANMMMoVubjueTIhUqgK9v8sanv/qquZ82LV1DEkIIIYQQwhIzZsDt2zBihNWRCCGyG63hpZegSBGT1BbZX+4kXncDAri/zpICaqTgONEd5M4DU1OwXbrr0AEmTDBjR4sXT3i9Bx+EZ581U8O+8Ybp7SSEEEIIIUR2UbWq+YJ18mTo1w8eecTqiIQQ2cXixbBxI8yenfjnbpF9JHcYnYpxi++5hG4AN4A9wAygltb6bNrDdpz27SEqCn76Kel1hw+H8HB49930j0sIIYQQQoiM9vrrUK6c6YEQGWl1NEKI7ODGDXjtNahVC/r0sToakVESTTZprcdprZ1i3qJfAp6I+1o8t1xa6yJaa1+t9auZLdEE5g1ftmzSdZsAqlWDJ5+EDz4wRc2EEEIIIYTITgoWhKlTYdcumDPH6miEENnBxIlw5oyZgCBXLqujERkltQXCs03deCcnUyh81arkTfU6ciRcvWq6/wkhhBBCCJHddOliZm0eNcqUmhBCiNQ6csTUPe7ZU4bm5jQpTjbF6LWUjL5AWUP79nD9uhlDmpQ6daBFC1NAMTw8/WMTQgghhBAiIylleiBcvQqjR1sdjRAiq9IaXn4ZXFxMLTiRs6S2Z1O20rw55MuXvFnpwPRu+vdfmDUrfeMSQgghhBDCCl5eMHCg6c2/e7fV0QghsqLvv4dffoFx46BMGaujERlNkk2YRFOLFqZuk4477148AgKgdWsYO9aMPRVCCCGEECK7GTcOSpSA//3PTKgjhBDJdfs2DBkC1aubvyEi58md0g2UUmPSelCt9fi07sPROnQwyaY9e8DHJ/F1lTJFwj094ZVXzDSOQgghhBBCZCdFi8Lbb0Pv3jBvnrkXQojkeOst+OsvWLsWnJ2tjkZYIcXJJiAIMxtdWmS6ZFPbtub++++TTjYBVK5siiaOGQPPPw8tW6ZvfEIIIYQQQmS0nj3h889h6FDz5WyJElZHJITI7A4fNjWann0WmjWzOhphlbTMRpfaW6ZUpgzUrw9ff528oXQAw4ZB1apmPLsUCxdCCCGEENmNkxN89BFcuwbDh1sdjRAis9MaXnwRChSAqVOtjkZYKTXJpqbJuDUHugDTgYuYnlBf2V7LtLnN55+H/fvht9+St37evKZI+LFjUl1fCCGEEEJkT9GlIz7/HLZssToaIURmtmgRrFtnhtGVLm11NMJKKU42aa03JuO2Xmu9RGv9GlAFWA10BZporTc6+iQcpWtXKFzYzLqRXM2bQ7du5pfp6NH0i00IIYQQQgirjBkDDz4IAwbAvXtWRyOEyIyuXDGJ6Xr1oF8/q6MRVkv32ei01leBjsBZYKxSqkF6HzO1ChaE556DJUvg4sXkbzd9Ori4mOF0yR2CJ4QQQgghRFZRoAC8/74ZBTBjhtXRCCEyo9dfN5+jZ882Q3BFzpYhbwGt9S1gru14mXriw/794c4dmD8/+duUKQMTJ8Kvv8I336RfbEIIIYQQQlilQwdzGzcOTp60OhohRGayfbtJMr30EtSsaXU0IjPIyHzjftt9oww8Zop5eUHDhvDxxxAVlfztXngBateGIUNMAUUhhBBCCCGym/feM/eDBlkbhxAi84iIMENsXV1hfKabd15YJSOTTXls96Uy8JipMmCAqb+0fn3yt8mVy2Ry//0XRo9Ov9iEEEIIIYSwSsWKEBQEK1fCd99ZHY0QIjN47z3YvRtmzjQ1kIWAjE02tbLdX83AY6ZKp07wwAMpKxQOUKeO6eH0wQfml00IIYQQQojsZvBg8PU19UrDwiwORghhqRMnTGeL9u3N52ghomVIskkpNRDoBmjgj4w4Zlq4uECvXrB8OfzzT8q2nTgRSpaEnj3h5s10CU8IIYQQQgjLODvDnDlw/jwMH251NEIIq2htRgU5OcGHH4JSVkckMpPcKd1AKTUmmavmAcoCAUBFQGGSTe+n9JhW6NcPpk2Dzz83VfWTq2hR+OILaN3a7GPBAvmlE0IIIYQQ2Ut0rdJp0+CZZ8Df3+qIhBAZbcECWL3ajOypUMHqaERmk+JkExCESRqlRHS6ZbzWek0qjpnhqlaF5s3hk09gxAhTkym5WraEN9+EN96ABg3gf5l6/j0hhBBCCCFSbtw4U7epXz/4808zOkAIkTNcuGASzg0amFIyQsSV2mF0KgW3e8AvwKNa63FpDTgjDRgAp07BTz+lfNuRI8241SFD4LffHB+bEEIIIYQQVipQwMzgfOQITJhgdTRCiIwUPQv7nDlmGJ0QcaWmZ1PTZK53BwgDjmmtI1JxHMs9/jg8+KD51qZt25T9Ejk5meF0depA586wcyeUKZN+sQohhBBCCJHRWrQwtUrffhuefhq8va2OSAiR3n7+GRYuhLFjoXp1q6MRmVWKk01a643pEUhm5OxshsP17AlLl5p/oClRtKjpWly/PnTpAmvWmH0KIYQQQgiRXUybZkYC9OkD27alrPyEECJruXHDjADy8DCjeYRIiHR4S0L37uDlBaNGwb17Kd/e29vUfdq0SX4ZhRBCCCFE9lO8OLz3HuzYATNmWB2NECI9jRgBf/8Nn34KefNaHY3IzCTZlIRcuWDyZDh+3PxCpcazz5oi4dOmwTffODY+IYQQQgghrNaliylB8cYbcOiQ1dEIIdLDhg3w4YcwaBA0bGh1NCKzS3OySRn1lFIDlVITlVLv2u4H2p5XSe8lc2vTBpo0MbWbbtxI3T6mTTOV+nv3hgMHHBufEEIIIYQQVlIKZs+G/PlNezcy0uqIhBCOdOOG+d2uXBkmTbI6GpEVpDrZpJRyUkoNAUKBbcB7wAjgf7b792zPhyqlBiulsmwvKqVM0cPz52H69NTtI08eWLLEzNrx1FOmcr8QQgghhBDZRZky8P77pm7TzJlWRyOEcKQRIyA0FObONUllIZKSqgSQUuoBYAswFSgPqERuFYBpwBalVDEHxGyJ+vVNkmjKFLhwIXX7KFfODKM7dgx69QKtHRujEEIIIYQQVnrmmf+G0x0+bHU0QghHiDl8rnFjq6MRWUWKk022Hko/A/UxyaQo4CfgNeAJoIXt/jXgRyDCtp4f8FNW7uE0aRLcvg0TJqR+H/7+8M47Zpa6N95wXGxCCCGEEEJYTSn46CPIl898uSrD6YTI2mIOn5s40epoRFaSmsRPP6AuoIH9gK/Wup3WerrWeqXWeq3tfrrWuj3gC+zDJJzqAX1TekClVAWl1Hql1EGl1H6l1MupiDvN3N3h+efNP9C//kr9foYMMVPDTpoE48c7Lj4hhBBCCEfKLG0wkbW4uspwOiGyi5jD5woUsDoakZWkJtn0rO3+ItBUa70/sZW11geA5kD04LPnUnHMCOBVrbUHpkfVQKVU9VTsJ83GjoXcuWH06NTvQyn4+GPo2dPs7623HBefEEIIIYQDZZo2mMhannkGOnSQ2emEyMrWrzfD5156SYbPiZRLTbLJA9OraY7W+mJyNtBaXwDmYHo3pbiBorX+R2u9y/b4OnAQKJfS/ThC2bIweDAsWgQ7d6Z+P05O8Nln0L07jBoFU6c6LEQhhBBCCIfITG0wkbVEz05XoAA89xzcu2d1REKIlLh61XSOePhhmX1OpI7SKaxSrZS6AeQDntFaL07Bdl2Ar4CbWutCKTpo7P24AZsAT631tTiv9cMM88PV1bX2okWLUnuYRN24kZuePetSuHAEH3+8kzx5olK9r8hIxcSJHqxfX4qBA4/RqdNpB0aafm7cuEHBggWtDiPbkuubvuT6pj+5xulLrq/RtGnTnVrrOlbHkVMk1AaL2f4qWbJk7W+++caaALOprP77vnFjCYKCPOnRI5RevUKtDifLX8/MZuPGjQD4+/tbHEn2kVneo5MmVWPt2tK8//4uqle/bnU4aZJZrml2kpw2WO5U7Pc0UAVI6YSH0eunOpuilCoIfAsMjptoAtBafwJ8AlC2bFkdEBCQ2kMlacECeOyxvPzySxOmT0/bvpo0gW7d4MMPH8bD42EGDnRMjOlpw4YNpOf1zenk+qYvub7pT65x+pLrKzJaYm2wmO0vd3f3dG1/5URZ/fc9IMDUOl240I0XXnCjfn1r48nq1zOziU42yTV1nMzwHl26FH79FcaMgRdfrG1pLI6QGa5pTpSaYXQ/YYbDtUzhdq0ww+9+SsUxUUo5Yxo5C7XW36VmH47Upg0MHAgzZsCaNWnbl7MzfPWVmSb2f/8z9ZyEEEIIITKDzNYGE1nPe+9BuXJmON3Nm1ZHI4RIzD//QP/+UKeOzJ4u0iY1yaZ3gWtAZ6VUu+RsoJRqC3QGwmzbp4hSSgGfAQe11mnsR+Q477wD1aqZsayXL6dtX87OsHgxtG0LAwaYek5CCCGEEFbKrG0wkbUUKQJffAHHj8Nrr1kdjRAiIVpD795w+7YZyePsbHVEIitLcbJJa30Skzi6BnyrlJqglCoZ37pKqZJKqTcx34aFAZ211qdSEWdDzCx2zZRSIbbbY6nYj0Plzw8LF8L58yZBlMLyV/fJm9d0WWzVCvr2hfnzHROnEEIIIUQqZco2mMh6/P3h1VdN0fCfUjXOQQiR3mbPhl9+gSlTwN3d6mhEVpfimk1Kqc9tD0OAAGAkMEwptR84BtzC1Gd6GKgB5Iqx/rNKqWcT2LXWWj+fwAtbMEP3Mp1atWD8eDOjXPv2pntwWri4wLJlZqrYXr1MNvmZZxwTqxBCCCFESmTmNpjIeiZMgFWrTM+JvXuhZLxfVwshrHDkiEkIt2oFL75odTQiO0hNgfBATO0lYtznBrxtt5hUjHUCkrHveJNNmd2wYeYbmoEDoXFjcHNL2/7y5YMVK8yQuueeAycn6NrVIaEKIYQQQghhibx5zdCcunXh+edNe1dJKlMIy929ayascnGBzz+X30vhGKmp2QQmiRTzFt9ziT2f0LpZUq5c8OWX5vFzz0FkZNr3mT8//PADNGpkfvEnTEj7MD0hhBBCCCGs5O1t6p5+/z18+KHV0QghwIzS2bXLJJrKlrU6GpFdpKZnUyWHR5ENuLmZf5g9eph/oCNHpn2fBQqYrsZ9+8Lo0bB/vykcnj9/2vcthBBCCCGEFQYNMtOqv/aaGRXg42N1RELkXL/8AtOmmaFzTzxhdTQiO0lxsslWIFzE49lnzbc0Y8ZAy5ZQu3ba9+niYmbv8PKCESPg6FFYvhzKl0/7voUQQgghhMhoSsHcuaaXU9euEBxsvmQVQmSsf/81M6t7esLUqVZHI7Kb1A6jE/FQylTwL10annoKzpxx3H6HDYOVK03htrp14fffHbNvIYQQQgghMlrJkqZ+0+HDMGSI1dEIkfNERZlE07Vr8PXXpm6wEI6U4mSTUqqH7ZaivjVKqbLR26b0mFnJAw+YpNDly9C6NYSFOW7f7drBtm1mGF1AwH91ooQQQgghhMhqmjeH4cPh009h6VKroxEiZ5kxA1avhpkzoUYNq6MR2VFqejbNA+YCtVK4nZdt289TccwspVYtM9Tt8GHo0AFu33bcvmvUgO3b4ZFHTH2oYcMcU5BcCCGEEEKIjDZ+PNSrZ2qUnpRiHUJkiOBgU2P4qaegXz+roxHZlRXD6LL0zHPJ1by56Xm0ZQt07+7YhFDx4qZw+IsvwpQp8PjjpvujEEIIIYQQWYmzM3z1lRnS06WLmYJdCJF+wsLg6aehTBnTq1DliE/nwgoZmWyKPlZUBh7TUl26mG6Jy5aZxJDWjtu3s7OZ/W7WLJN4ql8fjh1z3P6FEEIIIYTICA89ZGZc/uMP02tfCJE+tIZeveDvv2HxYlMCRoj0kpHJJlfb/fUMPKblBg0ys8h98gmMG+f4/b/wghlre+6c6YK8bp3jjyGEEEIIIUR66tTJtJvffVfqNwmRXqZPN+VepkyBBg2sjkZkdxmSbLIVE3/Btng8I46ZmUyaBIGBJtk0e7bj99+0qanj5OoKLVuaf9KO7EUlhBBCCCFEepsyBfz8oHdvOHrU6miEyF62bjUF+Tt2hJdftjoakRMkmmxSSr2slPor5i3Gy5/EfS2e2wml1HngJKaguAZ+TsfzyZSUMj2b2raFgQPhu+8cf4zKlc1MdW3bwuDBJul06pTjjyOEEEIIIUR6yJMHvvnGlIvo1Mmxk+wIkZNduGBKvFSqZIasSp0mkRGS6tlUFHADKtru3WzPK6BUjOcSulUEStjWV8ARYFqao86CnJ3NP8969eCZZ2DjRscfo3Bh0y1y9myTePLygrlzpZeTEEIIIYTIGh58EBYsgD174KWXrI5GiKwvMtJMWHXxIixZAkWKWB2RyCmSSjaFYXolnbLdR09IqoELMZ5L6HYC2AusBF4G6mitrzr0DLKQ/Pnhhx9MRvnxx2HXLscfQyno39/8g65Z03RD7tAB/vnH8ccSQgghhBDC0dq0gVGjTA+MefOsjkaIrO3NN+HXX+GDD8DX1+poRE6SaLJJa/2u1rpSzFuMl/vGfS2eW2WttY/W+gmt9fta65vpfD6ZXvHiZva4woXB3x9+TqdBhQ89ZIqFz5wJa9ZAjRpmWlnp5SSEEEIIITK7ceNMXdIXXoCdO62ORois6YcfzO9Sz57w/PNWRyNymtQUCD9lu91ycCw5xoMPmmFulStD+/bw6afpcxwnJ1P8LSQE3N3N8L2nnzZjdoUQQgghhMiscuc2U7OXLAlPPintVyFS6vBhM3yuVi346COp0yQyXoqTTVprN1uvpTXpEVBOUa4cbN4Mjz4K/frB66+nX68jd3dzrLfegpUrTS+nZcvS51hCCCGEEEI4QsmSps164YL5wvTePasjEiJruHYNnnjCFN1ftgzy5bM6IpETpaZnk3CQQoXg+++hTx+YNAmeew7u3EmfY+XODSNGmG7I5cvDU0+Z4125kj7HE0IIIYQQIq1q1zazOm/YAEOHWh2NEJlfVJQZNnf0qJmg6sEHrY5I5FSSbLKYs7P5BzphAixcCK1bp28CyNMT/vgDxo6Fr782y+lVN0oIIYQQQoi0eu45Uxri3Xfhyy+tjkaIzG3iRDND+dSppu6ZEFbJndINlFKfp/GYWmst5cliUMoMo3Nzg169oGFDkwCqWDF9jufsDEFBpl5Uz57w2GOmYNy0aTIVphBCCCGEyHymTDF1SPv1MyUhatWyOiIhMp8ffjCdCp591iRohbBSipNNQCCQ1upCkmyKR/fuULasKYJYv775Y1G7dvodr3ZtCA42f5CmTjX1nN580ySecqfmnSGEEEIIIUQ6cHY2Q4Lq1IHHH4ft28HV1eqohMg8Dhwwnyd9feHjj6UguLBeaofRqRTeiPPYEhEREVYePlmaNoWtW00xN39/+Omn9D2eiwu8/bYZWufuDgMGQM2asHp1+h5XCCGEEEKIlChVClasgMuXTfHj27etjkiIzOHCBWjXzhQCX74c8ue3OiIhUpdsqpSMW2XADxgEHMQkmb6yPf9QmqNOhaioKDp06MDo0aOtOHyK1KgBv/9ukj/t28P776ffTHXR6tSBTZtg6VK4eRNatYK2beHgwfQ9rhBCCCGEEMlVs6apc7pjBwQGmmLIQuRkd+6YkTFnz5pkrBQEF5lFipNNWuuTybid0Frv0Fp/APgA84CuwHCt9UkHn0OyRERE4ObmRrly5aw4fIq5usLGjaae0qBB0KEDnDuXvsdUCjp2NAmmd96BLVvAywteegkuXkzfYwshhBBCCJEcTzwBkyebYXXjxlkdjRDW0drUMdu6FebPBz8/qyMS4j/pPhud1joC6AscBfoqpVqn9zHjkydPHmbNmsWAAQMAWLlyJa+++iq3bt2yIpxkKVjQZKdnzoRffzWJn5Ur0/+4efOaqWWPHTN/vGbNgipVYPp0uHs3/Y8vhBBCCCFEYoYONRPrjB8PX31ldTRCWGPyZPjiCzP5U5cuVkcjRGzpnmwC0FpHAvMxw+leyIhjJmXXrl2sXr2aPHnyAHDv3j2LI4qfk5OZSWDnTihXzhRE7NsXbtxI/2OXLGkSTXv2mCz5q6+aIX7Ll6f/sD4hhBBCCCESohTMng1Nmpik0++/Wx2REBnru+9g1Cjo1g3GjLE6GiHulyHJJptjtvs6GXjMBAUFBbFjxw5y585NREQE1atXZ/r06ebFhQvBzc1ketzczLLFatQwRbyHD4fPPjOzDGzblnHH/uUX+PlnU7j8ySfhlVd82L07Y44vhBBCCCFEXHnywLffmi9kO3SA48etjkiIdGb7nKqdnKjTyY3RlRfy2Wcy85zInDIy2VTIdl88A4+ZKBcXFwBu3rxJq1at8PDwgIULOd+3L2+fPMm/WsPJk2YsWSZIOOXJY7pKbtwIERHQqJHJYmdUp6zWreHPP+HDD+HEiQLUrg29e8M//2TM8YUQQgghhIipRAkze3NkpGmrXrhgdURCpJOFC83n0pMnUVrzoD5J0Nl+5PvO+s+pQsQnI5NNT9nuM12p6SJFivDBBx/Qpk0beP11Nt++zQgguh536K1b7HztNXQmGTvWuLEZ2vbcc/Dmm/DII3D4cMYcO3duePFFWLBgO6++CgsWmHpOY8eaaWiFEEIIIYTISO7u8P33cPq0mf795k2rIxIiHbz+OsSpN+x0+5Z5XohMKN2TTUqp/EqpKcBjgAY2p/cx0+TUKToCpwBv21MfAfX//ZerV68CsG/fPg5nVHYnAYULw7x5sHQp/PWXmQZ21qyMq6VUsGAEU6aYmevatDHFGStWhGHD4N9/MyYGIYQQQgghwHz5+tVXEBwMXbuaUQBCZCf61Kn4X0joeSEsluJkk1Lq82TeFiil1mE6CL1i2zwKmObIE3C4Bx8EoAKmmjnAUOD7UqUoWrQoAGPGjDG9oGw2btzIgQMHMjTMaB07wt69pjjiwIHQtm3GDmurXBmWLDExdOgA06aZMlcDB5oRiEIIIYQQQmSEJ56A99+HH34wPfEzyaAEIdLs3j04n/fB+F98MIHnhbBYano2BQI9k3HrBvgDBTB5m7tAf611cJqjTk8TJ0L+/LGeKpE/P62ji4cD77zzDnPnzrUvDxw4kFdffdW+PH36dH755Zf0j9WmbFlTvPv992H9evDwMEmfO3cyLAQ8Pc0w4sOHzfC+Tz+Fhx82s4NY3AlMCCGEEELkEC++CCNHmrbohAlWRyNE2mkNL7wAQ8Inci9P7M+p5M9vPr8KkQmldhidSsEtFJgN+GqtP09jvOmve3f45BMzJkwpc//JJ+Z5m4cffhh/f3/78vfff88777wDgNaad955x55s0lrz6KOPMm/ePPv6YWFhDg9bKfjf/yAkxHQjfu01M4vcsmUZ+63Oww+bf+7Hj5t/9osXm+TX00+b2IQQQgghhEhPEydCjx5mIp2PPrI6GiHSZuRIMxv5w6O74/x54p9ThchMUpNsqpTMW1kgv9b6Ia31i1rrQ44JOQN07w6hoRAVZe6T+AWuVKkSXl5eACilOHPmDBNsX6XcvHkTFWMuysuXL1OsWDHef/99++tTp07l6NGjDgnd3d3MyPHLL5A3Lzz1FDRtCrt3O2T3yVahArz7rrl8I0aYeGrWNEUbt23L2FiEEEIIIUTOoRTMmQPt25vSDgsWWB2REKnz1lvw9tumZ9O4caT4c6oQVkpxsklrfTKZt3+11uHpEXRmlytXLgoWLAhAwYIF+fXXXwkMDATAycmJKVOm0LhxYwCOHDnC0KFD2bNnDwD79++nevXqbN5s6qhfvnyZjRs3cuPGjRTF0KoV/PmnKRq+fz/Urg29e2dsPSeAUqVg0iRTt+7NN+H3303Pq2bNYO1aGUsvhBBCCCEcz9kZvvkGAgIgMBBWrLA6IiFS5sMPYdQok0/64AOTRBUiK0n32egcwVZw/LxSap/VsaRV0aJFee211/D19QWgZs2aXLp0yV5wPCoqCnd3d0qUKAHAli1bCAgI4ODBgwCsW7eOZs2a8ddffwFw+vRpNm3aRHj4/Xm93LlNFvzoUXj1VfOtTpUqZvz67dsZcLIxFC0Kb7xhEvDTpsGhQ/Doo9CgAaxcKUknIYQQIjPKTm0wkfO4uJgkU+3apqTD2rVWRyRE8nz5pSmR8vjjMHcuOGWJT+1CxJZV3rbzgNZWB5FeHnjgAfLbipJ7eXmxbNkyPDw8AGjUqBGrV6+mevXqANy7d487d+7Ye06tWLECf39/ex2oRYsW0axZM65duwbAgQMH2LbtZyZPjuTAAWjZEkaPNsPtFi3K+CRPwYLwyivw119mDP25c+aPqI+PGYt861bGxiOEEEKIRM0jG7fBRPZXqJCZSKdqVdPmPHCgsNUhCZGoLVtK0KuXGQny9deml54QWVGak01KqcJKqU5KqSlKqQVKqRW2+3dsz6f5L7rWehNwOa37yYoeeOABWrRoQYECBQBo1aoVW7dupVSpUgB06tSJVatW2ZcBIiMj7cmoL774gscffxylFA8/DJ6eY6hQoRrFi2u6d4dq1X7glVfes297+fJlbmVAxsfFBQYMgCNH4IsvTNKrTx8oVw6GDDHPCyGEEMJaObkNJrKPBx6A1auhTBkYPtyLXbusjkiI+K1aBePHV6dOHdMrz8XF6oiESD2lU9m1RSmVFxgPvAAUSGTVm8AsYKzW+k6qDmaO5wb8oLX2TGSdfkA/AFdX19qLFi1K7eGyjStXrnD+/Hnc3d0BMwxv//79vPjiS6xeXYaZM9/i7t1NNGv2O717n2Du3Dc4cOAA0ddu0aJF3Lx5k759+wLw559/kitXLtzc3ChYsCBRUVE4OaBfp9awZ08RVq4sy8aNJYmMdKJ27cs8/vhZHnnkErly5axxdjdu3LAnDIXjyfVNf3KN05dcX6Np06Y7tdZ1rI4ju0uqDRaz/VWyZMna33zzTQZGl/3J77vj/PuvC4MGeRMe7sy0aX9SpUrKaqKK+23cuBEg1kzdInW2by/GG294UaHCdWbM2EvhwhFWh5RtyN9Rx0tOGyxVySal1APAWsAbSE6pMg38CTTXWl9J8QFJXrIpprJly+qzZ8+m5lA5yvXrmokTb/Puu/m5excaN15N8+bnGD36OQBeeOEFLl68yJIlS4D//pGMGzeOgIAAmjRpQrFixVhhq7o4evRoypQpw8CBAwHYtGkTJUuWtA8LTI5//zVD6j7+GP7+2/R26t/f9HxydXXk2WdeGzZsICAgwOowsi25vulPrnH6kutrKKUk2ZQBUtIGc3d314cPH07/oHIQ+X13rK+++p0RI+pz/bqp4VSzptURZW3jxo0DYOzYsRZHkrWtWmWGeXp4QFDQFh5/vJHVIWUr8nfU8ZLTBkttl5RvAR9MoukW8BnQBagJVLHdPw3MwfRsUrb1l6byeCKdFCqkmDw5P3/9Ba+9Brt2tWTMmOdo1QrWrYNZsz6yJ5oA5s+fz8cff2xffvrpp+nQoYN9+ffff7fPrAfQs2dPJk2aZF/28PDg1VdftS8PGjSImN+Afv/991y9epjXXzd1nZYsuUuNGjBmDDz4IHTpAhs3SkFxIYQQQgiRcq6u4WzYYGo5NW8Ou3dbHZHI6WImmtasgSJFpEeTyB5SnGxSSj0B+GN6KwUD1bXWfbXWS7TWf2qtj9vul2qt+wHVgR2YhFOAUupxB8YvHMTVFd5+G06dgrfegj//NP+A/fzg228hMtKs5+bmRrVq1ezb/e9//+P555+3L//666+xklHLli3j9ddfty8/8cQT1K1b1768atUq9u/fD4DWmieffJIvv/wSAKUiefppFxo3nsCRIzBw4D2++64VAQHf4ekJ7757l6lTP7BvHxkZyalTp7hzJ9WjNYUQQgghRDZXqRKScBKZQtxEU/HiVkckhOOkpmdTN9v9OaCl1vpUYitrrf/GzGJyzvZU95QeUCn1FbANcFdKnVZKPZ/UNiJ1ihaFESMgNBRmz4bLl6FTJ6heHebMgZTmcXx9fWMlp9566y26du1qXz58+LC9+y3Arl276N+/PwARERG8+eab+Pv7U6UKjBt3C1/fMPr2vU2+fDB48EWGDn2JF1/cwp49cPr0aSpWrMiCBQsAOHnyJJ6envz8888A/PPPPwwePJi9e/cCEBYWxg8//MCFCxfsxwsPD0/pJRNCCCGyLWmDiewqbsIpONjqiERO8/PPkmgS2Vtqkk1+mF5Nn2utw5Kzga1O0xxM7ya/lB5Qa91Na+2qtXbWWpfXWn+W0n2IlHFxMXWSDh+GxYuhYEHo29f8Y54yBW7ezOXwYyql8Pb2pkKFCgDkzZuX119/ncaNGwNQpEgRduz4g08+6U5wMPz+exm6dDnHH388g48PdO1alOef/5Q6dRrb91m1alWKFCkCmGTT559/zunTpwHYt28f7du3Z7ft66wtW7aQL18+1q9fD5ghgY0bN+bAgQMAHDx4kHHjxvHvv/8CcO7cObZu3crt27cBiIqKIrUF94UQQojMSNpgIjuLTjgVKWKmmbfVuhYi3X3zDXToADVqSKJJZF+pSTaVst3vTeF2+2z3JVNxTGGRXLng6afNtz2//mp6OA0bBl26NGDUKDh3Lul9pBc/Pye+/roUZ84UYupUuHixCJ991odGjaoSGAjHjlVkyZLveOSRRwCoVasW165do02bNoDpdfXHH3/g52fynxUrVmTixIlUqVIFMMkjZ2dn8uTJA8DevXsJCgoiLCwMgNWrV9OoUSPOnDkDwLx588ibNy9///03YIYQPvroo1y+bGaM3rJlC+PGjbMnp44fP8769euJtI1RvHPnDhERMkZbCCGEECKjVKoEW7ZA+fLQujX8+KPVEYnsbs4c6NoVGjQwNXIl0SSyq9Qkm+7a7vOlcLvo9e8mupbIlJSCRx81mfcdO6BOnctMngwVK8KAAXDkiHWxFS8Or75qemFt2GCKiC9bZuKtWNEkx/bGkxotWLAg9erVs/d8qlSpEqNGjaJ8+fIAPPLII6xbt46HH34YMMXQ7927R9WqVQFo0aIFv/zyi319T09PXnnlFR544AHA1JC6desWefPmBeC3334jKCgIJyfza7dgwQKaNWtmj+fNN9/ExcXF3jtqxowZsaaRXbp0KWPGjLEvBwcHs3r1avvy5cuXuXIlVZM9CiGEEELkWOXKwaZNppfJE0+YXv1CpIdp08xokdat4ZdfTK86IbKr1CSb/rbdN03hdtGfqv9OdC2R6dWpA0FBBzh8GHr2hLlzwd0d/P3hiy/g1i1r4nJyMjHMmQP//msaCjVrwowZ4O0Nvr7mD/w//6T+GLlz57Yni8qUKUOrVq1wcXEBoF69ekyePJkCBQoA0KlTJ3777Tf78rBhw7h37549+fT888+zceNGcuUyQxJbtGjBpEmTUEoBJhlWsuR/HQG3bt3KwoUL7cvvv/8+ffv2tS+/9NJLsYqv9+/f396LC0y9rJjF2pcsWRJrpsE9e/YQc7pq6WUlhBBCiJyiRAlYu9b0NunWDT791OqIRHaiNYwebWb/fvppWL4c8ue3Oioh0ldqkk1rMbWXuimlGiZnA6XUI5jC4tq2vcgGqlSBjz+Gkydh8mQ4e9Ykn1xd4YUXYOdO84fVCvnymT/k339v4nrvPciTx/yBL18eWrWChQvh5s2MjSt37tz2x+XLl6dJkyb2ZX9/f4YNG2Zf7tu3L0uXLrUvz5gxg+PHj9uXJ02axI8x+nr36tWL8ePH25dr1KhB7dq17ct//fUXR2J0QXv//feZNWuWfbl///689NJL9uX69evToUMH+3LXrl1jJavGjx8fK/m1bNkyduzYYV8+evQoly5dSvBaCCGEEEJkJkWKmN4mrVtDv34waZJ1bVmRfUREwIsvwoQJ0KcPLFpkPpcIkd2lJtk0G4gEcgE/K6X6KaVyx7eiUiqXbdaSn2zrR9q2F9lImTIwfLgZSrdhg5lVYd480wOqZk344AOwcnRXyZLw0kuwfTscPAgjR5ohd88+C6VLmwTZr7+CrXRSllGuXDk8PT3ty48++ijPPPOMfXnQoEFMmDDBvvzpp5/G6sm0atUqli1bZl9+9913Y63ft29funXrZl8uVKiQvZcWwHfffcfmzZvtyy+88AJz5syxL/v5+TF27Fj7squra6xhgC1btmTevHkAaK0ZNmyYvTh7VFQU33zzDUePHrUvnzhxgpsZnR0UQgghRI6SP7/pddK9O7z+upkwRzp7i9S6eROefNLM8j18OHzyiamJK0ROkOJkk9b6EDAJ07upAPARcFYp9Y1SaoJSaqTtfjFwFvgEKIzp1TTJtr3IhpT6byjdP//ArFnmj+lLL5neTt27myJ4UVHWxVitmvlW4a+/TGKsa1fToGjZEh58EIYOhT17rIsvI+XLl4+iRYval+vVq0e9evXsy/3794+VbPr0008ZNWqUffn/7N13eFRF28fx76QXQuid0KX3Lr2IKBYEFRULNgR7B8Gu2PsjUlR4fRREUcBeUVQURBBQaT6ogAjSSyCEtHn/mM1mEwIESHKS7O9zXefanbOn3HsI2ZN7Z+5ZtmwZEydm5Y4XLFiQLbk0adIkLrvsMn/74osvpl27doBLHiUnJ/uH6iUnJ/Piiy+yaNEiABITExkyZAgffPAB4OpR1a1blylTpgDw77//UqFCBX/Pqi1btnDaaafx1VdfAbBt2zbuueceVqxYAcCePXt47733/DMJpqSk8Pfff5OSohJyIiIikl1EBLz+uks2vfyymzVs3z6vo5LiZssW6NkTPv7Y/V302GPu7yWRYHE8PZuw1t4HPO5rGqACMBi4C3jY93iub70BMoDHrLX3n2C8UkyUKZM1lO7nn12X0Y8/hj593PC7cePAN4mbJ3Kr79SmDTz3HLRs6ZaHH3Y9oSRv6tSpQ7Vq1fzt8847L1sNqSeffNI/LC8kJIRvv/2Wq666CnCJr6SkJP8wwtjYWH777TcuvvhiAGJiYpg6dSp9+/YF3HDEIUOGUKdOHQAOHDjAjh07/MmjTZs2MW7cOP+wwTVr1jBw4EAWL14MwO+//05CQoK/J9X8+fOpVKkSCxYsAFzx9dNPP53Vq11ufOXKldx9991s9hX8+vvvv5k9ezaJiYkA7N27lw0bNqjOlYiISAlhjLsXnDQJPv/c3TeeSN1PCS6rV0OnTrByJbz3nvu7SCTYHFeyCcBaexfQFZgDHMQllXIuKcAsoIu1dmzuR5KSLnMo3aZN8MYbboa4u+92PYnOOMP1LEpN9S6+3Oo7xcS4In5NmriZSe69F5Yv17j9gpZZHD0sLIymTZtSqVIlwCWbhg0bRuPGjQGoUKEC48eP5+STTwagdu3aLFq0iP79+wPQsmVL0tLS/MmtZs2asWTJErp27Qq4IX2TJ0/2D0MsX748gwYNonLlyoBLXm3fvt0/M+CqVat45JFH/LP9ffPNNwwaNMjfU+rdd9+lVq1a/P23m/9g6tSpVKxY0f/67NmzOe2009i7dy8A8+bNY+zYsRw8eBCA3377jXfffZd031jObdu2sW7dOv/5RURExBvDh8P777sSDJ06ga/TtMhhffstnHyymzTpm2/c3zsiwei4k00A1toF1tpBQDzQERgIXOJ77AjEW2vPtdb+eIJxSgkQHZ01lO5//4PRo12vp3POcUW7r7/eDW3zsnZSZn2nBQvg779d4qliRdcTq1Ur1ytr1ChX/0l5gKItJCTEP9NfTEwMbdq08Q8bLF++PFdffTXVq1cHoHHjxkycOJG6desC0K1bNxYtWuRPbg0ePJj09HR/+4wzzmDp0qUkJCQA0KVLF1555RV/sqpevXqce+65xMXFAW6Y4M6dOwkPDwfgxx9/5PHHH/fPbPj2229z3nnn+dvPPPMMDRs29CffRo8eTc2aNf3v7dlnn+Wcc87xt2fMmJGt3tb8+fP58MMP/e0NGzawfv36E7ugIiIiQer0010CISXFJZzee8/riKSomjTJjeSoVAkWLnQ1bEWC1QklmzJZa1OstT9Za9+31k7zPf5krVVBFMlV/fougbNhg+tR1K0bTJkCvXpBtWowYgR8+aW3BRlr1HCJp3nzXLfpSZOgXj145hno2NH10Lr5Zvjuu+JXXFyOnTHGn/wpU6YMrVq1IjIyEoCTTjqJK6+8khjfHLbdu3dnwoQJ/oLqF154IT/++CPR0dEAjBo1itTUVH/y6cYbb2T58uX+459//vm8+uqr/nN37NjRP6QQXEH1wF5P8+bNyzYz4H/+8x9uu+02f/vmm2/mjICv1QYOHEi3bt387ZtuuonrrrvO337uueeyzVT44Ycf+occgptpcNOmTXm8ciIiIsVfmzaweDE0bgwDB8JDD3lbh1SKlpQUN1RuxAhXC3bhQvBVexAJWvmSbBI5XmFhrmvpO+/Atm3w9tuukN4bb8App7iZ7q66yk1D62Ut50qVXDfqzz6DrVvdbHutWrmZJbp3h+rV3QeM1wkyKT5MQIXIChUq0Lx5c3+7devW2ZJL55xzDo8++qi/feuttzJnzhx/e+LEiawKKDD2n//8h08++cTfvu2223jiiSf87bPOOovzzjvP346IiCAiYA7eTz75hC+++MLfvueee3j22WezxXPDDTf4202bNuWKK67I9vr06dP97TFjxvDOO+/429OnT2fJkiX+9m+//cb27dsREREpyqpXd8OiLr7YlVg4/3wVDhf3t0Hfvu7vgtGj3bDLgDl4REqe9OQ8baZkkxQZsbFw3nmuWPfWrTBrFpx6qktAnXYaVK4Mw4bBhx+Cr9SNJ8qWhcsucx8k27bBjBku4fTf/7oEWeXKcMUV8NFH3sYpwatSpUr+IYHghvmddtpp/vYVV1zBjTfe6G8/+eST2ZJJn332GbNnz/a3P/roIyZMmOBvP/PMM9x6663+9mWXXUa/fv387cjISMLCwvztt956i4ULF/rbV199NTNmzABcL63WrVvzzDPPAG6mwsjISB555BEAUlNT6dKliz95dfDgQW699Vbmz5/vb8+YMYM///wTgLS0NP766y+SkpLyfsHyw7RpULu2m32gdm3XFhGREic62t3zPf00zJ7tavNsfU6fAcFq6VJo3971eps+HR591M3GLVIsZaRD0ibYsRg2vg//mwDL74GFV8DX/eGj5vBOeXgrOk+HCzv6JiKFLybG1XI65xxIToYvvnC9n+bMgddeg7g4Nw3tuee6hFR03n7e811cHAwZ4pYDB1zPp3ffdYmyqVOhdGk3zn/AAJcwK1/emzhFTkTgLINAtsQS4J9FMNOMGTOYN2+ev/3HH39ke33lypX+IYfgklENGjQAID09ndtuu42OHTsCkJKSQnR0tL/+1t69e3n55Zc56aST6Nq1K9u2bePCCy9k8uTJ1K1bl7///pu6desydepUhg0bxtq1a+ncuTMvv/wyAwcO5K+//uKGG27g7rvvplOnTvzzzz+8+uqrXHTRRdSvX5+dO3eyePFi2rdvT9myZUlJSeHAgQPExcX5a2odYto01/UxM8G1fr1rgytUJyIiJYoxcOut0KwZvD1wGqVuGQ7oMyCYWAuTJ8NNN7kREPPnu6GWIkWStZC62yWSDvwDBzZBku/xwD9Z65P/BZtjfLAJgagqEF0d4upBpe4QXQ24+6inVbJJiryoKDjzTLekpMDcuVmJp2nTXI+oM85wiafTTnNtL0RHuzH8Awdmxfnuu64n1owZ7suuzp1d4umMM9wNSsBIKpGgUatWLf9zYwyDBg3yt8PDw/29mgBiY2P58ssv/e2KFSuSmJjob1euXJmVK1f6Zy4sV64cU6dO9c88GB0dzXnnnecv5n7gwAE2b95Mim9c7l9//cV9991Hly5dqF+/PkuXLuXUU0/lm2++oXv37nz99df079+f77//npNPPpmvvvqKm266ibfeeosmTZqwePFiXh0xgnuSkqgG/AEsBM5KSiJu7Fh2DxjA3r17qV69uj9hVqCmTYOxY11BvIQEVxxPf+yIiBSIfv2gV9mxhB/I0Zs2Kcn9Ltbv35Ij4PM1o0YCL9UYxw0LhnLqqfD6625CIRFPpB3IJYGU4/mBTZB+4NB9I8q5xFFMdSjTLOt5dHX3PLoaRFWGkNzuYZVskhImIsIllE47zY2L/uYbl3iaNcsNv4uMdEPa+vd3S+PG3iR0AuPMyIAlS9ywug8/hDFj3FKzpks6DRgAvXt71ztLpDgLDw/3zxIIEB8fz7Bhw/zt6tWrZyt23qRJk2z1orp27Upqaqq/hla7du34/vvvadasGeCKvz/99NPUq1cPcDMbNmjQwD/T4Pr163ln3z4y+3Z9DVwNbADiNmzgzTff5Nprr2Xz5s1UqVKFyZMn8/DDD/PLL79QpkwZ5syZw9tvv82UKVOIiopi4cKFLF26lOHDhxMaGsrGjRvZs2cPTZo0yVbnK1fqYSUiUujCN2/I/YUNh1kvxU+Oz9eQv9dz+d/DqXkenDljKIfr+CxyQjLSXE+jpE1ZPZByJpKS/nE9lnIKjXYJo5jqUL5DQBKpWtbzqKoQVrB/gCrZJMVWeLgrxte3L7z4opsV7oMPXDHx225zS82aLul06qluGlIvivWFhLix3O3bw/33u5ntPv7YJZ/++1+YMMElmnr3zko+iUjhCawvFR8fz8knn+xv16lTJ1t9qk6dOjFr1ix/e/DgwQyuVcsldoALgG5AVYCEBHr16sUrr7xCuXLlANerq0+fPv6ZCv/9918WL17sL9D+/vvv8+STTzJixAgAnn/+eV588UUOHHDfRt11113MmTPHX0PrlVde4ZdffuGFF16AsWP5LimJXcBZvvh2JCURdtddxCvZJCJSMBIS/J8BgZIqJBCTy+ZSDI0dm/VFjk8sSZy9aCyE6PNVjpG1kLLz0KRRYEIp6R9I3gLY7PuaUIiu6hJGcQ2gUs+sJFJgMik8vkgMoVGySUqEsDDo1cstzzzjvkz67DOXeHrrLXj5ZVesr3PnrF5PrVvjyTcRVavClVe65eBB+PZb1+Ppww9dAgqgbt12DBnikk8dO6rQoEiRNm6c/xvPUkBDcIXnxo2jUaNGNGrUyL/pqaeeyqmnnupvjxgxwp9YArjvvvu46aab/L2Yhg0bRpcuXfyvt2rVitTUVH977dq1WT21NmxgPPAzWcmma4CVf//NSl/72muvZe/evbzxxhsATJgwAWOMP4YlS5YQExOTrbeYiIgcQcBnQKYDJoarto0j8nJ47jmIj/cuPDlxdsMGcv2zXb3XJKe0/Yevi3RgU1YvpYxcZpGKrJCVLCrbKvtQtphqrh1Z8TBD2oqmkp1sStsP2xdClT5eRyKFLCEBrr7aLampsHChSzx99hncfbdbKlZ0PZ5OPdWNufeVfClUkZFuBrtTTnE3I2vWuKTTtGmpPPGEm9GifHk3HO/0010vLo0JFyliMnsN5UOtpMjISCpXruxvN23alKZNm/rbQ4YMYciQIf4C7I899ljWzgkJvLh+PXsDjnc1sKtCBX+7SpUqlCpVyt9+//33ycjI8CebRo4cSbly5fj0008B6NWrF/Xr1+fll18GYNy4cdStW5cLL7wQcMmpypUrU6NGjWN+ryIiJUIunwHhD4yj7v+G8uij8NVX8H//574QleJn5kzoZBKoaQ/tvYavHqQEgYxUOPDv0Wsjpe45dN+w2KzEUcWTfQmk6r4Eku95dFUIjSz891XASnayac1/YPldUOsiaPkwlKrjdUTigfBw6NbNLePGwdat8PnnWckn3xf8tG2b1eupUyfXW6owGQONGrmlXbvltGrVk88/d8mnTz7JirNNm6wE2cknu/pQIuKxoUO9r4s0bhwVhg+nQsC366fGxLhMts+9996bbZdPPvkEa7O6aE+cODFbu0ePHtmSXzNmzKBTp07+ZNMZZ5zBmWeeyeTJkwFo2bIl559/PmPHjvWfr0ePHvTp47702b9/v38IoYhIiZHjMyAMeBjXQ/3SS12phFtucfehqtFZPOzaBddfD9Onw911xvHA5uGEJAcMpfP1YJZizmbAwR25FNQOmKHtwD+QvI1Dh7SFZfU8im8CVfoGDGermlUzKSyuSAxp80LJTjY1ugXSk2Hlo7BhBtQ4B2pfDNVOK5GZQ8mbSpXg4ovdkpEBS5e6xNOnn8Jjj7nPjdKloWtXV2y8Rw+XiAoPL9w4y5SB8893S3o6/PyzS5J9/jk8+aTr9RQbCz17usRTv37QsGHQ/i4TkePsYRVYeLxNjnmb77///mztX3/9NVsyatq0aZQvXx4Aay0dOnSgdu3aAKSlpfHUU08RHh5Onz59OHjwIHFxcTzyyCOMHj2alJQUxowZw/nnn0+HDh3IyMjgwIEDSkaJSInRqZO7zxw1Cp591tXsnDTJ3VtK0WQtzJ4NN9zgvqB+4AEYM2YoIW+h2V6Lm9REfxKpctJcWPlj9iFumUtG6qH7RlbMqoFUrl32mkiZj5EVwKg6/JGU7GRTaCS0uB/qD4c1z8GfU+Hvd112sVIPN7yuci+IbwohJftSSO5CQlwiqW1b9/mxezfMnQtffOFqKX38sdsuJsbVe+re3S0dOxbuN1OhoVlFxseOhb17Yd68rORTZq2nmjVd0imzILqvJrGIBItC6GEVmJzq3bt3tvWZw+3AFV7fv3+/v8ZUWloajz76KD18f2X9+++/jB8/nmbNmtGhQwfWrVtHvXr1eP3117n44ovZu3cvr7/+OoMGDaJq1aoF+p5ERApKbKybyObss+Gaa9yXhJdf7r449OXqpYjYsMH1ZvrgA2jRAt57D9q1871YFHowi5OeAsmbj14bKS3Rv0tjgGW4PEBMddfrqGL3HEPZMmdpqwKhGjqSH4IjwxJTDVo/AS3Hwb9fwcbZ8O9c2PShez002hXhKtcOyraE0o0hvjFElPU0bCl8ZcrA4MFuAfeNxvz5LvH0zTduNjlrXS+nDh2ykk8nn+x6QxWW0qXhrLPcAvDXXy5B9tln8M478OqrrodT+/ZZvZ46dSr83lkiEtyMMf6Z9mJjYxk1apT/tYSEBPbv3096err/9UceeYR2vjv7hQsXcv3119OkSROqVq3K//73Pz766CMuueQSyn/6KYwdS1toW/jvSkTk2J1yCvz2Gzz4IDz1lEtoPP00XHKJeqV7Zto0GDsWu2EDiWUSuG//OOaGDeXJJ+Gmm3TfXOhshhuudkhB7Rz1kQ5uO3TfkIiAIW3NoWr/bLWRfvx1Ix17nAPhpQ7dVwpMcCSbMoWEQ7VT3QKwfwNs/Q52LoGdi+HPKa6oeKaoSi7xVKqeq/cUWwdK1XaP0VXUbS4IVKoEgwa5BVzPp++/d8mnb7/NGs4WEuJqKWUmn7p2Ldxvq+rUcROhDB8OaWnw009ZvZ4eeQQefhji4ty3aX36uKVpU93ciIi3QkJCCPFNC1q5cmXuuusu/2unnHIKf/75J9WqVQPgq6++4pZbbuH8sDAYNYqDOaahFhEp6mJiXMmGiy5yvZwuu8wVD3/uOdeTRgrRtGn+WQQNUHrXeiaEDOeJx6HizerBlK+shdS9uRTUztkraTPYtBw7G/c3eXR1iK4B5TsEJJGqZz2PLH/EP2wOrJqnRJMHgivZlFNsAtQZ6haAjHTYvw72roa9q2DPKvd808eQ/G/2fUMis/+A5xzHGVXV/ccIL62/6EuQMmVgwAC3AOzf72a6y0w+vfQSPPOMe61ZM5d46tLF9YKqV69wfhTCwtyQv86d4b77XILs669dr6cvv3TfpIFLpPXunZV8qqP6+SJShBhjqBPwi+maa67hjDPOoFqXLmxLSqIpoHmARKQ4atHCfXk5aZIrj9C6NVxxBTz0EFSp4nV0wSH1zrGE5/jSIiojiajnxoKSTXmXnuySRLkW1w5IKAV26MgUHp/193Pp3tn/nvb/TV3ZdRiRYim4k005hYRCXD23VB+Q/bW0A7B/Pez/yyWk9v2V9Z9q18/wzweQnsu3rCERLukUWck9Zi6RlVwGNrI8RJTzPZaHyHL6D1WMxMZmJWsADh6ExYuzht39978uAQVQtqxLOgUulSoVfIxlysA557gFYP16Nw3v3LlumTHDra9dO+u99Oqlmx0RKVrWrVvHjz/+yJANGygLnAxs9DooEZHjFBICI0fCkCGuB/p//uPuyUaPhltv1ax1BWXXLne9n9y0IfcNNhxmfbDJSIeDWw+dpS1nUungjkP3DeyUUbY1VDsjR22kqr5Z2jQhSEmnZFNehUVDfCO35MbfPfAf958weQskb3X/SZMDlr2r3GvpyUc4V1yOJFQ5iCjjlvAcjzmfh0bl57uWYxQZ6XoydekCd93lhrStXAmLFmUt48a5WfAAatVyxcYzk09t2rgEVkGqVcsVprz8cvdju3p1VuLp3XddvSdww+z69HG9n3r0cEkrEZE889XCON6ZezZu3MgHH3zAVVddRXh4ONOmTePuu++mb40alN+4kTlAu6MdRESkiCtXzvWKHznSzVp3990wcaJ7vPxyiIjghH+fCuzb574Afvxxl3C6KzaBCvvXH7phQgnvM2stpO45ck+kpH/cqB6bnn1fE+J6GkVXh9haUOHk7CN9YnyPEWU1skcAJZvyjzEQEe+W+CZH3tZaSNvnMsEpO+DgTt/znI++1/avh9TdkLIr96kZA4VEuhjC490QPv+Ss53LurA4CI+DsFKuaLp+SZywsDDXVbpFC7jqKrdu/374+efsCai333avhYS44Xc1a57E//7nElBNm7rjFARjoHFjt1x/PaSnuyl65851vZ9efhleeMHF1a6d6/HUu7dLpml2chE5rIBaGIDrUjl8uHvu+wMpMTGRxYsX06JFC8qXL8/ixYu59dZbmTBhAk2bNmXhwoVce+21tG3blg4dOnDFFVdw3nnnUW7RIlfsRDWbRKQEadAAZs1yPeNHjYIRI1zdzSl9p9F7xnDMEX6fyuFlJpmefBK2b4f+/V3drAq/jcv+OQWuqNa4cd4Fe6LSDvhmaQushZRLr6T0A4fuG1E2qzRM1abZh7JlJpOiKmkGdzkm+mnxgjEuqRMeB9TO+37Wuh5Rqbshxbf4n+/Kvj4t0fW0St3rhvyl7slq58xS5xpjqEs6hZXyJaACElHhcTTYnQhLP8q+PqyU6w7p3y9HOyRCCSxckqZbN7dk2rrVFfVetAh+/BG+/bYiH33kXouOhrZtXbKnVSto2RKaNPF905XPQkPdedq1czc6Bw+6mlSZw+6eftp9I5Q5G1/v3i4B1bkzRKlTnYhkGjuW5KQkFgD1gZrAX0lJXH7lldxTpQp9+vRh9erV9O7dmzlz5nD22WcTGRkJQHKy6/nbv39//vjjD3/dpqpVq1K1alU46ST3WTJ2rPujS0SkBOnRAxYscJO83Hcf1JsyFkOO5HpSkvsdqGTTYe3d63qIBSaZ7rvPzc4MQEvftSsOPcYy0tzImNyGsQX2SErZdei+oVFZSaTy7bOeR1fL6okUXc2N4hHJZ0o2FSfGuF8EYdFurOvxsNZlszMTT/5lD6QmuiRV2j73PGc7LRH2b4e0fVRM3gm/f37k4YCHxB+aPREVGutLSGUmpWLdurDDLLm+FuPWhxZA5qUQVaqUvfD4119/T82aPf09n3780RWRPOD7IiI83PVGykw+ZT7m9wx4kZHupqdHD3jgAdcr6/vvXfLp66/dZ/JDD7ntTj7ZJZ569XKJqIJIhomId6y1LFmyhPLly1OnTh1SUlIYPXo0/fr1o3///uzevZvGjRtzzz33cO2GDewBegP/Aa4HSgHpBw+Snu6+8GjSpAlz586ldevWADRv3pxvv/3Wf75SpUpRqtRhZo4ZOhSGDmWJMUsK8j2LiHjBGDj1VOjXDwjdADaXjVRbKFd//unqX736KiQm5pJkCuT7LPGMtS5BlCNp1GD3T/DNs1lJpOQtYDOy72tCIaqK63kUVx8qdc+apCqmetawtvAy+rJfPKNkU7AxxiVowmIg+vgrQP8wbx49e/Z0mfa0RDfDQOo+SPc9pu1z69JyPM9tm+StAdv4loyDx/i+wnIkpmIOTUiFxeR4LSYgiXW413yPhdwryxioX98tF13k1qWnw//+B8uWwfLlbvniC1eEPFONGlnJp8wEVL16bhhcfoiNdTc+/fq59p498N13LvH09dfuw/zee10v5K5ds4bdtW3rek2JSD6aNg1uugl2+Ipzli8Pzz9/1Btnay3G9/ts6dKlREZG0qSJG/796KOPUr9+fc477zwAWrRowcCBA3nwwQcB6NKlCzfffDOPP/444eHhTJ06lcqVK9O/f39Kly7NGWecQYMGDSAhgQrr1zMXaOY7b0Xgu1q1/L9AYmNj6d27d75eEhGRksQYXI+bXHpxbo9JYOMyaLUiSOs5BdSxsjUTWH3pOMb8NpT33nP3nOefDzffDO3bexRfWlJAL6R/Dl9oO5e/eSqZ0hBRyyWMyrTIvS5SZEU3uZVIEaZkk5yYkDA3xjeibP4eNyPNze4XmIDKuaQfbn3mfkmuR1bylhzr9+dtKGEgE+pLPOWSlMpLsiq3BFhgoisPNbJCQ6FRI7dccEHW+q1bs5JPmYmoTz91ySlwCaIWLVzyqUUL1yOqSROoWPHYLkFu4uPhjDPcArBzp6s1kJl8uuuurO169MgqON60qb5kETkRlb78Ep54gi2pqSQBdQB27OD9YcNI++knBj33HAB33nknsbGx3HfffQB07NiR2rVr89ZbbwEwZMgQ2rZty5tvvgnA1KlT6d27tz/Z1L17d0466SQAjDF88MEH1K1b19/etSury35ISAgvv/yya4wbR+jw4fQuSbUwRES8MO7Q2kIpYTHckTqOg62n8WrIcKIzgqyeU466gGbDehIeHk7FWBgzZigjR0L16gV07oxU97dFUs4EUo5EUuqeQ/cNi80atlahsy+JVNWXRMpMKFXl++8Wui/1RYo5JZukaAoJgxBf4fL8Zq37oEj3JaRyJqiyJa2SjrxdehKkbDp0m2MZXgiAr8eZLyHV/iDwacVDk1PZ6mK51yqFleKUxrGc0jwWhrn1B9NjWfNHKZb9FsuS5TEsW2aYNg0mTMg6Y4UKWYmnJk2ynlerdvyJoHLl4Jxz3AIuEfb111k1n95/362vVMklnTKTT76/XUWKj3yaGWjPnj3s2rWL2rVrA/Djjz+yceNGBg8eDMCUKVP4888/efjhhwEYOXIkf/31F3OWLYPUVC4FdgM/+o73fFoayRMn+pNNmzdvpnTprN+jF1xwAeUDxttOmTKFsmWzvixYvXo1IQFdIV988cVs8fbL7NZ4NJnXIhi/bRcRyU+5/D6NGDeOZwcMJaRubaJ3HVrPyY4Ziykpv29zfN6m3D+O1DvGEptjkohYkphYbiwhDx/n+7bWTdCUW0HtwOfJWzhkXKMJy0oalW4ElXsH9ESqnlVoOyxO37ZKUFGySYKPMa7GU2hE/vfIypSR7mpj5exRddS2e5707zpiI2Nc+8DmQ3txZaQc8fSRQAugRRRc2tFAlxhsaCzpphRJqXEkHijFrsQ4tu0uxaatcexYUoqfvi/FV8lxpFGK0uXiKFe5FJWqxVG9VikS6sVRLaEUIZG+GQxDwvN0GSpVgiFD3ALuC7fMxNNXX8GMGW597drQt68bV9+3r+sJJVJkBXyjuh1Yt349ba++GgMsbtiQH374gRtvvBGAt956i/fff59p06YB8NBDD/HGG2+wZs0aAEaPHs0777zDtm3bAHjllVf46KOP/MmmxYsXs3TpUn+yqXHjxpQrV47Izz8HYBQQOEfpW0Dkwawu+a+//nq20G+55ZZs7a5du2Zrh+TXmFvwvhaGiEhJkcvv0zIAu3Ov22Q3bGDYZTBwoBu5XGxnEM5lZtPUy4cTnbNguk/IxsPUsUrdl6Ogdm69kjbnfn8dWTGroHa51jl6IfkeoyqCycfPT5ESQskmkYIQEgohvkLox2FFZk2sw8lIDUg+7cvD8/2YtH2Epe2jdNo+Sqfuo3raTkjbgE1NxKbsg7REQkg79Fz7gV98i09KRjSpuMRTWHQ8EbHxmIjSEB7vW3zPI+J9wyzLQ2Q5alUsx+WXlufyy6OwFlavzko+zZwJr7wCYWGu2Phpp7mlRQt9CST5JzU1lV27dlG2bFnCw8P5999/+emnn+jVqxelSpVi+fLlzJw5k9tuu42yZcvy6aef8vTTT/PWW29Rrlw5Jk2axE0jRrAZKAtMBe4EEg8coNTYsXw+fDhjx45l+PDhREVFsXnzZpYvX05GRgYhISE0bNiQPn36+OO59NJL6dGjh7/94IMPcvfdd/vbL730Urb4M5NYya++StSWLeSseFQBoFat/LxkIiJSVB2mntPO2AQ++MDV9YyKcgmn006Dnj2hYcOif1+VkQG//AJ1bxhL6Vx6MGWEhLovdkNxH8ZlfI/1ysCy0YcmlNISDz1JWKmsQtoVuwUkkDKTSFXdEhpZ4O9XpKQqNskmY0x/4Hncr5VXrLWPeRySiHdCwiGijFtOkPEtbnhhim/mQZd82rtjH3//lcjmv/exffNeEnfu5cDevaQd2EOpyD2Ujt5LfMweysTuoULpzZQptYe4yD1EhebyoR4oNBoTWZ7GEeVo3Kg817UoR8aoimzYVo0lK6vz1YJqTHupOk88XJ3o+LKcdprh4ouhe/f8K3YuR3G4YWL5NHzsWKSmur474eHh7N+/n6VLl9KwYUMqVqzI5s2bmT59Oueccw5169Zl5cqVPPDAA9xzzz00a9aM+fPnc/HFF/Puu+/Stm1bPv74YwYOHMiSJUto06YN8+fP57zzzuOXX36hefPmrFq1ikcffZRLLrmEsmXLkpqayv79+0lOdkNjmzdvzo1A5o/hQKAhEAGwYQM33HADI0eOJDLS3ZzefPPN3Hzzzf73cv7553P++ef72507d6Zz587+dtWqeZtp9M+rrqLJE09Aamr2FyIiVBdJ8p3uwUSKqFzqORETQ4VJ49hyPsyfD3PmuCWzlEGVKi7p1LOn+3KvUSM3y/EJy3l/cPrp8PHHebpfSE6GFStcvPPmwbffZhCatp1/y66HWrhEUsASUjYdygGHVNvYBaufyUoaxTeFKv2yimpnro+pDuFx+fCmReRIikWyyRgTCowHTgE2Aj8ZY9631q70NjKREsQY9+1NaCS+/hGULgNN60HTHJtmZMA//7jZ8dauha/Xwtpl7vnatZCcnEFcVCLxMXsoV2oXJyXsoF7CTupU20GNijupXHYHFdhJabODWHYSfmAlIQe3UvvgDmrXgMHnAa4+MSnpUWzYXpMls1rzxJR2VGvejr5D2lMt4fh6jUke5NJtneHD4fvv4bXXDl0P2W4g09PTSUtL8z//+eefqVq1KjVq1CA5OZn/+7//o1OnTrRq1Yrdu3dz++23c9FFF9G7d282bdrEgAEDuO+++xg4cCBr1qyhUaNGvPnmm1xwwQX8+eefdOvWjZkzZ3LuueeyefNmbr/9durXr0/dunU5ePAgy5cvZ88eV5izfPny9OjRg1jfGIJWrVrx4osvUq1aNQB69+7NTz/9RL169QA477zzGDJkiH+2tjPPPJMzzzzT/95OPvlkTq5Vy/9NcgPfAkBCAnFxhXPzurVvX5o0bnxcs9GJHAvdg4kUYUeojxeOmxW4Vy947jl3fzZvXtaSWcogMhKaNcuaybhpU6hTx81wHJbHvxSb/fILPPFE9vuDwEKhvvuF1DTY0OlM/v1zE5v+2MSOjf9wYMcmwlP/oUqZTbQvs4lzT/mHyoM3ExaS48uUDGAvsAtIjoa4TvDlz7BuD4RVgstugsFXQ2R5DWkTKSKMtfboW3nMGNMZuN9ae6qvfReAtfbRw+1TrVo1e8011xRShCKSyVpITCzFzp3l2LmzHHv2xLNnTzx795b2P09Ly/4VWmhoGnFxiZSJ20XtyuuoVXEDNcpvpFrZTVSJ30yVUluoWepvapbdCEBaeiiP/DoGG6spX/NDRkYGGRkZhPnuKns/9RRV9u3zJ1Few32x2M0YQq3lBqAzcJHv9XahoVTo25fOnTuTkZHBgw8+SI8ePejVqxdpaWk8/PDD9O7dm+7du3Pw4EEeffRR+vbtS9euXTlw4AAvvfQSvXv3pnXr1hw4cIDZs2fToUMH6tevz4EDB1i0aBGNGjWicuXKpKSk8Pfff1O5cmVKlSpFeno6qampRERE5G+9oSNo9ssvnPnBB0QE9CpKCQ/ngzPP5LcWLQolBnHuv//+Jdbadl7HUZId6z2Y7r9Eij5rYefOcvzzTzX+/beKf0lKyiruZEwGpUvvpUyZ3ZQuvZeoqORsS2RkCsa4vyPHf3QtFVO2Zw1ny1zK4db5HjPKGkKiD/3bc9/BWHanxJNkYzlANIlppUlMi6PMHztp9+Viwremwx4gXZ+3IkVFXu7BikXPJqA68HdAeyPQMedGxpjhwHDI+1AEEclfxkDp0vsoXXoftWsfWqjRWkhKimbv3nhf8skloRIT40hOjmTHnvKkJ4eye1sZtsZVonq5iiRWWEfpOnv9yaaw0HQMNudcIEEjIyODtLQ0IiIiANi2bRtpaWn+33urVq3CWkuTJk0A+OabbwgPD+fkk08G4O233yYuLo7TTjsNgPHjx1O1alXOPfdcAC7Zt48euCQTwF3A6UAP35cT83D3jZnqpadzMCoKcAWme/XqRUJCAgBhYWFceOGFVKxYEYCIiAhuu+02onzbR0dHc9ttt/mPFR0dzUUXXZStHVjTKCIiwt8LCSA0NJTQ0MJNOmbe4PaZO5f4PXvYEx/P3D59dOMrJdVR78F0/yVSvBgD5cvvpHz5nbRo8RuQ9WXh9u0V2b07nt27y7B7dxn27onj4J4I4lITKZO+i6rh/1I94h+qldlEtbKbqF72Hyr03p7LkDYgBTdl6i5gA5jllteqXUpySBQ22pAaFkFiWilS7WHqIlWATU2q02fzXOLT9XkrUtwUl55N5wGnWmuv8rUvATpYa2843D7VqlWzmzZtKqwQg868oxWwlhNSIq5vRhqk7oGUXW4q2ZSdR348uM0VcszI3m3aYkgLr0pKTGvSSrcjo1w7YmudTESpcoc58dEV9vVNTU1l3759/inm165dy6ZNm+jevTsAX3zxBX/88QcjRowAYMKECaxZs4bnfNPX33LLLfz+++989NFHAJxxxhn8+++/LF68GHDT0e/du5eFCxcC0KtXL9LT0/n2228BGDhwIPHx8bz22mv+41WqVIm77rrLf77KlSszaNAgAL6uUoUKW7bQ3Bf/FqAUEBsaCunph77BWrVg3bpsq0rEz3ARpuvrGGPUs6mAHes9WMOGDW3mbIuSP/T/PX/pevpY6+7TDmzKPjNbthnaNrlZ2mz2z36LIS2sMmnh1fnfPymc9OsaoramuKRS4LIvxzlzuV+QQ+lnNP/pmua/vNyDFZeeTRuBmgHtGoAySSL5zVpIT/YXCCc15+MeSN0LKXuynqfmeJ7ie56e+7S0jvEVOC/nxtZHVoDSjbJmBcks3hhdHRNdhfCQcPKjdmVepaamsmfPHsqVK0dISAgbN25kxYoV9OnTh7CwMBYtWsSXX37JqFGjCA0N5d133+XNN99k5syZGGN49tlnmThxon96+1GjRvHyyy+TmOgKpz/33HNMnz6dnTt3AvDuu+8yZ84cf7Lpzz//ZPny5f54MnsJZbr88sv9xwJ49NFHCfziYNasWf5eTwBz5szJtv+zzz6brT1y5Mhs7V5PP52tZlNlgJgYuOyy7DWbMterILVISaZ7MJHiJj3ZlzjalD1xlDOhlNu9WniZrJnZ4ptkn6HNt95EVSY8JIxwYPYDD9Bs+y8M/vzT7PcHOel+QSToFJdk009AA2NMHeAf4AKyyoWIBKeMVEjb70sM7T/K84B2wGxz/iRS2r6s9TaXniu5CYuD8NIQEQ/h8RBRFmJru+fhpbMeI8tBRHnfoy+5FF4GQvJv6FN6ejq7d+8mLi6OiIgItm/fzuLFi+nUqRNlypTh999/Z+bMmVx11VVUrlyZ3377jRdeeIH//Oc/VK9enVmzZnHLLbcwf/58atasyauvvsrIkSPZtGkTVatWZfbs2dx4441s27aNChUqMH/+fMaOHcu1115LmTJl2LZtG6tXryYlJYXIyEhq1qxJp06d/NPdDxw4kDp16vjjvfHGG7MNFXv66aezJYCefPLJbO/vlltuydYePHhwtnbbtm2ztTN7UB23IxQcpUuXQp+NTkQ8pXswkaIiIx2St+SeQAp8nrLz0H1Do7KSRuXaQsxZAUmkallJpbCYYw7rtxYtGDxo0HHPRiciJVOxSDZZa9OMMdcDn+Gm3Z1irV3hcVgiR2YzIC3JfWsUmPTJ2U5LgvSA52n7abTrD/juP/622y9H4ijHcLOjCouFsFK+JJHvMbIClKrjW1/KTQOb22PmPpkJpLC4E0oWWWtJ2r+f0NBQoqKiOHDgAD/++CMNGzakatWqbN++nalTp3LmmWfSqFEj/vrrL0aPHs3tt99O+/btWbp0KYMHD2bq1Kn06NGDb775hj59+vD111/Ts2dPfv75Z0477TTmz59Ply5d+P3337n77rs55ZRTqFy5MsnJyfzvf/8jyfcNXJUqVejVq5e/QHbXrl154YUX/DOYDRo0iDZt2lC6tCtIcN1113Hdddf5ew+NGDHC3ysJ4Nxzz/XXPwLo3r27f8gcwEknncRJJ53kb2eep0gZOjT3m8LDrReREkn3YCKFwFpXdiBn0igzqZTke0z+191fBjIhEFXVJYri6kGlbjl6ifuSSBFlXbGmgqL7AxHJoVgkmwCstR8DH3sdh5Qg6SkBiZ/MhE9SjoRQLu1Dtsuxjf8x+dhjCo2BsFji00JhbzkIjXVJougqAcmiwMe8PC8FodEnfINhrSUjI4PQ0FCstSxZvJiKFStSq1Yt0tPTmTBhAu3ataNTp04cOHCAESNGcO6553LmmWeya9cuunTpwujRo7n00kvZtGkTNWrUYNKkSQwfPpwtW7bQq1cvpkyZwuWXX86uXbu48847qVq1Ko0aNSItLY3ly5eza9cuAMqUKUOXLl2Ij48HoFGjRjz//PP+wtEdOnTghx9+oFmzZgD079+fgwcP+pND7dq14/bbb/e/t5NPPtlfPBugWbNm/n0BqlevTvXq1f3tyMjDFLIUESmBdA8mcgLSkgKSSJnJo5x1kTblft8YUS4raVSmacBQtoAkUlTlfO0tLiKSX4pNskmCUEZ6jt48uSy5vX7URJHvuU07tnhMiD8Z5H8M8z1GV81qhwas928X+FrA64HbBCSEfiyAInb//vsv1lr/TEEff/wx8fHxdOnSBYAHH3yQ+vXr+4d3DRgwgB49enDnnXcCUK5cOa688kqeeuopjDF06dKFW2+9lUcffZSQkBBuvPFGxo4dS6dOnQgPD+ebb76hU6dOAMTExNC0aVMqVKjgP9bjjz9Ohw4dADd70VdffeWfPa1u3brs3bvX3+OnQYMGrF692v9e6tSpw+uvv+5vV6tWjRtvvNHfLlOmDJ07d/a3M3ssiYiIiOSLjLSsIW1J/+QyrM3XIyl196H7hkZnJY7KdwzogZTZI8mXSAqNKvS3JSKSX/QXmJy4jFRfzZ/MGkH7AuoF5Xh+1G0CloyDxxaHCTs0gZO5RFU6fKIoW8Inx2uB7ZDIgu1+nIv09HT/tO6///47+/fvp3Xr1gDMnDmT5ORkLrnkEgDGjh2LMYaHH34YgNNPP534+HjefPNNAE455RQaNGjArFmzALj11ltp2bKlP9k0c+ZMunXr5k82lS5d2j89PcCdd97pPzfAe++9R926dQEwxrBlyxZ/T6OwsDDWBcw2EhkZycyZM/3t6OhofxIr8/VevXr526GhocTFxR33dRMRERE5Lta6WXIPGcaWoydS8pZchrSFuS8go6tB3ElQqVf2oWyZvZTC4wv9nlJEpLAp2RSMbIavUPTeQ5dsM48lZi8eHdDumLgN3k116zJS8n5uE+arBRQ4HKyU6wLsT/zEZk8UBS6HvBaTtT404ujnL0QZGRns37/fnzT5/fff2bBhA3379gXg/fffZ+XKlYwePRpwM4otX76cGTNmAHDRRRfx66+/8uuvvwJwxx13sH79epYtWwbAlClT2L59uz/Z9O+//2ICblx69OhBTExWkceHHnrIX3MI4IMPPsiW0Mk8T6bMJFWmu+66K1u7f//+2doVK1bMy2URERER8UbafqLT/oYt8w5TG8nXzu3eNrJCVu+jsq2yD2XLHNoWVdH1hBcRESWbih1rXcInZbdbUn2PKbsC2nsgLWciaU/A80TAHuEkPiYsR6HoOH9iaM/BKkTXqO8rHB3nS/xkFpOO9SWTciSUwmIhJKJYfZOTnJxMZGQkxhg2bNjAL7/8wmmnnUZoaChff/017733Hs888wwhISFMmjSJSZMmsWTJEowxjBo1ivHjx/uLUL/00ktMnTqVPXv2APDZZ58xe/Zsf7IJyDZ9/dlnn03Hjh397XvvvZfU1Kyi4O+880622kGvvvpqtthHjRqVrT1w4MBs7QYNGhznVREREREpQjJS4cC/hw5ly5lMSt1LR4C5AfuGxWYlkSp2yTFDW2ZCqSqEql6jiMixULLJKxlpLkF0cIebnjTXxx1wcKcvkbTLJZJS9xzaZTensNiA6ed9S3S17O3AqekzZxcLL509uXSEYWOr582jSvue+X5ZCoK1FmMMu3fvZsWKFbRs2ZJSpUqxcuVKZs6cyfXXX0/58uX57LPPeOihh3j33XepXLkyEydOZOTIkfz7779UrlyZ2bNnc/PNN7N9+3bKly/P0qVLmTp1Kg899BBxcXGULl2ahIQE0tLSCA8P54wzzqBKlSr+899www0MDZil44UXXmD8+PH+ds6eQ0OGDMnWzjm9fZGcwUxEREQkv9gMOLg9e3Ht3GZsS97KIV+khoS7WdpiqkN8E6jSF2Kqs2rdHhq36ZtVGym8dK6nFhGRE6NkU35KT4Hkze7DMPlf98GXvBUObs3xfItLIh2ud5EJdbNPRJaDiPLu25T4JhBRBsLLuMfDPQ+Ph5CS+c+akZHBrl27iImJITo6mu3bt/Phhx/Su3dvEhISWLlyJffccw/3338/zZs356uvvmLAgAF89dVXdO7cme+++46zzjqLRYsW0b59e9asWcP999/POeecQ/ny5QkNDSUiIoKDB12tqI4dOzJu3Dh/76HzzjuPzp07+4ee3XLLLdx6663++C688EIuvPBCf7tHjx706NHD365Xr55/tjTAX4tJREREJOikJuZeUDuwd1LyZtdrKafIillD18q1CyiqXT2rRlJkhVyHtG3ZOo/GVXoW/PsTEQlyJTMrURAy0t0H3/6/YN862L8OkjZmH+N9cFvu+0aUdQWqIytB6cZQqYf7kIysAJHlfYml8lnPw0sHxXjv9PR0fv/9d8qVK0flypVJTEzkpZdeom/fvrRt25aNGzcyZMgQxowZw4ABA1i5ciXNmzfnrbfe4vzzz+eff/7h8ssv55133iEhIYH09HRWr17tH6ZWq1Ytrr/+eipVqgRAp06d+OyzzzjppJMAOPPMM0lNTfXPVNa3b19/PSWA1q1bZyuIXa1aNapVq+Zvm2I0HFBERESkUAR++ZrbDG2Z7bR9h+6b2Rs/urq7X86ZQIquBlFVilydThEROZSSTYGsdb2O9q6Gvatgzyr3fN+fkLQhxzcrxiWQoqtBdA0o3yFgutLqrjdSZCWXUAqiD8Q///yTyMhIqlevTkZGBo888ggdOnSgX79+HDx4kNatW3Pddddx3XXXsX//fpo0acKTTz7J7bffTlpaGqNHj+bZZ5+lbdu2xMTEEBUVRUiIS7wlJCTw3HPP0apVKwAaNWrEH3/84U8ANW/enBUrVvhjqVevHk8++aS/XbFiRfr16+dvZyaZREREROQobAYkb8slgZTjeW5fvoZEZCWLyrSAqv0D7pszayNVdWUcRESkRAjuv7aTt8H2H2DHYtjpWw5uz3o9rBSUbuS65yacB6XqQGxtiK0DsQlBUShw165dJCcnU7VqVQBeeeUVKlWq5J/VrH///nTu3Jn77rsPgDZt2nDZZZfx/PPPExISwhNPPMG1115Lv379iIyMpFWrVv5jxcXF8eabb/prEZUpU4Z9+/b5Z1ArV64cc+dmVXAsXbo0N910k78dGRlJ3bp1C/4iiIiIiJRU1roJZLINZQvshZT5fDPYtBw7GzejcHQ1d29coeOhPZH8Q9rUI1xEJJgEV7LJZsC2H2DjbPh3Luxe7tabUIhvCtXPgrIt3VC3+Mbuw7KEfzD+/PPP7N+/n27dugFuBrOwsDDGjRsHQPfu3alXrx5z5swB4Nlnn6Vx48Zcf/31AFSvXp1y5cr5j/fqq69mSwDt2LGD8PBwf3v69On+58YYLrjggmxtFb0WERERySfpyS5JdEhtpBy9ktKTDt03PD4raVS6V44e/L7Z2qKqlNhaoSIicmKC49MheTv8bzz88Sok/e268lbsAi0ehso9oWxrCIvxOsp8k5SU5O8d9PHHH/PXX39x3XXXAXDttdfy+++/8+WXXwIwduxYtm3bxuLFiwGXHAocXvbAAw8QHx/vby9YsIBSpUrx7bffAi65FGjw4MHZ2oGJJhERERHJBxnpbrhaYFHtnHWRDmxysxvnFBKZlUQq2waqnXFoT6SYam52YxERkeNUspNNGamw+jn49X73jU3V/tDyUahxVrEeE56YmOifEW3u3LnMmzePhx56CIAbbriBt99+my1btgAwZ84cPvzwQ3+yqVmzZpQtW9Z/rKeffjrbrGivvPJKtnMNGjQoWztz+JyIiIiI5DNrIXV3tuLaCYnz4aeZ2XsiJf8LNj37vibE9TSKrupKPlTsmlVsO7pqVo+kiLIlvue+iIh4r2Qnm1Y9DcvvcsPjWj0K8U28jihPMjIyMMZgjGHBggXMnDmTxx57jIiICB577DHuuusukpOTiYyMZMGCBTz77LPcfffdREZGMmDAABISErDWYozh2WefZcKECf5jX3vttdnO1aRJ8bgmIiIiIsVa2oHcC2rnLLidfiDbbnUBDpbNShxVbZI1pM0/rK2aq52kIW0iIlJElOxPpJOucwmmGmd5HclhbdmyhS+//JLTTz+dsmXL8s4773DJJZewcuVK6tSpw++//86kSZO4+eabSUhIoFevXjzxxBOkpaURGRnJqFGjGDt2LMb3DVX//v3p37+///iqgSQiIiJSgDLS3GzGOesi5Uwqpew6dN/QqKyC2uXbH5pEiqnOtz/9j+69Ti389yUiInICSnayKTyuSCSakpOTsdYSHR3NqlWruO6663jsscfo0KEDK1as4OKLL+bLL7+kT58+NG7cmGuvvdZfN+niiy/m0ksv9SeTOnbsSMeOHf3HVk0kERERkQJgrUsQBdZFyq1XUvIWNwlNIBPqhq5FV4O4BlCpp6uD5B/W5ksmhccfdUhbhtlQcO9RRESkgJTsZJMHUlNT+eGHH6hWrRoNGjTgzz//5KSTTuLVV1/lsssuIzY2lqSkJJKS3KwfHTt2ZMWKFdSvXx+Apk2b8vTTT/uPF1hPSURERETyQdp+XwIpMImUo7j2gU1uNrecIstnJYzKtDh0hrbo6hBZEUJ0DyciIsFLyaYTlJGRwcSJE6lduzann3466enp9OnTh9GjR/Pwww9Tq1YtxowZQ8uWLQFISEhg4cKF/v1jY2NVN0lEREQkP2Skup5GSTl7IeVop+45dN/QmKykUflOWYmjwLpI0VXd0DcRERE5IiWbjsPkyZOx1nLNNdcQEhLC008/TY8ePTj99NOJioriq6++8ieQQkNDefDBBz2OWERERKQYsxYObs99GFtgD6XkrYDNvq8J8w1pqw7xjaFKn1ySSNUgvLRmaRMREcknSjblwUcffcSvv/7K6NGjAZg9ezYA11xzDQA//fQTZcuW9W/fvXv3wg9SREREpDhK3Xf4oWyBiaWMlEP3jayYlTAq1yZgKFtAr6SoimBCCv99iYiIBDElm3KxdetWPv/8c4YOHYoxhrlz5zJr1ixuv/12wsLCmDVrFtHR0f7ty5Ur52G0IiIiIkVQegok/3uYnkgBw9rSEg/dNywuK2lUsWuOXki+hFJUVQiNKPz3JSIiIkelZJNPRkYG1lpCQ0OZNWsWI0eOpG3btjRu3JgHH3yQp556ipAQ961YYKJJRERERJzotH/gk9YuiXRw26EbhIRnDVuLbwZVT81qByaUwuMKP3gRERHJN0o2AX/++Sf9+vXjySef5JxzzuH888+nS5cuNGrUCIBSpUp5HKGIiIhI0RdCGkTXgPIdsoaxBSaRIstrSJuIiEgQCNpkU3JyMuvWraNRo0YkJCTQunVrypQpA7hhcRoaJyIiInJs9ofVgp4feB2GiIiIeCxok03nn38+K1asYPXq1YSHhzNz5kyvQxIRERERERERKfaCKtm0f/9+oqKiCA0NZdSoURw4cIDw8HCvwxIRERERERERKTGCZtD87t276dChA+PGjQOgS5cu9O3b1+OoRERERERERERKFmOt9TqGAmGMSQTWeB1HCVYB2O51ECWYrm/B0vUteLrGBUvX16llra3odRCSRfdfBUL/3/OXrmf+0zXNX7qe+U/XNP81tNYecerYkjyMbo21tp3XQZRUxpjFur4FR9e3YOn6Fjxd44Kl6ytFmO6/8pn+v+cvXc/8p2uav3Q985+uaf4zxiw+2jZBM4xOREREREREREQKnpJNIiIiIiIiIiKSb0pysmmy1wGUcLq+BUvXt2Dp+hY8XeOCpesrRZV+NvOfrmn+0vXMf7qm+UvXM//pmua/o17TElsgXERERERERERECl9J7tkkIiIiIiIiIiKFTMkmERERERERERHJN8U62WSM6W+MWWOMWWuMGZ3L68YY84Lv9V+MMW28iLO4ysP1Heq7rr8YY34wxrT0Is7i7GjXOGC79saYdGPMuYUZX3GXl+trjOlpjFlmjFlhjPmmsGMszvLwOyLeGPOBMWa57/pe7kWcxZUxZooxZqsx5rfDvK7POCmSjDEP+X4mlxljPjfGVPM6puLOGPOkMWa177rONsaU8Tqm4swYc57vcynDGKPp0I9TXu9jJW+O9rkvx84YU9MY87UxZpXv//xNXsdUnBljoowxiwLu7R840vbFNtlkjAkFxgOnAU2AC40xTXJsdhrQwLcMByYUapDFWB6v719AD2ttC+AhVHjtmOTxGmdu9zjwWeFGWLzl5fr6btZfAs6y1jYFzivsOIurPP78XgestNa2BHoCTxtjIgo10OLt/4D+R3hdn3FSVD1prW1hrW0FfAjc63E8JcEXQDPfPdfvwF0ex1Pc/QYMAr71OpDiKq/3sXJM/o8jf+7LsUsDbrPWNgY6Adfp5/SEHAR6++7tWwH9jTGdDrdxsU02AR2AtdbaP621KcAM4Owc25wN/Nc6C4EyxpiqhR1oMXXU62ut/cFau8vXXAjUKOQYi7u8/AwD3AC8C2wtzOBKgLxc34uAWdbaDQDWWl3jvMvL9bVAnDHGAKWAnbgPfckDa+23uGt2OPqMkyLJWrs3oBmL+10gJ8Ba+7m1NvP3p+65TpC1dpW1do3XcRRzeb2PlTzKw+e+HCNr7WZr7c++54nAKqC6t1EVX757zn2+ZrhvOexnfHFONlUH/g5ob+TQH5y8bCO5O9ZrdyXwSYFGVPIc9RobY6oD5wATCzGukiIvP8MnAWWNMfOMMUuMMZcWWnTFX16u74tAY2AT8Ctwk7U2o3DCCwr6jJMiyxgzzhjzNzAU9WzKb1egey7xnj6DpFgxxtQGWgM/ehxKsWaMCTXGLMN1hPjCWnvY6xlWaFHlP5PLupxZtbxsI7nL87UzxvTCJZu6FmhEJU9ervFzwChrbbrrHCLHIC/XNwxoC/QBooEFxpiF1trfCzq4EiAv1/dUYBnQG6gHfGGM+S5Hrwc5fvqME88YY74EquTy0lhr7XvW2rHAWGPMXcD1wH2FGmAxdLRr6ttmLK6H6LTCjK04ysv1lBOizyApNowxpXAjRW7WfeiJsdamA6185UhmG2OaWWtzrTNWnJNNG4GaAe0auG/Pj3UbyV2erp0xpgXwCnCatXZHIcVWUuTlGrcDZvgSTRWA040xadbaOYUSYfGW198R2621+4H9xphvgZa4ehhyZHm5vpcDj1lrLbDWGPMX0AhYVDghlnj6jBPPWGv75nHT6cBHKNl0VEe7psaYy4AzgD6+36tyBMfwMyrHR59BUiwYY8JxiaZp1tpZXsdTUlhrdxtj5uHqjOWabCrOw+h+AhoYY+r4Cs5eALyfY5v3gUt9M/Z0AvZYazcXdqDF1FGvrzEmAZgFXKKeIMflqNfYWlvHWlvbWlsbeAe4VommPMvL74j3gG7GmDBjTAzQETeWW44uL9d3A67XGMaYykBD4M9CjbJk02ecFEnGmAYBzbOA1V7FUlIYY/oDo3ATWiR5HY8IebsPEPGUr27oq8Aqa+0zXsdT3BljKmbOhmqMiQb6coTP+GLbs8lam2aMuR43Q1coMMVau8IYM8L3+kTgY+B0YC2QhPuWXfIgj9f3XqA88JKv502atVbTx+ZRHq+xHKe8XF9r7SpjzKfAL0AG8MrhuoFKdnn8+X0I+D9jzK+47vajrLXbPQu6mDHGvImbxa+CMWYjrmdIOOgzToq8x4wxDXG/V9cDIzyOpyR4EYjEDUcGWGit1XU9TsaYc4D/ABWBj4wxy6y1p3ocVrFyuPsAj8Mq1nL73LfWvuptVMVeF+AS4FdfnSGAMdbaj70LqVirCrzmm40yBHjbWvvh4TY26oUrIiIiIiIiIiL5pTgPoxMRERERERERkSJGySYREREREREREck3SjaJiIiIiIiIiEi+UbJJRERERERERETyjZJNIiIiIiIiIiKSb5RsEpFiyRjTxhiTboyxxpi2+XzsUGPMGt+xH83PY4uIiIiIiJR0SjaJSHE1Hvc77ANr7ZL8PLC1Nh142Ne81RhTPz+PLyIiIiIiUpIp2SQixY4xZhDQyde8v4BOMx34HYgAHiqgc4iIiIiIiJQ4SjaJSHF0v+/xU2vtzwVxAl/vpid8zSHGmCYFcR4REREREZGSRskmESlWjDGnAs19zf8W8OlmAsmAAW4u4HOJiIiIiIiUCEo2iUhxM9L3uA94ryBPZK3dC3zga15sjIkryPOJiIiIiIiUBEo2iUiBMsb09M3qZo0x9/vWNTfGTDbG/GGMOWCM2WaM+dIYc+FRjlUeON3XnG2tTTrMdvcHnDOvS8/DnHaa7zEaOPdY37+IiIiIiEiwUbJJRAqVMeYS4CfgaqAuEAVUAPoA040xHxpjog6z++lAuO/51wUdq888wPqen11I5xQRERERESm2wrwOQESCSntgjO/5FOBbIN23/kogFhgAvEHuvYhOCXi+6AjnmQEsO0osZYGXcMkugD25bWSt3WOMWQ00BvoYY0J9xcNFREREREQkF8Zae/StRESOk294WmAvpESgn7V2YY7tGuB6EVXzrTrXWvtujm3WACf5jlHGWptxnDGFAZ8BvX2rxllr7z7C9lOBYb5mS2vtL8dzXhERERERkWCgYXQiUtjuyJloArDW/g/XuynT7YGvG2MigQa+5v+ON9HkM56sRNO7wD1H2X5VwPMWJ3BeERERERGREk/JJhEpTLuAqYd70Vr7KbDS1+xkjKkS8HJNwPie7zzeAIwxNwPDfc2fgUvt0bt47gp4Xut4zy0iIiIiIhIMlGwSkcL0nbU25SjbfBXwvH3A83IBz48r2WSMOQ14ytfcDJx1uBntctgR8Lzs8ZxbREREREQkWCjZJCKFae0xblMt4HlkwPPEYz2xMaYprnB4KHAAONta+08ed98b8Dz6WM8tIiIiIiISTJRsEpHClJdeRPsDnpcKeH4w4HnpYzmpMaYC8IFvPwsMs9b+dAyHiA94fuBYzi0iIiIiIhJslGwSkcIUk4dtYgOe7wt4Hjh0LnBI3REZYyKA2UAd36oHrLVv53X/XM533PWiREREREREgoGSTSJSmOof4zabAp5vADJnoMtzsgmYDHT1PX/LWvvAMeybKfB8649jfxERERERkaChZJOIFKauvp5GR9Ir4Ll/qJuvsPj/fM36xpij/v4yxowCLvM1FwHD8h5qNo0Dnv9ynMcQEREREREJCko2iUhhKkdW8ucQxph+QFNfc4G19t8cm/zoe4wDmhzpRMaYs4FHfM2NuILgycccsdPR95gIrDzOY4iIiIiIiAQFJZtEpLA9ZYxpn3OlMaYeMCVg1dO57PtFwPMOhzuBMaYVMA33O24/cFYuias8McbEAw19zbnW2vTjOY6IiIiIiEiwCPM6ABEJKh8DpwDfG2NeA74D0oH2wJVkzT43y1r77mH2TwEigJ5kT04Feo2sQuNvA7WMMbWOEtt8a+32XNb3BIzv+ZyjHENERERERCToGWut1zGISAlmjOkJfO1rPgCsBV4BIg+zy8fA4MMNeTPGzAYG4maqq2ytTcplm3XA0ZJLOfWy1s7L5VhvAecDB3znSzzG44qIiIiIiAQVDaMTkUJlrX0D15PpFeBPIBnYCXwFDLXWDjhKbaWXfI+lcEmnAmOMiQPO9DXfUKJJRERERETk6DSMTkQKnbX2V+Dq49z3C2PML0ALXLHx6blsU/uEAsxyHhANWOC5fDqmiIiIiIhIiaaeTSJSHN3ve+xnjGlbECcwxoQCd/qab1lrNQudiIiIiIhIHijZJCLFjrV2NrDA17y/gE5zIW4WuhTgngI6h4iIiIiISImjZJOIFFfXAxnAGcaYdvl5YF+vprt9zWestWvz8/giIiIiIiIlmWo2iUixZK39GQgtoGOnA40K4tgiIiIiIiIlnZJNIiIiIpIvypQpY+vXr+91GCXK/v37iY2N9TqMEkPXM39t2rSJylu3Epqenqftf41oS0oKhIVBlSpQsSKEaKxNNvoZzX+6pvlvyZIl2621FY+0jZJNIlKgrLXzAON1HCIiUvAqV67M4sWLvQ6jRJk3bx49e/b0OowSQ9czf91xx1M8/tSdeavNUqsWrFvMd9/BAw/A3LmQlgajRsE110B0dEFHWzzoZzT/6ZrmP2PM+qNtozyyiIiIiIiI5NnWrXDHHfDcczexgZpH3yEmBsaNA6BbN/jyS/j2W2jSBG65BerWheeegwMHCjZuESk8SjaJiIiIiIhInsycCXXqwDPPQJMmK5l3Sg+XTAoUEQHly4MxrkfT5MkwdGi2Tbp1c72bvvkGGjd2SacGDWD58kJ8MyJSYJRsEhERERERkaOaPh0uuABatYKVK2HQoDms71LPJZNq1cpKLk2ZAtu3Q0YGrFt3SKIpUPfu8NVXMG+e2713b/j558J6RyJSUFSzSURERERERI7ov/+Fyy93PZI+/BBKlQp4cejQIyaU8qJHD9fLqVcv6NMHPv8c2rc/sZhLgtTUVDZu3EhycrLXoRRb8fHxrFq1yuswiqWoqChq1KhBeHj4Me+rZJOIiIiIiIgc1pQpcNVVrtfR++8fOmouv9St6xJOvXtD376w+NZpNJg6FjZsgIQEV/fpBJNaxc3GjRuJi4ujdu3aGKM5d45HYmIicXFxXodR7Fhr2bFjBxs3bqROnTrHvL+G0YmIiIiIiEiuJk2CK6+Efv3ggw8KLtGUqXZtl3C6Imoa1e8fDuvXg7XucfhwmDatYAMoYpKTkylfvrwSTVLojDGUL1/+uHvVKdkkIiIiIiIihxg/HkaMgAEDYM4ciI4unPPWrAlPho8lhqTsLyQlwdixhRNEEaJEk3jlRH72lGwSERERERGRbJ57Dq6/Hs4+G959F6KiCvf8YZs25P7ChsOsF5EiRckmERERERER8Rs/Hm65BQYPhpkzITLSgyASEo5tvRSYk08+Od+PuW7dOqZPn57vx80vpbJVwM/d/fffz1NPPQXAvffey5dffnnYbefMmcPKlSsP+/rEiRP573//C0DPnj1ZvHhxnmPdvXs3L730kr+9adMmzj333DzvX1CUbBIREREREREAfv7ZJZrOPBPefBOOYxKq/DFu3CEFopJMDPvGjPMooOD1ww8/5PsxCzLZlJ6eXiDHPZIHH3yQvn37Hvb1IyWb0tLSGDFiBJdeeulxnTtnsqlatWq88847x3Ws/KRkk4iIiIiIiJCU5CZ7q1gRpk71MNEELpDJk6FWLTCGg1VqcQ2TuXLuUKz1MC4P3Xwz9OyZv8vNNx/9vJm9fObNm0fPnj0599xzadSoEUOHDsX6/jFq167NqFGj6NChAx06dGDt2rUADBs2LFviI/NYo0eP5rvvvqNVq1Y8++yz2c53pPPMnTuX1q1b07x5c6644goOHjzoP/+DDz5I165dmTlzJrVr12bMmDF07tyZHj168PPPP3PqqadSr149Jk6cCMC+ffvo06cPbdq0oXnz5rz33ntHvRbjxo2jYcOG9O3blzVr1vjXB77P0aNH06RJE1q0aMHtt9/ODz/8wPvvv88dd9xBq1at+OOPP+jZsydjxoyhR48ePP/889l6SQG88cYbnHzyyTRr1oxFixYBHLJNs2bNWLduHaNHj+aPP/6gVatW3HHHHaxbt45mzZoBrsD85ZdfTvPmzWndujVff/01AP/3f//HoEGD6N+/Pw0aNODOO+886ns/VmH5fkQREREREREpdu68E1avhi++gPLlvY4Gl3AaOhSASKDxI64++BlnwCWXeBtasFq6dCkrVqygWrVqdOnShe+//56uXbsCULp0aRYtWsR///tfbr75Zj788MPDHuexxx7jqaeeOuw2uZ2nXbt2DBs2jLlz53LSSSdx6aWXMmHCBG72ZcyioqKYP38+4BI+NWvWZMGCBVx33XUMGzaM77//nuTkZJo2bcqIESOIiopi9uzZlC5dmu3bt9OpUyfOOuuswxbFXrJkCTNmzGDp0qWkpaXRpk0b2rZtm22bnTt3Mnv2bFavXo0xht27d1OmTBnOOusszjjjjGzD23bv3s0333wDuERSoP379/PDDz/w7bffcsUVV/Dbb78d8Vr+9ttvLFu2DHC9xjKNHz8egF9//ZXVq1fTr18/fv/9dwCWLVvG0qVLiYyMpGHDhtxwww3UrFnzsOc5Vko2iYiIiIiIBLmPP3a1mm69FY4wGshTo0bBp5/C11dP44LRYwnfvMHVcBo3zp+UKsmee87rCKBDhw7UqFEDgFatWrFu3Tp/sunCCy/0P95yyy35fp64uDjq1KnDSSedBMBll13G+PHj/cmmIUOGZDvGWWedBUDTpk1JSUkhLi6OuLg4oqKi2L17N7GxsYwZM4Zvv/2WkJAQ/vnnH7Zs2UKVKlVyjem7777jnHPOIcY3vDPz+IFKly5NVFQUV111FQMGDOCMM8447HvMGW+gzGvZvXt39u7dy+7duw+77ZHMnz+fG264AYBGjRpRq1Ytf7KpT58+xMfHA9CkSRPWr1+fr8kmDaMTEREREREJYlu3wuWXQ/Pm8MgjXkdzeKGh8O6gabx4cDjhm9aDtbB+PQwfDtOmeR1eUIgMqBYfGhpKWlqavx3YIyjzeVhYGBkZGQBYa0lJSTnu89ijjJ+MjY3N9RghISHZjhcSEkJaWhrTpk1j27ZtLFmyhGXLllG5cmWSk5OPeI7D9XrKFBYWxqJFixg8eDBz5syhf//+eY73SOcxxmS7lsBRYwWOeM2O9G+ZH5RsEhERERERCVLWwlVXwZ49MH26RzPPHYOKz40lhqTsK5OS3Pg68dRbb73lf+zcuTPgaiktWbIEgPfee4/U1FQA4uLiSExMPKbjN2rUiHXr1vnrQb3++uv06NHjuOPds2cPlSpVIjw8nK+//pr169cfcfvu3bsze/ZsDhw4QGJiIh988MEh2+zbt489e/Zw+umn89xzz/mHth3r+828lvPnzyc+Pp74+Hhq167Nzz//DMDPP//MX3/9ddRjd+/enWm+ROzvv//Ohg0baNiwYZ7jOBEaRiciIiIiIhKkJk+GDz5wQ7R8NYWLtg0bjm29FJqDBw/SsWNHMjIyePPNNwG4+uqrOfvss+nQoQN9+vTx9+Zp0aIFYWFhtGzZkmHDhuVp2F1UVBRTp07lvPPOIy0tjfbt2zNixIjjjnfo0KGceeaZtGvXjlatWtGoUaMjbt+mTRuGDBlCq1atqFWrFt26dTtkm8TERM4++2ySk5Ox1vqLn19wwQVcffXVvPDCC3maKa5s2bKcfPLJ7N27lylTpgAwePBg/vvf/9KqVSvat2/vH05Yvnx5unTpQrNmzTjttNO47rrr/Me59tprGTFiBM2bNycsLIz/+7//y9ajqSCZo3VFExERERHJi4YNG9rA2XnkxGXOyiT5Q9czuzVroHVr6NYNPvkEQo5x3MsDDzwAwH333VcA0R1G7dpu6FxOtWpBQGHk4irnz+iqVato3LixdwHlUe3atVm8eDEVKlTwOpRDJCYmEhcX53UYxVZuP4PGmCXW2nZH2k/D6ERERERERIJMSoqrqR0TA1OnHnuiyTPjxrmgAxwMi3HrRaTIKC6/UkRERERERCSfPPAALFkCL78M1ap5Hc0xGDrUjf2rVQuMYVfpWlyeNpk5sSV/NrqibN26dUWyV5N4R8kmERERERGRILJiBTz2GFxxBZxzjtfRHIehQ92QuYwMYretY1WroVx3Hezf73VgIpJJySYREREREZEgcscdEBcHTzzhdSQnLiICXnwRNm2Cp5/2OhoRyaRkk4iIiIiISJD44gtXDPzuu6F8ea+jyR9dusDgwS55tnmz19GICCjZJCIiIiIiEhTS0+H226FOHbjhBq+jyV+PP+6Knt97r9eRiAgo2SQiIiISlIwx/Y0xa4wxa40xo3N5vacxZo8xZplv0Z9wIsXca6/BL7+4ek2RkV5Hk7/q1YPrr4cpU+DXX72OxkPTpkHt2m56wdq1XfsEnXzyySd8jJzWrVvH9OnT87TtsGHDeOedd/I9hqKmpL1PJZtEREREgowxJhQYD5wGNAEuNMY0yWXT76y1rXzLg4UapIjkq3373NC5zp3hvPO8jqZg3H03xMe73ltBado0GD4c1q8Ha93j8OEnnHD64Ycf8inALMeSbDqc9PT0fIpGCoKSTSIiIiLBpwOw1lr7p7U2BZgBnO1xTCJSgJ56ytUzevppMMbraApGuXJuGN3nn8Onn3odjQfGjoWkpOzrkpLc+hNQqlQpAObNm0fPnj0599xzadSoEUOHDsVaC0Dt2rUZNWoUHTp0oEOHDqxduxY4tLdO5rFGjx7Nd999R6tWrXj22Weznc9ay/XXX0+TJk0YMGAAW7du9b9Wu3ZtHnzwQbp27crMmTN5+eWXad++PS1btmTw4MEkJSWRnp5O3bp1sdaye/du4uPj+fbbbwHo1q0ba9eu5f777+eKK66gZ8+e1K1blxdeeOGQ952ens6wYcNo1qwZzZs398eZ2zkz3+vIkSPp1asXdevW5ZtvvuGKK66gcePGDBs2LNs1uO2222jTpg19+vRh27Zth5x7yZIl9OjRg7Zt23Lqqaey2VeM7IUXXqBJkya0aNGCCy644Bj+FQtfmNcBiIiIiEihqw78HdDeCHTMZbvOxpjlwCbgdmvtipwbGGOGA8MBKlasyLx58/I/2iC2b98+XdN8FKzXc/v2CB5/vCM9euzg4MGV5PclKErXtGlTQ7VqHRg5MoNXXllMaKj1OqRjkvNnND4+nsTExDztW2rDBnLLI9oNG9iXx2McTmJiIklJSSxdupQff/yRqlWrcsopp/DFF1/QuXNnrLVERkYyd+5cpk+fzvXXX8/MmTNJTU3lwIED2d5DYmIi9957Ly+88AIzZ870r8v0/vvvs3LlSn744Qe2bt1Khw4duPDCC0lMTMRaizGGTz75BIAdO3b4ky4PPvgg48ePZ8SIEdStW5effvqJdevW0apVK7788kuaNGnC33//TeXKlTl48CArVqzgo48+Yt++fbRp04aLL76Y8PBwfxxLly5lw4YNLFiwAIDdu3eTmJjIKaeckus5U1NTSUxM5L333uPjjz/mzDPP5PPPP+fZZ5+lZ8+efP/997Ro0YL9+/fTuHFj7r//fh577DHGjh3L008/7b9WO3fu5Nprr2XGjBlUqFCBd999lzvvvJOXXnqJRx99lF9//ZXIyEh/PAUtOTn5uP6PK9kkIiIiEnxy/XskR/tnoJa1dp8x5nRgDtDgkJ2snQxMBmjYsKHt2bNn/kYa5DJ7Ekj+CNbreeWVkJEBU6ZUom7dSvl23G+++QagyF3TF16Ac8+FP//swdVXex3Nscn5M7pq1Sri4uLytnNCghs6l4NJSMj7MQ4jLi6OmJgYOnToQKNGjQBo27YtW7duJS4uDmMMw4YNIy4ujiuuuIIxY8YQFxdHeHg40dHR2c6feaywsLBc4/rpp5+4+OKLKVOmDGXKlKF3797+YxhjuPTSS/37/fzzz1xyySXs3r2bffv2ceqppxIXF0evXr1YsmQJf/31F7fddhtvvPEGq1evpkOHDsTFxREZGclZZ51FhQoVqFChApUrVyYpKYkaNWr442jevDnr169nzJgxDBgwgH79+hESEnLYc4aHh3P66adTunRpOnToQOXKlenUqZP/WNu2bSMuLo6QkBCGDRtGWFgYV155JYMGDcp2rTZt2sSqVas455xzANfDqmrVqsTFxdGyZUtGjBjBwIEDGThwoL+nWEGKioqidevWx7yfhtGJiIiIBJ+NQM2Adg1c7yU/a+1ea+0+3/OPgXBjTIXCC1FE8sPy5TB1qpt9rm5dr6MpHIMGQdeucM89UAgdP4qOceMgJib7upgYtz6fRAZUlg8NDSUtLc3fNgHjMzOfh4WFkZGRAbjhcSkpKXk6jznCWM/Y2Fj/82HDhvHiiy/y66+/ct9995GcnAy44XLfffcdixYtol+/fuzevZt58+bRvXv3PL0XgLJly7J8+XJ69uzJ+PHjueqqq454zsBjhoSEZDt+SEjIIcc/3Hu11tK0aVOWLVvGsmXL+PXXX/n8888B+Oijj7juuutYsmQJbdu2PewxiwIlm0RERESCz09AA2NMHWNMBHAB8H7gBsaYKsZ3B2yM6YC7b9xR6JGKyHGz1hXLLlv2hMv2FCvGuNpUW7bAE094HU0hGjoUJk+GWrXcRahVy7WHDi2U07/11lv+x86dOwOuxtKSJUsAeO+990hNTQVc76bDDQHr3r07M2bMID09nc2bN/P1118f9pyJiYlUrVqV1NRUpgUUQu/YsSM//PADISEhREVF0apVKyZNmkS3bt3y/H62b99ORkYGgwcP5qGHHuLnn38+4jnzKiMjw1/Havr06XTt2jXb6w0bNmTbtm3+4XupqamsWLGCjIwM/v77b3r16sUTTzzh71lVVGkYnYiIiEiQsdamGWOuBz4DQoEp1toVxpgRvtcnAucCI40xacAB4AKbWQlWRIqFTz6BL7+E5593Cadg0qEDXHihSzpdcw0EjI4q2YYOLbTkUk4HDx6kY8eOZGRk8OabbwJw9dVXc/bZZ9OhQwf69Onj75XUokULwsLCaNmyJcOGDeOWW27xH+ecc87hq6++onnz5px00kn06NHjsOd86KGH6NixI7Vq1aJ58+b+BFZkZCQ1a9b0D2Pr1q0bb775Js2bN8/z+/nnn3+4/PLL/T2zHn300SOeM69iY2NZsWIFbdu2JT4+3p+kyxQREcE777zDjTfeyJ49e0hLS+Pmm2/mpJNO4uKLL2bPnj1Ya7nlllsoU6bMMZ27MBndM4iIiIhIfmjYsKFds2aN12GUKMFaY6igBNP1TEuDFi3c42+/QURE/p/jgQceAOC+++7L/4Png3XroFEjGDIEXnvN62jyJreaTY0bN/YuoDyqXbs2ixcvpkKFojfaOjEx8YRrVuWnUqVKFekeSTnl9jNojFlirW13pP00jE5ERERERKSEeeMNWLUKHn+8YBJNxUHt2nDTTfD667DikLk0RaQgKdkkIiIiIiJSgqSnw2OPQatWMHCg19F46847XY3sxx/3OpKSbd26dUWyV1NRVJx6NZ0IJZtERERERERKkFmzYM0aGDPG1YkOZuXLu5pN06fDn396Hc3xUekb8cqJ/Owp2SQiIiIiIlJCWAuPPAING8KgQV5HUzTcdhuEhsKTT3odybGLiopix44dSjhJobPWsmPHDqKioo5rf81GJyIiIiIiUkJ8+iksWwZTp7oEi0C1anD55TBlCtx7L1St6nVEeVejRg02btzItm3bvA6l2EpOTj7uhEmwi4qKosZxTuWoZJOIiIiIiEgJ8cgjkJAAQ4d6HUnRcued8PLL8MwzxauHU3h4OHXq1PE6jGJt3rx5tG7d2uswgo6G0YmIiIiIiJQA330H8+fDHXdAeLjX0RQtdevChRfChAmwc6fX0YiUfEo2iYiIiIiIlADjxkGlSnDllV5HUjSNHg3798MLL3gdiUjJp2STiIiIiIhIMbdkCXz2Gdx6K0RHex1N0dSsGQwc6JJNiYleRyNSsinZJCIiIiIiUsw9+ijEx8PIkV5HUrTddRfs2gWTJnkdiUjJpmSTiIiIiIhIMbZqFcyaBTfcAKVLex1N0dahA/TtC08/DcnJXkcjUnIp2SQiIiIiIlIcTZsGtWvTqEkI66jNHdWneR1RsTBmDPT6dxqp1WtDSAjUru2upYjkmzCvAxAREREREZFjNG0aDB8OSUkYIMGuh9uGQxwwdKjX0RVpPTdNo1PIcKJ3JrkV69e7awm6diL5RD2bREREREREipuxYyEpKfu6pCS3Xo7IjB1LdIaunUhBUrJJRERERESkuNmw4djWSxZdO5ECp2STiIiIiIhIcZOQcGzrJYuunUiBU7JJRERERESkmEm+dxxJxGRfGRMD48Z5E1BxMm6cu1aBdO1E8pWSTSIiIiIiIsXMa6lDuYrJJFeuBcZArVowebIKXOfF0KHuWtWqhcWwjlqsG6trJ5KfNBudiIiIiIhIMWItvPACRLUZSuTioWC8jqgYGjoUhg5l9y5oWgOGrIUpXsckUoKoZ5OIiIiIiEgxMncurFwJN93kOjXJ8StbFi67DKZPh23bvI5GpORQsklERERERKQYef55qFQJhgzxOpKS4YYb4OBBN7JORPKHkk0iIiIiIiLFxNq18NFHMGIEREZ6HU3J0Lgx9OsHL70EqaleRyNSMijZJCIiIiIiUky8+CKEhblkk+Sfm26CTZvg3Xe9jkSkZFCySUREREREpBjYuxemTIHzz4eqVb2OpmTp3x8aNHBDFEXkxCnZJCIiIiIiUgy89hokJrpeOJK/QkJc7aaFC2HRIq+jESn+lGwSEREREREp4jIy4D//gU6doH17r6MpmYYNg7g4eOEFryMRKf6UbBIRERERESniPv0U/vc/9WoqSHFxcMUV8PbbsHmz19GIFG9KNomIiIiIiBRxzz8P1arB4MFeR1KyXX89pKXBhAleRyJSvCnZJCIiIiIiUlRNm0ZKtdp88nkIK/bXJvztaV5HVKLVrw8DBsDEiXDwoNfRiBRfSjaJiIiIiIgURdOmwfDhRGxeTwiWMnvWw/Dhbr0UmJtugm3bYMYMryMRKb6UbBIRERERESmKxo6FpKTs65KS3HopMH36QJMmbuiitV5HI1I8KdkkIiIiIiJSFG3YcGzrJV8YAzfeCEuXwvffex2NSPGkZJOIiIiIiEgRZGsm5P5CwmHWS765+GIoWxZeeMHrSESKJyWbREREREREiqBl549jPzHZV8bEwLhx3gQURGJj4YorYPZs2LzZ62hEih8lm0RERERERIqge1cP5fbSk7EJtdzYrlq1YPJkGDrU69CCwjXXQFoavPqq15GIFD9KNomIiIgEIWNMf2PMGmPMWmPM6CNs194Yk26MObcw4xMJduvXw0cfQfkbhmLWr4OMDFi3TommQtSgAfTt6/J76eleRyNSvCjZJCIiIhJkjDGhwHjgNKAJcKExpslhtnsc+KxwIxSRl192j1df7W0cwW7ECOj69zQOVq0NISFQuzZMm+Z1WCJFnpJNIiIiIsGnA7DWWvuntTYFmAGcnct2NwDvAlsLMziRYJeaCq+8AgMGuJFz4p2z90/jFYYTs209WOu6nA0froSTyFGEeR2AiIiIiBS66sDfAe2NQMfADYwx1YFzgN5A+8MdyBgzHBgOULFiRebNm5ffsQa1ffv26Zrmo+JyPefNq8iWLU05+eRfmDdvp9fhHFVxuKbHq9OdtxFDUvaVSUkk33YbC6tXz/fzFZef0eJE19QbSjaJiIiIBB+Tyzqbo/0cMMpam25Mbpv7drJ2MjAZoGHDhrZnz575FKKA+yNe1zT/FJfr+dBDrkfTnXe2IDTU62gO75tvvgEoFtf0uG3NvWNn1NatBfK+i8vPaHGia+oNJZtEREREgs9GoGZAuwawKcc27YAZvkRTBeB0Y0yatXZOoUQoEqTWrIGvvoJx4yjSiaagkZDghs7ltl5EDks1m0RERESCz09AA2NMHWNMBHAB8H7gBtbaOtba2tba2sA7wLVKNIkUvEmTICwMrrzS60gEcFm/mJjs62Ji3HoROSwlm0RERESCjLU2DbgeN8vcKuBta+0KY8wIY8wIb6MTCV4HDsD//R8MGgSVK3sdjQAwdChMnoxNqEUGhn8ja8HkyW69iByWhtGJiIiIBCFr7cfAxznWTTzMtsMKIyaRYPf227BrF4wc6XUkks3QoZihQ3nicRg9Gla2gcZexyRSxKlnk4iIiIiISBEwYQI0agQ9engdieTm8sshPBwm5pqWF5FASjaJiIiIiIh4bOlS+PFHGDECjjABpHioUiU491x47TVISvI6GpGiTckmERERERERj02cCNHRcOmlXkciRzJiBOzZAzNmeB2JSNGmZJOIiIiIiIiH9u6FadPgggugbFmvo5Ej6dYNmjTRUDqRo1GySURERERExEPTpsH+/a7XjBRtxrh/p59+giVLvI5GpOhSsklERERERMQj1rrC4G3aQPv2XkcjeXHppRATo95NIkeiZJOIiIiIiIhHFiyAX39VYfDiJD4eLrwQpk939ZtE5FBKNomIiIiIiHhk0iSIi3PJCyk+RoxwM9JNm+Z1JCJFk5JNIiIiIiIiHti1C95+G4YOhVKlvI5GjkXbttC6tUsWWut1NCJFj5JNIiIiIiIiHnjjDUhOhuHDvY5EjpUx7t/tl19csXARyU7JJhERERERkUJmresV07696yEjxc9FF0FsLEye7HUkIkWPkk0iIiIiIiKFbMECWLFCvZqKs9KlXa2tN99UoXCRnJRsEhERERERKWSTJ7vC4Bdc4HUkciKGD3eFwqdP9zoSkaJFySYREREREZFCtGsXvPWWCoOXBO3aqVC4SG6UbBIRERERESlEKgxecmQWCl++XIXCRQIp2SQiIiIiIlJIrHVD6DJ7xEjxp0LhIodSsklERERERKSQLFgAv/0G11zjdSSSXwILhe/d63U0IkWDkk0iIiIiIiKFZPJkV6dJhcFLFhUKF8lOySYREREREZFCoMLgJVe7dtCqlQqFi2RSsklERERERKQQqDB4yZVZKHzZMli82OtoRLynZJOIiIiIiEgBCywM3qaN19FIQRg6FGJiVChcBJRsEhERERERKXALF7rC4OrVVHKpULhIljCvAxARERGR7IwxlYAOQAugFlAWiAYOADuB9cAvwCJr7Tav4hSRvJs0SYXBg8Hw4fDqq65Q+IgRXkcj4h0lm0RERESKAGNMPeBi4Gyg5THstwyYA7xhrf2rQIITkROSWRj8sssgLs7raKQgtW+fVSj8mmtcLSeRYKRhdCIiIiIeMsb0M8Z8CvwO3ItLNJljWFoB9wNrjTGfGGNOKeS3ICJHocLgwUOFwkUc9WwSERER8YAxpivwGNA5c5XvcQewCPgRWAXs8q3bC8QD5XxLY6AjbrhdOd++/YB+xpgfgNHW2u8L/p2IyJFY63q5tG2rwuDBYuhQuP129+/evr3X0Yh4Q8kmERERkUJmjJkGXEBWgmkj8CYwzVr7y3EcrwVwEXAhUBPoAnxrjHnTWntx/kQtIsfjhx9gxQp4+WWvI5HCUro0XHSRq9v09NMQH+91RCKFT8PoRERERArfhbhE01dAX2ttgrV21PEkmgCstb9Ya0dba2sBfX3HNb7ziIiHJk1ydZpUGDy4XHMNJCXBtGleRyLiDSWbRERERArfV0A3a21fa+1X+Xlga+1X1tq+QDffeUTEIzt3wttvw8UXu5noJHi0a+eGTU6c6IZSigQbJZtERERECpkvyVSg9ZSstd9ba1UsXMRDr70GBw+6Xi4SfK65Bn79FRYu9DoSkcKnZJOIiIiIiEg+yywM3qkTtGzpdTTihQsvdD3aJk3yOhKRwqdkk4iIiIiISD779ltYs0a9moJZXJwbQvnWW7Brl9fRiBQuJZtEREREighjTLkT3P/0/IpFRE7MpEluFrLzz/c6EvHSNddAcjK8/rrXkYgULiWbRERERIqOX40xvY91J2NMhDHmP8AHBRCTiByjbdvgnXfgsssgJsbraMRLrVpBhw4qFC7BR8kmERERkaKjKvC5MeZxY0xYXnYwxjQDFgPXHsuJjDH9jTFrjDFrjTGjc3n9bGPML8aYZcaYxcaYrsdyfJFg9n//B6mpGkInzjXXwKpVMH++15GIFB4lm0RERESKjnTAALcDC4wx9Y+0sTHmBmAR0NS335q8nMQYEwqMB04DmgAXGmOa5NhsLtDSWtsKuAJ4Je9vQyR4ZWTA5MnQtSs0yfm/SoLSkCFuSKUKhUswUbJJREREpOjoBqzDJY7aAEuNMZfn3MgYU9EY8yHwHBDl2/4VoF0ez9MBWGut/dNamwLMAM4O3MBau89a/6CPWEADQETy4OuvYe1aGDHC60ikqIiNhUsucUMrt2/3OhqRwpGn7tkiIiIiUvCstQuNMS2BCcBQXJLnFWNMf2C4tXaP7/lUoBIuybQLuNpaO+sYTlUd+DugvRHomHMjY8w5wKO+cw3I7UDGmOHAcICKFSsyb968YwhDjmbfvn26pvmoMK7nQw81oXTpslSsuIB58zIK9FxFhX5Gj65Nm1gOHmzPvfeu5fzzNx52O/2fz3+6pt4wVlXKRERERIocY8yFwEtAPK5X0d+4oW3DcEkmgHnAJdbaf47x2OcBp1prr/K1LwE6WGtvOMz23YF7rbV9j3Tchg0b2jVr8jSST/Jo3rx59OzZ0+swSoyCvp7//gs1a8KNN8LTTxfYaYqMBx54AID77rvP40iKhy5dXM+m1avBmNy30f/5/Kdrmv+MMUustUfsTa1hdCIiIiJFkLX2TaA18AMuuZRAVqIpBRgD9DnWRJPPRqBmQLsGsOkIsXwL1DPGVDiOc4kEjalTIS0Nhg/3OhIpikaMgN9/B3WykWCgZJOIiIhIEWWtXQe8mdkMePwUeNoefxf1n4AGxpg6xpgI4ALg/cANjDH1jXHfvRtj2gARwI7jPJ9IiZdZGLxXL2jY0OtopCg691woW1aFwiU4KNkkIiIiUgQZY8oaY2YBL+ASTIas2erOBBYZYxodz7GttWnA9cBnwCrgbWvtCmPMCGNMZlnjwcBvxphluJnrhpxAckukxPv8c1i3zk1zL5Kb6Gi47DKYNQu2bvU6GpGCpWSTiIiISBFjjOkF/IKbIc4Au4HzcUW8f/etawEsCUgOHRNr7cfW2pOstfWsteN86yZaayf6nj9urW1qrW1lre1srZ1/wm9MpCSaNg1q16bfaSFsCKnN4ORpXkckRdjw4ZCa6oZcipRkSjaJiIiIFBHGmDBjzGPAF0A1XFLpW6CltfYda+1SXB2nV32vRQPjjTHvGWPKexW3SNCaNs1lD9avJwRLzYz1hF073K0XyUXjxtCjB0ycCOnpXkcjUnCUbBIREREpOhYAd+Du0dKBe4Fe1lr/PNnW2gPW2quBc4GduKTTGcCvxphTCj9kkSA2diwkJWVfl5Tk1oscxnXXuSGXn3zidSQiBUfJJhEREZGioy0uefQX0M1a+/Dh6iRZa2cBrYBvfPtUAT4upDhFBGDDhmNbLwIMHAjVqsH48V5HIlJwlGwSERERKVreAFpZa3882oa+Hk+9gbFAKrq3EylcCQnHtl4ECA93oy8//RTWrvU6GpGCoRsSERERkaLjUmvtpdbaxLzuYJ1Hga7AHwUXmogcYtw4DoTEZF8XEwPjxnkTjxQbw4dDWBhMmOB1JCIFQ8kmERERkSLCWvvGCez7E654uIgUkqVNhnJlxmT2lq0FxkCtWjB5Mgwd6nVoUsRVrQqDBsGUKYeW/RIpCZRsEhERESkhrLX7vY5BJJiMHw9zooeS/sc6yMhwVZ+VaJI8uu462L0bpk/3OhKR/Kdkk4iIiIiIyDHatcslCYYOhbJlvY5GiqNu3aBZM5e0zH0qCJHiS8kmERERkUJmjCmU4W7GmDaFcR6RYDR1Khw44HqniBwPY+D662HZMliwwOtoRPKXkk0iIiIihW+xMWa2MaZlQRzcGNPaGPMesKggji8S7DIy4KWXoEsXaNXK62ikOBs6FEqXdr2bREoSJZtEREREvHEW8LMx5kNjzBBjTNSJHMwYE2WMucAY8wmwGDgT0MAMkQLw+efwxx/q1SQnrlQpGDYMZs6ELVu8jkYk/yjZJCIiIlL42uN6HRngNGA6sMUY83/GmMuMMY3zchBjTBNjzDBjzP8BW4BpQD/fcRcAHQoieJFgN348VK4Mgwd7HYmUBNdeC6mp8MorXkcikn/CvA5AREREJNhYa38GOhtjBgH3A82AOOAS34IxJhH4H7DTtyQCpYFyvqW+b59Mxvf4C3C/tXZOQb8PkWD011/w0UcwdixERHgdjZQEDRtC374wcSJ06mSOvoNIMaBkk4iIiIhHrLWzgFnGmH7ASOB0INz3cmngSAW+A/8iSQE+Bl6y1n5ZELGKiDNhAoSEwDXXeB2JlCTXXQfnnAPff1+ePn28jkbkxGkYnYiIiIjHrLWfW2vPAaoClwKvA7/7Xja5LBZYA/wX1xOqqrV2kBJNIgXrwAF49VU4+2yoUcPraKQkOeMMqFkT5syp7nUoIvlCPZtEREREighr7U7gDd+CMSYCqIkbNhcJHMQNqdtgrU31Kk6RYPXWW7BzpwqDS/4LC4MRI2Ds2LKsWgWN81S5T6ToUs8mERERkSLKWptirf3DWvuTtXa+7/EPJZpEvDF+vEsC9OrldSRSEl11FYSHZ/DSS15HInLilGwSERERERE5ioULYfFiN3OYUQ1nKQCVKkHPnlt57TXYu9fraEROjJJNIiIiIkWYMaaSMWaAMeZqY8wtvscBxphKXscmEkyefRbi4+Gyy7yOREqywYP/ITHR1QYTKc5Us0lERESkCDLGnAPcDnQ6wjYLgKestXMKKy6RYLRuHbzzDtx2G8TFeR2NlGQNGybSrRs8/zzccIOr5SRSHKlnk4iIiEgRYoyJMMa8DbyDSzTlNhtd5tIZeNcY87avmLiIFID//McNnbvhBq8jkWBw662wfj3Mnu11JCLHT3lSERERkaLlXeB0XDIJYCXwFbAW2A/EAvWBXkBT3zaDgSjgrEKNVCQI7N0LL78M55/vpqYXKWhnngn16sEzz8B553kdjcjxUbJJREREpIgwxlwADAAssAm40lr7dO2/vwAAIH1JREFU2RG27we8ClQHBhhjhlhr3yqUYEWCxKuvQmKi620iUhhCQ+Hmm11PugULoHNnryMSOXYaRiciIiJSdFzpe9wP9DhSognAWvs50BPY51t1VcGFJhJ80tJc7Zxu3aBdO6+jkWAybBiUKeN6N4kUR0o2iYiIiBQdLXG9ml611v6Rlx18272KG3bXquBCEwk+s2e72jnq1SSFrVQpuOYamDUL/vrL62hEjp2STSIiIiJFRynf40/HuF/m9jH5GItI0HvmGVc758wzvY5EgtH110NICLzwgteRiBw7JZtEREREio5NvsfQY9wvc/tNR9xKRPJswQJYuNDVzgk91v+RIvmgRg0YMgReeQX27PE6GpFjo2STiIiISNHxle+x2zHu1w03/O6ro20oInnzzDOuZs6wYV5HIsHslltg3z6XcBIpTpRsEhERESk6XgBSgEuNMe3zsoMxph1wGXDQt7+InKC//nK1cq65xtXOEfFK27bQo4crVJ+W5nU0InmnZJOIiIhIEWGt/Q24Glfs+wtjzFXGmLDctjXGhBljrgS+wPVquspau6LwohUpuV54wdXKuf56ryMRcQXq//4b3n3X60hE8i7XmxcRERERKXzGmHt9T78ATgcmAY8ZY74D1gJJuCLg9YGuQDnf9h8D9QP2P4S19sGCilukJNmzxw1ZGjLE1cwR8doZZ0D9+vD003D++WCM1xGJHJ2STSIiIiJFx/24XkoEPJYDzsplWxOwzem+5UiUbBLJg1decTVybrnF60hEnJAQ9/N43XXwww/QpYvXEYkcnYbRiYiIiBQtJseS27ojrT/ctiJyFGlprjZOjx6uVo5IUXHZZXBVzDQanFLbZZ9q14Zp07wOS+Sw1LNJREREpOjo5XUAIsHs3XddbZwXX/Q6EpHsYudMY3zKcCLSktyK9eth+HD3fOhQ7wITOQwlm0RERESKCGvtN17HIBKsrIVHH4UGDVyNHJEiZezYrERTpqQkGDtWySYpkjSMTkRERCQIGWP6G2PWGGPWGmNG5/L6UGPML77lB2NMSy/iFCksH30Ey5fDmDFulJJIkbJhw7GtF/GYfo2KiIiIBBljTCgwHjgNaAJcaIxpkmOzv4Ae1toWwEPA5MKNUqTwWAsPP+zK4KiTiBRJCQnHtl7EY0o2iYiIiASfDsBaa+2f1toUYAZwduAG1tofrLW7fM2FgCaBlxJr7lz48UcYPRrCw72ORiQX48ZBTEy2VRnRMW69SBGkmk0iIiIiwac68HdAeyPQ8QjbXwl8ktsLxpjhwHCAihUrMm/evHwKUQD27duna5qPDnc9b7+9FRUqRFOnzkLmzbOFH1gxp5/R/HPY//PVq1Pplluo+8orRG7ZygZq8n7L22hevTro+h+Rfo96Q8kmERERkeBjclmX61/YxpheuGRT19xet9ZOxjfErmHDhrZnz575FKKA+yNe1zT/5HY9v/vO1Wp67jno16+HJ3EVV9984+Y00M9o/jni//mePd14T+Cui+CDD2BdcyhfvtDCK5b0e9QbGkYnIiIiEnw2AjUD2jWATTk3Msa0AF4BzrbW7iik2EQK1bhxULEiXH2115GI5N2YMbBvH7zwgteRiOROySYRERGR4PMT0MAYU8cYEwFcALwfuIExJgGYBVxirf3dgxhFCtxPP8Fnn8Fttx1SDkekSGvWDM45xyWb9uzxOhqRQynZJCIiIhJkrLVpwPXAZ8Aq4G1r7QpjzAhjzAjfZvcC5YGXjDHLjDGLPQpXpMA8/DCULQsjR3odicixGzsWdu+Gl17yOhKRQ6lmk4iIiEgQstZ+DHycY93EgOdXAVcVdlwihWX5cnj/fbj/fihd2utoRI5d27Zw2mnwzDNw440QG+t1RCJZ1LNJRERERESCziOPQFyc+yNdpLi65x7Yvh0mT/Y6EpHslGwSEREREZGgsno1zJwJ11/vhtGJFFedO0Pv3vDkk5Cc7HU0IlmUbBIRERERkaDy6KMQFQW33OJ1JCIn7u67YfNmmDLF60hEsijZJCIiIiIiQePPP2HaNBgxAipW9DoakRPXsyecfDI8/jikpHgdjYijZJOIiIiIiASNxx+H0FC4/XavIxHJH8a43k0bNsDrr3sdjYijZJOIiIiIiASFf/6JZsoUuOoqqFbN62hE8k///tCuHTz4oGo3SdGgZJOIiIiIiASFV1+tQ0SE6wUiUpIY42qRbdgAEyZ4HY2Ikk0iIiIiIhIEFi+Gr7+uxG23QdWqXkcjkv/69oV+/eDhh2HPHq+jkWCnZJOIiIiIiJRo1sKoURAfn6JaTVKiPfYY7NwJTzzhdSQS7JRsEhERERGREu3zz+Grr+CSS9ZTurTX0YgUnNat4aKL4NlnYdMmr6ORYKZkk4iIiIiIlFgZGa5XU506cOaZ+utbSr6HHoK0NLj/fq8jkWCmZJOIiIiIiJRYb74Jy5e7OjYREdbrcEQKXN26MHIkvPoqrF7tdTQSrJRsEhERERGREungQTfzXOvWcMEFXkcjUnjuvhtiY2HMGK8jkWClZJOIiIiIiJRIEybAunXw+OMQor98JIhUrAh33AGzZ8OCBV5HI8FIv3JFRERERKTE2bPHDZ3r2xdOOcXraEQK3y23QOXKrmaZ1QhSKWRKNomIiIiISInz5JOwY4ebCl4kGJUqBffdB999Bx995HU0EmyUbBIRERERkRJl82Z45hlXp6ltW6+jEfHOVVdBgwYwejSkp3sdjQQTJZtERERERKREeeABN/X7uHFeRyLirfBweOQRWLECXn/d62gkmCjZJCIiIiIiJcbKlfDKKzBihJsCXiTYDR4MHTrAPffAvn1eRyPBQskmEREREREpEayFkSOhdGn3h7WIgDFuWOnGjfDgg15HI8FCySYRERERESkR/vtf+PZbePxxN/W7iDhdusAVV8Czz8Jvv3kdjQQDJZtERERERKTY27kTbr8dOneGK6/0OhqRoufxx12vv5EjISPD62ikpFOySUREREREir277oJdu2DCBAjRXzkih6hQAZ54AubPh9f+v707j7ayrvc4/v5yEDQRR0LFITNEwZElKFqGQwjqVdL0iiNUDiVX8V7MIY0hvZmmgUqlF03NaalgKuCA3vBqieKEKA4LLQWtHApnUeN3//ht4kgHzgE259nD+7XWWXs/z37Osz/nWQxrf87v+f2uKTqNap3/DEuSJEmqatOnwxVXwMknww47FJ1GqlxDhsBuu8Fpp8HbbxedRrXMskmSJElS1frss7zyXJcuMGpU0WmkytamTR79N38+nHFG0WlUyyybJEmSJFWtyy6DmTNhzBhYa62i00iVb/vtYdgwGD8e/vCHotOoVlk2SZIkSapKr70G55wDAwbAIYcUnUaqHiNHwiab5FGBn35adBrVIssmSZIkSVVp2LB8G91ll0FE0Wmk6tGhA1xyCcyalR+lcrNskiRJklR17r4bbr0VfvhD+PKXi04jVZ+BA2H//WHECJg7t+g0qjWWTZIkSZKqykcfwUknQbdueVUtScsvAi69FBYuzKMEpXKybJIkSZJUVUaNgpdfhl/8Atq3LzqNVL222ALOPhsmToTbbis6jWqJZZMkSZKkqjFtGlxwAXznO7DXXkWnkarf8OHQsyccdxy8/nrRaVQrLJskSZIkVYW//x2OPhq+8hUYM6boNFJtaNcOrr8ePvwQBg/Ot9VJK8uySZIkSVLFSwlOOAH+8pf8wbhDh6ITSbVj663h5z+HqVNh7Nii06gWWDZJkiRJqnjXXgu33AKjR0OvXkWnkWrP8cfDgQfCGWfAzJlFp1G1s2ySJEmqQxHRPyJeiIg5EXFGE69vHREPR8SCiBheREZpkZdegqFDYY894Ac/KDqNVJsiYPx4WG89OOKIvOqjtKIsmyRJkupMRDQA44ABQHdgUER0X+KwvwEnAz9r5XjS53z6KRx5JDQ0wG9+kx8lrRqdOsE118Ds2Ra7WjmWTZIkSfWnNzAnpfRySukT4CbgoMYHpJTeSCnNAD4tIqC0yLnnwiOPwOWXw2abFZ1Gqn39+sGpp8Jll8GUKUWnUbVqW3QASZIktbouwNxG2/OAXVbkRBFxPHA8QKdOnZg2bdpKh9Ni77//fl1f01mzOnLuuTvRr99f6dz5eVb2UtT79VxVvKblUyl/Rvv3b8Ptt/fkqKPaMX78DNZbr3p/71Ap17TeWDZJkiTVn2hiX1qRE6WUrgCuAOjWrVvq27fvSsTSkqZNm0a9XtN33oEhQ2DzzeGWWzakY8cNV/qc9Xw9V4UHHngAwGtaRpX0Z/SOO2DnneHKK3dn0qQ8p1M1qqRrWk+8jU6SJKn+zAM2bbS9CfB6QVmkf5ESfO97MHcuXH89dOxYdCKp/vToARdemG+lGzu26DSqNpZNkiRJ9WcG0DUitoiIdsDhwB0FZ5L+6fzz4cYbYfRo6NOn6DRS/TrpJDjoIBg+HO69t+g0qiaWTZIkSXUmpfQZMBS4B3gOuDml9GxEnBgRJwJExIYRMQ/4T+DsiJgXEY4v0So3cSKcdVZeev3MM4tOI9W3CLjuujzK6dBD8yp1Uks4Z5MkSVIdSilNAaYsse9XjZ7/hXx7ndRqHn8cjjoKdt0VrryyeueIkWpJhw5w553Quzf827/l1SE32KDoVKp0jmySJEmSVLjXXoMDD4ROneC3v4XVVy86kaRFNtsMbr89/z09+GBYsKDoRKp0lk2SJEmSCvXBB7loevddmDQJOncuOpGkJe2yC1x9NTz4IJx4Yp7IX1oab6OTJEmSVJiFC+GYY+DJJ/NS69ttV3QiSUtz+OHw/PMwahRssw384AdFJ1KlsmySJEmSVJizz86Tgl90ERxwQNFpJDVnxIhcOJ1xBmy1FQwcWHQiVSJvo5MkSZJUiGuvhZ/8BI47Dk49teg0kloiAn79a+jVC448Mo9KlJZk2SRJkiSp1U2ZkkumPfeEceNceU6qJmuskScMX3992H9/ePHFohOp0lg2SZIkSWpVd94J3/wmbLstTJgAq61WdCJJy2vDDeGuu+Czz6Bv33xrnbSIZZMkSZKkVnP77XDIIbDDDnDffbDuukUnkrSievSAadPyRP99+8Ls2UUnUqWwbJIkSZLUKiZOhG99C3r2hKlTLZqkWtC9ey6cInLh9MwzRSdSJbBskiRJkrTK3XILHHYY9O4N994La69ddCJJ5bL11rlwWm21PA/b008XnUhFs2ySJEmStErddBMMGgR9+sDdd0PHjkUnklRu3brlwql9+1w4uUpdfbNskiRJkrTKXH99Xh59993zZMJrrVV0IkmrSteu8MADsOaasPfe8PjjRSdSUSybJEmSJJVdSvDLX8Ixx8DXvw5TpkCHDkWnkrSqbbllLpw6doR99oHf/a7oRCqCZZMkSZKkslqwAI4/Hr7/fejfHyZNyiMdJNWHLbbIhdOGG8I3vgFjx+YCWvXDskmSJElS2bz+el6Ravx4OOssuOMO+MIXik4lqbVtvjk88gjsvz8MGwaDB8NHHxWdSq3FskmSJElSWTz8MOy8M8yalVefO+88aGgoOpWkonTsCLfdBiNGwLXXwh57wNy5RadSa7BskiRJkrTSxo/PczOtsUYunb71raITSaoEbdrAyJG5dHr++VxIP/hg0am0qlk2SZIkSVphn3yS52Y67rh8+9yMGbDddkWnklRpBg7Mt9WtvTbstVdeQMB5nGqXZZMkSZKkFfLss/C1r+UPjaedllecW2+9olNJqlTdu8Ojj0K/frmkPuIIePPNolNpVbBskiRJkrRcFizIt8XstBO89BLcfDNccAG0bVt0MkmVbp118sIBo0fDhAmwzTZw3XWOcqo1lk2SJEmSWuzhh6FnTxg1Cg47DJ57Dg49tOhUkqpJQwOccw48+SR07QpHHw377QevvFJ0MpWLZZMkSZKkZr33HvzHf8Duu+fnkyfn0QidOhWdTFK16tEDHnoILrkkTxreoweMHQv/+EfRybSyLJskSZIkLdOUKflD4LhxMHRonqtpv/2KTiWpFjQ05CJ70Rxww4blUnvWrKKTaWVYNkmSJElq0gMP5BXm9t8fOnRYPAJhrbWKTiap1my+eS62r7sO5syBHXeEo46CF18sOplWhGWTJEmSpM956CHYe+9cNL3wAowZk+dW2W23opNJqmURcOSR8Pzz8F//BRMn5gnEjz02F1CqHpZNkiRJkoA8+Xe/fvlWlmeegYsvhpdfhlNOgfbti04nqV5ssEFe4fKPf8y31d18M2y9NXz72/nfJFU+yyZJkiSpji1cCFOnwoABeeTSU0/BhRfmD3SnngprrFF0Qkn1qnNnuOii/O/R0KFwww3QrRt897swc2bR6bQslk2SJElSHZo3D378Y9hyyzya6bHH4Pzz84e64cNhzTWLTihJ2UYb5dt5X3oJTjwxz+u0447Qqxdcfjm8+27RCbUkyyZJkiSpTnz6Kdx2W57we/PN4Uc/ymXTjTfC3Llw+ul5InBJqkRdusCll8Jrr8HYsfDxx7l82mgjGDIEfv97SKnolALLJkmSJKmmffIJ3H9/nvdk003h4IPzrXJnnplHCdx3Hxx+OKy+etFJJall1l8fTj4Znn4aHnkkTyp+663w1a9C9+4wejQ88YTFU5HaFh1AkiRJUnm98UZeQnzyZLjnHnjvvTzBd//+ea6T/v2hrZ8EJFW5COjdO39dfDHccgtcdRWMHAkjRuQRTz17bsU778A++3h7cGvyvxhJkiSpyr37LsyYkW8hmTIFHn00/0Z/441h0CA44ADYay8/aEmqXR065FvphgyBN9+Eu+6CSZNgypQvMnlyLtz33BP23Rf69IGddoJ27YpOXbssmyRJkqQqsnAhvPgiPPwwTJ+eH595ZvHtIr17w6hRuWDaccf8m39JqiedOsExx+Sv++77PQ0NX2fSJLjzzrzKJuTyqWfPXDz16QO77gqbbFJs7lpi2SRJkiRVoJTgzTfbM3UqzJ4Nzz2XH2fNgvnz8zHrrAO77AKHHJI/KO2yS94nScratk307ZtHNV10UZ5cfPr0xWX9uHH5FjzIo0G33TbP+7TNNosf11+/0B+hKlk2SZIkSRVk9Oh8K9zs2fDee33+uX/ddfMHn8MOy6VSnz7QrRu0cckfSWqxLl1yQX/IIXn7k09g5sxcPM2YkYv9K66ADz9c/D1f/GL+9/eEE/KCCmqeZZMkSVIdioj+wFigARifUjp/idej9Pp+wIfA4JTSE60etA699VaeW+nYY6Gh4UUGDtyKbbbJH3a8JU6SyqtdO+jVK38tsnAhvPrq4hGlix4/+KC4nNXGskmSJKnOREQDMA74BjAPmBERd6SUZjc6bADQtfS1C/DL0qNWsUsuWfx82rTX6dt3q+LCSFIdatMGvvSl/DVgQNFpqlOkRTMJSpIkqS5ERB9gZEpp39L2mQAppZ80OuZyYFpK6cbS9gtA35TSn5d23o033jidcMIJqzS7JEkq1siRIx9PKe28rGMc2SRJklR/ugBzG23P419HLTV1TBfgc2VTRBwPHF/aXDBy5Mhnyhu17m0AvFV0iBri9Sw/r2l5eT3Lz2taft2aO8CySZIkqf40NfPPksPdW3IMKaUrgCsAIuKx5n7TqeXjNS0vr2f5eU3Ly+tZfl7T8ouIx5o7xrUrJEmS6s88YNNG25sAr6/AMZIkSf/CskmSJKn+zAC6RsQWEdEOOBy4Y4lj7gCOiWxX4J1lzdckSZK0iLfRSZIk1ZmU0mcRMRS4B2gArkopPRsRJ5Ze/xUwBdgPmAN8CAxpwamvWEWR65nXtLy8nuXnNS0vr2f5eU3Lr9lr6mp0kiRJkiRJKhtvo5MkSZIkSVLZWDZJkiRJkiSpbCybJEmSVDYR8eOIeDoinoqIeyNi46IzVbuIuDAini9d19siYp2iM1WziDg0Ip6NiIUR4XLoKygi+kfECxExJyLOKDpPtYuIqyLijYh4pugstSIiNo2I30XEc6W/86cUnamaRcTqEfFoRMwsXc9RyzzeOZskSZJULhHRMaX0bun5yUD3lNKJBceqahHRD/jf0sTuPwVIKZ1ecKyqFRHbAAuBy4HhKaXHCo5UdSKiAXgR+AYwj7zC5aCU0uxCg1WxiNgDeB+4NqW0bdF5akFEbARslFJ6IiLWAh4HBvrndMVERABrppTej4jVgIeAU1JK05s63pFNkiRJKptFRVPJmoC/2VxJKaV7U0qflTanA5sUmafapZSeSym9UHSOKtcbmJNSejml9AlwE3BQwZmqWkrp/4C/FZ2jlqSU/pxSeqL0/D3gOaBLsamqV8reL22uVvpa6v/xlk2SJEkqq4g4LyLmAkcCPyo6T435NnBX0SFU97oAcxttz8MP8apgEfElYCfgkYKjVLWIaIiIp4A3gKkppaVeT8smSZIkLZeIuC8inmni6yCAlNIPU0qbAtcDQ4tNWx2au6alY34IfEa+rlqGllxPrZRoYp+jGFWRIqIDMAEYtsToWy2nlNI/Uko7kkfY9o6Ipd7y2bbVUkmSJKkmpJT2aeGhNwCTgRGrME5NaO6aRsSxwAHA3slJV5u1HH9GtWLmAZs22t4EeL2gLNJSleYWmgBcn1KaWHSeWpFSmh8R04D+QJOT2juySZIkSWUTEV0bbR4IPF9UlloREf2B04EDU0ofFp1HIk8I3jUitoiIdsDhwB0FZ5I+pzSh9ZXAcymli4vOU+0iotOi1VAjYg1gH5bxf7yr0UmSJKlsImIC0I282tcrwIkppdeKTVXdImIO0B54u7Rruiv8rbiI+CZwKdAJmA88lVLat9BQVSgi9gPGAA3AVSml84pNVN0i4kagL7AB8FdgRErpykJDVbmI+CrwIDCL/H8SwFkppSnFpapeEbE9cA3573wb4OaU0uilHm/ZJEmSJEmSpHLxNjpJkiRJkiSVjWWTJEmSJEmSysaySZIkSZIkSWVj2SRJkiRJkqSysWySJEmSJElS2Vg2SZIkSVIri4gvRUQqfV1ddB5JKqe2RQeQJEmSJNWniBgI7FjaHJNSml9YGEllY9kkSZIkSSrKQODY0vOrgflFBZFUPpZNkiRJktTKUkp/AqLoHJK0KjhnkyRJkiRJksrGskmSJEmSJEllY9kkSZIkSa2sJavRRcS0Rcc02vfvETE1Iv4SEQsi4pWI+HVEbN3M+33uXBHRNiK+FxEPRcSbEfFRRLwYEWMjYtNmzvWn0rn+1IKfs8ljI+LqUpZjG+3+Y6NrskIr9UXE0Y2+9/GIaLeMY3eNiE9Lx/45IjZYnveStHSWTZIkSZJU4SJi9Yi4DbgJ2AfoDLQDNgMGA09FxIAWnmtdYBrwC2B3YANgdaArcDLwbETsV+YfoVWklH4DXF/a7Amc29RxEbFW6bi2QAKOSSm91SohpTrgBOGSJEmSVPmuIq/c9ji5cHqVXBIdCewGtAeui4huLShNriKXTLOBa4BXgA2BQcAuwFrAxIj4akrpsfL/KABcAvyWXG7tWdp3AvDGEse9ugLn/j75mmwBDI+Ie1JK9y9xzC+AL5eeX5xSmroC7yNpKSybJEmSJKnyDQLOA85JKTW+re5XwARyEbUe8G3ggmbONRC4ARicUvq00bkuAX4KnEYur66KiB0av1+5pJSeAJ6IiIGNdt9bWqVvZc/9bkQcATxI/sx7bURsn1J6GyAiBgFHlQ5/EjhrZd9T0ud5G50kSZIkVb7/TSmdvWTxk1JaSC6HFtm3Bef6E/CdxkVT6VwJOB14uLRrO6DfCicuUEppOjC6tLkxcCXkubKAX5b2fwgMSil90uoBpRpn2SRJkiRJlW/s0l5IKc0B5pY2u7fgXONSSh8v5VwJ+HmjXd9sccLKcx7wf6XnB0XEUPI8TWuX9p2SUnqhkGRSjbNskiRJkqTKN72Z118rPa7bgnMtOX/Rsl7v1YLzVaTSqK+jgL+Xdl1KnssJYEJKaXwhwaQ6YNkkSZIkSZWvuUm/F5Qe27fgXHOW9WJK6W/A/NLmxi04X8VKKc0lTzze2FzguALiSHXDskmSJEmSKlxplE65fNiCYz4oPXYo4/sWZQ7wWaPt+1NKf1/awZJWnmWTJEmSJNWXL7TgmDVLj++v5HsV+pkzIr4A3MjnV2IfHBH7FRRJqguWTZIkSZJUX76yrBcjYj1gndLm600csuiWvXbNnCeA9ZY3XJmNBbqVnt8JLFqB79cR0bmYSFLts2ySJEmSpPqy13K8PqOJ1+eXHjeIiNWWcZ5tWTxCamka3x4YzRy7XCLiYOC7pc1ZwKHAiNL2F8mFU1nfU1Jm2SRJkiRJ9eX7EbGsicRPbfR8YhOvzy49rgZ8bRnnObkFWRrfptdcMdViEbEJ8D+lzY+BQSmlBcBPgWml/QNamFHScrJskiRJkqT68mXgfyKi8TxGRPbfwG6lXU8DU5v4/rsbPf9xU8VVRHyXxaOKluWPjZ73bMHxzYqINsBvWHwL3/CU0rPwz4nWjwYWTRD+04jYvhzvK2mxts0fIkmSJEmqIb8lFy47RcQ1wKtAZ2AQ0Kd0zALgOymltJTvn0Oe+2k3YEZEXEme32lDYCD5VrwHgS2BjZeR5f5Gzy+IiE7ACyxePe61lNKs5fvxOB3oW3o+OaU0rvGLKaV5EXEccCvQHrghInZOKX28nO8jaSksmyRJkiSpvgwBOgG7Axc28fp75NvOHmvqm1NKCyLicPKop3WB7YAxSxz2CHAITc/51PhcT0fEjeSiqzPwsyUOuQYYvKxzNBYRvYBRpc2/kn/Wpt53QkSMJ4++6lF636EtfR9Jy+ZtdJIkSZJUR1JK84E9gZOAPwBvk0cyvQRcCvRIKU1u5hyPk0umS8mjnD4m35r2cOm8X0spvdnCSEcD3yPPpfQWi0c1LZeI6ADcQJ5LKgGDm8kwjDyKCuCkiDhgRd5X0r+KpkdFSpIkSZJqRURMA74OkFJyBTZJq5QjmyRJkiRJklQ2lk2SJEmSJEkqG8smSZIkSZIklY1lkyRJkiRJksrGskmSJEmSJEll42p0kiRJkiRJKhtHNkmSJEmSJKlsLJskSZIkSZJUNpZNkiRJkiRJKhvLJkmSJEmSJJWNZZMkSZIkSZLK5v8BMz7dav2e0isAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "x_range, x_num = (-3., 3.), 100\n",
+ "x_mean, x_sigma = 0.1, 0.5\n",
+ "\n",
+ "ekf_visu = EKF_Visualization(\n",
+ " model=f,\n",
+ " model_taylor=f_taylor_order_1,\n",
+ " x_mean=x_mean,\n",
+ " x_sigma=x_sigma,\n",
+ " x_model_range=x_range,\n",
+ " samples_num=100,\n",
+ " monto_carlo_sizes=[10]\n",
+ ")\n",
+ "\n",
+ "ekf_visu.update_plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ca6d9ec4",
+ "metadata": {},
+ "source": [
+ "# Unscented Transformation"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9be82d70",
+ "metadata": {},
+ "source": [
+ "The n-dimensional random variable $x$ with mean $\\bar x$ and covariance $P_{xx}$ is approximated by $2n+1$ weighted points given by:\n",
+ "\n",
+ "$$\n",
+ "\\begin{align}\n",
+ "\\chi_0 &= \\bar{x} \\\\\n",
+ "\\chi_i &= \\bar{x} + \\left( \\sqrt{(n + \\kappa) P_{xx}} \\right)_i \\\\\n",
+ "\\chi_{i+n} &= \\bar{x} - \\left( \\sqrt{(n + \\kappa) P_{xx}} \\right)_i\n",
+ "\\end{align}\n",
+ "$$\n",
+ "\n",
+ "where subscription $i$ indicates the coloumn of the square root of covariance $P_{xx}$ [eg. $P_{xx}(:, i)$]\n",
+ "\n",
+ "and its associated weights with $i$th point:\n",
+ "\n",
+ "$$\n",
+ "\\begin{align}\n",
+ "W_0 &= \\frac{\\kappa}{n+\\kappa} \\\\\n",
+ "W_i &= \\frac{1}{2(n+\\kappa)} \\\\\n",
+ "W_{i+n} &= \\frac{1}{2(n+\\kappa)}\n",
+ "\\end{align}\n",
+ "$$\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3682eb6a",
+ "metadata": {},
+ "source": [
+ "## Propagate through Non-linear Model"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2050e3c9",
+ "metadata": {},
+ "source": [
+ "$$\n",
+ "Z_i = \\sum_{i=0}^{N} f(X_i)\n",
+ "$$"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f73da84f",
+ "metadata": {},
+ "source": [
+ "## Weighted Mean and Covariance"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1e174e5b",
+ "metadata": {},
+ "source": [
+ "The mean is given by the weighted average of the transformed points:\n",
+ "\n",
+ "$$\n",
+ "\\bar{z} = \\sum_{i=0}^{2n} W_i Z_i\n",
+ "$$\n",
+ "\n",
+ "The covariance is given by the weighted outer producted of the transformed points.\n",
+ "\n",
+ "$$\n",
+ "P_{zz} = \\sum_{i=0}^{2n} W_i \\left(Z_{i} - \\bar{z}\\right) \\left(Z_{i} - \\bar{z}\\right)^T\n",
+ "$$"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 51,
+ "id": "108c36df",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from scipy.stats import multivariate_normal\n",
+ "\n",
+ "class UnscentedTranform(object):\n",
+ " def __init__(self, f, x, P, kappa):\n",
+ " # dimension of state vector\n",
+ " if hasattr(x, \"__len__\"):\n",
+ " self.n = len(x)\n",
+ " else:\n",
+ " self.n = 1\n",
+ " \n",
+ " self.f = f\n",
+ " \n",
+ " self.m = (2 * self.n) + 1 # number of sigma points\n",
+ " \n",
+ " self.x = np.asarray(x)\n",
+ " self.P = np.asarray(P).reshape([self.n, self.n])\n",
+ " self.kappa = kappa\n",
+ " \n",
+ " self.X = self.calculate_sigma_points()\n",
+ " self.W = self.calculate_weights()\n",
+ " \n",
+ " if (np.isscalar(x) == 1):\n",
+ " #self.p = multivariate_normal.pdf(self.X, mean=self.x, cov=self.P)\n",
+ " self.p = gaussian_pdf(self.X, self.x, self.P)\n",
+ " \n",
+ " self.Y = f(self.X)\n",
+ " \n",
+ " self.y, self.Pyy = self.calculate_mean_and_covariance()\n",
+ " \n",
+ " def calculate_sigma_points(self):\n",
+ " X = np.zeros((self.n, self.m))\n",
+ " x = np.reshape(self.x, [self.n,]) \n",
+ " X[:, 0] = x\n",
+ " \n",
+ " for i in range(self.n):\n",
+ " P_sqrt = np.linalg.cholesky(self.P)\n",
+ " \n",
+ " scaler = np.sqrt(self.n + self.kappa)\n",
+ " \n",
+ " X[:, i+1] = x + (scaler * P_sqrt[:, i])\n",
+ " X[:, i+self.n+1] = x - (scaler * P_sqrt[:, i])\n",
+ " \n",
+ " return X\n",
+ " \n",
+ " def calculate_weights(self):\n",
+ " W = np.ones((1, self.m)) * (0.5 / (self.n + self.kappa))\n",
+ " W[0, 0] *= 2.0 * self.kappa\n",
+ " return W\n",
+ " \n",
+ " def calculate_mean_and_covariance(self):\n",
+ " y = np.zeros((self.n, ))\n",
+ " \n",
+ " for i in range(self.m):\n",
+ " y += self.W[0, i] * self.Y[:, i]\n",
+ " \n",
+ " Pyy = np.zeros((self.n, self.n))\n",
+ " for i in range(self.m):\n",
+ " devYi = (self.Y[:, i] - y).reshape([self.n, 1])\n",
+ " P_i = self.W[0, i] * devYi @ np.transpose(devYi)\n",
+ " Pyy += P_i\n",
+ " \n",
+ " return y, Pyy\n",
+ " \n",
+ " def show_summary(self):\n",
+ " print(f'self.x = \\n{self.x} \\n\\n')\n",
+ " print(f'self.P = \\n{self.P} \\n\\n')\n",
+ " print(f'self.kappa = \\n{self.kappa} \\n\\n')\n",
+ " print(f'self.n = \\n{self.n} \\n\\n')\n",
+ " print(f'self.m = \\n{self.m} \\n\\n')\n",
+ " print(f'self.X = \\n{self.X} \\n\\n')\n",
+ " print(f'self.W = \\n{self.W} \\n\\n')\n",
+ " #print(f'self.p= \\n{self.p}\\n\\n')\n",
+ " print(f'np.sqrt(self.P) = \\n{np.sqrt(self.P)} \\n\\n')\n",
+ " print(f'self.Y = \\n{self.Y} \\n\\n')\n",
+ " print(f'self.y = \\n{self.y} \\n\\n')\n",
+ " print(f'self.Pyy = \\n{self.Pyy} \\n\\n')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 52,
+ "id": "af9caeab",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "self.x = \n",
+ "[[0.]] \n",
+ "\n",
+ "\n",
+ "self.P = \n",
+ "[[0.5]] \n",
+ "\n",
+ "\n",
+ "self.kappa = \n",
+ "0.0 \n",
+ "\n",
+ "\n",
+ "self.n = \n",
+ "1 \n",
+ "\n",
+ "\n",
+ "self.m = \n",
+ "3 \n",
+ "\n",
+ "\n",
+ "self.X = \n",
+ "[[ 0. 0.70710678 -0.70710678]] \n",
+ "\n",
+ "\n",
+ "self.W = \n",
+ "[[0. 0.5 0.5]] \n",
+ "\n",
+ "\n",
+ "np.sqrt(self.P) = \n",
+ "[[0.70710678]] \n",
+ "\n",
+ "\n",
+ "self.Y = \n",
+ "[[0. 0.5 0.5]] \n",
+ "\n",
+ "\n",
+ "self.y = \n",
+ "[0.5] \n",
+ "\n",
+ "\n",
+ "self.Pyy = \n",
+ "[[0.]] \n",
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "x = np.array([[0.0]])\n",
+ "P = np.array([[0.5]])\n",
+ "kappa = 0.0\n",
+ "\n",
+ "unscented_transform = UnscentedTranform(f, x, P, kappa)\n",
+ "\n",
+ "unscented_transform.show_summary()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 53,
+ "id": "462b5619",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "self.x = \n",
+ "[[2.]\n",
+ " [1.]] \n",
+ "\n",
+ "\n",
+ "self.P = \n",
+ "[[0.1 0. ]\n",
+ " [0. 0.1]] \n",
+ "\n",
+ "\n",
+ "self.kappa = \n",
+ "0.0 \n",
+ "\n",
+ "\n",
+ "self.n = \n",
+ "2 \n",
+ "\n",
+ "\n",
+ "self.m = \n",
+ "5 \n",
+ "\n",
+ "\n",
+ "self.X = \n",
+ "[[2. 2.4472136 2. 1.5527864 2. ]\n",
+ " [1. 1. 1.4472136 1. 0.5527864]] \n",
+ "\n",
+ "\n",
+ "self.W = \n",
+ "[[0. 0.25 0.25 0.25 0.25]] \n",
+ "\n",
+ "\n",
+ "np.sqrt(self.P) = \n",
+ "[[0.31622777 0. ]\n",
+ " [0. 0.31622777]] \n",
+ "\n",
+ "\n",
+ "self.Y = \n",
+ "[[4. 5.98885438 4. 2.41114562 4. ]\n",
+ " [1. 1. 2.09442719 1. 0.30557281]] \n",
+ "\n",
+ "\n",
+ "self.y = \n",
+ "[4.1 1.1] \n",
+ "\n",
+ "\n",
+ "self.Pyy = \n",
+ "[[ 1.61 -0.01]\n",
+ " [-0.01 0.41]] \n",
+ "\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "x = np.array([[2.0],[1.0]])\n",
+ "P = np.array([[0.1, 0.0],[0.0, 0.1]])\n",
+ "kappa = 0.0\n",
+ "\n",
+ "unscented_transform = UnscentedTranform(f, x, P, kappa)\n",
+ "\n",
+ "unscented_transform.show_summary()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 54,
+ "id": "47ac9f8a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def make_figure(xlims=None):\n",
+ " figure, ax = plt.subplots(figsize=(30, 10))\n",
+ "\n",
+ " ax.axvline(c='grey', lw=2)\n",
+ " ax.axhline(c='grey', lw=2)\n",
+ "\n",
+ " ax.grid(visible=True)\n",
+ "\n",
+ " ax.set_xlabel('x', fontsize=30)\n",
+ " ax.set_ylabel('p(x)', fontsize=30)\n",
+ "\n",
+ " if (xlims != None):\n",
+ " ax.set_xlim(xlims[0], xlims[1])\n",
+ "\n",
+ " return figure, ax\n",
+ "\n",
+ "\n",
+ "def add_absolute_position(ax, x, p, color, set_label=True):\n",
+ " label = ''\n",
+ " if (set_label == True):\n",
+ " label=f'x={x}'\n",
+ " \n",
+ " ax.vlines(x, 0, p, color=color, label=label, linewidths=5)\n",
+ "\n",
+ " \n",
+ "def add_gaussian_bel(ax, x, var, color, visualize_details=False):\n",
+ " p = gaussian_pdf(x, x, var)\n",
+ " #p = norm(x, var).pdf(x)\n",
+ " #add_absolute_position(ax, x, p, color, False)\n",
+ " \n",
+ " x_bel, p_bel = generate_normal_samples(x, var)\n",
+ " ax.plot(x_bel, p_bel, color=color, label=f'x={round(x, 2)}, var={round(var, 2)}')\n",
+ " \n",
+ " if visualize_details == True:\n",
+ " sigma = np.sqrt(var)\n",
+ " sigma1_range = (x - sigma, x + sigma) # sigma 1 x-range\n",
+ " sigma2_range = (x - sigma*2, x + sigma*2) # sigma 2 x-range\n",
+ " sigma3_range = (x - sigma*3, x + sigma*3) # sigma 3 x-range\n",
+ " \n",
+ " # fill sigma 1 area\n",
+ " ax.fill_between(x_bel, p_bel, where=((x_bel >= sigma1_range[0]) & (x_bel <= sigma1_range[1])), color='C0', alpha=0.3)\n",
+ " \n",
+ " # fill sigma 2 areas\n",
+ " ax.fill_between(x_bel, p_bel, where=((x_bel >= sigma2_range[0]) & (x_bel <= sigma1_range[0])), color='C1', alpha=0.3)\n",
+ " ax.fill_between(x_bel, p_bel, where=((x_bel <= sigma2_range[1]) & (x_bel >= sigma1_range[1])), color='C1', alpha=0.3)\n",
+ " \n",
+ " # fill sigma 3 areas\n",
+ " ax.fill_between(x_bel, p_bel, where=((x_bel >= sigma3_range[0]) & (x_bel <= sigma2_range[0])), color='C2', alpha=0.3)\n",
+ " ax.fill_between(x_bel, p_bel, where=((x_bel <= sigma3_range[1]) & (x_bel >= sigma2_range[1])), color='C2', alpha=0.3)\n",
+ " \n",
+ " # arrow marking sigma 1 area\n",
+ " ax.arrow(x, -0.25, sigma1_range[0], 0, head_length=0.01, head_width = 0.05, width = 0.01, length_includes_head = True)\n",
+ " ax.arrow(x, -0.25, sigma1_range[1], 0, head_length=0.01, head_width = 0.05, width = 0.01, length_includes_head = True)\n",
+ " \n",
+ " # arrow marking sigma 2 area\n",
+ " ax.arrow(x, -0.5, sigma2_range[0], 0, head_length=0.01, head_width = 0.05, width = 0.01, length_includes_head = True)\n",
+ " ax.arrow(x, -0.5, sigma2_range[1], 0, head_length=0.01, head_width = 0.05, width = 0.01, length_includes_head = True)\n",
+ " \n",
+ " # arrow marking sigma 3 area\n",
+ " ax.arrow(x, -0.75, sigma3_range[0], 0, head_length=0.01, head_width = 0.05, width = 0.01, length_includes_head = True)\n",
+ " ax.arrow(x, -0.75, sigma3_range[1], 0, head_length=0.01, head_width = 0.05, width = 0.01, length_includes_head = True)\n",
+ " \n",
+ " # area covered by sigma 1\n",
+ " ax.text(x, -(0.25-0.05), \"68.27%\", fontsize=20)\n",
+ " \n",
+ " # area covered by sigma 2\n",
+ " ax.text(x, -(0.5-0.05), \"95.45%\", fontsize=20)\n",
+ " \n",
+ " # area covered by sigma 3\n",
+ " ax.text(x, -(0.75-0.05), \"99.73%\", fontsize=20)\n",
+ " \n",
+ "\n",
+ "def darw_sigma_points(ax, sigmas, x, P, color, marker):\n",
+ " p = gaussian_pdf(sigmas, x, P)\n",
+ " ax.plot(sigmas, p, color=color, marker=marker, markersize=20, linestyle='', label='')\n",
+ "\n",
+ " \n",
+ "def update_plot():\n",
+ " plt.legend(prop={'size': 30})\n",
+ " plt.show()\n",
+ " \n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
+ "id": "212e6fa7",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABtMAAAJgCAYAAAD4c5xoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACiOUlEQVR4nOzdd3QU1cPG8ecmIYQSeu/Sm3QQFKRIBwm99w6CqPBDwAKCghXpSAfpvfcWQFCkSREF6SBILwktJJn3D8oLSk+52c33c05Osrt35j4hnNnNPpk7xnEcAQAAAAAAAAAAAPgvD9sBAAAAAAAAAAAAgKiKMg0AAAAAAAAAAAB4Aso0AAAAAAAAAAAA4Ako0wAAAAAAAAAAAIAnoEwDAAAAAAAAAAAAnoAyDQAAAAAAAAAAAHgCL9sBbEqQIIGTOXNm2zEAuJnr168rTpw4tmMAcDMcWwCEt9OnT0uSUqVKZTkJAHfD6xYAEYFjC4CIsGPHjguO4yR91rhoXaYlT55c27dvtx0DgJvx9/dXqVKlbMcA4GY4tgAIb5999pkkqXfv3paTAHA3vG4BEBE4tgCICMaY488zjmUeAQAAAAAAAAAAgCegTAMAAAAAAAAAAACegDINAAAAAAAAAAAAeALKNAAAAAAAAAAAAOAJKNMAAAAAAAAAAACAJ6BMAwAAAAAAAAAAAJ6AMg0AAAAAAAAAAAB4Aso0AAAAAAAAAAAA4Ako0wAAAAAAAAAAAIAnoEwDAAAAAAAAAAAAnoAyDQAAAAAAAAAAAHgCyjQAAAAAAAAAAADgCSjTAAAAAAAAAAAAgCfwsh0AAAAAABDOvv5aKlxYKl067Ptav17atk3q3j3s+wIAAI8VEhKia9euKSAgQDdv3lRoaKjtSFFO/Pjx9ccff9iOAcAyDw8PxYoVS76+vooXL548PT0jZV7KNAAAAABwN4ULS3XrSrNmha1QW7/+//cDAAAiRFBQkI4fP67YsWMrQYIESp06tTw8PGSMsR0tSgkICJCvr6/tGAAschxHoaGhun79ugICAnThwgWlT59e3t7eET43yzwCAAAAgLspXfpuAVa37t1C7GU8XKSFxxluAADgP0JCQnT8+HElSZJEqVOnfnCWBUUaAPyXMUaenp6KFy+eUqdOrSRJkuj48eMKCQmJ8Lkp0wAAAADAHYWlUKNIAwAgUly7dk2xY8dWwoQJbUcBAJeTMGFCxY4dW9euXYvwuSjTAAAAAMBdvUyhRpEGAECkYelCAAgbX19fBQQERPg8lGkAAAAA4M5epFCjSAMAIFLdvHlTceLEsR0DAFxWnDhxdPPmzQifhzINAAAAANzd8xRqFGkAAES60NBQeXjwFi0AvCwPDw+FhoZG/DwRPgMAAAAAwL6nFWoUaQAAWGOMsR0BAFxWZB1DKdMAAAAAILp4qFDLcPTo3fso0gAAAADgqbxsBwAAAAAAhA/HcfR3wN86fOmwTgec1umA0zoTeEbnb5zXjTs3dOPODd28c1PZmyVRv5E/akIhH136tp96tHlFB473ke+07+Qb01cJfRIqlW8qpYybUql8Uyld/HTKlCiTfLx8bH+LAAAAABDpKNMAAAAAwAVdvHFRO87s0I7TO7T77G4duHhABy8e1I07Nx4Z5+Plo2RxkilOjDiKFSOWYseIrcP50mlGofPqtvGiZtfKrtOFMskEBepM4BkdvHhQF29e1KWblx7Zj5FR+gTplS1xNuVMmlOFUhVSwZQFlSVxFnkYFj0BAAAA4L4o0wAAAAAginMcR0evHJX/MX/5H/PXphObdOzKsQePZ0iQQTmS5FCp9KWUNXFWZU6UWanjpVYq31SKHzP+f68jsH69rm+vqg1vvqk6G/arzjsj/rPE4+3g2/on8B+dDjitY1eO6cDFA3c/LhzQhuMbdCv4liTJ19tXRVIXUakMpVQqQykVSV1E3p7eEf1PAgAAAACRhjINAAAAAKKgG3duaO2RtVpycImWH1quk9dOSpKSxk6qN9O/qQ6FOqhgyoIqkLKAEsZK+Pw7vneNtDl16ujYK6+oZJ8+j71mWkyvmEqfIL3SJ0ivYmmLPbKLOyF3tP/8/gdnxm0+uVmfrP9EkhTLK5ZKZiipqlmqqmrWqkqfIH2Y/y0AAAAAwCbKNAAAAACIIgJuB2jBnws0e/9srT6yWreCb8nX21flMpVTj+I9VCpDKeVIkuO/Z5o9r3tFmmbN0rGNG+/eV7r03SLtMYXak8TwjKG8KfIqb4q8apm/paS7y05uOrFJ64+u1/JDy9VpeSd1Wt5JryZ7VTWy11CDVxsoe5LsL5cbAAAA/3H9+nWNGjVKc+fO1V9//aVr164pefLkKlq0qFq2bKkKFSqE+5zHjx/XyJEjtXTpUp04cUIhISFKkyaNypUrp/bt2ytXrlzhPifCz88//6wxY8Zow4YNOnPmjHx8fPTKK6+oRo0aat++vZIkSRIu85QqVUobNmx4rrHp06fXsWPHwmXeiESZBgAAAAAWBYUEacnBJZq2d5qW/rVUt4JvKV38dGpboK2qZq2qkhlKhs+yiQ8VaSpdWrpfpkkvVaj9W+LYiVU9e3VVz15dgzVYBy8e1OIDi7X44GL129hPfTf2Vb4U+dQgdwM1fLWh0sRLE/bvCQAAIJratWuXateurSNHjjxy/4kTJ3TixAnNmjVLDRs21IQJE+TtHT5LcE+dOlXt27dXYGDgI/cfOHBABw4c0OjRo/Xll1/q/fffD5f5EH4cx1HXrl01aNAgOY7z4P6bN2/q8uXL2rlzp4YNG6Zp06apTJkyFpNGXZRpAAAAAGDBwYsHNXbnWE38baLO3zivZHGSqXX+1mrwagMVS1Ps5c8+e5x/F2mPEw6F2sOyJs6qrq93VdfXu+pMwBnN+n2Wpu2bpg/XfKiea3uqSpYqalOgjSplqSQvD341BQAAeF7Hjx9XpUqVdPbsWUlSkSJF1LhxYyVJkkR79+7V6NGjdfHiRU2bNk0eHh6aPHlymOdcunSpmjVrppCQEBljVLt2bVWoUEExYsTQhg0bNHnyZAUFBemDDz6Qr6+vWrduHeY5EX569uyp77//XpIUJ04ctWrVSkWKFFFgYKDmzp2r1atX6+zZs/Lz89OmTZuUL1++cJt7/vz5T308duzY4TZXRDIPt5DRTbZs2ZwDBw7YjgHAzfj7+6tUqVK2YwBwMxxbAPcQEhqiJQeXaPDWwVp/bL08jaeqZaumNgXaqFymchFTKj2hSPvss88kSb17936u8eHl8KXDGr9rvMb/Nl7/BP6j1L6p1a5gO7Uv1F5J4yQN9/kARD5etwDP748//lCOHDlsx3AJAQEB8vX1tR0jSqhRo4YWLFggSWrZsqXGjBkjDw+PB4+fOHFCJUqU0IkTJyRJS5YsUZUqVV56vhs3bihLliw6ffq0JGnixIlq1qzZI2NWr16typUrKzg4WHHjxtWhQ4eUPHnyl54T4WfXrl0qWLCgHMdR/PjxtXHjRuXJk+eRMX369Hnw+0HhwoW1devWMP1x38PLPEZGBxWWY6kxZofjOIWeNc7jWQMAAAAAAGFzPei6hv86XNmHZ1f1mdV1+PJh9S/TXyffP6l59eZF3NlZL1OMPXyG2vr14R4pU6JM+uKtL3TivROaV3eeciXLpU/9P1W6QenUbnE7/XH+j3CfEwAAwF3s3r37QZGWLl06DR8+/JEi7f79I0eOfHC7T58+YZpzzJgxD4q0OnXq/KdIk6Ry5co9WN4xMDBQ3377bZjmRPjp27fvg0Krf//+/ynSpLt/YFekSBFJ0rZt27Rs2bJIzegKKNMAAAAAIIJcuXVFfTf0Vdrv06rT8k5KHCuxZtWepcPvHlbPEj2V0jdlxE0eljPMIrhQk6QYnjFUI0cNrWy8Ur93/F1N8jTRpN2TlHNETvnN8NP209sjZF4AAICHbdiwQZ6enjLGKF26dLpy5coTxx49elTx48eXMUZx4sSRjVXPZs6c+eDrtm3bysfH57HjKlWqpMyZM0uStm/frsOHD4fLnF26dHniuM6dOz84m2nWrFkvPd+zLFq0SMYYGWPUtWvX59rmgw8+eLDN4sWLH3nMcRxt2rRJH330kcqUKaNUqVIpZsyYihMnjl555RXVr19fixcvfuYZVn369Hkwh7+/vyRp7dq1atCggV555RX5+PjIGKNjx469zLf9UgICArR8+XJJUrx48dS8efPHjjPGqHPnzg9uP/wzx12UaQAAAAAQzi7dvKRP13+q9IPSq7d/b5VIX0JbWm7RL61/UZ1cdSL+GmHhsVRjJBRq9+VMmlOj3x6tk++fVO+SvbXx+EYVHlNYVaZV0dZTWyN0bgAAEL2VLFlSPXr0kCSdPHlSbdu2fey44OBgNWzYUNeuXZMkDR48WNmyZYu0nPetWrXqwdcVK1Z84jhjjCpUqPDg9sqVK19qvmvXrumXX36RJMWPH1/FihV74ti0adMqZ86cku4uNbl///6XmvNZKlWqpCRJkkiSpk+frtDQ0KeODwkJ0YwZMyRJSZIk+c+/W8uWLfXmm2+qf//+Wr9+vc6cOaOgoCDduHFDx44d08yZM1WtWjVVrlz5wc//WRzHUadOnVS2bFnNmDFDx44d0+3bt1/iuw2bDRs2PJj3zTfffOr1yR7+/3K/gMP/o0wDAAAAgHASGBSofhv6KcOgDOq3sZ/KZSynXe12aWH9hSqW9slvPIS7bdvC55pn9wu1bdvCJ9czJI2TVH1K9dHx947rizJf6JdTv6jouKKqOq2q9p3bFykZAABA9PPZZ5/ptddekyTNnj1b48ePf+yY+6VSrVq11Lp160jNKEmhoaH644+7S2J7eXkpb968Tx1fqND/XwZq376Xey21f//+B2dk5cuX7z9LSkbEnM8SI0YM1atXT5J05swZrV279qnj165dqzNnzkiS6tevrxgxYjzy+M2bNxUzZkyVL19eH3/8sSZMmKBZs2Zp+PDh6tKlixIlSiRJWrFihZo2bfpcGb/55hsNHz5cKVKkUI8ePTRlyhRNnDhRHTt2VMyYMV/0W35pD/8MChYs+NSxSZMmVfr06SVJFy5c0Llz58IlQ5UqVZQyZUp5e3srceLEypcvnzp37qzffvstXPYfWSL4zyEBAAAAwP3dCbmjcbvGqY9/H529flbVs1dX31J99WryV+0E6t49/PZVunTYS7kXFC9mPPUq0Uudi3TWsF+H6avNXynPyDxqlq+ZPiv1mdLFTxepeQAAgHvz8vLStGnTlC9fPgUEBOjdd99ViRIllCVLFknSTz/9pAEDBki6e/bVmDFjHrufGzduPHLmWFikS5dOBQoUeOS+U6dO6caNG5Kk1KlTy8vr6W/v3y9GJOngwYMvlePh7TJkyPDM8eEx5/No3Lixhg8fLkmaMmWKypUr98SxU6ZMeWS7f3vnnXf0ww8/KEGCBI/d/osvvlCLFi00e/ZsLVy4UBs2bFDJkiWfmm/58uUqXry4li5dqnjx4j24/9/Xm9u5c6dOnDjx1H09r/Lly//nzLOX+fkdP378wbbJkiULc66Hr7926dIlXbp0Sbt379awYcPUokULDR8+XLFixQrzPBGNMg0AAAAAwmDZX8v0/sr3dfDiQZVIV0Lz682P3LPQ3JhvTF/1LNFT7Qq104BNAzT016Gavne6Pij2gXqV6KW43nFtRwQAAG4iY8aMGj58uJo2barr16+rYcOG2rJli65fv65GjRopJCREHh4emjx5shImTPjYfZw7d041atQIlzzNmjXTxIkTH7nv4eu53V/m8GkSJ0782G1fhI05n0fRokWVJUsW/fXXX5o3b55Gjhz52CUMb9y4ofnz50uSsmTJ8uAMxIeVKFHiqXPFiRNH48aN07Jly3T9+nVNnjz5mWVanDhxNHPmzEeKtMcZMmSIJk2a9NQxz+vo0aP/Kcxs/vwSJ06sChUqqGDBgkqVKpUcx9GxY8e0ZMkSbdmyRZI0YcIEnThxQitWrHhmOWwbyzwCAAAAwEv46+JfqjqtqqpMqyIjo0X1F2lD8w0UaREgUaxE+qb8NzrY+aDq5qqrAT8NULZh2TRt77RnXggeAADgeTVp0kSNGjWSJG3fvl2ffPKJ2rVr9+DMoZ49ez6zRIlIgYGBD7728fF55viHz/YJCAhwmTmf1/2zzAIDA7Vw4cLHjlmwYMGD76FJkyYvPZevr69effXuqhNbtz77mr61atVSqlSpXnq+8GLr5zdgwACdOXNGU6dO1QcffKD69eurQYMG6tmzpzZv3qx58+Y9KD/Xrl2rr7766qXniixRu+oDAAAAgCjmetB19dvYTwN/HigfLx99W+5bdX6ts7w9vW1Hc3vp4qfTjzV+VIdCHdR5eWc1mtdII7eP1PDKw5UneR7b8QAAiFDvrXhPv/3zm+0YkSpfinwaVHFQpM45YsQIbdmyRUePHn3kDf7XXntNffr0eeq2GTJkiLQ/9DHGRMo8tud8msaNG6t3796S7i7l2KBBg/+MeXiJx/tF6ePcvn1bs2bN0sKFC7V7926dPXtWgYGBj/15njp16pnZnnW2230TJ078zxmIESUyf37Fij39Dwxr1KihMWPGPPiZfPPNN+rWrVukXk/uRXFmGgAAAAA8pxWHVij3yNz6avNXavhqQx3sfFBdX+9KkRbJiqUtpl/b/Kqxb4/Vnxf+VMHRBdVzTU/dvHPTdjQAAODi4sWLp2nTpj2y5Jyvr+9/7rMhbtz/X+L65s1nv+55eIyvr6/LzPm8MmbMqNdff12StGrVKp0/f/6Rx8+dO6fVq1dLkt544w1lzJjxsfvZu3evXn31VTVt2lRz587VoUOHFBAQ8MRi9Nq1a8/Mljp16hf5ViJMVP75NWzYUNmyZZMkXb16VZs3b47Q+cKKM9MAAAAA4BnOBp7V+yvf1/R905UtcTZtaL5Bb6Z/03asaM3DeKhVgVaqnr26/rf6f/py85eatX+Wfqjyg8plevIF6AEAcFWRfYZWdJY6dWrFiRNHV69elSQVLFjwiUVMZEqQIMGDry9evPjM8Q+PeXjbqD7ni2jSpIm2bNmi4OBgzZgxQ507d37w2IwZMxQcHPxg3ONcunRJZcuW1blz5yRJadOmVdWqVZU9e3YlTZpUPj4+D87o+vjjj/X7778rNDT0mbkeXi7Rpqj+8ytVqpQOHDggSTpw4IDKlCkT4XO+LMo0AAAAAHgCx3E0Y98MdVreSYFBgepTso96FO+hmF5Rd/mR6CZx7MQa7zdeTfI0Ubsl7VR+Snm1zNdSAysMVHyf+LbjAQAAFxMaGqomTZo8KNIkyd/fXyNHjlSHDh2euu2NGze0atWqcMmRLl06FShQ4JH70qRJo9ixY+vGjRs6deqUgoODn3q23PHjxx98nTVr1pfK8fB2x44de+b48JjzRdStW1ddunRRUFCQpkyZ8kiZdn+JR29vb9WtW/ex2w8bNuxBkdasWTONHTv2if+mX3zxRTinl3bu3PngmnxhVb58+QfXIbsvqv/8EidO/ODry5cvR/h8YUGZBgAAAACPcf76eXVc1lFz9s/Ra6lf0wS/CcqRNIftWHiC0q+U1p4Oe/SZ/2f6esvXWn1ktcb7jVfZjGVtRwMAAC5kwIAB2rBhgyTprbfe0vbt23X16lV17dpVJUuWVM6cOZ+47blz51SjRo1wydGsWbP/XEvLw8NDOXLk0I4dOxQcHKzdu3erYMGCT9zH9u3bH3ydO3ful8qRM2dOeXh4KDQ0VLt27VJoaKg8PJ589ajwmPNFJEqUSJUrV9aCBQv066+/6q+//lKWLFl08OBBbdu2TZJUpUoVJUyY8LHbr1mzRpLk5eWlQYMGPXc5GV6GDBmiSZMmhcu+jh49qgwZMjxy38M/g4d/No9z/vz5B99jkiRJlCxZsnDJ9TSRfSZcWHDNNAAAAAD4lwV/LlCuEbm06MAiDXhrgH5q+RNFmgvw8fLRgLIDtKXlFsWOEVvlJpdTx6UddT3ouu1oAADABWzdulV9+vSRJKVKlUozZ87UyJEjJd29llTDhg11+/ZtiwmlChUqPPh65cqVTxznOM4jjz+83YuIFy+eihYtKunuda1++eWXJ449efKk9u/fL+numXVPKx7D08NLON4/G+3+538//m9nz56VdPcMqaeVObt27frPNdlcQalSpRQz5t1VNTZu3PjU66Y9/P+lUqVKEZ5N0oPiWoqcM+HCgjINAAAAAO65HnRdbRe3VY2ZNZQmXhrtaLtDPYr3kJcHi3q4ktfSvKZd7Xbpg6If6IftP6jA6ALaeWan7VgAACAKCwgIUKNGjRQcHCxjjCZNmqTEiROrQYMGD8qY3bt3q0ePHk/cR4YMGeQ4Trh8/PustPseXq5w1KhRunXr1mPHLV++XIcOHZIkFSpUSJkyZXrJfxmpXr16D74ePHjwE8cNHTpUjuP8J2dEq1q16oMzz6ZOnSrHcTR16lRJUsKECVWlSpUnbnt/WcRz584pICDgieP69u0bjon/38SJE8Pt/8y/z0qTpLhx46py5cqSpGvXrj3x/5XjOBo2bNiD2w//zCPK9OnT9eeff0qSfH19Vbx48QifMywo0wAAAABA0q4zu1RwdEGN3TlWPd7ooV9a/6LcySJ+aRpEjFgxYum7Ct9pbdO1uh50XUXHFtXAnwcq1Hn2BeMBAED088477+jw4cOSpK5du6ps2f9fKnr48OHKmDGjpLtl0tPOCItoefPmVfXq1SVJJ06cUKdOnRQa+ujrmxMnTjxyfbf7Z9s9ToYMGWSMkTFG/v7+jx3TunVrpUqVSpI0a9asxy5LuGbNGn3//feS7hY43bp1e4HvKmy8vb1Vp04dSdLhw4c1cOBAHTlyRNLdUs/b2/uJ2xYuXFjS3TLp448//s/jjuPo008/1YIFC8I/eCT55JNPZIyRJPXs2VN79uz5z5i+fftq69atku7+m9wv4P5t4sSJD/6/lCpV6rFjhgwZ8mBfT7JgwQK1bt36we2uXbvKx8fneb4da/jzSgAAAADRmuM4Grx1sD5c86ESx0qs1U1W662Mb9mOhXBS+pXS2t1+t1ovbq2uq7pq5eGV+rH6j0oeN7ntaAAAIIqYPn26Jk+eLEnKnz+/vvjii0ce9/X11bRp01S8eHEFBwerefPm2rNnj5ImTWojrgYNGqSff/5ZZ8+e1bhx47Rv3z41adJEiRMn1t69ezVq1KgH16Jq1KjRU8/Meh6xY8fW6NGj5efnp5CQELVo0UJLly5VpUqV5OXlpQ0bNujHH39UcHCwJOn7779X8uRPfq2VIUOGB9fmWr9+/RNLmRfRpEkTjR49WpLUq1evR+5/mo4dO2r8+PEKCQnRkCFD9Ntvv6lmzZpKkSKFTp48qWnTpmnXrl3KmTOnYsWKpR07doQ5a2TLnz+/unfvrq+++kpXr17V66+/rtatW6tIkSIKDAzU3LlztWrVKkl3i9DRo0c/KN9exrp169SlSxdly5ZNb731lnLlyqXEiRPLcRwdO3ZMixcv1pYtWx6ML126tHr27Bnm7zOiUaYBAAAAiLau3Lqilgtbav6f81UtWzWNqzZOSWInsR0L4Sxx7MSaV3eeRu8YrfdWvqf8o/JrZu2ZKpG+hO1oAADAsmPHjj04iyt27NiaNm3aY89keu2119SnTx99/PHH+ueff9SiRQstWbIksuNKktKnT6/ly5erdu3aOnLkiLZu3frYM4EaNmyo8ePHh8ucVapU0aRJk9S+fXsFBgZq9uzZmj179iNjYsSIoa+++uqRM44iyxtvvKFXXnlFR48eVVBQkCQpY8aMeuONN566Xb58+TR06NAHZ/ht3LhRGzdufGRMjhw5tHDhQivfV3gZMGCAgoKCNGjQIF2/fv2xy3UmS5ZM06dPV758+cJlzgMHDujAgQNPfNwYozZt2uj7779/6tmDUQXLPAIAAACIln775zcVGl1Iiw8u1nflv9OCegso0tyYMUbtCrXT1tZbFdc7rkpPKq1vNn/z4LoeAAAg+gkJCVHjxo119epVSdLAgQOVPXv2J47v2bOn3nzzTUnS0qVLH7nGVGTLnz+/9uzZo++++07FihVTkiRJFDNmTKVNm1Z16tTR8uXLNXXq1HAtKRo1aqR9+/ape/fuypUrl3x9fRUnThxlzZpV77zzjnbt2qX333//mfu5efPmg6+TJAmf19/GGDVu3Pg/eZ9Hhw4dtHnzZtWpU0cpUqRQjBgxlCxZMr3++usaOHCgtm/frsyZM4dLTluMMRo4cKA2b96s5s2bK2PGjPLx8VGCBAlUoEAB9e3bV7///rvKlCkT5rm+++47jRkzRi1btlShQoWULl06xY4dW97e3kqWLJmKFy+uHj166M8//9SoUaMeXLcuqjPR+ReHbNmyOU9rRgHgZfj7+4fL6ekA8DCOLUD4GrdznN5Z9o6SxE6imbVn6o10T/+LVXf02WefSZJ69+5tOUnku3b7mlotaqU5++fIL5ufJlWfpPg+8W3HAtwGr1uA5/fHH38oR44ctmO4hICAAPn6+tqOgTA6cODAg8KyWrVqWrhwoeVEcAdhOZYaY3Y4jlPoWeM4Mw0AAABAtBEUEqSOSzuq9eLWKpG+hHa22xkti7ToLl7MeJpVe5YGVxyspX8tVZGxRfTnhT9txwIAAHB7a9askSR5eHiof//+ltMAz48yDQAAAEC0cDbwrN768S2N3D5S3V/vrhWNVihZnGS2Y8ESY4zefe1drWu6TlduXVGRMUW0+MBi27EAAADc2v0yrUmTJsqVK5flNMDzo0wDAAAA4Pa2n96uQmMKacfpHZpWc5q+KveVPD08bcdCFFAifQltb7NdWRNnVbUZ1dRvQz+uowYAABABQkND5e/vr5gxYz5YchxwFZRpAAAAANzanP1zVGJCCXkYD21uuVkNXm1gOxKimLTx02pTi01qnKexPvX/VA3mNtDNOzdtxwIAAHArHh4eunz5sm7duqX06dPbjgO8EMo0AAAAAG7JcRz139RfdWbXUYGUBbStzTblT5nfdixEUbFixNKP1X/Ul299qZm/z1SZH8vobOBZ27EAAAAARAGUaQAAAADczu3g22qxsIU+WveRGr7aUGubruX6aHgmY4w+LP6h5tadq93/7NZrY1/TvnP7bMcCAAAAYBllGgAAAAC3cvnmZVWYUkGTdk/SZ6U+05QaU+Tj5WM7FlxIzRw1tbHFRgWFBOn1ca9r9eHVtiMBAAAAsIgyDQAAAIDbOHn1pIpPKK4tJ7doas2p+rTkpzLG2I4FF1QoVSH92uZXZUiQQZWnVdbk3ZNtRwIAAABgCWUaAAAAALew5+weFR1XVKeundLKxivV8NWGtiPBxaWJl0abWmxSiXQl1HRBU33505dyHMd2LAAAAACRjDINAAAAgMtbf3S9SkwoISOjn1r8pNKvlLYdCW4ivk98LW+0XA1yN1DPtT3VeXlnhYSG2I4FAAAAIBJ52Q4AAAAAAGGx6MAi1ZldR1kSZdHyRsuVNn5a25HgZmJ6xdSUmlOUJl4afbPlG52/cV6Ta0yWt6e37WgAAAAAIgFlGgAAAACXNX3vdDWZ30QFUxXU8kbLlShWItuR4KY8jIe+Lve1ksdJrm6ru+nqrauaW3eu4njHsR0NAODiHMfhGq8A8JIiaxl2lnkEAAAA4JLG7BijRvMaqXi64lrTZA1FGiJF19e7aly1cVp9ZLXKTS6nyzcv244EAHBhHh4eCg0NtR0DAFxWaGioPDwivuqiTAMAAADgcgb+PFBtl7RVxcwVtbzRcvnG9LUdCdFIy/wtNbvObO04s0MlJ5bU2cCztiMBAFxUrFixdP36ddsxAMBlXb9+XbFixYrweSjTAAAAALgMx3H0mf9n6rqqq2rnrK0F9RcoVoyI/8UJ+LeaOWpqWcNlOnz5sEpNKqUzAWdsRwIAuCBfX18FBATYjgEALisgIEC+vhH/x5WUaQAAAABcguM46raqm/ps6KPm+Zpreq3p8vb0th0L0dhbGd/SsobLdPLqSZWaVEp/X/vbdiQAgIuJFy+ebty4ocuXWTYYAF7U5cuXdePGDcWLFy/C56JMAwAAABDlhYSGqN2Sdhr4y0B1LtJZ46qNk5eHl+1YgEpmKKkVjVfodMBplZpUSqeunbIdCQDgQjw9PZU+fXpduHBBf//9t65du6aQkBA5jmM7GgBEOY7jKCQkRNeuXdPff/+tCxcuKH369PL09IzwufntEwAAAECUFhIaouYLm2vKninqVbyXPi/zuYwxtmMBDxRPV1yrGq9ShSkVVHJiSa1vtl7p4qezHQsA4CK8vb2VMWNGXbt2TVeuXNGZM2cUGhpqO1aUc+vWLfn4+NiOAcAyDw8PxYoVS76+vkqRIkWkFGkSZRoAAACAKCzUCVXrxa01Zc8UfV76c3305ke2IwGPVSxtMa1usvqRQi1Dggy2YwEAXISnp6cSJkyohAkT2o4SZfn7+yt//vy2YwCIpljmEQAAAECUFOqEqv2S9pr420T1KdmHIg1R3mtpXtOapmt05dYVlZxYUkcuH7EdCQAAAEA4oEwDAAAAEOU4jqNOyzppzM4x+qjER/q05Ke2IwHPpVCqQlrbdK0CgwJVamIpHbp0yHYkAAAAAGFEmQYAAAAgSnEcR++teE8jt4/U/17/n/qV7sc10uBSCqQsoHVN1+nGnRsqNbEUZ6gBAAAALo4yDQAAAECU4TiO/rf6fxry6xC999p7+qrsVxRpcEl5U+TV+mbrdTP4psr+WFZ/X/vbdiQAAAAAL4kyDQAAAECU4DiOPlr3kb77+Tu9U/gdDawwkCINLu3V5K9qRaMVunDjgspNLqfz18/bjgQAAADgJVCmAQAAAIgS+vj30YCfBqhtgbYaUmkIRRrcQuHUhbWk4RIdvXJUFaZU0JVbV2xHAgAAAPCCKNMAAAAAWDdg0wD13dhXLfO11MiqI+Vh+FUF7uPN9G9qfr352ndun6pMq6LrQddtRwIAAADwAlzmN1RjTEVjzAFjzCFjTI/HPF7KGHPVGPPbvY9PbeQEAAAA8GLG7BijXut6qeGrDTX67dEUaXBLFTNX1PRa0/XLqV9UfWZ13Qq+ZTsSAAAAgOfkEr+lGmM8JQ2XVElSTkkNjDE5HzN0k+M4+e599I3UkAAAAABe2Lw/5qn90vaqlLmSJvpNlKeHp+1IQISplbOWxlcbrzVH1qj+nPq6E3LHdiQAAAAAz8ElyjRJRSQdchzniOM4QZJmSPKznAkAAABAGKw7uk4N5jbQa6lf0+w6sxXDM4btSECEa5avmYZWGqqFBxaq+cLmCnVCbUcCAAAA8AxetgM8p9SSTj50+5Sk1x4zrpgxZrek05K6OY7ze2SEAwAAAPBidpzeIb8ZfsqSKIuWNFyiON5xbEcCIk2nIp0UcDtAvdb1kq+3r0ZWGSljjO1YAAAAAJ7AVcq0x/1W4fzr9k5J6R3HCTTGVJa0QFKW/+zImLaS2kpS0qRJ5e/vH75JAUR7gYGBHFsAhDuOLXAnJ2+c1Lu/vas4HnHUO1Nv7dm6x3akaI1jix3FVEwN0zbUqB2jdPvCbTXL0Mx2JCDc8LoFQETg2ALAJlcp005JSvvQ7TS6e/bZA47jXHvo62XGmBHGmCSO41z417jRkkZLUrZs2ZxSpUpFWGgA0ZO/v784tgAIbxxb4C5OB5xW83HNFSNGDG1suVFZE2e1HSna2rBhgyRxbLGoZMmSirEwhibunqjieYqrVYFWtiMB4YLXLQAiAscWADa5Spm2TVIWY8wrkv6WVF9Sw4cHGGNSSDrrOI5jjCmiu9eDuxjpSQEAAAA81uWbl1VhSgVdvHlR/s38KdIQ7RljNObtMfon8B+1W9JOKeKmUJWsVWzHAgAAAPAvHrYDPA/HcYIldZK0UtIfkmY5jvO7Maa9Mab9vWG1Je27d820IZLqO47z76UgAQAAAFhw484NVZ1eVQcvHtTC+gtVMFVB25GAKCGGZwzNrjNbeVPkVd05dbXt7222IwEAAAD4F5co06S7Szc6jpPVcZxMjuN8ce++HxzH+eHe18Mcx8nlOE5ex3GKOo6zxW5iAAAAAJIUEhqiBnMb6JdTv2hazWkq80oZ25GAKMU3pq+WNlyq5HGSq8q0Kjp06ZDtSAAAAAAe4jJlGgAAAADX9MHKD7TowCINrjhYtXLWsh0HiJJSxE2hFY1XKNQJVcUpFXXu+jnbkQAAAADcQ5kGAAAAIMIM/mWwhvw6RO8XfV+dinSyHQeI0rImzqolDZfodMBpVZ1WVdeDrtuOBAAAAECUaQAAAAAiyMI/F+r9le+rRvYa+qbcN7bjAC6haJqimlF7hnac2aG6c+oqODTYdiQAAAAg2qNMAwAAABDutv29TQ3mNlChVIU0peYUeXp42o4EuIxq2appROURWvbXMnVY0kGO49iOBAAAAERrXrYDAAAAAHAvx64c09vT31byuMm1uMFixY4R23YkwOW0K9ROJ6+d1BebvlC2JNnU7fVutiMBAAAA0RZlGgAAAIBwc+XWFVWZVkW3gm9pXbN1Sh43ue1IgMvqW7qvDl48qO6ruytLoizyy+5nOxIAAAAQLbHMIwAAAIBwERQSpFqzaungxYOaV2+ecibNaTsS4NI8jIcmVp+oQqkKqeG8hvrtn99sRwIAAACiJco0AAAAAGHmOI7aLWmndUfXaezbY1XmlTK2IwFuIXaM2FpYf6ESxUqkt6e/rTMBZ2xHAgAAAKIdyjQAAAAAYfblT19q4m8T9embn6pZvma24wBuJaVvSi1usFiXb16W3ww/3bxz03YkAAAAIFqhTAMAAAAQJosOLNJH6z5S/dz11adUH9txALeUL0U+Tas1TdtPb1ezBc0U6oTajgQAAABEG5RpAAAAAF7avnP71GheIxVIWUDjq42XMcZ2JMBtVctWTV+X+1qz989WH/8+tuMAAAAA0YaX7QAAAAAAXNOFGxdUbXo1xfWOq4X1FypWjFi2IwFur2uxrvrzwp/qt7GfsiXOpkZ5GtmOBAAAALg9yjQAAAAAL+xOyB3VmV1HpwNOa0PzDUodL7XtSEC0YIzRiCojdOjSIbVc1FKvJHxFr6d93XYsAAAAwK2xzCMAAACAF9ZlRRf5H/PXmLfH6LU0r9mOA0Qr3p7emlt3rtLFT6caM2vo1LVTtiMBAAAAbo0yDQAAAMALGbltpEZuH6n/vf4/NcnbxHYcIFpKHDuxFtVfpJt3bqrGzBq6FXzLdiQAAADAbVGmAQAAAHhu/sf89e6Kd1U5S2UNeGuA7ThAtJYjaQ5NrjFZ209vV/sl7eU4ju1IAAAAgFuiTAMAAADwXI5cPqLas2orS6IsmlZzmjw9PG1HAqI9v+x+6lOyjybtnqRhvw6zHQcAAABwS5RpAAAAAJ4p4HaA/Gb4KdQJ1aIGixTfJ77tSADu+aTkJ/LL5qf3V74v/2P+tuMAAAAAbocyDQAAAMBTOY6jFgtbaP/5/ZpVZ5YyJ8psOxKAh3gYD/1Y40dlSZxFdWbX0fErx21HAgAAANwKZRoAAACAp/pmyzea+8dcfVX2K5XNWNZ2HACPES9mPC2sv1BBIUGqMbOGbty5YTsSAAAA4DYo0wAAAAA80doja9VzbU/VyVlHXYt1tR0HwFNkTZxV02pO02///KY2i9vIcRzbkQAAAAC3QJkGAAAA4LFOXD2h+nPrK3uS7BrvN17GGNuRADxDlaxV1K90P03bO03f//K97TgAAACAW6BMAwAAAPAft4JvqdasWrodfFvz6s5TXO+4tiMBeE69SvRSrRy19L/V/9OaI2tsxwEAAABcHmUaAAAAgP/ovKyztp/erh9r/KhsSbLZjgPgBRhjNLH6ROVIkkP159TXiasnbEcCAAAAXBplGgAAAIBHjNkxRmN3jVWv4r1UPXt123EAvIS43nE1r948BYUEqc7sOrodfNt2JAAAAMBlUaYBAAAAeODXv39Vp+WdVD5TefUt3dd2HABhkDVxVk3wm6Bf//5VXVd1tR0HAAAAcFmUaQAAAAAkSeeun1OtWbWUyjeVptWcJk8PT9uRAIRRrZy19EHRDzR823BN2zvNdhwAAADAJVGmAQAAAFBwaLDqz6mvCzcuaG7duUocO7HtSADCyZdlv1TxdMXVZnEb/X7ud9txAAAAAJdDmQYAAABAn67/VOuPrdfIKiNVIGUB23EAhKMYnjE0s/ZM+Xr7qtasWgq4HWA7EgAAAOBSKNMAAACAaG7ZX8s04KcBalOgjZrna247DoAIkMo3lWbUnqG/Lv2l1otby3Ec25EAAAAAl0GZBgAAAERjJ66eUJP5TZQ3eV4NrjjYdhwAEahUhlLqX6a/Zv0+S0O2DrEdBwAAAHAZlGkAAABANBUUEqR6c+rpTsgdzaozS7FixLIdCUAE6/5Gd/ll81O31d205eQW23EAAAAAl0CZBgAAAERTPdf01C+nftHYamOVNXFW23EARAJjjCZWn6j08dOrzuw6Onf9nO1IAAAAQJRHmQYAAABEQ/P/mK+BvwxUp8KdVDdXXdtxAESiBD4JNKfuHF26eUmN5jVSSGiI7UgAAABAlEaZBgAAAEQzRy4fUYuFLVQoVSF9W/5b23EAWJAvRT4NrTRUa46s0Zc/fWk7DgAAABClUaYBAAAA0cit4FuqM7uOjDGaVXuWYnrFtB0JgCWt8rdSg9wN9Kn/p9p4fKPtOAAAAECURZkGAAAARCNdV3bVzjM7Nan6JL2S8BXbcQBYZIzRqKqjlClhJjWY20Dnr5+3HQkAAACIkijTAAAAgGhixr4ZGrF9hLoV66Zq2arZjgMgCvCN6atZdWbp4o2LaragmUKdUNuRAAAAgCiHMg0AAACIBv66+JfaLG6j19O+rv5v9bcdB0AUki9FPg2sMFDLDy3Xt1u4jiIAAADwb5RpAAAAgJu7HXxb9ebUk7ent2bUmqEYnjFsRwIQxXQo1EG1c9ZWr7W9tOXkFttxAAAAgCiFMg0AAABwcz3W9NCuf3Zpgt8EpY2f1nYcAFGQMUZj3x6rdPHTqcHcBrp085LtSAAAAECUQZkGAAAAuLHFBxZr0NZB6lykM9dJA/BU8X3ia1adWToTcEYtFraQ4zi2IwEAAABRAmUaAAAA4Kb+vva3WixsoXwp8unrcl/bjgPABRRKVUjflPtGiw4s0uCtg23HAQAAAKIEyjQAAADADYWEhqjRvEa6FXxLM2rNkI+Xj+1IAFzEu6+9K79sfuq+uru2/b3NdhwAAADAOso0AAAAwA19sekLbTi+QcMrD1e2JNlsxwHgQowxGu83Xil9U6rB3AYKuB1gOxIAAABgFWUaAAAA4GY2Hd+kzzZ8psZ5Gqtp3qa24wBwQYliJdLUmlN19MpRvbPsHdtxAAAAAKso0wAAAAA3cvHGRTWc11AZE2bUiMojZIyxHQmAiyqerrg+efMTTd4zWVP3TLUdBwAAALCGMg0AAABwE47jqNWiVjobeFYzas2Qb0xf25EAuLiP3/xYb6R9Qx2WdtCRy0dsxwEAAACsoEwDAAAA3MTwbcO18MBCfV3uaxVMVdB2HABuwMvDS1NrTpWH8VCDuQ10J+SO7UgAAABApKNMAwAAANzAnrN71G1VN1XJUkVdXutiOw4AN5I+QXqNeXuMfv37V/X27207DgAAABDpKNMAAAAAF3fzzk01mNtACWMl1AS/CVwnDUC4q5Orjlrlb6Uvf/pS646usx0HAAAAiFSUaQAAAICL6766u/af369J1ScpaZyktuMAcFODKw5W1sRZ1WR+E124ccF2HAAAACDSUKYBAAAALmzpwaUatm2Y3i/6vspnKm87DgA3Fsc7jqbXmq4LNy6o9aLWchzHdiQAAAAgUlCmAQAAAC7qbOBZtVjYQnmS51H/t/rbjgMgGsifMr++fOtLLTywUD9s/8F2HAAAACBSUKYBAAAALshxHLVY2EIBQQGaVnOafLx8bEcCEE10KdpFFTNX1AerPtC+c/tsxwEAAAAiHGUaAAAA4IKG/jpUyw8t17flvlWuZLlsxwEQjXgYD030m6h4MeOp0bxGuh1823YkAAAAIEJRpgEAAAAuZu/Zveq+uruqZq2qjoU72o4DIBpKHje5xlcbrz1n9+iT9Z/YjgMAAABEKMo0AAAAwIXcvHNTDec1VAKfBBpXbZyMMbYjAYimqmStonYF2+nbLd/K/5i/7TgAAABAhKFMAwAAAFxIjzU9tO/cPk2sPlHJ4iSzHQdANPdd+e+UOVFmNZ3fVFduXbEdBwAAAIgQlGkAAACAi1j+13IN+XWIurzWRRUzV7QdBwAUxzuOptScotMBp9VpWSfbcQAAAIAIQZkGAAAAuIDz18+r+cLmejXZq/qy7Je24wDAA0VSF9GnJT/V1L1TNWPfDNtxAAAAgHBHmQYAAABEcY7jqO2Strpy64qm1pwqHy8f25EA4BG9SvRS0TRF1WFpB528etJ2HAAAACBcUaYBAAAAUdyk3ZO04M8F6l+mv15N/qrtOADwH14eXppcY7LuhNxR84XNFeqE2o4EAAAAhBvKNAAAACAKO3blmN5d/q5Kpi+p94u9bzsOADxR5kSZNajiIK07uk6DfxlsOw4AAAAQbijTAAAAgCgqJDRETec3lSRNqj5JHoaX7wCitlb5W6latmrqsbaH9p7dazsOAAAAEC74bRwAAACIogb+PFCbTmzS0EpDlT5BettxAOCZjDEa+/ZYJfRJqEbzGul28G3bkQAAAIAwo0wDAAAAoqA9Z/fo4/Ufq0b2Gmqat6ntOADw3JLGSapx1cZp77m9+njdx7bjAAAAAGFGmQYAAABEMbeDb6vxvMZK6JNQo6qOkjHGdiQAeCFVslZR+4Lt9d3P32n90fW24wAAAABhQpkGAAAARDGfrv9Ue8/t1bhq45Q0TlLbcQDgpXxb/ltlTpRZzRY005VbV2zHAQAAAF4aZRoAAAAQhWw6vknfbPlGbQu0VZWsVWzHAYCXFsc7jqbWnKrTAaf1zrJ3bMcBAAAAXhplGgAAABBFXLt9TU0XNFXGhBn1XYXvbMcBgDArnLqwepfsrWl7p2n63um24wAAAAAvhTINAAAAiCLeX/G+Tlw9oR9r/Ki43nFtxwGAcNGzRE8VTVNUHZZ20MmrJ23HAQAAAF4YZRoAAAAQBSz8c6HG/zZePd7oodfTvm47DgCEGy8PL02pMUXBocFquailHMexHQkAAAB4IZRpAAAAgGVnA8+qzeI2yp8iv3qX6m07DgCEu0yJMunb8t9qzZE1+mH7D7bjAAAAAC+EMg0AAACwyHEctVncRtduX9PkGpPl7eltOxIARIh2BdupfKby6ra6mw5dOmQ7DgAAAPDcKNMAAAAAi8bvGq/FBxdrwFsDlCtZLttxACDCGGM0rto4xfCIoeYLmiskNMR2JAAAAOC5UKYBAAAAlhy5fETvrXxPpTOUVpeiXWzHAYAIlyZeGg2tNFSbT27W9798bzsOAAAA8Fwo0wAAAAALQkJD1GxBM3kYD02sPlEehpfmAKKHxnkaq0b2Gvpo3Uf6/dzvtuMAAAAAz8Rv7AAAAIAFg34ZpJ9O/KShlYYqXfx0tuMAQKQxxuiHqj8oXsx4arqgqe6E3LEdCQAAAHgqlynTjDEVjTEHjDGHjDE9njKusDEmxBhTOzLzAQAAAM/rj/N/6KN1H6latmpqkqeJ7TgAEOmSxUmmUVVHaeeZneq/qb/tOAAAAMBTuUSZZozxlDRcUiVJOSU1MMbkfMK4ryStjNyEAAAAwPMJDg1WswXNFMc7jkZVHSVjjO1IAGBFzRw11ejVRvp80+facXqH7TgAAADAE7lEmSapiKRDjuMccRwnSNIMSX6PGddZ0lxJ5yIzHAAAAPC8vt78tbad3qYRlUcoRdwUtuMAgFVDKw1VsjjJ1HRBU90KvmU7DgAAAPBYrlKmpZZ08qHbp+7d94AxJrWkGpJ+iMRcAAAAwHPbc3aP+vj3UZ2cdVQvdz3bcQDAuoSxEmpctXHaf36/Pl3/qe04AAAAwGN52Q7wnB639o3zr9uDJH3oOE7I05bKMca0ldRWkpImTSp/f/9wiggAdwUGBnJsARDuOLa4vjuhd9RxV0fF9YyrRgka8fNElMH/RdjmIx9VTVlV3275VmlvpNWr8V+1HQlhxOsWABGBYwsAm1ylTDslKe1Dt9NIOv2vMYUkzbhXpCWRVNkYE+w4zoKHBzmOM1rSaEnKli2bU6pUqQiKDCC68vf3F8cWAOGNY4vr672+tw4FHtL8evPll/1xK5YDkWvDhg2SxLEFUULBYgWV94e8GnR8kHa336243nFtR0IY8LoFQETg2ALAJldZ5nGbpCzGmFeMMd6S6kta9PAAx3FecRwng+M4GSTNkdTx30UaAAAAYMOO0zv0xaYv1DhPY1XPXt12HACIcnxj+mqC3wQdvXxUH67+0HYcAAAA4BEuUaY5jhMsqZOklZL+kDTLcZzfjTHtjTHt7aYDAAAAnux28G01W9BMyeMm15CKQ2zHAYAoq2SGknqv6HsasX2EVh9ebTsOAAAA8ICrLPMox3GWSVr2r/t+eMLY5pGRCQAAAHiW3v699fv537Ws4TIljJXQdhwAiNK+KPOFlh9arpaLWmpvh71K4JPAdiQAAADANc5MAwAAAFzRL6d+0TdbvlGr/K1UKUsl23EAIMqLFSOWJlWfpDMBZ/TeivdsxwEAAAAkUaYBAAAAEeLGnRtqtqCZ0sRLo4EVBtqOAwAuo0jqIupZvKcm7Z6kRQcWPXsDAAAAIIJRpgEAAAAR4KO1H+ngxYMaX2284sWMZzsOALiUT0p+ojzJ86jdkna6dPOS7TgAAACI5ijTAAAAgHC28fhGDd46WB0LddRbGd+yHQcAXI63p7cm+k3U+evn1WVFF9txAAAAEM1RpgEAAADhKDAoUM0XNNcrCV/RV+W+sh0HAFxW/pT51atEL03ZM4XlHgEAAGAVZRoAAAAQjrqv7q5jV45pot9ExfWOazsOALi0j9/8mOUeAQAAYB1lGgAAABBO1hxZo5HbR+q9ou+pRPoStuMAgMt7eLnH91a8ZzsOAAAAoinKNAAAACAcBNwOUKtFrZQtcTZ9UeYL23EAwG3cX+5x8p7JWnxgse04AAAAiIYo0wAAAIBw0H11d528elIT/CYoVoxYtuMAgFu5v9xj2yVtWe4RAAAAkY4yDQAAAAijdUfX6YcdP+j9ou+rWNpituMAgNthuUcAAADYRJkGAAAAhEFgUKBaLWqlLImyqF+ZfrbjAIDbYrlHAAAA2EKZBgAAAIRBzzU9dfzKcY33G6/YMWLbjgMAbu3jNz/Wq8leZblHAAAARCrKNAAAAOAlbTy+UcO2DVPnIp1VPF1x23EAwO15e3prYnWWewQAAEDkokwDAAAAXsKNOzfUcmFLZUyYUf3f6m87DgBEGwVSFmC5RwAAAEQqyjQAAADgJXy09iMdvnxY46qNUxzvOLbjAEC0cn+5x3ZL2unyzcu24wAAAMDNUaYBAAAAL2jzic0avHWwOhbqqFIZStmOAwDRzv3lHs9dP6cuK7rYjgMAAAA3R5kGAAAAvICbd26q5aKWShc/nb4q95XtOAAQbbHcIwAAACILZRoAAADwAnr799bBiwc1ttpYxfWOazsOAERrLPcIAACAyECZBgAAADynrae26rufv1ObAm1UNmNZ23EAINp7eLnH91a+ZzsOAAAA3BRlGgAAAPAcbgXfUouFLZTaN7W+Lf+t7TgAgHvuL/f44+4fWe4RAAAAEYIyDQAAAHgOfTf01R8X/tCYt8coXsx4tuMAAB7Cco8AAACISJRpAAAAwDPsOL1DX2/+Wi3ytVCFzBVsxwEA/AvLPQIAACAiUaYBAAAATxEUEqTmC5sredzkGlhhoO04AIAnYLlHAAAARBTKNAAAAOApPt/4ufad26dRVUcpgU8C23EAAE/Bco8AAACICJRpAAAAwBP89s9vGvDTADXJ00RVs1a1HQcA8Aws9wgAAICIQJkGAAAAPMadkDtqsbCFksROokEVB9mOAwB4Tg8v97j04FLbcQAAAOAGKNMAAACAx/jypy/12z+/aWSVkUoUK5HtOACAF/Dxmx8rd7Lcarukra7cumI7DgAAAFwcZRoAAADwL3vP7lW/jf1UP3d9Vc9e3XYcAMAL8vb01gS/CTobeFYfrPzAdhwAAAC4OMo0AAAA4CHBocFqsbCFEvgk0NBKQ23HAQC8pEKpCqn7G9014bcJWnFohe04AAAAcGGUaQAAAMBDvtn8jXac2aERVUYoSewktuMAAMKgd8neypk0p9osbqOrt67ajgMAAAAXRZkGAAAA3LP//H712dBHtXPWVu2ctW3HAQCEUUyvmJrgN0GnA07rf6v/ZzsOAAAAXBRlGgAAACApJDRELRe2lK+3r4ZXHm47DgAgnBRJXUTdinXTmJ1jtPrwattxAAAA4IIo0wAAAABJ3//yvbb+vVVDKw1VsjjJbMcBAISjz0p/pmyJs6n14tYKuB1gOw4AAABcDGUaAAAAor0DFw7o43Ufq3r26qqfu77tOACAcObj5aMJfhN08upJdV/d3XYcAAAAuBjKNAAAAERrIaEharmopWLHiK2RVUbKGGM7EgAgAhRLW0zvF31fP+z4QeuOrrMdBwAAAC6EMg0AAACu7+uvpfXrX2rTob8O1ZaTWzS44mCliJvi7n6+/jqcAwIArLr3PNGvTD9lSZRFrRe1VmBQ4Mvti+cJAACAaIcyDQAAAK6vcGGpbt0XLtQOXTqkXmt7qUqWKmqcp/Hd7evWvbs/AID7uPc8EfunrRrvN17HrhxTzzU9X3w/PE8AAABES5RpAAAAcH2lS0uzZr1QoRbqhKrVolby9vTWqKqjZPz9724/a9bd/QEA3MdDzxPFD9/Ru6+9q2HbhmnDsQ3Pv4/7RRrPEwAAANEOZRoAAADcwwsWaiO2jdDG4xv1fYXvlXrHQd4gBQB399DzxACP8sqYMKNaLWqlG3duPHtbijQAAIBojTINAAAA7uM5C7Wjl4+qx5oeqpCpgppfTs8bpAAQXdx7nojVqJnmJe2sw5cP66O1Hz19G4o0AACAaI8yDQAAAO7lGYWa4zhqvbi1PIyHfozfQqZePd4gBYDo5N7zRN53v9Agbz8N3jpYm09sfvxYijQAAACIMg0AAADu6CmF2ugdo7Xu6DpNTdRGyVp24g1SAIiO7j1PvDvwJ9U7n0wtFrbQzTs3Hx1DkQYAAIB7KNMAAADgnh5TqB2/clzdVnfTB7fyq+rHP/IGKQBEZ6VLy8yarUnTbyn1jr/0yfpP/v8xijQAAAA8hDINAAAA7uuhQs1Zt05tFrdRicPB+nrMcRneIAUAlC4t7znztWi+j3ZNH6ifT/5MkQYAAID/8LIdAAAAAIhQ9wq1WzWrqXieQP1vT1x5zpvDG6QAgLtKl5bHrNmaVctPM/95W0W3G/7gAgAAAI/gzDQAAAC4vVMFs2hIgSB9ulHy6fQeb5ACAB4Rp0JVXWlRXx1XXNS6Cll5ngAAAMAjKNMAAADg1hzH0fCvaqvlL0G61K2TzA8/PLiGGgAAkqT165VpxiotrptfeeZv0R+zRthOBAAAgCiEMg0AAABubdXYnvpg0FZt+qaTEn0z9ME11CjUAACSHrlG2puT1uudZkmUvNW7Clqz0nYyAAAARBGUaQAAAHBbF5bOVsH3v1a/d3KreofBd++8dw01CjUAwMNFmkqXVnyf+Grx/o+qVStEd2rX4HkCAAAAkijTAAAA4KacdesUo0FjNarnpc4fzpOHeeilL4UaAOBfRdp9lbJUUoYazeVX47bu1K7J8wQAAAAo0wAAAOCG1q/X7drVVb1mkMq3GqAsibP8dwyFGgBEX08o0u4bWH6g/ng1hdo3SSiH5wkAAIBojzINAAAA7mX9eoXWqa16daRbJYrqvaLvPXkshRoARD/PKNIkKWGshBpVdZTGJzyqiT0r8TwBAAAQzVGmAQAAwH2sXy+nbl191jGXVqYN0vhq4+Xp4fn0bSjUACD6eI4i7b6qWauqSZ4mant9ug790J/nCQAAgGiMMg0AAADu4d4bpP5fd1Bfz036rNRnypE0x/NtS6EGAO7vBYq0+wZVHKQksZOozoURCp4+jecJAACAaIoyDQAAAK7v3hukVyaNVt0LI1U4VWF1fb3ri+2DQg0A3NdLFGmSlChWIv1Q5Qf99s9vGhDjF54nAAAAoinKNAAAALi+bdukWbPU/sZMXb11VeP9xsvLw+vF93O/UNu2LfwzAgDsufc88SJF2n1+2f3UIHcD9dvYT3tzJuF5AgAAIBp6iXcYAAAAgCime3fN+2OeZm6cqX6l+yl3stwvv6/SpV/qzVYAQBTWvXuYNh9SaYjWHl2r5gub65dWvygGzxMAAADRCmemAQAAwOVdvHFRHZZ2UP4U+fXhGx/ajgMAcDNJYifRiMojtPPMTn2z5RvbcQAAABDJKNMAAADg8rqs6KJLNy9pgt8ExfCMYTsOAMAN1cpZS3Vz1dVnGz7T7+d+tx0HAAAAkYgyDQAAAC5t8YHFmrp3qj4q8ZHypshrOw4AwI0NqzRM8WLGU4uFLRQcGmw7DgAAACIJZRoAAABc1uWbl9VuSTvlSZ5HvUr0sh0HAODmksZJquGVh2vb6W0a+PNA23EAAAAQSSjTAAAA4LI+WPWBzl0/pwl+E+Tt6W07DgAgGqiTs45q5qipT9d/qj8v/Gk7DgAAACIBZRoAAABc0rK/lmnibxPVs3hPFUhZwHYcAEA0YYzRiMojFMc7jlosbKGQ0BDbkQAAABDBKNMAAADgcq7cuqI2i9sod7Lc+vjNj23HAQBEM8njJtfQSkP1y6lfNOiXQbbjAAAAIIJRpgEAAMDlfLDyA50NPKsJfhMU0yum7TgAgGioQe4Gqpatmj5e/7EOXjxoOw4AAAAiEGUaAAAAXMryv5Zrwm8T9OEbH6pQqkK24wAAoiljjH6o8oN8vHzUcmFLlnsEAABwY5RpAAAAcBlXb11Vm8VtlDNpTn1a8lPbcQAA0VxK35QaXHGwNp/crGG/DrMdBwAAABGEMg0AAAAuo+uqrjoTeEYT/SayvCMAIEpokqeJqmSpop5re+rQpUO24wAAACACUKYBAADAJaw8tFLjdo1T99e7q3DqwrbjAAAg6e5yj6OqjpK3p7daLWqlUCfUdiQAAACEM8o0AAAARHlXb11V68WtlSNJDvUu1dt2HAAAHpE6Xmp9X+F7bTy+USO3jbQdBwAAAOGMMg0AAABR3v9W/0+nA05rgt8E+Xj52I4DAMB/NM/XXBUyVdCHaz7U0ctHbccBAABAOKJMAwAAQJS26vAqjdk5Rt2KddNraV6zHQcAgMcyxmjM22PkYTxY7hEAAMDNUKYBAAAgyrp2+5raLG6j7Emy67PSn9mOAwDAU6WNn1bflf9O64+t1+gdo23HAQAAQDihTAMAAECU1X11d526dorlHQEALqN1gdYqm7Gs/rf6fzp+5bjtOAAAAAgHXuGxE2NMMklFJOWRlF5SQkmxJN2UdEnScUl7JP3qOM758JgTAAAA7m3NkTUatWOUuhXrpqJpitqOAwDAczHGaOzbY5V7ZG61WdxGKxuvlDHGdiwAAACEwUuXacaYTJIaS/KTlPcFtvtN0gJJUxzH4Yq8AAAA+I+A2wFqvai1sibOqr6l+9qOAwDAC0mfIL2+KfeNOiztoHG7xql1gda2IwEAACAMXniZR2NMeWPMCkkHJX2qu0WaeYGPfJL6SDpkjFlujCkX5u8CAAAAbuXDNR/qxNUTmuA3QbFixLIdBwCAF9a2YFuVzlBaH6z8QCevnrQdBwAAAGHw3GWaMaa4MeYnScslldP/l2OX7t3XR1I9SeUlFZSURVKhe7frS/pM0gpJlx/atrykFcaYTcaYN8LnWwIAAIArW3d0nUZuH6n3i76v19O+bjsOAAAvxcN4aFy1cQp1QtV2SVs5jmM7EgAAAF7Scy3zaIyZqruF2P1Fvk9Jmi5pquM4e150UmNMHkkNJTWQlFbSG5I2GmOmO47T+AnbVJQ0WJKnpLGO43z5r8f9JPWTFCopWNJ7juP89KLZAAAAYE9gUKBaLWqlLImyqF+ZfrbjAAAQJq8kfEVflv1SnZd31sTfJqpF/ha2IwEAAOAlPO+ZaQ10t0hbJ6ms4zjpHMf58GWKNElyHGeP4zg9HMdJL6nsvf2ae/P8hzHGU9JwSZUk5ZTUwBiT81/D1krK6zhOPkktJY19mWwAAACwp8eaHjp+5bjG+41X7BixbccBACDMOhbuqDfTv6n3V76vv6/9bTsOAAAAXsLzlmnrJJVwHKes4zjrwjOA4zjrHMcpK6nEvXkep4ikQ47jHHEcJ0jSDEl+/9pPoPP/aybEkcT6CQAAAC7E/5i/hm8bri6vdVHxdMVtxwEAIFzcX+4xKCRI7Za0Y7lHAAAAF/RcZdq9Em1zRAZxHGez4zjlnvBwakkPX6331L37HmGMqWGM+VPSUt09Ow0AAAAu4HrQdbVc2FKZEmbSF299YTsOAADhKnOizBrw1gAt/WuppuyZYjsOAAAAXtBzXTMtCjCPue8/f8rlOM58SfONMW/q7vXTyv5nR8a0ldRWkpImTSp/f//wTQog2gsMDOTYAiDcufuxZcihITp25ZgG5R2kXzf/ajsOEK2487EFiEpedV5V7ni51XFJR8X+J7YSx0xsO1KEcffXLQDs4NgCwCZXKdNOSUr70O00kk4/abDjOBuNMZmMMUkcx7nwr8dGSxotSdmyZXNKlSoVAXEBRGf+/v7i2AIgvLnzsWXDsQ2av2G+3i3yrt6t9K7tOEC0sWHDBkly22MLEBXNzTNXeX/Iqx8v/6gF9RbImMf97bDrc+fXLQDs4dgCwKbnvWbaYxljEoVx+8rPOXSbpCzGmFeMMd6S6kta9K99ZTb3XoUaYwpI8pZ0MSz5AAAAELGuB11Xq0WtlDFhRvV/q7/tOAAARKisibPq89Kfa9GBRZq+b7rtOAAAAHhOYSrTJO01xpR50Y2MMd7GmKGSFj/PeMdxgiV1krRS0h+SZjmO87sxpr0xpv29YbUk7TPG/CZpuKR6Dlf1BQAAiNJ6ru2pw5cPa1y1cYrjHcd2HAAAItx7Rd9T0TRF1Xl5Z50NPGs7DgAAAJ5DWMu0lJJWGWO+MsY815KRxpjckrZL6vgiEzmOs8xxnKyO42RyHOeLe/f94DjOD/e+/spxnFyO4+RzHKeY4zg/veD3AgAAgEi0/uh6Df11qN4t8q5KZShlOw4AAJHC08NT46uN1/Wg6+q4rKP4O2AAAICoL6xlWogkI6mbpJ+NMZmfNtgY01nSr5Jy3dvuQBjnBwAAgAsKuB2glotaKnOizBpQdoDtOAAARKocSXPos1Kfad4f8zR7/2zbcQAAAPAMYS3TSkg6prvFWAFJu4wxLf49yBiT1BizRNIgST73xo+VVCiM8wMAAMAFdVvVTcevHNdEv4mKHSO27TgAAES6rq93VeFUhfXOsnd0/vp523EAAADwFGEq0xzH+UVSXklTdbcgiyNprDFmpjEmviQZYypK2iOp0r0xlyXVdhynreM4N8IyPwAAAFzPykMrNXrnaHUt1lVvpHvDdhwAAKzw8vDSBL8Junb7mjot72Q7DgAAAJ4irGemyXGcQMdxmkhqJOmq7hZmtSXtNsaMk7RUUvJ79/tLyuM4zrywzgsAAADXc+XWFbVa1Eo5kuRQvzL9bMcBAMCqXMlyqXfJ3pr1+yzN3T/XdhwAAAA8QZjLtPscx5kuKb+kLbpbnKWT1Pze10GSekl6y3Gcv8NrTgAAALiW91a8p38C/9Gk6pPk4+VjOw4AANZ1f6O7CqYsqA5LO+jc9XO24wAAAOAxwq1MkyTHcY5Jmn7/5kOfV0j6znEc53HbAQAAwP0tOrBIk3ZPUo/iPVQ4dWHbcQAAiBK8PLw0qfokXb19VR2WdhBvnQAAAEQ94VamGWMSGmPmSRqiuwWakRRy7/Pbkn41xmQPr/kAAADgOi7euKi2i9sqT/I8+rTkp7bjAAAQpeRKlkufl/5c8/6Yp2l7p9mOAwAAgH8JlzLNGFNa0h5Jfrpbnl2RVFfSa5IO3rsvj6Qdxpj24TEnAAAAXEen5Z108eZFTao+Sd6e3rbjAAAQ5XxQ7AO9nvZ1dVreSX9f4woZAAAAUUmYyjRjjJcx5ktJqyWl0t3SbKOkvI7jzHEcZ5fuXkdt3L3HYkkaboxZaIxJHLboAAAAcAVz9s/RjH0z9Ombnypfiny24wAAECV5enhqUvVJCgoJUuvFrVnuEQAAIAoJ65lpP0v63739hEj6VFJpx3FO3R/gOM5Nx3HaSKot6ZLulmpVJe01xpQL4/wAAACIws5dP6cOSzuoYMqC6lG8h+04AABEaZkTZdbXZb/WikMrNHbnWNtxAAAAcE9Yy7SCuluOHZVUwnGcz50n/OmU4zjzJOWTtOHeNikkLQvj/AAAAIiiHMdR+yXtde32NU2qPkkxPGPYjgQAQJTXoXAHlc1YVh+s+kBHLx+1HQcAAAAKn2umTZGUz3Gcrc8aeO+MtTKSPpJ0J5zmBwAAQBQ0fd90zf9zvvqW6qtcyXLZjgMAgEvwMB4aV22cPIyHWixsoVAn1HYkAACAaC+sZVZTx3GaOo4T8LwbOHcNkFRc0uEwzg8AAIAo6HTAaXVa1klF0xRVt9e72Y4DAIBLSRc/nQZXHKwNxzdoyNYhtuMAAABEe2Eq0xzHmRKGbbdJyh+W+QEAABD1OI6jtovb6mbwTU30myhPD0/bkQAAcDnN8jbT21nfVs+1PfXnhT9txwEAAIjWrC6z6DjOdZvzAwAAIPxN/G2ilv61VAPeGqBsSbLZjgMAgEsyxmj026MVO0ZsNVvQTMGhwbYjAQAARFtcswwAAADh5sTVE3pv5Xt6M/2beve1d23HAQDApaWIm0Ijq4zUr3//qq83f207DgAAQLT1XGWaMSZSlmM0xhSIjHkAAAAQ/kKdUDVf0FwhoSGa4DdBHoa/2wIAIKzq5qqrernqqY9/H+3+Z7ftOAAAANHS877Dsd0YM98YkzciQhhj8htjFkr6NSL2DwAAgIg3ZOsQrT+2Xt9X+F4ZE2a0HQcAALcxvPJwJYqVSE0XNFVQSJDtOAAAANHOi/y5cDVJO40xS4wx9YwxPmGZ2BjjY4ypb4xZLmm7pLclOWHZJwAAAOzYf36/eqzpoapZq6p1gda24wAA4FYSx06sMW+P0Z6ze9R3Q1/bcQAAAKKd5y3TCuvuWWNGUiVJ0ySdNcZMNMY0M8bkeJ6dGGNyGmOaG2MmSjoraaqk8vf2+7OkIi+YHwAAAJbdCbmjpvObKq53XI15e4yMMbYjAQDgdt7O9rZa5GuhAT8N0NZTW23HAQAAiFa8nmeQ4zg7JRUzxtSU1EdSbkm+kprc+5AxJkDSX5Iu3fsIkBRPUqJ7H5nvbXPf/XdZ9kjq4zjOgrB9KwAAALCh38Z+2nFmh+bUmaMUcVPYjgMAgNv6vsL3WnNkjZotaKZd7XYpVoxYtiMBAABECy90VXjHceY5jpNHUkVJCyUF624pZnS3OCsgqaykupJaSaoj6S1J+e89fn/sHUkLJJV3HCcfRRoAAIBr2npqq/pv6q8meZqoVs5atuMAAODW4vvE13i/8Tpw8YB6ru1pOw4AAEC08UJl2n2O46xyHKeGpJSSmkqaLOngvYfNYz4cSQck/ai7Z7KldBynpuM4a8IWHwAAALbcuHNDTRc0VSrfVBpSaYjtOAAARAtlM5ZV5yKdNXjrYK05wtsqAAAAkeG5lnl8EsdxLkmacu9DxhhvSWl1d1nHmJJu6+6Sjyccx7kTtqgAAACISj5c/aEOXjyoNU3WKIFPAttxAACINr4s+6VWH1mt5guaa2+HvUoYK6HtSAAAAG7tpc5MexLHcYIcxznsOM42x3F+uvf5MEUaAACAe1l9eLWGbRumLq910VsZ37IdBwCAaCV2jNiaXGOyzl4/q3eWvWM7DgAAgNsL1zINAAAA7u/yzctqsbCFsifJrgFvDbAdBwCAaKlQqkLqXbK3pu+brul7p9uOAwAA4NbCtMzj4xhjkkkqLCmVpLiSAiWdlrTNcZxz4T0fAAAAIlen5Z109vpZLai/QLFixLIdBwCAaKtH8R5a+tdSdVzWUSXSl1CaeGlsRwIAAHBL4XZmmjGmhjFms6QzkhZJ+kHSt/c+L5J0xhjzkzGmenjNCQAAgMg16/dZmrZ3mj558xMVSlXIdhwAAKI1Lw8vTa4xWUEhQWq+oLlCnVDbkQAAANxSmMs0Y4y3MWaWpDmSikoyT/koJmmuMWaWMcY7rHMDAAAg8pwOOK0OSzuoSOoi6lWil+04AABAUuZEmfV9he+19uhaDft1mO04AAAAbik8lnmcK6my7pZlkrRf0jpJhyRdlxRHUmZJpSXlujemliQfSdXCYX4AAABEMMdx1HpRa928c1M/Vv9RXh7hvlo4AAB4SW0KtNHig4v14ZoPVTZjWeVMmtN2JAAAALcSpjPTjDH1JVW5d/O0pEqO4+R2HOddx3GGOI4z7t7ndx3HeVVSRUl/627xVsUYUy9M6QEAABApRu0YpeWHluvrcl8rW5JstuMAAICHGGM09u2xiusdV43nNVZQSJDtSAAAAG4lrMs8trr3+bqkko7jrHzaYMdxVkkqJSnw3l2twzg/AAAAItihS4fUdVVXlctYTh0Ld7QdBwAAPEbyuMk15u0x2vXPLn3m/5ntOAAAAG4lrGVaXkmOpHGO4xx+ng3ujRunu2en5Qvj/AAAAIhAwaHBajq/qbw9vTXeb7w8TJgvuQsAACJI9ezV1TJfS325+UttPrHZdhwAAAC3EdZ3Q+Le+7ztBbe7Pz52GOcHAABABOq/qb9+PvWzRlQeoTTx0tiOAwAAnmFQxUFKHz+9mi5oqoDbAbbjAAAAuIWwlmmn7332fMHt7o8//dRRAAAAsOaXU7+o74a+avRqIzV4tYHtOAAA4Dn4xvTVjzV+1NHLR/XByg9sxwEAAHALYS3T1t37XOIFtyuhu8tDrnvWQAAAAES+gNsBajSvkdLES6PhlYfbjgMAAF5A8XTF9eEbH2rsrrFadGCR7TgAAAAuL6xl2hBJQZKaGmMKP88GxphCkppJun1vewAAAEQx7654V8euHNOUmlMU3ye+7TgAAOAFfVb6M+VNnletF7XW2cCztuMAAAC4tDCVaY7j7JPURpKRtNoY09oY4/W4scYYL2NMK0mrdfestNaO4/welvkBAAAQ/mb/PlsTf5uoXsV7qXi64rbjAACAl+Dt6a0pNafo2u1rarO4jRzHsR0JAADAZT22+HpexphP7325WlJlSaMkfWmM2STpkKQbkmJLyiypuKRE98Yvk5T5oe3/w3GcvmHJBgAAgBd36toptVvSTkVSF9GnJZ/4Ug0AALiA3Mlya8BbA/TBqg80ZucYtS3Y1nYkAAAAlxSmMk1SH909y0wPfU4kqdpjxpqHxlS+9/E0lGkAAACRKNQJVdP5TRUUEqQpNaYohmcM25EAAEAYdSnaRcsPLdd7K97Tm+nfVPYk2W1HAgAAcDlhvWaadLcke/jjcfc97f4njQUAAEAk+m7Ld1p/bL0GVxysLImz2I4DAADCgYfx0MTqExU7Rmw1mNtAt4Nv244EAADgcsJ6ZlrpcEkBAAAAq3ad2aWP1n2kmjlqqmX+lrbjAACAcJTKN5XG+42X3ww/fbTuI31b/lvbkQAAAFxKmMo0x3E2hFcQAAAA2HHjzg01nNdQSeMk1eiqo2UMCwUAAOBuqmWrpg6FOui7n79ThUwVVC5TOduRAAAAXEZ4LPMIAAAAF9ZtVTf9eeFPTao+SYljJ7YdBwAARJBvy3+rHElyqOmCpjp//bztOAAAAC6DMg0AACAaW3JwiUZuH6muxbqqbMaytuMAAIAIFDtGbE2vNV2Xbl5Sq0Wt5DiO7UgAAAAugTINAAAgmjobeFYtF7ZU3uR59UWZL2zHAQAAkSBvirz6quxXWnxwsUZuH2k7DgAAgEugTAMAAIiGHMdRi4UtFBAUoKk1pyqmV0zbkQAAQCR597V3VTFzRXVd1VW/n/vddhwAAIAojzINAAAgGhq+bbiWH1qub8p9o1zJctmOAwAAIpGH8dBEv4ny9fZVg7kNdCv4lu1IAAAAURplGgAAQDTz+7nf9b/V/1PlLJX1TuF3bMcBAAAWJI+bXBOrT9Tec3vVY00P23EAAACiNMo0AACAaORW8C01nNdQvt6+Gl9tvIwxtiMBAABLKmeprM5FOmvw1sFa/tdy23EAAACiLMo0AACAaKT76u7ac3aPJvhNUPK4yW3HAQAAln1d7mvlTpZbzRc219nAs7bjAAAAREmUaQAAANHEogOLNPTXoXrvtfdUJWsV23EAAEAU4OPlo+m1puvqratqsbCFHMexHQkAACDKoUwDAACIBv6+9rdaLGyh/Cny68uyX9qOAwAAopDcyXLru/Lfafmh5Rr661DbcQAAAKIcyjQAAAA3FxIaokbzGul28G3NqD1DMb1i2o4EAACimI6FO6pq1qoPloQGAADA/6NMAwAAcHP9N/XXhuMbNLzycGVNnNV2HAAAEAUZYzS+2ngljJVQDeY20M07N21HAgAAiDIo0wAAANzY5hOb1WdDHzV8taGa5m1qOw4AAIjCksZJqknVJ2n/+f16f+X7tuMAAABEGZRpAAAAburyzctqOK+hMiTIoJFVRsoYYzsSAACI4spnKq/ur3fXqB2jNPv32bbjAAAARAmUaQAAAG7IcRy1WdxGpwNOa3qt6YoXM57tSAAAwEV8XuZzFU1TVK0Xt9aRy0dsxwEAALCOMg0AAMANjd4xWnP/mKv+ZfqrSOoituMAAAAXEsMzhqbXmi4P46H6c+orKCTIdiQAAACrKNMAAADczO/nftd7K99T+Uzl1fX1rrbjAAAAF5QhQQaNqzZO205vU6+1vWzHAQAAsIoyDQAAwI3cuHND9ebUU7yY8TSp+iR5GF7uAQCAl1MzR011LNRR3/38nZb9tcx2HAAAAGt4dwUAAMCNdF7WWfvP79fkGpOVIm4K23EAAICL+67Cd8qbPK+aLWimv6/9bTsOAACAFZRpAAAAbmLKnika/9t49SrRS+UzlbcdBwAAuAEfLx/NrD1TN+/cVOP5jRUSGmI7EgAAQKSjTAMAAHADf174U+2XtFeJdCXUp1Qf23EAAIAbyZYkm4ZXHi7/Y/76fOPntuMAAABEOso0AAAAF3fzzk3VnV1XsWLE0vRa0+Xl4WU7EgAAcDPN8jVTkzxN1HdjX204tsF2HAAAgEhFmQYAAODiuqzoor3n9mpyjclKHS+17TgAAMBNjagyQpkTZVbDeQ11/vp523EAAAAiDWUaAACAC5u2d5rG7ByjHm/0UMXMFW3HAQAAbiyud1zNrD1TF29cVOP5jRXqhNqOBAAAECko0wAAAFzUwYsH1W5JO72R9g31K9PPdhwAABAN5EuRT0MqDdGqw6vUf1N/23EAAAAiBWUaAACAC7oVfEt1Z9dVTM+YmlF7BtdJAwAAkaZNgTZq9Goj9fbvrXVH19mOAwAAEOEo0wAAAFzQ+yve1+6zu/VjjR+VJl4a23EAAEA0YozRD1V/UNbEWdVwbkP9E/iP7UgAAAARijINAADAxczcN1M/7PhB/3v9f6qcpbLtOAAAIBqK6x1Xc+rM0bXb19RgbgOFhIbYjgQAABBhKNMAAABcyIELB9R6cWsVS1NMX5T5wnYcAAAQjeVKlksjq4yU/zF/9fHvYzsOAABAhKFMAwAAcBHXg66r1qxa8vHy0aw6sxTDM4btSAAAIJprlq+ZWuZrqc83fa4Vh1bYjgMAABAhKNMAAABcgOM4ar+0vfaf369pNadxnTQAABBlDK08VK8me1WN5zXWyasnbccBAAAId5RpAAAALmDxmcWasmeK+pTqo3KZytmOAwAA8EDsGLE1u85s3Q65rfpz6ys4NNh2JAAAgHBFmQYAABDF7Ti9Q8MODVOFTBX08Zsf244DAADwH9mSZNOYt8doy8ktGnt0rO04AAAA4YoyDQAAIAq7dPOSas+urYTeCTWl5hR5GF6+AQCAqKl+7vrqUKiDZp6aqfl/zLcdBwAAINzwbgwAAEAUFeqEqtmCZvr72t/qnbO3ksROYjsSAADAU31f4Xtl982uZgua6eDFg7bjAAAAhAvKNAAAgCjqq5++0pKDSzSwwkDljJfTdhwAAIBniukVU31y9pG3p7dqzqyp60HXbUcCAAAIM5cp04wxFY0xB4wxh4wxPR7zeCNjzJ57H1uMMXlt5AQAAAgP64+u18frP1b93PX1TuF3bMcBAAB4bsl9kmt6renaf36/2ixuI8dxbEcCAAAIE5co04wxnpKGS6okKaekBsaYf/959lFJJR3HySOpn6TRkZsSAAAgfJwOOK36c+sra+KsGl11tIwxtiMBAAC8kHKZyunzMp9r+r7pGvbrMNtxAAAAwsQlyjRJRSQdchzniOM4QZJmSPJ7eIDjOFscx7l87+YvktJEckYAAIAwCwoJUr059RQYFKg5debIN6av7UgAAAAvpUfxHno769v6YNUH2nJyi+04AAAAL81VyrTUkk4+dPvUvfuepJWk5RGaCAAAIAJ0XdlVP534SeOqjVOuZLlsxwEAAHhpHsZDP9b4Uenjp1ed2XV0NvCs7UgAAAAvxct2gOf0uLWNHrvgtjGmtO6WacWf8HhbSW0lKWnSpPL39w+niABwV2BgIMcWAC9l5T8rNezAMNVJU0cpLqR45FjCsQVAROHYAiC8/ft1S4+MPdRpVydVGFtB3+X9Tp7G0144AC6L34kA2OQqZdopSWkfup1G0ul/DzLG5JE0VlIlx3EuPm5HjuOM1r3rqWXLls0pVapUuIcFEL35+/uLYwuAF7XzzE4N2jxIpTKU0rQm0+Tl8ejLNI4tAMLbhg0bJIljC4Bw9+/XLaVUSjHTxlTTBU214s4KfVP+G3vhALgsficCYJOrLPO4TVIWY8wrxhhvSfUlLXp4gDEmnaR5kpo4jnPQQkYAAICXcvHGRdWcWVNJYifRzNoz/1OkAQAAuLomeZuoY6GO+vbnbzV3/1zbcQAAAF6IS7xT4zhOsDGmk6SVkjwljXcc53djTPt7j/8g6VNJiSWNMMZIUrDjOIVsZQYAAHgeIaEhajC3gc4EntFPLX5SsjjJbEcCAACIEAMrDNSOMzvUfGFz5UiaQzmT5rQdCQAA4Lm4yplpchxnmeM4WR3HyeQ4zhf37vvhXpEmx3FaO46T0HGcfPc+KNIAAECU9/G6j7X6yGqNqDxChVMXth0HAAAgwsT0iqm5decqTow4qj6juq7cumI7EgAAwHNxmTINAADA3czdP1dfbv5S7Qq2U6sCrWzHAQAAiHCp46XWnLpzdPTKUTWa10ghoSG2IwEAADwTZRoAAIAF+8/vV/OFzVU0TVENrjjYdhwAAIBIUzxdcQ2tNFTL/lqm3v69bccBAAB4Jpe4ZhoAAIA7uXrrqmrMrKHYMWJrTp05iukV03YkAACASNWuYDvtPLNTX2z6QvlS5FPtnLVtRwIAAHgizkwDAACIRKFOqJrMb6Ijl49odp3ZSh0vte1IAAAAkc4Yo6GVhqpYmmJqvqC59p3bZzsSAADAE1GmAQAARKJP1n2ixQcXa1CFQXoz/Zu24wAAAFgT0yum5tSdo3gx48lvhp8u3bxkOxIAAMBjUaYBAABEkpn7Zqr/T/3VpkAbdSzc0XYcAAAA61L5ptLcunN18upJNZjbQCGhIbYjAQAA/AdlGgAAQCTYeWanWixsoeLpimtY5WEyxtiOBAAAECUUS1tMI6qM0KrDq9RrbS/bcQAAAP7Dy3YAAAAAd3c28Kyqz6iuJLGTaG7dufL29LYdCQAAIEppXaC1dp7Zqa+3fK0CKQuoXu56tiMBAAA8wJlpAAAAESgoJEi1ZtXShRsXtLD+QiWLk8x2JAAAgChpUMVBKp6uuFosbKEdp3fYjgMAAPAAZRoAAEAEcRxHnZZ10uaTmzXBb4Lyp8xvOxIAAECU5e3prTl15ihpnKTym+GnMwFnbEcCAACQRJkGAAAQYUZsG6ExO8eoV/FeLFUEAADwHJLHTa5F9Rfpyq0rqj6zum7euWk7EgAAAGUaAABARFh/dL26rOiit7O+rX5l+tmOAwAA4DLypsirKTWn6Ne/f1Xrxa3lOI7tSAAAIJqjTAMAAAhnRy8fVZ3ZdZQtSTZNqTlFHoaXXAAAAC+ievbq6l+mv6btnaYBPw2wHQcAAERzXrYDAAAAuJOrt66q6vSqCnVCtbD+QsWLGc92JAAAAJfUo3gP/X7+d3207iPlSJJDNXLUsB0JAABEU/yZNAAAQDgJDg1WvTn1dPDiQc2tO1eZE2W2HQkAAMBlGWM0ttpYFUldRE3mN9Huf3bbjgQAAKIpyjQAAIBw8t6K97Ty8EqNrDJSpV8pbTsOAACAy/Px8tGCeguUMFZCvT39bZ0NPGs7EgAAiIYo0wAAAMLBsF+Hafi24epWrJtaF2htOw4AAIDbSOmbUgvrL9SFGxdUY2YN3Q6+bTsSAACIZijTAAAAwmjFoRXqsqKL/LL56cuyX9qOAwAA4HYKpCygH2v8qJ9P/aw2i9vIcRzbkQAAQDRCmQYAABAG+87tU93ZdZUneR5NqTlFnh6etiMBAAC4pdo5a6tvqb6avGeyPt/4ue04AAAgGvGyHQAAAMBVnbt+TlWnVVVc77ha3GCx4nrHtR0JAADArX385sc6dPmQPvX/VBkTZlSjPI1sRwIAANEAZRoAAMBLuBV8S9VnVNe56+e0scVGpYmXxnYkAAAAt2eM0Zi3x+jE1RNquail0sVPpxLpS9iOBQAA3BzLPAIAALwgx3HUcmFL/XzqZ02uMVmFUhWyHQkAACDa8Pb01ty6c/VKgldUfWZ1Hbx40HYkAADg5ijTAAAAXlAf/z6avm+6+pfpr1o5a9mOAwAAEO0kipVISxsulYfxUJVpVXThxgXbkQAAgBujTAMAAHgB43eNV9+NfdUiXwv1KN7DdhwAAIBoK1OiTFpYf6FOXj2p6jOq61bwLduRAACAm6JMAwAAeE4rD61U28VtVT5TeY2qOkrGGNuRAAAAorXX076uSdUnafPJzWq5sKVCnVDbkQAAgBvysh0AAADAFfz2z2+qPbu2cifLrdl1ZiuGZwzbkQAAACCpXu56OnL5iHqt66VMCTOpX5l+tiMBAAA3Q5kGAADwDCeunlDlqZWVwCeBljZcqngx49mOBAAAgIf0KN5Dhy8f1uebPlfGhBnVIn8L25EAAIAboUwDAAB4iiu3rqjy1Mq6fue6NrfcrNTxUtuOBAAAgH8xxmhklZE6fvW42ixuo5S+KVUxc0XbsQAAgJvgmmkAAABPEBQSpJoza+rgxYOaX2++cifLbTsSAAAAniCGZwzNrTtXuZPlVu1ZtbX99HbbkQAAgJugTAMAAHgMx3HUalErrT+2XuOqjVOZV8rYjgQAAIBniBcznpY3Wq4ksZOoyrQqOnzpsO1IAADADVCmAQAAPMYn6z/RlD1T9Hnpz9UkbxPbcQAAAPCcUvqm1MrGKxUcGqwKUyro3PVztiMBAAAXR5kGAADwL6O2j9IXm75Q6/yt1atEL9txAAAA8IKyJcmmJQ2W6HTAaVWdVlWBQYG2IwEAABdGmQYAAPCQOfvnqMPSDqqSpYpGVBkhY4ztSAAAAHgJxdIW04zaM7TjzA7VnV1Xd0Lu2I4EAABcFGUaAADAPeuOrlOjeY1ULG0xzaozSzE8Y9iOBAAAgDColq2aRlYZqeWHlqv9kvZyHMd2JAAA4IK8bAcAAACICnad2aXqM6orS6IsWtJgiWLHiG07EgAAAMJB24Jt9fe1v9V3Y1+ljpdafUv3tR0JAAC4GMo0AAAQ7R26dEgVp1ZUwlgJtbLxSiWMldB2JAAAAISjPqX66HTAafXb2E8p46ZUh8IdbEcCAAAuhDINAABEa2cCzqj85PIKCQ3RysYrlTpeatuRAAAAEM6MMRpZdaT+uf6P3ln2jhLFSqR6uevZjgUAAFwE10wDAADR1tVbV1VpaiWdu35OyxotU/Yk2W1HAgAAQATx8vDSrNqzVCJ9CTWe31grDq2wHQkAALgIyjQAABAt3Qq+Jb8Zftp/fr/m1ZunIqmL2I4EAACACBYrRiwtqr9IeZLnUc2ZNbX5xGbbkQAAgAugTAMAANFOcGiwGs5tqA3HN2hS9Ukqn6m87UgAAACIJPF94mtFoxVKFz+dqkyrot3/7LYdCQAARHGUaQAAIFoJdULVelFrzf9zvgZXHKwGrzawHQkAAACRLGmcpFrVZJXixYynClMq6K+Lf9mOBAAAojDKNAAAEG04jqN3l7+rSbsn6bNSn+nd1961HQkAAACWpIufTqubrFaIE6Jyk8vp72t/244EAACiKMo0AAAQbfRa20vDtw1Xt2Ld9Mmbn9iOAwAAAMuyJcmmlY1X6tLNSyo3uZwu3LhgOxIAAIiCKNMAAEC00H9Tf325+Uu1L9heX5f7WsYY25EAAAAQBRRIWUCLGyzW0StHVXlqZQXcDrAdCQAARDGUaQAAwO0N2TpEH637SI3zNNbwKsMp0gAAAPCIkhlKanad2dp5Zqfenv62bty5YTsSAACIQijTAACAWxu/a7y6rOii6tmra4LfBHkYXv4AAADgv6pmraopNado04lNqj6jum4F37IdCQAARBG8mwQAANzWrN9nqc3iNiqfqbxm1JohLw8v25EAAAAQhdXPXV/jq43XmiNrVHtWbQWFBNmOBAAAogDKNAAA4JaWHFyiRvMa6fW0r2t+vfmK6RXTdiQAAAC4gGb5mumHqj9o6V9LVX9Ofd0JuWM7EgAAsIwyDQAAuJ3Vh1er9qzayps8r5Y0WKLYMWLbjgQAAAAX0rZgWw2pOETz/5yvJvObKCQ0xHYkAABgEWsd/V979xldVZWwcfzZSSChhCRISKOTEEhogYAgHaQXcZCqoqAUEXD0ncHedZSxS2coIlJ0QBAURGpCb9J7h6B0BRKQkGS/H5JhQIljITm59/5/a911zzl3J+u5H7Jzc57scwAAgFtZdHCROkzvoOhi0Vpw3wIF+AU4HQkAAAAuaNDtg3Ql/Yr+vvDv8vXx5f67AAB4MMo0AADgNpYcWqL209orqmiUFvdcrNsK3uZ0JAAAALiwv93xN11Ju6Lnlj4nX29fjW43mkINAAAPRJkGAADcwrLDy9RuajtFFo3U4p6LVaxgMacjAQAAwA082/BZ/ZT2k15b/pp8vX31YesPZYxxOhYAAMhFlGkAAMDlJRxOUNupbVU2qKwW91ys4ELBTkcCAACAG3mlySv6Ke0nvb36bfl4+ejdlu9SqAEA4EEo0wAAgEtLPJKoNlPbqHRAaS3puUTFCxV3OhIAAADcjDFG/2z+T6VlpOn9te8r3abrg1YfUKgBAOAhKNMAAIDLWnF0hdpMaaNSAaW05IElCikc4nQkAAAAuCljjN5t+a68vbz1zup3lJaRpuFthnMPNQAAPABlGgAAcEkrj65U6ymtFVEkQkt6LlFo4VCnIwEAAMDNGWP0VvO35OPlo6Erhyo9I12j2o2iUAMAwM1RpgEAAJez/MhytZnaRmGFw7T0gaUK8w9zOhIAAAA8hDFGbzR7Q97GW/9Y8Q+l23SNbT+WQg0AADdGmQYAAFzKooOL1GFaB5UKKKXFPRcr3D/c6UgAAADwMMYYvdb0Nfl4+eiVxFeUbtM1rv04eXt5Ox0NAADkAMo0AADgMr7a+5U6fdZJFW6roIX3L+QeaQAAAHCMMUYvN3lZ3l7eenHZi0rPSNfEuyZSqAEA4IYo0wAAgEv4fNfn6jajm6qGVNWC+xbotoK3OR0JAAAA0AuNXpC38dZzS59Tuk3XpI6T5OPFKTcAANwJv9kBAECeN3XbVPWc1VO1I2pr3r3zFOgX6HQkAAAA4JpnGz4rHy8fPbX4KV1Ju6Ipf5kiXx9fp2MBAIBbhDINAADkaRM2TdDDcx5Ww9INNbf7XPn7+jsdCQAAAPiFJ+s/KT8fP/11wV91cfpFfd7lcxXKX8jpWAAA4BbwcjoAAABAdkasG6GH5jyk5uWba9698yjSAAAAkKc9Vucxje8wXosOLlLLT1rq/E/nnY4EAABuAco0AACQJ72z6h0NnD9Q7Su015xuc1QwX0GnIwEAAAD/U++43preabrWHV+nJpOa6HTKaacjAQCAP4kyDQAA5CnWWj27+Fn9beHf1Dmms2Z0mcH9JgAAAOBSOsd21pzuc7T7zG41/Kihki4kOR0JAAD8CZRpAAAgz0jPSFf/L/vrHyv+oT41+mhap2nK753f6VgAAADA79YqspUW3LdAxy8cV/0J9bX/3H6nIwEAgD+IMg0AAOQJV9KuqOuMrhr77Vg9Xf9pjWk3Rt5e3k7HAgAAAP6wBqUbaMkDS5ScmqwGExto+6ntTkcCAAB/AGUaAABw3MUrF9VmahvN3DVT77Z4V/9o9g8ZY5yOBQAAAPxp8eHxSuyVKCOjRh810pqkNU5HAgAAvxNlGgAAcNTplNNq+nFTJRxO0KSOk/R43cedjgQAAADcUjHBMVrRe4UC/QLVdFJTfbX3K6cjAQCA34EyDQAAOObo+aPXLnczq+ss9azW0+lIAAAAQI4oF1ROq3qvUkxwjO6afpcmbJrgdCQAAPAbUaYBAABH7Dq9S/Um1NOJ5BNaeP9CtY9u73QkAAAAIEeFFA7R0geWqlm5ZnpozkN6LfE1WWudjgUAAP4HyjQAAJDrVhxdofoT6ystI02JvRJVv1R9pyMBAAAAucLf119zu8/VfVXv0/NLn9ej8x5Veka607EAAMCv8HE6AAAA8Cyf7fhMPWf1VJnAMpp37zyVCyrndCQAAAAgV+X3zq9JHScpvHC4/rnqnzqZclKf3P2JCuQr4HQ0AABwE6xMAwAAucJaq7dWvqWuM7qqVkQtrXpoFUUaAAAAPJaX8dLQ5kP1fsv3NWvXLLX4pIV+uPyD07EAAMBNUKYBAIAcl5aRpoHzBmrIoiHqGttVC+9fqKIFijodCwAAAHDcY3Ue07RO07Tu+Do1mNhAR88fdToSAAD4Gco0AACQo1JSU/SXT/+ikRtGasgdQzS101T5+fg5HQsAAADIM7pW7qr5985X0oUk1f5Xba0/vt7pSAAA4DqUaQAAIMecTD6pxpMa66t9X2lEmxEa2nyovAwfPwAAAICfa1q2qVY9tEoF8hVQo48aaebOmU5HAgAAWTibBQAAcsTuM7tVZ3wd7Ty9U7O7ztaAWgOcjgQAAADkaTHBMVr78FpVC62me/59j4auGCprrdOxAADweC5TphljWhlj9hhj9htjnrrJ6xWNMauNMVeMMX9zIiMAAMi08MBC1R1fV5euXlLCgwlqH93e6UgAAACASyheqLiW9FyirrFd9dTip9Rnbh+lpqc6HQsAAI/mEmWaMcZb0ghJrSXFSOpujIn52bBzkgZLejuX4wEAgCzWWg1fN1ytp7RWySIltfbhtYoPj3c6FgAAAOBSCuQroKmdpur5hs9r/Kbxaj2ltX64/IPTsQAA8FguUaZJqi1pv7X2oLU2VdJ0SXddP8Bae8pau17SVScCAgDg6a6mX9UjXz2iQfMHqW2FtlrZe6XKBJZxOhYAAADgkryMl15p8oomdZyk5UeWq+74ujpw7oDTsQAA8EiuUqZFSDp23X5S1jEAAJAHnL10Vi0+aaExG8foqXpPaVbXWfL39Xc6FgAAAODyelbrqUU9F+n0pdO6fdztWnZ4mdORAADwOD5OB/iNzE2O/aG7rxpj+krqK0nBwcFatmzZn4gFAL+UnJzM3AKPciTliJ7Z/oxOXzmtpys+rRY+LZSYkOh0LLfD3AIgpzC3ALjV+NySMz6o/IGe3fGsmk1qpoGRA9UxvKOMudkpM8A9MbcAcJKrlGlJkkpet19C0nd/5BtZa8dKGitJ0dHRtnHjxn86HABcb9myZWJugaeYv2++Bs8cLD8fPyX0SlDdknWdjuS2mFsA3GoJCQmSxNwC4Jbjc0vO6dCsg+77/D59uPdDJRdO1si2I+Xr4+t0LCBXMLcAcJKrXOZxvaQoY0xZY0x+Sd0kzXE4EwAAHstaq3dWvaN209qpXFA5re+zniINAAAAyGFFfItodrfZeq7Bc5qweYIaT2qs7y7+of83BwAAv4NLlGnW2jRJAyUtkLRL0mfW2h3GmP7GmP6SZIwJNcYkSXpC0nPGmCRjTBHnUgMA4J6SU5PVfWZ3/W3h39SxYket6LVCpQJKOR0LAAAA8AhexkuvNn1VMzrP0LaT2xQ/Nl5rk9Y6HQsAALfmEmWaJFlr51lrK1hry1trX886NtpaOzpr+4S1toS1toi1NjBr+4KzqQEAcC/7zu5TnXF19O+d/9abzd7UjM4zVCh/IadjAQAAAB6nU0wnrX5otfx8/NTwo4aauGmi05EAAHBbLlOmAQAAZ83dM1fx/4rXieQT+vrer/Vk/Se54TkAAADgoCohVbS+z3o1KNVAvef01uD5g5Wanup0LAAA3A5lGgAA+FXpGel6fsnz6jC9g6KKRmlj341qXr6507EAAAAASLqt4G36+r6v9USdJzRs3TA1/qixki4kOR0LAAC3QpkGAACyde7yObWb1k6vLX9Nvar30oreK1Q6sLTTsQAAAABcx8fLR++0fEef3vOptp3aprgxcfrmwDdOxwIAwG1QpgEAgJvafGKz4sfGa/HBxRrddrTGdxgvPx8/p2MBAAAAyEaX2C7a0GeDQguHqtUnrfTyspeVnpHudCwAAFweZRoAALiBtVaj1o9SnXF1lJqeqsReieoX34/7owEAAAAuILpYtNY+vFb3V7tfLyW8pDZT2+h0ymmnYwEA4NIo0wAAwDXnfzqvLjO6aMC8AWpatqk29dukOiXqOB0LAAAAwO9QMF9BfXTXRxrbbqwSDicobkycVh1b5XQsAABcFmUaAACQJK0/vl5xY+I0a9cs/fPOf+rLHl8quFCw07EAAAAA/AHGGPWp2UerH1otXx9fNfqokd5b/Z6stU5HAwDA5VCmAQDg4ay1en/N+6o3oZ7SbbqW91quv9f7u7wMHxMAAAAAVxcXFqeNfTeqbVRbPfHNE2o/rT2XfQQA4HfiLBkAAB7s3OVz6vhpRz2+4HG1jmqtTf02qW7Juk7HAgAAAHALBfoFalbXWRrWepgWHVykqqOrauGBhU7HAgDAZVCmAQDgoVYeXanqo6tr/r75er/l+5rddbaKFijqdCwAAAAAOcAYo4G1B2pdn3UK8gtSi09aaMjCIUpNT3U6GgAAeR5lGgAAHuZq+lU9t+Q5NfyooXy8fLSy90o9VucxGWOcjgYAAAAgh1UNqaoNfTeof83+emvVW6o3oZ72nd3ndCwAAPI0yjQAADzInjN7dMeEO/T68tf1QLUHtLn/ZtWKqOV0LAAAAAC5qGC+ghrVbpQ+7/K5Dpw7oLgxcZq0eZKstU5HAwAgT6JMAwDAA1hrNWr9KMWNidPBHw5qRucZmnDXBBXxLeJ0NAAAAAAOubvS3dr6yFbFh8frwS8eVI/Pe+jc5XNOxwIAIM+hTAMAwM2dSD6hdtPaacC8AWpQuoG2PbJNnWI6OR0LAAAAQB5QokgJLe65WK81eU0zds5QlVFVNH/ffKdjAQCQp1CmAQDgxr7Y/YWqjKqiJYeW6MNWH2r+vfMV7h/udCwAAAAAeYi3l7eebfis1j68VkF+QWoztY36zu2ri1cuOh0NAIA8gTINAAA39ONPP6r3F73V8dOOKlGkhDb23ahBtw+Sl+FXPwAAAICbqxFWQxv7btSQO4Zo3LfjVHV0VSUcTnA6FgAAjuOMGgAAbubLvV8qdmSsPt7ysZ6u/7TWPrxWMcExTscCAAAA4AJ8fXw1tPlQLe+1XN7GW00mNdETC57Q5auXnY4GAIBjKNMAAHAT5y6fU89ZPdV+WnsVLVBUax5eo380+4fye+d3OhoAAAAAF1OvVD1t6b9Fj8Q/ovfWvKe4MXFad3yd07EAAHAEZRoAAG5g9u7Zih0Zq2nbp+mFhi9oY9+Nig+PdzoWAAAAABdWKH8hjWg7Qt/c941Srqao7vi6+r8F/6eU1BSnowEAkKso0wAAcGFnLp1Rj5k9dPendyukUIjW91mvl5u8zGo0AAAAALdM8/LNtf2R7epbo6/eXfOuKo+qrG8OfON0LAAAcg1lGgAALshaq+nbpyt2ZKxm7Jyhlxu/rPV91qt6aHWnowEAAABwQwF+ARrVbpQSH0xUfu/8avlJSz0w+wGdvXTW6WgAAOQ4yjQAAFzMgXMH1GpKK3Wf2V2lAkppY9+NeqHRC8rnnc/paAAAAADcXIPSDbSl/xY91+A5Td02VZVGVNK0bdNkrXU6GgAAOYYyDQAAF5GanqrXE19X5VGVtfrYag1rPUxrHlqjKiFVnI4GAAAAwIP4+fjp1aav6tu+36psUFn1+LyH2k1rp6PnjzodDQCAHEGZBgCAC0g8kqjqo6vruaXPqX2F9to9cLcG1h4oby9vp6MBAAAA8FBVQqpoVe9Veq/le1p2eJkqjaikN1e8qdT0VKejAQBwS1GmAQCQh525dEa9v+itRh810uW0y/qqx1f6rPNnCvcPdzoaAAAAAMjby1t/rfNX7RywUy3Kt9DTi59W1VFVtejgIqejAQBwy1CmAQCQB6VnpGvsxrGqOLyiJm+drKfqPaUdA3aoTVQbp6MBAAAAwC+UDiytWV1n6aseXyktI03NJzdX1xldlXQhyeloAAD8aZRpAADkMSuOrlCtf9VSvy/7KSY4Rpv6bdIbd76hgvkKOh0NAAAAAH5Vm6g22j5gu15p/Irm7JmjisMr6q2Vb3HpRwCAS6NMAwAgj0i6kKQeM3uowcQGOn3ptKZ3mq6EBxNUuXhlp6MBAAAAwG/m5+On5xs9r50DdqpZuWYasmiIqo+uzqUfAQAuizINAACH/ZT2k15LfE3Rw6M1a/csPd/wee1+dLe6Vu4qY4zT8QAAAADgDykbVFZfdPtCc7vP1ZX0K2o+ubnaT2uv3Wd2Ox0NAIDfhTINAACHWGs1a9csxYyI0fNLn1fryNba9eguvdLkFRXKX8jpeAAAAABwS7Sr0E47BuzQ0DuHKuFwgqqMqqLB8wfr7KWzTkcDAOA3oUwDAMABa5PWqtFHjfSXz/6iQvkLaXHPxZrRZYbKBJZxOhoAAAAA3HJ+Pn4aUm+I9g/er4fjHtaI9SMUOSxS761+j/upAQDyPMo0AABy0b6z+9T5351VZ3wd7T27VyPbjNSmfpvUtGxTp6MBAAAAQI4rXqi4RrUbpa39t+r2iNv1xDdPKHZkrGbvni1rrdPxAAC4Kco0AABywamUUxo0b5BiRsZo/r75eqnRS9o/eL8eqfWIfLx8nI4HAAAAALkqtnisvr7va82/d77ye+fX3Z/erYYfNdSKoyucjgYAwC9QpgEAkINSUlP0WuJrKv9heY3aMEp9avTR/sH79WLjF1U4f2Gn4wEAAACAo1pFttKW/ls0qu0o7T+3Xw0mNlDbqW21+cRmp6MBAHANZRoAADngStoVDV83XFHDovT80ufVvFxz7RiwQyPbjlRo4VCn4wEAAABAnuHj5aP+8f11YPABvdnsTa06tkpxY+LUfWZ37T+33+l4AABQpgEAcCulpqdqzIYxihwWqUHzBymyaKRW9Fqhz7t+ruhi0U7HAwAAAIA8q2C+gnqy/pM69NghPVP/Gc3ZM0cVh1dU/y/76/iF407HAwB4MMo0AABugavpVzVh0wRFD49W/6/6q0SRElp4/0IlPJigeqXqOR0PAAAAAFxGoF+gXm/2ug4MPqBH4h/RhE0TFDksUk8seELfX/ze6XgAAA9EmQYAwJ+QnpGuyVsmq9KISnpozkMqVrCY5vWYp1W9V+nOcnfKGON0RAAAAABwSaGFQzWszTDtGbhHXWO76sO1H6rsB2U1eP5gJV1IcjoeAMCDUKYBAPAHXE2/qkmbJyl2ZKx6zu6pwvkL64tuX2jdw+vUOqo1JRoAAAAA3CJlg8rqo44fac/APbqv6n0atWGUyn9YXgO+GqCj5486HQ8A4AEo0wAA+B0uX72s4euGK3JYpB784kH5+vhqRucZ+rbft+oQ3YESDQAAAABySPmi5TWuwzjtG7RPvar30rhvxynyw0j1ndtXh3445HQ8AIAbo0wDAOA3OP/Teb2x/A2V+aCMBs0fpJJFSuqrHl9pc7/N6hTTSV6GX6kAAAAAkBvKBJbR6HajdWDwAfWt2VeTtkxS1LAo3T/rfm09udXpeAAAN8SZPwAAfsWplFN6dvGzKvV+KT2z5BnVCKuhxAcTtaL3CrWJasNKNAAAAABwSMmAkhreZrgODj6oQbUHadauWao2uppafdJKSw4tkbXW6YgAADdBmQYAwE3sPL1Tfef2Ven3S+uNFW+oZfmW2th3o+bfO18NSjdwOh4AAAAAIEtEkQi91+o9HXv8mF5v+ro2n9isZh83U/y/4vXp9k+VlpHmdEQAgIujTAMAIIu1Vgv2L1CrT1opdmSsJm+drJ5Ve2rXo7v0WefPVCOshtMRAQAAAADZCCoQpGcaPKPDfz2sse3GKjk1Wd1mdlPUsCgNWztMyanJTkcEALgoyjQAgMe7fPWyxn07TpVHVVarKa205eQWvdbkNR17/JjGtB+j6GLRTkcEAAAAAPxGfj5+6lOzj3Y9ukuzus5SuH+4Bn89WBHvRujxrx/X/nP7nY4IAHAxPk4HAADAKcfOH9PYjWM1euNonbl0RtVDq2tSx0nqGttVvj6+TscDAAAAAPwJXsZLHSt2VMeKHbX62GoNWzdMw9cP1wdrP1DrqNYaVHuQWpRvIS/DegMAwK+jTAMAeJQMm6GFBxZq1IZRmrt3rqy1alehnZ6o+4QalW4kY4zTEQEAAAAAt1jdknVVt2RdvdPiHY3ZOEajN4xW6ymtFVU0SgNrD9SD1R9UEd8iTscEAORR/NsFAMAjnL10Vm+velsVhlVQqymttOrYKg25Y4gODD6gOd3nqHGZxhRpAAAAAODmwvzD9FLjl3T08aOa8pcpuq3gbXrs68cU8W6E+s3tp43fbXQ6IgAgD2JlGgDAbVlrtTpptUZvGK3PdnymK+lXVL9Ufb3a5FX9pdJfuJQjAAAAAHio/N751aNKD/Wo0kMbvtugEetHaPLWyRr77VjFhcapT40+6lGlhwL8ApyOCgDIA1iZBgBwO99f/F5DVwxVpRGVVG9CPc3ePVsPxT2krf23anmv5epepTtFGgAAAABAkhQfHq+Jd03Ud//3nUa0GaEMm6EB8wYo/N1w9f6it9YkrZG11umYAAAHsTINAOAWUtNT9eXeLzVx80TN3zdf6TZd9UvV15B6Q9Q5prP8ff2djggAAAAAyMMC/QI1oNYAPRL/iDZ8t0H/+vZfmrptqiZunqjKxSvrgWoPqEeVHgr3D3c6KgAgl1GmAQBclrVWW09u1aQtkzR562SduXRG4f7hGlJviB6s/qAq3FbB6YgAAAAAABdjjFGtiFqqFVFL77R4R9O3T9f4TeP194V/15OLnlTzcs3Vs1pPdazYUQXzFXQ6LgAgF1CmAQBczqEfDmna9mmasm2Kdp7eqXxe+XRXxbvUu3pvNS/fXD5e/HoDAAAAAPx5/r7+6lOzj/rU7KO9Z/dq8pbJmrx1su79/F4Vzl9Y98Tco55Ve6pRmUbyMtxRBwDcFWcbAQAu4VTKKX224zNN3TZVq5NWS5IalGqgUW1H6Z6Ye1SsYDGHEwIAAAAA3FmF2yro1aav6uUmL2v5keWavHWyPtvxmT7a/JFKFCmhLjFd1LVyV9UKryVjjNNxAQC3EGUaACDPOnf5nObsmaNPd3yqhQcWKt2mq2pIVb3Z7E11q9xNpQNLOx0RAAAAAOBhvIyXGpVppEZlGunD1h9qzp45mrJtioatG6Z317yrsoFl1SW2i7rEdlFcaBzFGgC4Aco0AECecirllGbvnq2Zu2ZqyaElSstIU+mA0hpSb4h6VOmhysUrOx0RAAAAAABJUsF8BdWtcjd1q9xNP1z+QbN3z9anOz7V26ve1tCVQxVZNFJdY7uqS2wXVSlehWINAFwUZRoAwHHfXfxOn+/6XDN3zVTikURl2AxFFo3U/9X9P90Tc49qhtXkDw4AAAAAQJ4WVCBIveJ6qVdcL525dEazds3Spzs+1Rsr3tDry19XuaBy6hjdUR0rdtQdJe+Qt5e305EBAL8RZRoAINdZa7X15FbN3TtXX+79UmuPr5UkxQTH6NkGz+qemHv4jz0AAAAAgMsqVrCY+tTsoz41++hk8knN3j1bX+z5QsPXD9e7a95VcMFgta/QXh0rdtSd5e5UgXwFnI4MAPgVlGkAgFzxU9pPWnZ4mebumasv932po+ePSpJqhdfSq01eVadKnVQpuJLDKQEAAAAAuLVCCoeoX3w/9YvvpwtXLujr/V9r9u7ZmrFrhiZsnqBC+QqpRfkWahPVRq0jWyuiSITTkQEAP0OZBgDIMUd+PKJvDnyjefvnaeGBhUq5mqKC+QqqebnmeqHhC2pboa1CC4c6HRMAAAAAgFxRxLeIusR2UZfYLkpNT9Wyw8s0a9csfbnvS83aPUuSVC2kmlpHtlabqDaqW7KufLw4hQsATmMmBgDcMimpKUo4kqAF+xdowYEF2nN2jySpZJGS6lmtp9pXaK8mZZvIz8fP4aQAAAAAADgrv3d+tSjfQi3Kt9BIO1I7Tu/QvH3zNG/fPL216i29ufJNBfgGqEX5FmoV2Up3lrtTpQJKOR0bADwSZRoA4A9Lz0jX5hObtfjQYi04sEArjq5QanqqCvgUUKMyjdQ/vr9alG+hSsUqcf8zAAAAAACyYYxR5eKVVbl4ZQ2pN0TnfzqvRQcXZZZr++fp3zv/LUmKKhqlO8vdqTvL3akmZZooqECQw8kBwDNQpgEAfrMMm6GtJ7dq6aGlWnp4qRKPJOr8lfOSpCrFq2hw7cFqGdlS9UvVZ/UZAAAAAAB/UIBfgDrFdFKnmE6y1mr7qe1afGixFh1cpI+3fKxRG0bJy3ipZlhNNSvbTE3LNtUdJe9QofyFnI4OAG6JMg0AkK30jHRtO7VNy48s19LDS5VwJEHnLp+TJEUWjVSX2C5qUqaJGpdprDD/MIfTAgAAAADgfowxqhJSRVVCquivdf6q1PRUrTu+TosPLtaiQ4v09uq39ebKN+Xj5aOaYTXVsHRDNSzdUPVK1mPlGgDcIpRpAIBrUlJTtPb4Wq04ukIrj63U6mOrdTH1oiSpTGAZ3RV917XyrGRASYfTAgAAAADgefJ751f9UvVVv1R9vdj4RV28clGrjq1S4pFEJR5N1AdrP9Bbq96SkVHVkKpqWLqh6peqr7ol6vK3PAD8QZRpAOChrLU69OMhrTu+TmuS1mjlsZXa9P0mpdt0GWVeq/2+qvepXsl6ql+qvkoHlnY6MgAAAAAA+Bl/X3+1jGyplpEtJUmXr17WuuPrlHgkUQlHEjTu23Eatm6YJCnCP0J1S9ZV3RKZjxphNeTr4+tkfABwCZRpAOAhzl0+p3XH12nd8XVae3yt1h1fpzOXzkiSCvgUUO2I2nqq/lOqV7Ke6pasq0C/QGcDAwAAAACA361AvgJqVKaRGpVppOf1vK6mX9WWk1u0+thqrU7KfMzYOUNS5iq3GmE1VCu8lmqG1VTN8JqqWKyifLw4bQwA12NWBAA3dCL5hDZ9v0mbT2zWphObtOnEJu0/t1+SZGQUExyjDhU6qHZEbd1e4nbFBscqn3c+h1MDAAAAAIBbLZ93PsWHxys+PF6Dbh8kSfr+4vdak7TmWrk2ftP4a6vXCvgUUPXQ6tfKtZphNVUpuBIFGwCPxgwIAC4sw2bowLkD2nTiv8XZ5hObdSL5xLUx5YLKKS40Tg/HPazaEbUVHx4vf19/B1MDAAAAAAAnhfmH6e5Kd+vuSndLktIz0rXn7B5t/G6jNn6f+Zi4eaKGrx8uKbNgqxZaLbNgC6upqiFVFRMcowL5Cjj5NgAg11CmAYCLOJ1yWjtP79TO0zu14/QObT6xWVtOblFyarIkycfLR7HBsWpZvqXiQuMUFxanaiHVFOAX4HByAAAAAACQl3l7eSsmOEYxwTG6v9r9kjILtr1n92aWa1kl26QtkzRi/QhJkpfxUvmg8qoSUkWVgyurcvHKqhJSRZFFI1nFBsDtMKsBQB5irdWplFPXCrPry7P/3N9Mkvzz+6tqSFU9WO1BVQ+trriwOMUGx3LTYAAAAAAAcEt4e3mrUnAlVQqupPuq3icp8wo5+87u07ZT27T91PZrz7N3z1aGzZCUeR+2SsUq3VCyVSxWUaUDS1OyAXBZzF4A4IDLVy/rwA8HtO/sPu0/t1/7zu3TrjO7tPP0Tp27fO7auADfAMUWj1XH6I6KCY5RbPFYxQTHKMI/QsYYB98BAAAAAADwNF7GS9HFohVdLFr3xNxz7fjlq5e168wubT+1/dpj2eFl+mTrJ9fG5PPKp8iikapwWwVVuK2Com+LznwuFq3ggsGc5wCQp1GmAUAOuVlh9p/npAtJN4wNLhisisUqqnNM52uXVYgNjlVo4VA+TAIAAAAAgDytQL4CqhFWQzXCatxw/MefftSOUzu05+we7T27V3vP7tWes3s0f/98paanXhsX4BtwrViLKhqlckHlVDawrMoFlePcCIA8gTINAP6gy1cv68j5Izry4xEd/vGwjpzPfN56dKt++PYHfXfxuxvGFytYTFFFo9S0bFNFBkUq6rYoRRWNUmTRSO5rBgAAAAAA3E6gX6DqlaqneqXq3XA8PSNdR84fySzXzmQVbef2KuFwwg2r2STJz8dPZQLLKCAjQPGX4lU2sKzKBpW99hzoF5iL7wiAp6JMA4CbSMtI08nkk0q6kKTjF4/r+IXjOnbh2LXC7MiPR3Qy5eQNX+Pj5aOSRUoqwASoRbkWKhtYVlFFoxR1W2Zhxoc7AAAAAACAzPuxlQsqp3JB5dQqstUNr12+elmHfzysQz8e0qEfDmU+/3hIW49t1SdbP9H5K+dvGB/oF6iSRUqqRJES/30OuHG/UP5Cufn2ALghyjQAHsVaq3OXz+lkykmdSD6h4xeO/7cwyyrNjl88rhPJJ67dOPc/8nvnV+mA0iodWFrtK7RX6cDSKhNYRqUDMp/D/cPl7eWtZcuWqXHjxs68QQAAAAAAABdWIF8BVQqupErBlW44/p/zLT9c/uGGou3wj4d17MIxJV1I0obvNuj0pdO/+J5BfkHXSrYI/wiFFQ5TaOFQhflnPRcOU0jhEPn5+OXW2wTgYijTALiF5NTka6vFTiSf0MnkkzqZkvVIvvE5LSPtF18f6BeoCP8IRRSJUOXila9tX/8cXChYXsbLgXcHAAAAAAAASQoqEKSgAkG/uD/bf/yU9tO1f57+T8l27PwxJV3MfN7w3QadTjktK/vL7+0XpNDCof8t2gplbhcvVPzaI7RwqCKKROT02wSQx1CmAXALH2/5WI/Oe/SGY/m88imkcIhCCoUotHCoqoVUU0ihEIUUztwPKRSiEkVKKNw/nOX+AAAAAAAAbsDPx0/li5ZX+aLlsx2TlpGm0ymn9X3y9zqRfELfX8x8PpF84tqxNUlr9P3F73U57fINX1s9tLo29duU028DQB5DmQbALbQo30LTO02/oTwL9AuUMcbpaAAAAAAAAMhDfLx8FOYfpjD/sF8dZ61VcmqyTl86rVMpp3Qq5ZR8vDilDngil/nJN8a0kvSBJG9J46y1b/7sdZP1ehtJlyQ9aK39NteDAnBEZNFIRRaNdDoGAAAAAAAA3IQxRv6+/vL39Ve5oHJOxwHgIJe4+Y8xxlvSCEmtJcVI6m6MifnZsNaSorIefSWNytWQAAAAAAAAAAAAcDsuUaZJqi1pv7X2oLU2VdJ0SXf9bMxdkj62mdZICjTG/Po6XQAAAAAAAAAAAOBXuMplHiMkHbtuP0nS7b9hTISk77P7phcvXtTLL798qzICwDUJCQlORwDghphbAOQE/iYCkBP43AIgJzC3AHCKq6xMMzc5Zv/AGBlj+hpjNhhjNtySZAAAAAAAAAAAAHBbxtpf9E15jjGmrqSXrLUts/afliRr7RvXjRkjaZm1dlrW/h5Jja212a5Mi46Otnv27MnR7AA8z7Jly9S4cWOnYwBwM8wtAG61/6xIe/HFFx1OAsDd8LkFQE5gbgGQE4wxG6218f9rnKusTFsvKcoYU9YYk19SN0lzfjZmjqSeJlMdSed/rUgDAAAAAAAAAAAA/heXuGeatTbNGDNQ0gJJ3pImWGt3GGP6Z70+WtI8SW0k7Zd0SVIvp/ICAAAAAAAAAADAPbhEmSZJ1tp5yizMrj82+rptK+nR3M4FAAAAAAAAAAAA9+Uql3kEAAAAAAAAAAAAch1lGgAAAAAAAAAAAJANyjQAAAAAAAAAAAAgG5RpAAAAAAAAAAAAQDYo0wAAAAAAAAAAAIBsUKYBAAAAAAAAAAAA2aBMAwAAAAAAAAAAALJBmQYAAAAAAAAAAABkgzINAAAAAAAAAAAAyAZlGgAAAAAAAAAAAJANyjQAAAAAAAAAAAAgG5RpAAAAAAAAAAAAQDYo0wAAAAAAAAAAAIBsUKYBAAAAAAAAAAAA2aBMAwAAAAAAAAAAALJBmQYAAAAAAAAAAABkgzINAAAAAAAAAAAAyAZlGgAAAAAAAAAAAJANyjQAAAAAAAAAAAAgG5RpAAAAAAAAAAAAQDaMtdbpDI4xxlyUtMfpHADcTjFJZ5wOAcDtMLcAyAnMLQByAnMLgJzA3AIgJ0Rba/3/1yCf3EiSh+2x1sY7HQKAezHGbGBuAXCrMbcAyAnMLQByAnMLgJzA3AIgJxhjNvyWcVzmEQAAAAAAAAAAAMgGZRoAAAAAAAAAAACQDU8v08Y6HQCAW2JuAZATmFsA5ATmFgA5gbkFQE5gbgGQE37T3GKstTkdBAAAAAAAAAAAAHBJnr4yDQAAAAAAAAAAAMiWx5dpxphXjTFbjTGbjTHfGGPCnc4EwPUZY94yxuzOml9mGWMCnc4EwPUZYzobY3YYYzKMMfFO5wHg2owxrYwxe4wx+40xTzmdB4DrM8ZMMMacMsZsdzoLAPdhjClpjFlqjNmV9ffQY05nAuD6jDF+xph1xpgtWXPLy7863tMv82iMKWKtvZC1PVhSjLW2v8OxALg4Y0wLSUustWnGmKGSZK190uFYAFycMaaSpAxJYyT9zVq7weFIAFyUMcZb0l5JzSUlSVovqbu1dqejwQC4NGNMQ0nJkj621lZ2Og8A92CMCZMUZq391hjjL2mjpI58bgHwZxhjjKRC1tpkY0w+SSskPWatXXOz8R6/Mu0/RVqWQpI8u10EcEtYa7+x1qZl7a6RVMLJPADcg7V2l7V2j9M5ALiF2pL2W2sPWmtTJU2XdJfDmQC4OGttoqRzTucA4F6std9ba7/N2r4oaZekCGdTAXB1NlNy1m6+rEe2/ZDHl2mSZIx53RhzTNK9kl5wOg8At9Nb0nynQwAAAFwnQtKx6/aTxEkpAACQxxljykiKk7TW4SgA3IAxxtsYs1nSKUkLrbXZzi0eUaYZYxYZY7bf5HGXJFlrn7XWlpQ0RdJAZ9MCcBX/a27JGvOspDRlzi8A8D/9lrkFAG4Bc5NjXKUDAADkWcaYwpJmSvrrz642BgB/iLU23VpbXZlXFattjMn2MtU+uZbKQdbaO3/j0KmSvpL0Yg7GAeAm/tfcYox5QFI7Sc2sp9+gEsBv9js+twDAn5EkqeR1+yUkfedQFgAAgF+VdT+jmZKmWGs/dzoPAPdirf3RGLNMUitJ2282xiNWpv0aY0zUdbsdJO12KgsA92GMaSXpSUkdrLWXnM4DAADwM+slRRljyhpj8kvqJmmOw5kAAAB+wRhjJI2XtMta+67TeQC4B2NMsDEmMGu7gKQ79Sv9kPH0xRLGmJmSoiVlSDoiqb+19rizqQC4OmPMfkm+ks5mHVpjre3vYCQAbsAYc7ekYZKCJf0oabO1tqWjoQC4LGNMG0nvS/KWNMFa+7qziQC4OmPMNEmNJRWTdFLSi9ba8Y6GAuDyjDH1JS2XtE2Z53Al6Rlr7TznUgFwdcaYqpImKfPvIS9Jn1lrX8l2vKeXaQAAAAAAAAAAAEB2PP4yjwAAAAAAAAAAAEB2KNMAAAAAAAAAAACAbFCmAQAAAAAAAAAAANmgTAMAAAAAAAAAAACyQZkGAAAAAAAAAAAAZIMyDQAAAAAAAAAAAMgGZRoAAAAAAAAAAACQDco0AAAAAAAAAAAAIBuUaQAAAAAAAAAAAEA2KNMAAAAAAAAAAACAbFCmAQAAAAAAAAAAANmgTAMAAAAAN2aMaWSMSTfGWGPMUWNM4K+MLWuMOZ81NsUYE52LUQEAAAAgT6JMAwAAAAA3Zq1NkPRm1m5JSWNvNs4Y4yNpqqQiWYces9buyfmEAAAAAJC3UaYBAAAAgPt7UdLarO3Oxpje2Yypk7U901o7LleSAQAAAEAeZ6y1TmcAAAAAAOQwY0w5SZsl+UtKkRRnrd2X9Vp9ScskeUs6JqmatfYHZ5ICAAAAQN7CyjQAAAAA8ADW2oOSHs3aLSRpqjEmX9Y91KYos0jLkHQ/RRoAAAAA/Bcr0wAAAADAgxhjPpF0b9buUEllJXXJ2n/dWvucI8EAAAAAII+iTAMAAAAAD2KMKaLMyz2W/dlLayXVt9am5XooAAAAAMjDuMwjAAAAAHgQa+0FST0kXV+aXZTUgyINAAAAAH6JMg0AAAAAPM9xSSnX7W/MuqcaAAAAAOBnKNMAAAAAwIMYY7wkTZYUcN3hxsaYRxyKBAAAAAB5GmUaAAAAAHiWpyU1ytpeLOl81vY7xpgYZyIBAAAAQN5lrLVOZwAAAAAA5AJjzO2SVkjykfSdpKqSWkiamjVki6TbrbVXnEkIAAAAAHkPK9MAAAAAwAMYY/wlTVFmkWYlPWCtPWutnabMyz5KUjVJbzoUEQAAAADyJMo0AAAAAPAMIySVz9p+x1q76LrXHpV0MGv7MWNMy1xNBgAAAAB5GJd5BAAAAAA3Z4zprv9eynGTpDrW2tSfjbn+EpAnJFW11p7O1aAAAAAAkAexMg0AAAAA3JgxpoykUVm7lyT1+HmRJknW2rWSXsraDZU0MTfyAQAAAEBeR5kGAAAAAG7KGOMt6RNJAVmHnrDW7v6VL3lDUmLWdltjzMCczAcAAAAAroDLPAIAAAAAAAAAAADZYGUaAAAAAAAAAAAAkA3KNAAAAAAAAAAAACAblGkAAAAAAAAAAABANijTAAAAAAAAAAAAgGxQpgEAAAAAAAAAAADZoEwDAAAAAAAAAAAAskGZBgAAAAAAAAAAAGSDMg0AAAAAAAAAAADIBmUaAAAAAAAAAAAAkA3KNAAAAAAAAAAAACAblGkAAAAAAAAAAABANijTAAAAAAAAAAAAgGz8Pw7CGSd0H6mjAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "x = 0.0\n",
+ "P = 0.5\n",
+ "kappa = 0.0\n",
+ "\n",
+ "unscented_transform = UnscentedTranform(f, x, P, kappa)\n",
+ "\n",
+ "fig, ax = make_figure(xlims=(-3, 3))\n",
+ "\n",
+ "add_gaussian_bel(ax, x, P, 'green')\n",
+ "darw_sigma_points(ax, unscented_transform.X, x, P, color='red', marker='x')\n",
+ "\n",
+ "update_plot()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "id": "21001ca1",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def calculate_weighted_mean_and_covariance(X, W):\n",
+ " \n",
+ " n, m = np.shape(X)\n",
+ " \n",
+ " x = np.zeros((n, 1))\n",
+ " P = np.zeros((n, n))\n",
+ " \n",
+ " for i in range(m):\n",
+ " x += X[:, i] * W[0, i]\n",
+ " \n",
+ " for i in range(m):\n",
+ " v = X[:, i] - x\n",
+ " P += W[:, i] * (v @ v.transpose())\n",
+ " \n",
+ " return x, P"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "id": "b0717ae2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class UKF_Visualization(object):\n",
+ " def __init__(self, model=None, x_mean=0.0, x_sigma=0.0, samples_num=100, x_model_range=[-1., 1.]): \n",
+ " '''\n",
+ " initialize the class object\n",
+ " \n",
+ " model : model to be used for projection\n",
+ " model_taylor : first order Taylor expansions of model f(x)\n",
+ " \n",
+ " x_mean : input mean\n",
+ " x_sigma : input standard deviation\n",
+ " \n",
+ " x_model_range : range of values for plotting inputs of model and model_taylor\n",
+ " z_model_range : range of values for plotting outputs of model and model_taylor\n",
+ " \n",
+ " ''' \n",
+ " self.xlim_min, self.xlim_max = x_model_range\n",
+ " \n",
+ " self.x_mean = x_mean\n",
+ " self.x_sigma = x_sigma\n",
+ " \n",
+ " self.z_mean = model(self.x_mean)\n",
+ " \n",
+ " self.model = model\n",
+ " \n",
+ " self.fig, self.axes = create_plot()\n",
+ " \n",
+ " kappa = 0.0\n",
+ " unscented_transform = UnscentedTranform(model, x_mean, x_sigma, kappa)\n",
+ " \n",
+ " self.sigma_X = unscented_transform.X\n",
+ " self.sigma_W = unscented_transform.W\n",
+ " self.sigma_p = unscented_transform.p\n",
+ " \n",
+ " def update_plot(self):\n",
+ " '''\n",
+ " main function to execute the class plotting\n",
+ " '''\n",
+ " \n",
+ " # ==============================================================================================\n",
+ " # 1. generate 'x' samples to feed to the model 'f(x)'\n",
+ " #\n",
+ " x_norm_bel, p_norm_bel = generate_normal_samples(self.x_mean, self.x_sigma, num=50)\n",
+ " x_sigma_pts, p_sigma_pts = self.sigma_X, self.sigma_p\n",
+ " # ==============================================================================================\n",
+ " \n",
+ " \n",
+ " # ==============================================================================================\n",
+ " # 2. propagate the 'x' samples through model 'f(x)' to obtain 'z' samples\n",
+ " #\n",
+ " x_model_curve = np.linspace(self.xlim_min, self.xlim_max, num=100)\n",
+ " z_model_curve = self.model(x_model_curve)\n",
+ " \n",
+ " z_norm_bel = self.model(x_norm_bel)\n",
+ " \n",
+ " # ==============================================================================================\n",
+ " \n",
+ " # ==============================================================================================\n",
+ " # 3. propagate sigma points through non-linear model\n",
+ " # the calculate weighted mean and covariance\n",
+ " #\n",
+ " z_sigma_pts = self.model(x_sigma_pts)\n",
+ " \n",
+ " z_sigma_mean, z_sigma_cov = calculate_weighted_mean_and_covariance(z_sigma_pts, self.sigma_W)\n",
+ " z_sigma_mean, z_sigma_cov = np.reshape(z_sigma_mean, [-1]), np.reshape(z_sigma_cov, [-1])\n",
+ " \n",
+ " z_sigma_bel, p_sigma_bel = generate_normal_samples(z_sigma_mean[0], z_sigma_cov[0], num=50) # for bell curve dist plotting\n",
+ " z_sigma_bel, p_sigma_bel = np.reshape(z_sigma_bel, [-1]), np.reshape(p_sigma_bel, [-1])\n",
+ " # ==============================================================================================\n",
+ " \n",
+ " # ==============================================================================================\n",
+ " # 4. calculate mean and variance of the propagated samples 'z' from the non-linear function f(x)\n",
+ " #\n",
+ " \n",
+ " monto_carlo_n10000 = MontoCarloSampler(nl_model=self.model, mean=self.x_mean, var=self.x_sigma, num=10000)\n",
+ " z_monto_approx_10000, p_monto_approx_10000 = generate_normal_samples(monto_carlo_n10000.mean, monto_carlo_n10000.var, num=50) \n",
+ " # ==============================================================================================\n",
+ " \n",
+ " \n",
+ " # ==============================================================================================\n",
+ " # 5. calculate the min and max samples to set plots limits\n",
+ " #\n",
+ " z_list = [z_norm_bel, z_monto_approx_10000, z_sigma_bel]\n",
+ " z_lim_min, z_lim_max = np.min(z_list), np.max(z_list)\n",
+ " p_input_max = np.max(p_norm_bel)\n",
+ " p_output_max = np.max([p_norm_bel, p_monto_approx_10000, p_sigma_bel])\n",
+ " # ==============================================================================================\n",
+ " \n",
+ " \n",
+ " # ==============================================================================================\n",
+ " # 6. set plots limits\n",
+ " #\n",
+ " self.axes[0, 0].set_xlim(0., p_output_max)\n",
+ " self.axes[0, 0].set_ylim(z_lim_min, z_lim_max)\n",
+ " \n",
+ " self.axes[1, 1].set_xlim(self.xlim_min, self.xlim_max)\n",
+ " self.axes[1, 1].set_ylim(0., p_input_max)\n",
+ " \n",
+ " self.axes[0, 1].set_xlim(self.xlim_min, self.xlim_max)\n",
+ " self.axes[0, 1].set_ylim(z_lim_min, z_lim_max)\n",
+ " # ==============================================================================================\n",
+ " \n",
+ " \n",
+ " # ==============================================================================================\n",
+ " # 7. plot input normal distribution\n",
+ " #\n",
+ " self.axes[1, 1].plot(x_norm_bel, p_norm_bel, color='blue', label='input normal distribution')\n",
+ " self.axes[1, 1].plot(x_sigma_pts, p_sigma_pts, color='red', marker='o', linestyle='', label='inputs drawn sigma points') # draw point\n",
+ " # ==============================================================================================\n",
+ " \n",
+ " \n",
+ " # ==============================================================================================\n",
+ " # 8. plot output normal distributions\n",
+ " # \n",
+ " self.axes[0, 0].plot(p_norm_bel, z_norm_bel, color='blue', label='output normal distribution')\n",
+ " self.axes[0, 0].plot(p_sigma_pts, z_sigma_pts, color='red', marker='o', linestyle='', label='output propagated sigma points') # draw point\n",
+ " \n",
+ " #self.axes[0, 0].plot(p_monto_approx_10, z_monto_approx_10, color='black', linestyle=':', label=f'approx normal dist N={monto_carlo_n10.num}, [mean={round(monto_carlo_n10.mean,2)}, var={round(monto_carlo_n10.var,2)}]') \n",
+ " self.axes[0, 0].plot(p_monto_approx_10000, z_monto_approx_10000, color='blue', linestyle=':', label=f'approx normal dist N={monto_carlo_n10000.num}, [mean={round(monto_carlo_n10000.mean,2)}, var={round(monto_carlo_n10000.var,2)}]')\n",
+ " self.axes[0, 0].plot(p_sigma_bel, z_sigma_bel, color='red', linestyle=':', label=f'approx normal dist from sigma points, [mean={round(z_sigma_mean[0],2)}, var={round(z_sigma_cov[0],2)}]')\n",
+ " # ==============================================================================================\n",
+ " \n",
+ " \n",
+ " # ==============================================================================================\n",
+ " # 9. plot model curve\n",
+ " # \n",
+ " self.axes[0, 1].plot(x_model_curve, z_model_curve, color='blue', label='non-linear model f(x)=x')\n",
+ " self.axes[0, 1].plot(x_sigma_pts, z_sigma_pts, color='red', marker='o', linestyle='', label='first order taylor of f(x)') # draw point\n",
+ " # ==============================================================================================\n",
+ " \n",
+ "\n",
+ " self.axes[0, 0].legend(loc='upper right')\n",
+ " self.axes[0, 1].legend(loc='upper right')\n",
+ " self.axes[1, 1].legend(loc='upper right')\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "id": "21c382d8",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKQAAAJ8CAYAAADAnnmoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeXhMZ/vA8e9JggQRWq3aKtZYMskEWWxZ7EqprWopoWioanl/Ku3bEqqtt1QUpVq1ltJq0UVXTZBWkRCi1iK1tiKIICHL8/vjJCORbbJOwv25rrlmO+c59zlnMnnOPc+iKaUQQgghhBBCCCGEEKKkWFk6ACGEEEIIIYQQQgjxYJGElBBCCCGEEEIIIYQoUZKQEkIIIYQQQgghhBAlShJSQgghhBBCCCGEEKJESUJKCCGEEEIIIYQQQpQoSUgJIYQQQgghhBBCiBIlCSkhhBBCCCGEKKM0TfPVNE2l3YIsHY8wn6Zp0WnnLboEtpX+GQktovIGa5r2o6ZplzRNS8pQ/lNFUb54MEhCSgghhBBCCGERGS5izb3Nt3TMxU3TtKqapgWl3Z6ydDyWpmla6D2fgah8rNs3m8+Qb/FF+2DQNG0JsA7oCjwC2Fg2IlFWyQdHCCGEEEIIIUqPqsD0tMergM0Wi6R0ctY0rZVSKsKMZf2LO5gHjaZpLYGAtKeXgQXAceB22mu7LRGXKJskISWEEEIIIYQoDfqasczJYo+ijFFKhQKapeMoIcno17D+QK4JKU3THgF63LOeKLwnMjx+USm13mKRiDJP/iiFEEIIIYQQFqeU2mzpGESp9wPQCxisadp/lFJ3cll2GFAOSAV+BHqWQHwPgroZHu+3WBTiviBjSAkhhBBCCCGEKAtWpt0/DDyZx7Ij0u63AeeKK6AHUIUMj2/nuJQQZpCElBBCCCGEEKLMyc8MZXktq2naygyDXjumvdZN07TNmqad0zTttqZpFzRN+0LTNM98xNhE07R3NU3bq2laTNpsZHGapu3TNO0DTdM6aZqmpS3rqGmaAk5nKGJEDoO7O2bYhtmz7GmaVlHTtEmapoVomvZP2n5d0jQtTNO0VzVNc8hj/aB7BwfXNM1L07S1mqb9naG8bzVN627uccqH34ATaY9H5LSQpmlugGva05X52YCmaXU1TZuddo6upO3TeU3TvtE0zV/TNGszy6muado7mqYd1jTtZlpZezVN+z9N0yrmJ6a08lpomjZP07TIe+L6WtO0oZqmFdu1ffpnM+3zmfG4n77nc7myuGIQ9ydJSAkhhBBCCCHEXVaapi1G7x7WB6gNlAdqAgOA3zVNey63AjRNs9E0LRg4DEwBWgPV0YdMqQK4AeOBXwDvYtqPe2PyQk/mzAN8gRro+/UI0A54GzipaVrXfJT5GnqSaAjweIbyegLfa5o2owh3Id2qtPsemqY9msMy/mn3ccAmcwvWNO154BgwFf0cVUPfp1roXQVXAPszJgRzKKcNcAQIBJoBFdPKag3MAfZomlbPzJhsNE17HzgITEJPtGWM60ngU2CXpmmPmbuvQpQGMoaUEEIIIYQQQtw1CxiMPnPYauAvwB7ohz5IthWwWNO035RSR+9dOa3F05dA77SXUtBnygsBLqEnJ5oB3QAjdwckv4Q+sPujwNK010LQZzG716X87JCmaUbgV8Au7aX9wDrgDPAY8DR6Uuph4FtN07qmDZaem7Hox+k8eiukP9GTJN2BQWn7NU3TtO1KqV/zE28eVgMz0a9lh6En2Ew0TSuHniAD+FwplZDWCC1XacmoDzO89A3wHXANaAKMBOoDBiBM0zQ3pVRMNuU0RE9mVkl7KSot5rPoSc3BgAfwOfoYV7nFpKUtlz7gfwzwGfr5uwnUQz/WrdPK3KZpmrtS6laeO5w/6Z9NgImAX9rj58n8WTxTxNsV9zlJSAkhhBBCCCHEXYPREwjPKaWSM7y+LK2lykT0xMtE9FZO95rC3WTUGaCXUioqm+UCNU1rBVwGSEsibL6n9c2Zwg72ntaV61PuJqPeByYrpVIzLLZA07Q30BM95YDVmqY1UUol5lL0YOBnoK9S6maG11dpmraHu4mi/0NPhhUJpdRZTdN+BTqjt4Sad88ivdBbo4GZ3fXSjnlw2tMUYIhS6vN7lpkLfIHe+qs2sBgYmE1xS7mbjFoBjM34OUr7DM0FJpsR2kTuJoI2AyOUUtfvWWaupmlvAa8BzYFp6C2zikz6ZxNA07SnMrz1k1Iquii3JR4s0mVPCCGEEEIIYXE5jJVkifFpjgJj7klGpXsdSEh73O3eNzVNq4ze3QvgDjknowBQSkUopf4uZLx56QW0SHv8BzDpnmRUeixvorcIAn0mtWF5lBsLDLonGZXufe62lumoaVpRN4RYmXZv0DSt5T3v+afdH1dK/W5meRO5m7B7795kFIBSKgG95dXFtJf6a5rWJOMymqa5Ap3Stw8E3Ps5Ukop9CTdntwC0jTNFj3JBPpnclA2yaj0Mv8L7Ex7Oi5tXSFKPUlICSGEEEIIIcRdS5RSd7J7QykVD4SnPa2fzYV/D+ChtMfrcktGlaB+GR7PSUuI5GR2DutlZ7VS6mp2b6QlvLanPa0ANMwzyvz5CkhPzvinv5g2ptQTaU9XYb70fU0G3stpobSE0OL0zQFP5VAOwMJcPkcqt+2k6YbefRNgQU5lZfBp2n0VwCuPZYUoFaTLnhBCCCGEEKI06JvH+yU1Ps0febx/Pu1eA6oC/2R4r32Gx18XYUyF4ZF2r9C72OXmd+AGUBnIazZBc48T6INwF5m0caE+B0YDgzVN+49SKgm9VZcNkIre7TJPaUms9AHGDyil8hqf6yfgzbTH9x4j9wyPt+VRTl7vd8jwuPI9XeWyUzvD42ZAaB7LC2FxkpASQgghhBBCWFxhx0oqQpfzeP92hsf3tpCqk+HxkaIJp9Bqpt3/k9bCK0dKqVRN006iz+T2kKZp5XNpmVOY41QUVqInpKqjd0vcBIxIe2+bUuqcmeXUzPD4uBnLZ1ym5j3v1crw+GRuhSilYjVNu4ae1MyOY4bH75oRV0ZFmgAUorhIlz0hhBBCCCGEuCvL+Er5UCXD4xuFDaSI2KfdZzfWU3Yyxm2f41KFO06FppT6DTiR9tQ/bSwpl7TnK/NRVMZ9NOcY5XZ8KqfdJ5vRxS6v7TmYsX5OyhdiXSFKjLSQEkIIIYQQQtzvSuqH+IyDTlfOcamSFY/eCqeSmctnjDvXFlWlwCpgFvq4UbfSXruO3lrKXBn30ZxjlNvxSU9W2eTRusyc7WVMfDmWwOD3QpQ4aSElhBBCCCGEKIvSu4Tl2hpE0zSNuwONF7eM3cSaldA285I+K9xjmqbl1uIp/VilD0Aea2YrH0tajd5SywZ4Ju21DWkz4pnrYobHjc1YPuMyF+55L+PzXAdy1zTtYXLurgeZx+BqkeNSQpRhkpASQgghhBBClEXX0u6ra5pWLpflnDG/dVBh7czwuHcBy8jYFU4rRCzp9mQoq1Mey7blbgugPbktWBoopc4Cv97z8sp8lnEJSG99ZNQ07ZE8Vuma4fG9xyjj8455lJPXudie4XFeA/4LUSZJQkoIIYQQQghRFh1Ouy9H5hnJ7jWxBGJJ9z1wJe3xEE3TDAUoI2NXraJIpH2Z4fH/pbWCysnUHNYrzRYBu9Nu3yilfi9AGen7agO8nNNCaS3Mxqc9VWTtGpjx+YScEqVp52BSHjFt5e7A8cM1TZNWUuK+IwkpIYQQQgghRFn0Q4bHb2qaVuHeBTRNG40+E1uJUErdBGanPS0PfJNbUkrTNKOmafXuKeMKEJf21JhHAskc3wF/pj1uB8zRNC3LdaCmaa8BT6Y9PQusLeR2S4RSaotSyivtVtBWaQuB9G5+r2ia1v/eBTRNswU+5e5Mel8qpU5kXEYpdQD4Je1pU2CxpmnW95SjAf8DvHILKO2zNCPtaXlgq6ZprXNbR9M0d03T8jsjnxAWI4OaCyGEEEIIIcqizcBfQCP0rmZ7NU37BH0cn8eAp9C7Te1EH8+nVralFL25QHv0Lnv1gP2apm0CQoFLgB3ghN71qzXgx90uY+l+Re+m1RDYoGnaV9ztogiw3dxxkpRSqZqmPQv8lrbt/wB+mqatRR/zqgbwdFrMAEnAcKVUovm7XLYppaI1TZsEfIh+jbxR07Qt6K2UrqGPGzUKaJC2ynnghRyKGwdEoM+4OBrw0DRtNXqS7zFgCOCJ3r2vDrl8LpVSizRNcweGA48DezRN+wHYhn7uNKA6YEDvAtgQOAm8ku+DIIQFSEJKCCGEEEIIUeYopW5rmvYM8DNQDf2ifP49i+0G+gN7SzAupWnagLRYAgBrYEDaLTup2bw2E+iOnkAamHbLqD4QnY+Y9mua1gm9a1pNoGXa7V5XgCFKqVBzy75fKKWWprVeCgZsgT5pt3sdAp5MG3squ3L+0jStB7AFPVnkgp6kzOhP9HO6w4zQ/IETwOtABaBH2i0n53J5T4hSRbrsCSGEEEIIIcokpVQEeiJqIXprqUTgKrALvQVLB6VUjAXiSlJKvQC4Au8DUegtbVLS7iPSYvZWSmVJSiilIoFWwDLgGHCrCGLahd7SZzL6gNkx6K2hYtGP13+BhkqpHwu7rbJKKfUh0AS9S10k+rm6gz4T31ZgJGBUSkXnUc7v6LMszgaOoncHvIZ+3l8BPJRSZ8yMSSmlZqEnIaehn7t/0uJKRE9A/QK8CbRRSvmat7dCWJ6mlLJ0DEIIIYQQQgghhBDiASItpIQQQgghhBBCCCFEiZKElBBCCCGEEEIIIYQoUZKQEkIIIYQQQgghhBAlShJSQgghhBBCCCGEEKJE2Vg6AEupWLGiat68OZcvw99/g8EA5ctbOiqRk5s3b1KpUiVLhyHMJOerbJHzVbbI+TJfRETEZaXUI5aOQ2RWtWpV1ahRI0uHUSBJSRAVBQ8/DPXqWToanXwnFD05pkXnwoULANSqVcvCkdxf5DNatErL8UxNhYMHoXJlKKP/Jk3MrYM9sAmpqlWrEh4ezrffwpNPwscfg6enpaMSOQkNDcXX19fSYQgzyfkqW+R8lS1yvsynadrflo5BZFWjRg3Cw8MtHUaBjR8Py5bBV1/B449bOhr5TigOckyLzowZMwCYPn26hSO5v8hntGiVluP5v//B/v3w88/g7m7paArH3DrYA99lLz1Zf/GiZeMQQgghhBCl39SpoBS8+66lIxFCCHG/uHkT3nsPunUr+8mo/HjgE1I1a+r3aa1JhRBCCCGEyFG9ejBihN5KSn7QFEIIURQ++ghiYuCNNywdScl64BNSjz4KVlZSoRBCCCGEEOZ59VVIToY5cywdiRBCiLIuMVH/f+LnB+3aWTqakvXAjiGVztoaatSQFlKi6CUlJXHu3DkSExMtHUqJc3Bw4MiRI5YOQ5hJzlfZIucrK1tbW+rUqUO5cuUsHYp4QDRsCMOGwYcfwiuvwGOPWToiIYS460G+DikIS9etrl+H5cv1vERZq+IVtg72wCekQB9HSlpIiaJ27tw57O3tcXR0RNM0S4dTouLj47G3t7d0GMJMcr7KFjlfmSmliI2N5dy5c9SvX9/S4YgHyOuvw6ef6mNJzZtn6WiEEOKuB/k6pCAsWbdKTdVnb61fH5ycLBJCgRVFHeyB77IH+jhS0kJKFLXExEQefvhh+ScghBDFSNM0Hn74YfkVWJS4Ro30VlJLlsA//1g6GiGEuEuuQ8qOmBhISro72VpZUhR1MElIIS2kRPGRfwJCCFH85LtWWMrrr+sXEjLjnhCitJH/jaVfaqr+g4a9vX4riwr7OZOEFHoLqUuX9AqFEEIIIYQQ5mjUCJ59VlpJCSGEyL+y3DqqqEhCirsfgH//tWwcQljaypUruVCI/qvR0dGsW7euCCMqWpUrV85zmaCgIObOnQvAtGnT+OWXX3JcdvPmzRw+fDjH9z/88ENWr14NgK+vL+Hh4WbHeu3aNRYvXmx6fuHCBQYMGGD2+kIIIUrGf/+rX1D873+WjkQIIURZcT+0jioKkpBCbyEF0m1PiNKckEpJSSmWcnMzc+ZMOnfunOP7uSWkkpOTCQgIYPjw4QXa9r0JqVq1arFx48YClSWEEKL4pLeS+vBDqUsKIURx8/f3N9WJR48eneuPw6VZTAz06OFIhQqXc13O0dGRy5ezLvPFF1/QrFkz/Pz8ANi/fz+jR4/OtaxFixaxYsWKggddDCQhxd0WUjKwubjfzJs3D2dnZ5ydnZk/fz6gJ42cnZ1Ny8ydO5egoCA2btxIeHg4Q4cOxWg0kpCQgKOjI1OnTsXDwwMPDw/++usvIPM/Arjb8igwMJCdO3fSrl07goODM8USGhqKr68vAwYMoGnTpgwdOhSlFADbtm3Dzc0Ng8HAqFGjuH37NqB/Ac+cOZP27dvzxRdf4OjoyGuvvUabNm1o3bo1+/bto1u3bjRs2JAPP/wQgBs3btCpUydatmyJwWBgy5YteR6nt956CycnJzp37syxY8dMr2fcz8DAQJo3b46Liwv/93//x++//87XX3/NlClTMBqNnDx5El9fX1577TV8fHx4//33M7W2Avj0009p27Ytzs7O7NmzByDLMs7OzkRHRxMYGMjJkycxGo1MmTIl03lLTExk5MiRGAwG3NzcCAkJAfSEYr9+/ejevTuNGzfmlVdeyXPfhRBCFF56KykZS0oIIUrOsmXLaN68ebGVn5ycXCzlpreO0jQwowNHtj755BMWL15sug54++23efHFF3NdZ9SoUSxYsKBgGywmNpYOoDSQFlKiuL38MkRGFm2ZRiOk5ZiyFRERwYoVK9i9ezdKKTw9PfHx8aFatWrZLj9gwAAWLVrE3Llzad26ten1KlWqsGfPHlavXs3LL7/Mt99+m+M2Z8+ezdy5c/nss8+ynTp1//79/Pnnn9SqVYt27drx22+/0bp1a/z9/dm2bRtNmjRh+PDhLFmyhJdffhkAW1tbwsLCAD0pVLduXXbt2sWkSZPw9/fnt99+IzExkRYtWhAQEICtrS2bNm2iSpUqXL58GS8vL3r37p3jgHsRERGsX7+e/fv3k5ycTMuWLWnVqlWmZa5cucKmTZs4evQomqZx7do1qlatSu/evenVq1emrnTXrl1j+/btgJ5syujmzZv8/vvv7Nixg1GjRnHo0KFcj+WhQ4eITPvgREdHm9774IMPAIiKiuLo0aN07dqV48ePAxAZGcn+/fupUKECTk5OvPjii9StWzfH7QghhCi8jK2kXnnlbt1SCCEszRLXIdHR0fTo0YP27dvz+++/U7t2bbZs2YKdnR2RkZEEBARw69YtGjZsyPLly6lWrRq+vr54enoSEhLCtWvX+OSTT+jQoUOucfj6+pquXSpXrsxLL73Et99+i52dHVu2bKFGjRrExMQQEBDAmTNnAJg/fz7t2rVjz549vPzyyyQkJFC+fHlWr16Nk5MTK1eu5LvvviMxMZGbN2/y66+/Ztqv7t270759e/744w9cXV0ZOXIk06dP59KlS6xduxYPDw+uXLnCqFGjOHXqFBUrVuSjjz7CxcWF2NhYBg8ezMWLMTRu7IG1tTKV/emnn7JgwQLu3LmDp6cnixcvxtraOtv9njlzJmFhYZw+fZrevXszbdo0Dh48iKurKwATJ06kevXqTJs2jR9//JG33nqL0NBQKlasiKOjI3v27MHDwyPP8zxv3jwOHTrE8uXLiYqKYvDgwezZs4eKFSvmua65pIUU8OijYGUF589bOhIhik5YWBh9+/alUqVKVK5cmX79+rFz5858lzN48GDT/a5duwoVk4eHB3Xq1MHKygqj0Uh0dDTHjh2jfv36NGnSBIARI0awY8cO0zqDBg3KVEbv3r0BMBgMeHp6Ym9vzyOPPIKtrS3Xrl1DKcVrr72Gi4sLnTt35vz58/ybywBxO3fupG/fvlSsWJEqVaqYys+oSpUq2NraMnr0aL766qtcv4TvjTej9GPp7e3N9evXuXbtWo7L5iYsLIxnn30WgKZNm1KvXj1TQqpTp044ODhga2tL8+bN+fvvvwu0DSGEEPkjY0kJIcRdJ06c4IUXXuDPP/+katWqfPnllwAMHz6c//3vfxw8eBCDwcCMGTNM6yQnJ7Nnzx7mz5+f6XVz3Lx5Ey8vLw4cOIC3tzcff/wxAC+99BKTJk1i7969fPnll6ZubU2bNmXHjh3s37+f//73v7z22mumsnbt2sWqVasyJaPS/fXXX7z00kscPHiQo0ePsm7dOsLCwpg7dy5vv/02ANOnT8fNzY2DBw/y9ttvm4bwmDFjBu3atefTT/fTrVtvzp7Vk2RHjhxhw4YN/Pbbb0RGRmJtbc3atWtz3Ndp06bRunVr1q5dy5w5cwgPD8/UA2b27Nls2LCBkJAQJk6cyIoVK7Cy0lM/rVu3Nl0TzpkzB6PRmOU2ceJEAF5++WX++usvNm3axMiRI1m6dGmRJqNAWkgBYGMDdeqAXLeJ4pLbLwjFJb073L1sbGxITU01PU9MTMy1nIwti9IfZyxDKcWdO3fMiqlChQqmx9bW1iQnJ+cYZ7pKlSplW4aVlVWm8qysrEhOTmbt2rXExMQQERFBuXLlcHR0zNc+ZsfGxoY9e/awbds21q9fz6JFi7L9B5VdvLltR9O0fJ8PyPncQvbHWAghRPFr1AiGD9dbSU2ZArVrWzoiIYSwzHUIQP369TEajQC0atWK6Oho4uLiuHbtGj4+PoD+Q/TAgQNN6/Tr1y/T8vlRvnx5evXqZVr/559/BuCXX37JNM7U9evXiY+PJy4ujhEjRnDixAmUUpnGq+3SpQsPPfRQjvtlMBgAaNGiBZ06dULTNAwGgynmsLAwUwKuY8eOxMbGEhcXx44dO1i69CuSkmDIkJ68+qrec2Xbtm1ERETg7u4OQEJCAo8++qjZ+37x4kUeeeQR0/OKFSvy8ccf4+3tTXBwMA0bNjS99+ijj3L06FEApkyZwpQpU3Is18rKipUrV+Li4sLzzz9Pu3btzI7JXNJCKk2jRpA2PI4Q9wVvb282b97MrVu3uHnzJps2baJDhw7UqFGDS5cuERsby+3btzN1wbO3tyc+Pj5TORs2bDDdt2nTBtDHdoqIiABgy5YtJCUl5bh+Xpo2bUp0dLRpfKo1a9aY/kkVRFxcHI8++ijlypUjJCQkzxZC3t7ebNq0iYSEBOLj4/nmm2+yLHPjxg3i4uJ44oknmD9/vqkbXX73N/1YhoWF4eDggIODA46Ojuzbtw+Affv2cfr06TzL9vb2Nv1qcvz4cc6cOYOTk5PZcQghhCgeb7wBKSnw1luWjkQIISyrID+Spq+TcfmRI0diNBp54okncl23XLlyph9/M66fmprKrl27iIyMJDIykvPnz2Nvb88bb7yBn58fhw4dYsOGDZl+FM7tB+Z7fxDP+GN5+jaz+/E4PbbLlzWqVMk8s55SihEjRphiPHbsWJahP3JjZ2eX5UftqKgoHn744SwTViUmJmJnZwfk3UIK9JZulStXLtTEV7mRhFSaRo3gxAlLRyFE0WnZsiX+/v54eHjg6enJ6NGjcXNzo1y5ckybNg1PT0969epF06ZNTev4+/sTEBBgGtQc4Pbt23h6evL++++bBiofM2YM27dvx8PDg927d5u+tF1cXLCxsaFt27ZZBjXPia2tLStWrGDgwIEYDAasrKwICAgo8H4PHTqU8PBwUzPWjPuXnZYtWzJo0CCMRiP9+/fPtq96fHw8vXr1wsXFBR8fH9O+PfPMM8yZMwc3NzdOnjyZZ2zVqlWjbdu2BAQE8MknnwDQv39/rly5gtFoZMmSJaauiw8//DDt2rXD2dk5yy8X48ePJyUlBYPBwKBBg1i5cmWmf45CCCEso359GD0ali2DfP64L4QQ9z0HBweqVatm6jJmzg/RK1asIDIykq1btxZom127dmXRokWm5+k/LMfFxVE7rSlrbt3jCiLjj8ehoaFUr16dKlWq0KqVN99+u5ZateD777/n6tWrgD7kxsaNG7l06RKgj1+bn2E3mjVrZvpxH+Dvv//mvffeY//+/Xz//ffs3r3b9N7x48dN3fumTJliSoJlvKUPfB4XF8dLL73Ejh07iI2NLZ4Zv5VSD+StZs2aKqN331UKlLp6VYlSKCQkxNIh5Nvhw4ctHUKh1atXT8XExOR7vevXrxdDNKK4yPkqW+R8ZS+771wgXJWCOofcMt+aNGmS5VzdT86eVapCBaVGjSqZ7ZXFOlJpJ8e06AQFBamgoCBLh3HfyeszaunrkNOnT6sWLVqYns+ZM0dNnz5dKaXU/v37laenpzIYDKpPnz7qypUrSimlfHx81N69e5VSSsXExKh69eplW/aIESPUF198kWWdSpUqmZb54osv1IgRI0xlPf3008pgMKhmzZqp559/Ximl1O+//64aN26s2rZtq6ZMmWLa3ooVK9QLL7xg1n5ljCXje7Gxsap3797KYDAoT09PdeDAAZWUpNSvv15W7dp1UW5uburll19Wjz/+uOlaa/369crV1VUZDAbVsmVLtWvXLqVUztdjGfddKaWcnZ3V9evXVWpqqurUqZPasmWLUkqp8PBw5ezsrBISEpRSSrm5uZl9fTdy5Ej1/vvvK6WUOnPmjGrYsKH6999/syxXmDqYpi/74KlVq5bK2Oxs0ybo1w/Cw+GeCbZEKRAaGoqvr6+lw8iXI0eO0KxZM0uHUSiOjo6Eh4dTvXr1fK0XHx+f7Sx7onSS81W2yPnKXnbfuZqmRSilWuewirAQJycndezYMUuHUaxefhkWLYIjR6Bx4+LdVlmsI5V2ckyLTvrA1NOnT7dwJPeXvD6j98N1SEkqibrV+fNw8SI0bw5FPC44AMHBwdjb25sGbc/O/v37mTdvHmvWrCnSbRemDiZd9tI0aqTfyzhSQtwVHR2d72SUEEII8aALDIQKFSCfk0QJIYS4DyUnw7//QrVqxZOMAhg3blyeQ3hcvnyZN998s3gCKCBJSKVp0EC/l4SUEEIIIYQojMcegwkTYN06yDC5kxBCiAfQP/9AairUqlV827C1teXZZ5/NdZkuXbrg6OhYfEEUgCSk0lSqpH9AJCElhBBCCCEK65VXoHJlkJ5KQgjx4EpKgkuX4KGHIG1yO5GBJKQyaNRIElJCCCGEEKLwHn4YJk2CjRshbVInIYQQD5iSaB1VlklCKgNJSAkhhBBCiKIyaRJUrQrTplk6EiGEECXtzh29dVT16mBra+loSidJSGXQqJGewbxxw9KRCGEZK1euJOPsk/kVHR3NunXrijCiklXQ+P39/dm4caNZy3799dfMnj0739soSW3bts1zmfnz53Pr1q0SiEYIIcquqlVhyhT45hvYtcvS0QghRMlZsGABzZo1Y+jQofmu/xbHNUV+6uvZCQ0N5ffff8/XOhcv6vc1a0JQUBBz584t8PZzcvv2bTp37ozRaGTDhg2Z3jt69ChGoxE3NzdOnjxJQkICPj4+pKSk5FheVFQU/v7+RR5nTiQhlUH6THsnT1o2DvGAWrsWHB3Bykq/X7u2xEMoDQmp3L4gi1tJJNR69+5NYGBgsW6jsMz5ZysJKSGEMM9LL0GNGvDqq6CUpaMRQohsFMN1yOLFi9m6dStr167Nsf6bnJyc7bqFrZMXxfXEvbHlNyGVmAgxMfDII/qsq4Xdfk72799PUlISkZGRDBo0KNN7mzdvpk+fPuzfv5+GDRuyfPly+vXrh7W1dY7lGQwGzp07x5kzZ/IfdAFIQiqD9ISUdNsTJW7tWhg7Fv7+W6+t/v23/ryQ/wzmzZuHs7Mzzs7OzJ8/H9C/4J2dnU3LzJ07l6CgIDZu3Eh4eDhDhw7FaDSSkJCAo6MjU6dOxcPDAw8PD/5K++O49xeGypUrAxAYGMjOnTtp164dwcHBmWIJDQ3F29ubvn370rx5cwICAkhNTTWtP23aNDw9Pdm1a1eOcTdt2pQRI0bg4uLCgAEDTAmRmTNn4u7ujrOzM2PHjkWl1fj37t2Li4sLbdq0YcqUKab9jo6OpkOHDrRs2ZKWLVua/rmkx280GgkODiYlJYUpU6bg7u6Oi4sLS5cuBUApxYQJE2jevDk9e/bk0qVL2R7/BQsW0Lx5c1xcXHjmmWcAPek3YcIEAE6ePImXlxfu7u5MmzbNdBxDQ0Px8fHh6aefpkmTJgQGBrJ27Vo8PDwwGAycTMuaf/PNN3h6euLm5kbnzp35999/s8SwcuVK+vTpQ/fu3XFycmJGhjnI04+zp6en6ThnPJ+hoaH4+voyYMAAmjZtytChQ1FKsWDBAi5cuICfnx9+fn6kpKTg7++Ps7MzBoMhy7kXQogHWaVK8PrrsH07/PSTpaMRQoh7FMN1SEBAAKdOnaJ3794EBwdnqv/6+/szefJk/Pz8mDp1Ktu3b8doNJpa8sTHx2epk2eklDLV6w0Gg6lVUGhoKH5+fgwZMgSDwZBrfT0iIgIfHx9atWpFt27d+OeffwDw9fXltddew8fHh/fff9+0fHR0NB9++CHBwcEYjUZ27tyZbT08NTWVxo0bExMTw/nzAKl07NiIy5cvZ9qHyMhIvLy8cHFxoW/fvly9ejXX7QNcuXKFp556ChcXF7y8vDh48CCXLl1i2LBhREZGYjQaTdcIAFu3bmX+/PksW7YMPz+/tFO9lj59+gCwadMmOnfujFKKixcv0qRJE9NxePLJJ1m/fn2Bzn2+KaXuixsQDUQBkUB4XsvXrFlT3SsuTilQ6p13srwlLCwkJMTSIeTb4cOHzV+4Xj39w3fvrV69Am8/PDxcOTs7qxs3bqj4+HjVvHlztW/fPnX69GnVokUL03Jz5sxR06dPV0op5ePjo/bu3ZshrHpq1qxZSimlVq1apXr27KmUUmrEiBHqiy++MC1XqVIlpZR+nnr27KmuX7+eJZ6QkBBVoUIFdfLkSZWcnKw6d+5sKgNQGzZsyDNuQIWFhSmllBo5cqSaM2eOUkqp2NhY03aGDRumvv76a6WUUi1atFC//fabUkqpqVOnmvb75s2bKiEhQSml1PHjx1WrVq0yxZ9u6dKl6s0331RKKZWYmKhatWqlTp06pb788kvVuXNnlZycrM6fP68cHBwyHY90NWvWVImJiUoppa5evaqUUmrFihXqhRdeUEop1bNnT7Vu3TqllFJLlizJdBwdHBzUhQsXVGJioqpVq5aaNm2aUkqp+fPnq5deekkppdSVK1dUamqqUkqpjz/+WE2ePDlLDCtWrFCPPfaYunz5srp165Zq0aKF2rt3b6bjfOHCBdNxvvd8VqlSRZ09e1alpKQoLy8vtXPnTqWU/tmIiYkxnbPOnTubtpm+r6J4ZPf3JbL/zjWnPiC3kq+DNWnSJOsJvM/dvq2Uo6NSLVsqlZJStGWXxTpSaSfHtOgEBQWpoKAgS4dx38nrM2rp6xC92Lt1xYz13xEjRqiePXuq5ORkpZRSvXr1MtXv4+PjVVJSUpY6eUYbN2401cP/+ecfVbduXXXhwgUVEhKiKlasqE6dOqWUUjnW1+/cuaPatGmjLl26pJRSav369WrYsGFKKf1aaNy4cdlud/r06aZrD6VyrocHBQWp//0vWO3dq9TatT+qfv36ZVnfYDCo0NBQpZRSb7zxhqlun9v2J0yYYPpb2rZtm3J1dVVKZb1+ySnm27dvqxo1amR6f+jQoWrhwoWZrkmUUiosLEz16tUr2zKzU5g62P3WQspPKWVUSrUuyMpVqkDt2vDnn0UdlhB5yKlJZCGaSoaFhdG3b18qVapE5cqV6devHzt37sx3OYMHDzbd7yrkABgeHh40aNAAa2trBg8eTFhYGADW1tb0798/z7jr1q1Lu3btABg2bJhp/ZCQEDw9PTEYDPz666/8+eefXLt2jfj4eNN4SEOGDDHFkZSUxJgxYzAYDAwcOJDDhw9nG+9PP/3E6tWrMRqNeHp6Ehsby4kTJ9ixYweDBw/G2tqaWrVq0bFjx2zXd3FxYejQoXz66afY2NhkeX/Xrl0MHDgwS3wA7u7u1KxZkwoVKtCwYUO6du0K6M1oo6OjATh37hzdunXDYDAwZ84c/szhy6tLly48/PDD2NnZ0a9fP8LCwsz+fHh4eFCnTh2srKwwGo2mbWfUoEEDTp06xYsvvsgPP/xAlSpVso1DCHFfK1Qd7H5XvjzMnAn79sGXX1o6GiGEyKAYrkPyMnDgQFO3sXbt2jF58mQWLFjAtWvXsq0zZxQWFmaqh9eoUQMfHx/27t0L6PXW+vXrA+RYXz927BiHDh2iS5cuGI1GZs2axXm9ORNAlm5vOcmpHj5q1ChWrVqNtTVs2bKckSNHZlovLi6Oa9eu4ePjA8CIESPYsWNHntsPCwvj2WefBaBjx47ExsYSFxdnVqwAly9fpmrVqpleW7hwIe+88w4VKlQwXfMBPProo4UaxiU/7reEVKG1bAkREZaOQjxwHn88f6+bQU9MZ2VjY2PqKgeQmJiYazmapmV5nLEMpRR37twxK6aMZWV8bmtra/qnlFPcOa2fmJjI+PHj2bhxI1FRUYwZM4bExMRcywkODqZGjRocOHCA8PDwHONXSrFw4UIiIyOJjIzk9OnTpsTQvbFk57vvvuOFF14gIiKCVq1amd0XHKBChs7mVlZWpudWVlamcl588UUmTJhAVFQUS5cuzfFcZnfccjs+OcVhbW2d7T5Uq1aNAwcO4OvrywcffMDo0aPNKlsIIR4kQ4ZAixZ69718/DsQQojiVQzXIXmpVKmS6XFgYCDLli0jISEBLy8vjh49muu6udVhM5YL2dfXlVK0aNHCVL+Piopiy5YtOZaRk5zq4VWr1sXBoQYnT/7Knj276dGjh1nl5bX97PbbnOuRdHZ2dlmuFc6fP4+VlZWpu2G6xMRE7OzszC67MHJPP5YtCvhJ0zQFLFVKfXTvApqmjQXGAtSsWZPQ0NAshTz0kCNHj9bj++93YmeXmuV9YRk3btzI9nyVZg4ODsTHx5u1rM0bb2D74otoCQmm15SdHYlvvEGymWXcq1WrVowbN44XXngBpRRffvklH330ERUrVuTff/8lOjqaypUrs2XLFjp37kx8fDx2dnb8+++/priVUqxevZrJkyezfv163N3diY+Pp2bNmuzatYsePXrw7bffkpSURHx8PFZWVly7do2UlJQs+37r1i327NlDVFQUjz/+OGvXrmXkyJGm5dLvc4r7xo0bnDlzhl9++QVPT09Wr16Nu7s7MTExKKWoUKECFy9e5PPPP6dPnz7Y2NhQqVIltm3bhoeHB6tXryY1NZX4+HhiYmKoXbs2N2/e5NNPPzXFmx5/eiw+Pj4sXLgQd3d3ypUrx4kTJ6hVqxbu7u4sX76cvn37EhMTQ0hICH379s20z6mpqZw9e5bWrVvj6urK2rVruXjxIomJidy5c4f4+Hhat27Np59+Sv/+/Vm5cqXpONy6dYvk5GRTeSkpKdy8eTPLe1evXqVq1arEx8ezbNmybI97YmIiP/30E3///Td2dnZ89dVXfPDBB1hZWZmOc3Jysuk4Zzwf98Zx584dEhMTiY+Pp1KlSly8eJEKFSoQGxtLuXLl6Nq1K4899hjjxo0z+7Mv8i+78yz0z3pZ+z9xH8lXHeyRRx55YM/VM888zBtvGHj11WP07HmxSMosi3Wk0k6OadGT41m08vqMWvo6BPTriBs3blChQoVM9d+kpCQSEhJM8Z06dYoGDRowfvx4du7cyf79+6ldu3amOnlG6fXwfv36cfXqVbZv38706dM5fvx4pnprTvX1WrVq8e+//5quKZKSkjh27BjOzs6Z6tz3Kl++PJcvXza9l109/Pr1eM6etaNfv1G8+OJQnnnmGdOYt7dv36ZcuXJYWVnh4ODAjz/+SNu2bVm2bBlt2rQhPj4+1+17eXmxfPlypk6dys6dO3nooYfQNC1LfT2j9G3Gx8djY2NDcnIyMTEx2NrakpyczPDhw1m2bBmfffYZ77zzDhMnTgTgwIEDODk5mf0ZKkwd7H5KSLVTSl3QNO1R4GdN044qpXZkXCCtgvQRQK1atZSvr2+WQq5fh1WrwMHBGzNmPhclJH1w5bLkyJEj2Nvbm7fwc8+BrS38979689jHH0d76y3shg4t8PY7dOjAqFGj6NSpEwBjx46lffv2AEyfPp3OnTtTv359WrRoQYUKFbC3t2f06NFMnjwZOzs7du3aZcq6d+7cmdTUVD777DPs7e2ZMGECffr0oVOnTnTq1IlKlSphb29PmzZtqFChgmnbkyZNMsVTsWJF2rRpw6xZs4iKisLb25shQ4ZgZaU31Ew/VjnFHR0dTbNmzdi4cSOTJ0+mcePGvPzyy1SsWJGxY8fStm1bHB0d8fT0NO3PihUrGDNmDJUqVcLX15dq1aphb2/Pyy+/TP/+/fn666/x8/PLEn/79u3x9/fnpZde4p9//sHHxwelFI888gibN29myJAh7Nq1i7Zt29KkSRN8fHyws7PLdL6TkpIICAggLi4OpRSTJ0+mbt262NraUr58eezt7Vm0aBHDhg1j8eLF9OzZEwcHB+zt7alYsSI2Njam8qytrU0xZnxv5syZ+Pv7U7t2bby8vDh37lyWz5ytrS0dOnRg/Pjx/PXXXwwZMsTURDj9OKempmb6fKSfj3vjKF++PLa2ttjb2xMQEMDAgQOpWbMm8+fPZ+TIkaZfVv73v/+Z/9kX+RYfHy/HNxu2tra4ublZOowHVb7qYE5OTtnWwR4EPj7w3Xewfr0Tb77phK1t4cssi3Wk0k6OadHZvn07gBzPIpbXZ9TS1yGgt96pXLky9vb2meq/5cqVy1RvXrZsGSEhIVhbW9O8eXP69etn6h2QXifPeE0xZMgQIiMjad++PZqmMWfOHBo1asS5c+cy1Vtzqq8//PDDfPXVV0ycOJG4uDiSk5MJCAigTZs2merc9xowYAADBgzghx9+YOHChdnWw1NT7UlIgMGDn2LmzOd4/vnnTWVVqFDBdI2yZs0aAgICuHXrFg0aNGDFihXY29vnuv23336bkSNH0q5dOypWrMiaNWuyra9nlHGbAN26dePAgQN07tyZmTNn4uvrS7du3Wjbti3u7u7069ePZs2a8ccff/DUU0+Z/RkqTB1MM7fbRlmiaVoQcEMpNTenZWrVqqWy6xd5/jzUqQMLF0LaRACiFCiLFYMjR47QrFkzS4dRKI6OjoSHh1O9evV8rZfdBXNoaChz587l22+/LVAs0dHR9OrVi0OHDpm9zo0bN0wzxs2ePZuLFy9mmbHCkm7duoWdnR2aprF+/Xo+++yzTE2Gi8LKlSsJDw9n0aJFOS4jCY6yRc5X9rL7ztU0LULGNCpZ5tTBnJyc1LFjx0ouqFImJAQ6doT33oPJkwtfXlmsI5V2ckyLTvrsvtOnT7dwJPcXcxJSZf06pCQVRd1KKTh8GFJTISEhnP/8Z1KBxu8tTvv372fevHmsWbMmx2Vu376Nj48PYWFheY7nla4wdbD7ooWUpmmVACulVHza467AzIKUVasWPPqoPuikEKJs++6773jnnXdITk6mXr16pm5xpUVERAQTJkxAKUXVqlVZvny5pUMSQoh8Kco62IPCzw+6dIG339YbJjg4WDoiIYQQhXXlCiQkwNdfz2bVqiWsXbvW0iFl4ebmhp+fHykpKabxe+915swZZs+ebXYyqrDui4QUUAPYlNa9yAZYp5T6oSAFaZoMbC5EuuxmVCsoX1/fQv3a6OjomK/WUaDPUmHuTBmW0KFDBw4cOFCs2/D398ff379YtyGEeKAVWR3sQTJ7NrRqBXPmwKxZlo5GCCFEYaSm6j2t7OxgxoxAZs4MtHRIORo1alSu7zdu3JjGjRuXUDT3SUJKKXUKcC2q8lq2hJ9/hsREiqRvvxBCCCHE/aio62APipYtYfBgmDcPxo/XW+gLIYQom2Ji4M4daNxYb+AizGdl6QBKo5YtISUFoqIsHYkQQgghhLgfzZoFyckQFGTpSIQQQhRUcjJcvAhVqkgX7IKQhFQ2WrXS72UcKSGEEEIIURwaNIBx4+CTT+DIEUtHI4QQoiD++UdPStWubelIyiZJSGWjXj2oVk0SUkIIIYQQovi8/jpUqgSvvmrpSIQQQuTXnTtw6RI89JD+XS7yTxJS2Ugf2FwSUuJBs3LlSi5cuFDg9aOjo1m3bl0RRlSyChq/v78/GzduNGvZr7/+mtmzZ+d7GyWpbdu2eS4zf/58bt26VQLRCCHE/euRR2DqVNiyBX77zdLRCCFE0VmwYAHNmjVj6NCh+a7/Fsc1RX7q69kJDQ3l999/z/TahQuglHmto4KCgpg7d26Bt5+T27dv07lzZ4xGIxs2bMj03tGjRzEajbi5uXHy5EkSEhLw8fEhJSUlx/KioqJKdEIkSUjloGVLOHhQz3oKUSLWrgVHR7Cy0u8tMFVoaUhI5fYFWdxKIqHWu3dvAgNL78wbQJZ/ttmRhJQQQhSNl1+GmjVhyhT9wkYIIUpcMVyHLF68mK1bt7J27doc67/JycnZrlvYOnlRXE/cG9u9CamEBLh8Wf9hoUKFQm8uz+3nZP/+/SQlJREZGZlldvHNmzfTp08f9u/fT8OGDVm+fDn9+vXD2to6x/IMBgPnzp3jzJkzhYrfXJKQykGrVnoySgY2FyVi7VoYOxb+/luvjf79t/68kP8M5s2bh7OzM87OzsyfPx/Qv+CdnZ1Ny8ydO5egoCA2btxIeHg4Q4cOxWg0kpCQgKOjI1OnTsXDwwMPDw/++usvIOsvDJUrVwYgMDCQnTt30q5dO4KDgzPFEhoaire3N3379qV58+YEBASQmppqWn/atGl4enqya9euHONu2rQpI0aMwMXFhQEDBpgSIjNnzsTd3R1nZ2fGjh2LSqvR7927FxcXF9q0acOUKVNM+x0dHU2HDh1o2bIlLVu2NP1zSY/faDQSHBxMSkoKU6ZMwd3dHRcXF5YuXQqAUooJEybQvHlzevbsyaVLl7I9/gsWLKB58+a4uLjwzDPPAHrSb8KECQCcPHkSLy8v3N3dmTZtmuk4hoaG4uPjw9NPP02TJk0IDAxk7dq1eHh4YDAYOHnyJADffPMNnp6euLm50blzZ/79998sMaxcuZI+ffrQvXt3nJycmDFjRpbPh6enp+k4ZzyfoaGh+Pr6MmDAAJo2bcrQoUNRSrFgwQIuXLiAn58ffn5+pKSk4O/vj7OzMwaDIcu5F0IIkbNKlWDGDNi1CzZvtnQ0QogHTjFchwQEBHDq1Cl69+5NcHBwpvqvv78/kydPxs/Pj6lTp7J9+3aMRqOpJU98fHyWOnlGSilTvd5gMJhaBYWGhuLn58eQIUMwGAy51tcjIiLw8fGhVatWdOvWjX/++QcAX19fXnvtNXx8fHj//fdNy0dHR/Phhx8SHByM0Whk586drF79DSNHetK79916eGpqKo0bNyYmJgaA1NRUGjVqxOXLlzPtQ2RkJF5eXri4uNC3b1+uXr2a6/YBrly5wlNPPYWLiwteXl4cPHiQS5cuMWzYMCIjIzEajaZrBICtW7cyf/58li1bhp+fX9qpXkufPn0A2LRpE507d0YpxcWLF2nSpInpODz55JOsX7++IKc+/5RSD+StZs2aKjfnzikFSs2Zk+tiooSEhIRYOoR8O3z4sPkL16unf+DuvdWrV+Dth4eHK2dnZ3Xjxg0VHx+vmjdvrvbt26dOnz6tWrRoYVpuzpw5avr06UoppXx8fNTevXszhFVPzZo1Syml1KpVq1TPnj2VUkqNGDFCffHFF6blKlWqpJTSz1PPnj3V9evXs8QTEhKiKlSooE6ePKmSk5NV586dTWUAasOGDXnGDaiwsDCllFIjR45Uc9L+QGNjY03bGTZsmPr666+VUkq1aNFC/fbbb0oppaZOnWra75s3b6qEhASllFLHjx9XrVq1yhR/uqVLl6o333xTKaVUYmKiatWqlTp16pT68ssvVefOnVVycrI6f/68cnBwyHQ80tWsWVMlJiYqpZS6evWqUkqpFStWqBdeeEEppVTPnj3VunXrlFJKLVmyJNNxdHBwUBcuXFCJiYmqVq1aatq0aUoppebPn69eeuklpZRSV65cUampqUoppT7++GM1efLkLDGsWLFCPfbYY+ry5cvq1q1bqkWLFmrv3r2ZjvOFCxdMx/ne81mlShV19uxZlZKSory8vNTOnTuVUvpnIyYmxnTOOnfubNpm+r6K4pHd35fI/jsXCFeloM4ht8y3Jk2aZDlXD7qkJKWaNlXKyUl/nB9lsY5U2skxLTpBQUEqKCjI0mHcd/L6jFr6OkQv9m5dMWP9d8SIEapnz54qOTlZKaVUr169TPX7+Ph4lZSUlKVOntHGjRtN9fB//vlH1a1bV124cEGFhISoihUrqlOnTimlVI719Tt37qg2bdqoS5cuKaWUWr9+vRo2bJhSSr8WGjduXLbbnT59uuna4/p1pbZtu6LOn89aDw8KClLBwcFKKaV+/PFH1a9fvyzrGwwGFRoaqpRS6o033jDV7XPb/oQJE0x/S9u2bVOurq5KqazXLznFfPv2bVWjRo1M7w8dOlQtXLgw0zWJUkqFhYWpXr16ZVtmdgpTB5MWUjmoXRuaN4eff7Z0JOKBkFOTyEI0lQwLC6Nv375UqlSJypUr069fP3bu3JnvcgYPHmy637VrV4HjAfDw8KBBgwZYW1szePBgwsLCALC2tqZ///55xl23bl3atWsHwLBhw0zrh4SE4OnpicFg4Ndff+XPP//k2rVrxMfHm8ZDGjJkiCmOpKQkxowZg8FgYODAgRw+fDjbeH/66SdWr16N0WjE09OT2NhYTpw4wY4dOxg8eDDW1tbUqlWLjh07Zru+i4sLQ4cO5dNPP8XGxibL+7t27WLgwIFZ4gNwd3enZs2aVKhQgYYNG9K1a1dAb0YbHR0NwLlz5+jWrRsGg4E5c+bw559/ZhtHly5dePjhh7Gzs6Nfv36EhYWZ/fnw8PCgTp06WFlZYTQaTdvOqEGDBpw6dYoXX3yRH374gSpVqmQbhxBCiOzZ2MDs2XDsGHz8saWjEUI8UIrhOiQvAwcONHUba9euHZMnT2bBggVcu3Yt2zpzRmFhYaZ6eI0aNfDx8WHv3r2AXm+tX78+QI719WPHjnHo0CG6dOmC0Whk1qxZnD9/3lT+vd3e7qUUnDsHV66cY8SIrPXwUaNGsXr1agCWL1/OyJEjM60fFxfHtWvX8PHxAWDEiBHs2LEjz+2HhYXx7LPPAtCxY0diY2OJi4vLNdaMLl++TNWqVTO9tnDhQt555x0qVKhguuYDePTRRws1jEt+SEIqF126wI4dkJho6UjEfe/xx/P3uhn0xHRWNjY2pq5yAIl5fMA1TcvyOGMZSinumDnYWsayMj63tbU1/VPKKe6c1k9MTGT8+PFs3LiRqKgoxowZQ2JiYq7lBAcHU6NGDQ4cOEB4eHiO8SulWLhwIZGRkURGRnL69GlTYujeWLLz3Xff8cILLxAREUGrVq3M7gsOUCFDZ3QrKyvTcysrK1M5L774IhMmTCAqKoqlS5fmeC6zO265HZ+c4rC2ts52H6pVq8aBAwfw9fXlgw8+YPTo0WaVLYQQ4q7evcHbG6ZPh+vXLR2NEOKBUQzXIXmplGFKusDAQJYtW0ZCQgJeXl4cPXo013Vzq8NWumequ+zq60opWrRoYarfR0VFsWXLlhzLuNfVq3DzJgQHv8iLL2ath9etW5caNWrw66+/snv3bnr06JFreXntQ8a472XO9Ug6Ozu7LNcK58+fx8rKytTdMF1iYiJ2dnZml10YkpDKRZcuejJKZj0Rxe6tt6BixcyvVayov15A3t7ebN68mVu3bnHz5k02bdpEhw4dqFGjBpcuXSI2Npbbt2/z7bffmtaxt7cnPj4+Uznp/bI3bNhAmzZtAHB0dCQiIgKALVu2kJSUlOP6Ge3Zs4fTp0+TmprKhg0baN++vdlxA5w5c8bUSuuzzz6jffv2pi/W6tWrc+PGDdPYVtWqVcPe3p4//vgDIFM/6Li4OGrWrImVlRVr1qwxDXx4b/zdunVjyZIlpv07fvw4N2/exNvbm/Xr15OSksLFixcJCQnJsh+pqamcPXsWPz8/3n33Xa5du8aNGzcyLePl5cWXX36ZJT5zxcXFUTttWo9Vq1bluNzPP//MlStXSEhIYPPmzbRr1y7X42yOjMfq8uXLpKam0r9/f9588032yRSlQgiRb5oG770HMTHwzjuWjkYI8cAohuuQ/Dh58iQGg4GpU6fSunVrjh49mus1hbe3Nxs2bCAlJYWYmBh27NiBh4dHtstlV193cnIiJibGdE2RlJTEkSNH8ozT3t6e69fjOXdOPzy3buVcDx89ejTDhg3j6aefzjKAuIODA9WqVTP1TFizZo2ptVRuvL29WZs2rldoaCjVq1fPV6+EatWqkZKSYrp2Sk5OZuTIkaxbt45mzZoxb94807LHjx/PNOZwcZKEVC68vfUm1NJtTxS7oUPho4+gXj29Rlqvnv586NACF9myZUv8/f3x8PDA09OT0aNH4+bmRrly5UwDiPfq1YumTZua1vH39ycgIMA0qDnoU4l6enry/vvvmwYVHDNmDNu3b8fDw4Pdu3ebMvkuLi7Y2NjQtm3bbAe2btOmDYGBgTg7O1O/fn369u1rdtwAzZo1Y9WqVbi4uHDlyhXGjRtH1apVTd3vnnrqKdzd3U1lffLJJ4wdO5Y2bdqglMLBwQGA8ePHs2rVKry8vDh+/HiW+F1dXQkODmb06NE0b96cli1b4uzszPPPP09ycjJ9+/alcePGGAwGxo0bl+0/kZSUFIYNG4bBYMDNzY1JkyZlaSY7f/585s2bh4eHBxcvXjTFZ66goCAGDhxIhw4dqF69eo7LtW/fnmeffRaj0Uj//v1p3bp1puPcsWPHTMfZHGPHjqVHjx74+flx/vx5fH19MRqN+Pv7845cSQkhRIG0bg3DhkFwcLH2lhFCiLuK4TokP+bPn4+zszOurq7Y2dnRo0ePLHXyjPr27YuLiwuurq507NiRd999l8ceeyxLuTnV18uXL8/GjRuZOnUqrq6uGI1Gdu/enWecTz75JBs3bmLAACNnzuzMtR7eu3dvbty4kaW7XrpVq1YxZcoUXFxciIyMZNq0aXluPygoiPDwcFxcXAgMDMz1x+icdO3a1TTkydtvv02HDh3o0KED8+bNY9myZabEXEhICD179sx3+QWhmdtt435Tq1YtZU6/SG9vvUleWmMQYSHps32VJUeOHKFZs2aWDqNQHB0dCQ8PzzXZkZ34+Hjs7e0zvRYaGsrcuXMztcjKj+joaHr16sWhQ4fMXufGjRumGeNmz57NxYsXs8xYYUm3bt3Czs4OTdNYv349n332WaYmw0Vh5cqVhIeHs2jRohyXye58idJLzlf2svvO1TQtQinV2kIhiRw4OTmpY8eOWTqMUuvMGXBygv794dNP816+LNaRSjs5pkUnfXbf6dOnWziS+0ten9H74TqkJJlTt0pKgkOHoHJlaNw49/LCw8OZNGlSgcbvLU779+9n3rx5rFmzJsdlbt++jY+PD2FhYXmO55WuMHUwaSGVhy5dYP9+uGemRiFEGfDdd99hNBpxdnZm586dvP7665YOKZOIiAiMRiMuLi4sXryY9957z9IhCSGEsLDHH4dJk/QZ19PG6RVCCGFhFy9CSgrUqZP7crNnz6Z///6lsseAm5sbfn5+puFKsnPmzBlmz55tdjKqsEpmK2VYly4wbRr8+is8/bSloxGiZGU3o1pB+fr6FurXRkdHx3y1jgJ9loq8ZsqwpA4dOnDgwIFi3Ya/vz/+/v7Fug0hhBBFKzAQPvkE/vMf2L5d70UjhBDCMhIS4NIleOQRyGus78DAQAIDA0smsAIYNWpUru83btyYxnk1AStC0kIqD61bg4ODjCMlhBBCCCFKRpUqMGMG7NwJmzdbOhohhHiwnTsHVlZQq5alI7n/SEIqDzY24OenJ6Qe0OG2hBBCCCFECRs9Gpo3h1degTt3LB2NEEI8mK5fh7g4qFkTypWzdDT3H0lImaFLF/j7b/jrL0tHIoQQQgghHgQ2NjBnjl7/XLzY0tEIIcSDRym9dVT58lCjhqWjuT9JQsoMXbro99JtTwghhBBClJQePaBbNwgKgpgYS0cjhBAPlsuX4dYtfSBzK8mcFAs5rGZo1Ajq1YMff7R0JEIUr5UrV3LhwoUCrx8dHc26deuKMKKSVdD4/f392bhxo1nLfv3118yePTvf2yhJbdu2zXOZ+fPnc+vWrRKIRgghHlyaBvPmwY0b+iQ7QghRVixYsIBmzZoxdOjQfNd/i+OaIj/1ddBn1Dt/HipXhmrVIDQ0lN9//73A2w8KCmLu3LkFXj8nt2/fpnPnzhiNRjZs2JDpvaNHj2I0GnFzc+PkyZMkJCTg4+OT6yx7UVFRJTohkiSkzKBp8NRT8MMPcPWqpaMR9621a8HRUU+/Ozrqz0tYaUhI5fYFWdxKIqHWu3fvUj3zBmDWP1tJSAkhRMlo3hzGj4ePPoKDBy0djRDivlQM1yGLFy9m69atrF27Nsf6b3JycrbrFrZOXhTXE2fPJpOcDHXr6vmAwiak8iunY3Ov/fv3k5SURGRkZJbZxTdv3kyfPn3Yv38/DRs2ZPny5fTr1w9ra+scyzMYDJw7d44zZ84UKn5zSULKTM8+qw8o+fnnlo5E3JfWroWxY/XBypTS78eOLfQ/g3nz5uHs7IyzszPz588H9C94Z2dn0zJz584lKCiIjRs3Eh4eztChQzEajSQkJODo6MjUqVPx8PDAw8ODv9IGUrv3F4bKlSsD+jSnO3fupF27dgQHB2eKJTQ0FG9vb/r27Uvz5s0JCAggNTXVtP60adPw9PRk165dOcbdtGlTRowYgYuLCwMGDDAlRGbOnIm7uzvOzs6MHTsWlTYDwd69e3FxcaFNmzZMmTLFtN/R0dF06NCBli1b0rJlS9M/l/T4jUYjwcHBpKSkMGXKFNzd3XFxcWHp0qUAKKWYMGECzZs3p2fPnly6dCnb479gwQKaN2+Oi4sLzzzzDKAn/SZMmADAyZMn8fLywt3dnWnTppmOY2hoKD4+Pjz99NM0adKEwMBA1q5di4eHBwaDgZMnTwLwzTff4OnpiZubG507d+bff//NEsPKlSvp06cP3bt3x8nJiRkzZmT5fHh6epqOc8bzGRoaiq+vLwMGDKBp06YMHToUpRQLFizgwoUL+Pn54efnR0pKCv7+/jg7O2MwGLKceyGEEIUTFARVq8KkSTLJjhCiiBXDdUhAQACnTp2id+/eBAcHZ6r/+vv7M3nyZPz8/Jg6dSrbt2/HaDSaWvLEx8dnqZNnpJQy1esNBoOpVVBoaCh+fn4MGTIEg8GQa309IiICHx8fWrVqRbdu3fjnn38A8PX15bXXXqNDBx/ef/99qleHSpX0a4cPP/yQ4OBgjEYjO3fuzLYenpqaSuPGjYlJ62OdmppKo0aNuHz5cqZ9iIyMxMvLCxcXF/r27cvVtFYv6dv38dG3n9GVK1d46qmncHFxwcvLi4MHD3Lp0iWGDRtGZGQkRqPRdI0AsHXrVubPn8+yZcvw8/NLO9Vr6dOnDwCbNm2ic+fOKKW4ePEiTZo0MR2HJ598kvXr1xf4/OeLUuqBvNWsWVPlR2qqUs2aKdWuXb5WE0UkJCTE0iHk2+HDh81fuF49pfR/AZlv9eoVePvh4eHK2dlZ3bhxQ8XHx6vmzZurffv2qdOnT6sWLVqYlpszZ46aPn26UkopHx8ftXfv3gxh1VOzZs1SSim1atUq1bNnT6WUUiNGjFBffPGFablKlSoppfTz1LNnT3X9+vUs8YSEhKgKFSqokydPquTkZNW5c2dTGYDasGFDnnEDKiwsTCml1MiRI9WcOXOUUkrFxsaatjNs2DD19ddfK6WUatGihfrtt9+UUkpNnTrVtN83b95UCQkJSimljh8/rlq1apUp/nRLly5Vb775plJKqcTERNWqVSt16tQp9eWXX6rOnTur5ORkdf78eeXg4JDpeKSrWbOmSkxMVEopdfXqVaWUUitWrFAvvPCCUkqpnj17qnXr1imllFqyZEmm4+jg4KAuXLigEhMTVa1atdS0adOUUkrNnz9fvfTSS0oppa5cuaJSU1OVUkp9/PHHavLkyVliWLFihXrsscfU5cuX1a1bt1SLFi3U3r17Mx3nCxcumI7zveezSpUq6uzZsyolJUV5eXmpnTt3KqX0z0ZMTIzpnHXu3Nm0zfR9FcUju78vkf13LhCuSkGdQ26Zb02aNMlyrkTeFi7UqwabNmV+vSzWkUo7OaZFJygoSAUFBVk6jPtOXp9RS1+H6MXerStmrP+OGDFC9ezZUyUnJyullOrVq5epfh8fH6+SkpKy1Mkz2rhxo6ke/s8//6i6deuqCxcuqJCQEFWxYkV16tQppZTKsb5+584d1aZNG3Xp0iWllFLr169Xw4YNU0rp10Ljxo1TJ04oFRGh1J07d7c7ffp007WHUjnXw4OCglRwcLBSSqkff/xR9evXL8v6BoNBhYaGKqWUeuONN0x1+/TtZ2fChAmmv6Vt27YpV1dXpVTW65eMMm7z9u3bqkaNGpneHzp0qFq4cGGmaxKllAoLC1O9evXKtszsFKYOJi2kzKRpeiup336DU6csHY247+TUJLIQTSXDwsLo27cvlSpVonLlyvTr14+dO3fmu5zBgweb7nft2lXgeAA8PDxo0KAB1tbWDB48mLCwMACsra3p379/nnHXrVuXdu3aATBs2DDT+iEhIXh6emIwGPj111/5888/uXbtGvHx8abxkIYMGWKKIykpiTFjxmAwGBg4cCCHDx/ONt6ffvqJ1atXYzQa8fT0JDY2lhMnTrBjxw4GDx6MtbU1tWrVomPHjtmu7+LiwtChQ/n000+xsbHJ8v6uXbsYOHBglvgA3N3dqVmzJhUqVKBhw4Z07doV0JvRRkdHA3Du3Dm6deuGwWBgzpw5/Pnnn9nG0aVLFx5++GHs7Ozo168fYWFhZn8+PDw8qFOnDlZWVhiNRtO2M2rQoAGnTp3ixRdf5IcffqBKlSrZxiGEEKLgAgL07nv/939w+7aloxFC3DeK4TokLwMHDjR1G2vXrh2TJ09mwYIFXLt2Lds6c0ZhYWGmeniNGjXw8fFh7969gF5vrV+/PkCO9fVjx45x6NAhunTpgtFoZNasWZw/f95Ufq9eg7h2DWrWhHLlco4jp3r4qFGjWL16NQDLly9n5MiRmdaLi4vj2rVr+Pj4ADBixAh27Nhhev/ebncZ9/vZZ58FoGPHjsTGxhIXF5frscro8uXLVK1aNdNrCxcu5J133qFChQqmaz6ARx99tFDDuOSHJKTyYehQ/d4CQ/uI+93jj+fvdTPoiemsbGxsTF3lABITE3MtR9O0LI8zlqGU4s6dO2bFlLGsjM9tbW1N/5Ryijun9RMTExk/fjwbN24kKiqKMWPGkJiYmGs5wcHB1KhRgwMHDhAeHp5j/EopFi5cSGRkJJGRkZw+fdqUGLo3lux89913vPDCC0RERNCqVSuz+4IDVKhQwfTYysrK9NzKyspUzosvvsiECROIiopi6dKlOZ7L7I5bbscnpzisra2z3Ydq1apx4MABfH19+eCDDxg9erRZZQshhDCfjQ3Mnw8nT8I9PTmEEKLgiuE6JC+VKlUyPQ4MDGTZsmUkJCTg5eXF0aNHc103tzpsxnIh+/q6UooWLVqY6vdRUVFs2bLF9H58fCUqVIAaNXLfh5zq4XXr1qVGjRr8+uuv7N69mx49euReUB77kDHue5lzPZLOzs4uy7XC+fPnsbKyMnU3TJeYmIidnZ3ZZReGJKTy4fHHwdcX1qyR/vuiiL31FlSsmPm1ihX11wvI29ubzZs3c+vWLW7evMmmTZvo0KEDNWrU4NKlS8TGxnL79m2+/fZb0zr29vbEx8dnKie9X/aGDRto06YNAI6OjkRERACwZcsWkpKSclw/oz179nD69GlSU1PZsGED7du3NztugDNnzphaaX322We0b9/e9MVavXp1bty4YRrbqlq1atjb2/PHH38AZOoHHRcXR82aNbGysmLNmjWmgQ/vjb9bt24sWbLEtH/Hjx/n5s2beHt7s379elJSUrh48SIhISFZ9iM1NZWzZ8/i5+fHu+++y7Vr17hx40amZby8vPjyyy+zxGeuuLg4ateuDcCqVatyXO7nn3/mypUrJCQksHnzZtq1a5frcTZHxmN1+fJlUlNT6d+/P2+++Sb79u3L974IIYTIW5cu8OSTMGsWpA31IYQQhVMM1yH5cfLkSQwGA1OnTqV169YcPXo012sKb29vNmzYQEpKCjExMezYsQMPD49sl8uuvu7k5ERMTIzpmiIpKYkjR46kPdZboNapo4/vntG9MeVWDx89ejTDhg3j6aefzjKAuIODA9WqVTP1TFizZo2ptVRuvL29WZvWMiY0NJTq1avnq1dCtWrVSElJMV07JScnM3LkSNatW0ezZs2YN2+eadnjx49nGnO4OElCKp+efRZOnIA9eywdibivDB2qT59Tr57eP7RePf15erO8AmjZsiX+/v54eHjg6enJ6NGjcXNzo1y5cqYBxHv16kXTpk1N6/j7+xMQEGAa1Bz0qUQ9PT15//33TYMKjhkzhu3bt+Ph4cHu3btNmXwXFxdsbGxo27ZttgNbt2nThsDAQJydnalfvz59+/Y1O26AZs2asWrVKlxcXLhy5Qrjxo2jatWqpu53Tz31FO7u7qayPvnkE8aOHUubNm1QSuHg4ADA+PHjWbVqFV5eXhw/fjxL/K6urgQHBzN69GiaN29Oy5YtcXZ25vnnnyc5OZm+ffvSuHFjDAYD48aNy/afSEpKCsOGDcNgMODm5sakSZOyNJOdP38+8+bNw8PDg4sXL5riM1dQUBADBw6kQ4cOVK9ePcfl2rdvz7PPPovRaKR///60bt0603Hu2LFjpuNsjrFjx9KjRw/8/Pw4f/48vr6+GI1G/P39eeedd/K1H0IIIcz33nuQmAivvmrpSIQQ94ViuA7Jj/nz5+Ps7Iyrqyt2dnb06NEjS508o759++Li4oKrqysdO3bk3Xff5bHHHstSbk719fLly7Nx40amTp2Kq6srRqOR3bt3k5ysJ6MqVtQnkbjXk08+yaZNm0yDmudWD+/duzc3btzI0l0v3apVq5gyZQouLi5ERkYybdq0PI9TUFAQ4eHhuLi4EBgYmOuP0Tnp2rWraciTt99+mw4dOtChQwfmzZvHsmXLTIm5kJAQevbsme/yC0Izt9vG/aZWrVqqIP0i4+Lgscfguedg0aJiCExkK322r7LkyJEjNGvWzNJhFIqjoyPh4eG5JjuyEx8fj729fabXQkNDmTt3bqYWWfkRHR1Nr169OHTokNnr3LhxwzRj3OzZs7l48WKWGSss6datW9jZ2aFpGuvXr+ezzz7L1GS4KKxcuZLw8HAW5fKFld35EqWXnK/sZfedq2lahFKqtYVCEjlwcnJSx44ds3QYZdrUqfDuu7BrFyQmlr06UmlXFuudpVX67L7Tp0+3cCT3l7w+o/fDdUhJio+P58oVe2JioEULKGxvtfDwcCZNmlSg8XuL0/79+5k3bx5r1qzJcZnbt2/j4+NDWFhYnuN5pStMHey+aiGlaZq1pmn7NU0r2BWvGRwcoHdvWL9eb9InhCi9vvvuO4xGI87OzuzcuZPXX3/d0iFlEhERgdFoxMXFhcWLF/Pee+9ZOiQhhCiQkqiDibtefx1q1YIJEyCt17kQQogCSky0IiYGHn208Mmo2bNn079//1LZY8DNzQ0/Pz/TcCXZOXPmDLNnzzY7GVVY+d6Kpmnpc8xdBfyVUlFmrtcFWAoopVTD/G7XTC8BR4BineLp2Wfh88/hhx/0fvxC3K+ym1GtoHx9fQv1a6Ojo2O+WkeBPktFTjNVlAYdOnTgwIEDxboNf39//P39i3UbQghBCdXBhM7eHubOhSFD4Pvva9Kpk6UjEkKIskkpuHSpAjY2eqK/sAIDAwkMDCx8QcVk1KhRub7fuHFjGjduXELRFKyFlCNQD3ADftM0zdyUTMW0dR0LsM08aZpWB+gJLCuO8jPq1g0eeUQf3FwIIYQQ4kFWknUwcdczz4C3N3z8cQOuXLF0NEKI0uZBHZonv65cgYQEG+rU0WczFflT2M9ZYQ95ZWCTpmmvKqXmFLKswpoPvALkOLCGpmljgbEANWvWJDQ0tMAba9++EZs31+Lbb3+ncmXzp3IXBXPjxo1CnS9LcHBwyHXGuftZSkrKA7vvZZGcr7JFzlf2EhMTy9z/ifvIfPJRB3vkkUfkXBWR4cMrERbWmueeO89LL52wdDj3jbJY7yzt5HgWrbw+o5UrV+bcuXM4ODigaVrJBVbGpKTAmTOVsLVNpXz5BKR6lT9KKeLi4rh582aB/8YLk5BaBjyDnpSarWlaM2CsUqrEszOapvUCLimlIjRN881pOaXUR8BHoA9qXpjuQ/b2sGkTnDjRnkmTClyMMFNZHFzyyJEjD+zAwzLoctki56tskfOVPVtb23zNFCmKRkHqYE5OToWqg4m7fH3hu+/OsWVLHYKCauPqaumI7g9lsd5ZWm3fvh1AjmcRy+szmpSUxLlz5zh//nzJBVUGXb0K16/DQw/d4fz58pYOp0yytbXF1dWVcuXKFWj9wiSkvgU+AL4G6gIjgIaapvVTSsUWotyCaAf01jTtCcAWqKJp2qdKqWHFtcFWrcDPT++/P24c2NoW15aEEEIIIUqtEq+DicxGjoxm5846TJgAO3bos7YLIR5s5cqVo379+pYOo1Q7fBh8fGDkSBgyJBQPD19Lh/RAKtQse0qpA4AHsBvQgPbA7rTWUiVGKfWqUqqOUsoRvdXWryVREfrvf+HCBVi5sri3JIQoKv7+/mzcuDHXZaKjo3F2dgb0aVsnTpyY67Lr1q3L8T1N01i4cKHptQkTJrDSzC+N2NhY/Pz8qFy5MhMmTMj0XkREBAaDgUaNGjFx4kRT/+3bt28zaNAgGjVqhKenZ6aB6VetWmUaqHDVqlWZ4vT09KRx48YMGjSIO3fu5BpXaGgoDg4OPPHEE2bthyXkdhwy6t69O66urrRo0YKAgIAss45s3LgRTdMIDw8vgahzp5Ri4sSJuLq64uLiwr59+7JdbujQoTg5OeHs7MyoUaNISpsSdu3atbi4uODi4kLbtm1NA+onJCRgNBopX748ly9fLrH9EfcHS9XBxF329sm88w6EhcHatZaORgghSj+lYOJEqFwZ3nrL0tE82AqVkAJQSv0L+ALr0ZNS9YFdmqZ1L2zZpV3HjuDpCf/7H6TV94W47yUnW27MNEtsu3Xr1ixYsCDH93NLSAE8+uijvP/++3kmebJja2vLm2++ydy5c7O8N27cOD766CNOnDjBiRMn+OGHHwD45JNPqFatGn/99ReTJk1i6tSpAFy5coUZM2awe/du9uzZw4wZM7h69SoA06dPZ9KkSZw4cYJq1arxySef5Blbhw4d2Lp1a773qaTkdBzu9fnnn3PgwAEOHTpETEwMX3zxhem9+Ph4FixYgKenZ7HHm9v0u+m+//57Tpw4QWRkJB999BHjxo3LdrmhQ4dy9OhRoqKiSEhIYNkyfZzp+vXrs337dg4ePMgbb7zB2LFjAbCzsyMyMpJaRTG1jBDCIkaNAg8P+L//g2vXLB2NEEKUbp9/Dtu2waxZ+mRlwnIKnZACUErdVkoNAaanvVQF+EbTtJeKovx8xhKqlOpVEtvSNHj9dYiOhlyuR4WwmKeeeopWrVrRokULPvroI9PrlStX5j//+Q8tW7akU6dOxMTEAHr//pdffpm2bdvi7OzMnj17AAgKCmLs2LF07dqV4cOH8/fff9OpUydcXFzo1KkTZ86cIS4uDicnJ44dOwbA4MGD+fjjj7PE5OjoyPTp02nZsiUGg4GjR48CesLkqaeewsXFBS8vLw4ePJjttoOCghgxYgRdu3bF0dGRr776ildeeQWDwUD37t1NrUFmzpyJu7s7zs7OjB07Ns8ZICIiInB1daVNmzZ88MEHptdDQ0Pp1Uv/Stm+fTtGoxGj0Yibmxvx8fEEBgayc+dOjEYjwcHBWcp95JFH6NSpU6YWSeaqVKkS7du3x/aePsEXL17k+vXrtGnTBk3TGD58OJs3bwZgy5YtjBgxAoABAwawbds2lFL8+OOPdOnShYceeohq1arRpUsXfvjhB5RSbN++nQEDBgAwYsQIU1nmCg0NxcfHh6effpomTZoQGBjI2rVr8fDwwGAwcPLkSQBiYmLo378/7u7uuLu789tvvwGwZ88e2rZti5ubG23btjV9hlauXEm/fv3o3r07jRs35pVXXjE7ppyOw72qVNFnqE9OTubOnTuZBv584403eOWVV7Ic/+wsWbIkU3wrV67kxRdfBHL/O5w2bRqenp7s2rXLrH0aPnw4mqbh5eXFtWvXuHjxYpblnnjiCTRNQ9M0PDw8OHfuHABt27alWrVqAHh5eZleF6KolGQdTGRmZQWLF0NMDLzxhqWjEUKI0uv6dZg0SR+CJyDA0tGIIklIpVNKvQkMAhIAa2CepmlLNU2zLsrtlCY9e4KrK7zzjj5KvxA58fW9270zKUl//umn+vNbt/TnGzboz+Pi9OdffaU/v3xZf/7NN/rzf/4xb5vLly8nIiKC8PBwFixYQGysPrzbzZs3admyJfv27cPHx4cZM2aY1rl58ya///47ixcvZtSoUabXIyIi2LJlC+vWrWPChAkMHz6cgwcPMnToUCZOnIiDgwOLFi0ydYm7evUqY8aMyTau6tWrs2/fPsaNG2dq/TN9+nTc3Nw4ePAgb7/9NsOHD8922wAnT57ku+++Y8uWLQwbNgw/Pz+ioqKws7Pju+++A/SucXv37uXQoUMkJCTw7bff5nqsRo4cyYIFC3JNDMydO5cPPviAyMhIdu7ciZ2dHbNnz6ZDhw5ERkYyKYcZDgIDA3nvvfeytIKZM2eOKcGV8ZZbF0GA8+fPU6dOHdPzOnXqmAatPH/+PHXr1gXAxsYGBwcHYmNjM72ecZ3Y2FgcHBywSZvnNmNZ+XHgwAHef/99oqKiWLNmDcePH2fPnj2MHj3a1GXxpZdeYtKkSezdu5cvv/yS0aNHA9C0aVN27NjB/v37mTlzJq+99pqp3MjISDZs2EBUVBQbNmzg7NmzAAwaNCjbY7d69epcj0N2unXrxqOPPoq9vb0pMbd//37Onj1rSkbmZcCAAXyV/gcLbNiwgUGDBgG5/x06Ozuze/du2rdvz6RJk7Ldp9mzZ2fZJ8j7XCUlJbFmzRq6d8/aYPmTTz6hR48eZu2bEKJsaNUKxo/XE1MREZaORgghSqdp0/RrqSVLwPq+zVKUHYUZ1DxbSqmNmqZFA5uBWsBooBHwaVFvqzTQNH0sqaefhi+/1O+FKC0WLFjApk2bADh79iwnTpzg4YcfxsrKynSxPGzYMPr162daZ/DgwQB4e3tz/fp1rqW1/e/duzd2dnYA7Nq1y3Tx/eyzz5pahnTp0oUvvviC//znP6YWTtlJ316rVq1M5YSFhfHll18C0LFjR2JjY4mLi8uybYAePXpQrlw5DAYDKSkppgtug8FgGisoJCSEd999l1u3bnHlyhVatGjBk08+mW08cXFxXLt2DR8fH9M+ff/991mWa9euHZMnT2bo0KH069cvU1IoN/Xr18fDwyNL174pU6YwZcoUs8rIKLuWPukte3J6L7+v55e7uzs1a9YEoGHDhnTt2hXQz0lISAgAv/zyC4cPHzatc/36deLj44mLi2PEiBGcOHECTdNMrdwAOnXqhIODAwDNmzfn77//pm7dumxIz97mID/79eOPP5KYmMjQoUP59ddf6dSpE5MmTTJ7rC/QW8I1aNCAP/74g8aNG3Ps2DHatWsH5Px3aG1tTf/+/U1lZNfCrqD7BDB+/Hi8vb3p0KFDptdDQkL45JNPCAsLM3v/hBBlw5tvwhdf6BPu7NolF1tCCJFRZCQsXKi3jHJ3t3Q0AoohIQWglArXNM0T2AK0RB9jqk1xbKs06NcPnJz0AdEGDpTZTUT2QkPvPi5XLvPzihUzP3dwyPy8evXMzx97zJzthfLLL7+wa9cuKlasiK+vL4mJidkum/Gi9t4L3PTnlSpVynFb6cukpqZy5MgR7OzsuHLlSo4JmwoVKgBgbW1tGhcqt4vte7edvr6VlRXlypUzLWdlZUVycjKJiYmMHz+e8PBw6tatS1BQUI77nr5tc5IwgYGB9OzZk61bt+Ll5cUvv/yS5zrpXnvtNQYMGIC3t7fptTlz5rA2mxFovb29cx23qk6dOpm6W507d840/k+dOnU4e/YsderUITk5mbi4OB566CHq1KlDaIYP0blz5/D19aV69erExcWRnJyMjY1NprLyI/2cgH4eMp6j9HOcmprKrl27MiUXAV588UX8/PzYtGkT0dHRmaYxzlhuxs/LoEGDTF37Mpo8eTLDhw/P8TjkxNbWlt69e7NlyxY8PDw4dOiQKY5//vmH3r178/XXX9O6descyxg0aBCff/45TZs2pW/fvmialuvfoa2tLdYZrhYnTZpkSt5l9MwzzxAYGGjaJ9e0ed1zO1czZswgJiaGpUuXZnr94MGDjB49mu+//56HH344x30RQpRNVavCvHkwdCh8/LF0RxFCiHSpqXqyvnp1Gci8NCnSLnsZKaXOAx2Ar9AHO6+Q+xpll7U1vPYaHDwIefQKEqLExMXFUa1aNSpWrMjRo0f5448/TO+lpqaaZppbt24d7du3N72X3vIkLCwMBwcHU+uUjNq2bcv69esBfeau9PWDg4Np1qwZy5cvzzS7lzm8vb1NyZnQ0FCqV69uGt8nv9Iv+KtXr86NGzfynFWvatWqODg4mFqMZJckAr2roMFgYOrUqbRu3ZqjR49ib29PfHx8njE1bdqU5s2bZ+o6OGXKFCIjI7PccktGAdSsWRN7e3v++OMPlFKsXr2aPn36AHprsvTxqjZu3EjHjh3RNI1u3brx008/cfXqVa5evcpPP/1Et27d0DQNb29v0zFatWqVqaw9e/Zk6jpZWF27dmXRokWm55GRkYD+Wa1duzaA2a2SNmzYkO2xS483p+OQ0Y0bN0xjMCUnJ7N161aaNm2Kg4MDly9fJjo6mujoaLy8vDIlo5o2bZptTP369WPz5s189tlnphaIuf0d3is4ODjbfQoMDDTt0+rVq1FK8ccff+Dg4GBqlZbRsmXL+PHHH/nss8+wsrr7b/7MmTP069ePNWvW0KRJE7OOsxCi7Bk8GPz84NVX4dIlS0cjhBClw/Ll8McfMHcupA2pKUqBgiSkzqTdbuW1oFIqQSk1AHgbPSl13xo8GBwd9WxrHmMnC1EiunfvTnJyMi4uLrzxxht4eXmZ3qtUqRJ//vknrVq14tdff2XatGmm96pVq0bbtm0JCAjIcba1BQsWsGLFClxcXFizZg3vv/8+x48fZ9myZbz33nu0bdsWb29vZs2aZXa8QUFBhIeH4+LiQmBgYIEGAU9XtWpVxowZg8Fg4KmnnsLdjDa5K1as4IUXXqBNmzZZWvCkmz9/Ps7Ozri6umJnZ0ePHj1wcXHBxsYGV1fXPLtc/fe//833QNKOjo5MnjyZlStXUqdOHVOXtyVLljB69GgaNWpEw4YNTeMBPffcc8TGxtKoUSPmzZtnGn/ooYce4o033jANKD5t2jRTi6EZM2Ywb948GjVqRGxsLM899xygJzByOhYFsWDBAtM5bt68OR9++CEAr7zyCq+++irt2rUza7Y5c+R0HACMRiOgj+HUu3dvXFxccHV15dFHHyUgj+YEly9fznGA/GrVqpm6FXp4eAC5/x3m1xNPPEGDBg1wdXVlzJgxLF68ONN7Fy5cACAgIIB///2XNm3aYDQamTlzJqAP9B8bG8v48eMxGo25tvYSQpRdmgYffAA3b0IBeoULIcR95/JlmDoVvL1h2DBLRyMy0vKaearINqRpRsABQCm1vUQ2motatWqp9Mp7UVm6VG8a/fPP0LlzkRb9wAsNDc3UjacsOHLkCM2aNbN0GNmqXLkyN27cyPK6r68vc+fOLfSFanx8PPb29oUqQ5ScnM7XlClTePbZZ3Fxccn0emhoKHPnzs1zoPj70bfffsupU6fyHHi+OBXX35ejoyPh4eFUr169yMsuCdl952qaFqGUksxbKePk5KSy63IrCianOtJrr+mT7oSGQtoQicJMZbHeWVqlT5wzffr0PJYU+SGf0fx57jlYvVofQ6pFi6zvy/EseubWwYqty969lFKRSqntpSEZVVz8/aFWLemTKoS4P8yZMydLMgqgfPnyHDp0iCeeeMICUVlWr169LJqMKg4JCQkYjUaSkpIydfETQpRtr78O9erpY6bcvm3paIQQwjJ27tS7602enH0ySliW1DyLUIUK8Mor+i9R33xj6WiEyFl2raNA/3VAuvGIvLRt25bo6Gi2bt1q6VBEEbCzsyMyMpLz58/nOvC7EKJsqVgRFi+GI0fg3XctHY0QQpS827dh7Fh9aJ0MI5SIUkQSUkVs3Dg98/rCC2DGOMdCCCGEEEIUiyeegEGDYNYskF6SQogHzf/+B0ePwpIlkMuE4cKCJCFVxMqX16fZPXcO3njD0tEIIYQQQogH2fz5emupgACZeEcI8eA4elQfSmfwYOje3dLRiJxIQqoYtGmj/9NfuBDCwy0djRBCCCGEeFA99pjeZS80FFautHQ0QghR/JTSr8crVoQ8JsEWFiYJqWLyzjtQowaMGQPJyZaORgghhBBCPKieew7at4f/+z+4dMnS0QghRPFasQK2b4c5c/RrclF6SUKqmDg46C2kIiP1ptJCiNLB39+fjRs35rpMdHQ0zs7OAISHh+c6q1p0dDTr1q3L8f0pU6bQokULpkyZUrCAC2HatGn88ssvJb5dc+V1bAGuXbvG4sWLC7wNX19fnJyc+PrrrwtcRnH74YcfcHJyolGjRsyePTvbZUJDQ3FwcMBoNNKuXTtmzpxpeu/999/H2dmZFi1aML+U/MOJiIjAYDDQqFEjJk6ciMqmn1BsbCx+fn5UrlyZCRMmZHrvs88+w2Aw4OLiQvfu3bl8+TIAwcHBPP7441mWF0LkzsoKPvpIH9908mRLRyOEEMXn0iU9+e7tDaNGWToakRdJSBWjfv2gd2+YPh1On7Z0NEIUjWQLNvmzxLZbt27NggULcnw/r4TU0qVL2bdvH3PmzMn0eknsy8yZM+ncuXOxb6eg8jq2UPiEFMDatWvp3bt3ocooLikpKbzwwgt8//33HD58mM8++4zDhw9nu2yHDh2IjIzkt99+Y1raVDGHDh3i448/Zs+ePRw4cIBvv/2WEydOFFu85n5ux40bx0cffcSJEyc4ceIEP/zwQ5ZlbG1tefPNN5k7d26Wbbz00kuEhIRw8OBBXFxcWLRoEQCTJk3KlIwTQpivWTN49VVYuxZ+/tnS0QghRPGYNAlu3oSlS/VkvCjd5BQVI02DRYv0P4Tx42UgSVHynnrqKVq1akWLFi346KOPTK9XrlyZ//znP7Rs2ZJOnToRExMD6K1JXn75Zdq2bYuzszN79uwBICgoiLFjx9K1a1eGDx/O33//TadOnXBxcaFTp06cOXOGuLg4nJycOJY2jc/gwYP5+OOPs8Tk6OjI9OnTadmyJQaDgaNHjwJw5coVnnrqKVxcXPDy8uLgwYPZbjsoKIgRI0bQtWtXHB0d+eqrr3jllVcwGAx0796dpKQkQE/GuLu74+zszNixY7NtoZFRREQErq6utGnThg8++MD0emhoKL169QJg+/btGI1GjEYjbm5uxMfHExgYyM6dOzEajQTf00m9d+/e3Lx5E09PTzZs2IC/vz+TJ0/Gz8+PqVOnEhkZiZeXFy4uLvTt25erV6+azsOkSZPw9vamWbNm7N27l379+tG4cWNef/31LLGnpKTg7++Ps7MzBoPBFEfG1mBbt26ladOmtG/fnokTJ5r2KSgoiOeff75Ijqe/vz8BAQF06NCBJk2a8O233wKQmJjIyJEjMRgMuLm5ERISkuXYBgUFMWrUKHx9fWnQoIEpURUYGMjJkycxGo1MmTKFixcv4u3tjdFoxNnZmZ07d+Z6Xu9l7rH99NNP8fDwwGg08vzzz5OSkgLoiZbWrVvTokULpk+fblo+p891Xvbs2UOjRo1o0KAB5cuX55lnnmHLli1m78+RI0fw8vKiYsWK2NjY4OPjw6ZNm3JcPjU1FUdHR65du2Z6rVGjRvz777988803eHp64ubmRufOnfn333+BrH+Debl48SLXr1+nTZs2aJrG8OHD2bx5c5blKlWqRPv27bG1tc30ulIKpRQ3b95EKcX169epVauWeQdECJGrV18FJyd4/nn9gk0IIe4n338P69bp33VNm1o6GmEOSUgVs7p19dH9f/gBNmywdDTConx9744mmpSkP//0U/35rVv68/QPSVyc/vyrr/Tnly/rz7/5Rn/+zz9mbXL58uVEREQQHh7OggULiI2NBeDmzZu0bNmSffv24ePjw4wZM0zr3Lx5k99//53FixczKkM714iICLZs2cK6deuYMGECw4cP5+DBgwwdOpSJEyfi4ODAokWLTEmQq1evMmbMmGzjql69Ovv27WPcuHGm1hHTp0/Hzc2NgwcP8vbbb2e68M24bYCTJ0/y3XffsWXLFoYNG4afnx9RUVHY2dnx3XffATBhwgT27t3LoUOHSEhIMCVHcjJy5EgWLFjArl27clxm7ty5fPDBB0RGRrJz507s7OyYPXu2qeXKpEmTMi3/9ddfY2dnR2RkJIMGDQLg+PHj/PLLL7z33nsMHz6c//3vfxw8eBCDwZDpPJQvX54dO3YQEBBAnz59+OCDDzh06BArV640ncd0kZGRnD9/nkOHDhEVFcXIkSMzvZ+YmMjzzz/P999/T1hYmCkBme706dNFdjyjo6PZvn073333HQEBASQmJpoSfFFRUXz22WeMGDGCxMTELOsePXqUH3/8kT179jBjxgySkpKYPXs2DRs2JDIykjlz5rBu3Tq6detGZGQkBw4cwGg05ni+cpLXsT1y5AgbNmzgt99+IzIyEmtra9auXQvAW2+9RXh4OAcPHmT79u2mxClk/7kOCQkxJTEz3tq2bQvA+fPnqVu3rqmMOnXqcP78+Wzj3rVrF66urvTr148///wTAGdnZ3bs2EFsbCy3bt1i69atnD17Nsd9t7Kyok+fPqak1e7du3F0dKRGjRq0b9+eP/74g/379/PMM8/w7rvvmtbL+Dd47NixbPfJaDRy7do1zp8/T506dczap+yUK1eOJUuWYDAYqFWrFocPH+a5554ze30hRM5sbfXZoE+fhmx+3xBCiDLr+nU92d68uZ6QEmVDvhNSmqZ5p90eyud6VdPXze82y7oXXgB3d3jpJUhrACFEiViwYAGurq54eXlx9uxZU1ceKysrU4Jk2LBhhIWFmdYZPHgwAN7e3ly/ft3UkqJ3797Y2dkB+oXxkCFDAHj22WdN63fp0gWDwcB//vMfli1blmNc/fr1A6BVq1ZER0cDEBYWxrPPPgtAx44diY2NJS4uLsu2AXr06EG5cuUwGAykpKTQPW0uV4PBYCovJCQET09PDAYDv/76q+kCPjtxcXFcu3YNHx8f0z5lp127dkyePJkFCxZw7do1bGxsciwzJwMHDsTa2jrLNkeMGMGOHTtMy6V3MTMYDLRo0YKaNWtSoUIFGjRokCXh0KBBA06dOsWLL77IDz/8QJUqVTK9f/ToURo0aED9+vWBu+c4XZcuXYrseD799NNYWVnRuHFjGjRowNGjRzOd26ZNm1KvXj2OHz+eZd2ePXtSoUIFqlevzqOPPmpqoZORu7s7K1asICgoiKioKOzt7bM/0LnI69hu27aNiIgI3N3dMRqNbNu2jVOnTgHw+eef07JlS9zc3Pjzzz8zda/L7nPt5+dHZGRkltvvv/8OkG1LM03TsrzWsmVL/v77bw4cOMDzzz/PU089BUCzZs2YOnUqXbp0oXv37ri6uub5uRw0aBAb0pLf69evN30XnDt3jm7dumEwGJgzZ06mc5zxb9DJySnbfYqMjKRq1apm71NOkpKSWLJkCfv37+fChQu4uLjwzjvvmL2+ECJ3HTroLffffx9y+Q1GCCHKlMBAOHcOPvkEKlSwdDTCXAVpIRUKhADt87meZ9q6vxZgm8Xm+++hTx+4c6f4tmFtrQ8kGRsLr7xSfNsRpVxoKPj764/LldOfDxumP69YUX+edmGIg4P+PO0Cl+rV9edPPqk/f+wxMzYXyi+//MKuXbs4cOAAbm5u2bZKgcwXi/deOKY/r1SpUo7bSl8mNTWVI0eOYGdnx5UrV3JcvkLafwlra2vTmDS5XcTeu+309a2srChXrpxpOSsrK5KTk0lMTGT8+PFs3LiRqKgoxowZk+O+p2/bnAvmwMBAli1bRkJCAl5eXmZ3y8oot+OYUcZ9rJDhv2r6PmZUrVo1Dhw4gK+vLx988AGjR4/O9H5e3RWL8nhm9/nJa/v3xgGZPxsZeXt7s2PHDmrXrs2zzz7L6tWrzSo7u+3kdGyVUowYMcKUZDl27BhBQUGcPn2auXPnsm3bNg4ePEjPnj0zHYfsPtd5tZCqU6dOpgTjuXPnsu2eVqVKFSpXrgxAt27dSEpKMg30/dxzz7Fv3z527NjBQw89ROPGjXPd/zZt2vDXX38RExPD5s2bTYm0F198kQkTJhAVFcXSpUsz7VvGz21eLaTq1KnDuXPn8tynnERGRgLQsGFDNE3j6aefNiXwhBBFY/ZsvRX/c8/B7duWjkYIIQpn+3ZYsgRefhm8vCwdjcgPS3TZM/9n0hLw77/w9ddw5kzxbsdo1Gc1WbZMBpIUJSMuLo5q1apRsWJFjh49yh9//GF6LzU11TS20Lp162jf/m5+Ob3lRFhYGA4ODjg4OGQpu23btqxfvx7QB4xOXz84OJhmzZqxfPlyRo0aZRp/yBze3t6mblGhoaFUr149S0sfc6VfSFevXp0bN27kOate1apVcXBwMLX0So/jXidPnsRgMDB16lRat27N0aNHsbe3Jz4+Pt8xOjg4UK1aNdMYSGvWrDG1lsqvy5cvk5qaSv/+/XnzzTfZt29fpvebNm3KqVOnTK12NuSz/3B+jucXX3xBamoqJ0+e5NSpUzg5OWU6t8ePH+fMmTM4OTmZte17j+/ff//No48+ypgxY0yJGIDhw4ebxjwrrE6dOrFx40Yupc2NfuXKFf7++2+uX79OpUqVcHBw4N9//+X777/Ps6y8Wki5u7tz4sQJTp8+zZ07d1i/fn22A7D/888/psReeHg4qampPPzwwwCmOM+cOcNXX31lagG3aNEi02DgGWmaRt++fZk8eTLNmjUzlRMXF0ft2rUBWLVqVY77lFcLqZo1a2Jvb88ff/yBUorVq1fTp0+fPI9Vutq1a3P48GFT19Kff/6ZZs2amb2+ECJv9vb6gL9HjsCsWZaORgghCu7WLRg9Gho0gDfftHQ0Ir/y39+k4NITUaVqaO+GDfX7U6egUaPi3VZQEGzdCs88A3v36n80QhSX7t278+GHH+Li4oKTkxNeGX4uqFSpEn/++SetWrXCwcEhU4KiWrVqtG3bluvXr7N8+fJsy16wYAGjRo1izpw5PPLII6xYsYLjx4+zbNkyU1LA29ubWbNmZRoXKTdBQUGMHDkSFxcXKlasmOsFcV6qVq3KmDFjMBgMODo64u7unuc6K1asYNSoUVSsWJFu3bplu8z8+fMJCQnB2tqa5s2b06NHD6ysrLCxscHV1RV/f/8s40jlZtWqVQQEBHDr1i0aNGjAihUrzF43o/PnzzNy5EhSU1MBsnRvsrOzY/HixXTv3p3q1avj4eGRr/LzczydnJzw8fHh33//5cMPP8TW1pbx48cTEBCAwWDAxsaGlStXZmqZlJuHH36Ydu3a4ezsTI8ePXB2dmbOnDmUK1eOypUrm1pIHTx4kJo1a+Zrv3LSvHlzZs2aRdeuXUlNTaVcuXJ88MEHeHl54ebmRosWLWjQoAHt2rUr9LZsbGxYtGgR3bp1IyUlhVGjRtGiRQsAPvzwQwACAgLYuHEjS5YswcbGhvLly7N+/XpTa7T+/fsTGxtrirNatWqA3lUzpxgHDRqEu7s7K9PHtUP/Gxw4cCC1a9fGy8uL04WYHnbJkiX4+/uTkJBAjx496NGjB6CPqxYeHm6aKc/R0ZHr169z584dNm/ezE8//UTz5s2ZPn063t7elCtXjnr16mWKUwhRNLp3h+HD9dZSAwaAq6ulIxJCiPwLCoK//oJt28DMjgiiFNHM7UphWkHTUtGTSn2VUl/nY71hwGogXimVtclFCatVq5a6cOEC589DnTp6E7+AgOLf7smT+nhStWvr/fbTemCIPISGhuLr62vpMPLlyJEjpfZX/cqVK3Pjxo0sr/v6+jJ37lxat25dqPLj4+MLNLaPKD43btygcuXKKKV44YUXaNy4sSl5VlTny9/fn169ejFgwIBCl5Uf169f57nnnuOLL77I8l5RfaZLE3PPV69evfjqq68oX758CURVclauXEl4eHiW1l/ZfedqmhahlLp/Tv59wsnJSaXPyCoKrzB1pCtXoFkzvS68ezcUYGjE+1JZrHeWVuk/TGacmVYUnnxGdXv36l30nntOHyKnoOR4Fj1z62Al0mVP07QKwIi0p9ElsU1z1aypD3qWNl5tsWvYED7/HA4f1n+VSmvQIIQQxerjjz/GaDTSokUL4uLieP755y0dUpGpUqVKtskogIceegh/f3++/trs30/uG99+++19l4wKDg7mnXfeKXB3XiFEZg89BB98APv2wXvvWToaIYQw3507eiLqscdgzhxLRyMKKtffQTRNG8HdRNK9Zmma9nIe5WtAJaBp2r0CtuUzxmJlZQX165dcQgqgc2f9n/6kSXq//WnTSm7bQgDZto4C/dcBcX+aNGlSvroTFkRp7Fb11VdfWToEUYRK4nMsxINmwAB9DpXp0/W5U5o3t3REQgiRt1mzICpKHw86myFvRRmRV8NcR8CXrOM+aUCLfGwnffyoS8DcfKxXIho00LvSlaSXXoLISP2fv4sLpM3gLe4z5s7eJoQQouDyO/yAECKzxYuhRQt9MuDff5eue0KI0i0iAt5+G5599u4k5KJsMrfLnpbhlt1rOd0AbgAHgWCgpVLqQuHDLloNGugtpEqyPqtp8OGH4OGh/yEdOlRy2xYlw9bWltjYWLlQEkKIYqSUIjY2FltbW0uHIkSZVaOGnpTau1e6vgghSrfbt2HECP176/33LR2NKKxcf/9QSs0AMk2RVdBBzUuzBg3g+nV9YMe02a9LhK0tfPUVtG4NffrolYCHHiq57YviVadOHc6dO2eauvxBkpiYKBeHZYicr7JFzldWtra21KlTx9JhCFGmPf00fPml3nq/Vy8wGCwdkRBCZBUUBH/+Cd99B2kTC4syrKANcktVHyRN02yBHUAF9H3aqJQyeyqHBg30+1OnSjYhBfpse199Bb6+MGgQfP+9NJO+X5QrV4769etbOgyLCA0Nxc3NzdJhCDPJ+Spb5HyJ0qSwdTBRunzwAYSG6q0Pdu+GcuUsHZEQQty1eze8+y6MGgVPPGHpaERRyPcse0opq7RbaWoddRvoqJRyBYxAd03TvMxdOWNCyhLatNG77/3yC7zyimViEEIIIYQogELVwUTpUr26Xifdv18fn0UIIUqLhAQ9WV67NsybZ+loRFHJd0KqNFK69GnDyqXdzB64J70RS0kPbJ7RyJEwcSIEB8Pq1ZaLQwghhBDCXIWtg4nSp29fGDpUn8Fq/35LRyOEELo33oBjx+CTT2RWvfvJfdM5TNM0ayACaAR8oJTanc0yY4GxADVr1sw0xX316m0IDb1K27ZHSybgbDz5pMbOnS6MHu1ATMxBWrW6ZrFYSpsbN25kOl+idJPzVbbI+Spb5HyJ0ia/dbBHHnlEPsNFqDi+E55+2obvv3dnwIAkliyJoHz5ByvHKN+zRU+OZ9F60D6jUVEOzJtnpHfvC5Qrd4Ki3vUH7XiWJlp+ZwDTNG1aYTeqlJpZ2DJyomlaVWAT8KJSKse562rVqqUuXLg74V+vXhAdbfnZ7i5fBj8/+Osv2LQJune3bDylRWhoKL6+vpYOQ5hJzlfZIuerbJHzZT5N0yKUUq0tHceDwtw6mJOTkzp27FiJxXW/K67vhO++0+vHU6boY7Y8SOR7tujMmKHPjzV9ugwtV5QepM/o9etgNOqPDxwAe/ui38aDdDxLirl1sIK0kAqi8E2xiy0hpZS6pmlaKNAdMDu95OYGP/yg9021syuu6PJWvTqEhECXLvrMexs3wpNPWi4eIYQQQghzFLQOJkqnnj1h7FiYO1d/7ONj6YiEEA+il1+Gv/+GHTuKJxklLKugY0hphbgVOU3THkn7VQ5N0+yAzkC++t65uUFKCkRFFUOA+VS9Ovz6K7i6Qr9++hS8QgghhBClTVHUwUTp9d570LAhDB8OcXGWjkYI8aDZtAlWrIDAQGjXztLRiOJQkBZSfmYsYwVUBzyB4cDDwHrgowJszxw1gVVpYxhYAZ8rpb7NTwHpM2jv3w8eHkUeX75VqwY//6xPZzloEKxZA4MHWzoqIYQQQohMCl0HE6VX5crw6af6heCLL8rEO0KIkvPPP3orzZYtQXp83r/ynZBSSm3Px+JfaJr2Jnoy6hngqFLqzfxu04yYDgJuhSnD0RGqVi1ds4k4OOjdCJ98Up/t5M4dfapLIYQQQojSoCjqYKJ08/SE//4XZs7U66QDB1o6IiHE/U4pGDUKbtzQG2aUL2/piERxKWiXPbMppeKA/sAFYLqmaW2Ke5sFoWn6YGmlKSEFej/ZrVuhUycYORI+/tjSEQkhhBBCiAfJ66+Duzs8/zycP2/paIQQ97ulS+H77+F//4PmzS0djShOxZ6QAlBK3QJWpG1vQklssyCMRjh4EJKTLR1JZhUrwjff6DPujR0LixZZOiIhhBBCCPGgKFdO77qXmKi3WkhNtXREQoj71fHj8J//6JN8TSi1mQNRVEokIZXmz7T79iW4zXxxc9P/0R4/bulIsrK11Qd169NH78P/3nuWjkgIIYQQQjwomjTR658//QQLFlg6GiHE/ejOHRgyBCpU0AcztyrJbIWwiJI8xek9Px8twW3mS8aBzUujChXgiy/0vvv/93/w9tuWjkgIIYQQQjwoAgKgd2945ZXSW18WQpRd//0vRETAsmVQu7aloxEloSQTUt3S7kvtpLFNm+otkfbutXQkOStXDtat0wc5/+9/4Y039EHfhBBCCCGEKE6aBp98Ao88os/+fPOmpSMSQtwvfvoJ5s7Vx6rr18/S0YiSUiIJKU3TXgAGAwrYXRLbLIhy5aB9e/jlF0tHkjsbG1i1Cp57DmbNgv79Ia7UpvmEEEIIIcT9onp1fTyp48fhpZcsHY0Q4n5w6RIMH64PYD5vnqWjESXJJr8raJo2zcxFywO1AF+gHqChJ6QW5nebJalLF5g6FS5cgFq1LB1Nzqyt9Rn3nJ317nvu7vDVV/pzIYQQQgghioufH7z6qj58RNeu8PTTlo5ICFFWKaXPJn/tmt5KqmJFS0ckSlK+E1JAEHpiKT+0tPuZSqlS3f4oPSH1yy96lrY00zR4+WVo1UqvCHh66v1tBw+2dGRCCCGEEOJ+FhQE27bpM0B7eICjo6UjEkKURQsWwNatsHAhuLhYOhpR0graZU/Lxy0J+AHorJSaUdiAi5urq94U+eefLR2J+Tp0gH37oGVLfVaCl17SZygQQgghhBCiOKSPa5qaqo9tmpxs6YiEEGVNZKQ+ScKTT8ILL1g6GmEJBWkh5WfmcreBa8BfSqky8y/Kygo6ddJbSCmlt0IqC2rWhF9/1f+g58/XZyf4/PPS3e1QCCGEEEKUXQ0awNKl+g+i06fDW29ZOiIhRFkRHw+DBsHDD8Py5WXnulsUrXwnpJRS24sjkNKkSxfYsAEOHQKDwdLRmK9cOQgO1rvujR6tt5jasAF8fCwdmRBCCCGEuB8NHqz/KPr22+DtDd265b2OEOLBppQ+m95ff+nfH9WrWzoiYSklMsteWdOli35f2mfby8kzz8Du3eDgoLf2eu89/Y9eCCGEEEKIorZggf4j7rBhcP68paMRQpR2H38Mn30GM2dK44kHnSSksvH449CkSdkaR+peLVrA3r3Qu7c+C9/TT+vNIoUQQgghhChKdnb6UBEJCXqLKRlPSgiRkwMHYOJEfYbOV1+1dDTC0gqdkNJ0HpqmvaBp2luapr2fdv9C2utlsjdoly6wfTvcvm3pSAquShX48kt491346it9BpQjRywdlRBCCCGEuN80bfr/7N13eBTV98fx901CJyBVqkRQepUOAqGoCIoVFUEFRX4WUKwgKoIVFRRRrKiIghUREL42lCpFAQtFege79E7u74+TYbPUEJJsEj6v59ln926Zubszyc6eOfdcqyc1bRr07Rvp3ohIRrR1K7Rvb3Wj3n3X6jfLqS3Fu4BzLso5dxewGpgJDAF6A90Tr4ck3r/aOdfTOZepdrcLLoCdO+G77yLdk5PjHNx3n2V7/fOPBaXefVdD+EREREQkdXXsCDffDE89BV98EeneiEhG4j106wYrVthwvaJFI90jyQhSFCRyzhUEpgMDgVKAO8alNDAImO6cK5AKfU4X558PBQvCO+9Euiepo0ULmDcPqleH66+HCy+E1asj3SsRERERyUpeeMGONzt1gvXrI90bEckoXnvNJtx67DGbAEEEUhCQSsx0+h/QAAs4JQATgXuBS4HzEq/vBSYA+xOfVx+YmFkypXLksClsx4yBzZsj3ZvUUaoUTJ1qhSdnzLA6U889p3H+IiIiIpI6gnpSe/bY0Jy9eyPdIxGJtB9+gDvvtFFIvXtHujeSkaQkONQNqAt4YCFQ03t/kff+Oe/9OO/9pMTr57z3FwM1gQVYUKoecHMq9T3Nde5sX6YffhjpnqSe6Gjo0QMWLbKsqXvugQYNYP78SPdMRERERLKCChXg7bdh1iy4++5I90ZEIunvv+GKK6B4cRg5UnWjJFxKdodOidd/A8299wuP9WTv/SKgJfBX4l3XpWCdEXHOOVC1KgwfHumepL7SpWHcOAu2rV8PdevC/fdb3SwRERERkZNx5ZU20/PQoVa/VEROPQcO2Mybf/4Jn3xixcxFkkpJQKoSlh01zHv/d3Je4L3/CxiGZUlVTsE6I8I5y5KaNQt++y3SvUl9zsFVV9nMe126wLPPQrVq8M03ke6ZiIiIiGR2Tz0F8fHwf/9nU72LyKmlb1/7bTl0KNSpE+neSEaUkoBUjsTrX07wdcHzs6VgnRHTsaMNc8sqxc2PpEABeOMNm1EwOhrOOw9uuMFm5RMRERERSYmYGPjgAzvWvPxy+O+/SPdIRNLL2LHw5JPQtSvcdFOkeyMZVUoCUsF8GblP8HXB8zPVfBvFitmMdCNGWMphVhYfD7/8Ag8+CKNGQcWKNs7X+0j3TEREREQyo9NPt6E669bZTM8JCZHukYiktWXL7O+9dm148cVI90YyspQEpCZiQ+/OP8HXXYAN9ZuYgnVGVOfOsHHjqTGULWdOePxxmDcPypWzKXsvvBBWr450z0REREQkM2rYEJ5/Hj7/3KZ8F5Gsa/t2y4iMiYHRo+33pcjRpCQg9QKwFWjvnLsoOS9wzrUF2gObE1+fqVx0ERQsCMOGRbon6adaNZgxwyLaM2ZAlSowaBDs2xfpnomIiIhIZnPbbZYx0a8ffPZZpHsjImkhIcH+zhctsuG6ZcpEukeS0Z1wQMp7vwYLLm0FRjvnHnfOFTnSc51zRZxzjwGjsWBUe+/92pPob0TkyGHFGEePhgULIt2b9BMdDd272z+Uli1tppQqVeyfi9KtRURERCS5nIPXXoN69eC6606tY2qRU8Vjj8GYMTBwoNUlFjmeEw5IOefeAjoAP2EFyh8ANjjn5jvnPnbOvZN4PR/YAPRJfN5PQCfn3FtHubyZWm8qLdx7L8TGwiOPRLon6a90aStKN368pVx26GDjgSdOVH0pEREREUmenDntx2psLLRrpwl0RLKSMWMsA/KGG6Bnz0j3RjKLmBS8pjNWC4ok1zFA9cRLUi7Jc+KTsewMW3+/YEG4+277I5s71wIypxLnbOhimzbw/vs2hWfbtnDuuTal77nnRrqHIiIiIpLRlSgBn34KzZrB1VfDF19YrRkRybx+/dUyH+vVg1dftd+OIsmRkhpSYIGmpJcj3Xes+4/23JR1xrnSzrnvnHOLnXMLnXN3nszyjqZnTwtM9e2bFkvPHKKioGNHWLwYXn4Zli+HJk0sOPXTT5HunYiIiKSn9DoGk6ylQQMbvjdpEtx3X6R7IyIn459/4JJLIF8+y5JSEXM5ESk5H3Fmqvfi5O0H7vHez3POxQJznXNfe+8XpeZK8ue3L80HHoCZM23GkFNV9uxw662WkvniizBgANSqBddcA48+CmefHekeioiISDpIl2MwyXo6d4aff4bBg6F6dejSJdI9EpETtW8fXHUVbNgAU6daBqTIiUhRUfO0uqT0TXjvN3nv5yXe3gYsBkqmdHnH0qMHFC0KDz+cFkvPfHLnhl69YNUq6NMHxo2DSpWsCPyGDZHunYiIiKSl9DwGk6zn2Wet8PH//R9MmRLp3ojIifAebr8dvv0WXn8d6tePdI8kM3I+i1Wlds7FAVOBqt77rYc81g3oBlC8ePHao0aNStE6PvmkFEOHnsVzz/1ErVqbT67DWcy//2bnvffOYPz4EkRFeS67bAMdOqwlf/79J7Xc7du3kzdv3lTqpaQ1ba/MRdsrc9H2Sr7mzZvP9d7XiXQ/ThXJPQYrUqRI7Y8++ij9O5hFZfb/Cdu3x3D77bXYvDk7Q4fOo1SpXZHuUqb/TDOSKYmRxmbNmkW4J1lLRthHP/qoFK+8chbXXruGm29eFdG+nKyM8HlmNck9BjvhgJRz7vrEm99679efwOtKAK0AvPcjTmilyV9HXmAK8IT3/tNjPbdEiRJ+48aNKVrP7t1w1lkQFwfTpqlo25GsWmUF4N9912ZSufdeuOsuSOnf+eTJk4mPj0/NLkoa0vbKXLS9Mhdtr+RzzikglU5O5BisQoUKfsmSJenTsVNAVvifsHKlZVcUKACzZlnN1kjKCp9pRtG/f38AHjkVpypPQ5HeR8eOhcsugyuugA8/tDrDmVmkP8+sKLnHYCnZdYYDbwPnnODrqiW+9q0UrPO4nHPZgNHAyOMdCJ2snDnhwQdhxgwYPTot15R5nXkmvPOOzbjQooUVgi9b1uoEbN8e6d6JiIhIaknPYzDJmsqWhc8+gzVr7Afu3r2R7pGIHM28eXDttVCnjv3ey+zBKImsSOw+qZ5P5JxzwJvAYu/9c6m9/CPp2hVq14ZbboHff0+PNWZOVarYbAuzZkG1apYlVbo09O4N65OdXyciIiIZUSSOwSRratwY3noLJk+24+ssVlVEJEvYsAEuvhgKFbLawblzR7pHktmlZ0AqWFdCGiy7MXAd0MI591Pipc0JL2XbNkt7SoZs2Ww42o4dcNNN+tI8nvr1bWrf77+34pXPPmtZVJ06WZRdREREMqXUOQYTATp2tKz6t9+Gp5+OdG9EJKnt26FdO9i6FT7/HIoVi3SPJCtIz4BU8cTrbam9YO/9dO+9895X997XTLxMPOEF9e9v48uSOT1cpUoWWJk4EV577YTXdkpq2BA++giWL7cZC8eNs0yz+Hi7nZAW4UoRERFJE6l2DCaSqF8/6NABHngARo6MdG9EBGDfPrjqKvjpJ6sZVb16pHskWUW6BKScc6WAWxObK9JjnSnyyCMWLSmZOFtxMoqe33YbnH8+3HMPLF2axv3LQs48E557Dtatg0GDrAj6JZdAxYrw8suWeSYiIiIipxbnLEMqPh66dLEMexGJHO9tGO3//gevvgptlAMrqeiYASnn3J3OuZVJL0kefv3Qx45wWeWc+xNYgxVB98D/0vD9nJzYWIuKAPzyC5QpYyHgY4iKsi/NHDnguusseizJlz8/3H03rFhhH3WBAnD77VZnqk+fZMUERURERCQLyZHDapBWqGAzef38c6R7JHLq6tfP6rs9/DDcfHOkeyNZzfEypE4D4oAyiddxifc7oGiS+452KQMUTny+A5YCg0661+mhVClLezrvPGv/8stRix2VKGFD9ubMgSefTMc+ZiExMZYGOmuWlfFq0cJqB8TFwfXXw7JleSPdRRERERFJJ6edZhkZ+fPDhRfaDHwikr7eeAMefdSyFfv3j3RvJCs6XkBqM5bdtDbxOvgq8MBfSe472mUV8CswDrgTqOO935Kq7yCtFCwIAwbYNdhf4oUXhlKgDqli3r69Feh+7DGYPTud+5qFOAeNGsEnn8CyZTYkcswY6NatDi1aWAE91ZkSERERyfpKlbKg1M6ddhj+77+R7pHIqWPCBLj1Vmjd2pIvnIt0jyQrOmZAynv/gvf+zKSXJA/ffOhjR7iU897X8N5f6r1/0Xuf4SsDJSTAypVHeGDYMIuMZMtm7UaNDgsTv/SSlZ/q1An++y/t+5rVlS0LgwdbnalbblnBsmU2zWilSjZ+WXWmRERERLK2qlVh7Fgr73DJJRacEpG0NXu2jV6pWRM+/jj0E1gktaWkqPnaxEuW/Dp47DH7wztsor3TTrMgFMDevfakM86w9p49cMkl5J8/mffeg7VroW1bBUxSy2mnwdVXr2PlSnj/fciXz6L1xYtDt242zO+QhDURERERySKaNYP33rOyDu3bq2arSFpasMAyEosXtyypvKqcImnohANS3vu4xOynb9KiQ5F2443w4IOhifaO+IWXPTu88ooNpgUb1L5oEezcSZMmMO655XSf2ZE7L/iNPXvSretZXrZscM01Vqtr+nS44gqbDrhhQ6hSBQYOhD/+iHQvRURERCS1tW9vGfITJ8INN6iEg0haWLnSZpDPlQu+/hpOPz3SPZKsLiUZUlla6dLQq5fdXrfOho199tlxXlS+PCxdaqFk4IIKq7k0/7dMnRFFp05w4Iuv4corYdMme77SeU6Kc9C4sc1u+PvvNpqyQAG47z4LJF56KYwbp7NnIiIiIllJt25W4vX996FHDx1Si6SmTZtsPq89e+Crr+DMM4//GpGTpYDUMRw4APXr29h1sOybo9aGci5U6a1VK3L/t5FbBp7NJ5/AW8/8jf/1V4uaADzzjAWxdu+29tq1Su1JodhYuOkmS+FevNgmRpw1y2oMlC5tQarFiyPdSxERERFJDb16wf33w8sv2zT0InLy/v3XMqP++MMmEqhSJdI9klNFzIm+wDn31kmu03vvbzrJZaSLuDib7S3Qp4+lCa9dm4zCbs5x9z3w32bo9ngHlt3XgadzgAM4+2xo0QJy5rTnPvKIDdD94w8Lao0ZA/v3W26yJFvFivD00/D44/DFF/DWW1YUfeBAaNDAhmNefbXVoBIRERGRzGnAAPsB/cQTdr73nnsi3SORzGv7dqt/vHSp/datVy/SPZJTyQkHpIDOwMkmyGaKgNSh7rjDAhtBMOq226BOHQt0HM2jj1pW1bPPQsGC0Ls3cPnldgncfrv9FwgyrF580XIlg4BUhw4WRXntNWvPnm0DeuPiUvstZgnZstlsfBdfbDG+996z4FS3bnDnnfax3ngjNG2q6UtFREREMhvnrJ7Uli1w772QO7dNeCMiJ2bnTmjXzmr0fvIJtGwZ6R7JqSalQ/bcCV445HamVKMG3Hyz3d63z2YgWLvW2gkJMGSI1TdPyjm7/9pr4YEH7MvzMHXqWI2pwFdfhReuOvPM0Ix+AB07Jka2Ev3f/8Hw4aH2woX2DS2cfrqdNVuwwIbyXXedJaDFx1ui2uOPW60wEREREck8oqPtpONFF9lJ4jffjHSPRDKX3but9u7kyTBiBFx2WaR7JKeilASkzkzGpRxQH7gDWIwFot5PvL/sSfc6A8iWDaZOhb59rb1ggWXfTJtm7f/+s2Fju3dDVJTFi4IvzCFDjlOEMSYGihQJtZ980qb+C4wcGQpIeQ/z54ciYQkJULu25TAHj19xRSjA5T3Mmwfbtp3kJ5C5OGf1wF57zQqhv/uuxfgefhjKlIHWreGDDyxlVUREREQyvuzZLaujdWs7aTxiRKR7JJI57NljPxG//tpGknTsGOkeyanqhANS3vs1ybis8t7/4L1/CagBDAeuAXp579cccwWZTFTiJ1i9usWELrnE2hMm2KR7v/xi7TVrLJGpbVsLXN18s/0jSJH69aFmTbvtnOVYPvKItRMSbOqRa6+19tatsGwZ/POPtf/6ywJWQUbV339bBbtvvrH29u0WvPr99xR2LuPLnRs6dYJvv4UVK+Chh2DRIhsZWbSoJat99BHs2BHpnoqIiIjIseTIAZ9+auVZu3Sxw2ARObq9e+Gqq6xe1GuvQefOke6RnMrSfJY97/1+4GZgGXCzc651Wq8zUs44w2Z9A4s4T5xoo/HAUoovucQycx5+2NKKq1WDjRtTuRMxMZZvGQSs8ue3qNhNiWW78uSxb+02bay9bZsFrQ4csPbSpfb6WbOsPW8elCwJU6ZYe/Vqy74Kxrnt2mXpYJl03t2yZa3O16pV9hZvvBGmT7fi50WKWL0pBadEREREMq5cuWDcOGjSxMozJJ2USERC9u+3vIVx4+Cll6zGrkgkpXlACsB7fwB4Bxu6d0qUHMyVyzKkggyqu++2gMdpp1kApGlTWL7cZjH48Ud45RUrfJ7m8uSxgFO5ctY+80wLPl1wgbUrVYK5c6FZM2vnzm150MWKWXvhQksp+vNPa3/5pVVrnz/f2t9+a8Gu9eutvXSpReOCsXB79th/wgwmOtq2yUsvwYYNNpa6SxcblhkEp666Cj7+WMEpERERkYwmd274/HObgKhDBztmE5GQffssGDV6NDz/vM2rJRJp6RKQSrQ88bpOOq4zw8iXD849N9SeNMm+NGNi7GzOiBEW2wlcemmogDpYXCddAiG5csE559gcugAVK1o6V4UK1m7b1qZjqFHD2lWqwKBBFtgCe+zPP21QP1iB9uuus/vB8kKzZw8NIRw9Gq65xoptAfz6q4XsExKsvXdvumdfRUdbPG7oUMtg++47S2WdMsWCUkWLWpDqk09Cb0tEREREIitvXhuhUL++HV6OGhXpHolkDMEE7h9/bD/devaMdI9ETHoGpBIHs1EoHdeZYcXEWCLRDz/Yl+asWVCrVmjkXLVqoRgQQKtW4QGqp56yZKSIyJXL3gDYVHV33x0KYF10kaV8FS1q7S5dYMkSKFzY2vXrWyX44Pl//mlDCnPksPa771rUxyVOyPjAA5aBFXjxRQtwBSZNsmrkgT/+CAW7UkF0tM3I9/LLFpz69lu4/noLUrVvb5lT11xjcTUFp0REREQiK18+m1ioaVOrGZp0ImqRU9GuXTZAZuxYGw1y992R7pFISHoGpC5PvP47HdeZ4RUpYrMb3HYbDBwIF18MmzfDY4/Bvffac7y3fx5BWuX+/VbGKSjrtH+/xX9efNHaCQnw4YehMk8RlScPlC8fGrtYvz706xdq33qrVRQPAlD33QezZ4fa558fmlEQrN7V30l2oWHDQlMdAnTvHp6K1qNHeADr7bftEvjlF0s/CxwjGys6Gpo3t+GVGzdaLOy66yxIdeWVtg06dLASXbt2Hf+jEREREZHUlzevTTDUqpWdG3399Uj3SCQydu6Edu0sSPv66xqmJxlPmgeknHO5nXPPAm0AD0xL63VmNtmy2fCw116z4FT9+haTCThn/0gaN7Z2TAxs2RKK0+zaZUPIgoyqtWsta+eLL6z9+++W5TN5srW3bbPbW7akw5s7UUWKhIYDgtW26tUr1H7wQfjf/0LtN94IvTGAW26xIl2BwoVD2VpgGVgjR4baN99sQatAgwb24QVuvdXyWgNvvQWTJhETY7O5vHrnYjb+9CfffGNn4b75xgraFy1qY7THjFHmlIiIiEh6y53bqkC0bWszXQcnbkVOFdu2WU3jb7+18/FJR9uIZBQxJ/oC59xbyXxqdqAEUBfInXhfAjDoqK84xXXrZjXFO3SAhg0ta+qJJ2yivENFR9vIObCZ/ZJ+yZYsCT//HKpDvnmzZVEFSUk//2yZPl98YfGeefMsdXPIEKhe3UbRLVoEdetaglOGljevXQItW4Y//sgj4e1vv7WKfoEXXwxlY4FF9pIOEdy40SrRBx56yI5sgvU0a0bMFVfQ8pVXaNkSXpl0NivbdOKZnI8wejSc/35numa7iK3nX8lFF8FV24ZR8Py6FnTz3oYzFi9+5I0sIiIiIimWM6dlrl99Ndxxh/1Af+CB8EM/kazon3/sJ8uPP9q5+KTn20UykhMOSAGdsUyn5Ar+5e8FbvPe/5iCdZ4ymjSxYNDDD1usZMwYCxRdfnnyvzyzZbPAUqBiRZg+PdSuVs0yec45x9q7d1vtqiDANWmSZfcsXAiVK1vK8zPPwPvvQ4kSFkP55RcrF5Url8VVMtUXe7Zsodv16oU/duig6rFjw9tLloQKroMNGSxR4mDTXXAB5ZpV5rX2MHTIAfacNZPTzqzOPYvhmwm7uYWbefH5J/iraw3atdhBneaV7MO97z6LHJ51lrVvvNHaN95oubUtW9pwxTfftFMdFStaatyiRfYaBbREREREDpM9O3z0kQ3de/BBq/wwcGDoRK1IVrNhg1U9WbHCJmG69NJI90jk6FL6r9idwGU18CpQ03uf3OyqU1q+fPDCCzZsr2hRq0/Urh2sWZM6y8+f3+IbQV3xRo1g2jSrTw72D+ybb6BcOWt7b5cgEWncOKs7HiQaDRoEp58eGpr21VdWAyso0P7PP/Dff6nT94iLjQ0P/rRrB3WSTBz50ktW7RyIyRFNnnVLuHTq3SxfDvMXZOflPuv5oswtPPEENG6ejVvyjeKhmW0ZMwa2b8c+2OCD37EDli2zQBTYt8vdd8NPP1l72TJb99dfW3vePMtPD8ZqLlxoKXDz51t75Uobzrh2rbX//NM2VrD8PXvs1GE6z2ooIiIikpayZbMZrXv0sOnuu3QJT5gXySqWLrUyL+vWWZUTBaMko0tJQOrMZF5KALm992W997d5739LnS6fOurWtVn4Bg2ykWaVK9vt/fvTdr2FClnAKpj47qKLYOpUC5SBlWn6+edQu2pVi8HkThyY+e231s/oaGv37w9xcaHlv/iijeUPfP+9BcACSROQsgrnoFKVKG57oiQTZhbkzz/hrfdysKVNB176tjKXXw6Fyp1G65UvM3RBMws+liwJv/5q02KAFQn77z+45BJrlyljGVyNGlm7YEHLpjrzTGvv3m1ZVkGAaelSG8L4++/WnjnTAlYrVlh7/HjbqAsXWnvcOKhSJRQJnTIFbropNIvhr79aDa8gEvn773ZfEIlUYEtEREQyiKgoO+H76KMWnLriCk1CI1nL/Pk2t9OOHTYjePPmke6RyPGdcEDKe78mmZffvfe706LTp5KYGEuKWbTI/qnce28oUBUpsbHhQwJbt7bEoMCAAfDXX6H21VfD4MGh9h9/hM8A+Oyz0LNnqH355eET5T37LHz4YemD7R9+sM8jMytUCDp2tGGQf/1lXxrdu8OqVXYdF2efcZ8+Fjc6cAA7kjrttNDYyvz5LUMrGDIYF2cfVlDdvnZtS7MLxma2bm2nA2vXtnbTpjBjhs2CCDaWc+BAC4SBBacqVw4VElu/Hr78MhRo+uYbK3y2d6+1R4ywTgdHd08+aWl1e/ZYe9gwm+4meP348VaTK/Djj+FDJP/4w9YpIiIikgqcs7IYQ4fC55/bebnNmyPdK5GTN2UKNGtmPxOmTw8d7otkdBo9nUmUKWO/3z/5xH6n169vxRmD0VYZTdIyTY0bW2p04PHHYeLEUHvoUPj441D7kkssiBWYNQsWLcp3sH3rrRaYC7RoYfcFnngCPvgg/PWrVp3Em0lj2bLZLIiDBlmJqiVL7HbhwlZOqlEjK1B/ww22/U9qm8fEhFLXChSwhQcBpwoV4J57QmM54+NtwxQubO2OHS1AFLRvucUii0Gq3GWXWZGGYHn161tl/iDVLkh9CwqOzZhhGVaBN98Mn/7jwQdtGYH/+7/w4ZGPPRaeajdiBLz8cqg9fbqNRQ38/jv8++9xPyIRERHJ2m67DUaNspN+554bqmYgkhm9/76VXClVyg6vg3PTIpmBAlKZiHOWXrx4sX2RvvSSJbcMGmSpmZlViRI2u2CgSxcb4x8YPRr69194sP3GGxZ0CjRqFJ6xNXKkDRsMtGsHTz8dapctGz753m23hSfmTJgQCmAF9bPSU/nylhX37bdWePODD+wM3vjxNjSycGE47zyrgbBw4RH6N3KkZUtFRdn1yJFp09FcueybL6gKevbZ1sEg4NSqlUXUAt26hY/NHDDAoquB/v1tbGjgppvCU+saN7aNGdi5M7HwVqJPPrGgVKBvX5tKJ3DVVVaQLdC6NVx3Xah9++2W1RUYPNiWGfjyy1D9LrBg3JYtiIiISOZzzTVWdnP9ejv/NW9epHskkgyJx/nNWrTAl4lj7FUjufZaaNDAzsWWKhXpDoqcmJMOSDnn8jnnrnTOPeuce885Nzbx+pnE+/Mdfyknzzn3lnPuT+fcgvRYXyTlz2/BqJkzrcTPvfda3OGppzJuxlRqqlXLLoHHHw/PkFq0CF57LdT+5JNQgMt7y8AKAlj791vK9m+JFc5277aaWe+/b+2dO212lhdftPb27RbXmDQp9Pjw4VYvPFjen3+mXp2v006zbLH33rPlTp0Kd90Vqm9etap98XTubGf6trwy0gI/a9bYm12zxtppFZRKTUWL2uyBgYYNDxaIB+D66y3IFHjqqfD3NW6c/VEEhg2zrKvAffdZBligadPwWRb/+Sc8wPTyy+GRyptuCu0IYNlavXqF2mXL2jiAwMUXw9tvh9p9+oQipd5b9tnSpdZOSLBaXkkDbCIimcCpdPwlWU/LlpZRkj27HRZMmBDpHokcw8jQcb7zHrd2Da0+7sZLDUfy1VdWTlYks0lxQMo5l8M59zSwHvgQuBvoAFyUeH1P4v3rnXMDnHM5UqG/xzIcaJ3G68hQ6te3wMiMGVZXqk8fG9rXr18WmtUuhYIkHbADjCpVQvc//7xlmoGNYFu7NhRXiImBOXNCiTMJCRbwCwJgW7fCL7+E6nqvX28ZXd9/b+2lS23GwSCxZskSG8MdJP6sXWsxi6CO+ObNFkPZtu347ykmBpo0sWyvRYss1jRsmN03fryNqPvvtgdDRcYDO3fa8LdTQdINX7ZseM7yxRdD27ahdp8+4al4H3wQnkq3dKlFGwNffx0ecHruufAMq0svhRo17Lb39ke4O7GM3r59lsoYBMx27rTI5pgx1t66Fc46KzSE8e+/LRoZBLT++suOmoMZFP/5xwJsQcbWli0WRQ1qbu3aZf0/dF8QEUl9wznFjr8ka6lSxco7VKhgidivvBLpHokcxYOHH+fnYSe3bXjwYIUMkcwmRQEp51xBYBZwL5AXcMe45AXuA2Y65wqkQp+PyHs/FTglC8Q0amQ1mX74wYrZ9e9vgak+fcKLi8vxxcRYcK90Yg312FhLxAmKrJcoYdlUV11l7TPPtODSxRdbu0gRy16rW9fa3lv9p2AGwpUrbVTYhg3Wnj3btt+vv1p74kSLQwRxhpkz4dprQ0Xgly6Ft96y+MUZZ1hg7ZlnYNMm2/5lOHIRBL9mLb/+qonvTlhQbwtsXGnS6SI7drRhhIHnngsNCXTO8qaD1L1s2ay4e58+1s6ZExYssNQ2sDpb77xjBQCC9d5wQ6jg/N69dgnqcP31lxVfW7bM2itX2o7y44/W/vVXO7L+7jtrf/+9FZifPNnaP/5okdpffgEg96pVlnIXFNFYs8bS8oLI9n//WRQ0KGAvIpLoVD7+kqyjeHErCt26tZVyGDq0XJrPai1ywo5S7MytUxE0ybycT8EvVOfcd0CzxOZO4H3gK2ApsB0LQp0NnI9lS+UBPDDZe9/y5Lt91H7FAZ9776se5fFuQDeA4sWL1x41alRadSWiVqzIw3vvlWHKlCLkyJHAxRdv5Oqr11GoUOb9Mbl9+3by5s0b6W6kioQECwxFR8OWLdlYsiSWypW3kDfvAZYvz8PEicXp2HEthQrt5fvvCzF06FkMGvQTxYrtYcKE4gwcWIEPP5xJ0aJ7GDu2BIMHl+eTT76nUKG9/HbJWAZtvY0fqMtpbGEiFzKei+nJ81RkKfny7SUubgdt2vxO3br/kT37AcCRN2/qHnVlpe2VGUTt3UvOTZvYU7gwB/LkIdvmzRT44Qc216rF3sKFybVhAyU++4wNl17K7pIliV28mHKvvcbSnj3ZGRdH7u++45yBA5k/ZAg7ypWjyLffUuWxx5gzfDg7y5Th9K++otJTTzH73XfZVaoUxf73P85+4QXmjBjBnqJFKTx1KqVGj2bBY4+xP18+Tps3j0IzZ7LqpptIyJmTPCtWkGflSv5q0QIfHU22f/8lZvt2dpUuHZ7VJsmiv6/ka968+VzvfZ3jP1NOxvGOvxKfc/AYrEiRIrU/+uijdOpd1qf/CannwAHH0KHlGDOmFHXr/kvfvotS/RjpVDNlyhQAmjVrdpxnyvGcc/m15Ptv02H37z79dGYlndFJTpj+j6a+ZB+Dee9P6AJcCiQAB4A5wBnHeX5pYHaS11xyous8gb7FAQuS89zixYv7rG7RIu87dfI+Ksr7HDm8797d+7VrI92rlPnuu+8i3YUMYedO71ev9n7/fmsvXuz9sGHe79lj7Qn3fus7RH/o9xLjPfjB3OFP53f/5+D3/FtveV+pUlCm3S5FingfE+P9l1/asp94wvumTUPre/997/v1C7XnzPH+m29C7c2bvd++/fB+antlLodtr+3bvV+6NLRjrV5tO0OwsWfN8v6ee7zfutXan37qfXy899u2WXvIEO9jY22n8t77/v1th9u3z9oPPWT/mBISrP3AA94XLBha//PPe3/hhaH2++97//DDofa0ad6PGRNqr11rfTxF6O8r+YAffRodc+iSsuMv7z3ly5c/zpaTE6H/Canvnnt+89myeV++vPe//Rbp3mRu/fr18/2SHkxKirz2mved3Ht+p8sdfjCfO7f3770X6e5levo/mvqSewyWkiF7HRKv/wDO994fM0fQe78Oqy0QTKfVMQXrlBSoVAnefdfqGHXqBK++CuXKWdmbyZNDo38k88iVy4ZjBiPJKla0WtvZs1u7zbPNGfXOPrKVKQnOcWeZsfz+3jcUubMjXbrAtGk2SmvuXBuKeMYZ9m12wQVQoIDtLzt22OMHDtjzk55wee45S2UP3HRTeF3w226zkWOBIUPghRdC7UmTbCRb4K+/MvcMkVlWnjw2a2KwY5UpY9MR5clj7fr1YeBAG9MKcNllNjwwOLPUo4eNK82Vy9p33mnjTWNirH311VbzKsiOatw4fGaC6GjCiiHMnAlJsylefTW8QP2999pOHLjmGiuuFujdG+64I9R+443wgvdTptj42cAff5waM0SIiMgRXXTRJiZNshHr9evD//4X6R7JqWrfPujeHf7v/+DvCzqS8NrrUKYM3jk7Pnv9dSsjIZJJpSQgVR8bfveW935zcl7gvf8PGIbVlKqfgnXKSTjrLCt+vXy5/TMbNw6aN7ffm088EaqDLFlEx46werVFHFevDvuSKlQIqlWDc86x3+g//mj1sCdOtGBSdLQFo+rUgcKFbd/4v/+Dn3+2xT3zDIweHVpVly7wwAOhdvHiofpbYAGor78Otfv0sVkRAxdcYLGDQNu24XGGBx+EESNC7dGjrVZWYM0axQ0yhfz57R9OoGrVUCE2sA2fdMfo0SNU8B0sqhlMhQkweDB8802ofeedFiALnHeeTacZ2LPHLoH33w+PtN53n80GEWjdOrxgfXy8HQ0GbrnFangFXnopfEefNSu8zsOBA4iISObSpIkdc8TF2QzMTz+tWpySvv78046Vhw61c2+ffw55brbj/CnffnvYcb5IZpSSgFTRxOtfT/B1wXTARVKwzuNyzr0PzAQqOOfWO+duSov1ZGZlytis9Zs2WSZMmTLw0EN2feGFNgt90t9scmrIk8e2/3PPWZ3tDRtsVtkrr4SFC+Guu6BmTSvYfuedlgizYIEdlLVta9l3gYcfDp+obuxY+/IMfPhh+O/43r3tt33g7LPDA1pffBGq0w323GDiObBJ7R56KPz1SdffsSN8+qnd9t7WHRSMT0iwbLFTfUbKTKlwYZtRINCokf1aCNx0kx25BZ5/Hl57LdT+9lv46qtQe+TI8FS+Bx8Mz9hq1MgiuYEVK+wfaaBfP/jss1D7/PPtDyqQL1+ooL33VlA+2JETEmyaz8QaGxw4YNNmrlkTevy//xTUkgxLx1+SlZUpY7NZX3mlHbNcdpnNkCyS1mbMsFm+Z860eW+efTZ8rh2RrCIlAamgMnauE3xd8Pw0qaztve/gvS/uvc/mvS/lvX/z+K86NeXObUGEb7+131UPPmgBhquugpIloWfPg5NvySmoRAkbdvfGG5ZVt3atfRG2awfz5tnIp2rV4PTTbZ955RVLXknOWcO4OBs2GrjqKgtqBQYPtv0vMHeuDfsL/PCDBb0CL74YGiLovSWyBMvft89eH8xouGOHJbkEiSxbtlhA6513rP3XX5bIE8QJ/vrLYhzffmvt//6zYFeQqLNjh01eFwS0gmL1kkkkLaZ+9tmhGQ3Bfnm0TjKL/ZNPWqpg4OuvwzO6NmywI8XAZ5+Fnu893H+/7ZwA+/fbcMSoxK/fHTssGBZEXjdvtj+2sWOt/eefULBgKKC2aRN1O3cOf/zWW21nB9uxP/sMfv89tL5du5L9sYicKB1/SVaXJ48l1Q4eDBMmQO3aMH9+pHslWZX3dk6rWTOrfDBzJlx/faR7JZJ2UhKQSpyAnuYn+LoWh7xeMoCyZeHRRy3j84svoGVLCzDUqGHDtl55RWeCTnWlS9sX4dtv236yahW89Zb9Xp8504b6VapkwcwgkLVhQ640Cc7ExdmwwMB110GDBnbbOVv3lVdaO1s2Cx716GHt3LmtNFAQJ8iVCz75BNq0sXZ0NHTuDBUqWHvnTkuCCX7Lr1tnZ0cXLrT2b79Z6aNp06w9Z46tM0i8mT/fDiaCg9alSy2ba13if8Dff7e/uWDI4Z49FptQUCsTypHDdrBAixb2RwG2Yz7yiGVNge0kX38NN9xg7dhY2L3bUhHBsql++AHat7d27tyW4XXuudb2np1nnAGnnWbtv/+2saxB5HXpUjuFH4xt/eEHW8YXX1h77lwbhxKkCi5fDo89Fnr9P//YzqwglojIQc5ZlviUKfZ93bChlcPQd7akpi1b7Dj2nnvs3NTcuTZKQSQrS0lAahJWC6qDc65xcl7gnGuEFUP3ia+XDCY62sYof/ghbNxoWSn791uwoXhxG/o0aZJGjYgFhbp0sdpOa9fCsmVWTzE+3obzdesGnTrV54wzwgNZkRYVBUWL2u99gJw54YorQokxBQtaokqjRtYuU8YOBIIMrmrVYPt2uPhia591lv3GDwJixYpZwCrI0DpwwA5ggzreS5daIfm//rL29Ok2VDIYmfXpp1YTfMkSa3/2mdX6CuIEU6fawfCWLdb+7TcLqAXDbLdssWQZHRxnUkHGVLZsdjYgiLzmy2dpg9WrW7tECRY++qhFOwEqV7YN366dtatUsVTGoKh7yZK24wUBsoQEW0dQsH7BAujb1wJbYP/o69eHlSut/f77FvxascLa335rwbTg+StW2B9CsCNqBxSRLKxRIzvR1KQJ3Hyzncjati3SvZKsIKjhOnaslcUcPdoy90WyupQEpF4FDgDRwP+cc92cczFHeqJzLjqxlsDExOcfSHy9ZGCFCllWyU8/2T/Hm26yotetWtkwrc6d7cfz9u2R7qlEmnMWmLn5Zhg1yoKZv/0Gd921lEaN7HfqjTdauZ8zz7R95623LCkjs/1udc7S9oPf8fnzWxC3aGJVvbg4G8UVBKTq1LHZLIPSQxddZEHeWrWs3aKF1QcInl+jBgwYEIpD5M5tsYQg8WbJEhteGHxu48ZZEs3+/dZ+6SX7+9ybOCj6+ectBhHMpvnhh+Flkb7/Pryu96ZNoewtycRy57adLMigOuMMi5SWKWPtunUtqFS5srUvvdSCSVWrWrtpUyv8Fhdn7XLlLLJcqJC1N260HTuItI4ZY5HVYMd79lmL7u7eHXr89ttDO+Jvv9mOLyKSSRUpYsc3ffvCe+/Zv9w5cyLdK8msgkmDGja05OTvvrMMqaSVBUSyshMOSHnvfwOexLKk8gCvABudcx855x53zj2QeP0hsBF4HciHZUc9mfh6ySTOOcd+6G7aZEXPL7zQfghfcYXVFW7b1kqbbNwY6Z5KRuCcDXlr124jH35oQ+QWLLBaT+ecY4HNm26ykj2lSkGHDjYsdOHC0O/VrMy50AFGwYJ2pjUIOFWubLWtg7Nh559vta0LFLD2zTfb8NkgznDzzVbrLXj9hRda0fYcOaxdsqTFHoLEm6VLLY4QGDHCMq4CDz8cyvYCiyE0TpID+9xzNhldYPz48BkXV65UQCvTyp49VCm1WDH7x54nj7Xr1bOU2WDH69TJ0vqC9g03WIApb15r16pl9+XMae3Fi63oSrAjDh0aXoD+7rtDUVqAL7+Ejz5Ki3cpIpJqoqOhf3/7Xt27174vn3pKIwnkxGzYYMd7vXpZBv4vv4QSnEVOFUfMbDoe7/0jzrnswP1YYKowcMVRnu6ABOBp732/lKxPIi9nThvTfOWVVix6xgwLTI0da0GGW26xjJB27exSvboi+2L7QJUqdune3bJ7fvvNhp9NnWq1GIIsnUKF7Eu4aVMbjVSjhmYTOZYCBULBKrCA3znnhNpXXWWXwMMPhxeEHzDAEmcCXbuG1/GuVSt8+atWhYYXggUZt2614HTw+r17bSgiWEwjNja0fXv3tiB2MPndBx9YdlmLxOqCy5dbMK5ImszDKmmmSJHwjXbeeXYJ9OkTmmEQLAB19dWhdu3aoSgqwMsvW3Qz2HmvusrScSdOtPbHH1sBuKRBLRGRCGnSBH7+2Y6D+/SxOpLvvmsn3USOZexYO0m7a5fVQL3pJv12klNTigJSAN77B5xz44D7gAuBHEd42h5gAvCs9352StclGUu2bFYvKD4eBg2yE+Bjx1qA6pFHLIW5TJlQcKpp09AwJzm1OWfDyCpVsuLi3lugIwhQTZ1qtZPASuc0bmz7T9OmFvDUfpR6TjstlOQC4dlRYAGmpF58Mbw9enRoVBbY333SM8NNm4aSZMD+T5QsGWo/9JAl3wQBqfPOswP7ESOsXbOmZX099ZS1u3WzZXbqZO133rHhkEEQbt06C3jlOtH5XyV9BeN3Ax07hj/+4Yfw77+hdtOmNsNA4KmnbFxrEJC64gobbti/f9r1WUTkGAoUsJMsrVtbyYtq1WxGvuuvV4BBDrd5s52befttO4YZNSo0oY7IqSjFASkA7/1M4PLEbKkaQHEgFtgGbAJ+9t7vPeleSoblnA01qlwZHnjAZg6bMMECVG+8YT9i8+WzH5bt2tl10qwLObU5ZzM9li1r9aXA0penTQtlUD3wgN2fK5cFTZo1s9+o9euHT2wm6Ss21i6B+Pjwx3v1Cm+PHRvenj07fJjm4MHhiTYtWoTKHAXPD8ogJSRYbbIHHrCDuQMHrFTSI49Av36WqVWzJtx/v+1Xe/bYmevLL7cg5969tn9VrWoj1IK6XPrhkAHkzAklSoTa3buHPz5jRqiCsPeWVhcMF/TeNuott4Sm1xQRSQfO2YQvTZrYdefOltD5+uvh/9Lk1DZxop1g+/13O4bp108nW0VOKiAVSAw6/ZAay5LMrVgxSzm96SY7qf3NN5Y5NX68nfiOirIfis2a2aVJE6ulIxIoWRKuucYuYLPSTZ8eyqB69NHQRGF164aG+TVurNlIMpOgRnbgkkvC2889F97++efQbedshsdgpFdCgk2/HUyNvGePDRMNgt///We17sqXt/3k998tI2vYMPtftWqVPfbuu1bXbO1aq6H1wANW5+vPP+2HxUUXWVBs926b1bBwYQ0rTXe5coXS4JyzWRIC27fbP4Xg15+mvhKRdHbWWXYy7cUX7TukShVlS4llRd11FwwfbudNPvvMMv9FJGWz7IkkS+7clhU1bJgVPf/+exumExtrZUIuvdR+0NWoAXfcYUOA/vor0r2WjKZIEbjsMps1bu5cG80zYYKlOyck2LDRtm0t+FCrlu1LH39sQQfJmpyzwGXhwtbOls0CS7VrWzs21vaBIMhVrJjFKrp1s3bRohbcbNPG2nnyWEZXlSrW3rHDMvWCieOWLrVEnaVLrT1rli1zypRQu0kTK84PVg9ryJDQ/7Nt2+x/oIrdprHYWDvaDwqbBTMHioiko6gomzTkl19s+F7nznZCY/XqSPdM0pv3NtlslSp20uuhh+DHHxWMEklKASlJF9HRNp1pMCPJ5s32Y65/fws4DBtmBdOLFrV/2rfdZuPxN22KdM8lo8mf3wIJAwbAzJmWqfLtt5b2XKgQvPmm1UEuXtyyXrp2tXpDq1aFhmbJqSk4O50zpwWQihe39umnwxNP2GQMYDXO5s0LDUNs2NACnMHMN2edZZPFBUMKDxyAmJhQzazZs+3HSFAKacwYC6CtWhVqN25smVdgB6eDB4dKJW3bFl42SZJp/Xr71ffNN9aeNy+y/RGRU9pZZ9kx7wsv2DFv5cpWBm+vipmcElatspnzLr/cTqDNng2PPRY+j4eIKCAlEZIzpw2zevhh++2webOVBnnqKasFEwydKVHCggoDB5bnvfc0rbwcLnduaN7cimoH+9KsWfDss1CxInz6qZ2dLFsWSpe2/eqVV2DBgvAaRiJHEx1tQasg4FSqlAXNixWzduPG8N13UK6ctTt0sOyooN2gge1zwUiy6GhbVp481v76a0vlDwJmL7xgjwVF40eNsppZwf66bl0u5s5N2/ecYW3YYIEnsA+odWt49VVrFyxoKQhbtlj70HGhIiLpLCrKMrcXL7Y6qn362PDyIMNWsp69e+33TJUqFpAcNMgy/IMsbhEJlyo1pEROVvbsVqulUSObHn7/fpg/376wp0yB774ryoQJ9twzz7T6Uw0b2j/3atVUEFBCsmWzguf168O999qP+EWLbIhWUCz9gw/suQULwrnnhupQnXOOZbqInIyoqNBwQrCgevnyoXYwA2mgVy+bdTIojdSqlQVagwDY2rV2MBuVeArp449LM3NmaEhgnz7w009WLBXgiy9g61bLFMx0fv/d0sPKlrV2r16Wytazp7Xr1LExusOG2QcUHR2K5OXObZFmEZEMpnRpK00xYYINAY+Pt7pSAwaEsnUl85s0yebUWLzYMqMGD7ZtLyJHp59ekiHFxFht2rp1LagwadJ0ChaMPxigGjfOSoWABSCqVbPgVHCpVk0psWKioqyUTNWqltXivaVRBwGqadNsfwKbrKtxYwt4xsfbb99s2SLafTkFREWFT+7QoIFdAr172yXQvv067rorNG1T0aKhGQgBXnrJalYFAakbbrD9fsQIa8+aZclDZ5+dBm/mSLwPBY3mzrUq861aWXvAACvw9fjj1m7XzgrCffmltRcssKJegZdeCj+6D85UiIhkAm3bWlb3E09YJvfo0RZ3v+cezRycmf32G9x3H3z+uZ04//xz29YicnwKSEmmEB1tBatr1bIT5d7DypX22ya4fPwxvPGGPT9bNgtAJA1SVa+uIJXY7+KyZe3SubPdt2mTBaaCgGefPnZ/7tyWtRcfb0GqunW1D0nklS6962B9KwglDwU+/DB8grmyZcPrp3XtasMJx461dvfu9v8xKPqeNH50XMuXW4T3vPOsPWKE1W4aPDi0su+/tzRFsHEMixaF2itW2DjbwGOPhVLD4PCAU1CwXEQkk8qd2wJSN95owai+fW0m2Keego4dQ9mwkvH984/VMH3lFRtq//TTNkQz6deYiBybAlKSKTlnP6jKlQtlAQSZL0mDVKNH28gOsKyrIwWp9KUhxYvbfhTsS3/9ZRlUQYDqoYfs/pw5LUDVrJld6tfX/iMZT548ofpUAI88Ev74u+8mCTjt3cu6H/4lf2xRIIqERb/Rp9VsznigE7f1iIbx4y3CFbzoySdtyss//7T2yy/D669blhPYaeKpU0MrO++88FSsAQPCo2PBWYTABRec7NsXEckUypWDTz6xE2J3321D+IYMsX+zrVqdwIkBSXc7dtjkJk89ZUPk/+//LDBVtGikeyaS+SggJVlG0syX9u3tPu+txm3SINWYMTYTG1iQqkoVC07VqmUzoFSqZMWKdSBw6ipSxBIxgmSMf/4Jz6Dq18/2rRw5bGhVMMSvYUMFqCQCgmrnUVHw999WgK9BA4iNhZ9/tmBS795W2GrsWGo9/LBVUud0eP11xs7pAeP/AIqyZ+wXDNh0FxMLtgMKsH3xOjaPnsW6Lrto2DI31Khhv5qCqQVvvx2uvTaUVvXkk3YJXH11eF/POiudPhQRkcyhSRObgW3UKMvQPv98q2v56KN2fCEZx+7dNo/GgAHwxx826/Mzz9hvCRFJGSWFSpbmnI3lvvJKO4vx1Vf2e23VKjsrdd99NnvW2LFWhLBlS5sJq2BBqyXUtSs89xz873+wZo1mZTtVFSoEl15qiSHz5lmAatw4G+oUlL9p0cL2mwsusBlVfvklPBFE5Ii8t1Ote/ZYe9s2q0r+++/WXrfOUvSWLrX2Tz9Rs2dPCzqBBZayZYMffrD2jBn2ayZ4/vLlNpbgjz+snS+fRe0PHLB2fLxlOSVWVM/V7TpYsYI21+QDYMUFt3FxxeVky59Y3KRtW9vBg+r/5cpZsTVF8EVEUiwqCjp1gmXLrFTesmX277lVK5g5M9K9kz177KuyXDmbFbdKFfu6nTBBwSiRk6WAlJxynIO4OMt+efJJq5371182m/g331i69DXX2G+8ceOs0GSbNvaafPnst9f111uAa+xYO2jYvz/S70rSU4ECcPHFMHAg/Pgj/PuvFbDs1s1mpL/3XkskKV4crrvOyups3BjpXkua8N427n//WXvPHvjoI5tiB2DLFisoEczxvXGjpWOOGWPtJUusmv6nn1p79WqbG3z6dGv/9Zf9swkCTDExts7gn07ZsnZK/fTTrX3uuZbOV6GCtS+/3AJewRFz8+bw2WcWeQcbx3zrrZZNBRZ9LVvWCvdh+/H8+fZj6Z13Uu1TExGRI8iRwxJPV6ywE6K//mqlAlq1spOqOtGVvrZutXMwZ51l26VsWfjuO5tNr1GjSPdOJGvQkD0RLEhVooRdWrYMf+zvv+235aJFoevvvrNRMIHs2e33X6VKNuwvGPp39tkqgn0qyJ/fEkeCGVXWr7fg5tdfW8Dzvffs/ipVLHnlvPMsHT9pnR9JR7t3W0Anb15rz5gBp50WCtoMHmx/wEE9o2uugdatrQq+9zal3W232TC4vXuhZElLk3vwQVvu1VdbZdNKlez1775rU382a2aZSKVLhzZ+iRL23Bo1rH3WWdafihWtXauWLTPIQKpalZ9eeIH4unWtXa6cFQIPFCpkQalACjOXDhywISQNGlgw6pNP4O23LVMwf/4ULVJERJIpVy7LxOnWzZJcn3/evpJq1ID777fSFJoFOO1s2mQnqF95xc4rNW9u5T7OO08JwSKpTQEpkeMoXNjG9zdpEn7/1q1WvzeYMGrxYsuW+fjj0Bms6Gg444xQbauyZW0IYXC7YEF9sWVFpUpZ7KJzZxvm+csvFpz66itL+X7+eQtinnuuJbBcfrllU8lRBBlBwdH3smWwb59FfsGyjaKi4JJLrP3IIxZguusua198sf3BvfCCtStVsj/oESOsffXVdqQfFJd76inbKEFAas0aG6cJ9gfbpk0oAylHDpseqV49a+fODQsWWJAKLHoTZE+BpdeNGxdq58tnvy4CuXKFn3ZNp38QCQk2OrBIEXsL779v2X0//mg19m67zc4OKxglIpJ+8uSxrOs77rAaU888YzPx9elj/5O7dLHjVEkdc+facdp779lhxxVXWHmP4ByQiKQ+BaREUihfPvsNGvwODezaZaNwgiDVypV2GTvWJqY6dBlJg1VJL2XKWNBCMreoKKhZ0y733Wf7x/TpFpyaMMHqUPXoYcGp9u3t4CcYTZWp7dsXCiCtXWuphuecY+3Jky36cd111n7jDRuq9sQT1r73XnvNRx9Zu21bGxc5a5a1/+//bPnTpln7uedsXUFAat688KluypcPBYjAMpmSfsiffBJ+RL9q1cGaSsDhBTxefTW83a1b6LZzGbqgREKC7ZObN9uQ04susiyoRYssiWvUKOjQwUYNfvihfXRgQVYREYmM7NntJNf118PEifDss3Yu4+GH7djh1lttYhWd5DxxO3fa990rr1g5xty54cYbrWSH5uEQSXsKSImksly5QgGIQ23fbr91gyBVcFm0yIITQV1jsIOKUqWOHrAqUuQoBx4jR9oP7rVrLT3riSfsdJpkCLlyWcr3eefZAeWiRZZV9/HHdgb0zjutoP6VV9olaRwlTe3ZY0e8zlkB7JUroX59i17Mnw/ff29pMs5Zhs+4cTBsmL12yBDb72bPtnbPnlZwKMgMevJJy2IKCmu/+66NZQwCUj/9ZLPBBQoXtqFwgU6d7Igx8Pjj4Tv/mDHhY2PHjw9/b4MGhbe7dg1vN2gQ3s6d+0ifUKaSkGB1zUqUsLp3O3daduY999iPmGzZbKRg8eL29s8+2+JstWvb6wsVgquuiux7EBGRcFFRdiLhoossGffVVy3Z9733oHp1+3q7+moo+rWOBY/Fezt3NWKEXTZvtqTrF1+0QxNlA4ukHwWkRNJR3ryWhVCt2uGPJSTYmPUjBay++MIeSypnTgtYlSwZum6+aSStPupGzJ7EH+9r1oSyN3QgkiFVrmwjzB55xDLqguBUz552iY+Hfv0OmfrZe0u1yp7dilz/9x8sXGjFJWJjrRrq559bIKdQIcsseuUVi4AVLWoBnL59rdDV6adT4rPPrEDCn39apHPUKLj7bjtCy5/f0rl697bTs3ny2MxtX31l+ewxMTY8rlQp65dzll5TrFiov7fdZtG1wLPP2riDwNCh4R9K797h7WuvDW8fWkn0FBmvsG+f1ScPvPmmDfu97DJrN2xowcyBA20zdO5sP0zq1LEYW4cO9oMFbDPu3BlKYsuRwxLPREQkc6ha1WbkGzDAhlm/+qqd2Jp950iGuW7kTNCx4KFWrbLzZyNHWtmN7NlthP6tt9pIfmWYiaQ/BaREMoioKAsqlSwZXpM4sHOnjWpaudLiDevWWfHsDRusBvKGDXDrvgeJYedhL9x044P0GNPxsABWqVKWQZEzZ7q8xVOX9xZJiImxD3vnTssLr1DBAjd//QXvvkuliy6ib9/y9O24gi09+/JR6XvpN7YWd8fP5bM8HYnpeDXFv3zHDi7Bgkr9+1v20kUXWeCpfn2blqdnT6ucXqiQBZqmTLHCZ0WLWpCpfPmDxc62VqpkWUdBltEll1idpWDY2q23Wv56kDl09912CVx/vV0CF1wQqr8EoShIoGDB1Ptss5Dly20TBSMbn3rKYn4PP2ztevXsb/aee6w9ZIhlSwYBqcaNQ3XUnbMRjUkz7AYPDl+fCuKKiGR+efPCzTfbZcECKNn4QXJuPfxYMOGBB4nKqgGpY4wOWLrUkrrHjLHDJbCTfPfcY2USChSIYL9FRAEpkcwid+7QDH5HkpAALmYtHGFK4NP3rmXhQhsltX374Y8XLhwKUpUsaTGSokXDL0WKWBwhKip131eGtW2b/arPm9c+3KlTbXa0cuUsVWXIEIsANGhgH2q3bpbJc9FFVi+pUSMLGHXqZAdIcXGW0nLjjRY9jI+3PPHrrrPn33OPffjly8OePeRfPJub7/yHToNg5COx/PFcfqq8/gywO9THZ56x519wgVVND2Zma93ainAHOeft2tkl0KKFXRJtr1AhPD0mGBcayJcvtT/dU8KaNZbZGIwI/PBDOzAOAkw9eljscPJka/fsabvG/PnWXrjQdrXAPfeEz8w4bVpookCwzKikMnApKxERSQNVqwLb1h75wXVrOf98O+fUtq0dlmQJI0faMdjOUEbYgZu68dEH8Ojyjvz2m91ds6Zlk3XoYDErEckYFJASySKiorBv2CB7JuljZc5g8WK7vXWr/ehdvz6UYZX0es4ci4/4IwS2oqMteHVosOrQy8aNOdm2zX4sp1v68+7d9us9Ntbas2dbFC8YH/naaxZ1a9vW2t26WcGcIBBTq5bNaf/II9YuXNhmaRswwN5Ey5Y2rc1jj1n73nstO6lBA8t8+uEHaNXKXps7t6W5FCkSWtYzz4SmaSldGiZNCkUMype34XFBdKFyZUuXAXIBXZ8pT8IHfxC1LkkwKnjPDz5oZwGDdYNlYSntLdVt2GAp/i1bWvt//7PLkCHWfuwxePtty2IE2+QffBCaoG/KFPjuu1BAqkqV8IBSv34W+wy89174+jt1susggKU4oYiIHOYox4Jb8p3BmjU2mUr37lZXsEULG7HfvHnmnVDF93kQtzM8Iyx6z04aff4gpVp15Pbb7ZycglAiGZMCUiJZyRNPhJ8lAguOBLOXYT9i8+ULDe05kgMH7Ef0n38e+/LDD3a9deuhS7CUkJw5wwNVBQtauaECBaBA/gQK5d1DvtNzUaAAnL55CfljdpC36TkWyBr7mQVcrrkm9N68h4cesvZVV1nw6c03rV23rk2HMmaMtTt3tqFiH35o7WefteBREJBaujT86KtBg/CsoEGDQpXpnbNIQnA6MSYGtmwJpavkzAnLloV/5h98EGrnyWNT7AVy5gzLUCI6+rgVNN36o5zxXHuU++Uwe/fa/nr66TZcbcUK+PZbO1uaN6/FCF95xXap/Pkthnn33bBxo7Xfe8/KW23fbpv0l19sMw8caHUoKleGNm1CpbRuuy28MPjQoeEB2ltuCe9fnTrp8zmIiEgWdpRjwQIvP8GSjnZi5auv7Ptv9OjQYdTZZ9vQ8Dp17JCqZs3wrNyMYuNGO/788Ue7nrh2LUc693mGW8vXX6d790TkBGWZgJRzrjXwAhANDPPeD4hwl0TSX1Ab4CRnVomODgWRjuqvv2zWtKpV2b0btnw5i50/LeW3etczZcpimqz+kbzLf+KtKoP480+4fO6DnLV1Lpfm+IItW+AjfxWVWExVFgLwGfdThjWU4Ceio+F/Ua9zetRf3DToGgoUgIeXLCJHNs+n2y2odd6OCmSLzs26CXbAdMYV95GtcH78Wmvnff0dshfOFzpI+emnUE0kCKWZBF55JbzdvXt4u2nT8HYapqcEgZM//rB6EBMmwEDO4AwOP+N5qp3y894uUVEWE5w712q5FypkMcHXX7dA0JlnWkbS7bdbTLJKFfjsMyvy/euvNqxhzhw7Zm/SxEY7bt5sheW3bbMAVJUqVj4rcPXVVjg8e3Zr9+pll8AVV9glcOiQORVLlaxKx2AiGchxjgUrVrTLHXfYCciffrJzbtOm2fXIkfbyqCg7eVmpkpW8rFjRrsuXT/tZ6BISLPD022+wZIldfvvNjomCSX6io+179t88Z1B4x+HHR+4UOz4SyayyREDKORcNDAXOA9YDPzjnxnnvF0W2ZyIR0LHjkQNQe/faL+5ChexbfM0aOwpp08bSRWbMsJnZHn3U2qNGwRtvWNpIVJQdzAwYYOlQztl4pKFDYedOGyH23Qfw1lucufV6cuX6g/iJv8Lib2j2TuL6h5wOi+L471U70Nj1fid2rfmTeRfaJHEJc/uxdvNeni1g3fzi9/f5Z2s2imy3x2/ONZLNm+G/5+2tPMBjttyDiUiJRbV7BO16REVZcMouecmbN2n78Eu2bJb8lPT6SPcd6Tomxg7s9u1L/mXXrlBcL7j8+ae936SKF4cvmz5Bl1lJZlCEw7LfMosgg2jvXpt2+YwzLFntv/8sLti2rQWZ1qyxKaz79LHhBD/9ZGduP/3U0u8XL7bhcxMn2sR+f/xhu+RFF1lAKn9+O3iOjrb11qtnAatgAsCLLrJj9eLFrX1oQOncc8MnGIiLy0I1N0RSiY7BRDKgox0LHiI62qoX1K5tlQjAAkFz51r20fz58PPPlnx+4EDodbGx9r2d9HLaaXZ/0ku2bLBqVRxgwS7vLfl961Y7+RNc/v7b1rthg11v2mSTegTy5rWAWKtWdhxQp45lcOXODYw8/ugAEcm4nD9SoZhMxjnXEOjnvb8gsf0AgPf+qaO9pkSJEv7/NMe1ZCLR+/aRb+tWtsXGsj97dmK3bKHcypUsKV+eXXnyUHzjRurOmcN3LVqwLV8+yv/2Gxd8+SXv3HADW087jVpz59Ju/Hieu+sutuXPT50ffqDthAkMvPdeduTNS71Zszj/q68YdO+97Mqdm+o//0ytefMY2bEj+7Nnp9zy5Zy5ahWTWrTAR0dz+u+/U+C///itYkVwjlw7dhCdkMD2oIZTGvEe9u+PYdeunOzenZO9e7Ozb1929u7Nlnid9Hbo2p535OvgNkdM+k5bOXPuIk+eHeTNu508eXYk3t5BnjzWLlBgM0WL/kFUFFT95RdaTppE/i1b2JI/P5NatmTBoTPYpYMgoASwaVMxcubcRYECW0hIgJkzG1Ky5Abi4tayf380H354FdWr/0q1agvYtSsHgwbdQ6tWk2jQYDbbt+dm4MD7aNNmIvXq/cDWrXl57rl7uPji8dSuPY+tW/Py0UdXER8/hbPOWsH27bmZPbs+1aotoGjRv9izJzubNhXn9NP/IFeu3WH9EgHo16/fXO+9BkOmIR2DiWR9+/dH8d9/Bfn770L8+28htm6NZdu28MuBAynPc8iRYzf58m0lNnbbwUv+/FspXPhvChX6m9jY7cf8fs8ox0ciEpLcY7AskSEFlATWJWmvB+of+iTnXDegG0Dx4JS4SDqJ3r+fwn//zdbYWHblyUOunTup9uuvLC9Xjn8LF6bAv//S8ptvmNG4MZtKlqTEhg10GDWKT9q3Z01cHGesW8f1I0bwdufOrI2Lo+iff3LJ2LG8eeONrM+Th9w7d1J25UpmNWzItnz52JknD+tLlcInfoOvO+MMJrZpw94cOQBYXKkS60uWZFdi8es59eoxp379g7/of6lRg19q1DjY/xVnncWKs8462P6jWDH+CFJNgF3pVGjAOciWbT/Zsm0nX74jTBl4EhISHAkJURw4EEVCQhQJCdEn1I6K8kRFHSA6OiFZ1zExdju5FlSvftIHWN5DQkLUwfVu2lSMqKgETj/9TwB++KEOefNuo1KlJQCMHn0ZxYtvolGjWQA8//ydVKz4Gxde+CUAb73VhTp15nLBBV/hHHz7bQsaNJhNXNxaoqMPsGNHHvbts6+aHDn2UrfuDxQrZvn2uXLtomPHkRQtauvOm3c7Dz74ONmy2WnYfPm207XrWwf7njfvTlq2/O5gO0eOvcTFhdL0FYwSiQgdg4lkcTExCRQp8jdFivx91Ofs3x/Nnj3Z2bMnB3v35mDPnux4f/jUzDEx+8mefQ85cuwlR449ZM++l6iok0uQSI3jIxGJjKySIdUeuMB73zWxfR1Qz3vf42ivKVGihN+4cWN6dVFO0uTJk4mPj49sJ7yH1astb7hIERtv9M47lud8zjmWf3zzzXDddTYWaNMmK1Tz7LNw442wapUVzX77bSu4vXSpjSd6912bPmvpUpuL98UXLSd59Wp48kmbG75aNRuP9NVXcN55NuZoxw4b71WiRKioTQaRIbZXFrV/vw31CxLR5s+3XSEYWjZ8uD0e1D7q3t1GXAYzwdWvb7XBxo+3dvXqkD//X0ybZjMCVqoUXgv+kkusuGlQS/7RR213vOwya3/xhQ1jq1jR2tu22fDHqMOPQSWV6O8r+ZxzypBKYyk5BqtQoYJfsmRJenUxy9P/hNSnzzT19O/fH4BHglmMJVVoH01d+jxTX3KPwbJKhtR6oHSSdilA0SY53M6dVrwnqMY4bpz9Om9gs8Jxxx32i71jRwtAVapkAaYHH7R2uXI2Z3v//paO0a2b/UI/5xwLCv38s9VkAltHhw42bQlYoZrRo0NTaZUtawGl006zdvnyVhQnEBdnBW8Cp59ufQkEhY8kU9mxw2ollSpl7Z9+gpUr4fLLrf3hhzZ7W1D6oG9fq+UwYYK1r7nGdpOFVguefv1C5cAAPv7YYqNBQCpbtvDgUNeuiTUXEr3+OixevAqwgNT8+ZCYRAfA2LHh/e/bN7zdunV4O41HbIpIxqNjMBEREUmRrBKQ+gE42zl3JrABuAa4NrJdknSxfj3s2WOBIrB52bNnD8213qWLZRAFv+6rVLFUknfftfbtt1s2UhCQmjw5NHuac9CsGQTD1KKiYMQISx8B+6W/bp0VCQfImdOmAAnkzg0vvRRq58wZijqAVcEuXDhVPgZJP1u22GavWNE24YIFNjPNzTdb+/PP4f33bReLioIXXoDBgy3o5JwFkF56ybKYwDKa3nortGvMnm1FuoNdtmDBUNFtgOuvtzhmYMAAKxIfGD8+PAD1/PPh/b/55vB2gwawe3eoEGjiCE4RkeTSMZiIiIikSJYISHnv9zvnugNfYlMOv+W9XxjhbklKLF9uv7YbNrT222/D77+H2l27wj//2HQfEJpBZMoUu371VUvvCAJSwRRogb59w3/dT5oEBQqE2r/8Et6f114Lb3fqFN4O0lwkQwtGJjtnAaXFiy02GRtru9yYMTaKskgRCy49+6ztSiVKWHDp1lvh11+hdGmbfPC222xEZrFi8O23cOedtssVKmQx0tmzLRkvb16bQS4+3obaZcsGV15piXdBAe7777flBZ57zi6Bnj3D30u7duHtSpXC2xoqJyLpScdgIiIiklJZ5qeL936i9768976c917zfGYUf/wBc+aE2uPH2/C3QO/eNm9roF+/8Glqv/sufMxQxYqhDCWARx6x4XOB//3P6iwFXn89/PEuXcLHGJUvb1EIydD27rUL2JC3SZMsIAR2/cgjodGOixZBy5ah3W7KFEuamzbN2jNnWnxzwQJr//abBYVWr7b27t2WAbVjh7XLlYMbbggNYzv/fPjoo1AiXefO1ocgrnnLLRbkypvX2pddZnHVbNmsXb++lRQLCnCXKGG7oYhIZqVjMBEREUmJLBOQknSyf7+lgARjhGbPtgDT/v3WfvVVq410wGbJ4oUXoHHj0PO//x7efDOUslK1qkUPAr17W0pKYMQImDUr1L733vAAU4sWln4SiI2F6OhUeauSOry34Wk7E0eF7d8PX34Jy5ZZe8cOeOABmDrV2n//bQGjTz6x9qpVFgwaNcraGzbYKMtvv7X2f/9ZGa+gplJ0tI3i3LfP2nFxcN99FvgBK+E1YUKoCPf551sh7qC013nnWR2loPRXvXq2Gxctau1y5aB9+1Adpnz5LFNKmUkiIiIiIiLJp59QEu6ffyzDaNs2a0+bZtNs/f67tYcNs3FLQXrKvHnw9NPw77/WLlHCajTt2WPt666zrKggAPXkk7asID2kUycYNCi0/qpVLYVEMpSdO61QduDrr23TBx5+2Oq1B3r0qHWwdpH3Vnv96adD7dat4YMPrB0VZbvA/PnWzpnT4orBxIFFi8Ljj0OtWtY+4wzLejr/fGtXrGhBriuvtHaFCjB9usVBAcqUsd0uKAVWuLDVnQ8ymrJnt2ymYJcUERERERGRtKeA1Knmzz9tGNu6ddaeOdN+qf/wQ6h9wQU27gls/NKqVVZ4Bywb6dVXQ7O73XSTBZ+C9JF27SyrKUgfqVTJog9B1pJ+9UdEQkKoiDbYcLaZM0PtIUMs1hi46iq4555Qu2pVq/8euOmm8Hrt770HM2aE2oUK7Tk4pC0qymoynXeetbNls3UHxbVz5rRd6M47rZ03r8VEg1pJefJYEl6NGqHnN20aGmkZFaWkOBERERERkcwmSxQ1F0IVkrdts9SThg0tirBsmc0U99JLNo3Xpk3wf/9nc8OXLm3pIvXqhabWatTIsqKqVLH2eeeFF/quWDE01glCaSyS5hISQsPCli+3oW3B5ICffGKbtkcPa/fpAxs32gxuYDHGXbsscwhsCBuEasF/+qnN5ta1q7WLFw+fAPDhh8NrwX/+uT0/sGpVeF/79VtEfHzRg+2kwS0I9RsUoxQRERERETkVKSCV2Rw4YIW7S5WyYuCbN1vw6P77LcVk3z7o1g0GDrSAVNGilqEURBMqVYK1a0MFdc4+O1ScByzKcO656f2uTjnbttnIxaBO0ezZMHduaLa1N9+EL76wuCFYoOnTT61+EsATT1hh77VrrT12rGU9BQGpmJjwWOFNN4WKggMMHRoqsg0weXJ4/154IbzdpUt4O2ldeREREREREZETpSF7GdG//4aG1AFce21oHvioKLjmGpu2CyB/frj44lDWUoECsGZNaPxT/vzw1luWMQUWpShdWmOcUsGBA6Fa7Rs3wsSJodJZ06dD9+6hYXJvvWXFsHfvtvbzz9vMakHh7QkT7PlBLfggYBWU3mrVKhSsAqvt/uGHofbbb9tscYFHH7WRmYFrroHrrw+1q1a1WksiIiIiIiIikaCAVEbwv/+FphQDCx717Blq79oVinQ4Z8V6gpnmnLOaThdcEGqfcYalyEiyeW9lsoIsoo0bLcjz11/WnjXL4n6rV1v7ww8tw2jFCmt/9RW0bWuvA1i61BLP/vvP2sWK2WYNln/ppVZ3KQg43XOP1ZMPhuT17GkjJ4PhbJdcYnWUAlWqhGKMYJtbQ99EREREREQks1BAKr0EkQew8VJJK0S/+KKNwQoMGBDKcAIYMwYeeCDUrlEDTjstzbqaFRw4YMGhYLLAf/6xMlrLlll7yRJo2TJU2HvqVPtIp02z9m+/wY03hmq779sH69fD9u3WrlrV6irFxlr7wgttWcHIyBtvtES3YGRkmzYWgAoKfVevDh07hobV5c9vyW0KKomIiIiIiMipQAGptLJ/f+j2wIE2pC4ISq1fbxGRwJtvhk95dtllNo2YhNm+PRRg2r0bXn7Z6i6BZTI1ahSqubR2LZQsGUo8++8/q680a5a1s2e3pLMgY6lCBRg0CMqWtXaDBlaoO8hCatIE5s+3QBRYhlL//pb5BHD66faaoDa8iIiIiIiIiBydAlKp5cCBUMDp3Xct3SUYr1W2LLRoESoo9NRT8M03odcWL37KRjKSxu2CwtxgH+UVV1iszp7niI0NldJyzpLM/vc/a+fNC7lzhzKOihWDV16xIBVAXJzVZOrQwdpnnml1npo1Cz3/7rvtfrBlxcVpEkERERERERGRtKBCQ6lhxgwrCvS//0GdOlC5sk1LFlSwvvxyu5xiVq+2DKTy5a3dr59lEt16q7XPOgvi42HYMGv/3/9Bu3ZQr54FnP76K5QRFRPjGTwY6te3do4csGkTFC5s7Vy5wmN8uXLBLbeE2jExtm4RERERERERiTwFpFLiv/8senLNNRZoqlgRzj/foiQAtWvbJQvyPlTnaMYM+yguusjaPXvaMLhXXrF2+/ZQqBB88YW1p0yxmeYCt95qWUiByZOhSJFQe+rU8HUnLasFoeFyIiIiIiIiIpK5KCCVXOvXw7p1VlQof35YvtwqZYNFXUaOjGz/UsnevaFhal99BQsXwl13Wfv//g9mz4affrL2oEFWCisISB06vO3pp23oW+C778Ifv+ee8HbFiqnyFkREREREREQkg1NAKrk6dIC//7Zp16KiYN68SPcoRXbvDpWrmj7dgk6PPmrtPn2sUPh//1kW1MSJMGKEZT45B+eeC6VKhZY1eLANhQs880z4ulq0SMt3IiIiIiIiIiKZlYqaH8369TZGLChE/sILViMqGK+WCSxcaMGmnTut/dJLVltpyxZrz5oFAwbA1q3Wjo+3rKUDB6z9xBNWxyl4y9ddBw8/HFr+GWdAiRLp8lZEREREREREJAtRQOpoVqyA116zqA3AOeeEFzzKADZvtiymYOTgN99YBtOiRdZeuNAKia9aZe0GDeCxx0KTAXbvbvG2fPmsff75FnAKsp7y5IHo6PR6NyIiIiIiIiJyqlBAKqm//oIJE+x2s2awdi00bx7RLiUkWF0ngJUrbTK/GTOsvXgxtG0bipmVKAEtW4YCSu3awY4dUKWKtevUgYcegtNOs3bOnAo4iYiIiIiIiEj6U0AqqXvvhY4dQ2PaihZN19UfOGDBpWXLrP3771Y//e23rR0ba0XEN2+2do0aVgeqaVNrV64M77wD5ctbO2dOG6InIiIiIiIiIpKRKCCV1KBBMHmyRYHSgfdWmuqTT0Lt+Hh4/XVrn346dOsGVatau0iRUFYU2Ax2jRtboEpEREREREREJLPQLHtJFS5slzQ0cKBlQvXqZcXCX3sNGjaEK6+0oXYTJ0KFCvZc5yxGJiIiIiIiIiKSlSgglcaefRZ++QXefdfas2eHiooH7aQZTi1apG//RERERERERETSm4bspbIvv4QOHawYOVg21NatoSDURx+FhuiBhtuJiIiIiIiIyKlHAamTtHYt9O4N//xj7T/+gHnzYNMma/fuDWPH2vA7CF2LiIiIiIiIiJyqFJBKgS1bQgGo33+3Ok/z51u7UyebCa9kycj1T0REREREREQkI1NA6gRt2walSoWKjdetCxs3QqtW1o7SJyoiIiIiIiIickwKnyTD/Pnw6qt2OzYWBgyA9u2t7RwUKRK5vomIiIiIiIiIZDaZPiDlnGvvnFvonEtwztVJi3W8+Sb07Qs7dlj79tuhVq20WJOIiIhI5pAex2AiIiKSdWX6gBSwALgcmJpaCzxwAAYPhmXLrN2/PyxdCnnypNYaRERERDK9VD8GExERkVNHTKQ7cLK894sBXCpOX/fXXxaE+vtvePxxKFQo1RYtIiIikiWkxTGYiIiInDqc9z7SfUgVzrnJwL3e+x+P8ZxuQDeA4sWL1x41alTY41u2ZCN//n0AbNqUk2LFdqNjrIxh+/bt5M2bN9LdkGTS9spctL0yF22v5GvevPlc772GkqWxEz0GK1KkSO2PPvoonXqX9el/QurTZ5p6pkyZAkCzZs0i3JOsRfto6tLnmfqSewyWKTKknHPfAMWO8NCD3vuxyV2O9/514HWAEiVK+Pj4+IOP/fYbXH65zZ7XpctJdlhS3eTJk0m6vSRj0/bKXLS9MhdtL0lPaXEMVqFCBa99OPXof0Lq02eaeoKAlD7P1KV9NHXp84ycUypD6pDnbwOWpGmnJDUVBv6OdCck2bS9Mhdtr8xF2yv5ynjvNRduGtMxWMTpf0Lq02eauvR5pj59pqlLn2fqq+C9jz3ekzJFhlQaWaI0/szDOfejtlfmoe2VuWh7ZS7aXpIF6BgsFel/QurTZ5q69HmmPn2mqUufZ+pzziXrJFWmn2XPOXeZc2490BCY4Jz7MtJ9EhEREcnqdAwmIiIiJyPTZ0h578cAYyLdDxEREZFTiY7BRERE5GRk+gypk/B6pDsgJ0TbK3PR9spctL0yF20vyey0D6cufZ6pT59p6tLnmfr0maYufZ6pL1mfaZYpai4iIiIiIiIiIpnDqZwhJSIiIiIiIiIiEaCAlIiIiIiIiIiIpKssH5ByzrV2zi1xzi13zvU+wuPOOTck8fFfnHPnRKKfkqxt1TFxG/3inPveOVcjEv0Uc7ztleR5dZ1zB5xzV6Zn/yRccraXcy7eOfeTc26hc25KevdRQpLx/zC/c268c+7nxO3VJRL9FEkJ59xjid/lPznnvnLOlYh0nzI759yzzrnfEj/XMc650yLdp8zOOdc+8f9rgnNO08GnUHKPFyV5nHNvOef+dM4tiHRfsgLnXGnn3HfOucWJf+93RrpPmZlzLqdzbk6S49P+x31NVq4h5ZyLBpYC5wHrgR+ADt77RUme0wboAbQB6gMveO/rR6C7p7RkbqtGwGLv/X/OuQuBftpWkZGc7ZXkeV8Du4G3vPefpHdfJdl/X6cB3wOtvfdrnXNFvfd/RqK/p7pkbq8+QH7vfS/nXBFgCVDMe783En0WORHOuXze+62Jt+8AKnvvb4lwtzI159z5wLfe+/3OuacBvPe9ItytTM05VwlIAF4D7vXe/xjhLmU6yT1elORzzjUFtgMjvPdVI92fzM45Vxwo7r2f55yLBeYCl2ofTRnnnAPyeO+3O+eyAdOBO733s472mqyeIVUPWO69X5l4kP4BcMkhz7kE+4P2iR/UaYk7pqSv424r7/333vv/EpuzgFLp3EcJSc7fFliwdzSgwEZkJWd7XQt86r1fC6BgVEQlZ3t5IDbxiz8v8C+wP327KZIyQTAqUR5sf5aT4L3/ynsf/A/QMVIq8N4v9t4viXQ/MrnkHi9KMnnvp2Lf+ZIKvPebvPfzEm9vAxYDJSPbq8wrMaayPbGZLfFyzO/4rB6QKgmsS9Jez+E7WHKeI2nvRLfDTcD/0rRHcizH3V7OuZLAZcCr6dgvObLk/H2VBwo45yY75+Y6565Pt97JoZKzvV4CKgEbgV+xs08J6dM9kZPnnHvCObcO6Aj0jXR/spgb0TGSZAz6nSWZhnMuDqgFzI5wVzI151y0c+4nLCHha+/9MT/PmHTpVeS4I9x3aIQuOc+RtJfs7eCca44FpM5N0x7JsSRnew0GennvD1gSh0RQcrZXDFAbaAnkAmY652Z575emdefkMMnZXhcAPwEtgHLA1865aYdknohEjHPuG6DYER560Hs/1nv/IPCgc+4BoDvwSLp2MBM63mea+JwHsWzJkenZt8wqOZ+pnBT9zpJMwTmXFxvV0VPHUifHe38AqJlYDmSMc66q9/6oNc+yekBqPVA6SbsUdjb5RJ8jaS9Z28E5Vx0YBlzovf8nnfomh0vO9qoDfJAYjCoMtHHO7ffef5YuPZSkkvu/8G/v/Q5gh3NuKlADq/0g6Ss526sLMMBbIcjlzrlVQEVgTvp0UeTYvPetkvnUUcAEFJA6ruN9ps65G4CLgJY+KxeJTUUnsJ9Kyuh3lmR4ibWORgMjvfefRro/WYX3frNzbjLQGjhqQCqrD9n7ATjbOXemcy47cA0w7pDnjAOud6YBsMV7vym9OyrH31bOuTOAT4HrlLURccfdXt77M733cd77OOAT4DYFoyImOf8LxwJNnHMxzrnc2CQPi9O5n2KSs73WYtlsOOdOByoAK9O1lyIp5Jw7O0mzHfBbpPqSVTjnWgO9gHbe+52R7o9IouR8n4lETGItzjexibOei3R/MjvnXJFgllfnXC6gFcf5js/SGVKJM410B74EorFZvhY6525JfPxVYCI2w95yYCd21lnSWTK3VV+gEPByYtbNfu+9puGNgGRuL8kgkrO9vPeLnXNfAL9gswoNO1Z6raSdZP59PQYMd879ig2J6OW9/ztinRY5MQOccxWw/zVrAM2wd/JeAnJgw3cBZmnmwpPjnLsMeBEoAkxwzv3kvb8gwt3KVI72fRbhbmVqzrn3gXigsHNuPfCI9/7NyPYqU2sMXAf8mlj3CKCP935i5LqUqRUH3kmcYTMK+Mh7//mxXuCU0SsiIiIiIiIiIukpqw/ZExERERERERGRDEYBKRERERERERERSVcKSImIiIiIiIiISLpSQEpERERERERERNKVAlIiIiIiIiIiIpKuFJASkSzJOXeOc+6Ac84752qn8rKjnXNLEpf9VGouW0RERERE5FSggJSIZFVDsf9x4733c1Nzwd77A8Djic27nXNnpebyRUREREREsjoFpEQky3HOXQ40SGz2S6PVjAKWAtmBx9JoHSIiIiIiIlmSAlIikhX1S7z+wns/Ly1WkJgl9Uxi82rnXOW0WI+IiIiIiEhWpICUiGQpzrkLgGqJzRFpvLqPgd2AA3qm8bpERERERESyDAWkRCSruTXxejswNi1X5L3fCoxPbHZyzsWm5fpERERERESyCgWkRCSinHPxibPVeedcv8T7qjnnXnfOrXDO7XLO/eWc+8Y51+E4yyoEtElsjvHe7zzK8/olWWdyL/FHWe3IxOtcwJUn+v5FRERERERORQpIiUiG4py7DvgBuBkoC+QECgMtgVHOuc+dczmP8vI2QLbE29+ldV8TTQZ84u1L0mmdIiIiIiIimVpMpDsgIpJEXaBP4u23gKnAgcT7bwLyAG2B9zhyNtJ5SW7POcZ6PgB+Ok5fCgAvYwExgC1HepL3fotz7jegEtDSORedWPBcREREREREjsJ574//LBGRNJI4FC5pNtM24Hzv/axDnnc2lo1UIvGuK733ow95zhKgfOIyTvPeJ6SwTzHAl0CLxLue8N4/dIznvw10TmzW8N7/kpL1ioiIiIiInCo0ZE9EMpr7Dg1GAXjvl2FZUoF7kz7unMsBnJ3YXJbSYFSioYSCUaOBh4/z/MVJblc/ifWKiIiIiIicEhSQEpGM5D/g7aM96L3/AliU2GzgnCuW5OHSgEu8/W9KO+Cc6wl0S2zOA673x08l/S/J7TIpXbeIiIiIiMipQgEpEclIpnnv9x7nOd8muV03ye2CSW6nKCDlnLsQGJjY3AS0O9pMfYf4J8ntAilZt4iIiIiIyKlEASkRyUiWn+BzSiS5nSPJ7W0numLnXBWs2Hk0sAu4xHu/IZkv35rkdq4TXbeIiIiIiMipRgEpEclIkpONtCPJ7bxJbu9JcjvfiazUOVcYGJ/4Og909t7/cAKLyJ/k9q4TWbeIiIiIiMipSAEpEclIcifjOXmS3N6e5HbSYXpJh+8dk3MuOzAGODPxrv7e+4+S+/ojrC/F9atEREREREROFQpIiUhGctYJPmdjkttrgWBmvWQHpIDXgXMTb3/ove9/Aq8NJF3fmhS8XkRERERE5JSigJSIZCTnJmYsHUvzJLcPDqtLLIa+LLF5lnPuuP/fnHO9gBsSm3OAzsnvaphKSW7/ksJliIiIiIiInDIUkBKRjKQgoQDRYZxz5wNVEpszvfe/H/KU2YnXsUDlY63IOXcJ8GRicz1WxHz3CffY1E+83gYsSuEyREREREREThkKSIlIRjPQOVf30Dudc+WAt5LcNegIr/06ye16R1uBc64mMBL7H7gDaHeE4FayOOfyAxUSm5O89wdSshwREREREZFTSUykOyAiksRE4DxghnPuHWAacACoC9xEaFa9T733o4/y+r1AdiCe8ABWUu8QKo7+EVDGOVfmOH2b7r3/+wj3xwMu8fZnx1mGiIiIiIiIAM57H+k+iMgpzDkXD3yX2OwPLAeGATmO8pKJwBVHG17nnBsDXIrNwHe6937nEZ6zGjheAOpQzb33k4+wrA+Bq4BdievbdoLLFREREREROeVoyJ6IZCje+/ewjKhhwEpgN/Av8C3Q0Xvf9ji1nl5OvM6LBabSjHMuFrg4sfmeglEiIiIiIiLJoyF7IpLheO9/BW5O4Wu/ds79AlTHCqSPOsJz4k6qgyHtgVyABwan0jJFRERERESyPGVIiUhW1C/x+nznXO20WIFzLhq4P7H5ofdes+uJiIiIiIgkkwJSIpLleO/HADMTm/3SaDUdsNn19gIPp9E6REREREREsiQFpEQkq+oOJAAXOefqpOaCE7OjHkpsPue9X56ayxcREREREcnqVENKRLIk7/08IDqNln0AqJgWyxYRERERETkVKCAlIiIiIunmtNNO82eddVaku5Fl7Nixgzx58kS6G1mKPtPUs3HjRgBKlChx0svyHv7+GzZtgn37IHt2qLZ37lGfP8/VpnBhKFbMnpuVaB9NXfo8U9/cuXP/9t4XOd7znPc+PfojIiIiIkKFChX8kiVLIt2NLGPy5MnEx8dHuhtZij7T1NO/f38AHnnkkRQvY88eePttePJJWLcOGjWC/v2hZUtwZ8bBmjWHvWZ/yTJ0v2g1b70FzkHXrvDAA1CqVIq7kaFoH01d+jxTn3Nurvf+uGVTVENKREREREREMpS9e+G11+Dss+HWWy2Y9NVXMH06tGplgSaeeAJy5w5/Ye7cxDz9BK++CsuWQefO8PrrUK4cdO8O69dH4t2IyJEoICUiIiIiIiIZxrJlULky3HILlCwJX34JM2bAeeclBqICHTtatKlMGXugTBlrd+wIWPO112x5N9xgt8uVgzffjMz7EpFwCkiJiIiIiIhIhvDbb9CsGWzZAhMnwvffw/nnHxKISqpjR1i9GhIS7DoxGJVUXJzFqZYts2V37QqvvJKGb0JEkkVFzUVERERERCTiFi602lDew3ffQdWqqbv8uDgYNw7at4fbboP9+6FHj9RdR1rYt28f69evZ/fu3QDkz5+fxYsXR7hXWYc+z5TLmTMnpUqVIlu2bCl6vQJSIiIiIiIiElG//GK1oaKjLRhVqVLarCdnThg9Gq6+Gu64w2bsu/vutFlXalm/fj2xsbHExcXhnGPbtm3ExsZGultZhj7PlPHe888//7B+/XrOPPPMFC1DQ/ZEREREREQkYn76CVq0gOzZYcqUtAtGBbJnh48+giuvhHvugaefTtv1nazdu3dTqFAh3FHHLYqkP+cchQoVOpi5lxLKkBIREREREZGImDvXipXHxsK331rR8fSQLRu8/z7ExEDv3pYp9dBD6bPulFAwSjKik90vFZASERERERGRdDd7NlxwARQoYMP04uLSd/0xMfDuuxacevhhqyn1yCPHKKAuIqlKQ/ZEREREREQkXc2fb5lRhQvbML30DkYFYmLg7behSxfo3x+eeCIy/cjoGjVqlOrLXL16NaNGjUr15aaWvHnzHvc5/fr1Y+DAgQD07duXb7755qjP/eyzz1i0aNFRH3/11VcZMWIEAPHx8fz444/J7uvmzZt5+eWXD7Y3btzIlVdemezXR4oCUiIiIiIiIpJudu6EDh0gXz6YPBnOOCOy/YmOhmHDoFMn6NvXAmQS7vvvv0/1ZaZlQOrAgQNpstxjefTRR2nVqtVRHz9WQGr//v3ccsstXH/99Sla96EBqRIlSvDJJ5+kaFnpSQEpERERERERSTf33ANLl8KIEVCqVKR7Y6Ki4JVXrIbVddfB5s2R7tGR9ewJbdrkIj6eVLv07Hn89QbZQpMnTyY+Pp4rr7ySihUr0rFjR7z3AMTFxdGrVy/q1atHvXr1WL58OQCdO3cOC44Ey+rduzfTpk2jZs2aPP/882HrO9Z6Jk2aRK1atahWrRo33ngje/bsObj+Rx99lHPPPZePP/6YuLg4+vTpQ8OGDalTpw7z5s3jggsuoFy5crz66qsAbN++nYsvvphzzjmHatWqMXbs2ON+Fk888QQVKlSgVatWLFmy5OD9Sd9n7969qVy5MtWrV+fee+/l+++/Z9y4cdx3333UrFmTFStWEB8fT58+fWjWrBkvvPBCWLYVwHvvvUejRo2oWrUqc+bMATjsOVWrVmX16tX07t2bFStWULNmTe677z5Wr15N1apVASuK36VLF6pVq0atWrX47rvvABg+fDiXX345rVu35uyzz+b+++8/7ntPbaohJSIiIiIiIuni88/h1Vfh3nttZr2MJG9eGDkSGjWC22+323K4+fPns3DhQkqUKEHjxo2ZMWMG5557LgD58uVjzpw5jBgxgp49e/L5558fdTkDBgxg4MCBR33OkdZTp04dOnfuzKRJkyhfvjzXX389r7zyCj0To2o5c+Zk+vTpgAWFSpcuzcyZM7nrrrvo3LkzM2bMYPfu3VSpUoVbbrmFnDlzMnLkSEqWLMnff/9NgwYNaNeu3VGLdc+dO5cPPviA+fPns3//fs455xxq164d9px///2XMWPG8Ntvv+GcY/PmzZx22mm0a9eOiy66KGwo3ebNm5mSmJLXr1+/sOXs2LGD77//nqlTp3LjjTeyYMGCY36WCxYs4KeffgIs+ywwdOhQAH799Vd+++03zj//fJYuXQrATz/9xPz588mRIwcVKlSgR48elC5d+qjrSW0KSImIiIiIiEia++MPuPFGqFkTHn880r05snr1oF8/K3Leti1ce22kexRu8GDYtm0XsbGxEetDvXr1KJWY2lazZk1Wr159MCDVoUOHg9d33XVXqq8nNjaWM888k/LlywNwww03MHTo0IMBqauvvjpsGe3atQOgWrVqbN++ndjYWGJjY8mZMyebN28mT5489O/fn1mzZhEVFcWGDRv4448/KFas2BH7NG3aNC677DJy584dtvyk8uXLR86cOenatStt27bloosuOup7PLS/SQWfZdOmTdm6dSubU5i2N336dHr06AFAxYoVKVOmzMGAVMuWLcmfPz8AlStXZs2aNekakNKQPREREREREUlT3lswats2yzzKkSPSPTq6Bx6Axo3h1lthzZpI9ybjyZFk40VHR7N///6D7aSZRcHtmJgYEhISAPDes3fv3hSvJxi2dzR58uQ54jKioqLClhcVFcX+/fsZOXIk//zzD3PnzuWnn37i9NNPZ/fu3cdcx9GypwIxMTHMmTOHK664gs8++4zWrVsnu7/HWo9zLuyzBI7bV+CYn9mxtmV6UEBKRERERERE0tSrr8LEifDMM1C5cqR7c2zR0fDuuxZEu/56iEB97Ezrww8/PHjdsGFDwGo7zZ07F4CxY8eyb98+AGJjY9m2bdsJLb9ixYqsXr36YH2qd999l2bNmqW4v1u2bKFw4cJky5aN7777jjXHiUA2bdqUMWPGsGvXLrZt28b48eMPe8727dvZsmULbdq0YfDgwQeH0Z3o+w0+y+nTp5M/f37y589PXFwc8+bNA2DevHmsWrXquMtu2rQpIxPHny5dupS1a9dSoUKFZPcjLSkgJSIiIiIiImnmt9+skHnr1tC9e6R7kzxnngkvvQRTp8Kzz0a6N5nHnj17qF+/Pi+88MLBQuU333wzU6ZMoV69esyePftgVlD16tWJiYmhRo0ahxU1P5qcOXPy9ttv0759e6pVq0ZUVBS33HJLivvbsWNH5s+fT506dRg5ciQVK1Y85vPPOeccrr76amrWrMkVV1xBkyZNDnvOtm3buOiii6hevTrNmjU7+N6uueYann32WWrVqsWKFSuO27cCBQrQqFEjbrnlFt58800ArrjiCv79919q1qzJK6+8cnDoYqFChWjcuDFVq1blvvvuC1vObbfdxoEDB6hWrRpXX301w4cPD8uMiiR3vJQ3EREREZHUUqFCBZ90ViI5OcFMVJJ69Jmmnv79+7N/fxQTJz7M2rXw669wlNI8GZL3cM018OmnMGsWHFK7Ot0sXryYSpUqHWxv27YtojWkjiYuLo4ff/yRwoULR7orJySjfp6ZxaH7J4Bzbq73vs7xXqsMKREREREREUkT333XnHnzYNiwzBWMAnAOXnkFTj8dOnaEnTsj3SORrEUBKREREREREUl1q1eXYcaMxtx8M1xySaR7kzIFC8KIEbB0qQ07lKNbvXp1psuOT6RawgAAUYVJREFUkshSQEpERERERERS1b59MH78RRQs+C/JLA+UYbVoAXffbYXZZ86MdG9Esg4FpERERERERCRVvfoq/PNPYVq3/pJjzGyfafTvD8WLW2BKZZhFUocCUiIiIiIiIpJqNm+2AM6ZZ67k7LOXRbo7qSJPHnjsMStu/vHHke6NSNaggJSIiIiIiIikmiefhH//hfPP/wrnIt2b1NO5M1SvDr17w549ke6NSOangJSIiIiIHMY519o5t8Q5t9w51/sIj8c757Y4535KvPSNRD9FJGNZtQpeeAFuuAGKF/8j0t1JVdHRMHCgvceXXop0b45h5EiIi4OoKLseOfKkF9moUaOTXsahVq9ezahRo1L8+uHDh9O9e/dU7NHJGTduHAMGDIh0N44pOdtx8ODB7EynKSUVkBIRERGRMM65aGAocCFQGejgnKt8hKdO897XTLw8mq6dFJEM6YEHICYGHn880j1JG+edBxdeaO/vn38i3ZsjGDkSunWDNWus2NWaNdY+yaDU999/n0odDDnZgNTR7N+/P9WXmRzt2rWjd+/Dzt9kKMnZjgpIiYiIiEgk1QOWe+9Xeu/3Ah8AmXTSdhFJL7NmwYcfwr33QsmSke5N2nn2Wdi6FR7NiGH4Bx+EQ4MJO3fa/Schb968AEyePJn4+HiuvPJKKlasSMeOHfGJVd7j4uLo1asX9erVo169eixfvhyAzp0788knnxy2rN69ezNt2jRq1qzJ888/z8KFC6lXrx41a9akevXqLFt2eP2xt99+m/Lly9OsWTNmzJhx8P7OnTtz991307x5c3r16sWcOXNo1KgRtWrVolGjRixZsgSANm3a8MsvvwBQq1YtHk3ciA8//DDDhg075vtLasiQIVSuXJnq1atzzTXXAOEZWytWrKBBgwbUrVuXvn37hn1+zZo146qrrqJ8+fL07t2bkSNHUq9ePapVq8aKFSsAGD9+PPXr16dWrVq0atWKP/44PNtw+PDhXHLJJbRu3ZoKFSrQv3//g48999xzVK1alapVqzJ48OBkb8chQ4awceNGmjdvTvPmzTlw4ACdO3ematWqVKtWjedTecrMmFRdmoiIiIhkBSWBdUna64H6R3heQ+fcz8BG4F7v/cIjLcw51w3oBlCkSBEmT56cur09hW3fvl2fZyrTZ5oy3kOPHrUoWDAnDRrMYfLkAwcfy4qfZ5s25Rk6tBh16vxA6dK70nRd+fPnZ9u2bQfbBw4cCGsnlXftWo5UtsuvXcv2o7wmubZt28bOnTuZP38+s2fPpnjx4px33nl8/fXXNGzYEO89OXLkYNKkSYwaNYru3bvz8ccfs2/fPnbt2hXW523bttG3b1+GDBnCx4lV4u+99166devG1Vdfzd69ew97n7///jt9+/Zl6tSp5MuXj7Zt21K9enW2bdvGvn37WLRoEWPGjCE6OpqtW7cyYcIEYmJi+O6777j//vt57733qF+/Pl9//TWFChXCOceUKVO44447mDJlCoMHD+b3338/6vtL6qmnnuLXX38lR44cbN68mW3btrF792727t3Ltm3buP322+nWrRvt27fnzTffDPv8fv75Z3744QcKFChA9erVuf7665k0aRIvv/wygwYN4umnn6ZGjRp8/fXXOOd45513ePzxx3nyySfD+rB7925mz57NrFmzyJ07N/Hx8cTHx+Oc480332TSpEl472nRogV16tShRo0ax92OXbp0YdCgQYwfP55ChQoxY8YM1q5dy8yZMwEOvtdD+5HSv3EFpERERETkUEf8PXNIex5Qxnu/3TnXBvgMOPtIC/Pevw68DlChQgUfHx+fej09xQVnuSX16DNNmU8+gYUL4Y034MILmwAwZcoUgCz5eVaqBGedBWPG1OfTT9N2XYsXLyY2NvZge9u2bWHtMGecYcP0DuHOOOPor0mm2NhYcufOTb169ahYsSIAtWvX5s8//yQ2NhbnHJ07dyY2NpYbb7yRPn36EBsbS7Zs2ciVK1fY+oNlxcTEHLy/WbNmPPHEE/zzzz9cfvnlnH12+FfKpEmTaN68OWeeeSYA1157LUuXLj24jg4dOnDaaacBFji58cYbWbZsGc459u3bR2xsLK1atWLIkCFUqlSJdu3a8fXXX7Nnzx7WrVvHOeecw+TJk4/6/pKqUaMGt9xyC5deeimXXnopefPmJWfOnGTPnp3Y2Fh++OEHPv/8c2JiYrjxxht56KGHDr7nunXrHnxvZ511FhdffDGxsbHUrVuXmTNnEhsby+rVq+natSubNm1i7969nHnmmYf1IWfOnJx//vnExcUBcOWVVzJ//nycc1xxxRUUK1bs4P3z5s3j3HPPTfZ2zJs3L7GxsVSrVo01a9bQp08f2rZty/nnn09UVNRh/ahVq9YJ7k1GQ/ZERERE5FDrgdJJ2qWwLKiDvPdbvffbE29PBLI55wqnXxdFJKPYswd69YJq1aBLl0j3Jn2cfrrNtjdmDEydGuneJPHEE5A7d/h9uXPb/akkR44cB29HR0eH1WxySaZVDG7HxMSQkJAAgPeevXv3HnG51157LePGjSNXrlxccMEFfPvtt4c9xx1j2sY8efIcvP3www/TvHlzFixYwPjx49m9ezcAdevW5ccff2TatGk0bdqUWrVqMXz4cGrXrp2s9xeYMGECt99+O3PnzqV27donVLcq6fKjoqIOtqOiog4up0ePHnTv3p1ff/2V11577WD/D3Xo5+GcO+IQw+P142jvs0CBAvz888/Ex8czdOhQunbtmqxlJ5cCUiIiIiJyqB+As51zZzrnsgPXAOOSPsE5V8wlHgk75+phx5UZscSviKSxoUNh5UqbgS46OtK9ST933QWlSsE990BivCXyOnaE11+HMmXAObt+/XW7Px18+OGHB6+DYW5xcXHMnTsXgLFjx7Jv3z7AMnWSDv9auXIlZcuW5Y477qBdu3YHaz0F6tevz+TJk/nnn3/Yt2/fwaF+R7JlyxZKJhYyGz58+MH7s2fPTunSpfnoo49o0KABTZo04cUXX6RJkybJfo8JCQmsW7eO5s2b88wzz7B582a2b98e9pwGDRowevRoAD744INkL/tI/X/nnXeO+ryvv/6af//9l127dvHZZ5/RuHFjmjZtymeffcbOnTvZsWMHY8aMOaH3l3S7/P333yQkJHDFFVfw2GOPMW/evBN+L8eiIXsiIiIiEsZ7v9851x34EogG3vLeL3TO3ZL4+KvAlcCtzrn9wC7gGp/c07IikmX88w889hi0bg3nnx/p3qSv3LnhySfh+uvh/ffTLeZzfB07Rqwze/bsoX79+iQkJPD+++8DcPPNN3PJJZdQr149WrZseTCTqXr16sTExFCjRg06d+7M7t27ee+998iWLRvFihWjb9++YcsuXrw4/fr1o2HDhhQvXpxzzjmHAwcOHNYHgPvvv58bbriB5557jhYtWoQ91qRJEyZNmkTu3Llp0qQJGzZsOKGAzYEDB+jUqRNbtmzBe89dd911cKhgYPDgwXTq1IlBgwbRtm1b8ufPn+zlA/Tr14/27dtTsmRJGjRowKpVq474vHPPPZfrrruO5cuXc+2111KnTh3AirzXq1cPgK5du57QkLpu3bpx4YUXUrx4cQYPHkyXLl0OZrg99dRTJ/Q+jsfpuEFERERE0kuFChV8MNuRnDzVO0p9+kxPTM+e8OKL8PPPULVq+GPBrF+PPPJI+ncsnSQkQN268NdfsGQJ5MqV+utYvHgxlSpVOtg+Zg2pCIqLi+PHH3+kcOHMNXo7LT7PnTt3kitXLpxzfPDBB7z//vuMHTs2VdcxfPhwfvzxR1566aVUXe6JOnT/BHDOzfXe1zneazVkT0RERERERE7YunXw8stw002HB6NOFVFRMGiQfRavvBLp3khGMXfuXGrWrEn16tUPzp4nh9OQPRERERERETlhAweC9/DQQ5HuSWTFx0Pz5haYuv12SFIr+pSyevXqSHchw2jSpAk///xzmq6jc+fOdO7cOU3XkdaUISUiIiIiIiIn5M8/4Y034Lrr4IwzIt2byOvTBzZuhGPUnxaRQyggJSIiIiIiIidk8GDYvRt69450TzKGli2hXj14+mnYvz/SvRHJHBSQEhERERERkWTbvBmGDoX27aF8+Uj3JmNwzrKkVq6Ejz6KdG9EMgcFpERERERERCTZXn4Ztm6FBx6IdE8ylosvhipV4KmnbPY9ETk2BaREREREREQkWXbuhOefhzZtoGbNSPcmY4mKsiDdggXw+ecR7MjIkRAXZx2Ki7P2SWrUqNFJL+NQq1evZtSoUSl+/fDhw+nevXsq9ujkjBs3jgEDBkS6G8eUnO04ePBgdu7cmQ69UUBKREREREREkumNN+Dvv214mhzu6quhbFl44gmbgTDdjRwJ3brBmjXWgTVrrH2SQanvv/8+lToYcrIBqaPZH6EiXu3ataN3Bi+qlpztqICUiIiIiIiIZCh798Kzz0KzZtC4caR7kzHFxECvXjBnDnz7bQQ68OCDlsaW1M6ddv9JyJs3LwCTJ08mPj6eK6+8kooVK9KxY0d8YuQtLi6OXr16Ua9ePerVq8fy5csB6Ny5M5988slhy+rduzfTpk2jZs2aPP/88yxcuJB69epRs2ZNqlevzrJlyw7rx9tvv0358uVp1qwZM2bMOHh/586dufvuu2nevDm9evVizpw5NGrUiFq1atGoUSOWLFkCQJs2bfjll18AqFWrFo8++igADz/8MMOGDTvm+0tqyJAhVK5cmerVq3PNNdcA4RlbK1asoEGDBtStW5e+ffuGfX7NmjXjqquuonz58vTu3ZuRI0dSr149qlWrxooVKwAYP3489evXp1atWrRq1Yo//vjjsD4MHz6cSy65hNatW1OhQgX69+9/8LHnnnuOqlWrUrVqVQYPHpzs7ThkyBA2btxI8+bNad68OQcOHKBz585UrVqVatWq8fzzzx9p90ixmFRdmoiIiIiIiGRJ774LGzbAW29FuicZ2w03QL9+8OSTNvteulq79sTuT4H58+ezcOFCSpQoQePGjZkxYwbnnnsuAPny5WPOnDmMGDGCnj178vkxxi4OGDCAgQMHHnxOjx49uPPOO+nYsSN79+7lwIEDYc/ftGkTjzzyCHPnziV//vw0b96cWrVqHXx86dKlfPPNN0RHR7N161amTp1KTEwM33zzDX369GH06NE0bdqUadOmERcXR0xMDDNmzOCuu+5i+vTpdOrUiU2bNh3z/SXt+6pVq8iRIwebN28+7L3deeed3HnnnXTo0IFXX3017LGff/6ZxYsXU7BgQcqWLUvXrl2ZM2cOL7zwAi+++CKDBw/m3HPPZdasWTjnGDZsGM888wyDBg06bD1z5sxhwYIF5M6dm7p169K2bVucc7z99tvMnj0b7z3169enWbNmYZ/V0bbjHXfcwXPPPcd3331H4cKFmTt3Lhs2bGDBggUAR3yvJ0MZUiIiIiIiInJMBw7AgAFQuzacd16ke5Ox5cgB995rGVKzZqXzys8448TuT4F69epRqlQpoqKiqFmzJqtXrz74WIcOHQ5ez5w584SW27BhQ5588kmefvpp1qxZQ65cucIenz17NvHx8RQpUoTs2bNz9dVXhz3evn17oqOjAdiyZQvt27enatWq3HXXXSxcuBCAJk2aMHXqVKZPn07btm3Zvn07O3fuZPXq1VSoUOG47y9QvXp1OnbsyHvvvUdMzOF5PjNnzqR9+/YAXHvttWGP1a1bl+LFi5MjRw7KlSvH+eefD0C1atUOrmv9+vVccMEFVKtWjWefffZg/w913nnnUahQIXLlysXll1/O9OnTmT59Opdddhl58uQhb968XH755UybNu2w1ybnfZYtW5aVK1fSo0cPvvjiC/Lly3fEfqSUAlIiIiIiIiJyTJ98AsuXW+0o5yLdm4yvWzcoWNBm3EtXTzwBuXOH35c7t92fSnLkyHHwdnR0dFjNJpdk5whux8TEkJA47aD3nr179x5xuddeey3jxo0jV65cXHDBBXx7hDGP7hg7X548eQ7efvjhh2nevDkLFixg/Pjx7N69G7Bg0I8//si0adNo2rQptWrVYvjw4dSuXTtZ7y8wYcIEbr/9dubOnUvt2rVPqG5V0uVHRUUdbEdFRR1cTo8ePejevTu//vorr7322sH+H+rQz8M5d8Qhhsfrx9HeZ4ECBfj555+Jj49n6NChdO3aNVnLTi4FpEREREREROSovLfhZ5UqwaWXRro3mUPevNCzJ4wbB7/+mo4r7tgRXn8dypSxyGGZMtbu2DFdVv/hhx8evG7YsCFgtaXmzp0LwNixY9m3bx8AsbGxbNu27eBrV65cSdmyZbnjjjto167dwVpPgfr16zN58mT++ecf9u3bx8cff3zUfmzZsoWSJUsCVmspkD17dkqXLs1HH31EgwYNaNKkCS+++CJNmjRJ9ntMSEhg3bp1NG/enGeeeYbNmzezffv2sOc0aNCA0aNHA/DBBx8ke9lH6v8777xz1Od9/fXX/Pvvv+zatYvPPvuMxo0b07RpUz777DN27tzJjh07GDNmzAm9v6Tb5e+//yYhIYErrriCxx57jHnz5p3wezkW1ZASERERERGRo5owAX75BUaMgCilNCRb9+7wzDOWJZUGk8kdXceO6RaAOtSePXuoX78+CQkJvP/++wDcfPPNXHLJJdSrV4+WLVsezGSqXr06MTEx1KhRg86dO7N7927ee+89smXLRrFixejbt2/YsosXL06/fv1o2LAhxYsX55xzzjmszlTg/vvv54YbbuC5556jRYsWYY81adKESZMmkTt3bpo0acKGDRtOKGBz4MABOnXqxJYtW/Dec9ddd3HaaaeFPWfw4MF06tSJQYMG0bZtW/Lnz5/s5QP069eP9u3bU7JkSRo0aMCqVauO+Lxzzz2X6667juXLl3PttddSp04dwIq816tXD4CuXbseVj/qWLp168aFF15I8eLFGTx4MF26dDmY4fZUKqf8ueSmc4mIiIiInKwKFSr4YLYjOXnBTEmSevSZhvMeGjWC33+HpUshW7bkvzaY9euRRx5Jo95lfL16wcCBsGQJnHVWypaxePFiKlWqdLC9bds2YmNjU6mHqScuLo4ff/yRwoULR7orJyQtPs+dO3eSK1cunHN88MEHvP/++4wdOzZV1zF8+HB+/PFHXnrppVRd7ok6dP8EcM7N9d7XOd5rFd8WERERERGRI5o61Qpz33//iQWjxNx1l31uzzwT6Z5Iepo7dy41a9akevXqvPzyy0ecIU80ZE9ERERERESO4vnnoXBh6Nw50j3JnIoVgxtusOGOTz0FhQpFukdp50iztJ2qmjRpws8//5ym6+jcuTOdM/kfpjKkRERERERE5DCrVllR7v/7P8iVK9K9ybzuuAN274Y33oh0T0QyFgWkRERERERE5DAvvQTR0XDrrZHuSeZWpQq0bAlDh0LiBHMiggJSIiIiIiIicojt2+HNN+HKKyFx9nk5CXfeCevXw2efRbonIhmHAlIiIiIiIiISZsQI2LLFAily8tq0gbJl4YUXIt0TkYxDASkRERERERE5KCEBhgyBunWhfv1I9yZriI6GHj1gxgyYOzeNVzZyJMTFQVSUXY8cedKLbNSo0Ukv41CrV69m1KhRKX798OHD6d69eyr26OSMGzeOAQMGRLobx5Sc7Th48GB27tyZDr1RQEpERERERESS+PprWLLEsqOci3Rvso4uXSBvXgv2pZmRI6FbN1izBry3627dTjoo9f3336dSB0NONiB1NPv370/1ZSZHu3bt6N27d0TWnVzJ2Y4KSImIiIiIiEhEvPACFCsG7dtHuidZS/780LkzfPAB/PFHGq3kwQfh0GDCzp12/0nImzcvAJMnTyY+Pp4rr7ySihUr0rFjR7z3AMTFxdGrVy/q1atHvXr1WL58OQCdO3fmk08+OWxZvXv3Ztq0adSsWZPnn3+ehQsXUq9ePWrWrEn16tVZtmzZYf14++23KV++PM2aNWPGjBkH7+/cuTN33303zZs3p1evXsyZM4dGjRpRq1YtGjVqxJIlSwBo06YNv/zyCwC1atXi0UcfBeDhhx9m2LBhx3x/SQ0ZMoTKlStTvXp1rrnmGiA8Y2vFihU0aNCAunXr0rdv37DPr1mzZlx11VWUL1+e3r17M3LkSOrVq0e1atVYsWIFAOPHj6d+/frUqlWLVq1a8ccRdpjhw4dzySWX0Lp1aypUqED//v0PPvbcc89RtWpVqlatyuDBg5O9HYcMGcLGjRtp3rw5zZs358CBA3Tu3JmqVatSrVo1nn/++SPtHikWk6pLExERERERkUxryRL43/+gf3/Inj3Svcl6evSw2Qtfew369k2DFaxde2L3p8D8+fNZuHAhJUqUoHHjxsyYMYNzzz0XgHz58jFnzhxGjBhBz549+fzzz4+6nAEDBjBw4MCDz+nRowd33nknHTt2ZO/evRw4cCDs+Zs2beKRRx5h7ty55M+fn+bNm1OrVq2Djy9dupRvvvmG6Ohotm7dytSpU4mJieGbb76hT58+jB49mqZNmzJt2jTi4uKIiYlhxowZ3HXXXUyfPp1OnTqxadOmY76/pH1ftWoVOXLkYPPmzYe9tzvvvJM777yTDh068Oqrr4Y99vPPP7N48WIKFixI2bJl6dq1K3PmzOGFF17gxRdfZPDg/2/vvsOkKs8+jn9vOtgVFAQsWIhEsSO+iqKigg0bNiyoCCjWxERfjdHEYI2KsYKo2I2xYY19TXxjQ2MBsWAFNUbsiCDK8/5xBl1ggV2Y3bMz+/1c11wz58wz5/zm7O7o3DxlOFtuuSXPPPMMEcGoUaM477zzuOCCC+Y5z3PPPce4ceNo1aoVm266KTvvvDMRwbXXXsuzzz5LSonNNtuMrbfeeo5rNb+f47HHHsuFF17IE088QevWrXnhhRf48MMPGTduHECV73Vx2ENKkiRJkgRkxZJmzWDw4LyTlKe114Y+feCKK+D772vhBKusUrP9i6Bbt2506NCBRo0ascEGG/Dee+/99Nz+++//0/3TTz9do+NuvvnmnHXWWZx77rm8//77tGzZco7nn332WXr27EmbNm1o1qwZ++677xzP9+vXj8aNGwPw1Vdf0a9fP9Zdd11OOOEExo8fD0CPHj34xz/+wVNPPcXOO+/M1KlTmTZtGu+99x6dO3de6PubrWvXrvTv358bb7yRJk3m7efz9NNP06/QxfCAAw6Y47lNN92Udu3a0bx5c9ZYYw122GEHANZbb72fzjV58mR23HFH1ltvPc4///yf8s9t++23Z4UVVqBly5bsueeePPXUUzz11FPsscceLLHEEiy55JLsueee/POf/5zntdV5n506deKdd97hmGOO4e9//ztLL710lTkWlQUpSZIkSRJffQWjR8N++8FKK+Wdpnwddxz85z/wt7/VwsGHDYNWrebc16pVtr9Imjdv/tPjxo0bzzFnU1SadGz24yZNmjBr1iwAUkp8P59K3AEHHMA999xDy5Yt2XHHHXn88cfnaRMLmNRsiSWW+OnxaaedxjbbbMO4ceO49957mT59OpAVg8aOHcs///lPttpqKzbccENGjx7NxhtvXK33N9v999/P0KFDeeGFF9h4441rNG9V5eM3atTop+1GjRr9dJxjjjmGo48+mldffZURI0b8lH9uc1+PiKhyiOHCcszvfS633HK8/PLL9OzZk8suu4yBAwdW69jVZUFKkiRJksQ118DUqXDssXknKW/bbw+dO2dzdVWzdlB9/fvDyJGw6qrZjPSrrppt9+9f5BNV7a9//etP95tvvjmQzS31QmFpwTFjxjBz5kwAllpqKb755pufXvvOO+/QqVMnjj32WHbbbbef5nqabbPNNqOiooLPPvuMmTNn8rcFVPS++uor2rdvD2RzLc3WrFkzOnbsyG233Ub37t3p0aMHl1xyCT169Kj2e5w1axaTJk1im2224bzzzuPLL79k6tSpc7Tp3r07d9xxBwC33nprtY9dVf7rrrtuvu0eeeQRPv/8c7777jvuvvtutthiC7baaivuvvtupk2bxrfffstdd91Vo/dX+ecyZcoUZs2axV577cWZZ57Jiy++WOP3siDOISVJkiRJDdyPP2bD9bbYAip1FlEtaNQoK/oNHQrPPgvduxf5BP3711kBam4zZsxgs802Y9asWdxyyy0AHHHEEfTt25du3bqx3Xbb/dSTqWvXrjRp0oT111+fAQMGMH36dG688UaaNm1K27Zt+f1ck2y1a9eOM844g80335x27dqx0UYbzTPP1Gy//e1vOeSQQ7jwwgvZdttt53iuR48ePPbYY7Rq1YoePXrw4Ycf1qhg8+OPP3LggQfy1VdfkVLihBNOYNlll52jzfDhwznwwAO54IIL2HnnnVlmmWWqfXyAM844g379+tG+fXu6d+/Ou+++W2W7LbfckoMOOoiJEydywAEHsMkmmwDZJO/dunUDYODAgfPMH7UggwYNok+fPrRr147hw4dz6KGH/tTD7eyzz67R+1iYqG53LkmSJGlxde7cOc1e7UiLb/ZKSSqehnpN77kH+vaF224r3up6s1f9Ov3004tzwDIydSp06JDNJ1Wo28zXhAkTWGeddX7a/uabb1hqqaVqOWHNrbbaaowdO5bWrVvnHaVGauN6Tps2jZYtWxIR3Hrrrdxyyy2MGTOmqOcYPXo0Y8eO5dJLLy3qcWtq7t9PgIh4IaW0ycJe65A9SZIkSWrgLr44K5DssUfeSRqGJZeEww+H22+HDz/MO42K7YUXXmCDDTaga9euXH755VWukCeH7EmSJElSgzZuHDz+OJx9NlSxYJhqydChcNFF2Yp7f/pT3mkWX1WrtDVUPXr04OWXX67VcwwYMIABAwbU6jlqmz2kJEmSJKkBu+QSaNECjjgi7yQNS6dOsNtuMGIEzGcRtZ841Y7qo8X9vbQgJUmSJEkN1FdfwU03wf77wwor5J2m4Tn6aJgyBQoLslWpRYsWfPbZZxalVK+klPjss89o0aLFIh/DDpmSJEmS1EDdeCN8+y0ceWTeSRqmbbeFNdfMhu3Nb2G8Dh06MHnyZD799FMApk+fvlhFAM3J67noWrRoQYcOHRb59RakJEmSNI+I6A1cDDQGRqWUzplPu02BZ4B9U0q312FESYspJbjySth4Y9h007zTNEyNGsGQIXDiifDqq7DeevO2adq0KauvvvpP2xUVFWy44YZ1mLK8eT3z45A9SZIkzSEiGgOXAX2ALsD+EdFlPu3OBR6q24SSiuH//i+b0HzIkLyTNGwDBkDz5llxUGpILEhJkiRpbt2AiSmld1JK3wO3An2raHcMcAfw37oMJ6k4rrwSll46mz9K+VlhBdhnH7jhBpg6Ne80Ut1xyJ4kSZLm1h6YVGl7MrBZ5QYR0R7YA9gWWOBgn4gYBAwCaNOmDRUVFcXM2qBNnTrV61lkDeWafvllU267bXN22eUjnn9+Yq2eqyFcz8XVrdvS3HDDRpx++hvsuuvHC2zbUH5H64rXMz8WpCRJkjS3qGLf3Ms7DQdOSin9GFFV80ovTGkkMBKgc+fOqWfPnkWIKMi+6Hs9i6uhXNPzz4eZM+HMMzvwy18u+qTEC/Lkk08CNIjrubi23hquugqeeKIzf/5zZxb0sdpQfkfritczPw7ZkyRJ0twmAx0rbXcAPpqrzSbArRHxHrA3cHlE7F4n6SQtllmzYMQI6NEDfvnLvNMIICKby+vf/4bnnss7jVQ3LEhJkiRpbs8Da0XE6hHRDNgPuKdyg5TS6iml1VJKqwG3A0ellO6u86SSauzRR+Htt+HII/NOosoOPBCWXNLJzdVwWJCSJEnSHFJKPwBHk62eNwG4LaU0PiKGRITrcUkl7ooroE0b2HPPvJOosqWWgv794dZb4fPP804j1T4LUpIkSZpHSumBlNLaKaU1UkrDCvuuTCnN82/3KaUBKaXb6z6lpJqaPBnuvRcOOwyaN887jeZ25JEwfTpcf33eSaTaZ0FKkiRJkhqIUaOyOaQGDco7iaqy/vrQvXs2bC/NvZSEVGYsSEmSJElSA/DDD9lKbjvuCJ065Z1G83PkkfDGG1BRkXcSqXZZkJIkSZKkBuDee+Gjj7LV3FR/9esHyy2XzfUllTMLUpIkSZLUAFx5JXToADvvnHcSLUjLlnDooXDXXfCf/+SdRqo9FqQkSZIkqcy9/TY8/DAccQQ0aZJ3Gi3M4MHZEMtrrsk7iVR7LEhJkiRJUpkbMQIaN4aBA/NOoupYe23Ybrvs5/bjj3mnkWqHBSlJkiRJKmMzZsC110LfvrDyynmnUXUNGQIffAAPPph3Eql2WJCSJEmSpDJ2550wZUo2DEylo29fWGklGDky7yRS7bAgJUmSJEllbORIWH116NUr7ySqiaZN4bDD4P77YfLkvNNIxWdBSpIkSZLK1JtvQkVFNpl5I7/9lZyBA2HWLCc3V3nyI0mSJEmSytRVV2Wr6h16aN5JtCg6dYIddoBRo5zcXOXHgpQkSZIklaEZM2D06GwuorZt806jRTVoEEyaBH//e95JpOKyICVJkiRJZeiuu7LJzAcNyjuJFsduuzm5ucqTBSlJkiRJKkNOZl4eZk9uft99Tm6u8mJBSpIkSZLKzJtvwhNPOJl5uXByc5UjP5okSZIkqcw4mXl56dQJtt/eyc1VXixISZIkSVK5uOkm0qqrce6fG/Fh09Vo+9hNeSdSkZy5zk38Y9JqbNtrW1htNbjJn61KW5O8A0iSJEmSiuCmm2DQIGLaNAJY8bv3f57RvH//XKNpMd10E91GDSKYlm2/789Wpc8eUpIkSZJUDk49FaZNm3PftGnZfpW2U08l/NmqzFiQkiRJkqRy8MEHNduv0uHPVmXIgpQkSZIklYNVVqnZfpUOf7YqQxakJEmSJKkMzPzDMKbRas6drVrBsGH5BFLxDBuW/Swr+aG5P1uVNic1lyRJKjERsSLQDegKrAosB7QEvgM+B94HXgGeSyl9mldOSXXrzhb9GQNcveKptPz0g6z3zLBhTnpdDmb/DE89lfTBB0yOVbjtl8P4tT9blTALUpIkSSUgItYADgT6AuvX4HUvAXcDN6aU3q2VcJLqhZEj4e1V+9P8nf6OhSlH/ftD//48WVHBQw/15LzzYL8PoX37vINJi8aPKUmSpHosInaIiL8DbwK/JytGRQ1uGwBnABMj4sGI2L6O34KkOvDWW/D443DEEdDIb3llb+BAmDULrr467yTSorOHlCRJUj0UEVsC5wCbz95VuP8MeA54FpgAfFHY9zWwDLB84bYOsBnZ0L7lC6/dAdghIv4FnJxS+r/afyeS6sLIkdC4MRx6aN5JVBfWWAN69YJRo+DUU7OfvVRqLEhJkiTVMxFxE7AfPxehJgO3ADellF5ZhON1BQ4A9gc6AlsA/4iIW1JKBxYntaS8zJgBo0dD376w8sp5p1FdGTIE9t4bHnwQdtkl7zRSzdmZU5Ikqf7Zn6wY9TjQK6W0SkrppEUpRgGklF5JKZ2cUloV6FU4bhTOI6nE3XknTJkCgwfnnUR1abfdoG1bGDEi7yTSorEgJUmSVP88DvRIKfVKKT1ezAOnlB5PKfUCehTOI6nEjRgBnTplQ7jUcDRtCocdBg88AB98kHcaqeYsSEmSJNUzhUJUrc7vlFL6v5SSE5xLJW7CBHjySSczb6iOOAJSyuaSkkqNH1mSJEmSVKJGjsx6yjiZecO02mrQu3e22t4PP+SdRqoZC1KSJEmSVIK++w6uuw722ANWWinvNMrL4MHw0Udw3315J5FqxoKUJElSiYiI5Rfz9TsVK4uk/N1+O3zxhZOZN3Q77wzt2zu5uUqPBSlJkqTS8WpEbFvTF0VEs4i4BLi3FjJJysmVV8Laa8M22+SdRHlq0gQGDoSHHoJ33807jVR9FqQkSZJKRzvg4Yg4NyKaVOcFEbEuMBY4qiYniojeEfFGREyMiJOreL5vRLwSES9FxNiI2LImx5e0eMaNg3/9CwYNgoi80yhvAwdmvwdXXZV3Eqn6LEhJkiSVjh+BAE4Eno6INRfUOCKOAZ4Dfll43RvVOUlENAYuA/oAXYD9I6LLXM0eA9ZPKW0AHAa4xpNUh0aMgGbN4JBD8k6i+qBDh2zo3jXXwMyZeaeRqseClCRJUunoAbxHVlzaCPh3RMyztlZEtImI+4DhQItC+1HAJtU8TzdgYkrpnZTS98CtQN/KDVJKU1NKqbC5BJCQVCe+/RZuuAH69YPWrfNOo/piyBD45BMYMybvJFL1VKurtyRJkvKXUnomItYHrgD6kxWCRkVEb2BQSumrwuNrgRXJClFfAEeklO6swanaA5MqbU8GNpu7UUTsAZxdONfO8ztYRAwCBgG0adOGioqKGkTRgkydOtXrWWSlcE0feKAtX331C7p1+zcVFV/lHWeh6vv1LDXz+x1t3hxWWqk7Z5/9Ha1bv1z3wUpUKfzNl6v4+R+2JEmSVCoiYn/gcmAZst5Jk8iG0Q0gK0QBVAAHpZQ+rOGx+wE7ppQGFrYPArqllI6ZT/utgN+nlHot7NidO3dOb7xRrZGDqoaKigp69uyZd4yyUgrXdLPN4JtvYPz4+j1/1B/+8AcATj/99JyTlJcF/Y7+6U9w2mnw1luw5gIHdWu2UvibLzUR8UJKaaG9sh2yJ0mSVIJSSrcAGwL/IitArcLPxajvgVOA7WpajCqYDHSstN0B+GgBWf4BrBERDh6SatlLL8Fzz8HgwfW7GKV8HHYYNG4MI0fmnURaOAtSkiRJJSql9B5wy+zNSvd/By5Ii94V/nlgrYhYPSKaAfsB91RuEBFrRmRfhyNiI6AZ8Nkink9SNY0YAS1awMEH551E9dHKK0PfvnDttTBjRt5ppAWzICVJklSCImK5iLgT+AtZESr4eRW+XYHnIuIXi3LslNIPwNHAQ8AE4LaU0viIGBIRQwrN9gLGRcRLZCvy7bsYBTBJ1fDNN3DjjbDvvrDccnmnUX01eDBMmQJ31mTmQCkHFqQkSZJKTERsA7xCtvJdAF8C+5BNPP5mYV9X4IVKBaQaSSk9kFJaO6W0RkppWGHflSmlKwuPz00p/TKltEFKafOU0lOL/cYkLdAtt8DUqVnBQZqfXr2gU6esN51Un1mQkiRJKhER0SQizgEeAVYmKzz9A1g/pXR7SunfZPNKXV14riVwWUSMiYgV8sotafGlBJdfDl27QvfueadRfdaoEQwaBE8+mU18L9VXFqQkSZJKx9PAb8j+H+5H4PfANimlybMbpJS+SykdAewNfE5WmNoFeDUitq/7yJKK4V//gpdfhqFDncxcC3f44dC8eVbElOorC1KSJEmlY2OyAtO7QI+U0p/mN29TSulOYAPgycJr2gIP1FFOSUV22WWwzDLQv3/eSVQKWrfO5hq7/nr4+uu800hVsyAlSZJUWm4ENkgpPbuwhoWeU9sCpwIz8f/9pJL0ySdw++0wYAAssUTeaVQqhg7N5hy74Ya8k0hV839KJEmSSsfBKaWDU0rfVPcFKXM2sCXwdu1Fk1RbrroKZs6Eo47KO4lKSbdusMkmWe8610BVfWRBSpIkqUSklG5cjNc+TzbhuaQS8sMPcOWVsP32sPbaeadRqRk6FCZMgIqKvJNI87IgJUmS1ECklL7NO4OkmhkzBj78MCssSDW1776w/PJw6aV5J5HmZUFKkiRJkuqpyy6DVVaBXXbJO4lKUcuW2Yp7Y8bA5MkLby/VJQtSkiRJ9UxE1MnQuojYqC7OI2nRvPYaPPEEHHkkNG6cdxqVqiOPhFmzYMSIvJNIc7IgJUmSVP+MjYi7ImL92jh4RGwYEWOA52rj+JKK4/LLoVmzrIeLtKhWXx123jmbHP/77/NOI/3MgpQkSVL9tBvwYkTcFxH7RkSLxTlYRLSIiP0i4kFgLLAr4LpLUj31zTdw/fXZHEBt2uSdRqVu6FD45BO44468k0g/syAlSZJU/2xK1nspgD7AzcAnETE6Ig6JiHWqc5CI6BIRAyJiNPAJcBOwQ+G4TwPdaiO8pMV3ww1ZUcrJzFUMO+wAa66ZzUkm1RdN8g4gSZKkOaWUXgQ2j4g9gTOAdYGlgIMKNyLiG+At4PPC7RtgaWD5wm3Nwmtmi8L9K8AZKaW7a/t9SFo0KWWrom28MXSzbKwiaNQom0vq17+Gl16CDTbIO5FkDylJkqR6K6V0Z0qpK9AbGAP8QFZYCrLi00ZAL2Af4HCgH7AdsGHh+dltZwJ3AzuklDawGCXVbxUVMGFC1jsqYqHNpWo59NBs1T17Sam+sCAlSZJUz6WUHk4p7QG0Aw4GbgDeLDwdVdwS8AZwPVmPqnYppT1TSo/WdXZJNXfZZbD88rDffnknUTlZbjk44AC46Sb44ou800gO2ZMkSSoZKaXPgRsLNyKiGdCRbIhec2AG2fC9D1JKM/PKKWnRTZ4Md98NJ5yQ9WaRimnoULj6ahg9Ovsdk/JkDylJkqQSlVL6PqX0dkrp+ZTSU4X7ty1GSaVr5EiYNSub70cqtg03hM03h8svz37PpDxZkJIkSZKkemDGjKwg1acPdOqUdxqVq6OPhokT4aGH8k6ihs6ClCRJUgmLiBUjYueIOCIiTijc7xwRK+adTVLN3HILfPIJHH983klUzvbeG9q1g4suyjuJGjrnkJIkSSpBEbEHcCLQfQFtngb+7Kp6Uv2XElx4Iay7LvTqlXcalbNmzeCYY+CUU+DVV2G99fJOpIbKHlKSJEklJCKaRcRtwO1kxaiqVtmbfdscuCMibitMgC6pnnrssaw48KtfQUTeaVTuBg+GVq3sJaV82UNKkiSptNwB7ERWcAJ4DXgcmAh8CywBrAlsA/yy0GYvoAWwW50mlVRtF14IK60EBxyQdxI1BMsvDwMGwKhRcNZZ0LZt3onUENlDSpIkqURExH7AzoXNj4A+KaV1U0rHppT+klK6unB/bEppPaA38CFZ8WrniNg3p+iSFuC11+DBB2HoUGjePO80aiiOOw5mzsxW3JPyYEFKkiSpdBxeuP8W2DqltMA1klJKDwM9gamFXQNrL5qkRTV8OLRoAUOG5J1EDcnaa8Ouu2YFqe++yzuNGiILUpIkSaVjfSABV6eU3q7OCwrtribrJbVB7UWTtCg+/RSuvx4OPhjatMk7jRqaX/0KPvsMbrgh7yRqiCxISZIklY4lC/fP1/B1s9u3KmIWSUVwxRUwYwYcf3zeSdQQbbUVbLRRNrn5rFl5p1FDY0FKkiSpdHxUuG9cw9fNbv/RAltJqlPTp8Nll8FOO8E66+SdRg1RRNZL6vXX4e9/zzuNGhoLUpIkSaXj8cJ9jxq+rgfZUL/HF9ZQUt25+Wb473+zgoCUl379oH37bKVHqS5ZkJIkSSodfwG+Bw6OiE2r84KI2AQ4BJhReL2keiClrADQtStsu23eadSQNWsGxxwDjz0GL7+cdxo1JBakJEmSSkRKaRxwBNkE5Y9ExMCIaFJV24hoEhGHA4+Q9Y4amFIaX3dpJS3II4/A+PFZ76iIvNOooRs0CFq1yuaSkupKlf8DI0mSpPonIn5fePgIsBMwAjgnIv4JTASmkU1cviawJbB8of0DwJqVXj+PlNIfayu3pHldeCG0bQv77Zd3EgmWWw4OOwxGjICzz4Z27fJOpIbAgpQkSVLpOIOstxOV7pcHdquibVRqs1PhtiAWpKQ6Mm4cPPQQ/OlP0Lx53mmkzHHHZZPsX3ZZ9rsp1TaH7EmSJJWWmOtW1b4F7Z9fW0l1ZPhwaNkShgzJO4n0szXXhL594YorYNq0vNOoIbCHlCRJUunYJu8AkhbPJ5/AjTdmw6NWWCHvNNKcfvUruPtuuO46OPLIvNOo3FmQkiRJKhEppSfzziBp8QwfDt9/D8cfn3cSaV5bbgmbbgrnnw9HHAFNrBioFjlkT5IkSfOIiN4R8UZETIyIk6t4vn9EvFK4/Ssi1s8jp1RKPv8cLr0U9tkH1l477zTSvCLg1FPh3XfhllvyTqNyZ0FKkiRJc4iIxsBlQB+gC7B/RHSZq9m7wNYppa7AmcDIuk0plZ5LLoGpU7Mv/FJ9teuusN56cNZZ8OOPeadRObMgJUmSpLl1AyamlN5JKX0P3Ar0rdwgpfSvlNIXhc1ngA51nFEqKV9/DRdfDLvvnn3Zl+qrRo3gd7+D11+HO+/MO43KmSNCJUmSNLf2wKRK25OBzRbQ/nDgwfk9GRGDgEEAbdq0oaKioggRBTB16lSvZ5HV1jW9+eZV+OKLTvTu/QIVFd8U/fj1mb+jxVUXf/crrAAdO3bj5JNn0br1WKKM12P1czQ/FqQkSZI0t6q+eqQqG0ZsQ1aQ2nJ+B0spjaQwpK9z586pZ8+eRYgoyL7oez2Lqzau6bffQr9+0Ls3DB68cVGPXZ89+WS2DoO/o8VVV3/3f/oTHHIITJ3ak113rfXT5cbP0fw4ZE+SJElzmwx0rLTdAfho7kYR0RUYBfRNKX1WR9mkknPVVTBlSjYMSioV++8Pq6+eFaZSlf8kIS0eC1KSJEma2/PAWhGxekQ0A/YD7qncICJWAe4EDkopvZlDRqkkTJ8O558PPXvCFlvknUaqvqZN4eST4bnn4NFH806jcmRBSpIkSXNIKf0AHA08BEwAbkspjY+IIRExpNDs98AKwOUR8VJEjM0prlSvjR4NH31k7yiVpkMOgfbt4cwz806icuQcUpIkSZpHSukB4IG59l1Z6fFAYGBd55JKycyZcM450L07bLtt3mmkmmveHH77WzjuOPjHP2CrrfJOpHJiDylJkiRJqgU33QTvvw+nnUZZr1Km8nbEEbDiitlcUlIxWZCSJEmSpCL78Uc46yzYcEPo0yfvNNKia9kSTjwRHnkEnn027zQqJxakJEmSJKnIbrsN3normzvK3lEqdUOGwPLLw7BheSdRObEgJUmSJElFNGtW9sW9SxfYffe800iLb6ml4Pjj4d574aWX8k6jcmFBSpIkSZKKaMwYGD8eTj0VGvmNS2XimGNg6aXtJaXi8eNRkiRJkorkxx+zSczXWgv22SfvNFLxLLtsVpS6/Xb497/zTqNyYEFKkiRJkorkhhuy3lHDhkGTJnmnkYrrxBOzuaROPjnvJCoHFqQkSZIkqQi++y7rHdWtG+y9d95ppOJbdtlsov6HH4ZHH807jUqdBSlJkiRJKoLLLoPJk+Hcc11ZT+XrqKNg1VXhpJOyCfylRWVBSpIkSZIW0xdfwFlnQZ8+0LNn3mmk2tO8OZx5Jrz4Itx2W95pVMosSEmSJEnSYjrnHPjySzj77LyTSLXvgAOga9dsJcnvv887jUqVBSlJkiRJWgyTJsHFF8OBB8L66+edRqp9jRtnRdh33oGRI/NOo1JlQUqSJEmSFsMZZ0BK8Mc/5p1Eqju9e8M222S/9998k3calSILUpIkSZK0iMaPh9GjYehQWG21vNNIdScim8D/00/hz3/OO41KkQUpSZIkSVpEp5wCSy6Z3UsNzaabQr9+cMEF8J//5J1GpcaClCRJkiQtgqeegnvugZNOgtat804j5WPYMJg+PVt5T6oJC1KSJEmSVEMpZYWodu3g+OPzTiPlZ621YNCgbHLzt97KO41KiQUpSZIkSaqhe+6Bf/0L/vAHaNUq7zRSvn7/e2jeHH73u7yTqJRYkJIkSZKkGvj+ezj5ZOjcGQ49NO80Uv7atoVf/xpuuw2efjrvNCoVFqQkSZIkqQYuuABefz27b9Ik7zRS/XDiidC+PRx5JPzwQ95pVAosSEmSJElSNb37bjZ58x57wM47551Gqj+WWgqGD4eXX4ZLL807jUqBBSlJkiRJqoaU4NhjoVEjuPjivNNI9c9ee0Hv3nDaafDhh3mnUX1nQUqSJEmSqmHMGLjvPjjjDOjYMe80Uv0TkfWO+uEHOOGEvNOovrMgJUmSJEkLMXVq1jtq3XXhuOPyTiPVX2usAaecAn/7Gzz0UN5pVJ9ZkJIkSZKkhfjjH2HSJLjySmjaNO80Uv3229/C2mvD0KHw3Xd5p1F9ZUFKkiRJkhZg3Di46CI47DDYYou800j1X/PmcPnl8PbbcM45eadRfWVBSpIkSZLmY9asbBn7ZZaBc8/NO41UOrbbDg44ICtIvflm3mlUH1mQkiRJkqT5GD0annoKzjsPWrfOO41UWi64AFq2hKOOylaplCqzICVJkiRJVfjss2wunC22gAED8k4jlZ62bWHYMHjsMbj11rzTqL6xICVJkiRJVTjpJPjyS7jiCmjkNydpkQwZAptsAr/6FXz1Vd5pVJ/4sSpJkiRJc3niCbj6ajjhBFhvvbzTSKWrceOsqPvJJ1mPQ2k2C1KSJEmSVMnnn8NBB8Faa8EZZ+SdRip9m2wCJ54II0fCmDF5p1F9YUFKkiRJkgpSgsGDs94cN98MSyyRdyKpPJx5Jmy4IRx+OHz8cd5pVB9YkJIkSZKkgoceasvtt2dfnjfZJO80Uvlo3hxuugmmTcsWCZg1K+9EypsFKUmSJEkCJk6Ev/xlTbbeGn7zm7zTSOVnnXXgwgvh4YfhL3/JO43yZkFKkiRJ84iI3hHxRkRMjIiTq3j+FxHxdETMiIgT88goFdPMmXDggdC4ceKGG7KJmCUV3+DBsNtu2SqWr7ySdxrlyYKUJEmS5hARjYHLgD5AF2D/iOgyV7PPgWOBP9dxPKlWnHkmPPss/PrXb9KxY95ppPIVAaNGwfLLwwEHwHff5Z1IebEgJUmSpLl1AyamlN5JKX0P3Ar0rdwgpfTflNLzwMw8AkrF9NRTMGxYNq9Nz56f5h1HKntt2sDo0TB+fNZTSg1Tk7wDSJIkqd5pD0yqtD0Z2GxRDxYRg4BBAG3atKGiomKxwulnU6dO9XoupqlTGzNw4Ka0bZvo12+s17QWeD2Lq1x+R5s3h733XoNLLunIyiu/Qvfun+eSo1yuZymyICVJkqS5RRX70qIeLKU0EhgJ0Llz59SzZ89FPZTmUlFRgddz8fTvD1OmZL2kunfv4TUtoieffBLA61lk5fQ72r07vPEGXHRRV159FVZcse4zlNP1LDUO2ZMkSdLcJgOVZ9HpAHyUUxap1lx3Hdx8M5x+evbFWFLdatEi+xv86qtsyOyPP+adSHXJgpQkSZLm9jywVkSsHhHNgP2Ae3LOJBXV009nq3317AmnnJJ3GqnhWndduPhiePBB+N//zTuN6pJD9iRJkjSHlNIPEXE08BDQGLgmpTQ+IoYUnr8yItoCY4GlgVkRcTzQJaX0dV65pep67z3YfXfo2BFuvx0aN847kdSwDR4Mr74K558Pv/gFHHZY3olUFyxISZIkaR4ppQeAB+bad2Wlx/8hG8onlZSvv4Zdd4UZM+Dee2GFFfJOJAlg+HB4662sOLXGGrD11nknUm1zyJ4kSZKkBuHHH+GAA2DChKxn1C9+kXciSbM1aQJ//SustRbsuSdMnJh3ItU2C1KSJEmSGoTf/Abuvx8uvRR69co7jaS5Lbts1nMxAnbZBb74Iu9Eqk0WpCRJkiSVvZEj4aKL4NhjYciQvNNImp811oC77oJ33oF99oGZM/NOpNpiQUqSJElSWXv8cRg6FHr3hgsuyDuNpIXp0SMrIj/6aFZETinvRKoNTmouSZIkqWy9+SbstRd07gy33prNUyOp/hswAF5/Hc49F9ZZJytMqbz4cSxJkiSpLE2aBH36ZEWoe++FZZbJO5GkmjjrLHjjDTjhBFhpJdh337wTqZgcsidJkiSp7Lz/frZs/JQp2UTmq6+edyJJNdWoEdx4I2y5ZbZC5s03551IxWRBSpIkSVJZeffdrBj1xRfZHDTduuWdSNKiWmIJeOCB7G/6oIPghhvyTqRisSAlSZIkqWy8/Xb2xfXrr+Gxx2DTTfNOJGlxLbEE3HcfbLMNHHIIjB6ddyIVgwUpSZIkSWXhrbegZ0+YNi1bWW+jjfJOJKlYWrXK5oLbfns47DC4+uq8E2lxWZCSJEmSVPLeeCMrRk2fnhWjNtgg70SSiq1lSxgzBnbcEQYOhJEj806kxWFBSpIkSVJJmzAhK0bNnAlPPAFdu+adSFJtadEC7roLdtoJBg+Gyy/PO5EWlQUpSZIkSSXrueeyeWVSgooKWHfdvBNJqm0tWsCdd8Kuu8LQoXDOOdlngEqLBSlJkiRJJenaa6FHj2wYzxNPQJcueSeSVFeaN4fbb4d994X//V/Yf3/49tu8U6kmLEhJkiRJKikzZ8Ixx2QTG2+5JTz/PKyzTt6pJNW1Zs3glluyHlK33Qb/8z/w7rt5p1J1WZCSJEmSVDL++1/o1QsuvRR+9St46CFo3TrvVJLyEgEnnQQPPAAffACbbAKPPZZ3KlWHBSlJkiRJJeGFF7Ivm889BzfcABdcAE2a5J1KUn3Qu3fWW7JdO9hhB7joIueVqu8sSEmSJEmq9268MRueB/DUU3DggfnmkVT/rLkmPP009O2b9aA86CD47ru8U2l+LEhJkiRJqre+/BKOOCL7YrnZZjB2LGy8cd6pJNVXSy2VTXZ+5plw880/f26o/rEgJUmSJKleuuuubOW8a66B3/4WHnkEVlwx71SS6rtGjeB3v4P77oMpU7Ki1G9+A9Om5Z1MlVmQkiRJklSvfPwx7LUX7LlnVoB67jk491xo2jTvZJJKyU47wWuvweGHw5//DOut54Tn9YkFKUmSJEn1QkowahSssw7cfz+cfXY2SbFD9CQtqmWXhZEj4Yknsp5TvXrBYYfBF1/knUwWpCRJkiTl7q23YLvtsvmi1l8fXnkFTj7ZXlGSiqNnz+xz5aST4Prrs8L33/7mSnx5siAlSZIkKTfvvZcVobp0gRdegBEjsp4Ma6+ddzJJ5aZlSzjnnKznZfv2sM8+MHToRjz0kIWpPFiQkiRJklTnPvgAhgzJCk/XX589fv11GDQoG1YjSbVlww3h2WezAvjnnzejd2/YYgt49FELU3XJj3pJkiRJdWbyZBg6FNZcM1s9b+BAmDgRLrkE2rXLO52khqJJk6wAfv31z3LFFTBpEmy/PWy1VdZLU7XPgpQkSZKkWjdhAhx9NKyxRjbB8KGHZoWoyy+Hjh3zTiepoWrWLDFkSPZ5dOml8M47sO222ZxT990HP/yQd8LyZUFKkiRJUq349lsYPRq23DKbI2rECDjooGwC8xEjYJVV8k4oSZnmzbPem2+/DRdfDG++CbvuCqutBqedBu++m3fC8mNBSpIkSVLRpARjx2ZzQrVrl/WE+vRTOO+8bLjeqFHZFzxJqo9atIBjj80WXLjjjmzVz7POgk6dsiF9f/0rzJiRd8ry0CTvAJIkSZJKW0owblw2vOWvf4WXX85Ws9pnn2yOqC22gIi8U0pS9TVrBnvumd0mTcp6e159Ney3Hyy/fHa/667Z0L4WLfJOW5rsISVJkiSpxr77Dh54AI46ClZdFbp2hVNOyYa9XHEFfPzxz8P1LEZJKmUdO2bD9t55Bx5+GHr1yj7f+vSBFVaA3XeHq66Cjz7KO2lpsYeUJEmSpIWaORNeeQWefjr7Qvboo1lRaoklsmEsp58OO+3kSnmSylejRtnn3fbbw/TpUFGR9Qy9914YMyZrs9FG2WfhllvCZpvBssvmmbh+syAlSZIkaR7/+U9WfHrmmex+7NisAAXZHFADB8Iuu8DWW2e9oiSpIWnRAnr3zm6XXALjx2fFqfvuy+acmjUra7fOOrD55tC9e3bfpUtW2JIFKUmSJKlB+/JLmDABXnvt5/vx4+GDD7LnmzbN/sV/8OCfv1R17OgwPEmaLQLWXTe7nXwyfPMNPPfczwX9MWPgmmuytksvnbXr0iUrVnXpkt0a4ueqBSlJkiSpgbn3Xhg+PCtAffzxz/tbtIBf/CKbhPy447IC1IYbOmGvJNXEUkvBdttlN8gWfpg4MStOPftstgjEmDHZqqOzLbFEVqDq2RPOPz+X2HXOgpQkSZLmERG9gYuBxsColNI5cz0fhed3AqYBA1JKL9Z5UC2SGTNg6lTYccc5/4V+1VWhceO800lSeYmAtdbKbgcf/PP+KVN+7pk6u5fqp5/ml7OuWZCSJEnSHCKiMXAZsD0wGXg+Iu5JKb1WqVkfYK3CbTPgisK9SsDee2c3SVJ+WreGHj2yW0MUKaW8M0iSJKkeiYjNgTNSSjsWtv8XIKV0dqU2I4CKlNIthe03gJ4ppY+rOORPVl555TR48OBayy5JkvJ1xhlnvJBS2mRh7ewhJUmSpLm1ByZV2p7MvL2fqmrTHpinIBURg4BBhc0ZZ5xxxrjiRW3wWgNT8g5RZrymxeX1LD6vaXF5PYuvc3UaWZCSJEnS3Kpa52fubvXVaZPtTGkkMBIgIsZW519NVT1ez+LzmhaX17P4vKbF5fUsvogYW512jWo7iCRJkkrOZKBjpe0OwEeL0EaSJKlKFqQkSZI0t+eBtSJi9YhoBuwH3DNXm3uAgyPTHfhqYfNHSZIkzeaQPUmSJM0hpfRDRBwNPAQ0Bq5JKY2PiCGF568EHgB2AiYC04BDq3n4kbUQuSHzehaf17S4vJ7F5zUtLq9n8VXrmrrKniRJkiRJkuqUQ/YkSZIkSZJUpyxISZIkSZIkqU5ZkJIkSVKdiYgzI+KViHgpIh6OiJXzzlTqIuL8iHi9cF3viohl885U6iKiX0SMj4hZEeFy8IsoInpHxBsRMTEiTs47T6mLiGsi4r8RMS7vLOUgIjpGxBMRMaHw935c3plKWUS0iIjnIuLlwvX8w0Jf4xxSkiRJqisRsXRK6evC42OBLimlITnHKmkRsQPweGEy+nMBUkon5RyrpEXEOsAsYARwYkppbM6RSk5ENAbeBLYHJpOt3rl/Sum1XIOVsIjYCpgKXJ9SWjfvPKUuItoB7VJKL0bEUsALwO7+ji6aiAhgiZTS1IhoCjwFHJdSemZ+r7GHlCRJkurM7GJUwRKA/zq6mFJKD6eUfihsPgN0yDNPOUgpTUgpvZF3jhLXDZiYUnonpfQ9cCvQN+dMJS2l9A/g87xzlIuU0scppRcLj78BJgDt801VulJmamGzaeG2wP/GW5CSJElSnYqIYRExCegP/D7vPGXmMODBvENIZF/sJ1Xanoxf9lVPRcRqwIbAszlHKWkR0TgiXgL+CzySUlrg9bQgJUmSpKKKiEcjYlwVt74AKaVTU0odgZuAo/NNWxoWdk0LbU4FfiC7rlqI6lxTLZaoYp89IlXvRMSSwB3A8XP14lUNpZR+TCltQNZTt1tELHBoaZM6SSVJkqQGI6XUq5pNbwbuB06vxThlYWHXNCIOAXYBtktOElstNfg91aKZDHSstN0B+CinLFKVCnMd3QHclFK6M+885SKl9GVEVAC9gflOwm8PKUmSJNWZiFir0uZuwOt5ZSkXEdEbOAnYLaU0Le88UsHzwFoRsXpENAP2A+7JOZP0k8Ik3FcDE1JKF+adp9RFRJvZq7xGREugFwv5b7yr7EmSJKnORMQdQGeyFczeB4aklD7MN1Vpi4iJQHPgs8KuZ1y5cPFExB7AJUAb4EvgpZTSjrmGKkERsRMwHGgMXJNSGpZvotIWEbcAPYHWwCfA6Smlq3MNVcIiYkvgn8CrZP9NAjglpfRAfqlKV0R0Ba4j+3tvBNyWUvrjAl9jQUqSJEmSJEl1ySF7kiRJkiRJqlMWpCRJkiRJklSnLEhJkiRJkiSpTlmQkiRJkiRJUp2yICVJkiRJkqQ6ZUFKkiRJkuqZiFgtIlLhNjrvPJJUbE3yDiBJkiRJUlUiYndgg8Lm8JTSl7mFkVRUFqQkSZIkSfXV7sAhhcejgS/zCiKpuCxISZIkSVI9k1J6D4i8c0hSbXEOKUmSJEmSJNUpC1KSJEmSJEmqUxakJEmSJKmeqc4qexFRMbtNpX37RsQjEfGfiJgREe9HxLUR8YuFnG+OY0VEk4g4MiKeiohPI+K7iHgzIi6OiI4LOdZ7hWO9V433WWXbiBhdyHJIpd3vVromi7QCYUQcVOm1L0REswW07R4RMwttP46I1jU5l6QFsyAlSZIkSSUuIlpExF3ArUAvYCWgGbAKMAB4KSL6VPNYywEVwOXAFkBroAWwFnAsMD4idiryW6gTKaUbgJsKmxsBf6qqXUQsVWjXBEjAwSmlKXUSUmognNRckiRJkkrfNWQr0r1AVpT6gKyQ1B/4H6A5cGNEdK5GYeUaskLUa8B1wPtAW2B/YDNgKeDOiNgypTS2+G8FgL8Ad5MVwLYp7BsM/Heudh8swrGPIrsmqwMnRsRDKaXH5mpzOdCp8PjClNIji3AeSQtgQUqSJEmSSt/+wDDgtJRS5SF8VwJ3kBWrlgcOA85byLF2B24GBqSUZlY61l+Ac4HfkBW4romI9Sufr1hSSi8CL0bE7pV2P1xYfXBxj/11RBwA/JPsO/H1EdE1pfQZQETsDxxYaP5v4JTFPaekeTlkT5IkSZJK3+Mppd/NXRxKKc0iKyDNtmM1jvUecHjlYlThWAk4CXi6sGs9YIdFTpyjlNIzwB8LmysDV0M2dxdwRWH/NGD/lNL3dR5QagAsSEmSJElS6bt4fk+klCYCkwqbXapxrMtSStPnc6wEXFRp1x7VTlj/DAP+UXjcNyKOJps3apnCvuNSSm/kkkxqACxISZIkSVLpe2Yhz39YuF+uGseaez6lBT2/aTWOVy8Veo8dCHxR2HUJ2dxSAHeklEblEkxqICxISZIkSVLpW9hE5TMK982rcayJC3oypfQ58GVhc+VqHK/eSilNIpssvbJJwBE5xJEaFAtSkiRJklTiCr19imVaNdp8W7hfsojnzctE4IdK24+llL6YX2NJxWFBSpIkSZJUWatqtFmicD91Mc+V63fSiGgF3MKcK9APiIidcookNRgWpCRJkiRJla25oCcjYnlg2cLmR1U0mT08sNlCjhPA8jUNV2QXA50Lj+8FZq8seG1ErJRPJKlhsCAlSZIkSaps2xo8/3wVz39ZuG8dEU0XcJx1+bmn1fxUHooYC2lbIxGxJzCwsPkq0A84vbC9IllRqqjnlPQzC1KSJEmSpMqOiogFTX5+QqXHd1bx/GuF+6ZAjwUc59hqZKk8JHBhxatqi4gOwFWFzenA/imlGcC5QEVhf59qZpS0CCxISZIkSZIq6wRcFRGV51UiMmcB/1PY9QrwSBWv/3ulx2dWVdyKiIH83DtpQd6t9HijarRfqIhoBNzAz8MFT0wpjYefJoc/CJg9qfm5EdG1GOeVNKcmC28iSZIkSWpA7iYrymwYEdcBHwArAfsDmxfazAAOTyml+bx+ItlcVP8DPB8RV5PNN9UW2J1s2N8/gTWAlReQ5bFKj8+LiDbAG/y8Kt6HKaVXa/b2OAnoWXh8f0rpsspPppQmR8QRwO1Ac+DmiNgkpTS9hueRtAAWpCRJkiRJlR0KtAG2AM6v4vlvyIa4ja3qxSmlGRGxH1nvqeWA9YDhczV7FtiLquegqnysVyLiFrJi2ErAn+dqch0wYEHHqCwiNgX+UNj8hOy9VnXeOyJiFFkvrl8Wznt0dc8jaeEcsidJkiRJ+klK6UtgG2Ao8C/gM7IeUW8DlwC/TCndv5BjvEBWiLqErLfUdLJhcE8XjtsjpfRpNSMdBBxJNrfTFH7uHVUjEbEkcDPZ3FYJGLCQDMeT9cYCGBoRuyzKeSVVLaruYSlJkiRJaigiogLYGiCl5MpykmqdPaQkSZIkSZJUpyxISZIkSZIkqU5ZkJIkSZIkSVKdsiAlSZIkSZKkOmVBSpIkSZIkSXXKVfYkSZIkSZJUp+whJUmSJEmSpDplQUqSJEmSJEl1yoKUJEmSJEmS6pQFKUmSJEmSJNUpC1KSJEmSJEmqU/8P2p/iAz2GyrgAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKQAAAJ8CAYAAADAnnmoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hURRfA4d8kAUKJ9CpC6CCpdKQFaRYEQRAQhFBUkK6iqHQ+ioCCCIggUhQEEWlKRwIEC0VClU6kSg+EXjLfH7NZk5Be9qac93n22ezdW87c3SR3z86cUVprhBBCCCGEEEIIIYRwFCerAxBCCCGEEEIIIYQQGYskpIQQQgghhBBCCCGEQ0lCSgghhBBCCCGEEEI4lCSkhBBCCCGEEEIIIYRDSUJKCCGEEEIIIYQQQjiUJKSEEEIIIYQQQgghhENJQkoIIYQQQggh0iillJ9SSttuw6yOR8SfUirY9roFO+BY4e+RgGTaXzul1Fql1EWl1IMI+385OfYvMgZJSAkhhBBCCCEsEeFDbHxvk6yOOaUppXIppYbZbi9bHY/VlFIBUd4D+xKwbYto3kN+KRdtxqCU+hJYADQG8gMu1kYk0ip54wghhBBCCCFE6pELGGr7eS6wzLJIUicPpVRlrfWueKzrn9LBZDRKqUpAd9vDy8Bk4Ahwz7bsTyviEmmTJKSEEEIIIYQQqUGLeKxzPMWjSGO01gGAsjoOB3mI+QzrD8SakFJK5Qeej7KdSLoXIvzcW2u90LJIRJonv5RCCCGEEEIIy2mtl1kdg0j11gBNgXZKqXe11vdjWbcDkAkIA9YCLzogvozgqQg/77YsCpEuSA0pIYQQQgghhBBpwRzbfV7gpTjW7WS73wicSamAMqAsEX6+F+NaQsSDJKSEEEIIIYQQaU5CZiiLa12l1JwIRa/dbcuaKKWWKaXOKKXuKaXOKaUWK6WqJyDGskqpcUqpHUqpS7bZyK4rpf5SSk1VSjVQSinbuu5KKQ2cjLCLTjEUd3ePcIx4z7KnlMqmlOqvlNqklPrX1q6LSqlApdSHSqmccWw/LGpxcKVUDaXUfKXUPxH297NS6rn4nqcE2AYctf3cKaaVlFK+gLft4ZyEHEAp9ZRSaqztNbpqa9NZpdRKpZS/Uso5nvvJp5Qao5Q6qJS6ZdvXDqXUe0qpbAmJyba/ikqpz5RSQVHiWqGUaq+USrHP9uHvTdv7M+J5PxnlfTknpWIQ6ZMkpIQQQgghhBDiP05KqWmY4WHNgSeBzEBhoBXwm1Kqa2w7UEq5KKUmAgeBAUAVIB+mZMoTgC/wNrABqJtC7YgaUw1MMuczwA8oiGlXfqAWMBo4rpRqnIB9foRJEr0GFIuwvxeB1Uqp4cnYhHBzbffPK6UKxLCOv+3+OrA0vjtWSr0FHAY+wLxGuTFtKoIZKjgb2B0xIRjDfmoCfwMDgQpANtu+qgDjge1KqeLxjMlFKfU5sBfoj0m0RYzrJeA74HelVKH4tlWI1EBqSAkhhBBCCCHEf/4HtMPMHDYPOAa4AS0xRbKdgGlKqW1a60NRN7b1eFoCNLMteoSZKW8TcBGTnKgANAF8+K8g+UVMYfcCwFe2ZZsws5hFdTEhDVJK+QC/Allti3YDC4BTQCHgVUxSKi/ws1Kqsa1YemzexJyns5heSAcwSZLngDa2dg1RSm3WWv+akHjjMA8Ygfks2wGTYLNTSmXCJMgAftBa37F1QouVLRk1PcKilcAvQAhQFugMlAA8gUCllK/W+lI0+ymFSWY+YVu0zxbzaUxSsx1QDfgBU+MqtpiUbb3wgv+XgO8xr98toDjmXFex7XOjUqqq1vp2nA1OmPD3JkAfoL7t57eI/F48lczHFemcJKSEEEIIIYQQ4j/tMAmErlrrhxGWf23rqdIHk3jpg+nlFNUA/ktGnQKaaq33RbPeQKVUZeAygC2JsCxK75tTSS32bhvK9R3/JaM+B97RWodFWG2yUmowJtGTCZinlCqrtb4by67bAeuBFlrrWxGWz1VKbee/RNF7mGRYstBan1ZK/Qo0xPSE+izKKk0xvdEgnsP1bOd8ou3hI+A1rfUPUdaZACzG9P56EpgGtI5md1/xXzJqNvBmxPeR7T00AXgnHqH14b9E0DKgk9b6RpR1JiilRgEfAU8DQzA9s5JN+HsTQCn1coSn1mmtg5PzWCJjkSF7QgghhBBCCMvFUCvJivo0h4A3oiSjwg0C7th+bhL1SaVUDsxwL4D7xJyMAkBrvUtr/U8S441LU6Ci7ec/gP5RklHhsYzE9AgCM5Nahzj2ewVoEyUZFe5z/ust86xSKrk7Qsyx3XsqpSpFec7fdn9Ea/1bPPfXh/8Sdp9GTUYBaK3vYHpenbctekUpVTbiOkopb6BB+PGB7lHfR1prjUnSbY8tIKWUKybJBOY92SaaZFT4Pj8Gttoe9rBtK0SqJwkpIYQQQgghhPjPl1rr+9E9obUOBXbaHpaI5oP/80Ae288LYktGOVDLCD+PtyVEYjI2hu2iM09rfS26J2wJr822h1mAUnFGmTA/AeHJGf/whbaaUi/YHs4l/sLb+hD4NKaVbAmhaeGHA16OYT8AX8TyPtKxHcemCWb4JsDkmPYVwXe2+yeAGnGsK0SqIEP2hBBCCCGEEKlBizied1R9mj/ieP6s7V4BuYB/IzxXO8LPK5IxpqSoZrvXmCF2sfkNuAnkAOKaTTC+5wlMEe5kY6sL9QPQDWinlHpXa/0A06vLBQjDDLuMky2JFV5gfI/WOq76XOuAkbafo56jqhF+3hjHfuJ6vk6En3NEGSoXnScj/FwBCIhjfSEsJwkpIYQQQgghhOWSWispGV2O4/l7EX6O2kOqaISf/06ecJKssO3+X1sPrxhprcOUUscxM7nlUUpljqVnTlLOU3KYg0lI5cMMS1wKdLI9t1FrfSae+ykc4ecj8Vg/4jqFozxXJMLPx2Pbidb6ilIqBJPUjI57hJ/HxSOuiJI1AShESpEhe0IIIYQQQgjxn8fqKyXAExF+vpnUQJKJm+0+ulpP0YkYt1uMayXtPCWZ1nobcNT20N9WS8rL9nhOAnYVsY3xOUexnZ8ctvuH8RhiF9fxcsZj+5hkTsK2QjiM9JASQgghhBBCpHeO+iI+YtHpHDGu5VihmF442eO5fsS4Y+1RlQrMBf6HqRt127bsBqa3VHxFbGN8zlFs5yc8WeUSR++y+BwvYuLL3QHF74VwOOkhJYQQQgghhEiLwoeExdobRCml+K/QeEqLOEysgoOOGZfwWeEKKaVi6/EUfq7CC5BfiWcvHyvNw/TUcgHa2pYtss2IF1/nI/xcJh7rR1znXJTnIj6OtZC7UiovMQ/Xg8g1uCrGuJYQaZgkpIQQQgghhBBpUYjtPp9SKlMs63kQ/95BSbU1ws/NErmPiEPhVBJiCbc9wr4axLHuM/zXA2h7bCumBlrr08CvURbPSeA+LgLhvY98lFL549ikcYSfo56jiI+fjWM/cb0WmyP8HFfBfyHSJElICSGEEEIIIdKig7b7TESekSyqPg6IJdxq4Krt59eUUp6J2EfEoVrJkUhbEuHn92y9oGLyQQzbpWZTgD9tt5Va698SsY/wtroA/WJaydbD7G3bQ83jQwMjPu4VU6LU9hr0jyOmVfxXOL6jUkp6SYl0RxJSQgghhBBCiLRoTYSfRyqlskRdQSnVDTMTm0NorW8BY20PMwMrY0tKKaV8lFLFo+zjKnDd9tAnjgRSfPwCHLD9XAsYr5R67HOgUuoj4CXbw9PA/CQe1yG01su11jVst8T2SvsCCB/m975S6pWoKyilXIHv+G8mvSVa66MR19Fa7wE22B6WB6YppZyj7EcBnwA1YgvI9l4abnuYGVillKoS2zZKqapKqYTOyCeEZaSouRBCCCGEECItWgYcA0pjhprtUErNwtTxKQS8jBk2tRVTz6dItHtJfhOA2pghe8WB3UqppUAAcBHICpTDDP2qAtTnvyFj4X7FDNMqBSxSSv3Ef0MUATbHt06S1jpMKfU6sM127HeB+kqp+ZiaVwWBV20xAzwAOmqt78a/yWmb1jpYKdUfmI75jPyjUmo5ppdSCKZuVBegpG2Ts0DPGHbXA9iFmXGxG1BNKTUPk+QrBLwGVMcM7ytKLO9LrfUUpVRVoCNQDNiulFoDbMS8dgrIB3hihgCWAo4D7yf4JAhhAUlICSGEEEIIIdIcrfU9pVRbYD2QG/OhfFKU1f4EXgF2ODAurZRqZYulO+AMtLLdohMWzbIRwHOYBFJr2y2iEkBwAmLarZRqgBmaVhioZLtFdRV4TWsdEN99pxda669svZcmAq5Ac9stqv3AS7baU9Ht55hS6nlgOSZZ5IVJUkZ0APOabolHaP7AUWAQkAV43naLyZlYnhMiVZEhe0IIIYQQQog0SWu9C5OI+gLTW+oucA34HdODpY7W+pIFcT3QWvcEvIHPgX2YnjaPbPe7bDHX1Vo/lpTQWgcBlYGvgcPA7WSI6XdMT593MAWzL2F6Q13BnK+PgVJa67VJPVZapbWeDpTFDKkLwrxW9zEz8a0COgM+WuvgOPbzG2aWxbHAIcxwwBDM6/4+UE1rfSqeMWmt9f8wScghmNfuX1tcdzEJqA3ASKCm1tovfq0VwnpKa211DEIIIYQQQgghhBAiA5EeUkIIIYQQQgghhBDCoSQhJYQQQgghhBBCCCEcShJSQgghhBBCCCGEEMKhJCElhBBCCCGEEEIIIRzKxeoArJItWzb99NNP8+AB7N0LxYpB/vxWR5Uybt26Rfbs2a0OI8VllHZCxmlrRmknSFvTo4zSTki9bd21a9dlrXU6/e+eduXKlUuXLl3a6jAS5cED2LcP8uaF4sWtjsZIrb9/aZmc0+Rz7tw5AIoUKWJxJOmLvEeTV2o5n48emf8xOXJAGv03aRffa7AMm5DKlSsXO3fu5NEjcHWFDh1g1Ciro0oZAQEB+Pn5WR1Gisso7YSM09aM0k6QtqZHGaWdkHrbqpT6x+oYxOMKFizIzp07rQ4j0Xr1gq++gh07wN3d6mhS7+9fWibnNPkMHz4cgKFDh1ocSfoi79HklVrO56hREBQEGzdC5cpWR5M08b0Gy/BD9pydoUgROHPG6kiEEEIIIURqN3AgODnBmDFWRyKEECK9CA2Fzz6DF19M+8mohMjwCSmAokUlISWEEEIIIeJWtCh06wazZ8OpU1ZHI4QQIj2YMgWuXoWM1plQElJIQkoIIYQQQsTfwIHmfvRoa+MQQgiR9oWGwqefwgsvQNWqVkfjWBm2hlRETz0FK1eC1qCU1dEIkTAPHjzgzJkz3L171+pQkl3OnDn5+++/rQ7DIaSt6U9GaSdY31ZXV1eKFi1KpkyZLItBZCxPPQVvvAEzZ5rkVGqoJSWEEOHS8+eDlGD1dcz16/Ddd1CoEKS1S8ekXoNJQgrTQ+rOHbh2DfLksToaIRLmzJkzuLm54e7ujkpnGdXQ0FDc3NysDsMhpK3pT0ZpJ1jbVq01V65c4cyZM5QoUcKSGETG9NFHMGsWjBxp7oUQIrVIz58PUoKV1zEPH5qZ9UqVgjJlLAkh0ZLjGkyG7GESUiDD9kTadPfuXfLmzSv/bIQQGZJSirx588q3wMLhnnwSuneHuXPh2DGroxFCiP/I54O04+JFePTI/E9Ja5LjGkwSUkhCSqR98s9GCJGRyd9AYZWBAyFzZhgxwupIhBAiMvnfmPo9fAgXLkCuXJAtm9XRJE5S32eSkEISUkIIIYQQIuEKFYKePWH+fDh0yOpohBBCpCUXLqTd3lHJRRJSQOHC4OwMp09bHYkQGcOcOXM4d+5corcPDg5mwYIFyRhR8sqRI0ec6wwbNowJEyYAMGTIEDZt2hTjusuWLePgwYMxPj99+nTmzZsHgJ+fHzt37ox3rCEhIUybNs3++Ny5c7Rq1Sre2wshREb3/vuQNSsMH251JEIIIdKKBw9MQip3bvM/JKOShBQmGVW4sPSQEsJRUnNC6tGjRymy39iMGDGC+vXrx/h8bAmphw8f0r17dzp27JioY0dNSBUpUoQff/wxUfsSQoiMKH9+6NMHFi2C/futjkYIIdI3f39/+7Vqt27dYv3SNjW7cAGaNnUnc+bLsa7n7u7O5cuPr7N48WIqVKhg/wyxe/duunXrFuu+pkyZwuzZsxMfdAqQhJRN0aKSkBIisT777DM8PDzw8PBg0qRJgEkaeXh42NeZMGECw4YN48cff2Tnzp20b98eHx8f7ty5g7u7Ox988AHVqlWjWrVqHLNVh+3evXuk5Eh4z6OBAweydetWfHx8mDhxYqRYAgIC8PPzo1WrVpQvX5727dujtQZg48aN+Pr64unpSZcuXbh37x5g/tCPGDGC2rVrs3jxYtzd3fnoo4+oWbMmVapU4a+//qJJkyaUKlWK6dOnA3Dz5k0aNGhApUqV8PT0ZPny5XGep1GjRlGuXDkaNmzI4cOH7cv9/f1ZtmyZvW1PP/00Xl5evPfee/z222+sWLGCAQMG4OPjw/Hjx/Hz8+Ojjz6iXr16fP7555F6WwF89913PPPMM3h4eLB9+3aAx9bx8PAgODiYgQMHcvz4cXx8fBgwYECk1+3u3bt07twZT09PfH197b245syZQ8uWLXnuuecoU6YM77//fpxtF0KI9Oy99yBHDhg2zOpIhBAi4/j66695+umnU2z/Dx8+TJH9Pnhgipk7OSW+d9SsWbOYNm2a/fp89OjR9O7dO9ZtunTpwuTJkxN3wBTiYnUAqUXRovKtlkj7+vWDoKDk3aePD9hyTNHatWsXs2fP5s8//0RrTfXq1alXrx65c+eOdv1WrVoxZcoUJkyYQJUqVezLn3jiCbZv3868efPo168fP//8c4zHHDt2LBMmTIhxnd27d3PgwAGKFClCrVq12LZtG1WqVMHf35+NGzdStmxZOnbsyJdffkm/fv0AcHV1JTAwEDBJoaeeeorff/+d/v374+/vz7Zt27h79y4VK1ake/fuuLq6snTpUp544gkuX75MjRo1aNasWYyF/Xbt2sXChQvZvXs3Dx8+pFKlSlSuXDnSOlevXmXp0qUcOnQIpRQhISHkypWLZs2a0bRp00hD6UJCQti8eTNgkk0R3bp1i99++40tW7bQpUsX9sfyx23s2LHs37+fINsbJzg42P7c1KlTAdi3bx+HDh2icePGHDlyBICgoCB2795NlixZKFeuHL179+app56K8ThCCJGe5ckD/fub4uZBQeZ/pxBCpAZWfD4IDg7m+eefp3bt2vz22288+eSTLF++nKxZsxIUFET37t25ffs2pUqV4ptvviF37tz4+flRvXp1Nm3aREhICLNmzaJOnTqxxuHn52f/TJEjRw769u3Lzz//TNasWVm+fDkFCxbk0qVLdO/enVOnTgEwadIkatWqxfbt2+nXrx937twhc+bMzJs3j3LlyjFnzhx++eUX7t69y61bt/j1118jteu5556jdu3a/PHHH3h7e9O5c2eGDh3KxYsXmT9/PtWqVePq1at06dKFEydOkC1bNmbMmIGXlxdXrlyhXbt2nDt3ibJlq+HkpO37/u6775g8eTL379+nevXqTJs2DWdn52jbPWLECAIDAzl58iTNmjVjyJAh7N27F29vbwD69OlDvnz5GDJkCGvXrmXUqFEEBASQLVs23N3d2b59O9WqVYvzdf7ss8/Yv38/33zzDfv27aNdu3Zs376dbMlYgV16SNk89RScOgVax72uEOI/gYGBtGjRguzZs5MjRw5atmzJ1q1bE7yfdu3a2e9///33JMVUrVo1ihYtipOTEz4+PgQHB3P48GFKlChB2bJlAejUqRNbtmyxb9OmTZtI+2jWrBkAnp6eVK9eHTc3N/Lnz4+rqyshISForfnoo4/w8vKiYcOGnD17lgsXLsQY09atW2nRogXZsmXjiSeesO8/oieeeAJXV1e6devGTz/9FOsf+6jxRhR+LuvWrcuNGzcICQmJcd3YBAYG8vrrrwNQvnx5ihcvbk9INWjQgJw5c+Lq6srTTz/NP//8k6hjCCFEetG/v5kpacgQqyMRQgjrHT16lJ49e3LgwAFy5crFkiVLAOjYsSOffPIJe/fuxdPTk+ERCvA9fPiQ7du3M2nSpEjL4+PWrVvUqFGDPXv2ULduXWbOnAlA37596d+/Pzt27GDJkiX2YW3ly5dny5Yt7N69m48//piPPvrIvq/ff/+duXPnRkpGhTt27Bh9+/Zl7969HDp0iAULFhAYGMiECRMYPXo0AEOHDsXX15e9e/cyevRoe2mN4cOHU7NmbebO3U3Tps04fdokyf7++28WLVrEtm3bCAoKwtnZmfnz58fY1iFDhlClShXmz5/P+PHj2blzZ6SRKWPHjmXRokVs2rSJPn36MHv2bJycTOqnSpUq9s9q48ePx8fH57Fbnz59AOjXrx/Hjh1j6dKldO7cma+++ipZk1EgPaTsypSB27fh3LmMXeVepG2xfVORUnQMWVwXFxfCwsLsj+/evRvrfiL2LAr/OeI+tNbcv38/XjFlyZLF/rOzszMPHz6MMc5w2bNnj3YfTk5Okfbn5OTEw4cPmT9/PpcuXWLXrl1kypQJd3f3BLUxOi4uLmzfvp2NGzeycOFCpkyZEu0/wujije04SqkEvx4Q82sL0Z9jIYTIyHLlggED4OOP4Y8/oEYNqyMSQghrPh8AlChRAh9bd9HKlSsTHBzM9evXCQkJoV69eoD5grh169b2bVq2bBlp/YTInDkzTZs2tW+/fv16ADZs2BCpztSNGzcIDQ3l+vXrdOrUiaNHj6K1jlRHtlGjRuTJkyfGdnl6egJQsWJFGjRogFIKT09Pe8yBgYH2BNyzzz7LlStXuH79Olu2bOGLL34CoH37F3nvPTOiZOPGjezatYuqVasCcOfOHQoUKBDvtp8/f578+fPbH2fLlo2ZM2dSt25dJk6cSKlSpezPFShQgEO2aWEHDBjAgAEDYtyvk5MTc+bMwcvLi7feeotatWrFO6b4kh5SNuXKmXuZsleIhKlbty7Lli3j9u3b3Lp1i6VLl1KnTh0KFizIxYsXuXLlCvfu3Ys0vM7NzY3Q0NBI+1m0aJH9vmbNmgAUK1aMXbt2AbB8+XIePHgQ4/ZxKV++PMHBwfb6VN9++639n2FiXL9+nQIFCpApUyY2bdoUZw+hunXrsnTpUu7cuUNoaCgrV658bJ2bN29y/fp1XnjhBSZNmmQfRpfQ9oafy8DAQHLmzEnOnDlxd3fnr7/+AuCvv/7i5MmTce67bt269m9njhw5wqlTpygX/sdSCCHEY/r0gQIFTFJKCCEyssR8eRm+TcT1O3fujI+PDy+88EKs22bKlMn+pWzE7cPCwvj9998JCgoiKCiIs2fP4ubmxuDBg6lfvz779+9n0aJFkb6sje2L36hfVEf8Ejv8mNF9qauUQmu4dk2RPz9E2A1aazp16mSP8fDhw4+V5IhN1qxZH/uyed++feTNm/exiaTu3r1LVlvhqrh6SIHp6ZYjR44kTUgVG0lI2ZQvb+4lISVEwlSqVAl/f3+qVatG9erV6datG76+vmTKlIkhQ4ZQvXp1mjZtSvnwXzJMEe/u3bvbi5oD3Lt3j+rVq/P555/bC5X7+/uzefNmqlWrxp9//mn/5+Dl5YWLiwve3t6PFTWPiaurK7Nnz6Z169Z4enri5ORE9+7dE93u9u3bs3PnTnt32Yjti06lSpVo06YNPj4+vPLKK9GOiQ8NDaVp06Z4eXlRr149e9vatm3L+PHj8fX15fjx43HGljt3bp555hm6d+/OrFmzAHjllVe4evUqPj4+fPnll/ahi3nz5qVWrVp4eHg89g3J22+/zaNHj/D09KRNmzbMmTMn0j9hIYQQkeXIYZJRv/4KGzdaHY0QQqQuOXPmJHfu3PYhY/H5gnj27NkEBQWxatWqRB2zcePGTJkyxf44/Avf69ev86RtaFRsw+MSI+KXugEBAeTLl48nnngCH5+6rFkzn0KFYPXq1Vy7dg0wpTB+/PFHLl68CJi6sgkph1GhQgX7l+4A//zzD59++im7d+9m9erV/Pnnn/bnjhw5Yh/eN2DAAHsSLOItvPD59evX6du3L1u2bOHKlSspMxO31jpD3goXLqwjCgvT2s1N6969dbqzadMmq0NwiIzSTq0jt/XgwYPWBZJMihcvri9duvTY8hs3blgQjTWkrelPRmmn1qmjrdH9LQR26lRwzSG3yLeyZcs+9lqlJ3fvav3UU1pXq2auL1NaRrr+cRQ5p8ln2LBhetiwYVaHke7E9R61+vPByZMndcWKFe2Px48fr4cOHaq11nr37t26evXq2tPTUzdv3lxfvXpVa611vXr19I4dO7TWWl+6dEkXL1482n136tRJL168+LFtsmfPbl9n8eLFulOnTvZ9vfrqq9rT01NXqFBBv/XWW1prrX/77TddpkwZ/cwzz+gBAwbYjzd79mzds2fPeLUrYiwRn7ty5Ypu1qyZ9vT01NWrV9d79uzRt29rvX79ZV2nTiPt6+ur+/Xrp4sVK2b/DLRw4ULt7e2tPT09daVKlfTvv/+utY75c1LEtmuttYeHh75x44YOCwvTDRo00MuXL9daa71z507t4eGh79y5o7XW2tfXN9r9Radz5876888/11prferUKV2qVCl94cKFx9ZLyjWYMutmPEWKFNFRu51Vq2bG/69bZ01MKSUgIAA/Pz+rw0hxGaWdELmtf//9NxUqVLA2oCRyd3dn586d5MuXL9Ly0NBQ3NzcLIrKsaSt6U9GaSekjrZG97dQKbVLa10lhk2ERcqVK6cPHz5sdRgp6ptvoGtXWLYMmjdP2WNlpOsfR5FzmnzCC1MPHTrU4kjSl7jeo+nh84EjOeI65tgxCA0FT09wSYFK3hMnTsTNzc1etD06u3fv5rPPPuPbb79N1mMn5RpMhuxFUL68DNkTwgrBwcGPJaOEEEKItKpjRyhbFgYNggh1coUQQmRAt25BSAgULJgyySiAHj16xFla4/Lly4wcOTJlAkgkSUhFUL48nD4NN29aHYkQQgghhEirXFxg5EjYvx8WLrQ6GiGEEFY6e9b8XyhYMOWO4erqyuuvvx7rOo0aNcLd3T3lgkgESUhFEF6T+MgRa+MQQgghhBBpW6tW4OMDQ4aAbZJYIYQQGcyNG+ZWuDA4O1sdTeojCakIwmczl2F7QgghhBAiKZycYNQoOHHC1JQSQgiRsWhtekdlzgz581sdTeokCakISpc2Fw+SkBJCCCGEEEn1/PNQqxaMGAG3b1sdjRBCCEe6ft3Ujypc2OQZxOPktESQJQuULCkJKSES4sqVK/j4+ODj40OhQoV48skn7Y/v378fr334+/vz448/JjqGxYsXU7FiRZycnNi5c2es64aEhDBt2rRY1wkMDKRatWqUL1+e8uXLM2PGjHjHkiNHjnivGx0/Pz/KlSuHl5cX5cuXp1evXoSEhNiff+aZZ2LdfvTo0bE+/8ILLxASEkJwcDAeHh4Jii0gIIDffvvN/nj69OnMmzcvQfsQQoiMRCkYMwbOnYPJk62ORgghHGfy5MlUqFCB9u3bs2LFCsaOHRvvbYODg1mwYEGyxpPUzxtRr4PjojWcOQOurpA3LwwbNowJEyYk+vgxuXfvHg0bNsTHx4dFixZFeu7QoUP4+Pjg6+vL8ePHuXPnDvXq1eNRLLNt7Nu3D39//2SPMyaSkIpCZtoTImHy5s1LUFAQQUFBdO/enf79+9sfZ86cOUWOGfWPqIeHBz/99BN169aNc9u4ElL//vsvr732GtOnT+fQoUMEBgby1Vdf8csvvzy27sOHDxMefARaa8LCwh5bPn/+fPbu3cvevXvJkiULzSPMGR7XP8KYElLhx1q1ahW5cuVKVLxR/xF3796djh07JmpfQgiRUdSpA02bwtixcPWq1dEIIYRjTJs2jVWrVjF//nyaNWvGwIEDH1snpmvppCakYku4xFfU2BKakLpyBe7ehSefTFzvqPh+zti9ezcPHjwgKCiINm3aRHpu2bJlNG/enN27d1OqVCm++eYbWrZsiXMsxaw8PT05c+YMp06dSnjQiZBuElJKqWCl1D6lVJBSKvYuErEoX94UNZcpeoVIvJkzZ1K1alW8vb155ZVXuH37NqGhoZQoUYIHtsquN27cwN3d3f443MaNG/H19cXT05O3336be/fuAeDu7s6IESOoXbs2ixcvjrRNhQoVKBdeBC6CAwcOUK1aNXx8fPDy8uLo0aMMHDiQ48eP4+Pjw4ABAx7bZurUqfj7+1OpUiUA8uXLx7hx4+zf6vj7+/POO+9Qv359PvjgA06ePEnNmjWpWrUqgwcPjrSv8ePHU7VqVby8vBg6dChg/sFWqFCBt99+m0qVKnH69OkYz2PmzJkZN24cp06dYs+ePcB/PbDOnz9P3bp18fHxwcPDg61btzJw4EDu3LmDj48P7du3j/ZY7u7uXL58GTD/6Dp16oSXlxetWrXitm08ScR1du7ciZ+fH8HBwUyfPp2JEyfi4+PD1q1bI33TExQURI0aNfDy8qJFixZcu3YNMD2+PvjgA6pVq0bZsmXZunVrjO0VQqRNyXUNlp6NHm2K2o4ZY3UkQgiR8rp3786JEydo1qwZEydOZM6cOfTq1Qt4/Fp68+bN9tEVvr6+hIaGMnDgQLZu3YqPjw8TJ06MtG+tNQMGDMDDwwNPT097r6CAgADq16/Pa6+9hqenJ1prevXqxdNPP82LL77IxYsX7fvYtWsX9erVo3LlyjRp0oR///0XMNetH330EfXq1ePzzz+3rx/ddfDKlSupXr06vr6+NGzYkAsXLhAWFkaZMmW4cOES585B1qxhVK1a2n5dHS626+bojg9w9epVXn75Zby8vKhRowZ79+7l4sWLdOjQgaCgIHx8fDh+/Lh9/VWrVjFp0iS+/vpr6tevD5gvvcO/6F66dCkNGzZEa8358+cpW7as/Ty89NJLLHTQFLEuDjmK49TXWl+Oe7WYlS8P9+6ZApRlyiRXWEI4yK5+cC0oefeZ2wcqT0rQJi1btuSNN94AYNCgQcyaNYvevXvj5+fHL7/8wssvv8zChQt55ZVXyJQpk327u3fv4u/vz8aNGylbtizt2rXjyy+/pF+/foCZzjQwMDDecUyfPp2+ffvSvn177t+/z6NHjxg7diz79+8nKCgo2m0OHDhAp06dIi2rUqUKBw4csD8+cuQIGzZswNnZmWbNmtGjRw86duzI1KlT7eusW7eOo0ePsn37drTWNGvWjC1btlCsWDEOHz7M7Nmz4xw6CODs7Iy3tzeHDh3C29vbvnzBggU0adKEjz/+mEePHnH79m3q1KnDlClT7G0LDg6O9ViHDx9m1qxZ1KpViy5dujBt2jTee++9aONwd3ene/fu5MiRw77Oxo0b7c937NiRL774gnr16jFkyBCGDx/OpEmTAJP42r59O6tWrWL48OEsXbo0znYLIdKcJF+DpWeentCxI3zxBfTpA089ZXVEQogMw4LPB9OnT2fNmjVs2rSJfPnyMWfOnEjPR7yWfumll5g6dSq1atXi5s2buLq6MnbsWCZMmMDPP//82L5/+ukngoKC2LNnD5cvX6Zq1ar2URLbt29n//79lChRgp9++onDhw+zb98+Lly4wNNPP02XLl148OABvXv3Zvny5eTPn59FixYxYsQIvv32W8CMpti8eXOkY0Z3HXzt2jX++OMPlFJ8/fXXjBs3jk8//ZQOHTrw1VfzeeGFfpw5swFvb2/y5csXaX+xXTdHd3yAoUOH4uvry7Jly/j111/p2LEjQUFBfP3119GeqxdeeCFSzPfv3+fEiRO4u7sD0KJFC5YsWcLUqVNZs2YNw4cPp1ChQoD57DN27Fjef//9GF/j5JJuekgllypVzP327dbGIURatn//furUqYOnpyfz58+3J3O6devG7NmzAZg9ezadO3eOtN3hw4cpUaIEZcuWBeC1115jy5Yt9uejdkONS82aNRk9ejSffPIJ//zzD1mzZo1zG601SqnHlkdc1rp1a3tX123bttGuXTsAXn/9dfs669atY926dfj6+lKpUiUOHTrE0aNHAShevDg1atSIdzu01o8tq1q1KrNnz2bYsGHs27cPNze3aLeN7VhPPfUUtWrVAqBDhw4JSvZFdP36dUJCQqhXrx4AnTp1ivS6tWzZEoDKlSsTHBycqGMIIURaN3y4qSli6zArhBAZVsRr6Vq1avHOO+8wefJkQkJCcHGJvc9MYGAg7dq1w9nZmYIFC1KvXj127NgBQLVq1ShRogQAW7Zssa9XpEgRnn32WcB83ti/fz+NGjXCx8eH//3vf5w9e9a+//h+3jhz5gxNmjTB09OT8ePH2z/vdOzYhe+/n0fOnLBw4TePfd6J67o5puMHBgbaP2s8++yzXLlyhevXr8crVoDLly8/Vrbjiy++YMyYMWTJksX+eQagQIECnDt3Lt77Tor01ENKA+uUUhr4Smv9WBVipdSbwJsAhQsXJiAg4LGdPHqkcHWtzZIl53nyyWMpHLJj3Lx5M9q2pjcZpZ0Qua05c+YkNDTUPFF2ZMocMHz/cbh37x6ZMmWiU6dOLFiwwJ6Q2rp1K6GhoXh5eXHixAlWr17N/fv3KV68OKGhoTx48IA7d+5w8+ZNHj16ZG9PWFgYDx8+JDQ0FK01WmtCQ0Pp0aMHe/fupVChQixZssR+/EePHnHr1i379i+99BIVK1Zk7dq1NG7cmC+++AJ3d3fCwsLs64wYMYK1a9cCJrlUunRptm3bZu/aCrB161bKlStnj9XJycm+vdaamzdv4uLiYl8WGhrKvXv36N+/P126dIl0jsITY6FRzml4u6O24dGjR+zdu5eBAwdG2r+vry+rVq1i7dq1tG/fnj59+vDaa6/ZnwfzPol6rPB4b968GWnd27dv22NwcnLixo0bZMmShatXr9qXh7++4dtEfBz+2oQfN/wcP3r0yP4a3rlzhwcPHkR6jdOzjNJOSB1tvXv3bob5H5AKJegaLH/+/Bn2tWrevBRz5xalTp0dlCiRPNPuZaTrH0eRc5r85Hwmr7jeo6nh80H4NWeWLFm4e/cu9+/fj/ZaumfPnvj5+bFu3TqqV6/OihUruH37tv36Map79+5x9+5d+3PhnyNcXFzIkiWLffn9+/e5d++e/fHDhw/tnzfKly8fqad/xOtw07TojxvxOvjtt9+mV69evPDCC2zdupUxY8bYrokLkDt3Qfbt+4U//viD6dOnP3YdHdt1c0zHf/ToETdv3nzsM0hc5yr8mOHtj7jekSNHUEpx7tw5rl+/jpOt2NWVK1fInDlzvK/tknINlp4SUrW01ueUUgWA9UqpQ1rrLRFXsF0gzQAoUqSI9vPzi3ZH1avDmTNF8fMrmtIxO0RAQAAxtTU9ySjthMht/fvvv2PsHeNoWbJkIUuWLNy8eZPSpUvj6urKkiVLePLJJ+0x+vv707VrVwYPHmxflilTJrJmzUrlypU5ffo0Fy5coHTp0vzwww80aNAANzc3lFLkyJEDNzc3vvvuu2iP7+zsTPbs2e37PXHiBF5eXnh7e3Pu3DmOHTtGzZo1uXXrln2d8ePHM378ePs+3nnnHapXr067du3w8fHhypUrDB8+nCFDhuDm5maPNXz72rVr88svv9ChQwd7XG5ubrz00ksMHjyYrl27kiNHDs6ePUumTJnIkSMHTk5Oj71moaGhuLm5RWrDgwcP+PjjjylWrBg1a9a0r+vm5sY///xDyZIl6d27N48ePbK/DzJlyoSrq2uMxwo/jwCnT59m//791KxZk+XLl+Pn54ebmxslS5bk8OHDlCxZktWrV+Ps7Iybmxv58uXjxo0b9v2Fv95FixYlT548BAUFUadOHZYuXUr9+vUfa8+9e/dQStn3l96Fv6YZQWpoq6urK76+vpbGkIEl6BqsXLlyMV6DpXeenrB2LSxbVo3ly5Nnnxnp+sdR5Jwmn/ChR3I+k1dc79HU8Pkg4rW7q6srmTNnjvZa+vjx49SoUYMaNWrw119/cfr0aZ566inu3LkTbRsaNmzIV199xVtvvcXVq1f5/fffmTRpEocOHcLFxcW+Tfh6b775JhcvXmTr1q107NiRSpUqcfXqVfs18IMHD9i9ezfVqlV77LNERFGvg8M/77i5ubF48WKcnZ3JksWNa9egQ4du9Or1Bq+//rq9V1JCr5uj8vPzY/ny5QwePJiAgADy58/Pk08+ydGjRyO1O6LwY7q5ueHm5kZYWJj9s8LDhw/p1asX33//PfPmzWPmzJn24Yhnz57F29s73u+hpFyDpZshe1rrc7b7i8BSoFpi91W9OgQFmar4QoiEGzlyJNWrV6dRo0aUL18+0nPt27fn2rVrkbqFhnN1dWX27Nm0bt0aT09PnJyc6N69e5zHW7p0KUWLFuX333/nxRdfpEmTJgAsWrQIDw8PfHx8OHToEB07diRv3rzUqlULDw+PaIuaFy5cmO+++4433niD8uXL88wzz9ClSxdeeumlaI/9+eefM3XqVKpWrRqp22zjxo157bXXqFmzJp6enrRq1Sre3zK0b98eLy8vPDw8uHXrFsuj+dQSEBBgL/64ZMkS+vbtC8Cbb76Jl5cX7du3j/M4FSpUYO7cuXh5eXH16lV69OgBmDHqffv2pU6dOpFm4XjppZdYunSpvZhjRHPnzmXAgAF4eXkRFBTEkCFD4tVWIUTal5zXYOld3rzwwQewYgUkcpS0EEKkK5MmTcLDwwNvb2+yZs3K888/j5eXFy4uLnh7ez9W1LxFixb2L5yfffZZxo0bZ699FHW9MmXK4OnpSY8ePexD5DJnzsyPP/7IBx98gLe3Nz4+Pvz5559xxhn1OnjYsGG0bt2aOnXq2GtEhY9y69ixGTdv3nxsuF64xFw3Dxs2jJ07d+Ll5cXAgQOZO3dunNtE1bhxY3uJjtGjR1OnTh3q1KnDZ599xtdff83ff/8NwKZNm3jxxRcTvP/EUNHVJklrlFLZASetdajt5/XACK31mpi2KVKkiI5pXOTSpdCyJfz2G0TolJBmZZRveTJKO+HxHlIVKlSwNqAE+PHHH1m+fLm9cGBsUkOvC0eRtqY/GaWdkDraGt3fQqXULq11FYtCyhAScw1Wrlw5ffjwYYfFmNrcugWlS0PJkiYpFU3ZwgTJSNc/jiLnNPkMHz4cwD7bsEge8ekhlZY+H1gtOa5j7tyBAwegQAG4eHEn/fv3T3WzS+/evZvPPvss1s9h9+7do169egQGBsZZzytcUq7B0suQvYLAUlvRYRdgQWwXQnGpXt3c//ln+khICZFa9O7dm9WrV7Nq1SqrQxFCCJE8kvUaLCPInh2GDYPu3WHZMmjRwuqIhBBCJNXZs+DkBN9+O5YZM75k/vz5Vof0GF9fX+rXr8+jR48ijYKI6NSpU4wdOzbeyaikShcJKa31CcA7zhXjqUgRMx3vH38k1x6FEGBmchBCCJF+JPc1WEbRtStMmmSG7zVtCpkyWR2REEKIxAoNhZAQePJJ+PjjgXz88UCrQ4pR1AmXoipTpgxlypRxUDTpqIZUcqte3fSQEkIIIYQQIjm5uMC4cXD0KMx4bE5CIYRIuvRQmict0BpOn4bMmaFgQaujcbykvs8kIRWDGjUgOBj+/dfqSIQQQgghRHrTtCn4+ZnhexHmxBBCiCRzdXXlypUrkpRygKtX4fZtM8rKKYNlV7TWXLlyBVdX10TvI10M2UsJEetINW9ubSxCCCGEECJ9UQomTIAqVeCTT2D0aKsjEkKkF0WLFuXMmTNcunTJ6lDShLt37yYqqaK1qR3l7AwXL0JGPN2urq4ULVo00dtLQioGlSqZ7tSSkBJCCCGEECmhcmVo3x4mToQePUwNUyGESKpMmTJRokQJq8NIMwICAvD19U3wdhMmwIABsGEDPP10CgSWAWSwTmXxly0beHlJYXMhrBISEsLMmTMdflx/f39+/PFHhx83Oc2ZMwcnJyf27t1rX+bh4UFwcHC8tt+yZQuVKlXCxcXlsXMxd+5ce7HDuXPn2pefPHmS6tWrU6ZMGdq0acP9+/cB05W3T58+lC5dGi8vL/766y/7NmvWrKFcuXKULl2asWPH2pdfvXqVRo0aUaZMGRo1asS1a9fsz40ZM4bSpUtTrlw51q5dG2db/Pz8KFeuHCtWrIhX260Q03mIaPny5Xh5eeHj40OVKlUIDAyM9PyjR4/w9fWladOmjgg5Trt27cLT05PSpUvTp0+faIcMrF+/nsqVK+Pp6UnlypX59ddfAbh9+zYvvvgi5cuXp2LFigwc+F9h0IkTJ1KsWDF69erlsLYIkdJGjTLfsg8aZHUkQggh4uvKFfjf/+D556FBA6ujSbskIRWLGjVgxw54+NDqSITIeEJCQvj6668desxHjx459Hgx0VoTFhaWpH0ULVqUUaNGJWrbYsWKMWfOHF577bVIy69evcrw4cP5888/2b59O8OHD7cniz744AP69+/P0aNHyZ07N7NmzQJg9erVHD16lKNHjzJjxgx69OgBmHPds2dPVq9ezcGDB/n+++85ePAgAGPHjqVBgwYcPXqUBg0a2JM0Bw8eZOHChRw4cIA1a9bw9ttvx+s1mz9/Ps2aNUvUuUhpsZ2HiBo0aMCePXsICgrim2++oVu3bpGe//zzz6lQoUKKx/swnv8Qe/TowYwZM+yv/Zo1ax5bJ1++fKxcuZJ9+/Yxd+5cXn/9dftz7733HocOHWL37t1s27aN1atXA9C/f39GjBiRPI0RIpUoXhz69oVvv4Xdu62ORgghRHz8739mdr1x46yOJG2ThFQs6tWDmzell5QQsQkODqZ8+fJ069YNDw8P2rdvz4YNG6hVqxZlypRh+/btgElmvPzyy3h5eVGjRg17751hw4bRpUsX/Pz8KFmyJJMnTwZg4MCBnDx5Eh8fHwYMGIDWmgEDBuDh4YGnpyeLFi2KNp6bN2/SuXNnPD098fLyYsmSJYD5gFylShUqVqzI0KFD7eu7u7szYsQIateuzeLFiyPta+PGjfj6+uLp6UmXLl24d+/eY8ebOXMmVatWxdvbm1deeYXbt28DpqdV9+7dqVOnDmXLluXnn38GTO+l5s2b89xzz1GuXDmGDx8OwD///EOFChV4++23qVSpEqdPn462vX369LF/IF+7di1169aNNnnVtGlTDhw4wOHDh+PzMkbi7u6Ol5cXTlEqM65du5ZGjRqRJ08ecufOTaNGjVizZg1aa3799VdatWoFQKdOnVi2bBlgevZ07NgRpRQ1atQgJCSEf//9l+3bt1O6dGlKlixJ5syZadu2LcuXL7dv06lTp2j31bZtW7JkyUKJEiUoXbq0/f0VX35+fvTv35+6detSoUIFduzYQcuWLSlTpgyDInRP+O6776hWrRo+Pj689dZb9sRXbO+joUOHUqlSJTw9PTl06FC84ontPESUI0cOlFIA3Lp1y/4zwJkzZ/jll18eS1JFJywsDHd3d0JCQuzLSpcuzYULF1i5ciXVq1fH19eXhg0bcuHCBcD8jr755ps0btyYjh07xnmM8+fPc+PGDWrWrIlSio4dO9pfw4h8fX0pUqQIABUrVuTu3bvcu3ePbNmyUb9+fQAyZ85MpUqVOHPmTJzHFSIt+/BDyJPHDP2QGsRCCJG6HT8OU6dCly7g4WF1NGmbJKRi0bixqSNl+xwpRJrg5+fHnDlzAHjw4AF+fn589913gBkK4+fnZ09uXL9+HT8/P3766ScALl++jJ+fHytXrgTg33hOM3ns2DH69u3L3r17OXToEAsWLCAwMJAJEyYw2laldejQofj6+rJ3715Gjx4d6YPtoUOHWLt2rb3XzYMHDxg7diwlSpQgKCiI8ePH89NPPxEUFMSePXvYsGEDAwYM4Pz584/FMnLkSHLmzMm+ffvYu3cvzz77LACjRo1i586d7N27l82bN0cazubq6kpgYCBt27a1L7t79y7+/v4sWrSIffv28fDhQ7788svHjteyZUt27NjBnj17qFChgr1nEJhk3ebNm/nll1/o3r07d+/eBUwSYv78+QQFBbF48WJ27twJwOHDh+nYsSO7d+9m586d0bZ37NixLFq0iE2bNtGnTx9mz579WOIIwMnJiffff99+/iNq06YNPj4+j93mzZsX6+t89uxZnopQ4KRo0aKcPXuWK1eukCtXLlxcXCItj2mbc+fOxbgvgAsXLlC4cGEAChcuzMWLF2M9fkJlzpyZLVu20L17d5o3b87UqVPZv38/c+bM4cqVK/z9998sWrSIbdu2ERQUhLOzM/Pnzwdifx/ly5ePv/76ix49ejBhwgQANm3aFO25fuaZZxLcpqVLl1K+fHlefPFFvvnmG/vyfv36MW7cuGjfB1E5OTnRvHlzli5dCsCff/6Ju7s7BQsWpHbt2vzxxx/s3r2btm3bMi7CV367du1i+fLlLFiwgMOHDz/Wnlq1auHj40NISAhnz56NVNwyPq/TkiVL8PX1JUuWLJGWh4SEsHLlShpIX3iRzuXKBUOGwMaNsGqV1dEIIYSIzQcfQKZMIJ22k06KmsciVy6oU8ckpGIo6yGEAEqUKIGnpydgejo0aNAApRSenp72ukWBgYH23krPPvssV65c4bptnusXX3yRLFmykCVLFgoUKGDvmRFRYGAg7dq1w9nZmYIFC1KvXj127Njx2FCsDRs2sHDhQvvj3LlzA/DDDz8wY8YMHj58yPnz5zl48CBeXl6ASdBEdfjwYUqUKEHZsmUB01Nn6tSp9OvXL9J6+/fvZ9CgQYSEhHDz5k2aNGlif+7VV1/FycmJMmXKULJkSXuvmUaNGpE3b17AJLQCAwNp2LAhxYsXp0aNGnG2d+bMmdStW5eJEydSqlSpGF+X1157jVGjRnHy5MlIy2PqXRaX6OoAKaViXJ7YbRJ6/IQKf894enpSsWJFe/KrZMmSnD59msDAQHbt2kXVqlUBuHPnDgUKFABifx+1bNkSgMqVK9uTvPXr1ycoKChZ2tSiRQtatGjBli1bGDx4MBs2bODnn3+mQIECVK5cmYCAgHi1v02bNowYMYLOnTuzcOFC+/v/zJkztGnThvPnz3P//v1IxVCbNWtG1qxZAShXrtxjbQoNDcXNzS3BbQI4cOAAH3zwAevWrYu0/OHDh7Rr144+ffpQsmTJeLVNiLSse3fzjfu775ovRTNlsjoiIYQQUW3ZAkuWmGSU7RJSJIEkpOLw0kvwzjtw8iTIRAUiLYj4oTRTpkyRHmfLli3S45w5c0Z6nC9fvkiPCxUqFK9jRuzV4OTkZH/s5ORkrzkT24fUiNs7OztHW6cmuu0Bpk6dai9+vmrVKrTWj334PXnyJBMmTGDHjh3kzp0bf39/e28lgOzZs8f7eFH5+/uzbNkyvL29mTNnTqTzFzWO8McxLY8YR2zH37dvH3nz5uXcuXOxxubi4sK7777LJ598Eml5mzZtoh3K984778Q6JKto0aKR2nfmzBn8/PzIly8fISEhPHz4EBcXF86cOWMfilW0aFFOnz4daZvChQuTKVOmx5aHb1OwYEHOnz9P4cKFOX/+vD0ZFN2+wrdJiIjvz6jv3YcPH6K1plOnTowZMybSdnG9j8L3FfE9vGnTJvr37/9YDNmyZeO3335LVJvq1q3L8ePHuXz5Mtu2bWPFihWsWrWKu3fvcuPGDTp06GDvFRmdmjVrcuzYMS5dusSyZcvsQxV79+7NO++8Q7NmzQgICGDYsGH2bSK+Nw8fPvxYEjcsLAwnJycCAgLsU03Hp01nzpyhRYsWzJs377Hk6ptvvkmZMmUeSwILkV5lzmxmbGrWDL78Evr0sToiIYQQEYWFQf/+ULSo+fJAJJ0M2YtD+IRFv/xibRxCpHV169a1D3sKCAggX758PPHEEzGu7+bmxs2bNyNtv2jRIh49esSlS5fYsmUL1apVo2fPngQFBREUFESRIkVo3LgxU6ZMsW937do1bty4Qfbs2cmZMycXLlywF0iOTfny5QkODubYsWMAfPvtt9SrV++x9UJDQylcuDAPHjywty/c4sWLCQsL4/jx45w4cYJy5coBZnaxq1evcufOHZYtW0atWrWiPV/Rtfeff/7h008/Zffu3axevZo///wz1nb4+/uzYcMGLl26ZF+2aNEi+zmLeIurPlCTJk1Yt24d165d49q1a6xbt44mTZqglKJ+/fr2Gfnmzp1L8+bNAdOzZt68eWit+eOPP8iZMyeFChWiatWqHD16lJMnT3L//n0WLlxo77nUrFkz+wx+Ufe1cOFC7t27x8mTJzl69CjVqlUDoGPHjgmuJxWTBg0a8OOPP9qHCl69epV//vknUe+j8B5SUW+//fYbQKznIaJjx47Zk5R//fUX9+/fJ2/evIwZM4YzZ84QHBzMwoULefbZZ+3JqClTpkT6XQinlKJFixa88847VKhQwd5b7/r16zz55JMAkWZQjCq8h1TEW/jwxly5clG4cGHc3Nz4448/0Fozb948+2sYUUhICC+++CJjxox57Hdg0KBBXL9+nUmTJsV5joVIT5o2hYYNYdgwuHrV6miEEEJENG8e/PUXfPIJZMtmdTTpgySk4lCmDJQtK3WkhEiqYcOGsXPnTry8vBg4cGCsH3gB8ubNS/Xq1fHw8GDAgAG0aNECLy8vvL29efbZZxk3bly0PbgGDRrEtWvX8PDwwNvbm02bNuHt7Y2vry8VK1akS5cu0SaAonJ1dWX27Nm0bt0aT09PnJyc6N69+2PrjRw5kurVq9OoUSPKly8f6bly5cpRr149nn/+eaZPn46rqysAtWvX5vXXX8fHx4dXXnmFKlWqPLbf6NpbsGBBunbtyoQJEyhSpAizZs2iW7dukXrpRJU5c2b69OljT67Ex44dOyhatCiLFy/mrbfeomLFigDkyZOHwYMHU7VqVapWrcqQIUPIkycPAJ988gmfffYZpUuX5sqVK3Tt2hWAF154gZIlS1K6dGneeOMNpk2bBpjeW1OmTKFJkyZUqFCBV1991X6cgQMHsn79esqUKcP69esZOHAgYIaDvvrqqzz99NM899xzTJ06FWdnZwD27t1rH3qXVE8//TT/+9//aNy4MV5eXjRq1Ijz588n6n0Ul9jOw/Tp05k+fTpgaix5eHjg4+NDz549WbRoUZzDFQ8dOmRPNkXVpk0bvvvuu0g9nYYNG0br1q2pU6cO+fLlS1K7vvzyS7p160bp0qUpVaoUzz//PAArVqxgyJAhgEmYHTt2jJEjR9prUV28eJEzZ84watQoDh48SKVKlfDx8XH4jJtCWEUp+OwzuH4dbHNeCCGESAVu3oSPPoLq1aFdO6ujST9UfIelpDdFihTRcQ13CffuuzBlCly5AjlypHBgKSAgIAA/Pz+rw0hxGaWdELmtf//9t0Ome7dCxLo0aY2/vz9Nmza1zzwXbs6cOezcufOxnitpua0JldxtvXHjBl27dn1slkQwRf4nTJgQbdIvpVn9mjZt2pSffvqJzJkzp/ixHNnWmH6HovtbqJTapbV2/IsvYlWuXDmdmBlAM5Lu3WHWLNi3D6J81/GYjHT94yhyTpNP+GzCEWemFUkn79HkFZ/zOXgw/O9/8NtvULOmY+JKy+J7DSY9pOKhaVO4fx82bLA6EiGEEFE98cQT0SajwPTq8vf3Z8WKFQ6Oyno///yzQ5JRjjRx4kTGjBkT63BfIdKDESPMcJD33rM6EiGEEKdOmRp/7dpJMiq5SVHzeKhdG3LmNMP2Xn7Z6miEEGnBnDlzol3u7++Pv7+/Q2PJyMJnuxPpQ//+/aMtEi9EelOgAAwaBO+/D+vWmVn3hBBCWOPDD8392LHWxpEeSQ+peMiUCZ57zhQ2DwuzOhohhBBCCJHe9ekDJUua2Z6jmXxWCCGEA/zxByxYYHqsFitmdTTpjySk4qlpU/j3X1NVXwghhBBCiJSUJQuMHw8HDsCMGVZHI4QQGU9YGPTrB4ULwwcfWB1N+iQJqXh67jlwcpLZ9oQQQgghhGO0aAH165tiuleuWB2NEEJkLN9+C3/+aYbqpcXJzdICSUjFU758poDZsmVWRyKEEEIIITICpeDzz+H6dRgyxOpohBAi47hxw/SKqlEDOnSwOpr0SxJSCdC2LezZI8P2hHCEkJAQZs6c6fDj+vv78+OPPzr8uMlpzpw5ODk5sXfvXvsyDw8PgoOD47X9li1bqFSpEi4uLo+di7lz51KmTBnKlCnD3Llz7ctPnjxJ9erVKVOmDG3atOH+/fsAaK3p06cPpUuXxsvLi78i/AFds2YN5cqVo3Tp0oyNUCXy6tWrNGrUiDJlytCoUSOuXbsWa7zBwcFkzZoVHx+feLXPCrGdh4i6du2Kt7c3Xl5etGrVips3b0Z6fseOHTg7O6ea9+iYMWMoXbo0lSpVYu3atdGuM2DAAMqXL4+XlxctWrQgJCQEgCtXrlC/fn1y5MhBr169Im0Tvnznzp0p3QQhUj1PT3j7bZg+3VyHCiGESHkjR8LFizB5shkpJVKGnNoE6NABsmaFr76yOhIh0r+QkBC+/vprhx7z0aNHDj1eTLTWhCVxBoWiRYsyatSoRG1brFgx5syZw2uvvRZp+dWrVxk+fDh//vkn27dvZ/jw4fZk0QcffED//v05evQouXPnZtasWQCsXr2ao0ePcvToUWbMmEGPHj0Ac6579uzJ6tWrOXjwIN9//z0HDx4EYOzYsTRo0ICjR4/SoEGDSMmqmJQqVYqgoKBEtdcRYjoPUU2cOJE9e/awd+9eihUrxpQpU+zPPXr0iA8++IAmTZqkeLzx+V04ePAgCxcu5MCBA/z000+8/fbb0W7XqFEj9u/fz969eylbtixjxowBwNXVlZEjRzJhwoTHttm0aRNVqlRJekOESCeGD4fcuaFvX9Da6miEECJ9O3QIJk2Czp2halWro0nfJCGVALlyQZs2psp+aKjV0QiROgQHB1O+fHm6deuGh4cH7du3Z8OGDdSqVYsyZcqwfft2wCQzXn75Zby8vKhRo4a9986wYcPo0qULfn5+lCxZksmTJwMwcOBATp48iY+PDwMGDEBrzYABA/Dw8MDT05NFixZFG8/Nmzfp3Lkznp6eeHl5sWTJEgB69OhBlSpVqFixIkOHDrWv7+7uzogRI6hduzaLFy+OtK+NGzfi6+uLp6cnXbp04d69e48db+bMmVStWhVvb29eeeUVbt++DZieVt27d6dOnTqULVuWn20F6ObMmUPz5s157rnnKFeuHMOHDwfgn3/+oUKFCrz99ttUqlSJ06dPR9vePn36MGLECADWrl1L3bp1o01eNW3alAMHDnD48OH4vIyRuLu74+XlhVOUr4PWrl1Lo0aNyJMnD7lz56ZRo0asWbMGrTW//vorrVq1AqBTp04ss41vXr58OR07dkQpRY0aNQgJCeHff/9l+/btlC5dmpIlS5I5c2batm3L8uXL7dt06tTpsX3FV3zfk7du3aJLly5UrVoVX19f+/GDg4OpU6cOlSpVolKlSvz2228ABAQE4OfnR6tWrShfvjzt27dHx/OTYXTn4fz584+t98QTTwAmKXnnzh2UUvbnvvjiC1555RUKFCgQ5/FWr17Nq6++an8cEBDASy+9BCTudyGmNrVt25YsWbLg7u5O6dKl7ec2osaNG+Pi4gJAjRo1OHPmDADZs2endu3auLq6xnksITK63Llh1CjYvBni8esphBAikbSG/v0hWzYYPdrqaNI/SUgl0Ftvwc2b8P33VkciRPT8/PyYM2cOAA8ePMDPz4/vvvsOgNu3b+Pn52dPbly/fh0/Pz9++uknAC5fvoyfnx8rV64E4N9//43XMY8dO0bfvn3Zu3cvhw4dYsGCBQQGBjJhwgRG2/6SDx06FF9fX/bu3cvo0aPp2LGjfftDhw6xdu1ae6+bBw8eMHbsWEqUKEFQUBDjx4/np59+IigoiD179rBhwwYGDBgQ7Qf6kSNHkjNnTvbt28fevXt59tlnARg1ahQ7d+5k7969bN68OdJwNldXVwIDA2nbtq192d27d/H392fRokXs27ePhw8f8uWXXz52vJYtW7Jjxw727NlDhQoV7D2DwCQ2Nm/ezC+//EL37t25e/cuANu3b2f+/PkEBQWxePFi+7Ckw4cP07FjR3bv3s3OnTujbe/YsWNZtGgRmzZtok+fPsyePfuxxBGAk5MT77//vv38R9SmTRt8fHweu82bNy/W1/ns2bM89dRT9sdFixbl7NmzXLlyhVy5ctmTDuHLY9rm3LlzMe4L4MKFCxQuXBiAwoULc/HixVjjik583pOjRo3i2WefZceOHWzatIkBAwZw69YtChQowPr16/nrr79YtGgRffr0se939+7dTJo0iYMHD3LixAm2bdsGQP/+/R87n7Vq1bL37oqtvVF17tyZQoUKcejQIXr37m3ffunSpXTv3j1e7W/UqBF//PEHt27dAmDRokW0adPG3u74/C6MHz8+2vdJ+PlISJvCffPNNzz//PPxaoMQIrJu3cDHx0w9bvvVFkIIkcx++QXWrIFhw6BgQaujSf9crA4graleHby8zLC9N9+0OhohUocSJUrg6ekJQMWKFWnQoAFKKTw9Pe11iwIDA+29lZ599lmuXLnC9evXAXjxxRfJkiULWbJkoUCBAly4cOGxYwQGBtKuXTucnZ0pWLAg9erVY8eOHTRr1izSehs2bGDhwoX2x7lz5wbghx9+YMaMGTx8+JDz589z8OBBvLy8AOwf1CM6fPgwJUqUoGzZsoDpqTN16lT69esXab39+/czaNAgQkJCuHnzZqThVK+++ipOTk6UKVOGkiVLcujQIcAkC/LmzQuYhFZgYCANGzakePHi1KhRI872zpw5k7p16zJx4kRKlSoV4+vy2muvMWrUKE6ePBlpeUy9y+ISXW8gpVSMyxO7TXKIz3ty3bp1rFixwj5k7O7du5w6dYoiRYrQq1cvgoKCcHZ25siRI/b9VqtWjaJFiwLg4+NDcHAwtWvXZuLEiY/FEBoaipubGxDzeYjO7NmzefToEb1792bRokV07tyZfv368cknn+Ds7Byv9ru4uPDcc8+xcuVKWrVqxS+//MK4ceOA+P8uDBgwgAEDBsR4jIS+hqNGjcLFxYX27dvHqw1CiMicneGLL6BOHfjkE7B1lhVCCJFM7t2Dfv2gQgWIUt5SpBBJSCWQUiYR1asX7NwJUuJCpDYBAQH2nzNlyhTpcbZs2SI9zpkzZ6TH+fLli/S4UKFC8TpmlixZ7D87OTnZHzs5OfHw4UMg9g+vEbd3dna2bxNRTEOjpk6dai9+vmrVKrTWj30oPnnyJBMmTGDHjh3kzp0bf39/e28lMEOH4nu8qPz9/Vm2bBne3t7MmTMn0vmLGkf445iWR4wjtuPv27ePvHnzcu7cuVhjc3Fx4d133+WTTz6JtLxNmzbRDuV75513IvVci6po0aKR2nfmzBn8/PzIly8fISEhPHz4EBcXF86cOUORIkXs25w+fTrSNoULFyZTpkyPLQ/fpmDBgpw/f57ChQtz/vz5eA1Riyq+78klS5ZQrly5SNsOGzaMggULsmfPHsLCwiINKYvpvdq/f382bdoUaT9hYWG89tprDBw4MNrzEN7e6Dg7O9OmTRvGjx9P586d2blzp70H3+XLl1m1ahUuLi68/PLLMe6jTZs2TJ06lTx58lC1alXc3NwS9Lswfvx45s+f/9h+69aty+TJkxPUprlz5/Lzzz+zcePGZE08CpHR1K4N7drBuHGmtkmJElZHJIQQ6cfEiXD8OKxdC5kyWR1NxiBD9hKhQwczpnTGDKsjESLtqFu3rv3DbUBAAPny5bPXy4mOm5tbpBnG6taty6JFi3j06BGXLl1iy5YtVKtWjZ49exIUFERQUBBFihShcePGkQpBX7t2jRs3bpA9e3Zy5szJhQsXWL16dZzxli9fnuDgYI4dOwbAt99+S7169R5bLzQ0lMKFC/PgwYPHPrwvXryYsLAwjh8/zokTJ+yJj/Xr13P16lXu3LnDsmXLqFWrVrTnK7r2/vPPP3z66afs3r2b1atX8+eff8baDn9/fzZs2MClS5fsyxYtWmQ/ZxFvsSWjAJo0acK6deu4du0a165dY926dTRp0gSlFPXr17fP/DZ37lyaN28OQLNmzZg3bx5aa/744w9y5sxJoUKFqFq1KkePHuXkyZPcv3+fhQsX2nu7NWvWzD6DX8R9nT17lgYNGsQaY0I0adKEL774wp782717N2CGshYuXBgnJye+/fbbeBX4njhx4mPnc9u2bQwcODDG8xA+LDGc1tr+ftNas3LlSsqXLw+YpGpwcDDBwcG0atWKadOm2ZNRDRo0iHaonJ+fH3/99RczZ86093xKyO/CgAEDon2fhNd5a9asGQsXLuTevXsEBwdz9OhRqlWr9th+1qxZwyeffMKKFSvIli1bnOdSCBG7cePAxcXUOBFCCJE8Tp82M+s1bw6NG1sdTcYhCalEyJkT2rY1xc1v3LA6GiHShmHDhrFz5068vLwYOHCgPeEQk7x581K9enU8PDwYMGAALVq0wMvLC29vb5599lnGjRsXbQ+uQYMGce3aNTw8PPD29mbTpk14e3vj6+tLxYoV6dKlS7QJoKhcXV2ZPXs2rVu3xtPTEycnp2jr94wcOZLq1avTqFEje/IgXLly5ahXrx7PP/8806dPt/e0qV27Nq+//jo+Pj688sor0c4mFl17CxYsSNeuXZkwYQJFihRh1qxZdOvWLVIPl6gyZ85Mnz59ElSHaceOHRQtWpTFixfz1ltvUbFiRQDy5MnD4MGDqVq1KlWrVmXIkCHkyZMHgE8++YTPPvuM0qVLc+XKFbp27QrACy+8QMmSJSldujRvvPEG06ZNA0zvrSlTptCkSRMqVKjAq6++aj/OwIEDWb9+PWXKlGH9+vX2pM758+ftdaqSw+DBg3nw4AFeXl54eHgwePBgAN5++23mzp1LjRo1OHLkSLQ96BIqpvMQ/ty5c+fQWtOpUyc8PT3x9PTk/PnzDBkyJNb9hoWFcezYMfvrEJGzszNNmzZl9erVNG3aFCBRvwsxqVixIq+++ipPP/00LVu2ZOrUqfYhhd26dbPXRuvVqxehoaE0atQIHx+fSL9H7u7uvPPOO8yZM4eiRYvaZ1oUQsSsaFEYMgSWLze1ToQQQiTdO+9AWJiZXU84jorvsJS0QCnlDOwEzmqtm8a2bpEiRXRcw11is327qSf15ZcQzxqzlgmfGSq9yyjthMht/fvvv6lQoYK1AaWQiDV40hp/f3+aNm1qn3ku3Jw5c9i5c2ekXlyQttuaUIlt65QpUyhWrNhjdcOCg4Np2rQp+/fvT64Qk4UjXtP9+/fzzTff8Nlnn6XoceKSEm318/NjwoQJ0SZsoxPd30Kl1C6ttQyud4CEXIOVK1dOJ2YGUPGf+/fB29vcT5u2hSZN6lodUrqSka4pU1r4bMIRZ3UVSSfv0eQ1fvwe3n/fm5EjYdAgq6NJH+J7DZbeekj1Bf52xIGqVjUXAl99ZaaGFEIIkbJ69er1WDIKTE+g69ev4+Pj4/igLObh4WF5Miol1K9fnxMnTpBJCjikJQ67BhOQOTNMnQonTsDChU/FvYEQQoho3bsHkyeXoXRpiGUuF5FCEpyQUkqdsN12KaU8E7BdI9t2xxN6zHjuvyjwIvB1Suz/8ePBW29BUBDs2OGIIwoh0pI5c+Y81jsKTM+pqL2jRNI89dRTnD59mqCgIKtDEclk06ZNnDp1Cm9vb6tDEfHg6GswYTz7rCkhMX9+cU6csDoaIYRImz79FM6cycYXX0CEuWuEgySmGIc7oG3325RS7bXWK+OxXbYI26aEScD7QIxjBpRSbwJvAhQuXDjSbFGJUayYM66uzzBs2EXefz/1dj2/efNmktuaFmSUdkLktubMmZMbN26ky5mrHj16RGhoqNVhOIS0Nf3JKO0E69uqtebu3bsZ5n9AKjSJBFyD5c+fX16rZNKyZWaWL69G+/bXGD16H+nwUsASGema0lHkfCYveY8mj3//zcKIEdWoWfMirq6HkVPqeEmtDpsDWKqU+lBrPT45AkoMpVRT4KLWepdSyi+m9bTWM4AZYGpIJce4W39/mDWrMFOnFk61U+9mlDHGGaWdELmt4bOU5c2bN90lpaSuUvqUUdqaUdoJ1rZVa82VK1fIlSsXvr6+lsSQkSXmGqxcuXLJcg0mjE2bjvHll6UJDfUjmlHNIhEy0jVlStu8eTOAnM9kJu/R5NGyJTg7Q9++wXI+LZKUhNTXQFtMUmqsUqoC8KbW+mGyRJYwtYBmSqkXAFfgCaXUd1rrDil94EGDYM4cGDoU5s1L6aMJ8biiRYty5swZLl26ZHUoye7u3bv2menSO2lr+pNR2gnWt9XV1ZWiRYtadvwMzrJrMGG0bHmWLVtK06cPNGwI2bJZHZEQQqR+q1fD0qUwZgwULHjP6nAyrKQkpH4GpgIrgKeATkAppVRLrfWV5AguvrTWHwIfAti+nXvPURdCTz4JffrA+PHw3nvg5eWIowrxn0yZMlEitXbPS6KAgIAM0+NB2pr+ZJR2QsZqq4jMymswYbi4aKZOBT8/GDXK3IQQQsTszh3o3RvKlYN33oHffrM6oowrSbPsaa33ANWAPwEF1Ab+tPWWyjA++ABy5oSPP7Y6EiGEEEIIkdHUqwcdOpgvSP+WuQ6FECJWo0fD8eNmttLMma2OJmNLUkIKQGt9AfADFmKSUiWA35VSzyV134mMJ0Br3dSRx8yTxySlfv4ZAgMdeWQhhBBCiNTBimsw8Z9PP4UcOaB7d9ApNYWQEEKkcX//DZ98YpL4DRpYHY1IckIKQGt9T2v9GjDUtugJYKVSqm9y7D8t6NMHChc2iSm5CBBCCCGEEI5UoACMGwdbtpj6pkIIISLTGnr0MMn7Tz+1OhoByZSQCqe1Hgm0Ae4AzsBnSqmvlFLOyXmc1ChbNlPY/LffTE8pIYQQQgghHKlLF6hVCwYMgMuXrY5GCCFSl7lzYfNmk7wvUMDqaAQkc0IKQGv9I1APOIcZwtcNWAfkSe5jpTZdukCZMvDhh/DokdXRCCGEEEKIjMTJCb76Cq5fN0kpIYQQxuXLZhKyWrXM53aROiR7QgpAa70TqA78hUlK+WFm5EvXMmWC//0PDhyA+fOtjkYIIYQQQmQ0FSuaD11z5kBAgNXRCCFE6vD++yZZ/9VXJnkvUocUeym01meBOsBPmKRUlpQ6VmrSqhVUrgxDhsC9e1ZHI4QQQgghMprBg6FECVPgXK5HhRAZ3ebNMHu2SdZXrGh1NCKixCSkTtlut+NaUWt9R2vdChiNSUqle05OMGYM/PMPfPml1dEIIYQQQoiMJls2M5354cNmNikhhMio7t0zyfkSJUyyXqQuCU5Iaa3dtdYltNYbErDNIKASUB94NqHHTGsaNTJTSI4aBVevWh2NEEIIIYTIaJ5/Htq0Mdejhw5ZHY0QQlhjzBjzN3DaNJOsF6mLw0ZPaq2DtNabtdabHXVMK02YACEh8PbbZnpJIYQQQgghHOnzzyF7dnjjDQgLszoaIYRwrAMHYPRo6NABnnvO6mhEdKScVwrx8YFhw2DRIvj+e6ujEUIIIYQQGU3BgvDZZxAYCDNmWB2NEEI4zqNH0K0b5MwJEydaHY2IiSSkUtAHH0DNmqaX1KlTVkcjhBBCCCEymk6doGFDM8PU2bNWRyOEEI4xbRr88QdMmgT58lkdjYiJJKRSkIsLfPutyc76+0tXaSGEEEII4VhKmWnOHz6UUhJCiIzh1Cn48EMzTO+116yORsRGElIprFQpk5XdtMncCyGEEEII4UglS8LIkbBiBfz4o9XRCCFEytHazKoHMH26ScqL1EsSUg7QpQs0a2aytPv3Wx2NEEIIIYTIaPr2hcqVoVcvmQVaCJF+ff89rF5tipkXL251NCIukpByAKVg5kzIlQvat4d796yOSAghhBBCZCQuLjBrFly5Au+9Z3U0QgiR/C5fNsn36tWhZ0+roxHxIQkpBylQwFwE7N0LQ4ZYHY0QQgghhMhovL3NpDuzZ8PatVZHI4QQyat3b7h+Hb7+GpydrY5GxIckpByoaVN4800YPx42b7Y6GiGEEEIIkdEMGQJPP22mQ79+3epohBAiefz0EyxcaP7GeXhYHY2IrwyfkLp9GzZscNw0uJ9+agqdd+woFwFCCCGEEMKxsmQxPaTOnYMBA6yORgghku7KFejRA3x9TS9QkXYkOCGllKpru+VJ4Ha5wrdN6DFT0r//QqNGsGaNY46XIwd8+61JgPXuLVPvCiGEEEIIx6pWzSSjZs6E9eutjkYIIZKmTx8zWcOcOZApk9XRiIRITA+pAGATUDuB21W3bftrIo6ZYooXN2/ao0cdd8waNWDwYJOY+uQTxx1XCCGEEEIIgGHDoHx5M3QvNNTqaIQQInGWL4cFC2DQIPDysjoakVBWDNlTFhwzRs7OULo0HDni2OMOHgzt2sGHH5pMrhBCCCGEEI7i6mqG7p05A++/b3U0QgiRcFevQvfuZsKGDz+0OhqRGI5MSIUnolLdILUyZRyfkHJyMomohg3NN1OrVzv2+EIIIYQQImOrUQPeeQemT4dfU9UYBiGEiFu/fnD5svlcnTmz1dGIxHBkQiqf7f6WA48ZL2XLwrFjEBbm2ONmzgxLlpiuha1awfbtjj2+EEIIIYTI2EaMMNfCXbrI0D0hRNqxcqUpgfPhh+DjY3U0IrEckpBSSmUBOtkeBjvimAlRtizcuwenTzv+2E88AatWQcGC8OKLju+pJYQQQgghMq6sWU3vgtOnTW8pIYRI7S5dMqOMvL1N7SiRdrnE9qRSqhP/JZKi+p9Sql8c+1dAdqC87V4DGxMYY4orU8bcHzliipw7WqFCsHYtPPMMNGkCv/9ulgkhhBBCCJHSatY0daTGjoWXXzZfkgohRGqkNfToASEhZpZQGaqXtsWakALcAT8er/ukgIoJOE54/aiLwIQEbOcQZcua+6NHoVEja2IoU8b0lKpfH55/HjZvNr2nhBBCCCGESGnDhplr0a5dYf9+yJcvzk2EEMLhFiwwZW/GjpVZ9dKD+A7ZUxFu0S2L6QZwE9gLTAQqaa3PJT3s5FW4MGTPbv1wuapV4ccfzUVAy5ZmGKEQQgghhBApLUsWU4/l6lXT+0CnummIhBAZ3Zkz0LOnGVn03ntWRyOSQ6wJKa31cK21U8Rb+FPAy1Gfi+bmrLXOqbX20Vq/m1LJKKWUq1Jqu1Jqj1LqgFJqeMK2t2amveg89xx88w1s3Aj+/o4vtC6EEEIIEV9JvQYTqYuXlyly/uOP8P33VkcjhBD/0dpMvvDgAcydC87OVkckkkNii5qruFdxqHvAs1prb8AHeE4pVSMhOyhbNnUkpABefx0++QQWLoR335VvqIQQQgiRaiX5GkykLgMGmJpSPXvC2bNWRyOEEMaXX5qaUZ9+CqVLWx2NSC4JTkhF6P20IiUCSgxt3LQ9zGS7JSiNU6ECnDwJt24le3iJMmAA9O0LkybB//4nSSkhhBBCpD7JcQ0mUhdnZ9P74P590xtBrkGFEFY7etQM0WvSBN56y+poRHJSOp38l1FKOQO7gNLAVK31B9Gs8ybwJkDhwoUrL1iwwP7c77/n4aOPvPj88914eV13UNSxCwuDsWPLs359IZo1O0ufPsdwdk7463Xz5k1y5MiRAhGmLhmlnZBx2ppR2gnS1vQoo7QTUm9b69evv0trXcXqONK7hF6D5c+fv/IPP/zg2CDTsZT6/Vu+vAiTJpWld++jtGyZsbpKpda/aWnR5s2bAahXr57FkaQvGek9+vChondvX86ezcqsWTvIn/9+sh8jI51PR4nvNVi6SUiFU0rlApYCvbXW+2Nar0iRIvrcuf9KWl28CAULwoQJZphcahEWBh99ZIbwvfSSGc+fPXvC9hEQEICfn1+KxJeaZJR2QsZpa0ZpJ0hb06OM0k5IvW1VSklCyoHiew1Wrlw5ffjwYYfFld6l1O+f1ubac8MG2LkTPDyS/RCpVmr9m5YWDR9uysoNHTrU4kjSl4z0Hh00CEaNgsWLoVWrlDlGRjqfjhLfazCXROx4SOJC+o/WekRS9xHLvkOUUgHAc0CMF0NRFSgA7u6wfXtKRZY4Tk5mSstixaB3b6hfH1auNMkzIYQQQojUIrHXYCJ1UgpmzTKFzl97zVwju7paHZUQIiPZsgVGj4bOnVMuGSWsleCEFDCMpNcGSNaElFIqP/DAdiGUFWgIfJLQ/VSrlvoSUuHefhuKFoW2bU2hyTVrTCF2IYQQQgirJNc1mEidChaE2bPhxRfhww9h4kSrIxJCZBQhIWayr5Il4fPPrY5GpJSkzLKX2FtKKAxsUkrtBXYA67XWPyd0J9WqQXCwGb6XGjVrBps2wc2b8Mwz8NtvVkckhBBCiAwuWa7BROr1wgvQq5eZaGfdOqujEUJkFOEzfc6fD25uVkcjUkpiekjVj8c6TkA+oDrQEcgLLARmJOJ4cdJa7wV8k7qfatXM/Y4d5pug1Kh6dfj9d3juOWjQAL77Dl55xeqohBBCCJERJdc1mEjdxo2DX3+FTp1g3z7Il8/qiIQQ6dn8+bBgAYwYYT7/ivQrwT2ktNab43HbpLVerLV+DygDrAPaAnW11puTuxHJpVIlU7MptQ7bC1eqlOkd5eMDrVubb6yEEEIIIYRICVmzmg+HV69C166m4LkQQqSE4GBTrqZWLTNUWKRviR2yF29a6+vAK8A5YKhSqmZKHzOxsmc3M4ik9oQUQP78sHEjvPwy9O9vbmFhVkclhBBCCCHSI29vM9HOihXw5ZdWRyOESI8ePIB27czP334LLokZzyXSlBRPSAForW8Ds23H6+WIYyZWeGHztPDNT7ZsZvrLPn1ML6k2beDuXaujEkIIIYQQ6VHfvvD88/DOOxAUZHU0Qoj0ZsgQ+OMPmDEDSpSwOhrhCA5JSNkcsN3XduAxE6x6ddMd+fBhqyOJH2dnk4z69FP48Udo2BAuXLA6KiGEEEIIkd44OcHcuZA3r5n5+eZNqyMSQqQX69aZXphvvGE6WoiMwZEJqcy2+wIOPGaCNWpk7n/5xdo4EkIp803VDz/Arl3g6QkrV1odlRBCCCGESG/y5zcFh48cMbPvCSFEUv37L7z+OlSsKPWRMxpHJqSa2O6vO/CYCVa8uEno/JwGJyxu3Rp27oQiRaBZM+jeHW7dsjoqIYQQQgiRnvj5weDBprfUt99aHY0QIi0LCzPJqNBQWLTIlKURGYdDElJKqZ5AO0ADfzrimEnRtCls3QohIVZHknAVK8Kff8KAAWbsbaVKcPiwm9VhCSGEEEKIdGTwYKhbF3r0ML2lhBAiMT75BDZsgMmTzWdZkbEkuG69UmpIPFfNDBQB/IDigMIkpL5I6DEd7aWXYMwYWLPGjI9Pa7JkgXHjTNHJjh2hZ09frlyBDz4wNaeEEEIIIYRIChcXM3TPx8fUe/n9d3B1tToqIURa8ttvJrndpg107Wp1NMIKiZlIcRgmsZQQynY/Qmu9IRHHdKhq1SBfPjNsLy0mpMLVrw9798Irr1zm448LsHq16Vbt7m51ZEIIIYQQIq0rWhTmzDFf5r7zDkybZnVEQoi04vJlk4gqXhy++srURRYZT2KH7KkE3B4Aa4CGWuvhSQ3YEZyd4YUXYPVqePjQ6miSJnduGDz4IN9+a5JT3t7w3XegE5pSFEIIIYQQIoqmTeH99+HLL02PKSGEiMujR9C+PVy6BIsXQ86cVkckrJKYHlL147nePSAEOKa1TnNpnaZNYd480/24Th2ro0kapaBDB6hd2xSMe/110/vryy9NwkoIIYQQQojEGjUK/vgD3nwTfH3h6aetjkgIkZqNGgXr1v1X81hkXAlOSGmtN6dEIKlNkyZmbPzPP6f9hFQ4d3cICDCF44YOhW3bTNKtfnxTjEIIIYQQQkTh4gILF5pkVKtWsH075MhhdVRCiNRo/XoYNszUOu7WzepohNUcMsteWvTEE1CvHqxcaXUkycvZGT76yBSQy5YNGjQw3azv3bM6MiGEEEIIkVYVLgzffw+HD5ueUlIeQggR1Zkz8NprphfltGlSN0pIQipWzZvD33/D7t1WR5L8qlaFv/4yFwzjx5tC7oGBVkclhBBCCCHSqvr1YeRIk5iaPt3qaIQQqcmDB/Dqq3D3LixZAtmzWx2RSA2SnJBSRjWlVE+l1Cil1Oe2+5625Wk279mhA2TNamotpUfZs5uLhRUr4OpVMzSxbVs4dcrqyIQQQgghRFo0cKCZHKhfP9ixw+pohBCpxfvvm/rMX38N5cpZHY1ILRKdkFJKOSml+gPBwO/AZGAg0Mt2P9m2PFgp1U8pleZ6Y+XODe3amRlDQkKsjiblvPQSHDpk6kqtWGH+QAwZArduWR2ZEEIIIYRIS5yc4NtvoUgRaNkSLl60OiIhhNUWLIBJk6B3b2jTxupoRGqSqCSRUioPEAhMAIoCKpbbU8CnQKBSKs3N6dazJ9y+bYp/p2fZs5vicocOwcsvm+7W5cqZZJzUABBCCCGEEPGVJw/89BNcvmyG6Dx4YHVEQgir7NljipfXqQOffmp1NCK1SXBCytbTaTVQA5NwCgNWAe8BLwONbPfvAb8AD23rVQdWpbWeUpUqQfXqpuhaRkjMFCtmxv0HBkKhQmbY4jPPmNlShBBCCCGEiA9fX5g5EzZvNkN1hBAZz5Ur0KKFSVIvXgyZMlkdkUhtEpMcehOoCmjgAOCjtW6qtf5Ma71Ca73Rdv+Z1volwAfYj0lKVQPeSKbYHebtt82MIb/+anUkjlOrlklCzZ4NwcEmKdepE5w7Z3VkQgghhBAiLejQwdSSmjQJvvvO6miEEI706JGZUe/sWVPEvGBBqyMSqVFiElIdbPeXgfpa6wOxray1Pgg0AC7ZFr2eiGNa6tVXTVZ32jSrI3EsJyfw94cjR+DDD2HhQihbFkaNgjt3rI5OCCGEEEKkduPGQb168MYb6XPmaiFE9AYNgnXrYOpU07lBiOgkJiFVAdM76mut9eX4bKC1vgR8jekl9XQijmkpV1fo2hWWL4czZ6yOxvHc3GD0aPj7b2jSxPxxqVABfvwxYwxjFEIIIYQQiZMpE/zwA+TLZ4buXI7XpwchRFr2448wdiy89ZapHyVETBKTkMpiu9+bwO3C10+TI0ffegvCwsxY+IyqZEnT3fLXXyFnTmjdGvz8ICjI6siEEEIIIURqVaCAKXL+779S5FyI9G7PHjPKpkYN+Pxzq6MRqV1iElLhfYSyJXC78PXTZB+jUqXg+efNsL3r162Oxlr168Nff8H06XDwoCn83q0bnDxpdWRCCCGEECI1qlrVfLG7aRP07Wt1NEKIlHDxIjRrBrlymSR0lixxbiIyuMQkpFZhht41TuB2TTBD/VYl4pipwogRZqaAUaOsjsR6zs6m19jRo9C/P3z7LZQpA6+/DgdirSomhBBCCCEyotdfhw8+gC+/zHi1WYVI7+7dg5Yt4dIlU+qmcGGrIxJpQWISUp8DN4DWSqmm8dlAKfUi0BoIsW2fJlWubGaamzQJjh2zOprUIVcu+PRT0zuqXz9YuhQ8PEyNgB07rI5OCCGEEEKkJqNGwUsvQZ8+sGGD1dEIIZKD1tC9O2zbBnPnms/NQsRHghNSWut/MMmlG8ASpdT/lFL5o1tXKZVfKTUSWIJJRrXWWp9KQryWGzUKMmeG99+3OpLUpUgRmDAB/vkHhg6FzZuhWjVo3BgCAqT4uRBCCCGEML3s5883E+S0bm162wsh0rbPPoM5c8znwNatrY5GpCUJTkgppb4B2gFBmALlHwJnlVK7lVKLlVJzbfe7gbPAR7b1goAOSqlvYrjNSmwjlFJPKaU2KaX+VkodUEql2Mj0IkXgww9NT6CAgJQ6StqVNy8MG2YSU+PHw759puZUrVrw88+SmBJCCCHSE0deg4n0w80NVqwwyamXXoKQEKsjEkIk1qpVMGAAtGoFQ4ZYHY1Ia1wSsY0/phYUEe5dAC/bLSIVYR2/eOy7ayLiAXgIvKu1/ksp5QbsUkqt11ofTOT+YvXOOzBjhqmdtHOn+WcqInNzg/feg169YPZsGDfOXHB4eZmEXuvWct6EEEKIdMCh12Ai/ShRwhQ9btDAzLz3yy+QKU3OxS1ExrVvH7RtCz4+poeUU2IKAokMLbFvGRXlFt2y2JbHtG6iaK3Pa63/sv0cCvwNPJmUfcYma1aTYAkKMr94ImaurtCjBxw5AvPmmWl+27WD8uVh1iy4f9/qCIUQQgiRWI6+BhPpS9265kve9evh7belJ70Qacm5c/Dii//1eMye3eqIRFqkdAL/8iuliqdQLOH1qZJEKeUObAE8tNY3ojz3JvAmQOHChSsvWLAg0cfRGnr39uXcuax8992fZMv2KAlRp6ybN2+SI0cOq8MAICwMtm3Lx3ffFefIETfy57/Lq6+e5sUXz5M1a1iS9p2a2pnSMkpbM0o7QdqaHmWUdkLqbWv9+vV3aa2rWB1HRhHfa7D8+fNX/uGHHxwfYDqVWn//EuKbb9z59lt3unU7Qfv21pebTQ/nNLXYvHkzAPXq1bM4kvTF6vfonTvO9O3rw5kzWZk8OYjSpW9aFktysPp8pkfxvQZLcEIqNVNK5QA2A6O01j/Ftm6RIkX0uXPnknS87duhenUzfe3YsUnaVYoKCAjAz8/P6jAi0drMrDJ6tKnFlS+fmaWvZ08zc19ipMZ2ppSM0taM0k6QtqZHGaWdkHrbqpSShJSDJOQarFy5cvrw4cOOCSwDSK2/fwmhNXToAAsWwPffmyFAVkoP5zS1GD58OABDhw61OJL0xcr36MOH8PLLsHo1rFwJL7xgSRjJSn7nk198r8HSzShPpVQmzGx+8+O6EEou1apB586mePemTY44YvqhFDRqZM7btm1QowYMGgTFipku23v2WB2hEEIIIeLDimswkb4oBd98A3XqgL8/BAZaHZEQIjpam04Ev/wCU6emj2SUsFZiZtnraLsVTeB2RcK3Tegx47FvBcwC/tZaf5bc+4/N5MlQtqz5JufsWUceOf145hmTXQ8KghYtTBF0Hx+TpJo9G27ftjpCIYQQQkTHymswkb5kyWJmsS5WDJo3h6NHrY5ICBHVpEkmEfXee9C9u9XRiPQgMT2k5gCzgUoJ3M7Ttu03iThmXGoBrwPPKqWCbDeH5Gtz5IAlS+DWLWjTxhTtFonj7Q1z55rE3qRJcP06dOkCRYpA796wf7/VEQohhBAiCsuuwUT6kzevmULeyQmefx4uXLA6IiFEuMWL4d134ZVX4JNPrI5GpBdWDNlL0ox60dFaB2qtldbaS2vtY7utSu7jxOTpp+Hrr83Qs4EDHXXU9CtPHujbFw4ehM2bzewNM2aApyfUqmVm67tzx+oohRBCCGH1NZhIf0qXNj3nz50zw4FCQ62OSAjx66+mzlutWvDttyZpLERycORbKfxYSZtKLZVq2xZ69YLPPoMff7Q6mvRBKTMd8Pz5ptfUhAlw+TJ06gRPPmnGL//9t9VRCiGEEEKI5FSjhrme3rPHlHO4d8/qiITIuHbvNkXMy5SBFSsga1arIxLpiSMTUoVt9+n2e45PPzWz7nXpAkeOWB1N+pIvn+kieuiQydA3bgzTppneaeFJq/v3JVUvhBBCCJEevPACzJoFGzeaLyPD0uVX2kKkbidOmOGzuXLBmjWQO7fVEYn0xiGf4G0F0HvYHh53xDGtkDmzGVubJYsZW3vrltURpT9KQf36sHAhnDljxi+fO2e6kLZuXZN33wWZSVoIIYQQIu3r1Mlc6y1aBP37mxm+hBCOcfEiNGliaiSvXQtFEzSlmRDxE2tCSinVVyl1IuItwtMzoj4Xze2kUuoi8A+mCLoGVqdge5Js5cqVTJkyJdHbP/UULFgABw6YmQfkH2fKKVAA3n/f9EZbvx58fa8xeTKUL/9f0kq6eAshhBBCpF0DBpgyDZMnw9ixVkcjRMYQGmp6KZ49Cz//DBUqWB2RSPXuXoJTS2Bnb/jFM96bucTxfC7AHZNIiliMXAEFEhgiwGHg00Rs5zBvvvkmV65cwd/fnxw5ciRqH40awfDhMGSIKdA9aZLp2SNShpMTNGwILi4HKV++ALNnmyLo7dpB/vymvlfbtlCzprwOQgghhBBpiVKmLMbFi/DRR2boUI8ecW4mhEikO3egWTMICoJly8xnKCEec/ciXNwMFzbDxQC4fsAsd84G+WsB++O1m7gSUiGY3k0RFcckqC4Dt+PYPgy4CZwENgLfaK1T9UC25cuXs2/fPnLkyMG9e/dYvHgx7du3RyUwkzFoEFy7BhMnml4606bJbASOUKgQfPghfPCB6TU1c6ZJTn3xBRQv/l9yyttbklNCCCGEEGmBkxPMmQM3bsDbb0OOHPD661ZHJUT6c/8+tGplZjr/7jto2tTqiESqcecCXNoCFwJsCaiDZrlLdshXC9zbQwE/yFsFnDIRuT9TzGJNSGmtPwc+j7hMKRVeUvANrfWKBDUiDahWrRrVqlUD4L333mPKlCmEhYXRsWPHBO0n/NscV1cYM8Ykpb7+GpydUyJqEZWTkxnz3KSJuXhZvhy+/968Jp98Yob1tW1relGVLWt1tEIIIYQQIjaZMplarS++CJ07m6RUixZWRyVE+vHwoanLu2oVfPUVvPaa1REJS9351/SAurjZJKFu2Ka3d8kB+WtDiY5QoB7kqWxLQCVOXD2konMK00Mqrt5RaV7Xrl05dOgQ7dq1A2DQoEEUKVKEt99+O17bKwWjRpmk1NChJik1bx64JOasi0R74gnzLdrrr8Ply7BkiakvNXw4DBsGvr4mMdWmDRQrZnW0QgghhBAiOq6u5kvGRo3MddvKlebLRyFE0oSFwRtvmKTvp5/Cm29aHZFwuDvn/xt+d3Ez3Dhklru4mQRUSf8ICajkS2gkeE9aa/dkO3oq5+Pjw/r16wHQWjNx4kSyZs1qT0gdP36ckiVLxjqcTylTSypzZjOU7P59U/Q8c2aHNEFEkS8fvPWWuZ09a/7ofv+9KY7+/vtQq5bpOdW6NRQsaHW0QgghhBAiohw5TA+OZ581PaTWroU6dayOSoi0S2szccCcOaYTxTvvWB2RcIjb52w9oAJsCSjbVPUublCgDpTsDAXrQ27fZE1ARSV9deJJKcW2bdu4dOkSAGfPnqV06dJ06NCBb7/9Ns7tBw403+r072/G5S5eDFmypHTUIjZPPmn++PbrBydOmF5TCxdC797Qt6+50GnXDlq2NAU0hRBCCCGE9XLnNomounXNEL5166BGDaujEiLt0dp8Tv3iC5OIGjrU6ohEirl91lb/yZaECj1qlmd6AvLXgVLdTA2o3D4pmoCKSspsJ4CPjw+NGjUC4Pr165QrVw4/Pz8AVq9eTYECBfj1119j3L5fP1PcfOVKaN7czGAgUoeSJc3MLXv3wv795ueTJ6FrV9NTqnlzk6y6lapL8gshhBBCZAwFCsDGjea+SRP480+rIxIibdHafOYZNw66d4cJE2TSp3Tl1mk4+R382Q1WlIFlReH3DnDqB3iiPPhOgOd2witXwe9nqPCerSC5Y/ssJfhoSqlvknhMrbXumsR9WO7pp5/m0KFD9sd//PEHly5dws3NDYD//e9/zJs3j/Xr11O8eHH7ej16mOF6b7wBzz8PP/xg/pGK1KNiRRg5EkaMgF27zJC+RYtgxQrIls1Mg9q2LTRuDFmzWh2tEEIIIUTG9OSTsGkT+PmZ67L168E2N5EQIhZaw8cfw9ixppTJ1KmSjErzbp02PZ/Ce0HdPG6WZ8oFBepCmR5Q0A9yeYNT6plpLTHpL39MUfOkSPMJqaiGDx9Oz549KWDLLv31118cP36cgrZCRP7+/uzbt4+dO3fStasiU6b7vPlmZry9zZSaDRpYGb2IjlJQpYq5jR8PgYEmObV4sektlS2bKarZrJnpLi41p4QQQgghHOuppyAgIHJSqmpVq6MSIvXSGgYPNjPBv/mmGcHjJOOm0p5b/0QuQn7zhFmeObdJQJXtZYqQ5/JKVQmoqBLbHyuh+VMdYZukJrNSrQIRujotWbKECxcu4OrqCpgE1T///GMvgD52rA/58t3Fze0EjRrBW28dZvToIuTO7WZJ7CJ2Tk6mTkHdujB5svk2bsUKM/xy+XKTvKpWzSSnXnoJPDzkWwYhhBBCCEd46qn/eko1agQbNpgvFIUQkWltJtwaNQq6dYMvv5RkVJpxM/i/+k8XAuBWsFmeObdJPJXtbYqQ5/IElXZe1MQkpErEYx0nIB9QHegBVAC+BwYBYYk4ZsrSOtmzB0opChUqZH8cFBRkL4gO4ObmRrZs2di8Gfr0genTKzN7dgGOHj3BU0/ByJEjeeaZZ2ggXadSnUyZzDdwjRubAoB795rE1IoVpuvrxx+Du7tJTL30EtSrJ7MqCiGEEEKkpGLFIiel1q6V4XtCRBTeM2rUKFMn96uvJBmVqt0MjjAEL8D0iALIkhfy14Xy/U0R8lweaSoBFVWCE1Ja63/iuepJYIdSajowA+gEhGqtuyf0mCnq9lnY+gpUngz5Uu6/lpOTk334HsCfESovzpoFe/Y0ZO/eEnh7w6xZYQwZMgQvLy/27NmD1prixYvToUMHRo8eDcCRI0coWbIkLi4yUaKVlAJvb3MbNAjOn4effzYJqpkzTcLqiSdMsc1mzUzdsLx5rY5aCCGEECL9KV7cDN979llo2NBck9Wta3VUQlhPazOL3qRJpmeUJKNSGa3h1sn/6j9dCIDbp8xzWfKaHlDl3zU1oHJWTNMJqKhSvCVa64fAG8BR4A2l1HMpfcwEccoEdy/C5qb/jbu0wM6dyzh4cCIlSkDLlpqGDecyevQEAM6dO8eZM2c4dcq8KYODgylXrhz+/v4AXLx4kVdffZXNmzcD8OjRIx48eGBJOzK6woVNwfoVK+DKFXP/6quwdSu8/ropYF+3rpnF4vBhq6MVQgghhEhfiheHLVtMwfPnnoN166yOSAhrPXpkCpdPmgR9+8KMGZKMspzWJvdw/Bv4rSMsLw4rSsGfXeHcKshbFSp/AS/sg5YXoc4SKNc7zQ3Hiw+HtEZr/QiYi6kj1cMRx4w31wJQfzXoh/BrEwg9ZlkopUvDb79Bv37ObNjQkcGDG3HkCDz55JPcu3ePGTNmAPDgwQNq1KhB48aNAdi6dSuLFy/m559/BmDlypVkzpyZiRMnAiaB1bdvX44ePQqA1um2jFeqki2bGbI3cyacPWumI/7oI7h+HQYMgPLloVw5eO89c+H08KHVEQshhBBCpH1PPgmbN0PZsuZabPlyqyMSwhoPH0KnTubzyEcfwcSJUufWElqbPMOxr+G312F5sf8SUOfXQL4aUGUKvLDfloD6Ecr1SvPD8eLDka0Lz/SkvhKDT5SDer/A/auwtrqpVm+RLFnMH4oVK+Cff6By5fAulZnIli0bAGXKlOH333+nY8eOADRp0oQNGzbwzjvvAODs7EyRIkUoU6YMAJs2bWLy5Mls3boVgPHjx5MlSxY2bNgAwObNm3nvvfe4ePEiAPfu3ePRo0cObXd65+Rk6hiMHAl79kBwMEyZYmpNTZ5s6kwVKAAdOsAPP5iklRBCCCGESJwCBUxNKR8feOUVM1OyEBnJvXtmpMb8+aZu1KhRkoxyGK3hxlE4NhO2tYdlT8HKMrD9Dfh3PeR7BqpOgxcPQssLUPsHKNsTclXMcC+SIxNS4dPHpc4KOvlrQpM/TY+pXxtC0Ifw8I5l4bz0kklcVKkC3btDpUqwcWP06+bIkYMGDRpQuHBh27YvcfbsWZo2bQpA8+bNmTt3Li+//DJgElaurq4ULVoUgOnTp/Ppp59y7tw5ALp3746LiwvHjx8HYMaMGbRo0YLQ0FAALl26xPnz56WnVRIULw49e5qCm5cvw+LF5jVfswbatDF1pp55BoYOhcBAkBGYQgghhBAJkzs3rF8PtWpB+/YwfbrVEQnhGDdvmvq1S5eaoXoffWR1ROmc1nDjCBybYUtAFYWfy8L2N+HCRshfG6p+CS/+DS3OQ+1FUKYH5KyQ4RJQUTkyIdXSdn/ZgcdMGLfS0Ph3KNEBDo6FVR5wbo15g1mgaFH49VdYtMj0mGnY0PxhOXIkYfvJkycPHTt2JE+ePAC8++67XL9+nfLlywMwZswYZs+ejYeHBwAlS5akaNGiFCtWDICFCxeybNkyXF1dAWjZsiVFihQhLMxMmNinTx+qV69uP9769etZsWKF/bEkrmL3xBPQqhXMnQsXLph6UwMHmvHeI0dCnTomQdWsmelVdfiwZW9JIYQQQog05YknYPVqM7FMjx4wbJhcR4n07eJFqF/fdGaYNcvUjRLJTGu4cRiOfgXb2sGyJ+HncrD9Lbi4CQrUharToekhWwJqIZTpDjnLZ/gEVFQpPkWbUiobMBx4AdDA1pQ+ZpJkzgU1ZkOJjrC9OwQ8b7rUVfwIirzg8DeQUqarZbNmJrs9ejRUrGh61wwZArYcU5K4u7vbC6QDDB48mMGDB9sf//DDD/zzzz9kypQJgOeee47MmTPj7OwMQGBgIH///bd9/TfffJMzZ87YC6v7+Phw4cIF/v33XwD69evH/fv3mTZtGgAHDx4kW7ZsuLu7J70xaZyzM9SubW7/+x9cvWqSkuvXm9vKlWa9AgVq0LSpmda4QQPIn9/auIUQQgghUqts2WDZMjPxzPDh8O+/MHWque4SIj05edLM7n36tOkd9dJLVkeUToQnoC4G2GbCC4C7F8xzWQtDgfpQsJ6ZDc+trCSdEiDBCSml1DfxXDUzUASoCmSzLQsDPk3oMS1RsD68sMdUvv97nJmFL5cXVHgPnnoFXLLFvY9k5Opqes107mwSUV98AfPmmW95evQAW64oReTLl498+fLZH3/88cd8/PHH9sc7duzgxo0b9sdjxozh5MmT9seFCxfGKcJUDgsWLIiUkHrmmWdwdnbmypUrAHh6epI/f35+/fVXwPToKl68OH369AHg0KFD5MmThwIFCqRAa1OXPHlM76lWrczj48dNYmrBglB++smVb2y/jb6+JjnVqJFJZtk6swkhhBBCCMy18uzZZkbksWPh0iVTW0eumUR6sWePmVny3j3TO+qZZ6yOKA3TGm4cipCA2hwhAfUkFGxgS0DVN6OsJAGVaInpIeWP6ekUX+Gvzn3gba31zkQc0xrOrlD2bSj9BgR/b4bx/d4RdrwNxVqbXlQF6jq08n3BgqbIec+e8O67pgvmtGkwYQK8+KI1vwvOzs7kzp3b/rht27aRnl+zZk2kx0FBQdy6dcv+uFu3bvbeVgDXr1+398YC+OKLLyhSpIg9IeXp6UmpUqU4dOgQYBJetWrVolevXgC0b9+e+vXr061bN8AkzNzd3cmfDroRlSplbuXLH6B2bT927fqv99Rnn8G4cebCqm7d/xJUnp4ytasQQgghhFIwZgwUKgT9+pmeJMuXQ65cVkcmRNIEBEDz5maI6saN8PTTVkeUxmgNIQdM4uligC0BZSb8IuuTUKih6bBSoB7kKCUJqGSU2CF7CXkFgoE1wGSt9aFEHs9aTpmgZEdTW+riVjg5D04thhOzIVsxKN4WnnwR8tU06zqAlxesWwe//ALvvWe6YzZsCJ9+ap5LzYoUKRLp8YQJEyI9PnXqVKTHv//+e6QeVq1bt+bpCH9l7927x/379wEICwtjwYIFnDhxgm7duvHw4UOqVatGvXr1CAgI4P79++TKlYtOnTrx5Zdfcvv2bZo2bYq/vz8dO3bk7t27LF68mNq1a1OiRAm01jx69AgXlxQf3ZpgLi5Qvbq5DRoEoaFmiuPwBNWAAWa9AgXMeyM8QfXkk9bGLYQQQghhpb59zZe8HTuaXiS//AIlSlgdlRCJM28edOsGZcqYCZKeesrqiNIAHQbXD5rE04UAnrmw4f/s3Xd0VNXexvHvTg9JCC2U0GvoRZo0CYLItaOgIghWRL327vVV7Nd2letFwN4rVhQLLaAUkSZFpLfQCQQSSM9+/9iTSUINkGRSns9aZ82cmTPn/M6knTyzC0xOdM9VqAM1z/W0gIqF8EYKoIrQqfyXXdBf12lAorU29RSOUTIZP/eNWaM3dHoV4r+FDe/B3/9x3foCI6HWuW6sqVoDILRG0ZZj4IIL3Kc748a57nvt28Mll8Bdd7muW2XhZ6djx4751j/++ON863v37gUgLi4OYwx//vknERFuUseMjAyGDBnCOeecA0BCQgIhISEEBwcDsGHDBmbMmEGNGjUYPnw4y5YtY/jw4QwbNowPPviAefPm0b17d+6++25eeuklFi9ezGWXXcZjjz3GiBEj2LBhAy+//DLXXXcd7du35+DBg2zfvp06dep4B4EvLhER7vvBM7ki8fEwdaoLp6ZOhZy3rUULF0zFxroB0/P0xhQREREpF6680rWUuvRS9+Het99Ct26+rkqk4Kx1M3I/+SScfTZ8+aVa+x2TzYb9K3K73+2aCWmeudYq1GNvcBdqtr3S/Z8f1rBs/BNdSpx0Rx5r7aYCLjuKM4wyxrxtjNlljFleLAcMqAANhkCfn2BQAvT6EuoNgt2/wrxr4Oua8GNHWHina011aFuRlRIYCLffDmvXunGm4uJcl63OnV3f+IyM8vMDZYyhbdu2NPR8zBUaGsrHH3/MtddeC7jufXv37uWVV14BoHnz5mzYsME7nlX9+vW5//77ufHGGwEIDg4mJiaGNm3aALBx40Y2btzItm3u6zllyhReffVVvv/+ewDefvttmjZtyrhx4wB45513iIiI4OuvvwZg8uTJ9O7dm8WLFwOwfPlyxowZw+7duwE4dOgQ+/bt885geDrq1IFrrnHfA9u3w5Il8MIL7lOTN95wF2BRUa5L3623wuefu1n+RERECqrYr79EClFsLMyd67o59enjroVESoP0dD+GDnVh1HXXuZkkFUblYbNh31JY9V/49TL4qjpMbgsLb4e9CyH6fDeR2UXr4ZJN/F35IWh8rVpD+UDJ64d06t4F/ge8X+xHDqwIdS91i7WQ+Cdsmwzbf4G1r8OqMW67sIYQ1SN3iWxVqONPVaniZuH717/ggw/crHzDhkG1amdy111w001QtWqhHa5M8Pf3zze7X/Xq1Xnuuee862eccYZ3rCqAgQMHkpWVhfXMFzxo0CCioqLo0qWLd/sBAwbQs2dPwLXQ8vPzo0IFNwj+zJkzmTVrFlu2bKFDhw689tprjBs3jpiYGAYMGMDdd9/NhAkT+O233+jRowePPPIIr732GvPmzaNZs2a8+eabfP75597xsubNm8dff/3FsGHDCAoK4tChQ/j5+R3ROsvPD9q1c8u990J6Ovzxh+viN3MmvPeeG4sMICYGevfOXdTFT0REjuNdfHX9JVIIYmJg3jwYOBCuuMJ9wKuWUlKS7d4Nd9/djhUr3AD999+vDAWbDYnL8reASne9aAhrANEX5BkDqoEPC5XDlZlAylo7yxjTwNd1YAxUbu+WVg9DVjrsWwK7f4M9s2HHFNj4ods2ICJ328rtoXIHiGwJ/sGnVUJYGIwaBSNHun7Ejz12kH/9K5innnJ95e+8E5o3P61DlGvGGIznt36VKlUYOHCg97kePXrw448/etdHjhzJyJEjvetPPvkkd955p3fWwptvvpl69ep5A63u3buzZMkSGjduDEBqaippaWneLojffvstU6ZM8QZS//rXv5g+fTpXXHEFQUFBXHjhhUyfPp2MjAwCAgIYPnw4U6ZMYfv27QA89dRTLFiwgG+++YYePSAx8Qdq1drF999fy6JF8NNPicye7cenn1bk9dddzY0b5w+o6tcvindVRERKoxJz/SVyGqpVc8MbXH+9+2D3nHOac+aZEBrq68pE8lu61A3PsnVrOF98kTsTd7ljsyFxqSeAioNdsyB9n3surCHUudiN/1SjN4Tpn5eSzOS09DjlHRhTEegPdAVqARFAErANmA/8Yq09cJp1FrSWBsD31trWx3h+JDASoFatWh0PH4uoWFhLSNY2ItOXUzF9JeEZawnPXIe/p3djNv4cCqhPcmATkgObkhzYhIMBDcnwjzzlQyYnJ7N7dw0mTqzDlCk1yMjwo2vXBC67LJ5OnfaVmUQ9OTmZ8PBwX5dRpFJTU0lMTCQ8PJzw8HAWL17MkiVLvF0SP/jgA+bOnevtgvjII4+wZMkSb5fC6667jk2bNjFt2jQAhg0bxvbt273rQ4cOZffu3fz44y+sXRvOY4/dSGLiXoKC1pKUFAhcS1BQIrGx42jXLpHdu9+mcuVMLrroIgC2b99OSEhIvlkXT0d5+Jrm0LmWPeXlPKHknmufPn0WWms7+bqOsu5E11+ebbzXYFFRUR0/V9+oQlNSf/5KI2vhww/r8/bbDWnWLIknn1xO9eppvi6rVJs5cyYAvXv39nElpV9cXBTPPdec8PBMHnzwDzp2zPR1ScXHZhGeuZ5KaUuolL6EyLSlBNpkAFL8o0kMbkdiUHsSg9qRFnDy4zjr92jhK+g12CkHUsaYYOAJ4GYg7DibHgReAx6z1hbpb/SCXBDliI6OtjnjAPmczYakta4llXdZDKk7crcJrgoVW0DF5vmXsAbg53/c3cfFxREbGwvArl0wYQKMHevGC2rVyrWYGjq09H8KlPc8y7pTPdekpCQOHDhAbU8/vB9++IH169dz2223AXDfffexYcMGJk6cCLiLh507d/LXX3+zfDn06lWLlJRUIiP3sWcPQCWMsVx55X5694Z77qlIcHAgCQkJANSuXZsqVaqwbNkyAHr16kW9evX46KOPALjjjjto0qSJ9/jff/899evX947ZNXXqVPr163eqb1Opou/fsqe8nCeU3HM1xiiQKgYnc/0FEBMTY1etWlW0RZUjJfXnrzR75pll/PvfbQgJgYkT3discmoef/xxAB577DEfV1J6ZWXB//0fPPusmxVy4kRYtaqM/9xnZ0HiEtg5M7cFVMZ+91x4k9wZ8Kr3hrDTn1ZQv0cLX0GvwU6py54xpgowDWgLnKh9TThwH9DfGNPXWrvvVI5Zphk/qNjMLfUvz308ZYcLpw6shP0r4cDfbma/tDdzt/ELgohm+UOqiMZuQLbgqCM6FFev7n6h3X8/fPopvPwy3HgjPPAADB4MQ4a4mdf8Cm9oKylBIiIivN3/AM4///x8z7/wwgv51nM+1QJo2xb27o0nNTWVChVg5UqYMGEiixenMmMGfPIJwHVYG8Tll7vvo0qVoqldO3cav6VLl3rDKoCxY8fSoEEDbyB18cUX07RpU++4Xeeeey4dO3Zk/vz5ANSoUYNzzz2X9993Q5X07t2biy66iHvuuQdrLY899hh9+/ald+/eZGdns27dOqKjowkLO15mLiIiIpKre/cE5s+Hiy+Gvn3duKy33KJxeqT47dvnGg78+KMbjuXVVyEoCMpcpu8NoOLcsvvX3AAqoinUu9yFTzVioYIGuC1LTnUMqS+Bdp77h4BPgF+A1UAyLoRqiuvKNwTXgqodMBHoexr1li+hNSF0AEQPyP94WgIcWOUCqpwl8U+I/8q1tsoREAbhjWidWhEWdnYhlWcJDmvAiBGhDB/uBrV+/XU3EPqECRAd7QZ1HDIEOnXSH1/J5e/v7w13WraEMWNc6yVrYc0amDnzFe9A6V98AfAHmza5i7kePeDzz/fTtWtuq8yFCxcSGBjoXX/wwQdp2rSpd7158+beTyustaSmppKa6rq3pqenM2vWLAICArjnnns4cOAATz75JL///ru3ZVezZs244IILmDRpEps2baJJkyaMHDmSsWPHsnHjRs4++2zuvPNObr/9duLj47n77ru54YYb6N+/PwkJCXz//ffExsZSv359srKySE9PJyQkxDuGmIiIiJRNzZvD/PkuDPjnP91kMK+9Bp55akSK3J9/ujGiNm2C8ePdBFVlRnam6xG0a2aeAMozyk9EMxdA5QxCXiHap6VK0TrpQMoYcwnQG7DAQmCQtXbzUTb9E5hojHkSF0R1BmKNMRdba7899ZKPWdcnQCxQzRgTj+si+FZhH6dECK4KUd3dkldWGiSvg+QNkLzeu4QkL3Oz/WUdyr99aDQmvBGxYQ2JfbAhaY/UY+6fdfnih7q880ZdXn45nCZN4Mor3dKqVfGdopQuxkCzZm658Ub32ObNMHs2zJnjbp9+GrKz3aDwrVu7gKp793b06OECLWPg6aefzrffsWPHegMpYwz79+/3PhcYGEhycrI3HAoNDeXtt9+mlecbNSgoiIEDB3LZZZcBkJmZSa1atahb1zXr3b59O5s3b2bDhg0ALFmyhC+++IKaNWvSv39/ZsyYwTXXXMO9997LCy+8wKeffsqwYcN47LHHGD16NF988QXXXXcdr776Ktdccw0///wzDz74IP/5z3/o06cPCxcu5J133uGOO+6gadOmbNu2jdWrV9O5c2e12BKRMqNcXX9JuRMZCd99B48/Dk8+CQsWuA/cWrTwdWVSllkLb7wBt9/uZkifMcNdN5dq2Zmwd5Gn+91M2PUrZCa55yrGQP0huYOQh9byZaVSzE6lhdQQz+1OoL+1NvF4G1trtxhjBgB/AdWBoUChB1LW2iEn3qqM8w92s/RFtsz38IK4OGJ794bUXS6kOpg/sGJXHGz8kGAssUDseTD2PEizlYnfV5e/N9Vl1kt1mRpQj4at69L5rLrUalIXQuuAf5AvzlRKgXr13DLE85OZlOQ+aZw92y0ffeQ+7QGoWTMnoHK3HTq45sjHY4zJF+wEBQV5B3cHqFq1Kl999ZV3vXHjxmzenJudd+vWjczM3MEgzznnHJYvX06NGm4gxC5duvDII494A63GjRvTvXt3und3QbC1lqCgICp4Pir9888/WbJkifcYEydOZOzYsXTv3p2mTZvy0ksv8Z///IevvvqKgQMHctdddzFmzBimTp3K2WefzQcffMDll1/O9OnTad26NW+//TYffvghH330EbVq1WL69OnMnj2bu+++m7CwMLZv305KSgoNGjTAT31sRcRHdP0lZZ2fnwukevSAYcOgc2d3/TJsmK8rk7IoOdm1hPr4Y+jf3/VgqV7d11WdguwM2LswTwuo3yDTDUJOxebQYKjrfle9t+sVJOXWqQRSXXGto94+URiVw1q7zxjzJvAvz+uluBkDoTXcEtXtyOez0iFlGxzaAgc3w6EtBB/aQuNDW6hXbwuZB+YS6rfXbfuXZwGygmriH14XKtSB0GjXpDI0GkJq5d4PqqJ+f0JEhOu619fTaTcrC1asyN+K6ssv3XMhIe6Cr27dhiQnu6CqSpWirS84ONjbugqgXr16PPnkk971M888k9mzZ3vXL7/8ci6/PHfMt/vvv5/77rvPu37XXXfRs2dPb4B1ySWXsH//fjp37gxA69atadmyJfXru6loDx06RHJyMsHBwQBMnjyZGTNmkJ6eDsCLL77Ijz/+yE033URYWBjDhw9n6tSpJCUlER4ezoUXXsjPP/9MSkoK/v7+3Hzzzfzyyy+sW7cOcOODLVq0iE/cYF/89NNP7Ny5kxEjRgCQmJhIcHAwoaV9dgMREZEi0L8/LFnieg1cfTXMmgVjxpT+SYGk5Fi+3I3pu3q1a5H38MOlaFzfnABqZ5xr7LD7N8g86J6r2AIaXu0ZhPwsBVCSz6kEUjkZ7bKTfN1yz23UKRxTipp/EIQ3cMthAj0LmQeJXxPPrz9t4e+FWyBlM/WqbqFtky00if6byKAZ+GUmHrlvvyDX9DLUE1Ad635QZQVX5Yi/vxsovW1buPlm99j27bnh1OzZ8Nlndfn4Y/dc8+bu08mcllTNmpW8b5e8Y0tVr14936DxvXr1olevXt7166+/nuuvv967ftNNN3nDIoAvvviCgwcPeltgPffcc1xyySVUq+YGiR82bBgVK1b0TlHbrFkz/v77b/z93aybGzduZPv27d79vfPOO/z999/eY9x+++2sW7fOG0h17NiRzZs3k5GRAUCnTp3Yvn07W7duBWDw4MEkJiYyZcoUAJ544gmys7MZPXo0ANOmTaNChQp06+YCb2utxtoSEZEyJToapk+HRx91M57NnetasngmBxY5Jda6Vnf33OO6iU6dCn36+LqqE8hKh70LcltA7ZmdG0BFtoKG17jud1FnuQYRIsdwKoFUOhAMnOznATnbp5/CMaUkCAijTosYhrSIAeCvv9xMff9+A9audZu0b5PCZedtp1+PbXRovp3grG2u5VXKdne7/y/YMQ0yEo/cv1+wC6hCahy5hB62HhhZ8tIIOW21asFll7kF4KeffqNChbO8AdVXX8FbnpFJqlaFM8/MXTp3dn/EywpjjDdsAmjTpg1t8lzxjhgxwhsmAbz00ku89NJL3vUff/wx3/7++OMPdu3a5V1/5ZVXvK2nAK688sp869WrV/eGUwCLFi3KN4bXyy+/nC+QuvTSS/Hz82PfPjeRaqVKlQgPD/cGWjExMdSsWdM7c+OFF15I48aNeeWVVwA3fliTJk244oorAFi8eDG1atWiZk19iiYiIiVHQAA88wycdRZcc42bAOjZZ+HOO0tRaxYpMXbuhOuug8mT4dxz4d133VAWJU5WOuz9w9MCaibsnp07PrE3gIp1LaBCSmMfQ/GVUwmktgAtgT7AuyfxurPzvF7KgJYt4YknXL/6FSvgl1/g559DeXpMI/7vuUYEBUGvXu6X67nnQptueTKkzEOekMoTVOUNrVJ3wsGNkPA7pO3OP3NgDr/gIwKrhgdSYdXSI8MstbwqtUJCsjnrLHfRB25Q9FWrXDg1b55bJk/OHRS9Zcv8IVXLlro4zBEWFkbDhg296+edd16+5w8fUH7y5Mn51vOGVQDz58/n4MGD3vXHH3883/N9+/alYsWK3vXMzEyysrK867/88gt169b1BlKPPvpovkCqY8eONG/enL/+cv2Dg4OD6dmzJ9OmTQOgQYMGXHjhhbz66quA6xJ58cUXc+2115Kdnc0777xD165dad26NdnZ2Vhrva3HRERETteAAbBsmZvM5Z574Icf4L33oE4dX1cmpcV338ENN7hxVv/7XzebY4n5lyUrDRL+8AxAHucJoFLcc5XaQOPr3fhP1c+CEHWAklN3KoHUNKAVMMQY87q1dvaJXmCM6Y4bDN16Xi9liDHQurVb7r4bUlLg11/h55/dcv/9bqlZ0/W/P/dcOOecCkRFNYaIxsffeXYWpO1xIdWxlpR42LeQeik7YeFHRykwAIKruV+WwdU9t54l5CjrQZXAKMUoifz83Mw2LVq4P+AA+/e7wdJzAqqvv85tRVWxInTpkhtQde0Knh5vcpqaNm2ab/3OO+/Mt553QHk4MtBKS0vLF1B98803VK5c2bt+/fXX07ZtW+96kyZNaN26NQDZ2dns2LGDLVvc5xvJycl8++23HDx4kGuvvZY9e/Zwww038I9//IPJkyezZcsWGjRowODBg/n8889Zv349HTp04Pbbb+fJJ59k48aNDBkyhNtuu42rrrqKHTt28L///Y9BgwbRvn17UlJS2Lp1K/Xq1SPoRKPti4hIuREVlXvdcccdruve+PFw+eUlKFiQEic52YWYr78O7dvDhx+WgNnMs9IgYX7uGFB75uYJoNpC4xtzu+CF6GJaCs+pBFLjgVsBf+BHY8y9uAHOMw/f0BjjD1wDvOTZPtPzeinDQkNd8NS/P7z0EmzdmtN6Cr7/Ht5/3213xhm5rae6dTvGrGp+/rmDsZ/AzBnTie3W5iih1W5I2+W53Q0JC9xtxv6j78j4uwArOOrIECvfejW3BFUBv1P5UZLCEBkJ55zjFnCtpdaudeM65IRUzz7rBlEHaNLEfb/lhFRt2kBgoO/qL8/ytli68MIL8z33xhtv5FtfsWKF976fnx+pqane9QoVKrB582ZvWFShQgUef/xxenjmSA4MDKRHjx7069cPcAGWn5+fd3bCNWvWMG/ePDp27MhVV13FnDlzePrppzl06BDt27fn66+/ZujQoTz44IM8++yzfPrpp4wYMYKXX36ZW265hZ9//pm77rqLl19+mXPPPZdFixbx7rvv0qVLFwD27NnD9u3biYmJUaAlIlLGGOM+JOvd2828d+WV8Nln8NprJbTrlfjUlCmuVd3mze4D+yeeAM98NsUrK831RskXQKUCxgVQTUbmtoAKruqDAqW8OOn/oq21fxtjngH+DwgDxgFPGWPigNXAQc/jTYFYoBpgcK2jnrHW/l0olUupUbs2XHutW7KyYNGi3NZTzz/vwoLwcDd4X//+btDqNm1cH/2TYvxcUBQSBbQ+8fZZaa71Vdru3LDq8PAqbTfsW+xu0/cde19BlXMDqiOWqkc+FlRZrbCKiDHQtKlbhg93jx08CAsW5AZUv/ziptEFF6B26pS/q190tO/ql5Pn5+dH3bp1vevh4eE8+uij3vXo6Gh+++0373rbtm29Y10BnHPOOWRnZ5Od7boH9+7dm/fee887QHvr1q0ZOHCgt5tjWFgY1atXp1atWgD8/fff/P333+zYsQOAL7/8kldffZWHH34YcAPSv/jii3zxxRcMGjSI//u//+P5559nypQpnHXWWYwbN46xY8fy9ddf07RpU3755Rd++eUX/vWvf1G5cmW2bdvGwYMHadSokbodioiUUE2buiEFXnoJHnvMDRvw8svuWkStpWTfPtcq6p13ICbG9SbxfG5WPLJSYc/vLnzaNTN/AFW5HTS5CWr0gaheEFzEU1uL5HFKzTqstY8ZY4KA+3FhUzXgsmNsboBs4Dlr7ehTOZ6UHf7+bvDpzp3hkUfgwAE3W0lOQDVpktsuLMxt061bbmuWqMLunuwfDBVqu6UgsjM83Qdzwqo9R18OxcO+JW6brNSj78v4uZZVxwuvgqp61qu6+0GVXYsxOWlhYe6Ty9693bq17pOpvK2oXnkFcsbwrls3t4vfmWe61nya1rlsM8Z4w56qVasyPCfNxAVYebsgXnjhhfladN1xxx3ccccd+dbPPPNMrLUADBgwgE2bNtGpUycAqlWrRlRUFNWru0E/lyxZwl9//eUdRH7cuHF888033HrrrVSuXJmRI0fyww8/sHXrVqKjoxkyZAjffPMNe/bsISwsjMcee4yff/6ZOXPm4Ofnx48//siGDRu45ZZbAEhJSSEoKEhhlohIEQsIgAcegEsugeuvd4Oef/opTJgA9er5ujrxlW+/dTNK79oFDz3kZmkMCSnig2amQMI82OkZA2rPPMhOwwVQ7aHpLZ4WUL3c/xgiPnLK/YystQ8ZY74D7gP+gZt573BpwA/AC9ba30/1WFJ2Vazo/mhfcolb37DBhQQ5QcELL0CmpzNo48a5AVW3bqfYiup0+AW6WQBDaxX8NZmHjh1c5V2S13kGcd/jgq+jMp6WWFXpkBoIcQ3zBFhV8wdYeQMtf1+0Ay7ZjIH69d1y5ZXusdRUWLLEfe/9/rv7/vviC/dcQAC0a5cbUHXt6j4J1SeecjTVq1fnwgsvJC4uDnADvPft29f7/OEB1oQJE5gwYYJ3/eWXX2bYsGHeVl9Dhw4lKCiIGjVc1+UaNWpQuXJlKlSoAMCMGTOYP3++twvigw8+yNKlS72BVLdu3VixYoU38Bo0aBCrVq1i2bJlgJuhMSEhgWeeeQZwXRhDQkLytToTEZGCi4mBWbNg7FgXQLRq5VpN3XGHhgkoTzZvhrvucrNEt2vnhi4544wiOpg3gIrLE0Cluw/BK3eAZv/ME0BVKqIiRE7eaf07b62dC1zqaS3VDqgFRABJwHbgT2tt+mlXKeVGw4Zuueoqt37oECxcmBtSTZniBv6D/K2ozjwTsrNL4F/4gAoQUA/CCvixmLWQcQDSEyAtz5Ke4Amv3HrWjrVuRsLEpe6xnGlXj1pDmCecqpa/xdXR7uesB1Ysd2lLSEhul70cO3a4cConoHr/fTcmBECVKvkHTO/SBSrrAyYpBA0aNKBBgwbe9SFDhjBkyBDv+iuvvOKdnRBg1qxZpKSkeNfHjBnD0qVLvet9+/alSpXc5vfx8fFs27bNu/7iiy+SmJjoDaR69uxJcnKydxbFNm3aYK1l+fLlANx1111UrFjRO7Pi6tWr2bt3byGcuYhI2eHnB7fdBhdc4G7vuw/efdeFVDkttqVsSk+H//wHnnzSXdo/8wzce2/hhpF+2amwY5rrfrczzn2w7Q2gzoCY210AFdVTAZSUaIXSvsQTOv1RGPsSyatCBejVyy3gfqlv3Jjbgmru3LytqHr4vhXV6TIGgiLdEt7omJstjYsjNjY294Gs1GOGV0c8lrzBrR9vTCwTcOLw6oj7VVwrsjKkZk24+GK3gBsD7a+/cgOq33+Hxx9335fgPhHN24pKA6ZLcQnN06c0NjY23++Hl156Kd+28+bNy7c+a9Ysdu3a5V0fNWoUiYmJ3vXAwEBv90NwA86Hh4d7A6kOHToQHh7OpZdeCkCLFi1o1aoVEydOBODxxx+nXbt2XOJpCpuQkEClSpXUhVBEyoWGDV3LmO++g9tvh9hYGDoUXnxRg56XRdOmwa23wqpVMHCgGxKiULprZh6CPXO8XfB67p4HOzI9AVRHiLkjTwAVWQgHFCkepelfdRGMOXYrqg8/XMeuXY3ztaKqUAHats1d2rVzIUFkWfs97R9ycuNhAWRnuVAq/dgtsbzPJa31dClMcJ++HEtgxTxBVd6uhNXyP5b3uYDSMziTv7/7/mnTxs2oA24ctJwB03//HX76KXcmydBQ6NjRBVQ5IWmtk+jxKVIcmjZtStOmTb3rOUFTjkWLFh2xnp6e+3tg8ODB+da3b99OpUqV8u2vZcuW3kCqRo0a9OzZ09ul8eyzz+bKK69k5MiRAKxatYr69esTUuQDbIiIFJ+LLoJ+/dxkPs8/7wKqhx923fg0TmXpt2YNPPig657XuDFMngz/+Mdp7DDzIOye41pA7YqDhPluWA/jD1U6Eh92GfU6j4CoHu76W6SUUiAlpV5OK6qsrC3Exjb2tqLKGaz6zz/dWECvv577mvr18wdVbdu6MYHK1Qf2fv4QUs0tBWWt+wN51C6FR7l/YJVbzzhw7H36VzhmgFU7eR9s3HbkcwFhJaZLYcWKcPbZbgH3Fm3alBtQzZsH//2v+yQUoEGD/K342rVTKyopXZo1a5Zv/d133/WGSwCJiYn5WlR99tlnRHlmpcjKyqJly5Z07doVgL179zJjxgzCwsIYOXIku3fvpnnz5gwfPpz33nuP/fv3c/XVV3P77bfTr18/MjMz2bt3L1FRUZgS8jtARKSgKlRw3biGD3czrj30kBsK4OmnXaspP03AXOrs2QNPPAHjxrnhH556yn1tT/ozlYxkTwuoOBdCJcwHm+kJoDpB87uheqwngIpgfVwc9aJjC/+ERIqZAikpc/K2osoZdsVa2LoVli51y59/utvJk103LHB/OFq3PjKoqlrVd+dS4hgDgeFuCatf8NdlpUP63tzWV/laYuXtXrgHDm5yt+n7aAow59Uj9+cX5AmpotxtSNRh93Oei8oNs/yK59edMS50atAgd8D0tDRYtCh3LLSZM+GTT9xzoaFuLLTatRuxf78LqTyTr4mUWnnDosGDB3vv+/v75xvfKiIigpkzZ1KnTh0ADhw4QKNGjejQoQMACxYsYNKkSdSpU4d+/fqxYMECunXrxtixY7nlllvYt28fP//8MwMGDMjXKktEpCRr2tS1kJo5040tNHw4vPyy+/Aq5wMuKdlSUtwHjs88AwcPwo03wujR4Jl/5MQykmH3bNf6aWcc7F3gCaACXADV4l5PANUdAiOK7DxEfE2BlJQLxkCdOm4577zcx1NTYeXK3KBq6VKYNAnefjt3m9q1jwypYmLUquWk+AdBaE23FFR2FrNnfE+PTjHHCLD2QNpud5uwwN1mJB57f0GVXUCVL7A6VqhVo1C7EgYH57aIAheQbtmSG1DNnQuff17HG1KV+rHQRAooMDCQs846y7veuHFj1q1b513v1KkTn3/+ubdF1dq1awG8La4++ugjbrvtNqZMmUK/fv1Yv349K1eupG/fvuryJyIlXu/erjX1p5+67nt9+7pl9Gjo2dPX1cnRpKbCm2+6rpfbtsGFF8Jzz0GLFid4YUZSngBqZv4AqmoXaHGfZwyoHu6DX5FyQv/iSLkWEgIdOrglrx078odUS5fC1KngmTWdwEBo0sR9wtWsmVty7teqVWJ6k5Vufv5k+EdCZPOCvyY7wxNU7YHU3flDq7zryetdU+i0Pe41RxMQ7oKpkBoQUj3P/cPXq0Ng5El90Y1xA1zWqwdXXOEe+/nn3wgLO8sbUE2dmn9GyS5dXNfUs85yIVWFCgV/W0RKq8jIyHwtrIYNG0b37t2pW7cuAElJSYAbSB3gk08+4ZFHHmHXrl0KpESkVPDzc+OiXnqp6/b13HPu732/fi6Y6tHD1xUKuNbuOUHU1q3ueuzjj48zY2LGARdA7YxzIdTehWCz3ARAVbtAy/tzW0AFhBXfiYiUMAqkRI6iZk239O+f+1hGhpsxIyegWr3aLT//7P5I5QgLc+FUTkCVN7RS978i5hcIobXcUhDWuguGfKHVbkjdBak7c5ekte6iIm0PYI/cj1+wJ6Q6VnBV0w04Hxp9zGbXwcHZ9OyZ+4lo3hkl586FOXPcuATZ2S4Q7dzZXQSddZa7WI1Qa24pJxo1yp2B9IEHHuDiiy+mdu3aLFiwgMqVKzNnzhyioqL466+/fFiliMjJCQmBu+6Cm26C8eNdMNWzJ5xzjms91bu3PvD0hYMH4Z133NcjPt59Td5/H/r0OezrkXEAdv2W2wVv30Kw2XkCqIegRm+o1k0BlEgeCqRECigw0I0x1bp17gx/4Magio934dSaNbm3ixe7mTZyxqgCqFw5f0iV91aBgg8Y46bGDYqEiCYn3j470xNcHRZYpe7MfSxlO+xb4tZt5pH7CIiACtEQWtstnvvVUvbCnhAXWoXWwvgFHjGj5P79MHu2G3Ni1ix44QX3SZ2/P5xxRm5A1asXaDgdKeustSQkJNCyZUvS0tIYNGgQ5557Lrfccgv79++nb9++vi5RROSkVagAd9+dG0w9/7wLPzp2dONNDRqkbvzFYccO+N//XKu1vXvdh3/vvuvG+DIGSN8Pu391A5DvjIN9izwBVBBU7Qqt/uW64FXrBgFq1i5yLPp1JnKa/P3drH3167tPsfLKyIANG44Mq2bOzO2OlaNmzdyAqnFjt7969dxtdHQ5mwGwpPILKPhYWNZC+j5PWLUDDm2FlK1waJu7TdnmLmJStoHNpDXAL6M9LzaudVVodL7QKjKsAed1asR5sQ0htBbJB/28g6TPmpU7m58xbva+3r3d0revmw1QpLTbt28flStXBuDSSy9l/fr1/PnnnwQHB9OuXTu+++47xo8fT2RkJDNnziQmJsbHFYuInJqwMDdb2y23uGvGl15yk/U88ADceSdcf73+theFFSvcAPMffOCu4y+5xAWB3Tslwq5fYfFM1wpq3+LcAKramdDqEagRC1XPLNRxSEXKOgVSIkUoMDC3u97hDh2Cdetyg6qcsGrSJNi1K/+2/v5uQPac4AsasGZN7nrduhpTqMQxBoKruCXyOCNd2mxI28OCX7+lU8voI0OrQ1sgYZ6nu2AefsGEhzfknLCGnHNxIxjaiLSghixd34ip8xoyNa4ir78OY8a478PeveGCC9zgm3l6PImUWMuXL2fq1KnccccdGGO45557eO2119i2bRuVK1embt26fPfddyQkJFC1alVuu+02VqxYQUZGBkFBQTQ72i9eEZFSJjTUzeB2/fXwww/ug6e774ZHHnEB1U03QadO6s53OlJTYeJEmDABfvvNvee33bSPu4f9SnSApwXUxMWAdcM0VDsTWv2f64KnAErktCiQEvGRChXc7Glt2hz5XHKym4Vt0ya3bN6cez8uDrZurc8HH+R/TVRU/lZVOUvOepUqulgpkYwfhFQnObAp1I499nZZqXBwsxuQPXk9HNzgub8B9syGjAMEA52Bzo3hoZZVyb63EXtSG7NwXRu+juvAv0e35847a9GyZW44deaZavovvrFt2zbi4uK48MILiYiI4K233uKee+7ht99+o3Xr1rz11lu88sortG7dmn79+hEREUFqaiorVqygZ8+eDB06lOrVq3v3169fP/r16+fDMxIRKTp+fu7v9oUXwoIFrjvfJ5/AW2+5yXluuskFVGo1VXB//w1vvOG64tm0vVwe+ysvT4ijfa2ZBCQtgbWeACqqO7R5zA1CXq0r+GvSDJHCon9DREqg8HA3feyxppCdNm0WTZr0PiKs2rwZ/voLfvwRUlLyvyYsLDecqlfPzQZ4+FKjhmtNIyWQfwhUbOaWw+V0D8wbUiWvxy95A9XTf+cf0Z/yj6uAq+BgVg3+2t6e6Us68Op97bl7Xwead27C4Mv9OP98d8Erciqstezdu5fQ0FAqVKjA1q1befPNN7n00ktp06YNU6ZM4eqrr+bVV19l8ODBfPfdd9x8882MGTOG22+/HWMM+/fvZ/78+bRu3Zphw4YRHx9PdHQ0APfddx8jR46kZk3XZbZr16507drVl6csIuITnTq5Gd9eegk++si17Bk1ynXlu/BCGDoUBgyA4GBfV1rybNsGn30G33+5l4jUWfRpNZMFT8bRoNKfGKy73qrQDRqM9nTB66IASqQIKZASKYX8/W2e7ntHshYSEnKDqsODq4ULYffuo7+2WrWjh1V5l5o1XcAlJUTe7oFVOh75fPp+SPwT9i0hbN9iOldbQqe6L2FsBgDJaWHMmdOdhz+8mnYXXsrgK8PUakq8rLUYY0hJSeHHH3+kZcuWNG/enC1btjBw4EBuvPFGYmJi+P333+nWrRt33XUX//nPf1i1ahWjR48mPj6eN954g9DQUHbu3MnChQsZPHgw5557Ln369KF58+YAXHXVVXTu3JkmTdwEAx07duSLL77w1hEWFkaYfvGIiHhFRroxpm6+GebPd2NNffYZfPGFm9xk0CC4/HLXbT8oyNfV+s7OnfDLpATWzJlFtaw4zm4exx03L8PPWKxfKCaqO1R/PE8ApSRPpLjoXw6RMsgYFyxVq+ZmZTmajAz3B3r79txlx47863/95R7LPMpkcRERxw+tqld3x69atXxfBJUIQZFQ/Sy3eJisNDiwEvYupkLCYroF/0D/NsNJSrmFbx4cRFDzEfQfehYhoWoyVZakpKSQlZVFeHg41lree+896tevT58+fcjIyOCcc87h7LPP5tFHHyUpKYmqVaty8cUX88UXX3Do0CEuu+wyzj77bKZNm0ZISAiLFi3i559/JiYmhubNm1O3bl1vN7qePXvy73//mwEDBgDQvXt39u3bR2RkJAANGzZk+vTp3tpCQkJoc7Q+zCIiclzGQNeubnn5ZZg6FT7+GD791LWkiohwLaYuvBDOO89dm5Vl1sLKJbtZOXMW2dvjiKk8k6vrLYN+kJEdSnpkD/waPgHVe2MUQIn4lAIpkXIqMNANlF6nzvG3y852ra3yBlWHh1d//OFuDx06+j4iInIDssOXqlWPfKxKFXUdLHL+wVC5PVRuj1/ja4noPIbsnb+xd9Z7DGj1OeHB7/L7mHPpdO9k/AMUSpVUmzZtwlpLgwYNAHjqqaeoWLEit99+OwBnnHEGjRs39rY0qlixIq1bt2bx4sUYY7juuuto2rQpq1atIiAggDlz5pCUlMSjjz5KeHg41atXp4JnxoQqVapwyy230Lt3bwCioqJYsWIFtWrVYsmSJVSqVInNmzd7awsKCuKBBx7wrvv5+VGpUqVieFdERMqvgAAXPg0Y4K7Lpk1zE+Z8/71rOeXn54KrPn3c0r172ZgYZ9v63aydM5PMbXHUDoyjZY0VtKwOKZUrsC2jB9ujrqBmu1gCq3Ym0F+flIqUFAqkROS4/PzcgOlRUdC27bG3sxaSknJDqt27Yc8eF2bt2ZO77NoFK1e6+8nJx95fZCSEhXWlbt2jB1iVK7ttDl9CQjR4+ykxBr+avah/eS9sxn/5dey/6FXvFeZ//xNdLjnP19WVWfv27ePgwYPU8STDEydOZNeuXdxyyy0A3HjjjSQmJnoDpTZt2pCZmcnKlSsBaNeuHQEBAezZ42ZhfPbZZwkJCfEGUlu3biUpKcl7vJ49e1KvXj3v+gsvvOANs4wxrFmzxtuCyRhDfHy8d1tjDGPHjs1Xf4tjDXQnIiI+V6FC7kDo2dluyIZJk2DKFHjuOXjmGfcBYJcucNZZ0Lmza1lft27JvpZKT4dVf+5i1/KZmN0zqRMYR7MaK4j2g+SoMNbs68H89KE0OrM31Zp2orECKJESq8wEUsaYAcAYwB9401r7bx+XJFKuGONmdqlYEWJiCvaa1NT8gdXh4dWKFQcICAhl+3ZYtsw9dqxWWDkCA48eVEVGuvEUjvVceQ+1duyAGdMz2P3nZJr6v0ff5t+z80AtmvU909ellWgHDx4kMTGR2rVrAzBt2jQWLVrEvffeC8Cjjz7K7NmzmTZtGgADBgxgyZIl7NixA3ADc2/cuJH09HQA7r77brZv3+4NpKZNm+bdFlwLp71793rXhw8fTkZGhnd90qRJhITkDr66detWAvIMCDZjxox89d9zzz351usfa2A6kePQNZhIyefn5wKnzp3hiSfch4izZ7vZm2fMgOefh6wst21UlAumzjjDTbDTrJm7tvN8XlFssrMhPh5Wr4bNq3eStX0mldPjaFUtjja1V0KwC6BW7+3Jb8nDqN46liZdOtIhQM3sRUqLMhFIGWP8gbHAOUA88Icx5jtr7V++rUxEjickBGrXdsvRxMWtJDa2Rr7HDh1ywVViIuzfn7scvp53Wbs2935SkmvNdTzGuE8VT3UJC8u/HhzsmtDnLIGB+dcDAmD//gD278+/zbFmvLPWXaRlZLjxvQ6/zXs/Lc29Xzkt1g6/zUjeQ3ToYno2/J6run9MVLs9JKZWZ2XWP6k94J9UqlHlpL+upUliYiLr1q2jbdu2BAYGMnPmTL755hueeOIJIiIiePXVV3n77beZMWMGlSpVYuTIkXz88cds2bKFypUrc9FFFzF9+nT27dtHpUqV+L//+z/mzp3rDZSmT5/O7NmzSUtLIzg4mIiICLKzs8nOzsbPz48hQ4awZMkSbz3jx48nISHBu75o0SL88nwjzJ49O1/9//3vf/Otn3322fnWAzQ6vRQxXYOJlE4540p5hvkjJQWWLoUFC9yycKFrSZUTUoGbjblpU9eCqlYtiI52S61a7kO/8HC334gICA09+od7WVmuhXxSUu7tnj1u9rvt293ttm2QtHsH0QEz6d44jtgWcfSr/TdUgkPp4WxO7ckSM4KqLWKp3foMzlAAJVJqGXui/8xKAWNMN2C0tfZcz/pDANbaZ4/1mujoaHvTTTcVU4UiUlJkZ0N6ejCpqcGkpYUc9TYjI/CklvT0IKwtinGWLH5+2d4lO9vPs/if0r4aRG2kQ/1FdG7yB2c0XEybOsuIrrQdgPSsQJbtbcPfac1Zn9KYbE7lGMUjKysLYwx+fn4kJSWxadMm6tevT0REBFu2bGHu3Ln07t2bGjVqsGTJEmbMmMFll11GvXr1mD59Or/++itXX301jRo14rvvvmPRokWMGDGChg0b8tVXX7F06VKuu+466tWr510fNWoUNWvW5JdffmHx4sWMGjWKyMhI5s+fz8qVK7niiisICQlh06ZN7Nq1iw4dOhAQEEBaWhrZ2dmEhIRgyluzuxJg9OjRC621nXxdR1mmazCRsisz0499+6qwZ09VEhKqkpBQjYSEKiQlRZCUFEFm5rGDIGPctUte1ppjXsPUrLSd3s1n0q/NVHq3mEnTGmsBOJQRyprEpmxJq8v27FpsT6uFLcHXKCLiFPQarKx8dFob2JJnPR7oevhGxpiRwEiAWrVqFU9lIlKi+PlBSEgaISFpwIFC229Wlt8xA6vMzIA8YdKJl6ysoz/u52fx88vCzy8bf//sPGFV7mPBAanUjNhOrYgd1AzfQa3wbTSqsoF6EZupEJACQLY17Emvxo60mizf3ZodaTXZlhZNWnZoob0fx5KZmcnevXupUKEC4eHhJCcn8/vvv9O0aVPq1avHzp07+f777+natSutW7dm3bp1fPHFF5x99tl06dKFxYsX8+2339K3b1969erFihUr+Omnn7zrmzZt4q+//qJu3brUqFGDlJQUDhw4QGJiIvXq1aNq1apERkbi7+8uZlu1akV6ejoVK1YEoHfv3jRv3tw7U9zFF1/MRRdd5G1p1L9/f/r37+89ny5dutClSxfvev369fN1ewsO1sw9UubpGkykjAoIyCYqag9RUXuOeM5aSEsL9oRT4aSlhZCWFkR6ehDp6cGkpR39w7qAgEyCgtKoGbmdDtFLaFNjGa2qraBm2E4A0rKC2JRanyl7+rHxUEO2p9VUACVSlllrS/0CDMaNWZCzfjXw6vFeU6tWLVtezJgxw9clFIvycp7Wlp9zLS/nae1JnGt2lrUHt1i7c5a169619s/HrJ19tbW/9LT2q2hrPyL/8mkFa3/qau3vo6xdPd7a3b9bm3GwwHVlZ2fbpKQkm5SUZK21NiMjw7711ls2Li7OWmvtwYMH7aWXXmrHjRtnrbU2ISHB1q9f395///3WWms3btxo/f397bBhw6y11i5btswC9vLLL7fWWjt//nwLeJ+fNWuWBexNN91krbV29uzZNjw83D733HPWWmsXLVpkzzjjDPvll19aa61dt26dveeee+yff/5prbV2//79dsmSJTY5ObnA51hU9P3re8ACWwKuU8rycirXYM2aNTvh104KrqT+/JVmek8Lz+jRo+3o0aOtPRhv7YaPrJ13o7XfNc29Tvm8orUzzrf2rxes3fOHtVkZvi65VND3aOHS+1n4CnoNVlZaSMUDdfOs1wG2+agWEZFTY7MhdRekbINDW91tiuf2UDwc3AjJGyE7Lc+LDFSoC+ENoda5ENYQwhuRFVoP/8imEFKDuJkz8Uv146ymZwFw//33U6NGDe+A1j169KB58+a89dZbAFSpUoUzzjiDqVOnYq0lIiKCdu3asWTJErKzs7n++uvp2LEjCxYsAOCrr75i+/btjBo1isDAQHbs2MHGjRsBqFy5Mg0aNKBx48YANGjQgNjYWC6//HLAzRr37rvv0q1bN8DNApecnEwFzxzU3bt3zzdLXIcOHVi4cKF3vVGjRrz44ove9YoVK9KuXbvC+XqISEHoGkxEjnQoHnbGcWH176gfuhG+Ge0eD4yE6mdBk1FQIxYqtQM/tYASKa/KSiD1B9DUGNMQ2ApcCVzl25JERPLIOJAbMh0RNm3lzH3r4dN9YDNZvxMSkqBzE8D48fqscBJSwnno+u5Q+2KueXIWyekBTPz4bQirT4dOXcnO3seff74NQGRkJKGhod7Z2QYMGEBkZCQ7d7rm8GPGjKFq1areQOrPP/8kMTHRW2qVKlWI9Eyl4+fnxwUXXODtlhYUFMTzzz/vDX1CQ0NZv349UVFRAERERJCamurdV8WKFVm7dq13PTw8nMcee4zY2FgAQkJCGDFihPd5YwxhYWGF9a6LSNHTNZiIwMEtsCsOdsbBrpmQvA6AFuEhbEqpT9UzH4HqsVCprQIoEfEqE4GUtTbTGPNP4GfclMNvW2tX+LgsESnLrIXMJEjZyaG9G9kZv5oG1Q0mdRfTfl3IgmUbuP/SSEzqLv796WZ+XZnOD/e5l17xX/hjPawfWwkqRNP+9s2sij9EyvwHITSa3rGPsXP3ftL3b4SQGoy+px4JCXt46N0vAPhlXrRrNVSxKeBCo8zMTG9pAwYMIDAwd6DRxx9/3DtGEsBvv/1G5cqVvevJycn5Ti1vgAQwadKkfOv33Xef974xhoYNG578+yciZYKuwUTKqYObPeFTnCeAWu8eD6rsWkA1uxVq9OGF/36NxY/Hmt/ly2pFpIQqE4EUgLV2MjDZ13WISOmQnp5OQEAAfn5+rFmzhlmzZnHF4EGEB6Xz9cSP+fCTibz1zAgqBR/kqVe/5O2vF7NgfDeqBCUy9JkVTJx7iO1joUo49H8cZq+GxDcgsoLhX2P8+X1NJrdfdBahVTvxxeL9LPp7Nxmd3yOwYn0S33qEfenLsIP2Yoyh63c3kfHbb9DuaQDuuT+D+Ph4qFAbgM8//5z09HRv7fHx8fj55Q4UmrcLG8Bnn32Wb/2BBx7It965c+dCfS9FpHzTNZhIOXBwU24AtTPODSMAEFTFE0Dd7umC1wZM7jWK5dvir1VESo0yE0iJSPlx8OBBli9fTpMmTahatSorVqzgzTffZOTIkbRo0YJJkybx2GOP8dp//8OZHRrzyiuv8Mgzr/HdhLs4u1N1bnv8Q/736UJ+fqkH/dv48ezzS3ln6n6abbqBXs3hy/Hw1Wx48Mzf6NwYNqyALbsgYVc8VRrXo2GjxtRau4msVndBdGNG3LiIGrOWEXDJBKhSnxfqzmXNmjUE9h8OAQHM/COZgIAAAkNCAPh52q/5zmfChAnExcV51++88858z/fs2TPfet4wSkRERKTQJW/M3wUvbwBVIxaa3+Xpgtc6XwAlInIyFEiJSLHIyMggIyODChUqcODAAT799FM6d+5Mhw4d2LBhA3fccQfXXXcdl1xyCXPnzmXw4MFcfvnlxMbGMnHiRK644gqe+L8H+Nddw3n/9Te55f6XeOquS/jX9V355e2feOWVmdRO+ZEWl0Tw95drWbw4keXv9eHMzVBhA4T4QebyZ8EP+taCpS0DqRW8HUxdbrrsDOo3SKJZn14Q3YCX/xvCY2khNGzWHsJr89aQyryV52LrqT7wVJ5zu/Heq7nx3tz1Xr160atXL+96eHh40b/BIiIiIqfCWji4AXbOzA2hDm12zwVXg+q9ofndLoiKbKUASkQKjQIpETkhay3x8fEYY6hTpw4ZGRk888wztG3bloEDB5KcnEz//v258MILeeihh9i1axdNmjRhyJAhTJgwgVWrVtG8eXMuu+wyJk6cyLo1f3PTTTcx5LJ/8PHYB9i+ZDaTJk2iil88l9T7jeylK9i9cxtBWz6ESd/TYN1OGlfPpv6uZ+GHZ+kDDO8J/Sp9A39+w1UxoTR6KIrubUMguBr3jWzBfbdHuYuo4ChG9qrGyGdz1y8ZUolL/pN7MdW1H3TNc75RnkVERESkzLHWjfm0Ky43hDq0xT0XXM21fGp5vwuiIlsqgBKRIqNASqScWLJkCRkZGd7xgx5++GGioqK46y43yGS3bt1o3rw577zzDtZaKlWqRPv27Zk5cybZ2dnUq1eP9u3bs3jxYrKyshg9ejSdOnVi4IXnwsF45s6dS4WAVB66qjEhe+MJ9s8ieP/vMOdqovftILZtBP+oGQdfRNIs6QBPDoJz2/4I036kcyZsHgM1Ky2GNavoUaMaad+1Z+9BP6jSlE5nV2X1P6pBcFUIrkbz4Kq8d70LlwiuRo2AUC724XsrIiIiUmJZ62a9y+l+tysODsW754KjXMun6g+4ICqyJRjju1pFpFxRICVSSqxZs4Zdu3bRo0cPAJ5//nn27dvHs88+C0D//v3Jyspi2rRpANSsWZOgoCA2b3ZNrs8880wqVarEjh07AHjxxRfzBVJLly4l5WAyHFiNSUsgOqoi9SpnwMr/4J+ewFX9m9CtBTDtbELSEvjozsq0qrkUPg8jzEL2h2DMYph9BRWB3WOBgPWw+wARwVWZ8UoPFygFVSUsuBqP9KzqabFUlcDgatT1PEdAqPecl8bFEdsjtljeXxEREZEywVpIWps7A97OOEjZ6p4LqeFaPtWIdQFUxeYKoETEZxRIiRSTXbt2sX79es4880wA3n//fRYsWMB///tfAG644QYWLVrEokWLAOjQoQPr169n//79gBuXKDExkdTUVMAFSklJSd5AavXq1WRnZ7uDZaXStnUMFYL9YecMSEvg3uvOplqEgYV3Q3oC01/qRI2wQzCpGaQlcPCNFGA5fB8DwMonAOJh8Vww/nw0sgoEB0B2OoQ14KorOnoDJhNc1XufvPf9g4rnzRUREREpr6yFpDW54dOuOEjZ5p4LqeGCJ28AFaMASkRKDAVSIichLS2NwMBA/Pz8+OOPP5gyZQr33HMPwcHBvPDCC3z22Wf8+uuvhIaGMmjQIL7//nv2799PcHAwAwYMYPHixWRkZBAQEMCLL77IsmXLeOWVV/Dz8+PPP/9k1apV3mO1aNGCwIAAyEiCtD3ce/OVJO7dBRs/pnbyXH7530BCTDLMHgJpCWwcVwXSEuDzcMg8yC/XeXY0bQYAT+VM1LZuJgRVpWeTqq6Z9uEh0tHuB1bU+AEiIiIiJYG1kLQ6N3zaNRNStrvnQmu5FlA5IVREMwVQIlJiKZCScmv//v0sWrSIDh06UKlSJaZPn864ceN4/vnnadiwIS+++CLPP/88M2fOpEWLFgwbNoyPPvqIFStW0LJlS5566im+++47Lr/8cpo0acKsWbNYtGgRiYmJhIaGUrt2bWrVqkV6ejrBwcHcfPPNLJg/F5u0HrIP8OF/RnFw/07MqjGQnsAfYztCWn2YGgtpe/h4UAKkJ8AXFQG4t6mn8DmfkHOXoMqQ4AmNQqOhUps8QVK1w8KlahBcBfxDfPBui4iIiMgpsRYOrMqdAW/XTEh1QzC4AKoP1OjtgigFUCJSiiiQkjIjOTmZL7/8ko4dO9KgQQPmzp3Lgw8+yOjRo+nTpw9vvPEGt912G2+99RZDhw7l3//+N//+97/54IMPGDZsGJMnT2bixIkMHjyYhg0bkpSURHJyMvv27QOgb9++bN68mQoVKgDwrwfv4fx+3YgO2Qnb1/PNK1fi/2J/2D0e4vcwZvAexlzUCH7tCWl7uDFiDzf2SYcf3wGgbU7hi3Gtj4Kr5QZHEU2hWrfDwqTccGn2glX06HMB+PkX/xstIiIiIkXHWjjw92EB1E73XGg01Dg7twteRBMFUCJSaimQkhIrJSWFL7/8klatWnnHUxo2bBg33ngj1157LdOnT2fAgAHcf//9PPXUU8ydO5dnnnmG+++/n+eee45Vq1Yxa9Ysfv31V/r06UO1atWoUqWKN1AaOHAge/bsoVOnTmAtD9x9C9df2Z8mtSvA1u95fHh9Hr/iMUj9CuZO4NoGu7n24UOwpDf8vpsuWSl0qQrMcvXmRkPGtUQKruaWsAZQpVPu+uFLSDUIjDypLnEZ/jsURomIiIiUBdbC/r9yZ8DbNRNSd7nnQmtDzXNyByIPb6wASkTKDAVSUqyWL1+Ov78/LVq0ICUlhUsvvZR+/fpxzz33sG3bNho0aMCll17Kp59+ysaNG7n66qsZOHAgX331FQcPHmTu3LnExMRw7bXXUqtWLWrWrEl0dDQA7dq148477+TKK68EYMigCxl07p+EBx6C+O8Y2HYvA6fcDmm/wZyv6JK2my6X7oa/+8Ofu4nKSiUKYPVhRfuHurGWQqLcbWQrT5gUdfSAKaiywiIREREROTpvABWX2wIqbbd7rkIdqHmuC59qxEJYQwVQIlJmKZCS05KZmUlycjKVKlUC4OGHH6Z69erceeedWGupW7cuHTp0YNKkSaSlpdGmTRs6duzIggULAPjpp59ITk7mnnvuoVKlStSuXZumTd0ISQ0aNODhhx/m/PPPB6BVy5akHNhJiE2EXb/SImwnm6c+4PrQz7+JswNWcPmALNj8LazeSXDWIYKPVnRAmCdMioLQmm7cpZDq+UOnnPsh1d32IiIiIiKnwmbD/hW54dOumZC2xz1XoR5E/8MzCHlvBVAiUq4okJLj2rp1K9u2baNz584AXHnllRhj+OSTTwCIjIykSpUqbNmyBYAXXniBmjVrcuedd2KMISMjw7uv4OBgrr/+enr16gVAaGgoO3bsIKpyGCSto0LKdjbEPef6yP/5CKGpO3m6/05Imgrf7sQvdSchWalHqdJASBQhmeEQ2AgiGrspbr3LYWFTQIWifdNEREREpPyy2ZC4zAVPO+Ng9yw3EzJAWH2IPt/TBa8PhDfwZaUiIj6lQKqcmzt3LitWrOCGG24A4JJLLmHjxo0sWbIEgNatW5ORkUFycjIAU6ZMITAw0Pv6AQMGULt2be/6zz//TKNGjdxKVio7182DlG2w+Qs4tI03/1kNDk2DaR9A6nZqHNoGGYlHFmb8PCGSJ1SKiIHQGocFTZ4luBr4BbAgLo7Y2NiieJtERERERI7OZkPiUtiZMwbULEjf654LawDRF7jwqXpvBVAiInkokCrj1qxZw6RJk7xBzVVXXcXUqVPZuXMnxhiGDh3Kpk2bvIHU+vXr2bVrl/f1t912G9Za7/rmzZupEBrqPuU5uJkvx4yAQ1tgyUOQso2z2QYrtsOCbZC+78iC/AIhpJabIaRiczdNbYVotx5Sy01dG1rTzSyncZhEREREpKTxBlBxeQIoz3VvWEOoc3GeLnj1fVioiEjJpkCqlNu3bx+//vor/fv3JyQkhNGjRzN+/HhWr15NxYoVGTFiBHPnzuWRRx6hcuXKHDx4EGstaWlphISE8Mwzz7Bv3z6stRhjWLp0KWQkuYEWD27hieH1XOA071o4uIWwQ1vcelZK/kJMgCdMioaIZu4ToFBP0JTzeGi0m33uJGaTExERERHxqewsSPwzzxhQs3Jb+Ic3hrqXumvf6r0hrJ4vKxURKVUUSJUC1lqys7Px9/fnxx9/5PHHH+e9994jJiaGW2+9lU8++YQ5c+bQrVs3tm3bRmJiIjt37qRixYo89NBDfPPNN1So4MZN+vbbb13glLwadq/nynbbIHk9zLzABU0HtxylC51xoVKFulC5HdS+wN3PWcLquXGaFDSJiIiISGlns2DvwsMCqP3uufAmUO8y1wKqem8Iq+vLSkVESjUFUiVMcnIyEydOpGvXrrRo0YJ3332X66+/ngkTJnDDDTewePFifv/9d+bMmUNMTAw33ngjFStWpH591xx4woQJvD5+HKTEw84ZXNhyF21tGsELrnHBU/L63Fk9cgRGQnhD18Q46iz3h7VCXTfrR1hd17LJL/DIYkVERERESrvsTNi3xHW/2zmTnjtmwPaD7rmIplDvcs8g5L2hQh1fVioiUqYokPKxXbt2ceutt3LRRRdx9dVXM3XqVK699lpGjRrFuHHjaNy4MdHR0URERABw++23c9NNN1G1alVI3UOfVoH0ubcT7PgPrP4bc2AVHNwINtN7jLr4A/UhvJFrUhzeKP8SVNk3Jy8iIiIiUtyyM2Hf4twxoHb/BhkH3HMRzdgV2ofo9le5EKpCtC8rFREp0xRIFZOcMZoOHTpEly5d6NmzJ+PHjycjI4OJEydy8OBBrr76as4++2zuu+8+RowYAUCvHt3Z8lccHFgJK18k/MDfhB/4Gw78nTt9LIB/iBu7qUoHqDc4X+D06x/r6N2nr29OXERERETEl7IzYe8iTwuoOBdAZSa55yo2h/pDcgchD63F6rg4ohvE+q5eEZFyQoFUEckJoKy1NG3alCpVqjB//nxCQkJYvXo1NWvWBKB27drMnTuXDh06QOZBKqb/xfM3NoJ9/4Wfl0DisvwDiIdUd384617mbnOWCvWOOSudNRuL/oRFREREREqC7Aw3BtSumXkCqGT3XMUW0GAo1Ij1TMJT05eVioiUawqkikCfPn1Ys2YN8fHxGGPIzs4mLCwMAD8/Pw4cOECIOQTbfobEJZyZtQSmLIYDqwHrdhJUGSq3h6Y3Q2Qr98ezYoybpU5ERERERJycACpvF7xMzxhQkS2h4fDcWfBCa/iyUhERyUOBVCF45JFHePPNN9m8eTNBQUFkZmYSEhJCdnY2fn5+rFu7FnNwPax/D3bPJmTPbNj/V+4OwupD5Q6uuXDl9u5+hbpgjM/OSURERESkRMpKh70LcltA7ZmdJ4BqBQ1HuBZQUWcpgBIRKcEUSJ2C9evX88ADD/Cf//yHunXrEh8fT2JiIhs2bCAmJoZZM2diDvwFq16BPbMxu2dD6k734sBIqNYd6l8F1bq5MZ80qLiIiIiIyNFlpcPeP/J0wZsNWYfcc5GtodG1bgyo6mdBSJQvKxURkZOgQKqAsrOzOXToEOHh4Xz33XdMnDiRNm3a8Oijj/Laa6/x5rhXCEiYBfNfxmybDIe2uBeGNYSa50BUD4jq6ZoNGz/fnoyIiIiISEmVE0B5u+DNzh1TtVIbaHx9bguokGo+LFRERE6HAqkC2L9/Pw0bNuSMM85g6tSpjBw5klq1ajHwvN6wZhwVtnztPrHJToeACKh1DrR+FKIHQIU6vi5fRERERKTkykqDhPmeAGom7JmTJ4BqC41v9ARQvRRAiYiUIaU+kDLGDAZGAy2ALtbaBYW17+XLl9O6dWsqVqxIeHi4mxkvK50Ke6dwRfTn8MPVbhDFijHQ7DaIPs+1gvIPKqwSREREREqkorwGkzIuKw0Sfs9tAbVnLmSlAsYFUE1GegYhPwuCq/q4WBERKSqlPpAClgOXAhMKc6fXX389b7/9NvPmzaNr165sXDkXv9Vj4JvakLYHQqpD039Co+FQqZ0GIBcREZHypkiuwaQMykqFPb+78GnXzPwBVOV20OQmqNHHtYDSjNIiIuVGqQ+krLUrAUwhBUJZWVn4+/szaNAg5syZQ82IDPjjFvzWvQ02A+pc6gZOrNUf/Er92yciIiJySgr7GkzKkKxU2DMvTwuoeZCdhgugOkDTWzwtoHppch8RkXLMWGt9XUOhMMbEAfcer7m4MWYkMBKgVq1aHT/++ON8z//vf//jjz/+4O233ybIpNIw6S1qH/wWix87KpzLlvAhpATULsrTKBLJycmEh4f7uowiV17OE8rPuZaX8wSda1lUXs4TSu659unTZ6G1tpOv6yjrTvYaLCoqquPnn39eTNWVfSXh58/PplEx/S8qpS2hUvoSKqavxI8MLH4kBzYhMag9icHt2R/Uhky/kve74nAl4T0tK2bOnAlA7969fVxJ2aLv0cKl97PwFfQarFQ08THGTAVqHuWpf1lrvy3ofqy1rwOvA0RHR9vY2Nh8zz/00EPs3buXM6pvo/LahyBlGzQdhWn1L6Ir1Cb6NM7Bl+Li4jj8XMui8nKeUH7OtbycJ+hcy6Lycp5Qvs61vCmKa7CYmJgjrsHk1Pnk5y/zkOt2t2umawWV8Lub3Mf4QeUzoMYdUL03JqonEUGViADqFm+Fp0W/0wpPTiCl97Nw6Xu0cOn99J1SEUhZa/sVx3Gm/DyZlLl3UHnZcDegYq8voVrX4ji0iIiISIlTXNdgUsJlHnIz3+XMgpfwu5vYx/hB5Y4QcztU7wNRPSAo0tfViohIKVEqAqlikb6P8D8GEZ4wHVo+AG2fBL9AX1clIiIiIlK8Mg/C7jkufNoVBwnzPQGUv2sBFXMX1Ih1AVRgRV9XKyIipVSpD6SMMQOBV4Eo4AdjzBJr7bkntZPMFJhxHuxbCGe+C41GFEGlIiIiImVHoVyDScmQkXxYC6j5YDNdAFWlEzS/G6rHegKoCF9XKyIiZUSpD6SstV8DX5/yDrKzYO4w1/S45xdQ77LCK05ERESkjDrtazDxnYxk2D3btX7aGQd7F3gCqACo2hla3OsJoLorgBIRkSJTZmbZO1nGmCRgla/rKCbVgD2+LqIYlJfzhPJzruXlPEHnWhaVl/OEknuu9a21Ub4uQvIrZ9dgxaGk/vyVZnpPC5fez8Kn97Rw6f0sfDHW2hN+olHqW0idhlXlZSpoY8yC8nCu5eU8ofyca3k5T9C5lkXl5TyhfJ2rFIpycw1WHPTzV/j0nhYuvZ+FT+9p4dL7WfiMMQsKsp1fURciIiIiIiIiIiKSlwIpEREREREREREpVuU5kHrd1wUUo/JyruXlPKH8nGt5OU/QuZZF5eU8oXydq5w+fb8ULr2fhU/vaeHS+1n49J4WLr2fha9A72m5HdRcRERERERERER8ozy3kBIRERERERERER9QICUiIiIiIiIiIsWqzAdSxpgBxphVxpi1xpgHj/K8Mcb81/P8UmPMGb6o83QV4DybG2PmGmPSjDH3+qLGwlKAcx3q+VouNcbMMca080Wdp6sA53mx5xyXGGMWGGN6+qLOwnCic82zXWdjTJYxZlBx1leYCvB1jTXG7Pd8XZcYYx71RZ2nqyBfU8+5LjHGrDDGzCzuGgtLAb6m9+X5ei73fA9X8UWtp6MA5xlpjJlkjPnT8zW91hd1SslnjHkyz9+vX4wx0b6uqbQzxrxgjPnb875+bYyp5OuaSjtjzGDP77JsY4ymgz9FBb3Gk4IxxrxtjNlljFnu61rKAmNMXWPMDGPMSs/P+x2+rqk0M8aEGGPm57kWfPyErynLY0gZY/yB1cA5QDzwBzDEWvtXnm3OA24DzgO6AmOstV19UO4pK+B5VgfqA5cA+6y1L/qg1NNWwHPtDqy01u4zxvwDGF1Gv6bhwEFrrTXGtAU+t9Y290nBp6Eg55pnuylAKvC2tXZicdd6ugr4dY0F7rXWXuCLGgtDAc+zEjAHGGCt3WyMqW6t3eWLek9HQb9/82x/IXCXtfbs4qvy9BXwa/owEGmtfcAYEwWsAmpaa9N9UbOUXMaYitbaA577twMtrbWjfFxWqWaM6Q9Mt9ZmGmOeA7DWPuDjsko1Y0wLIBuYgPu7vMDHJZU6J/s3Uk7MGHMWkAy8b61t7et6SjtjTC2glrV2kTEmAlgIXKLv0VNjjDFAmLU22RgTCPwG3GGtnXes15T1FlJdgLXW2vWeC+JPgYsP2+Zi3A+09bxRlTzfmKXJCc/TWrvLWvsHkOGLAgtRQc51jrV2n2d1HlCnmGssDAU5z2SbmyiHAaU1XS7Izym44PhLoNSFFnkU9FxLu4Kc51XAV9bazeB+RxVzjYXlZL+mQ4BPiqWywlWQ87RAhOdiJBzYC2QWb5lSGuSEUR6l+e9XiWGt/cVam/PzVlqvfUoUa+1Ka+0qX9dRypWX655iY62dhfv7KoXAWrvdWrvIcz8JWAnU9m1VpZcnU0n2rAZ6luP+jS/rgVRtYEue9XiO/AYryDYlXVk4h4I62XO9HvixSCsqGgU6T2PMQGPM38APwHXFVFthO+G5GmNqAwOB8cVYV1Eo6PdvN09T1x+NMa2Kp7RCVZDzbAZUNsbEGWMWGmOGF1t1havAv5OMMRWAAbhgtbQpyHn+D2gBbAOW4T4Ryy6e8qS0McY8bYzZAgwFSmXX5BLsOkrntY+UPeXpfxQp5YwxDYAOwO8+LqVUM8b4G2OW4BoRTLHWHvf9LOuBlDnKY4cndAXZpqQrC+dQUAU+V2NMH1wgVRqbrBfoPK21X3u66V0CPFnURRWRgpzrK8AD1tqsoi+nSBXkXBcB9a217YBXgW+KuqgiUJDzDAA6AucD5wL/Z4xpVtSFFYGT+f17ITDbWlsaP9ksyHmeCywBooH2wP+MMRWLtiwpqYwxUz1jph2+XAxgrf2XtbYu8BHwT99WWzqc6D31bPMvXMvEj3xXaelRkPdUTkt5+h9FSjHPUChfAnce1opXTpK1Nsta2x7XUreLMea4XUsDiqUq34kH6uZZr4P75PZktynpysI5FFSBztUzptKbwD+stQnFVFthOqmvqbV2ljGmsTGmmrV2T5FXV7gKcq6dgE9dTyCqAecZYzKttd8US4WF54TnmvePoLV2sjHmtVL4dS3o79491tqDwEFjzCygHW6sidLkZH5Wr6R0dteDgp3ntcC/PV2J1xpjNgDNgfnFU6KUJNbafgXc9GNcK9/HirCcMuFE76kxZgRwAdA3T5d+OY6T+D6VU1Oe/keRUsoz1tGXwEfW2q98XU9ZYa1NNMbE4XoHHHMQ/rLeQuoPoKkxpqExJgj3z8B3h23zHTDcOGcC+62124u70NNUkPMsK054rsaYesBXwNXW2tL2z22OgpxnE89YLRg3O2QQUBrDtxOeq7W2obW2gbW2ATARuKUUhlFQsK9rzTxf1y6439Ol7etakN9J3wK9jDEBnq5sXXH99kubAv3+NcZEAr1x510aFeQ8NwN9AYwxNYAYYH2xVimlgjGmaZ7Vi4C/fVVLWWGMGYBrEX6RtfaQr+sR8ShP/6NIKeS55n4LNyHWf3xdT2lnjIkynllejTGhQD9O8De+TLeQ8sw08k/gZ8AfNzPXCmPMKM/z44HJuBn21gKHcJ/wlioFOU9jTE1gAVARyDbG3Imb1aZUNUks4Nf0UaAq8Jrn//pMa22pmq63gOd5GS5MzQBSgCtK4yeiBTzXMqGA5zoIuNkYk4n7ul5Z2r6uBTlPa+1KY8xPwFLcLEZvWmtL3RTGJ/H9OxD4xdMirNQp4Hk+CbxrjFmG66bxQClr2SfF59/GmBjcz/4mQDPsnb7/AcHAFM+1zzyrmQtPizFmIK7rfBTwgzFmibX2XB+XVaoc62+Hj8sq1YwxnwCxQDVjTDzwmLX2Ld9WVar1AK4GlnnGPQJ42Fo72XcllWq1gPeMm2HTDzcL/PfHe4EpZf/niIiIiIiIiIhIKVfWu+yJiIiIiIiIiEgJo0BKRERERERERESKlQIpEREREREREREpVgqkRERERERERESkWCmQEhERERERERGRYqVASkTKJGPMGcaYLGOMNcZ0LOR9+xtjVnn2/Wxh7ltERERERKQ8UCAlImXVWNzvuEnW2oWFuWNrbRbwlGf1bmNMk8Lcv4iIiIiISFmnQEpEyhxjzKXAmZ7V0UV0mI+B1UAQ8GQRHUNERERERKRMUiAlImXRaM/tT9baRUVxAE8rqec9q1cYY1oWxXFERERERETKIgVSIlKmGGPOBdp4Vt8v4sN9AaQCBriziI8lIiIiIiJSZiiQEpGy5mbPbTLwbVEeyFp7AJjkWR1mjIkoyuOJiIiIiIiUFQqkRMSnjDGxntnqrDFmtOexNsaY140x64wxKcaY3caYqcaYISfYV1XgPM/q19baQ8fYbnSeYxZ0iT3GYT/y3IYCg072/EVERERERMojBVIiUqIYY64G/gBuBBoBIUA1oC/wsTHme2NMyDFefh4Q6Lk/o6hr9YgDrOf+xcV0TBERERERkVItwNcFiIjk0Rl42HP/bWAWkOV5/HogDDgf+JCjt0Y6J8/9+cc5zqfAkhPUUhl4DReIAew/2kbW2v3GmL+BFkBfY4y/Z8BzEREREREROQZjrT3xViIiRcTTFS5va6YkoL+1dt5h2zXFtUaK9jw0yFr75WHbrAKaefZRyVqbfYo1BQA/A2d7HnraWvvIcbZ/B7jGs9rOWrv0VI4rIiIiIiJSXqjLnoiUNPcdHkYBWGvX4FpJ5bg37/PGmGCgqWd1zamGUR5jyQ2jvgT+7wTbr8xzv+1pHFdERERERKRcUCAlIiXJPuCdYz1prf0J+MuzeqYxpmaep+sCxnN/76kWYIy5ExjpWV0EDLcnbkq6L8/9+qd6bBERERERkfJCgZSIlCS/WmvTT7DN9Dz3O+e5XyXP/VMKpIwx/wBe9KxuBy461kx9h0nIc7/yqRxbRERERESkPFEgJSIlydqT3CY6z/3gPPeTTvbAxphWuMHO/YEU4GJr7dYCvvxAnvuhJ3tsERERERGR8kaBlIiUJAVpjXQwz/3wPPfT8tyveDIHNcZUAyZ5XmeBa6y1f5zELiLz3E85mWOLiIiIiIiURwqkRKQkqVCAbcLy3E/Ocz9vN7283feOyxgTBHwNNPQ89Li19vOCvv4oxzvl8atERERERETKCwVSIlKSNDnJbbblub8ZyJlZr8CBFPA60NNz/zNr7eMn8doceY+36RReLyIiIiIiUq4okBKRkqSnp8XS8fTJc9/brc4zGPoaz2oTY8wJf78ZYx4ARnhW5wPXFLzUfFrkub/0FPchIiIiIiJSbiiQEpGSpAq5AdERjDH9gVae1bnW2h2HbfK75zYCaHm8AxljLgae8azG4wYxTz3pip2untsk4K9T3IeIiIiIiEi5oUBKREqaF40xnQ9/0BjTGHg7z0MvHeW1U/Lc73KsAxhj2gMf4X4HHgQuOkq4VSDGmEggxrM6zVqbdSr7ERERERERKU8CfF2AiEgek4FzgNnGmPeAX4EsoDNwPbmz6n1lrf3yGK9PB4KAWPIHWHm9R+7g6J8D9Y0x9U9Q22/W2j1HeTwWMJ7735xgHyIiIiIiIgIYa62vaxCRcswYEwvM8Kw+DqwF3gSCj/GSycBlx+peZ4z5GrgENwNfDWvtoaNssxE4UQB1uD7W2rij7Osz4HIgxXO8pJPcr4iIiIiISLmjLnsiUqJYaz/EtYh6E1gPpAJ7genAUGvt+ScY6+k1z204LpgqMsaYCOBCz+qHCqNEREREREQKRl32RKTEsdYuA248xddOMcYsBdriBkj/+CjbNDitAnMNBkIBC7xSSPsUEREREREp89RCSkTKotGe2/7GmI5FcQBjjD9wv2f1M2utZtcTEREREREpIAVSIlLmWGu/BuZ6VkcX0WGG4GbXSwf+r4iOISIiIiIiUiYpkBKRsuqfQDZwgTGmU2Hu2NM66hHP6n+stWsLc/8iIiIiIiJlncaQEpEyyVq7CPAvon1nAc2LYt8iIiIiIiLlgQIpERERESk2lSpVsk2aNPF1GWXGwYMHCQsL83UZZYre08Kzbds2AKKjo097X9bCnj2wfTtkZEBQEAQHu9ugIMjKgrQ0SE+HlBQwBqpVg5o13fNlib5HC5fez8K3cOHCPdbaqBNtZ6y1xVGPiIiIiAgxMTF21apVvi6jzIiLiyM2NtbXZZQpek8Lz+OPPw7AY489dsr7SEuDd96BZ56BLVuge3d4/HHo29eFTkezebPb/u233TY33AAPPQR16pxyGSWKvkcLl97PwmeMWWitPeGwKRpDSkREREREREqU9HSYMAGaNoWbb3Zh0i+/wG+/Qb9+xw6jAOrVg/HjYc0auOYaeP11aNwY/vlPiI8vtlMQkRNQICUiIiIiIiIlxpo10LIljBoFtWvDzz/D7NlwzjnHD6IOV7++C7XWrIERI9z9xo3hrbeKrnYRKTgFUiIiIiIiIlIi/P039O4N+/fD5MkwZw70739yQdThGjRwraTWrHH7vuEGGDeu0EoWkVOkQc1FRERERETE51ascGNDWQszZkDr1oW7/wYN4LvvYPBguOUWyMyE224r3GP4QkZGBvHx8aSmpvq6lFIpMjKSlStX+rqMUikkJIQ6deoQGBh4Sq9XICUiIiIiIiI+tXSpGxvK39+FUS1aFM1xQkLgyy/hiivg9tvdjH133100xyou8fHxRERE0KBBA8zpNCUrp5KSkoiIiPB1GaWOtZaEhATi4+Np2LDhKe1DXfZERERERETEZ5YsgbPPhqAgmDmz6MKoHEFB8PnnMGgQ3HMPPPdc0R6vqKWmplK1alWFUVKsjDFUrVr1tFrmqYWUiIiIiIiI+MTChW6w8ogImD7dDTpeHAID4ZNPICAAHnzQtZR65JHiOXZRUBglvnC633cKpERERERERKTY/f47nHsuVK7suuk1aFC8xw8IgA8+cOHU//2fG1PqscdObwB1ESk4ddkTERERERGRYrV4sWsZVa2a66ZX3GFUjoAAeOcduPZaePxxePpp39RR2nXv3r3Q97lx40Y+/vjjQt9vYQkPDz/hNqNHj+bFF18E4NFHH2Xq1KnH3Pabb77hr7/+Oubz48eP5/333wcgNjaWBQsWFLjWxMREXnvtNe/6tm3bGDRoUIFfX1QUSImIiIiIiEixOXQIhgyBihUhLg7q1fNtPf7+8OabMGwYPPqoC8jk5MyZM6fQ91mUgVRWVlaR7Pd4nnjiCfr163fM548XSGVmZjJq1CiGDx9+Ssc+PJCKjo5m4sSJp7SvwqRASkRERERERIrNPffA6tXw/vtQp46vq3H8/GDcODeG1dVXQ2Kirys6NXfeCbGxhbvceeeJj5vTWiguLo7Y2FgGDRpE8+bNGTp0KNZaABo0aMADDzxAly5d6NKlC2vXrgXgmmuuyReO5OzrwQcf5Ndff6V9+/a8/PLL+Y53vONMmzaNDh060KZNG6677jrS0tK8x3/iiSfo2bMnX3zxBQ0aNODhhx+mb9++dOrUiUWLFnHuuefSuHFjxo8fD0BycjJ9+/bljDPOoE2bNnz77bcnfC+efvppYmJi6NevH6tWrfI+nvc8H3zwQVq2bEnbtm259957mTNnDt999x333Xcf7du3Z926dcTGxvLwww/Tu3dvxowZk6+1FcCHH35I9+7dad26NfPnzwc4YpvWrVuzceNGHnzwQdatW0f79u2577772LhxI61btwbcoPjXXnstbdq0oUOHDsyYMQOAd999l0svvZQBAwbQtGlT7r///hOe+8nSGFIiIiIiIiJSLL7/HsaPh3vvdTPrlSTh4fDRR9C9O9x6q7svJ2/x4sWsWLGC6OhoevTowezZs+nZsycAFStWZP78+bz//vvceeedfP/998fcz7///W9efPHFY25ztON06tSJa665hmnTptGsWTOGDx/OuHHjuNOTqoWEhPDbb78BLhSqW7cu06ZN49FHH+Waa65h9uzZpKam0qpVK0aNGkVISAhff/01FStWZM+ePZx55plcdNFFxxzMe+HChXz66acsXryYzMxMzjjjDDp27Jhvm7179/L111/z999/Y4whMTGRSpUqcdFFF3HBBRfk60qXmJjITE+TvdGjR+fbz8GDB5kzZw6zZs3iuuuuY/ny5cd9L5cvX86SJUsA1/osx9ixYwFYtmwZf//9N/3792f16tUALFmyhMWLFxMcHExMTAy33XYbdevWPeZxTpYCKRERERERESlyO3fCdddB+/bw1FO+rubounSB0aPdIOfnnw9XXeXrik7OK6/4ugLo0qULdTxN39q3b8/GjRu9gdSQIUO8t3fddVehHyciIoKGDRvSrFkzAEaMGMHYsWO9gdQVV1yRbx8XXXQRAG3atCE5OZmIiAgiIiIICQkhMTGRsLAwHn74YWbNmoWfnx9bt25l586d1KxZ86g1/frrrwwcOJAKFSrk239eFStWJCQkhBtuuIHzzz+fCy644JjneHi9eeW8l2eddRYHDhwg8RSb9f3222/cdtttADRv3pz69et7A6m+ffsSGRkJQMuWLdm0aVOhBlLqsiciIiIiIiJFyloXRiUluZZHwcG+rujYHnoIevSAm2+GTZt8XU3pE5zni+vv709mZqZ3PW/Lopz7AQEBZGdnA2CtJT09/ZSPk9Nt71jCwsKOug8/P798+/Pz8yMzM5OPPvqI3bt3s3DhQpYsWUKNGjVITU097jGO1XoqR0BAAPPnz+eyyy7jm2++YcCAAQWu93jHMcbkey+BE9YKHPc9O97XsjAokBIREREREZEiNX48TJ4Mzz8PLVv6uprj8/eHDz5wIdrw4eCD8a/LrM8++8x7261bN8CN7bRw4UIAvv32WzIyMgCIiIggKSnppPbfvHlzNm7c6B2f6oMPPqB3796nXO/+/fupXr06gYGBzJgxg00nSCjPOussvv76a1JSUkhKSmLSpElHbJOcnMz+/fs577zzeOWVV7zd6E72fHPey99++43IyEgiIyNp0KABixYtAmDRokVs2LDhhPs+66yz+MjTP3X16tVs3ryZmJiYAtdxOhRIiYiIiIiISJH5+283kPmAAfDPf/q6moJp2BD+9z+YNQteeMHX1ZQdaWlpdO3alTFjxngHKr/xxhuZOXMmXbp04ffff/e2Cmrbti0BAQG0a9fuiEHNjyUkJIR33nmHwYMH06ZNG/z8/Bg1atQp1zt06FAWLFhAp06d+Oijj2jevPlxtz/jjDO44ooraN++PZdddhm9evU6YpukpCQuuOAC2rZtS+/evb3nduWVV/LCCy/QoUMH1q1bd8LaKleuTPfu3Rk1ahRvvfUWAJdddhl79+6lffv2jBs3ztt1sWrVqvTo0YPWrVtz33335dvPLbfcQlZWFm3atOGKK67g3XffzdcyqiiZEzVpExEREREpLDExMTbvrENyenJmmpLCo/e08Dz++ONkZvoxefL/sXkzLFsGxxh6p0SyFq68Er76CubNg8PGpvaZw79HV65cSYsWLXxXUAE1aNCABQsWUK1aNV+Xkk9SUhIRERG+LqPUOtr3nzFmobW204leqxZSIiIiIiIiUiRmzOjDokXw5pulK4wCMAbGjYMaNWDoUDh0yNcViZQtCqRERERERESk0G3cWJ/Zs3tw441w8cW+rubUVKkC778Pq1e7body6jZu3FjiWkeJbymQEhERERERkUKVkQGTJl1AlSp7KeDwPyXW2WfD3Xe7gdnnzvV1NUenoXjEF073+06BlIiIiIiIiBSq8eMhIaEaAwb8zHFmri81Hn8catVywVRJy35CQkJISEhQKCXFylpLQkICISEhp7yPgEKsR0RERERERMq5xEQX4DRsuJ6mTdf4upxCERYGTz4JN9wAX3wBl1/u64py1alTh/j4eHbv3u3rUkql1NTU0wpVyrOQkBDq1Klzyq9XICUiIiIiIiKF5plnYO9eGDToF4zxdTWF55pr4L//hQcfdGNiBQf7uiInMDCQhg0b+rqMUisuLo4OHTr4uoxySV32REREROQIxpgBxphVxpi1xpgHj/J8rDFmvzFmiWd51Bd1ikjJsmEDjBkDI0ZArVo7fV1OofL3hxdfdOf4v//5uhqR0k+BlIiIiIjkY4zxB8YC/wBaAkOMMS2Psumv1tr2nuWJYi1SREqkhx6CgAB46ilfV1I0zjkH/vEPd34JCb6uRqR0UyAlIiIiIofrAqy11q631qYDnwKldNJ2ESku8+bBZ5/BvfdC7dq+rqbovPACHDgATyiGFzktGkNKRERERA5XG9iSZz0e6HqU7boZY/4EtgH3WmtXHG1nxpiRwEiAqKgo4uLiCrfaciw5OVnvZyHTe3pqrIXbbutAlSohnHnmfOLisrzPlcX387zzmjF2bE06dfqDunVTivXY+h4tXHo/fUeBlIiIiIgc7mjDEB8+n/gioL61NtkYcx7wDdD0aDuz1r4OvA4QExNjY2NjC6/Sci4uLg69n4VL7+mpmTgRVqyAN96Af/yjFwAzZ84EKJPvZ4sW0KQJfP11V776qniPre/RwqX303fUZU9EREREDhcP1M2zXgfXCsrLWnvAWpvsuT8ZCDTGVCu+EkWkpEhLgwcegDZt4NprfV1N8ahRw8229/XXMGuWr6sRKZ0USImIiIjI4f4AmhpjGhpjgoArge/ybmCMqWmMm9DdGNMFd12pIX5FyqGxY2H9ejcDnb+/r6spPnfdBXXqwD33QHa2r6sRKX0USImIiIhIPtbaTOCfwM/ASuBza+0KY8woY8woz2aDgOWeMaT+C1xprT28W5+IlHEJCfDkkzBgAPTv7+tqileFCvDMM7BgAXzyia+rESl9NIaUiIiIiBzB0w1v8mGPjc9z/3/A/4q7LhEpWZ580s0498ILvq7EN4YOhVdegYcegksvhdBQX1ckUnqohZSIiIiIiIictC1b4LXX4PrroXVrX1fjG35+8NJL7r0YN87X1YiULgqkRERERERE5KS9+CJYC4884utKfCs2Fvr0ccFUWpqvqxEpPRRIiYiIiIiIyEnZtQveeAOuvhrq1fN1Nb738MOwbRu8956vKxEpPRRIiYiIiIiIyEl55RVITYUHH/R1JSVD377QpQs89xxkZvq6GpHSQYGUiIiIiIiIFFhiIowdC4MHQ7Nmvq6mZDDGtZJavx4+/9zX1YiUDgqkREREREREpMBee83NrPfQQ76upGS58EJo1QqefRays31djUjJp0BKRERERERECuTQIXj5ZTjvPGjf3tfVlCx+fi6kW74cvv/e19WIlHwKpERERERERKRA3ngD9uxx3dPkSFdcAY0awdNPuxkIReTYFEiJiIiIiIjICaWnwwsvQO/e0KOHr6spmQIC4IEHYP58mD7d19WIlGwKpEREREREROSEPvgAtm5V66gTGTECatWCZ57xdSUiJZsCKRERERERETmurCz497+hY0c45xxfV1OyBQfDvfe6FlLz5vm6GpGSS4GUiIiIiIiIHNfEibB2rWsdZYyvqyn5Ro6EKlXcjHsicnQKpEREREREROSYrHXdz1q0gEsu8XU1pUN4ONx5J3z3HSxb5utqREomBVIiIiIiIiJyTD/8AEuXwkMPgZ/+gyywf/7TBVNqJSVydPp1IiIiIiIiIkdlLTz9NDRoAFde6etqSpfKleGWW+Czz1x3RxHJT4GUiIiIiIiIHNWsWW5g7vvvh8BAX1dT+tx1l3vfnn/e15WIlDwKpEREREREROSoXn4ZqlWDa67xdSWlU82aMGIEfPABJCT4uhqRkkWBlIiIiIiIiBxhwwY3KPdNN0FoqK+rKb1uvx1SU+GNN3xdiUjJokBKREREREREjvC//4G/P9x8s68rKd1atYK+fWHsWMjI8HU1IiWHAikRERERERHJJzkZ3noLBg2C2rV9XU3pd8cdEB8P33zj60pESg4FUiIiIiIiIpLP++/D/v0uSJHTd9550KgRjBnj60pESg4FUiIiIiIiIuKVnQ3//S907gxdu/q6mrLB3x9uuw1mz4aFC31djUjJoEBKREREREREvKZMgVWrXOsoY3xdTdlx7bUQHu7CPhFRICUiIiIiIiJ5jBkDNWvC4MG+rqRsiYyEa66BTz+FnTt9XY2I7ymQEhEREREREcC1jPrxRzezXlCQr6spe267DdLTYcIEX1ci4nsKpERERERERASA//3PBVE33eTrSsqmZs3gH/+AceNcMCVSnimQEhEREREREfbvh3ffhSuvhBo1fF1N2XXHHbBjB3zxha8rEfEtBVIiIiIiIiLC229DcjLcfruvKynbzjkHYmLcWF3W+roaEd9RICUiIiIiIlLOZWW57no9ekDHjr6upmzz83Oh3x9/wO+/+7oaEd9RICUiIiIiIlLO/fADrF/vupNJ0Rs+3M26N2aMrysR8R0FUiIiIiIiIuXcmDFQpw4MHOjrSsqH8HC4/nqYOBG2bvV1NSK+oUBKRERERESkHFu+HKZPh1tvhYAAX1dTftx6q+sqOW6crysR8Q0FUiIiIiIiIuXYq69CSAjceKOvKylfGjWCiy6CCRMgNdXX1YgUPwVSIiIiIiIi5dT+/fDRRzBkCFSt6utqyp9//hP27IEvv/R1JSLFT4GUiIiIiIhIOfXhh3DwINx8s68rKZ/OPhuaNFG3PSmfFEiJiIiIyBGMMQOMMauMMWuNMQ8eZ7vOxpgsY8yg4qxPRE6ftTB+PHTsCJ07+7qa8snPD0aNgtmzYdkyX1cjUrwUSImIiIhIPsYYf2As8A+gJTDEGNPyGNs9B/xcvBWKSGGYPdsNaD5qlK8rKd+uuQaCg104KFKeKJASERERkcN1AdZaa9dba9OBT4GLj7LdbcCXwK7iLE5ECsf48VCxohs/SnynalW4/HL44ANITvZ1NSLFR5N6ioiIiMjhagNb8qzHA13zbmCMqQ0MBM4GjtvZxxgzEhgJEBUVRVxcXGHWWq4lJyfr/Sxk5eU9TUwM5PPPu3HBBdv444+1RXqs8vB+nq4uXSrywQdn8Nhjq7jwwu3H3ba8fI8WF72fvqNASkREREQOZ47ymD1s/RXgAWttljFH2zzPC619HXgdICYmxsbGxhZCiQLuH329n4WrvLynL7wAGRnw5JN1aNWqTpEcY+bMmQDl4v08Xb17wxtvwIwZMbz4YgzH+7VaXr5Hi4veT99Rlz0REREROVw8UDfPeh1g22HbdAI+NcZsBAYBrxljLimW6kTktGRnw4QJ0KsXtGrl62oEwBg3ltfixTB/vq+rESkeCqRERERE5HB/AE2NMQ2NMUHAlcB3eTew1ja01jaw1jYAJgK3WGu/KfZKReSkTZ0K69bBzTf7uhLJa9gwCA/X4OZSfiiQEhEREZF8rLWZwD9xs+etBD631q4wxowyxmg+LpFSbtw4iIqCSy/1dSWSV0QEDB0Kn34Ke/f6uhqRoqdASkRERESOYK2dbK1tZq1tbK192vPYeGvtEZ/dW2uvsdZOLP4qReRkxcfDpElw3XUQHOzrauRwN98Mqanw/vu+rkSk6CmQEhERERERKSfefNONITVypK8rkaNp1w7OPNN127OHTyUhUsYokBIRERERESkHMjPdTG7nnguNGvm6GjmWm2+GVasgLs7XlYgULQVSIiIiIiIi5cCkSbBtm5vNTUquwYOhcmU31pdIWaZASkREREREpBwYPx7q1IHzz/d1JXI8oaFw7bXw9dewY4evqxEpOgqkREREREREyrh16+CXX+DGGyEgwNfVyIncdJPrYvn2276uRKToKJASEREREREp4yZMAH9/uOEGX1ciBdGsGfTt675uWVm+rkakaCiQEhERERERKcPS0uCdd+DiiyE62tfVSEGNGgWbN8OPP/q6EpGioUBKRERERESkDPvqK9izx3UDk9Lj4ouhRg14/XVfVyJSNBRIiYiIiIiIlGGvvw4NG0K/fr6uRE5GYCBcdx388APEx/u6GpHCp0BKRERERESkjFq9GuLi3GDmfvrvr9S54QbIztbg5lI26VeSiIiIiIhIGfXGG25WvWuv9XUlcioaNYL+/eHNNzW4uZQ9CqRERERERETKoLQ0ePddNxZRzZq+rkZO1ciRsGUL/PSTrysRKVwKpERERERERMqgr792g5mPHOnrSuR0XHSRBjeXskmBlIiIiIiISBmkwczLhpzBzb//XoObS9miQEpERERERKSMWb0aZszQYOZlhQY3l7JIv5pERERERETKGA1mXrY0agTnnKPBzaVsUSAlIiIiIiJShuQMZn7RRRrMvCy56SY3uPn8+VV8XYpIoVAgJSIiIiIiUoZ8840GMy+LcgY3//77aF+XIlIoFEiJiIiIiIiUIRMmQIMGrouXlB2Bga4L5rx5Vdm61dfViJw+BVIiIiIiIiJlhAYzL9vc4OaGt97ydSUip0+/okRERERERMqIN98Ef38NZl5WNW4MnTrt1eDmUiYokBIRERERESkD0tLgnXfcWEO1avm6GikqF1ywnS1b4OeffV2JyOkJ8HUBIiIiInJyjDHVgS5AW6A+UBkIBVKAvcAmYCkw31q721d1ikjxyhnM/KabfF2JFKXu3fdQvbobK+y883xdjcipUyAlIiIiUgoYYxoDw4CLgXYn8bolwDfAh9baDUVSnIiUCK+/DvXrazDzsi4w0HLddfD887B1K9Su7euKRE6NuuyJiIiIlGDGmP7GmJ+A1cCjuDDKnMTSHhgNrDXG/GiM0b+qImXQmjUwfboGMy8v3ODmaHBzKdXUQkpERESkBDLG9AT+DXTLechzmwDMB34HVgL7PI8dACKBKp6lBdAV17Wviue1/YH+xpg5wIPW2tlFfyYiUhxef12DmZcnjRtDv35uEPt//ct97UVKGwVSIiIiIiWMMeYj4EpyQ6h44BPgI2vt0lPYX1vgKmAIUBfoAcwyxnxirR1WOFWLiK+kpcG74bYEZwAAKoFJREFU78LFF0N0tK+rkeIyahQMGgQ//ggXXODrakROnhpzioiIiJQ8Q3Bh1HSgn7W2nrX2gVMJowCstUuttQ9aa+sD/Tz7NZ7jiEgp99VXGsy8PLroIqhZ0w1uLlIaKZASERERKXmmA72stf2stdMLc8fW2unW2n5AL89xRKSUmzABGjVyXbik/AgMhOuug8mTYfNmX1cjcvIUSImIiIiUMJ4gqkjHd7LWzrbWaoBzkVJu5UqYOVODmZdXN94I1rqxpERKG/3KEhERERERKaVef921lNFg5uVTgwYwYICbbS8z09fViJwcBVIiIiIiIiKlUEoKvPceDBwINWr4uhrxlZtugm3b4PvvfV2JyMlRICUiIiJSShhjqpzm688rrFpExPcmToR9+zSYeXl3/vlQu7YGN5fSR4GUiIiISOmxzBhz9sm+yBgTZIx5FZhUBDWJiI+MHw/NmkGfPr6uRHwpIABuuAF+/hk2bPB1NSIFp0BKREREpPSoBfxijHnOGBNQkBcYY1oDC4BbTuZAxpgBxphVxpi1xpgHj/L8xcaYpcaYJcaYBcaYniezfxE5PcuXw5w5MHIkGOPrasTXbrjBfR+88YavKxEpOAVSIiIiIqVHFmCAe4G5xpgmx9vYGHMbMB9o5XndqoIcxBjjD4wF/gG0BIYYY1oettk0oJ21tj1wHaA5nkSK0YQJEBQEI0b4uhIpCerUcV333n4bMjJ8XY1IwSiQEhERESk9egEbceHSGcBiY8wRc2sZY6KMMd8DrwAhnu3fBDoV8DhdgLXW2vXW2nTgU+DivBtYa5OttdazGgZYRKRYHDwIH3wAgwdDtWq+rkZKilGjYOdO+PZbX1ciUjAFauotIiIiIr5nrZ1njGkHjAOG4oKgN40xA4CR1tr9nvvvANVxQdQ+4EZr7VcncajawJY86/FA18M3MsYMBJ71HOv8Y+3MGDMSGAkQFRVFXFzcSZQix5OcnKz3s5CVhvd08uSa7N/fnC5dFhMXt9/X5ZxQSX8/S5tjfY8GB0ONGmfy7LMpVKv2Z/EXVkqVhp/5ssrkfrAlIiIiIqWFMWYI8BoQiWudtAXXje4aXBAFEAdcba3depL7Hgyca629wbN+NdDFWnvbMbY/C3jUWtvvRPuOiYmxq1YVqOegFEBcXByxsbG+LqNMKQ3vadeukJQEK1aU7PGjHn/8cQAee+wxH1dSthzve/Spp+D//g/WrIEmx+3ULTlKw898aWOMWWitPWGrbHXZExERESmFrLWfAB2AObgAqh65YVQ68DDQ92TDKI94oG6e9TrAtuPUMgtobIxR5yGRIrZkCcyfDzfdVLLDKPGN664Df394/XVfVyJyYgqkREREREopa+1G4JOc1Ty3PwEv2VNvCv8H0NQY09AYEwRcCXyXdwNjTBNj3L/DxpgzgCAg4RSPJyIFNGEChITA8OG+rkRKouhouPhieOcdSEvzdTUix6dASkRERKQUMsZUNsZ8BfwXF0IZcmfhuxCYb4xpfir7ttZmAv8EfgZWAp9ba1cYY0YZY0Z5NrsMWG6MWYKbke+K0wjARKQAkpLgww/hiiugcmVfVyMl1U03wZ498NXJjBwo4gMKpERERERKGWNMH2ApbuY7AyQCl+MGHl/teawtsDBPgHRSrLWTrbXNrLWNrbVPex4bb60d77n/nLW2lbW2vbW2m7X2t9M+MRE5rk8+geRkFziIHEu/ftCokWtNJ1KSKZASERERKSWMMQHGmH8DU4BoXPA0C2hnrZ1orV2MG1fqLc9zocBYY8y3xpiqvqpbRE6ftfDaa9C2LZx5pq+rkZLMzw9GjoSZM93A9yIllQIpERERkdJjLnAf7houC3gU6GOtjc/ZwFqbYq29ERgE7MUFUxcAy4wx5xR/ySJSGObMgT//hFtv1WDmcmLXXw/BwS7EFCmpFEiJiIiIlB4dcQHTBqCXtfapY43bZK39CmgPzPS8piYwuZjqFJFCNnYsREbC0KG+rkRKg2rV3Fhj778PBw74uhqRo1MgJSIiIlK6fAi0t9b+fqINPS2nzgb+BWSgaz+RUmnnTpg4Ea65BsLCfF2NlBa33urGHPvgA19XInJ0uigRERGR/2/vvqOkru4+jr+/gIAaE4OioiGJUSw89lijRowlgBKNXWNvoNhjojGNxNhi7B3FYENjbKgxD5ZIEk9s6GNUxIIlghq7USyIcp8/7hDWZYUFZufO7L5f58yZduc3n/2d3dH5cH/3p8axZ0ppz5TSe619QcpOAjYCnm27aJLaysUXw7RpcPDBpZOokay7Lqy9dp5d5zlQVY8spCRJkhpESunK+Xjtg+QFzyU1kE8+gQsvhC22gBVWKJ1GjWboUJgwAcaOLZ1EmpWFlCRJUgeRUnq/dAZJc2f0aHjppVwsSHNr552hRw8499zSSaRZWUhJkiRJUp067zz46ldh661LJ1EjWnDBfMa90aNh8uQ5j5dqyUJKkiSpzkRETQ6ti4i1avE+kubNE0/A3XfDQQdB586l06hRHXQQTJ8OF11UOon0WRZSkiRJ9WdcRNwYEau3xcYjYs2IGA080Bbbl1Qd558PXbvmGS7SvFp2Wdhqq7w4/scfl04jzWQhJUmSVJ++BzwcEbdGxM4R0X1+NhYR3SNil4j4MzAOGAR43iWpTr33Hlx+eV4DqGfP0mnU6IYOhVdfheuvL51EmslCSpIkqf6sQ569FMAAYBTwakSMjIi9ImLl1mwkIvpGxN4RMRJ4FbgK2LKy3XuBddsivKT5d8UVuZRyMXNVw5ZbwvLL5zXJpHrRpXQASZIkfVZK6WFgg4jYDhgGrAIsAuxRuRAR7wHPAG9VLu8BXwR6VC7LV14zQ1SuHwWGpZRuauufQ9K8SSmfFe2b34R1rY1VBZ065bWkfvhDeOQRWGON0okkZ0hJkiTVrZTSDSml1YD+wGjgE3KxFOTyaS1gc2AnYD9gR2AzYM3K8zPGTgNuArZMKa1hGSXVt7FjYcKEPDsqYo7DpVbZZ5981j1nSaleWEhJkiTVuZTS7Sml7wO9gD2BK4CnK09HC5cEPAVcTp5R1SultF1K6c5aZ5c09847D3r0gF12KZ1E7cmXvwy77QZXXQVvv106jeQhe5IkSQ0jpfQWcGXlQkR0BXqTD9HrBkwlH773YkppWqmckubd5Mlw001w5JF5NotUTUOHwogRMHJk/h2TSnKGlCRJUoNKKX2cUno2pfRgSumeyvWzllFS4xo+HKZPz+v9SNW25pqwwQZw/vn590wqyUJKkiRJkurA1Km5kBowAL7xjdJp1F4dcghMnAhjxpROoo7OQkqSJKmBRcQSEbFVRBwQEUdWrreKiCVKZ5M0d66+Gl59FY44onQStWc77AC9esEZZ5ROoo7ONaQkSZIaUER8HzgaWH82Y+4FfudZ9aT6lxKcfjqssgpsvnnpNGrPunaFQw+F446Dxx6DVVctnUgdlTOkJEmSGkhEdI2Ia4HryGVUS2fZm3HZALg+Iq6tLIAuqU7ddVcuB446CiJKp1F7N3gwLLSQs6RUljOkJEmSGsv1wEBy4QTwBPAXYCLwPrAwsDywKfA/lTHbA92B79U0qaRWO/10WHJJ2G230knUEfToAXvvDZdcAieeCEstVTqROiJnSEmSJDWIiNgF2Kpy92VgQEpplZTSYSmls1NKIyrXh6WUVgX6Ay+Ry6utImLnQtElzcYTT8Cf/wxDh0K3bqXTqKM4/HCYNi2fcU8qwUJKkiSpcexXuX4f2CSlNNtzJKWUbgf6AVMqD+3fdtEkzaszz4Tu3WHIkNJJ1JGssAIMGpQLqQ8/LJ1GHZGFlCRJUuNYHUjAiJTSs615QWXcCPIsqTXaLpqkefH663D55bDnntCzZ+k06miOOgrefBOuuKJ0EnVEFlKSJEmN4wuV6wfn8nUzxi9UxSySquCCC2DqVDjiiNJJ1BF9+9uw1lp5cfPp00unUUdjISVJktQ4Xq5cd57L180Y//JsR0mqqY8+gvPOg4EDYeWVS6dRRxSRZ0k9+ST87/+WTqOOxkJKkiSpcfylcr3xXL5uY/Khfn+Z00BJtTNqFLz2Wi4EpFJ23BGWWSaf6VGqJQspSZKkxnE28DGwZ0Ss05oXRMTawF7A1MrrJdWBlHIBsNpq8J3vlE6jjqxrVzj0ULjrLvjnP0unUUdiISVJktQgUkqPAweQFyi/IyL2j4guLY2NiC4RsR9wB3l21P4ppfG1Sytpdu64A8aPz7OjIkqnUUd34IGw0EJ5LSmpVlr8HxhJkiTVn4j4ReXmHcBA4CLg5Ij4OzAR+IC8cPnywEZAj8r424Dlm7x+FimlX7dVbkmzOv10WGop2GWX0kkk+PKXYd994aKL4KSToFev0onUEVhISZIkNY5h5NlONLnuAXyvhbHRZMzAymV2LKSkGnn8cRgzBn7zG+jWrXQaKTv88LzI/nnn5d9Nqa15yJ4kSVJjiWaXlh6b3eOfN1ZSjZx5Jiy4IAwZUjqJNNPyy8M228AFF8AHH5ROo47AGVKSJEmNY9PSASTNn1dfhSuvzIdHLbZY6TTSZx11FNx0E1x2GRx0UOk0au8spCRJkhpESumvpTNImj9nngkffwxHHFE6iTSrjTaCddaBU0+FAw6ALjYGakMesidJkqRZRET/iHgqIiZGxLEtPP+DiHi0cvlHRKxeIqfUSN56C849F3baCVZYoXQaaVYR8NOfwvPPw9VXl06j9s5CSpIkSZ8REZ2B84ABQF9g14jo22zY88AmKaXVgOOB4bVNKTWec86BKVPyF36pXg0aBKuuCieeCJ9+WjqN2jMLKUmSJDW3LjAxpfRcSulj4Bpgm6YDUkr/SCm9Xbl7H/CVGmeUGsq778JZZ8G22+Yv+1K96tQJfvYzePJJuOGG0mnUnnlEqCRJkppbBpjU5P5kYL3ZjN8P+PPnPRkRBwIHAvTs2ZOxY8dWIaIApkyZ4v6ssrbap6NGfZW33/4G/fs/xNix71V9+/XM39HqqsXf/WKLQe/e63LssdNZfPFxRDs+H6ufo+VYSEmSJKm5lr56pBYHRmxKLqQ2+ryNpZSGUzmkb8UVV0z9+vWrQkRB/qLv/qyuttin778PO+4I/fvD4MHfrOq269lf/5rPw+DvaHXV6u/+N7+BvfaCKVP6MWhQm79dMX6OluMhe5IkSWpuMtC7yf2vAC83HxQRqwGXANuklN6sUTap4Vx8MbzxRj4MSmoUu+4Kyy6bi6nU4j9JSPPHQkqSJEnNPQj0iYhlI6IrsAtwc9MBEfFV4AZgj5TS0wUySg3ho4/g1FOhXz/YcMPSaaTWW2ABOPZYeOABuPPO0mnUHllISZIk6TNSSp8AhwBjgAnAtSml8RExJCKGVIb9AlgMOD8iHomIcYXiSnVt5Eh4+WVnR6kx7bUXLLMMHH986SRqj1xDSpIkSbNIKd0G3NbssQub3N4f2L/WuaRGMm0anHwyrL8+fOc7pdNIc69bN/jxj+Hww+Fvf4Nvf7t0IrUnzpCSJEmSpDZw1VXwr3/Bz39Ouz5Lmdq3Aw6AJZbIa0lJ1WQhJUmSJElV9umncOKJsOaaMGBA6TTSvFtwQTj6aLjjDrj//tJp1J5YSEmSJElSlV17LTzzTF47ytlRanRDhkCPHnDCCaWTqD2xkJIkSZKkKpo+PX9x79sXtt22dBpp/i2yCBxxBNxyCzzySOk0ai8spCRJkiSpikaPhvHj4ac/hU5+41I7ceih8MUvOktK1ePHoyRJkiRVyaef5kXM+/SBnXYqnUaqnkUXzaXUddfB//1f6TRqDyykJEmSJKlKrrgiz4464QTo0qV0Gqm6jj46ryV17LGlk6g9sJCSJEmSpCr48MM8O2rddWGHHUqnkapv0UXzQv233w533lk6jRqdhZQkSZIkVcF558HkyXDKKZ5ZT+3XwQfD174GxxyTF/CX5pWFlCRJkiTNp7ffhhNPhAEDoF+/0mmkttOtGxx/PDz8MFx7bek0amQWUpIkSZI0n04+Gd55B046qXQSqe3tthustlo+k+THH5dOo0ZlISVJkiRJ82HSJDjrLNh9d1h99dJppLbXuXMuYZ97DoYPL51GjcpCSpIkSZLmw7BhkBL8+telk0i1078/bLpp/r1/773SadSILKQkSZIkaR6NHw8jR8LQofD1r5dOI9VORF7A//XX4Xe/K51GjchCSpIkSZLm0XHHwRe+kK+ljmaddWDHHeG00+Df/y6dRo3GQkqSJEmS5sE998DNN8Mxx8Dii5dOI5Vxwgnw0Uf5zHvS3LCQkiRJkqS5lFIuonr1giOOKJ1GKqdPHzjwwLy4+TPPlE6jRmIhJUmSJElz6eab4R//gF/9ChZaqHQaqaxf/AK6dYOf/ax0EjUSCylJkiRJmgsffwzHHgsrrgj77FM6jVTeUkvBD38I114L995bOo0ahYWUJEmSJM2F006DJ5/M1126lE4j1Yejj4ZlloGDDoJPPimdRo3AQkqSJEmSWun55/Pizd//Pmy1Vek0Uv1YZBE480z45z/h3HNLp1EjsJCSJEmSpFZICQ47DDp1grPOKp1Gqj/bbw/9+8PPfw4vvVQ6jeqdhZQkSZIktcLo0XDrrTBsGPTuXTqNVH8i8uyoTz6BI48snUb1zkJKkiRJkuZgypQ8O2qVVeDww0unkerXcsvBccfBH/8IY8aUTqN6ZiElSZIkSXPw61/DpElw4YWwwAKl00j17cc/hhVWgKFD4cMPS6dRvbKQkiRJkqTZePxxOOMM2Hdf2HDD0mmk+tetG5x/Pjz7LJx8cuk0qlcWUpIkSZL0OaZPz6ex/9KX4JRTSqeRGsdmm8Fuu+VC6umnS6dRPbKQkiRJkqTPMXIk3HMP/Pa3sPjipdNIjeW002DBBeHgg/NZKqWmLKQkSZIkqQVvvpnXwtlwQ9h779JppMaz1FJwwglw111wzTWl06jeWEhJkiRJUguOOQbeeQcuuAA6+c1JmidDhsDaa8NRR8F//lM6jeqJH6uSJEmS1Mzdd8OIEXDkkbDqqqXTSI2rc+dc6r76ap5xKM1gISVJkiRJTbz1FuyxB/TpA8OGlU4jNb6114ajj4bhw2H06NJpVC8spCRJkiSpIiUYPDjP5hg1ChZeuHQiqX04/nhYc03Ybz945ZXSaVQPLKQkSZIkqWLMmKW47rr85XnttUunkdqPbt3gqqvggw/ySQKmTy+dSKVZSEmSJEkSMHEinH328myyCfzoR6XTSO3PyivD6afD7bfD2WeXTqPSLKQkSZI0i4joHxFPRcTEiDi2hedXioh7I2JqRBxdIqNUTdOmwe67Q+fOiSuuyAsxS6q+wYPhe9/LZ7F89NHSaVSShZQkSZI+IyI6A+cBA4C+wK4R0bfZsLeAw4Df1Tie1CaOPx7uvx9++MOn6d27dBqp/YqASy6BHj1gt93gww9LJ1IpFlKSJElqbl1gYkrpuZTSx8A1wDZNB6SUXkspPQhMKxFQqqZ77oETTsjr2vTr93rpOFK717MnjBwJ48fnmVLqmLqUDiBJkqS6swwwqcn9ycB687qxiDgQOBCgZ8+ejB07dr7CaaYpU6a4P+fTlCmd2X//dVhqqcSOO45zn7YB92d1tZff0W7dYIcdluOcc3qz9NKPsv76bxXJ0V72ZyOykJIkSVJz0cJjaV43llIaDgwHWHHFFVO/fv3mdVNqZuzYsbg/588PfgBvvJFnSa2//sbu0yr661//CuD+rLL29Du6/vrw1FNwxhmr8dhjsMQStc/QnvZno/GQPUmSJDU3GWi6is5XgJcLZZHazGWXwahR8Mtf5i/Gkmqre/f8N/if/+RDZj/9tHQi1ZKFlCRJkpp7EOgTEctGRFdgF+Dmwpmkqrr33ny2r3794LjjSqeROq5VVoGzzoI//xl+8pPSaVRLHrInSZKkz0gpfRIRhwBjgM7ApSml8RExpPL8hRGxFDAO+CIwPSKOAPqmlN4tlVtqrRdegG23hd694brroHPn0omkjm3wYHjsMTj1VFhpJdh339KJVAsWUpIkSZpFSuk24LZmj13Y5Pa/yYfySQ3l3Xdh0CCYOhVuuQUWW6x0IkkAZ54JzzyTy6nlloNNNimdSG3NQ/YkSZIkdQiffgq77QYTJuSZUSutVDqRpBm6dIE//AH69IHttoOJE0snUluzkJIkSZLUIfzoR/CnP8G558Lmm5dOI6m5RRfNMxcjYOut4e23SydSW7KQkiRJktTuDR8OZ5wBhx0GQ4aUTiPp8yy3HNx4Izz3HOy0E0ybVjqR2oqFlCRJkqR27S9/gaFDoX9/OO200mkkzcnGG+cS+c47c4mcUulEagsuai5JkiSp3Xr6adh+e1hxRbjmmrxOjaT6t/fe8OSTcMopsPLKuZhS++LHsSRJkqR2adIkGDAgl1C33AJf+lLpRJLmxoknwlNPwZFHwpJLws47l06kavKQPUmSJEntzr/+lU8b/8YbeSHzZZctnUjS3OrUCa68EjbaKJ8hc9So0olUTRZSkiRJktqV55/PZdTbb+c1aNZdt3QiSfNq4YXhttvy3/Qee8AVV5ROpGqxkJIkSZLUbjz7bP7i+u67cNddsM46pRNJml8LLwy33gqbbgp77QUjR5ZOpGqwkJIkSZLULjzzDPTrBx98kM+st9ZapRNJqpaFFsprwW2xBey7L4wYUTqR5peFlCRJkqSG99RTuYz66KNcRq2xRulEkqptwQVh9Gj47ndh//1h+PDSiTQ/LKQkSZIkNbQJE3IZNW0a3H03rLZa6USS2kr37nDjjTBwIAweDOefXzqR5pWFlCRJkqSG9cADeV2ZlGDsWFhlldKJJLW17t3hhhtg0CAYOhROPjl/BqixWEhJkiRJaki//z1svHE+jOfuu6Fv39KJJNVKt25w3XWw887wk5/ArrvC+++XTqW5YSElSZIkqaFMmwaHHpoXNt5oI3jwQVh55dKpJNVa165w9dV5htS118K3vgXPP186lVrLQkqSJElSw3jtNdh8czj3XDjqKBgzBhZfvHQqSaVEwDHHwG23wYsvwtprw113lU6l1rCQkiRJktQQHnoof9l84AG44go47TTo0qV0Kkn1oH//PFuyVy/Ycks44wzXlap3FlKSJEmS6t6VV+bD8wDuuQd2371sHkn1Z/nl4d57YZtt8gzKPfaADz8snUqfx0JKkiRJUt165x044ID8xXK99WDcOPjmN0unklSvFlkkL3Z+/PEwatTMzw3VHwspSZIkSXXpxhvzmfMuvRR+/GO44w5YYonSqSTVu06d4Gc/g1tvhTfeyKXUj34EH3xQOpmaspCSJEmSVFdeeQW23x622y4XUA88AKecAgssUDqZpEYycCA88QTstx/87new6qoueF5PLKQkSZIk1YWU4JJLYOWV4U9/gpNOyosUe4iepHm16KIwfDjcfXeeObX55rDvvvD226WTyUJKkiRJUnHPPAObbZbXi1p9dXj0UTj2WGdFSaqOfv3y58oxx8Dll+fi+49/9Ex8JVlISZIkSSrmhRdyCdW3Lzz0EFx0UZ7JsMIKpZNJam8WXBBOPjnPvFxmGdhpJxg6dC3GjLGYKsFCSpIkSVLNvfgiDBmSi6fLL8+3n3wSDjwwH1YjSW1lzTXh/vtzAf7WW13p3x823BDuvNNiqpb8qJckSZJUM5Mnw9ChsPzy+ex5++8PEyfCOedAr16l00nqKLp0yQX45ZffzwUXwKRJsMUW8O1v51maansWUpIkSZLa3IQJcMghsNxyeYHhffbJRdT550Pv3qXTSeqounZNDBmSP4/OPReeew6+85285tStt8Inn5RO2H5ZSEmSJElqE++/DyNHwkYb5TWiLroI9tgjL2B+0UXw1a+WTihJWbduefbms8/CWWfB00/DoEHw9a/Dz38Ozz9fOmH7YyElSZIkqWpSgnHj8ppQvXrlmVCvvw6//W0+XO+SS/IXPEmqR927w2GH5RMuXH99PuvniSfCN76RD+n7wx9g6tTSKduHLqUDSJIkSWpsKcHjj+fDW/7wB/jnP/PZrHbaKa8RteGGEFE6pSS1XteusN12+TJpUp7tOWIE7LIL9OiRrwcNyof2de9eOm1jcoaUJEmSpLn24Ydw221w8MHwta/BaqvBccflw14uuABeeWXm4XqWUZIaWe/e+bC9556D22+HzTfPn28DBsBii8G228LFF8PLL5dO2licISVJkiRpjqZNg0cfhXvvzV/I7rwzl1ILL5wPY/nlL2HgQM+UJ6n96tQpf95tsQV89BGMHZtnht5yC4wencestVb+LNxoI1hvPVh00ZKJ65uFlCRJkqRZ/PvfuXy67758PW5cLqAgrwG1//6w9dawySZ5VpQkdSTdu0P//vlyzjkwfnwup269Na85NX16HrfyyrDBBrD++vm6b99cbMlCSpIkSerQ3nkHJkyAJ56YeT1+PLz4Yn5+gQXyv/gPHjzzS1Xv3h6GJ0kzRMAqq+TLscfCe+/BAw/MLPRHj4ZLL81jv/jFPK5v31xW9e2bLx3xc9VCSpIkSepgbrkFzjwzF1CvvDLz8e7dYaWV8iLkhx+eC6g113TBXkmaG4ssApttli+QT/wwcWIup+6/P58EYvTofNbRGRZeOBdU/frBqacWiV1zFlKSJEmaRUT0B84COgOXpJRObvZ8VJ4fCHwA7J1SerjmQTVPpk6FKVPgu9/97L/Qf+1r0Llz6XSS1L5EQJ8++bLnnjMff+ONmTNTZ8xSff31cjlrzUJKkiRJnxERnYHzgC2AycCDEXFzSumJJsMGAH0ql/WACyrXagA77JAvkqRyFl8cNt44XzqiSCmVziBJkqQ6EhEbAMNSSt+t3P8JQErppCZjLgLGppSurtx/CuiXUnqlhU3+19JLL50GDx7cZtklSVJZw4YNeyiltPacxjlDSpIkSc0tA0xqcn8ys85+amnMMsAshVREHAgcWLk7ddiwYY9XL2qHtzjwRukQ7Yz7tLrcn9XnPq0u92f1rdiaQRZSkiRJaq6l8/w0n1bfmjH5wZSGA8MBImJca/7VVK3j/qw+92l1uT+rz31aXe7P6ouIca0Z16mtg0iSJKnhTAZ6N7n/FeDleRgjSZLUIgspSZIkNfcg0Ccilo2IrsAuwM3NxtwM7BnZ+sB/5rR+lCRJ0gwesidJkqTPSCl9EhGHAGOAzsClKaXxETGk8vyFwG3AQGAi8AGwTys3P7wNIndk7s/qc59Wl/uz+tyn1eX+rL5W7VPPsidJkiRJkqSa8pA9SZIkSZIk1ZSFlCRJkiRJkmrKQkqSJEk1ExHHR8SjEfFIRNweEUuXztToIuLUiHiysl9vjIhFS2dqdBGxY0SMj4jpEeHp4OdRRPSPiKciYmJEHFs6T6OLiEsj4rWIeLx0lvYgInpHxN0RMaHy93546UyNLCK6R8QDEfHPyv781Rxf4xpSkiRJqpWI+GJK6d3K7cOAvimlIYVjNbSI2BL4S2Ux+lMAUkrHFI7V0CJiZWA6cBFwdEppXOFIDSciOgNPA1sAk8ln79w1pfRE0WANLCK+DUwBLk8prVI6T6OLiF5Ar5TSwxGxCPAQsK2/o/MmIgJYOKU0JSIWAO4BDk8p3fd5r3GGlCRJkmpmRhlVsTDgv47Op5TS7SmlTyp37wO+UjJPe5BSmpBSeqp0jga3LjAxpfRcSulj4Bpgm8KZGlpK6W/AW6VztBcppVdSSg9Xbr8HTACWKZuqcaVsSuXuApXLbP8bbyElSZKkmoqIEyJiEvAD4Bel87Qz+wJ/Lh1CIn+xn9Tk/mT8sq86FRFfB9YE7i8cpaFFROeIeAR4DbgjpTTb/WkhJUmSpKqKiDsj4vEWLtsApJR+mlLqDVwFHFI2bWOY0z6tjPkp8Al5v2oOWrNPNV+ihcecEam6ExFfAK4Hjmg2i1dzKaX0aUppDfJM3XUjYraHlnapSSpJkiR1GCmlzVs5dBTwJ+CXbRinXZjTPo2IvYCtgc2Si8S2ylz8nmreTAZ6N7n/FeDlQlmkFlXWOroeuCqldEPpPO1FSumdiBgL9Ac+dxF+Z0hJkiSpZiKiT5O73wOeLJWlvYiI/sAxwPdSSh+UziNVPAj0iYhlI6IrsAtwc+FM0n9VFuEeAUxIKZ1eOk+ji4ieM87yGhELApszh//Ge5Y9SZIk1UxEXA+sSD6D2b+AISmll8qmamwRMRHoBrxZeeg+z1w4fyLi+8A5QE/gHeCRlNJ3i4ZqQBExEDgT6AxcmlI6oWyixhYRVwP9gMWBV4FfppRGFA3VwCJiI+DvwGPk/yYBHJdSuq1cqsYVEasBl5H/3jsB16aUfj3b11hISZIkSZIkqZY8ZE+SJEmSJEk1ZSElSZIkSZKkmrKQkiRJkiRJUk1ZSEmSJEmSJKmmLKQkSZIkSZJUUxZSkiRJklRnIuLrEZEql5Gl80hStXUpHUCSJEmSpJZExLbAGpW7Z6aU3ikWRlJVWUhJkiRJkurVtsBeldsjgXdKBZFUXRZSkiRJklRnUkovAFE6hyS1FdeQkiRJkiRJUk1ZSEmSJEmSJKmmLKQkSZIkqc605ix7ETF2xpgmj+0cEXdExL8jYmpE/Csifh8RK83h/T6zrYjoEhEHRcQ9EfF6RHwYEU9HxFkR0XsO23qhsq0XWvFztjg2IkZWsuzV5OHnm+yTeToDYUTs0eS1D0VE19mMXT8iplXGvhIRi8/Ne0maPQspSZIkSWpwEdE9Im4ErgE2B5YEugJfBfYGHomIAa3c1peBscD5wIbA4kB3oA9wGDA+IgZW+UeoiZTSFcBVlbtrAb9paVxELFIZ1wVIwJ4ppTdqElLqIFzUXJIkSZIa36XkM9I9RC6lXiQXST8AvgV0A66MiBVbUaxcSi6ingAuA/4FLAXsCqwHLALcEBEbpZTGVf9HAeBs4CZyAbZp5bHBwGvNxr04D9s+mLxPlgWOjogxKaW7mo05H/hG5fbpKaU75uF9JM2GhZQkSZIkNb5dgROAn6eUmh7CdyFwPbms6gHsC/x2DtvaFhgF7J1SmtZkW2cDpwA/Ihdcl0bE6k3fr1pSSg8DD0fEtk0evr1y9sH53fa7EbEb8Hfyd+LLI2K1lNKbABGxK7B7Zfj/AcfN73tKmpWH7EmSJElS4/tLSulnzcuhlNJ0coE0w3dbsa0XgP2allGVbSXgGODeykOrAlvOc+KCUkr3Ab+u3F0aGAF57S7ggsrjHwC7ppQ+rnlAqQOwkJIkSZKkxnfW5z2RUpoITKrc7duKbZ2XUvroc7aVgDOaPPT9ViesPycAf6vc3iYiDiGvG/WlymOHp5SeKpJM6gAspCRJkiSp8d03h+dfqlx/uRXbar6e0uyeX6cV26tLldljuwNvVx46h7y2FMD1KaVLigSTOggLKUmSJElqfHNaqHxq5bpbK7Y1cXZPppTeAt6p3F26FdurWymlSeTF0puaBBxQII7UoVhISZIkSVKDq8z2qZYPWjHm/cr1F6r4vqVMBD5pcv+ulNLbnzdYUnVYSEmSJEmSmlqoFWMWrlxPmc/3KvqdNCIWAq7ms2eg3zsiBhaKJHUYFlKSJEmSpKaWn92TEdEDWLRy9+UWhsw4PLDrHLYTQI+5DVdlZwErVm7fAsw4s+DvI2LJMpGkjsFCSpIkSZLU1Hfm4vkHW3j+ncr14hGxwGy2swozZ1p9nqaHIsYcxs6ViNgO2L9y9zFgR+CXlftLkEupqr6npJkspCRJkiRJTR0cEbNb/PzIJrdvaOH5JyrXCwAbz2Y7h7UiS9NDAudUXrVaRHwFuLhy9yNg15TSVOAUYGzl8QGtzChpHlhISZIkSZKa+gZwcUQ0XVeJyE4EvlV56FHgjhZe/79Nbh/fUrkVEfszc3bS7Dzf5PZarRg/RxHRCbiCmYcLHp1SGg//XRx+D2DGouanRMRq1XhfSZ/VZc5DJEmSJEkdyE3kUmbNiLgMeBFYEtgV2KAyZiqwX0opfc7rJ5LXovoW8GBEjCCvN7UUsC35sL+/A8sBS88my11Nbv82InoCTzHzrHgvpZQem7sfj2OAfpXbf0opndf0yZTS5Ig4ALgO6AaMioi1U0ofzeX7SJoNCylJkiRJUlP7AD2BDYFTW3j+PfIhbuNaenFKaWpE7EKePfVlYFXgzGbD7ge2p+U1qJpu69GIuJpchi0J/K7ZkMuAvWe3jaYiYh3gV5W7r5J/1pbe9/qIuIQ8i+t/Ku97SGvfR9KcecieJEmSJOm/UkrvAJsCQ4F/AG+SZ0Q9C5wD/E9K6U9z2MZD5CLqHPJsqY/Ih8HdW9nuximl11sZaQ/gIPLaTm8wc3bUXImILwCjyGtbJWDvOWQ4gjwbC2BoRGw9L+8rqWXR8gxLSZIkSVJHERFjgU0AUkqeWU5Sm3OGlCRJkiRJkmrKQkqSJEmSJEk1ZSElSZIkSZKkmrKQkiRJkiRJUk1ZSEmSJEmSJKmmPMueJEmSJEmSasoZUpIkSZIkSaopCylJkiRJkiTVlIWUJEmSJEmSaspCSpIkSZIkSTVlISVJkiRJkqSa+n8aA2o8XBX/ZwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "x_range, x_num = (-3., 3.), 100\n",
+ "x_mean, x_sigma = 0.3, 0.5\n",
+ "\n",
+ "ukf_visu = UKF_Visualization(\n",
+ " model=f, \n",
+ " x_mean=x_mean, \n",
+ " x_sigma=x_sigma, \n",
+ " x_model_range=x_range, \n",
+ " samples_num=100\n",
+ ")\n",
+ "ukf_visu.update_plot()\n",
+ "\n",
+ "ekf_visu = EKF_Visualization(\n",
+ " model=f, \n",
+ " model_taylor=f_taylor_order_1, \n",
+ " x_mean=x_mean, \n",
+ " x_sigma=x_sigma, \n",
+ " x_model_range=x_range, \n",
+ " samples_num=100,\n",
+ " monto_carlo_sizes=[1000000, 100000]\n",
+ ")\n",
+ "ekf_visu.update_plot()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "4c49865c",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "236d2028",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/python/examples/Square_Root_Unscented_Kalman_Filter.ipynb b/python/examples/Square_Root_Unscented_Kalman_Filter.ipynb
new file mode 100644
index 0000000..cc9da87
--- /dev/null
+++ b/python/examples/Square_Root_Unscented_Kalman_Filter.ipynb
@@ -0,0 +1,1185 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "8b4b93b6",
+ "metadata": {},
+ "source": [
+ "# Square-root UKF"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9ddc1e5b",
+ "metadata": {},
+ "source": [
+ "## 1. Square-root Covariance update with QR-Decomposition"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "819616b1",
+ "metadata": {},
+ "source": [
+ "Knowing that:\n",
+ "\n",
+ "$$ \\tag{1}\n",
+ "A+B = \\begin{bmatrix} \\sqrt{A}^T & \\sqrt{B}^T \\end{bmatrix} \\begin{bmatrix} \\sqrt{A} \\\\ \\sqrt{B} \\end{bmatrix}\n",
+ "$$\n",
+ "\n",
+ "$$ \\tag{2}\n",
+ "Q, R = qr \\left( \\begin{bmatrix} \\sqrt{A} \\\\ \\sqrt{B} \\end{bmatrix} \\right)\n",
+ "$$\n",
+ "\n",
+ "where $Q$ is an orthogonal matrix, and $R$ is upper triangular.\n",
+ "\n",
+ "Substitue the $QR$ decomposition $(2)$ into $(1)$:\n",
+ "\n",
+ "$$ \\tag{3}\n",
+ "A + B = R^T Q^T Q R\n",
+ "$$\n",
+ "\n",
+ "From the properties of the orthogonal matrix is that its inverse is equal to its transpose **(Theorem 4.1, 4.2)** in [1].\n",
+ "\n",
+ "$$ \\tag{4}\n",
+ "Q^T = Q^{-1}\n",
+ "$$\n",
+ "\n",
+ "Note: one can relate that this is a similar property as the rotation matrix.\n",
+ "\n",
+ "Because of this property the dot product of the orthogonal matrix with its transpose is equal to identiy matrix.\n",
+ "\n",
+ "$$ \\tag{5}\n",
+ "Q.Q^T = I\n",
+ "$$\n",
+ "\n",
+ "substituding $(5)$ into $(3)$ yielf;\n",
+ "\n",
+ "$$ \\tag{6}\n",
+ "A + B = R^T R\n",
+ "$$\n",
+ "\n",
+ "then;\n",
+ "\n",
+ "$$ \\tag{7}\n",
+ "\\sqrt{A + B} = R^T\n",
+ "$$\n",
+ "\n",
+ "and we can prove this by example, given:\n",
+ "\n",
+ "$$ \\tag{8}\n",
+ "A = \\begin{bmatrix} 100 & 2 \\\\ 2 & 9 \\end{bmatrix}\n",
+ "$$\n",
+ "\n",
+ "and,\n",
+ "\n",
+ "$$ \\tag{9}\n",
+ "B = \\begin{bmatrix} 9 & 3 \\\\ 3 & 4 \\end{bmatrix}\n",
+ "$$"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "6147381c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "from scipy import linalg"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "5fe7c504",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " A + B = \n",
+ " [[109 5]\n",
+ " [ 5 13]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "A = np.array([[100, 2], [2, 9]])\n",
+ "B = np.array([[9, 3], [3, 4]])\n",
+ "\n",
+ "print(f' A + B = \\n {A + B}')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "92d18f4c",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "sqrt(A) = \n",
+ "[[10. 0.2 ]\n",
+ " [ 0. 2.99332591]]\n",
+ "sqrt(B) = \n",
+ "[[3. 1. ]\n",
+ " [0. 1.73205081]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "sqrtA = np.linalg.cholesky(A).T # transpose to get the upper triangular matrix as expected by QR decomposition\n",
+ "sqrtB = np.linalg.cholesky(B).T # transpose to get the upper triangular matrix as expected by QR decomposition\n",
+ "\n",
+ "print(f'sqrt(A) = \\n{sqrtA}')\n",
+ "print(f'sqrt(B) = \\n{sqrtB}')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "53086a01",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[10. 0.2 ]\n",
+ " [ 0. 2.99332591]\n",
+ " [ 3. 1. ]\n",
+ " [ 0. 1.73205081]]\n",
+ "Q=\n",
+ "[[-0.95782629 0.07239628]\n",
+ " [-0. -0.83762115]\n",
+ " [-0.28734789 -0.24132093]\n",
+ " [-0. -0.48467906]]\n",
+ "R=\n",
+ "[[-10.44030651 -0.47891314]\n",
+ " [ 0. -3.57360353]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "C = np.concatenate((sqrtA, sqrtB), axis=0) # building the compound (joint) matrix\n",
+ "print(C)\n",
+ "Q, R = np.linalg.qr(C)\n",
+ "print(f'Q=\\n{Q}')\n",
+ "print(f'R=\\n{R}')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "4e05ab25",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "R.T @ R = \n",
+ "[[109. 5.]\n",
+ " [ 5. 13.]]\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "A_plus_B = R.T @ R\n",
+ "print(f'R.T @ R = \\n{A_plus_B}\\n')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2e677a7b",
+ "metadata": {},
+ "source": [
+ "## 2. Rank 1 Cholesky Update/Downdate"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "814d3adc",
+ "metadata": {},
+ "source": [
+ "$$\n",
+ "A = LL^T\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "A'= A + \\beta \\nu \\nu^T\n",
+ "$$\n",
+ "\n",
+ "$A$ is positive definite matrix as well as $A'$.\n",
+ "\n",
+ "$$\n",
+ "A' = L' L'^T\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "LL^T = L'L'^T + \\beta \\nu \\nu^T\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "L' = \\sqrt{LL^T + \\beta \\nu \\nu^T}\n",
+ "$$"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "04b88ded",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def cholupdate(L, W, beta):\n",
+ " r = np.shape(W)[1]\n",
+ " m = np.shape(L)[0]\n",
+ " \n",
+ " for i in range(r):\n",
+ " L_out = np.copy(L)\n",
+ " b = 1.0\n",
+ " \n",
+ " for j in range(m):\n",
+ " Ljj_pow2 = L[j, j]**2\n",
+ " wji_pow2 = W[j, i]**2\n",
+ " \n",
+ " L_out[j, j] = np.sqrt(Ljj_pow2 + (beta / b) * wji_pow2)\n",
+ " upsilon = (Ljj_pow2 * b) + (beta * wji_pow2)\n",
+ " \n",
+ " for k in range(j+1, m):\n",
+ " W[k, i] -= (W[j, i] / L[j,j]) * L[k,j]\n",
+ " L_out[k, j] = ((L_out[j, j] / L[j, j]) * L[k,j]) + (L_out[j, j] * beta * W[j, i] * W[k, i] / upsilon)\n",
+ " \n",
+ " b += beta * (wji_pow2 / Ljj_pow2)\n",
+ " \n",
+ " L = np.copy(L_out)\n",
+ " \n",
+ " return L_out"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "c720900c",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "A + beta * (v @ v.T) = \n",
+ "[[109 8]\n",
+ " [ 8 13]]\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "beta = 1\n",
+ "\n",
+ "A = np.array([[100, 2], [2, 9]])\n",
+ "\n",
+ "v = np.array([[3], [2]])\n",
+ "\n",
+ "A2 = A + beta * (v @ v.T)\n",
+ "\n",
+ "print(f'A + beta * (v @ v.T) = \\n{A2}\\n')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "82da6bea",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "L2 @ L2.T = \n",
+ "[[109. 5.18 ]\n",
+ " [ 5.18 10.1236]]\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "L = np.linalg.cholesky(A)\n",
+ "\n",
+ "L2 = cholupdate(L, v, 1.)\n",
+ "\n",
+ "print(f'L2 @ L2.T = \\n{L2 @ L2.T}\\n')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "df0f7a9c",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "A + beta * (W @ W.T) = \n",
+ "[[110. 7.]\n",
+ " [ 7. 14.]]\n",
+ "\n",
+ "L2 @ L2.T = \n",
+ "[[110. 7.]\n",
+ " [ 7. 14.]]\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "beta = 1\n",
+ "A = np.array([[100., 2.], [2., 9.]])\n",
+ "W = np.array([[3., 1.], [1., 2.]])\n",
+ "\n",
+ "A1 = A + beta * (W @ W.T)\n",
+ "print(f'A + beta * (W @ W.T) = \\n{A1}\\n')\n",
+ "\n",
+ "L1 = np.linalg.cholesky(A)\n",
+ " \n",
+ "L2 = cholupdate(L1, W, 1.0)\n",
+ "A2 = L2 @ L2.T\n",
+ "print(f'L2 @ L2.T = \\n{A2}\\n')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "68c0b587",
+ "metadata": {},
+ "source": [
+ "## 3. Backward Substitution"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "d779bc17",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def backsubs(A, B):\n",
+ " # x_ik = (b_ik - Sum_aij_xjk) / a_ii\n",
+ " \n",
+ " N = np.shape(A)[0]\n",
+ " \n",
+ " X = np.zeros((B.shape[0], B.shape[1]))\n",
+ " \n",
+ " for k in range(B.shape[1]):\n",
+ " for i in range(N-1, -1, -1):\n",
+ " sum_aij_xj = B[i, k]\n",
+ "\n",
+ " for j in range(N-1, i, -1):\n",
+ " sum_aij_xj -= A[i, j] * X[j, k]\n",
+ "\n",
+ " X[i, k] = sum_aij_xj / A[i, i]\n",
+ " \n",
+ " return X"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "7a6b1cb4",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[-24.]\n",
+ " [-13.]\n",
+ " [ 2.]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "A = np.array([[1., -2., 1.],\n",
+ " [0., 1., 6.],\n",
+ " [0., 0., 1.]])\n",
+ "\n",
+ "b = np.array([[4.0], [-1.0], [2.0]])\n",
+ "\n",
+ "x1 = backsubs(A, b)\n",
+ "print(x1)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "23e63117",
+ "metadata": {},
+ "source": [
+ "## 4. Forward Substitution"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "a87f986f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def forwardsubs(A, B):\n",
+ " # x_ik = (b_ik - Sum_aij_xjk) / a_ii\n",
+ " \n",
+ " N = np.shape(A)[0]\n",
+ " X = np.zeros((B.shape[0], B.shape[1]))\n",
+ " \n",
+ " for k in range(B.shape[1]):\n",
+ " for i in range(N):\n",
+ " sum_aij_xj = B[i, k]\n",
+ " \n",
+ " for j in range(i):\n",
+ " sum_aij_xj -= A[i, j] * X[j, k]\n",
+ " \n",
+ " X[i, k] = sum_aij_xj / A[i, i]\n",
+ " \n",
+ " return X"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "1e4ab129",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[ 4.]\n",
+ " [ 7.]\n",
+ " [-44.]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "A = np.array([[1., -2., 1.],\n",
+ " [0., 1., 6.],\n",
+ " [0., 0., 1.]])\n",
+ "\n",
+ "A = A.T\n",
+ "\n",
+ "b = np.array([[4.0], [-1.0], [2.0]])\n",
+ "\n",
+ "x2 = forwardsubs(A, b)\n",
+ "\n",
+ "print(x2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "651604ab",
+ "metadata": {},
+ "source": [
+ "## 5. Square-root UKF"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "id": "d58dbdcb",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class SquareRootUKF(object):\n",
+ " def __init__(self, x, P, Q, R): \n",
+ " self.dim_x = np.shape(x)[0]\n",
+ " self.n_sigmas = (2 * self.dim_x) + 1\n",
+ " \n",
+ " self.kappa = 3 - self.dim_x\n",
+ " \n",
+ " self.sigma_scale = np.sqrt(self.dim_x + self.kappa)\n",
+ " \n",
+ " self.W0 = self.kappa / (self.dim_x + self.kappa)\n",
+ " self.Wi = 0.5 / (self.dim_x + self.kappa)\n",
+ " \n",
+ " self.x = x\n",
+ " \n",
+ " # lower triangular matrices\n",
+ " self.sqrt_P = np.linalg.cholesky(P)\n",
+ " self.sqrt_Q = np.linalg.cholesky(Q)\n",
+ " self.sqrt_R = np.linalg.cholesky(R)\n",
+ " \n",
+ " print(f'R = \\n{R}\\n')\n",
+ " \n",
+ " def predict(self, f):\n",
+ " # generate sigma points\n",
+ " sigmas_X = self.sigma_points(self.x, self.sqrt_P)\n",
+ " \n",
+ " # propagate sigma points through the nonlinear function\n",
+ " for i in range(self.n_sigmas):\n",
+ " sigmas_X[:, i] = f(sigmas_X[:, i])\n",
+ " \n",
+ " # calculate weighted mean\n",
+ " x_minus = self.W0 * sigmas_X[:, 0]\n",
+ " for i in range(1, self.n_sigmas):\n",
+ " x_minus += self.Wi * sigmas_X[:, i]\n",
+ " \n",
+ " # build compound matrix for square-root covariance update\n",
+ " # sigmas_X[:, 0] is not added because W0 could be zero which will lead\n",
+ " # to undefined outcome from sqrt(W0).\n",
+ " C = (sigmas_X[:, 1:].T - x_minus) * np.sqrt(self.Wi)\n",
+ " C = np.concatenate((C, self.sqrt_Q.T), axis=0)\n",
+ " \n",
+ " # calculate square-root covariance S using QR decomposition of compound matrix C\n",
+ " # including the process noise covariance\n",
+ " Q , S_minus = np.linalg.qr(C)\n",
+ " print(f'Q = \\n{Q}\\n')\n",
+ " print(f'R = \\n{S_minus}\\n')\n",
+ " \n",
+ " # Rank-1 cholesky update\n",
+ " x_dev = sigmas_X[:, 0] - x_minus\n",
+ " x_dev = np.reshape(x_dev, [-1, 1])\n",
+ " print(f'x_dev = \\n{x_dev}\\n')\n",
+ " S_minus = cholupdate(S_minus.T, x_dev, self.W0)\n",
+ " \n",
+ " # overwrite member x and S\n",
+ " self.x = x_minus\n",
+ " self.sqrt_P = S_minus\n",
+ " \n",
+ " print(f'S^- = \\n{S_minus}\\n')\n",
+ " \n",
+ " \n",
+ " def correct(self, h, z):\n",
+ " # generate sigma points X\n",
+ " sigmas_X = self.sigma_points(self.x, self.sqrt_P)\n",
+ " \n",
+ " # propagate sigma points X through the nonlinear function\n",
+ " # to get output sigma points Y\n",
+ " dim_z = np.shape(z)[0]\n",
+ " sigmas_Y = np.zeros((dim_z, self.n_sigmas))\n",
+ " for i in range(self.n_sigmas):\n",
+ " sigmas_Y[:, i] = h(sigmas_X[:, i])\n",
+ " \n",
+ " print(f'Ys = \\n{sigmas_Y}\\n')\n",
+ " \n",
+ " # calculate weighted mean y\n",
+ " y_bar = self.W0 * sigmas_Y[:, 0]\n",
+ " for i in range(1, self.n_sigmas):\n",
+ " y_bar += self.Wi * sigmas_Y[:, i]\n",
+ " \n",
+ " print(f'y = \\n{y_bar}\\n')\n",
+ " \n",
+ " # build compound matrix for square-root covariance update \n",
+ " C = (sigmas_Y[:, 1:].T - y_bar) * np.sqrt(self.Wi) \n",
+ " C = np.concatenate((C, self.sqrt_R.T), axis=0)\n",
+ " \n",
+ " print(f'sqrt_R.T = \\n{self.sqrt_R.T}\\n')\n",
+ " \n",
+ " # calculate square-root covariance S using QR decomposition of compound matrix C\n",
+ " # including the process noise covariance\n",
+ " _ , S_y = np.linalg.qr(C)\n",
+ " \n",
+ " # Rank-1 cholesky update\n",
+ " y_dev = sigmas_Y[:, 0] - y_bar\n",
+ " y_dev = np.reshape(y_dev, [-1, 1])\n",
+ " S_y = cholupdate(S_y.T, y_dev, self.W0)\n",
+ " print(f'Sy = \\n{S_y}\\n')\n",
+ " \n",
+ " # calculate cross-correlation\n",
+ " Pxy = self.calculate_cross_correlation(self.x, sigmas_X, y_bar, sigmas_Y)\n",
+ " print(f'Pxy = \\n{Pxy}\\n')\n",
+ " \n",
+ " # Kalman gain calculation with two nested least-squares\n",
+ " # Step1: Forward-substitution -> K = Sy \\ Pxy (since S_y is lower-triangular)\n",
+ " # Step2: Backward-substitution -> K = Sy.T \\ K (since S_y.T is upper-triangular)\n",
+ " K = forwardsubs(S_y, Pxy)\n",
+ " K = backsubs(S_y.T, K)\n",
+ " print(f'K = \\n{K}\\n')\n",
+ " \n",
+ " # update state vector x\n",
+ " self.x += K @ (z - y_bar)\n",
+ " \n",
+ " # update state square-root covariance Sk\n",
+ " # S_y must be upper triangular matrix at this place\n",
+ " U = K @ S_y\n",
+ " \n",
+ " #self.sqrt_P = r_rank_cholupdate_v2(self.sqrt_P, U, -1.0)\n",
+ " self.sqrt_P = cholupdate(self.sqrt_P, U, -1.0)\n",
+ " \n",
+ " \n",
+ " def sigma_points(self, x, sqrt_P):\n",
+ " \n",
+ " '''\n",
+ " generating sigma points matrix x_sigma given mean 'x' and square-root covariance 'S'\n",
+ " '''\n",
+ " \n",
+ " sigmas_X = np.zeros((self.dim_x, self.n_sigmas)) \n",
+ " sigmas_X[:, 0] = x\n",
+ "\n",
+ " for i in range(self.dim_x):\n",
+ " idx_1 = i + 1\n",
+ " idx_2 = i + self.dim_x + 1\n",
+ " \n",
+ " sigmas_X[:, idx_1] = x + (self.sigma_scale * sqrt_P[:, i])\n",
+ " sigmas_X[:, idx_2] = x - (self.sigma_scale * sqrt_P[:, i])\n",
+ " \n",
+ " return sigmas_X\n",
+ " \n",
+ " \n",
+ " def calculate_cross_correlation(self, x, x_sigmas, y, y_sigmas):\n",
+ " xdim = np.shape(x)[0]\n",
+ " ydim = np.shape(y)[0]\n",
+ " \n",
+ " n_sigmas = np.shape(x_sigmas)[1]\n",
+ " \n",
+ " dx = (x_sigmas[:, 0] - x).reshape([-1, 1])\n",
+ " dy = (y_sigmas[:, 0] - y).reshape([-1, 1])\n",
+ " Pxy = self.W0 * (dx @ dy.T)\n",
+ " for i in range(1, n_sigmas):\n",
+ " dx = (x_sigmas[:, i] - x).reshape([-1, 1])\n",
+ " dy = (y_sigmas[:, i] - y).reshape([-1, 1])\n",
+ " Pxy += self.Wi * (dx @ dy.T)\n",
+ " \n",
+ " return Pxy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "id": "65371877",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def linear_func(x):\n",
+ " return x"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "id": "6e6581a4",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Q = \n",
+ "[[-0.4472136 0.10873206]\n",
+ " [-0. -0.4152274 ]\n",
+ " [ 0.4472136 -0.10873206]\n",
+ " [-0. 0.4152274 ]\n",
+ " [-0.77459667 -0.12555296]\n",
+ " [-0. -0.78470603]]\n",
+ "\n",
+ "R = \n",
+ "[[-2.23606798 0.35777088]\n",
+ " [ 0. -2.20726075]]\n",
+ "\n",
+ "x_dev = \n",
+ "[[0.]\n",
+ " [0.]]\n",
+ "\n",
+ "S^- = \n",
+ "[[ 2.23606798 0. ]\n",
+ " [-0.35777088 2.20726075]]\n",
+ "\n",
+ "P+Q = \n",
+ "[[ 5. -0.8]\n",
+ " [-0.8 5. ]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "x = np.array([0., 0.])\n",
+ "P = np.array([[2.0, -0.8], [-0.8, 2.0]])\n",
+ "\n",
+ "Q = np.array([[3, 0], [0, 3]])\n",
+ "R = np.array([[1, 0], [0, 1]])\n",
+ "\n",
+ "sr_ukf = SquareRootUKF(x, P, Q, R)\n",
+ "\n",
+ "sr_ukf.predict(linear_func)\n",
+ "print(f'P+Q = \\n{P+Q}')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "id": "048dbb99",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "x0 = np.array([1.0, 2.0])\n",
+ "P0 = np.array([[1.0, 0.5], [0.5, 1.0]])\n",
+ "Q = np.array([[0.5, 0.0], [0.0, 0.5]])\n",
+ "\n",
+ "z = np.array([1.2, 1.8])\n",
+ "R = np.array([[0.3, 0.0], [0.0, 0.3]])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "id": "61444e4d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def KF_predict(F, x, P, Q):\n",
+ " x = (F @ x)\n",
+ " P = F @ P @ F.T + Q\n",
+ " return x, P\n",
+ "\n",
+ "def KF_correct(H, z, R, x, P):\n",
+ " Pxz = P @ H.T \n",
+ " S = H @ P @ H.T + R\n",
+ " \n",
+ " K = Pxz @ np.linalg.pinv(S)\n",
+ " \n",
+ " x = x + K @ (z - H @ x)\n",
+ " I = np.eye(P.shape[0])\n",
+ " P = (I - K @ H) @ P\n",
+ " return x, P"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "id": "6eed9c84",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "x1 = \n",
+ "[1. 2.]\n",
+ "\n",
+ "P1 = \n",
+ "[[1.5 0.5]\n",
+ " [0.5 1.5]]\n",
+ "\n",
+ "x2 = \n",
+ "[1.15385 1.84615]\n",
+ "\n",
+ "P2 = \n",
+ "[[0.24582 0.01505]\n",
+ " [0.01505 0.24582]]\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "F = np.array([[1.0, 0.0], [0.0, 1.0]])\n",
+ "H = np.array([[1.0, 0.0], [0.0, 1.0]])\n",
+ "\n",
+ "x1, P1 = KF_predict(F, x0, P0, Q)\n",
+ "\n",
+ "print(f'x1 = \\n{x1.round(5)}\\n')\n",
+ "print(f'P1 = \\n{P1.round(5)}\\n')\n",
+ "\n",
+ "x2, P2 = KF_correct(H, x1, P1, z, R)\n",
+ "\n",
+ "print(f'x2 = \\n{x2.round(5)}\\n')\n",
+ "print(f'P2 = \\n{P2.round(5)}\\n')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "id": "2c347ab3",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "R = \n",
+ "[[0.3 0. ]\n",
+ " [0. 0.3]]\n",
+ "\n",
+ "Q = \n",
+ "[[-5.77350269e-01 -1.02062073e-01]\n",
+ " [-3.70074342e-17 -5.30330086e-01]\n",
+ " [ 5.77350269e-01 1.02062073e-01]\n",
+ " [-3.70074342e-17 5.30330086e-01]\n",
+ " [-5.77350269e-01 2.04124145e-01]\n",
+ " [-0.00000000e+00 -6.12372436e-01]]\n",
+ "\n",
+ "R = \n",
+ "[[-1.22474487 -0.40824829]\n",
+ " [ 0. -1.15470054]]\n",
+ "\n",
+ "x_dev = \n",
+ "[[1.11022302e-16]\n",
+ " [0.00000000e+00]]\n",
+ "\n",
+ "S^- = \n",
+ "[[1.22474487 0. ]\n",
+ " [0.40824829 1.15470054]]\n",
+ "\n",
+ "x1 = \n",
+ "[1. 2.]\n",
+ "\n",
+ "P1 = \n",
+ "[[1.5 0.5]\n",
+ " [0.5 1.5]]\n",
+ "\n",
+ "Ys = \n",
+ "[[ 1.00000000e+00 3.12132034e+00 1.00000000e+00 -1.12132034e+00\n",
+ " 1.00000000e+00]\n",
+ " [ 2.00000000e+00 2.70710678e+00 4.00000000e+00 1.29289322e+00\n",
+ " 2.22044605e-16]]\n",
+ "\n",
+ "y = \n",
+ "[1. 2.]\n",
+ "\n",
+ "sqrt_R.T = \n",
+ "[[0.54772256 0. ]\n",
+ " [0. 0.54772256]]\n",
+ "\n",
+ "Sy = \n",
+ "[[1.34164079 0. ]\n",
+ " [0.372678 1.288841 ]]\n",
+ "\n",
+ "Pxy = \n",
+ "[[1.5 0.5]\n",
+ " [0.5 1.5]]\n",
+ "\n",
+ "K = \n",
+ "[[0.81939799 0.05016722]\n",
+ " [0.05016722 0.81939799]]\n",
+ "\n",
+ "x2 = \n",
+ "[1.15385 1.84615]\n",
+ "\n",
+ "P2 = \n",
+ "[[0.24582 0.01505]\n",
+ " [0.01505 0.24582]]\n",
+ "\n",
+ "S2 = \n",
+ "[[0.4958 0. ]\n",
+ " [0.03036 0.49487]]\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "sr_ukf = SquareRootUKF(x0, P0, Q, R)\n",
+ "\n",
+ "sr_ukf.predict(linear_func)\n",
+ "\n",
+ "x1 = sr_ukf.x\n",
+ "P1 = sr_ukf.sqrt_P @ sr_ukf.sqrt_P.T\n",
+ "\n",
+ "print(f'x1 = \\n{x1.round(5)}\\n')\n",
+ "print(f'P1 = \\n{P1.round(5)}\\n')\n",
+ "\n",
+ "sr_ukf.correct(linear_func, z)\n",
+ "\n",
+ "x2 = sr_ukf.x\n",
+ "P2 = sr_ukf.sqrt_P @ sr_ukf.sqrt_P.T\n",
+ "\n",
+ "print(f'x2 = \\n{x2.round(5)}\\n')\n",
+ "print(f'P2 = \\n{P2.round(5)}\\n')\n",
+ "print(f'S2 = \\n{sr_ukf.sqrt_P.round(5)}\\n')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "id": "2d7d9c11",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class UKF(object):\n",
+ " def __init__(self, dim_x, dim_z, Q, R, kappa=0.0):\n",
+ " \n",
+ " '''\n",
+ " UKF class constructor\n",
+ " inputs:\n",
+ " dim_x : state vector x dimension\n",
+ " dim_z : measurement vector z dimension\n",
+ " \n",
+ " - step 1: setting dimensions\n",
+ " - step 2: setting number of sigma points to be generated\n",
+ " - step 3: setting scaling parameters\n",
+ " - step 4: calculate scaling coefficient for selecting sigma points\n",
+ " - step 5: calculate weights\n",
+ " '''\n",
+ " \n",
+ " # setting dimensions\n",
+ " self.dim_x = dim_x # state dimension\n",
+ " self.dim_z = dim_z # measurement dimension\n",
+ " self.dim_v = np.shape(Q)[0]\n",
+ " self.dim_n = np.shape(R)[0]\n",
+ " self.dim_a = self.dim_x + self.dim_v + self.dim_n # assuming noise dimension is same as x dimension\n",
+ " \n",
+ " # setting number of sigma points to be generated\n",
+ " self.n_sigma = (2 * self.dim_a) + 1\n",
+ " \n",
+ " # setting scaling parameters\n",
+ " self.kappa = 3 - self.dim_a #kappa\n",
+ " self.alpha = 0.001\n",
+ " self.beta = 2.0\n",
+ "\n",
+ " alpha_2 = self.alpha**2\n",
+ " self.lambda_ = alpha_2 * (self.dim_a + self.kappa) - self.dim_a\n",
+ " \n",
+ " # setting scale coefficient for selecting sigma points\n",
+ " # self.sigma_scale = np.sqrt(self.dim_a + self.lambda_)\n",
+ " self.sigma_scale = np.sqrt(self.dim_a + self.kappa)\n",
+ " \n",
+ " # calculate unscented weights\n",
+ " # self.W0m = self.W0c = self.lambda_ / (self.dim_a + self.lambda_)\n",
+ " # self.W0c = self.W0c + (1.0 - alpha_2 + self.beta)\n",
+ " # self.Wi = 0.5 / (self.dim_a + self.lambda_)\n",
+ " \n",
+ " self.W0 = self.kappa / (self.dim_a + self.kappa)\n",
+ " self.Wi = 0.5 / (self.dim_a + self.kappa)\n",
+ " \n",
+ " # initializing augmented state x_a and augmented covariance P_a\n",
+ " self.x_a = np.zeros((self.dim_a, ))\n",
+ " self.P_a = np.zeros((self.dim_a, self.dim_a))\n",
+ " \n",
+ " self.idx1, self.idx2 = self.dim_x, self.dim_x + self.dim_v\n",
+ " \n",
+ " self.P_a[self.idx1:self.idx2, self.idx1:self.idx2] = Q\n",
+ " self.P_a[self.idx2:, self.idx2:] = R\n",
+ " \n",
+ " print(f'P_a = \\n{self.P_a}\\n')\n",
+ " \n",
+ " def predict(self, f, x, P): \n",
+ " self.x_a[:self.dim_x] = x\n",
+ " self.P_a[:self.dim_x, :self.dim_x] = P\n",
+ " \n",
+ " xa_sigmas = self.sigma_points(self.x_a, self.P_a)\n",
+ " \n",
+ " xx_sigmas = xa_sigmas[:self.dim_x, :]\n",
+ " xv_sigmas = xa_sigmas[self.idx1:self.idx2, :]\n",
+ " \n",
+ " y_sigmas = np.zeros((self.dim_x, self.n_sigma)) \n",
+ " for i in range(self.n_sigma):\n",
+ " y_sigmas[:, i] = f(xx_sigmas[:, i], xv_sigmas[:, i])\n",
+ " \n",
+ " y, Pyy = self.calculate_mean_and_covariance(y_sigmas)\n",
+ " \n",
+ " self.x_a[:self.dim_x] = y\n",
+ " self.P_a[:self.dim_x, :self.dim_x] = Pyy\n",
+ " \n",
+ " return y, Pyy, xx_sigmas\n",
+ " \n",
+ " def correct(self, h, x, P, z):\n",
+ " self.x_a[:self.dim_x] = x\n",
+ " self.P_a[:self.dim_x, :self.dim_x] = P\n",
+ " \n",
+ " xa_sigmas = self.sigma_points(self.x_a, self.P_a)\n",
+ " \n",
+ " xx_sigmas = xa_sigmas[:self.dim_x, :]\n",
+ " xn_sigmas = xa_sigmas[self.idx2:, :]\n",
+ " \n",
+ " y_sigmas = np.zeros((self.dim_z, self.n_sigma))\n",
+ " for i in range(self.n_sigma):\n",
+ " y_sigmas[:, i] = h(xx_sigmas[:, i], xn_sigmas[:, i])\n",
+ " \n",
+ " y, Pyy = self.calculate_mean_and_covariance(y_sigmas)\n",
+ " \n",
+ " Pxy = self.calculate_cross_correlation(x, xx_sigmas, y, y_sigmas)\n",
+ " print(f'Pxy = \\n {Pxy}')\n",
+ "\n",
+ " K = Pxy @ np.linalg.pinv(Pyy)\n",
+ " print(f'K = \\n {K}')\n",
+ " \n",
+ " x = x + (K @ (z - y))\n",
+ " \n",
+ " print(f'S = \\n{np.linalg.cholesky(P)}')\n",
+ " P = P - (K @ Pyy @ K.T)\n",
+ " \n",
+ " return x, P, xx_sigmas\n",
+ " \n",
+ " \n",
+ " def sigma_points(self, x, P):\n",
+ " \n",
+ " '''\n",
+ " generating sigma points matrix x_sigma given mean 'x' and covariance 'P'\n",
+ " '''\n",
+ " \n",
+ " nx = np.shape(x)[0]\n",
+ " \n",
+ " x_sigma = np.zeros((nx, self.n_sigma)) \n",
+ " x_sigma[:, 0] = x\n",
+ " \n",
+ " S = np.linalg.cholesky(P)\n",
+ " \n",
+ " for i in range(nx):\n",
+ " x_sigma[:, i + 1] = x + (self.sigma_scale * S[:, i])\n",
+ " x_sigma[:, i + nx + 1] = x - (self.sigma_scale * S[:, i])\n",
+ " \n",
+ " return x_sigma\n",
+ " \n",
+ " \n",
+ " def calculate_mean_and_covariance(self, y_sigmas):\n",
+ " ydim = np.shape(y_sigmas)[0]\n",
+ " \n",
+ " # mean calculation\n",
+ " y = self.W0 * y_sigmas[:, 0]\n",
+ " for i in range(1, self.n_sigma):\n",
+ " y += self.Wi * y_sigmas[:, i]\n",
+ " \n",
+ " # covariance calculation\n",
+ " d = (y_sigmas[:, 0] - y).reshape([-1, 1])\n",
+ " Pyy = self.W0 * (d @ d.T)\n",
+ " for i in range(1, self.n_sigma):\n",
+ " d = (y_sigmas[:, i] - y).reshape([-1, 1])\n",
+ " Pyy += self.Wi * (d @ d.T)\n",
+ " \n",
+ " return y, Pyy\n",
+ " \n",
+ " def calculate_cross_correlation(self, x, x_sigmas, y, y_sigmas):\n",
+ " xdim = np.shape(x)[0]\n",
+ " ydim = np.shape(y)[0]\n",
+ " \n",
+ " n_sigmas = np.shape(x_sigmas)[1]\n",
+ " \n",
+ " dx = (x_sigmas[:, 0] - x).reshape([-1, 1])\n",
+ " dy = (y_sigmas[:, 0] - y).reshape([-1, 1])\n",
+ " Pxy = self.W0 * (dx @ dy.T)\n",
+ " for i in range(1, n_sigmas):\n",
+ " dx = (x_sigmas[:, i] - x).reshape([-1, 1])\n",
+ " dy = (y_sigmas[:, i] - y).reshape([-1, 1])\n",
+ " Pxy += self.Wi * (dx @ dy.T)\n",
+ " \n",
+ " return Pxy"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "id": "526a1642",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "P_a = \n",
+ "[[0. 0. 0. 0. 0. 0. ]\n",
+ " [0. 0. 0. 0. 0. 0. ]\n",
+ " [0. 0. 0.5 0. 0. 0. ]\n",
+ " [0. 0. 0. 0.5 0. 0. ]\n",
+ " [0. 0. 0. 0. 0.3 0. ]\n",
+ " [0. 0. 0. 0. 0. 0.3]]\n",
+ "\n",
+ "x = \n",
+ "[1. 2.]\n",
+ "\n",
+ "P = \n",
+ "[[1.5 0.5]\n",
+ " [0.5 1.5]]\n",
+ "\n",
+ "Pxy = \n",
+ " [[1.5 0.5]\n",
+ " [0.5 1.5]]\n",
+ "K = \n",
+ " [[0.81939799 0.05016722]\n",
+ " [0.05016722 0.81939799]]\n",
+ "S = \n",
+ "[[1.22474487 0. ]\n",
+ " [0.40824829 1.15470054]]\n",
+ "x = \n",
+ "[1.15385 1.84615]\n",
+ "\n",
+ "P = \n",
+ "[[0.24582 0.01505]\n",
+ " [0.01505 0.24582]]\n",
+ "\n",
+ "S = \n",
+ "[[0.49580177 0. ]\n",
+ " [0.03035521 0.49487166]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "def f(x, v):\n",
+ " return (x + v)\n",
+ "\n",
+ "def h(x, n):\n",
+ " return (x + n)\n",
+ "\n",
+ "nx = np.shape(x0)[0]\n",
+ "nz = np.shape(z)[0]\n",
+ "nv = np.shape(x0)[0]\n",
+ "nn = np.shape(z)[0]\n",
+ "\n",
+ "ukf = UKF(dim_x=nx, dim_z=nz, Q=Q, R=R, kappa=(3 - nx))\n",
+ "\n",
+ "x1, P1, _ = ukf.predict(f, x0, P0)\n",
+ "\n",
+ "print(f'x = \\n{x1.round(5)}\\n')\n",
+ "print(f'P = \\n{P1.round(5)}\\n')\n",
+ "\n",
+ "x2, P2, _ = ukf.correct(h, x1, P1, z)\n",
+ "\n",
+ "print(f'x = \\n{x2.round(5)}\\n')\n",
+ "print(f'P = \\n{P2.round(5)}\\n')\n",
+ "\n",
+ "print(f'S = \\n{np.linalg.cholesky(P2)}')\n",
+ "\n",
+ "# K = \n",
+ "# [[0.81939799 0.05016722]\n",
+ "# [0.05016722 0.81939799]]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a335951b",
+ "metadata": {},
+ "source": [
+ "# References\n",
+ "\n",
+ "[1] [The Orthogonal matrix and its applications](http://libres.uncg.edu/ir/uncg/f/shugart_sue_1953.pdf)\n",
+ "\n",
+ "[2] [R. Van der Merwe and E. A. Wan, \"The square-root unscented Kalman filter for state and parameter-estimation,\" 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), 2001, pp. 3461-3464 vol.6, doi: 10.1109/ICASSP.2001.940586.](https://www.researchgate.net/publication/3908304_The_Square-Root_Unscented_Kalman_Filter_for_State_and_Parameter-Estimation)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c5a30e9f",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0a8ccc17",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/python/examples/Understanding_Gaussian_Distribution.ipynb b/python/examples/Understanding_Gaussian_Distribution.ipynb
new file mode 100644
index 0000000..442f41d
--- /dev/null
+++ b/python/examples/Understanding_Gaussian_Distribution.ipynb
@@ -0,0 +1,781 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "5485bc75",
+ "metadata": {},
+ "source": [
+ "# Gaussian Distribution"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "50b44158",
+ "metadata": {},
+ "source": [
+ "## Overview"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "79b2af07",
+ "metadata": {},
+ "source": [
+ "In real world we are not 100% accurate in states that we measure via sensors or predict via system models. There are always degree of uncertainty in what we estimate. Assuming 100% confidence in what we estimate could lead to critical problems.\n",
+ "\n",
+ "In order to model the real belief in the state estimate, an uncertainty model must be used. This uncertainty means that we are not assuming an exact value for the state but instead a range of values where we think that the actual state value lies within.\n",
+ "\n",
+ "**Example:** \n",
+ "\n",
+ "**Instead of saying that I predict a value to be exact $2$, I say that its $2 \\pm 0.5$ which means that I think that the predicted or measured value lies in the range of values $[1.5, 2.5]$.**"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "25f1b62c",
+ "metadata": {},
+ "source": [
+ "## Exact Values"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6ec3741e",
+ "metadata": {},
+ "source": [
+ "Here we plot an exact value that we assume we measured to get the feeling of how things look like visually."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "id": "0a537bf6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import random"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "id": "29bfbb48",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def make_figure(xlims=None):\n",
+ " figure, ax = plt.subplots(figsize=(30, 10))\n",
+ "\n",
+ " ax.axvline(c='grey', lw=2)\n",
+ " ax.axhline(c='grey', lw=2)\n",
+ "\n",
+ " ax.grid(visible=True)\n",
+ "\n",
+ " ax.set_xlabel('position x (m)', fontsize=30)\n",
+ " ax.set_ylabel('p(x)', fontsize=30)\n",
+ "\n",
+ " if (xlims != None):\n",
+ " ax.set_xlim(xlims[0], xlims[1])\n",
+ "\n",
+ " return figure, ax\n",
+ "\n",
+ "def add_absolute_position(ax, x, p, color, set_label=True):\n",
+ " label = ''\n",
+ " if (set_label == True):\n",
+ " label=f'x={x}'\n",
+ " \n",
+ " ax.vlines(x, 0, p, color=color, label=label, linewidths=5)\n",
+ " \n",
+ "def update_plot():\n",
+ " plt.legend(prop={'size': 30})\n",
+ " plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 51,
+ "id": "53484a2b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABtsAAAJgCAYAAADrpNycAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA9IklEQVR4nO3de7ydVX0n/s83SVMuhou3miAXqVRLHRVEaadagnftWMpopwKCOFKq1TozVafotBqn7WhnqjN2ilJUflgVtPVWqyjYwWAdvABeUKQ4KKCILSoIIUEpyfr9sXdke3JOcrL2ydnn5Lzfr9d+7eeynuf57p0sNs/rk7Weaq0FAAAAAAAA2HnLJl0AAAAAAAAALFbCNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6LRi0gVM0l577dUOP/zwSZcBi9bGjRuz9957T7oMWNT0IxiPPgTj0YdgPPoQjE8/gvHoQzCeK6644nuttfuNe54lHbbtt99+ufzyyyddBixa69evz9q1ayddBixq+hGMRx+C8ehDMB59CManH8F49CEYT1XdMBfnMY0kAAAAAAAAdBK2AQAAAAAAQCdhGwAAAAAAAHQStgEAAAAAAEAnYRsAAAAAAAB0ErYBAAAAAABAJ2EbAAAAAAAAdBK2AQAAAAAAQCdhGwAAAAAAAHQStgEAAAAAAEAnYRsAAAAAAAB0ErYBAAAAAABAJ2EbAAAAAAAAdFox6QIAAAAAAICFa/Pmzbn99tuzYcOG3HnnndmyZcukS2KJWrZsWfbcc8+sWrUq++yzT5YvXz7pkpII2wAAAAAAgBncddddueGGG7LXXntlv/32ywEHHJBly5alqiZdGktMay1btmzJxo0bs2HDhnzve9/LwQcfnJUrV066NGEbAAAAAACwrc2bN+eGG27Ife973+y///6TLoclrqqyfPny7LPPPtlnn31y66235oYbbsihhx468RFuntkGAAAAAABs4/bbb89ee+0laGNB2n///bPXXnvl9ttvn3QpwjYAAAAAAGBbGzZsyKpVqyZdBsxo1apV2bBhw6TLELYBAAAAAADbuvPOO7P33ntPugyY0d57750777xz0mUsjrCtqs6pqpur6isz7K+q+vOquraqrqyqI+e7RgAAAAAA2J1s2bIly5YtihiBJWrZsmXZsmXLpMtYHGFbknOTPHU7+5+W5LDh6/Qkb56HmgAAAAAAYLdWVZMuAWa0UP5+LoqwrbX2ySS3bKfJcUn+qg18Jsl+VbV6fqoDAAAAAABgqVoUYdssHJDkWyPrNw63AQAAAAAAwC5TrbVJ1zArVXVIkg+31h42zb6PJHlta+1Tw/X/k+Q/t9aumKbt6RlMNZnVq1c/6rzzztuldcPu7I477si97nWvSZcBi5p+BOPRh6DPudefmyS56667snLlyiTJqYecOrmCYJHyOwTj049gPLu6D+2777558IMfvMvOD3Ph2muvzW233dZ17LHHHntFa+2ocWtYMe4JFogbkxw4sv7AJDdN17C1dnaSs5NkzZo1be3atbu8ONhdrV+/PvoQjEc/gvHoQ9Dn2Nccu822c089d/4LgUXO7xCMTz+C8ezqPnT11Vdn1apVu+z8MBf22GOPHHHEEROtYXeZRvJDSU6pgV9Mcltr7TuTLgoAAAAAAIDd26IY2VZV5ydZm+S+VXVjklcn+akkaa2dleSCJE9Pcm2STUmeN5lKAQAAAAAAlq5NmzblS1/6Ui6//PJcccUVufzyy/OP//iP2bx5c5LkE5/4xG43qnlRhG2ttRN2sL8ledE8lQMAAAAAAMA0DjzwwNxyyy2TLmNe7S7TSAIAAAAAADBhW0ewbXXQQQflAQ94wISqmR/CNgAAAAAAAObEcccdlz/+4z/Oxz72sXz3u9/NDTfckKc85SmTLmuXWhTTSAIAAAAAALDwvf3tb590CfPOyDYAAAAAAIAF6pJLLsny5ctTVTnooIPygx/8YMa21113Xfbdd99UVfbee+9cc80181foEiZsAwAAAAAAWKCOOeaYnHHGGUmSb33rWzn99NOnbXf33XfnxBNPzO23354keeMb35iHPOQh81bnUiZsAwAAAAAAWMBe85rX5Oijj06S/M3f/E3OOeecadt85jOfSZI885nPzGmnnTavNS5lntkGAAAAAACwgK1YsSLnnXdeHvnIR2bDhg15yUteksc97nE57LDDkiSf+tSn8trXvjZJcuCBB+Ytb3nLNufYtGlTLrroojmp56CDDsqRRx45J+faHQjbAAAAAAAAFrhDDz00Z555Zk455ZRs3LgxJ554Yi699NJs3LgxJ510UjZv3pxly5blHe94R/bff/9tjr/55ptz/PHHz0ktz33uc3PuuefOybl2B8I2AAAAAABgbOvWr8trLnnNpMuYN68+5tVZt3bdvF7z5JNPzoUXXph3vetdufzyy/OHf/iHue666/LNb34zSfKKV7wixxxzzLzWhLANAAAAAABg0XjTm96USy+9NNddd13+9E//9Mfbjz766Kxbt27G4w455JC01uahwqVn2aQLAAAAAAAAYHb22WefnHfeeVmx4p7xVKtWrdpmG/NH2AYAAAAAALCIHHDAAdl7771/vP6oRz0qhx566AQrWtpEnAAAAAAAAIvEli1bcvLJJ+e222778bb169fnzW9+c174whfOeNymTZty0UUXzUkNBx10UI488sg5OdfuQNgGAAAAAACMbd3adVm3dt2ky9jtvfa1r80ll1ySJHnCE56Qyy+/PLfddlte+tKX5phjjsnhhx8+7XE333xzjj/++Dmp4bnPfW7OPffcOTnX7sA0kgAAAAAAAIvAZz/72axbty5JsmbNmrznPe/Jm9/85iTJnXfemRNPPDE/+tGPJljh0iRsAwAAAAAAWOA2bNiQk046KXfffXeqKm9/+9tzn/vcJyeccEJOPvnkJMmXvvSlnHHGGdMef8ghh6S1Nicvo9p+krANAAAAAABggXvRi16Ur3/960mSl770pXniE5/4431nnnlmDj300CTJG9/4xlx44YUTqXGp8sw2AAAAAACABez888/PO97xjiTJEUcckT/5kz/5if2rVq3Keeedl8c+9rG5++67c+qpp+bKK6/M/e53v3mv9eKLL87FF1/8E9u+8IUv/Hj5bW97W/7+7//+J/a/7GUvy3777Tcf5e0SwjYAAAAAAIAF6vrrr88LX/jCJMlee+2V8847LytXrtym3dFHH51169blD/7gD/JP//RPed7znpcPf/jD811uPvnJT24TBo565zvfuc220047bVGHbaaRBAAAAAAAWIA2b96c5zznObntttuSJG94wxvy0Ic+dMb2r3jFK/Irv/IrSZKPfOQj+Yu/+It5qXOpM7INAAAAAABgAVq+fHk+9alPzbr9smXLcskll+zCinZs3bp1Wbdu3URrmG9GtgEAAAAAAEAnYRsAAAAAAAB0ErYBAAAAAABAJ2EbAAAAAAAAdBK2AQAAAAAAQCdhGwAAAAAAAHQStgEAAAAAAEAnYRsAAAAAAAB0ErYBAAAAAABAJ2EbAAAAAAAAdBK2AQAAAAAAQCdhGwAAAAAAMK3W2qRLgBktlL+fwjYAAAAAAGAby5Yty5YtWyZdBsxoy5YtWbZs8lHX5CsAAAAAAAAWnD333DMbN26cdBkwo40bN2bPPfecdBnCNgAAAAAAYFurVq3Khg0bJl0GzGjDhg1ZtWrVpMsQtgEAAAAAANvaZ599smnTptx6662TLgW2ceutt2bTpk3ZZ599Jl1KVky6AAAAAAAAYOFZvnx5Dj744Nxwww3ZtGlTVq1alb333jvLli1LVU26PJaY1lq2bNmSjRs3ZsOGDdm0aVMOPvjgLF++fNKlCdsAAAAAAIDprVy5Moceemhuv/32/OAHP8h3vvOdbNmyZdJlsUQtW7Yse+65Z1atWpUHPOABCyJoS4RtAAAAAADAdixfvjz7779/9t9//0mXAguSZ7YBAAAAAABAJ2EbAAAAAAAAdBK2AQAAAAAAQCdhGwAAAAAAAHQStgEAAAAAAEAnYRsAAAAAAAB0ErYBAAAAAABAJ2EbAAAAAAAAdBK2AQAAAAAAQCdhGwAAAAAAAHQStgEAAAAAAEAnYRsAAAAAAAB0ErYBAAAAAABAJ2EbAAAAAAAAdBK2AQAAAAAAQCdhGwAAAAAAAHQStgEAAAAAAEAnYRsAAAAAAAB0ErYBAAAAAABAJ2EbAAAAAAAAdBK2AQAAAAAAQCdhGwAAAAAAAHQStgEAAAAAAEAnYRsAAAAAAAB0ErYBAAAAAABAJ2EbAAAAAAAAdBK2AQAAAAAAQCdhGwAAAAAAAHQStgEAAAAAAEAnYRsAAAAAAAB0ErYBAAAAAABAJ2EbAAAAAAAAdBK2AQAAAAAAQCdhGwAAAAAAAHQStgEAAAAAAEAnYRsAAAAAAAB0ErYBAAAAAABAJ2EbAAAAAAAAdBK2AQAAAAAAQCdhGwAAAAAAAHQStgEAAAAAAEAnYRsAAAAAAAB0ErYBAAAAAABAJ2EbAAAAAAAAdBK2AQAAAAAAQCdhGwAAAAAAAHQStgEAAAAAAEAnYRsAAAAAAAB0ErYBAAAAAABAJ2EbAAAAAAAAdFo0YVtVPbWqrqmqa6vqjGn271tVf1dVX6qqq6rqeZOoEwAAAAAAgKVjUYRtVbU8yZlJnpbk8CQnVNXhU5q9KMlXW2uPSLI2yeurauW8FgoAAAAAAMCSsijCtiSPSXJta+0brbW7krw7yXFT2rQkq6qqktwryS1J7p7fMgEAAAAAAFhKFkvYdkCSb42s3zjcNuovkvx8kpuSfDnJf2itbZmf8gAAAAAAAFiKVky6gFmqaba1KetPSfLFJI9P8rNJPl5V/9Bau/0nTlR1epLTk2T16tVZv379nBcLS8Udd9yhD8GY9CMYjz4Ec0dfgp3ndwjGpx/BePQhWBgWS9h2Y5IDR9YfmMEItlHPS/K61lpLcm1VXZfkoUk+N9qotXZ2krOTZM2aNW3t2rW7qmbY7a1fvz76EIxHP4Lx6EPQ6ZJtN+lLsPP8DsH49CMYjz4EC8NimUbysiSHVdWDqmplkmcn+dCUNt9M8oQkqaqfSfKQJN+Y1yoBAAAAAABYUhbFyLbW2t1V9eIkFyZZnuSc1tpVVfWC4f6zkvxRknOr6ssZTDv5+621702saAAAAAAAAHZ7iyJsS5LW2gVJLpiy7ayR5ZuSPHm+6wIAAAAAAGDpWizTSAIAAAAAAMCCI2wDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOiyZsq6qnVtU1VXVtVZ0xQ5u1VfXFqrqqqi6Z7xoBAAAAAABYWlZMuoDZqKrlSc5M8qQkNya5rKo+1Fr76kib/ZK8KclTW2vfrKr7T6RYAAAAAAAAlozFMrLtMUmuba19o7V2V5J3JzluSpsTk7y/tfbNJGmt3TzPNQIAAAAAALDELJaw7YAk3xpZv3G4bdTPJdm/qtZX1RVVdcq8VQcAAAAAAMCStCimkUxS02xrU9ZXJHlUkick2TPJp6vqM621r/3EiapOT3J6kqxevTrr16+f+2phibjjjjv0IRiTfgTj0Ydg7uhLsPP8DsH49CMYjz4EC8NiCdtuTHLgyPoDk9w0TZvvtdY2JtlYVZ9M8ogkPxG2tdbOTnJ2kqxZs6atXbt2V9UMu73169dHH4Lx6EcwHn0IOl2y7SZ9CXae3yEYn34E49GHYGFYLNNIXpbksKp6UFWtTPLsJB+a0uZvkzyuqlZU1V5Jjk5y9TzXCQAAAAAAwBKyKEa2tdburqoXJ7kwyfIk57TWrqqqFwz3n9Vau7qqPpbkyiRbkry1tfaVyVUNAAAAAADA7m5RhG1J0lq7IMkFU7adNWX9fyT5H/NZFwAAAAAAAEvXYplGEgAAAAAAABYcYRsAAAAAAAB0ErYBAAAAAABAJ2EbAAAAAAAAdBK2AQAAAAAAQCdhGwAAAAAAAHQStgEAAAAAAEAnYRsAAAAAAAB0ErYBAAAAAABAJ2EbAAAAAAAAdBK2AQAAAAAAQCdhGwAAAAAAAHQStgEAAAAAAEAnYRsAAAAAAAB0ErYBAAAAAABAJ2EbAAAAAAAAdBK2AQAAAAAAQCdhGwAAAAAAAHQStgEAAAAAAEAnYRsAAAAAAAB0WjEXJ6mq+yd5TJKHJzk4yf5J9kxyZ5JbktyQ5Mokn2utfXcurgkAAAAAAACT1h22VdXPJnlOkuOSPGInjvtikg8meWdr7bre6wMAAAAAAMCk7fQ0klX15Kr6WJKvJXlVBkFb7cTrkUnWJbm2qj5aVU8a+1MAAAAAAADABMx6ZFtVPTbJ65L80tZNw/fvJ/lcks8muTrJrcNttyfZN8m9h6+fT3J0BtNN3nt47JOTPLmqLk1yRmvt/47zYQAAAAAAAGA+zSpsq6p3JXl27gnYbkxyfpJ3tdau3NmLVtXDk5yY5IQkByb55SSfrKrzW2vP2dnzAQAAAAAAwCTMdhrJEzII2i5O8sTW2kGttd/vCdqSpLV2ZWvtjNbawUmeODxvDa8DAAAAAAAAi8Jsw7aLkzyutfbE1trFc1lAa+3i1toTkzxueB0AAAAAAABYFGY1jeQwDNulhs9re9Kuvg4AAAAAAADMldmObAMAAAAAAACmELYBAAAAAABAp7HCtqq695jHP32c4wEAAAAAAGCSxh3Z9uWqevzOHlRVK6vqfyf5uzGvDwAAAAAAABMzbti2OslFVfWnVbViNgdU1cOSXJ7kd8a8NgAAAAAAAEzUuGHb5iSV5GVJPl1VD95e46r63SSfS/ILw+OuGfP6AAAAAAAAMDHjhm2PS3J9BsHZkUm+UFXPm9qoqu5XVR9O8r+S7DFs/9YkR415fQAAAAAAAJiYscK21tpnkjwiybsyCND2TvLWqnpPVe2bJFX11CRXJnnasM2tSZ7VWju9tbZpnOsDAAAAAADAJI07si2ttTtaaycnOSnJbRkEas9K8qWqeluSjyT5meH29Uke3lp7/7jXBQAAAAAAgEkbO2zbqrV2fpIjklyaQbB2UJJTh8t3JXllkie01r49V9cEAAAAAACASZqzsC1JWmvXJzl/6+rI+8eSvL611qY7DgAAAAAAABajOQvbqmr/qnp/kj/PIGCrJJuH789I8rmqeuhcXQ8AAAAAAAAmbU7Ctqo6NsmVSY7LIFz7QZJ/l+ToJF8bbnt4kiuq6gVzcU0AAAAAAACYtLHCtqpaUVWvS/LxJGsyCNU+meQRrbX3tta+kMFz3N423LdnkjOr6m+r6j7jlQ4AAAAAAACTNe7Itk8nefnwPJuTvCrJsa21G7c2aK3d2Vr7rSTPSnJLBqHbv0ny5ap60pjXBwAAAAAAgIkZN2x7VAbh2XVJHtda++PWWpuuYWvt/UkemeSS4TEPSHLBmNcHAAAAAACAiZmLZ7a9M8kjW2uf3VHD4Yi3xyf5L0n+ZY6uDwAAAAAAABMxbth1SmvtlNbahtke0AZem+SxSb4+5vUBAAAAAABgYsYK21pr7xzj2MuSHDHO9QEAAAAAAGCSJjqNY2tt4ySvDwAAAAAAAOPwzDQAAAAAAADoNKuwrarmZbrHqjpyPq4DAAAAAAAAc2G2I9sur6oPVNUjdkURVXVEVf1tks/tivMDAAAAAADArrAz00j+WpLPV9WHq+o3q2qPcS5cVXtU1bOr6qNJLk/yjCRtnHMCAAAAAADAfFoxy3aPTnJmkqOTPG34uqOqPpDkE0k+11q7ekcnqarDkzwmydokxye519ZdST6d5MU7UzwAAAAAAABM0qzCttba55P8UlX92yTrkjwsyaokJw9fqaoNSf5fkluGrw1J9kly7+HrwcNjtqrh+5VJ1rXWPjjeRwEAAAAAAID5NduRbUmS1tr7k7y/qp6c5IVJnp7kp4a790ly5HYOr5Hlu5JckORNrbW/35kaAAAAAAAAYKHYqbBtq9baRUkuqqp7ZxC4PSmDKSYPy0+GalttSfK1JJ9N8vEkF7TWbu2qGAAAAAAAABaIrrBtq9baLUneOXylqlYmOTCDaSN/OsmPMphS8puttX8Zr1QAAAAAAABYWMYK26Zqrd2V5OvDFwAAAAAAAOzWlk26AAAAAAAAAFis5nRkW5JU1f2TPDrJmiT3SnJHkpuSXNZau3murwcAAAAAAACTMmdhW1Udn+RlSX5xO20+neTPWmsfnKvrAgAAAAAAwKSMPY1kVa2sqr9O8t4MgrbazuuXkryvqv66qlaOe20AAAAAAACYpLkY2fa+JE/PIExLkq8muTjJtUk2Jtk7yYOTHJvkF4ZtnplkjyS/NgfXBwAAAAAAgIkYK2yrqmcn+dUkLYPnsj2/tXbhdto/OcnbkhyQ5Fer6jdba+8ZpwYAAAAAAACYlHGnkXz+8H1jkmO2F7QlSWvtoiRrk9wx3HTamNcHAAAAAACAiRk3bHtEBqPa3tZa+/psDhi2e1sG004+cszrAwAAAAAAwMSMG7bda/h+2U4et7X9XmNeHwAAAAAAACZm3LDtpuH78p08bmv7m7bbCgAAAAAAABawccO2i4fvj9vJ4x6XwfSTF++oIQAAAAAAACxU44Ztf57kriSnVNWjZ3NAVR2V5LlJfjQ8HgAAAAAAABalscK21tpXkvxWkkry8ao6rapWTNe2qlZU1fOTfDyDUW2ntdauGuf6AAAAAAAAMEnTBmOzVVWvGi5+PMnTk/xlktdV1T8kuTbJpiR7JXlwkscmufew/QVJHjxy/DZaa/91nNoAAAAAAABgVxsrbEuyLoNRahl5v3eSX5umbY20efrwtT3CNgAAAAAAABa0ccO2ZBCizWbb9rZP1XbcBAAAAAAAACZr3LDt2DmpAgAAAAAAABahscK21tolc1UIAAAAAAAALDbLJl0AAAAAAAAALFbCNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE6LJmyrqqdW1TVVdW1VnbGddo+uqs1V9az5rA8AAAAAAIClZ1GEbVW1PMmZSZ6W5PAkJ1TV4TO0+9MkF85vhQAAAAAAACxFiyJsS/KYJNe21r7RWrsrybuTHDdNu99N8r4kN89ncQAAAAAAACxNiyVsOyDJt0bWbxxu+7GqOiDJ8UnOmse6AAAAAAAAWMJWTLqAWapptrUp6/8rye+31jZXTdd8eKKq05OcniSrV6/O+vXr56hEWHruuOMOfQjGpB/BePQhmDv6Euw8v0MwPv0IxqMPwcKwWMK2G5McOLL+wCQ3TWlzVJJ3D4O2+yZ5elXd3Vr74Gij1trZSc5OkjVr1rS1a9fuopJh97d+/froQzAe/QjGow9Bp0u23aQvwc7zOwTj049gPPoQLAyLJWy7LMlhVfWgJN9O8uwkJ442aK09aOtyVZ2b5MNTgzYAAAAAAACYS4sibGut3V1VL05yYZLlSc5prV1VVS8Y7vecNgAAAAAAAObdogjbkqS1dkGSC6ZsmzZka62dOh81AQAAAAAAsLQtm3QBAAAAAAAAsFgJ2wAAAAAAAKCTsA0AAAAAAAA6CdsAAAAAAACgk7ANAAAAAAAAOgnbAAAAAAAAoJOwDQAAAAAAADoJ2wAAAAAAAKCTsA0AAAAAAAA6CdsAAAAAAACgk7ANAAAAAAAAOgnbAAAAAAAAoJOwDQAAAAAAADoJ2wAAAAAAAKCTsA0AAAAAAAA6CdsAAAAAAACgk7ANAAAAAAAAOgnbAAAAAAAAoJOwDQAAAAAAADoJ2wAAAAAAAKCTsA0AAAAAAAA6CdsAAAAAAACgk7ANAAAAAAAAOgnbAAAAAAAAoJOwDQAAAAAAADoJ2wAAAAAAAKCTsA0AAAAAAAA6CdsAAAAAAACgk7ANAAAAAAAAOgnbAAAAAAAAoJOwDQAAAAAAADoJ2wAAAAAAAKCTsA0AAAAAAAA6CdsAAAAAAACgk7ANAAAAAAAAOgnbAAAAAAAAoJOwDQAAAAAAADoJ2wAAAAAAAKCTsA0AAAAAAAA6CdsAAAAAAACgk7ANAAAAAAAAOgnbAAAAAAAAoJOwDQAAAAAAADoJ2wAAAAAAAKCTsA0AAAAAAAA6CdsAAAAAAACgk7ANAAAAAAAAOgnbAAAAAAAAoJOwDQAAAAAAADoJ2wAAAAAAAKCTsA0AAAAAAAA6CdsAAAAAAACgk7ANAAAAAAAAOgnbAAAAAAAAoJOwDQAAAAAAADoJ2wAAAAAAAKCTsA0AAAAAAAA6CdsAAAAAAACgk7ANAAAAAAAAOgnbAAAAAAAAoJOwDQAAAAAAADoJ2wAAAAAAAKCTsA0AAAAAAAA6CdsAAAAAAACgk7ANAAAAAAAAOgnbAAAAAAAAoJOwDQAAAAAAADoJ2wAAAAAAAKCTsA0AAAAAAAA6CdsAAAAAAACgk7ANAAAAAAAAOgnbAAAAAAAAoJOwDQAAAAAAADoJ2wAAAAAAAKCTsA0AAAAAAAA6CdsAAAAAAACgk7ANAAAAAAAAOgnbAAAAAAAAoJOwDQAAAAAAADoJ2wAAAAAAAKCTsA0AAAAAAAA6CdsAAAAAAACgk7ANAAAAAAAAOgnbAAAAAAAAoJOwDQAAAAAAADoJ2wAAAAAAAKCTsA0AAAAAAAA6CdsAAAAAAACgk7ANAAAAAAAAOgnbAAAAAAAAoNOiCduq6qlVdU1VXVtVZ0yz/6SqunL4urSqHjGJOgEAAAAAAFg6FkXYVlXLk5yZ5GlJDk9yQlUdPqXZdUmOaa09PMkfJTl7fqsEAAAAAABgqVkUYVuSxyS5trX2jdbaXUneneS40QattUtba7cOVz+T5IHzXCMAAAAAAABLzGIJ2w5I8q2R9RuH22by/CQf3aUVAQAAAAAAsOStmHQBs1TTbGvTNqw6NoOw7bEz7D89yelJsnr16qxfv36OSoSl54477tCHYEz6EYxHH4K5oy/BzvM7BOPTj2A8+hAsDIslbLsxyYEj6w9MctPURlX18CRvTfK01tr3pztRa+3sDJ/ntmbNmrZ27do5LxaWivXr10cfgvHoRzAefQg6XbLtJn0Jdp7fIRiffgTj0YdgYVgs00heluSwqnpQVa1M8uwkHxptUFUHJXl/kpNba1+bQI0AAAAAAAAsMYtiZFtr7e6qenGSC5MsT3JOa+2qqnrBcP9ZSV6V5D5J3lRVSXJ3a+2oSdUMAAAAAADA7m9RhG1J0lq7IMkFU7adNbJ8WpLT5rsuAAAAAAAAlq7FMo0kAAAAAAAALDjCNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADoJGwDAAAAAACATsI2AAAAAAAA6LRowraqempVXVNV11bVGdPsr6r68+H+K6vqyEnUCQAAAAAAwNKxKMK2qlqe5MwkT0tyeJITqurwKc2eluSw4ev0JG+e1yIBAAAAAABYchZF2JbkMUmuba19o7V2V5J3JzluSpvjkvxVG/hMkv2qavV8FwoAAAAAAMDSsWLSBczSAUm+NbJ+Y5KjZ9HmgCTf2d6JX/Oa18xFfbBkXXLJJZMuARY9/QjGow/B3HBvBH38DsH49CMYjz4Ek7dYwraaZlvraJOqOj2DaSazerWBbwAAwNJzTI6ZdAkAAAC7jWptmzxqwamqX0qyrrX2lOH6K5KktfbakTZ/mWR9a+384fo1Sda21mYc2bZmzZp200037dLaYXe2fv36rF27dtJlwKKmH8F49CEYjz4E49GHYHz6EYxHH4LxVNUVrbWjxj3PYnlm22VJDquqB1XVyiTPTvKhKW0+lOSUGvjFJLdtL2gDAAAAAACAcS2KaSRba3dX1YuTXJhkeZJzWmtXVdULhvvPSnJBkqcnuTbJpiTPm1S9AAAAAAAALA2LImxLktbaBRkEaqPbzhpZbkleNN91AQAAAAAAsHQtlmkkAQAAAAAAYMERtgEAAAAAAEAnYRsAAAAAAAB0ErYBAAAAAABAJ2EbAAAAAAAAdBK2AQAAAAAAQCdhGwAAAAAAAHQStgEAAAAAAEAnYRsAAAAAAAB0ErYBAAAAAABAJ2EbAAAAAAAAdBK2AQAAAAAAQCdhGwAAAAAAAHQStgEAAAAAAEAnYRsAAAAAAAB0ErYBAAAAAABAJ2EbAAAAAAAAdBK2AQAAAAAAQCdhGwAAAAAAAHQStgEAAAAAAECnaq1NuoaJqaoNSa6ZdB2wiN03yfcmXQQscvoRjEcfgvHoQzAefQjGpx/BePQhGM9DWmurxj3JirmoZBG7prV21KSLgMWqqi7Xh2A8+hGMRx+C8ehDMB59CManH8F49CEYT1VdPhfnMY0kAAAAAAAAdBK2AQAAAAAAQKelHradPekCYJHTh2B8+hGMRx+C8ehDMB59CManH8F49CEYz5z0oWqtzcV5AAAAAAAAYMlZ6iPbAAAAAAAAoNtuG7ZV1VOr6pqquraqzphmf1XVnw/3X1lVR872WFgKZtGHThr2nSur6tKqesTIvuur6stV9cWqunx+K4eFYRZ9aG1V3TbsJ1+sqlfN9lhYCmbRh14+0n++UlWbq+rew31+h1jyquqcqrq5qr4yw373Q7Ads+hD7odgB2bRj9wTwXbMog+5J4LtqKoDq+oTVXV1VV1VVf9hmjZzdl+0W04jWVXLk3wtyZOS3JjksiQntNa+OtLm6Ul+N8nTkxyd5I2ttaNncyzs7mbZh/51kqtba7dW1dOSrGutHT3cd32So1pr35v34mEBmGUfWpvkZa21f7Ozx8Lubmf7QVU9I8l/aq09frh+ffwOscRV1a8kuSPJX7XWHjbNfvdDsB2z6EPuh2AHZtGP1sY9EcxoR31oSlv3RDBFVa1Osrq19vmqWpXkiiS/vqtyot11ZNtjklzbWvtGa+2uJO9OctyUNsdl8B+q1lr7TJL9hl/+bI6F3d0O+0Fr7dLW2q3D1c8keeA81wgL2Ti/JX6HYOf7wQlJzp+XymCRaK19Mskt22nifgi2Y0d9yP0Q7Ngsfotm4rcIstN9yD0RTNFa+05r7fPD5Q1Jrk5ywJRmc3ZftLuGbQck+dbI+o3Z9kucqc1sjoXd3c72g+cn+ejIektyUVVdUVWn74L6YKGbbR/6par6UlV9tKp+YSePhd3ZrPtBVe2V5KlJ3jey2e8Q7Jj7IZg77oegn3siGJN7ItixqjokyRFJPjtl15zdF60Yu8qFqabZNnW+zJnazOZY2N3Nuh9U1bEZ3Fw+dmTzL7fWbqqq+yf5eFX94/Bf48BSMZs+9PkkB7fW7hgOWf9gksNmeSzs7namHzwjyf9trY3+i0+/Q7Bj7odgDrgfgrG4J4K54Z4ItqOq7pVBGP0fW2u3T909zSFd90W768i2G5McOLL+wCQ3zbLNbI6F3d2s+kFVPTzJW5Mc11r7/tbtrbWbhu83J/lABsNuYSnZYR9qrd3eWrtjuHxBkp+qqvvO5lhYAnamHzw7U6ZL8TsEs+J+CMbkfgjG454I5ox7IphBVf1UBkHbu1pr75+myZzdF+2uYdtlSQ6rqgdV1coM/oPzoSltPpTklBr4xSS3tda+M8tjYXe3w35QVQcleX+Sk1trXxvZvvfwgZOpqr2TPDnJV+atclgYZtOHHlBVNVx+TAa/yd+fzbGwBMyqH1TVvkmOSfK3I9v8DsHsuB+CMbgfgvG5J4LxuSeCmQ1/Y96W5OrW2htmaDZn90W75TSSrbW7q+rFSS5MsjzJOa21q6rqBcP9ZyW5IMnTk1ybZFOS523v2Al8DJiYWfahVyW5T5I3Df/f+O7W2lFJfibJB4bbViQ5r7X2sQl8DJiYWfahZyV5YVXdneTOJM9urbUkfodY8mbZh5Lk+CQXtdY2jhzudwiSVNX5SdYmuW9V3Zjk1Ul+KnE/BLMxiz7kfgh2YBb9yD0RbMcs+lDingi255eTnJzky1X1xeG2VyY5KJn7+6Ia/IYBAAAAAAAAO2t3nUYSAAAAAAAAdjlhGwAAAAAAAHQStgEAAAAAAEAnYRsAAAAAAAB0ErYBAAAAAABAJ2EbAABAp6pqw9f6OTrf+q3nnIvzMVBVxw+/1x9W1QGTridJqurkYU0/qKr7T7oeAACgn7ANAABgF6mqX6+qdcPXfpOuZymqqj2SvGG4enZr7duTrGfEeUm+lmTfJK+dcC0AAMAYhG0AAAC7zq8nefXwtd9EK1m6fifJIUl+mOR1ky3lHq21zUn+eLh6alX9/CTrAQAA+gnbAAAAOrXWavhaO0fnW7v1nHNxvqWuqvZMcsZw9dzW2k2TrGca5yW5IYN781dPuBYAAKCTsA0AAIDd1SlJ7jdc/qtJFjKd4ei2dw1Xn1VVB02yHgAAoI+wDQAAgN3VC4fvX2+tfXqilczsncP35UlOn2QhAABAH2EbAACwy1XV2qpqw9e64bZ/VVVnV9XXq+rOqvpuVf19VZ2wE+c9sKpeV1Wfr6pbqupHVfXtqvq7qjq1qpbP4hyHVdXrq+qKqvpBVf1LVX2/qq6pqouq6j9X1S/McOzWz7R+yvZzq6olee7I5utG2m99nTvluPVb982i7qOH3981VbWhqjYOv8u3V9XjZ3H8T9ReVXtV1cuq6vKqunV4vquq6rVVtf+OzreDa/3hyPU+tIO2zxxp++Wq2qPzmv8qySOGq+ftoO26kWuuHW57QlW9r6q+VVU/HH63Z1fVwVOO3aOqfruqLh3+Hd40rPuMqvrpHdXZWrs6yReHqydVlSlEAQBgkVkx6QIAAIClp6pOTvKWJKNhxB5JnpDkCVV1UpJntdZ+uJ1z/HaS/5lkzym71gxf/ybJ71XVr7XWrp/hHKclOTPJyim77j18/VySJyU5MckjZ/PZdrWqWpHkTUl+a5rdhw5fp1TV3yR5bmvtzlmc89Akf5fk8Cm7Dh++TqiqtTN9j7PwJ0memORXkjyjqn6ntfamaep4YAZ/L5Lkh0lO2N7fgR349ZHlT+zMgVX1uiS/P2Xz1u/2WVX1hNbaF6rqARl8b0dNafuwJK9N8vSqesos/gw+kcHfr0MyCAi/uDP1AgAAkyVsAwAA5tujk7xyuHxOkk8m2Tzc/vwkeyf51Qym13vWdCcYBm1njWz6uyQfSfKDDAKy5yV5UJJ/leRTVXVEa+27U85xRJK/zGDGj7uTvG9Yy81JfirJ6iRHJHlyx2f88yQfTPKSJMcOt/328Nyjvtlx7r9KsnX03w+TvD3JpRl8h0dl8B2uSvIbSfatqqe21rY3Um6fDL67hyb5UJKPJrklg2DphUkOSnLw8Lq/0lFvWmtbquo5Sb6UZP8kf1ZVl7TWrtrapqqWZfBnvnUU3ctba1/pud7Qk4bvW5JcvhPHvSiDv3fXJfn/knwtyX5JTk7yy8P63ltVD8vgezsyyQVJPpzk+xl8jy9Jcp8kj0vyX5L8wQ6u+ZmR5adE2AYAAItKbf+eCwAAYHzDqflGRxdtSPLk1tpnprQ7LMn6DEamJYPRbe+b0uaQJF/NYETb5iQnttb+ekqbPZP8TQahXZK8t7X2G1Pa/EUGwUqS/ObUc4y0W57k6NbapdPs23pDdUlrbe00+8/NPVNJPmhHI8OGUzoekySttW2mE6yq30zy7uHqPyd5fGvtq1PaHJzBd/2g4aYXt9bO3E7tSXJXkme21j48pc19klw2cq6jW2uf295n2J6qelYGfy5JcmWSx7TWfjTc98oMRsAlyYdba88Y4zrLk9yeZK8kV7XWHraD9uuSvHpk04eT/MboqLphGPiRJE8dbroigzD25NbaT0xTWVU/l0FgtmcGAfADtn7OGa5/cJLrh6sfaK392+1+QAAAYEHxzDYAAGASXj41aEuS1tr/y2Bk1lYvm+bYl+SeqSNfP11INpy278Qk3xlueuYwABn14OH7bbknANpGa23zdEHbhIxObfi8qUFbkrTWbkjy7CRbw7SXz+LZdX88NWgbnuv7Sf7byKan7GS9U8/33gxGMybJw5P89ySpqsckec1w+z8l+ffjXCeDUXl7DZev2cljb07ynKnTV7bWtiT5ryObHpXkL6cGbcO2X8tglF4yGBX3mO1dcPhntnWqyYfvZL0AAMCECdsAAID5dmsG0/NNq7X2sQxGriXJLw6fizVq66ifu5O8fjvnuT2DZ5slSeUnn+GVJJuG76symCpxQRuO6DtiuPrl1tpHZ2o7HH128XD14AyCoZlsTvIX29l/8cjy1Ge69XhJBlMzJsnvVtW/S3JeBo85aBk8Z+67Mx08SwePLN+yk8e+o7V22wz7LkvyLyPr24wYHPGpkeXZfG+3Dt8PrKptRjUCAAALl7ANAACYb//QWrtrB21GA55Hb12oqvvnniDlS621qc9Am+qikeWjp+z7+PB9WZJPVNVpVXXfHZxvkkZHR100Y6vp20z97KO+1lq7dTv7vz2yvP+MrWaptbYxg2fO3ZVBCPqeJD873P2G1tpsPtuO3HtkeWfDts/OtKO1dncGz2VLko25JxSezj+PLM/me9t63pUZPLcQAABYJIRtAADAfLt2J9usGVlePbL8tezYaJvVU/a9LYPnwyWDZ5K9JcnNVfXlqvrLqjqhqvadxTXmy1x+9lHf295JpjxrbI9ZXHeHWmufT/IHUzZ/Ickr5+L8SX56ZHnDTh77/R3s3/p93NK2/xD0nf3ebh9Z3nPGVgAAwIIjbAMAAObbph03ycaR5XuNLK+aoc1M7pjh2AxH1z0lycuTXD/cXEkeluT0DKY2/OeqOrOq9pnFtXa1OfvsU2zpK2dsU5+l9rezGPE4W6NB187+2c32+5jr72002L1zxlYAAMCCI2wDAADm216zaDM6jd5oaLRhhjYzGQ3qthnh1Fq7q7X2Z621ByX5hQxCtrcnuXHY5KeT/E6ST1bVpEcbzelnn6Thc/jeOmXzK6vqkXN0idGpI+89Y6uFZWudd2V2YSoAALBACNsAAID59uCdbHPTyPJ3RpYPm8V5RtvcNGOrJK21r7bW3tJaO7W1dmCSx+eeEW+PSPL8WVxvV9pln30+VVVlEGjeb7jp/cP3lUnOm6NQ8/qR5cUWtn1zB9NTAgAAC4ywDQAAmG+PraqVO2hz7MjyZVsXWms3J7lhuPrIqrpftu/JI8ufm32JSWvtE0lePLLpsTtz/NDoVIPVcfyo0fqfNIv23Z99F/u93FPbhUmeleTs4frPJ/mfc3CN63LP6LCHzMH5dqmqOiT3PNftygmWAgAAdBC2AQAA8+3eSZ47086qenIGUzomyadba/80pcn7hu8rkvzH7ZxnVQZTQCZJS/KBjlqvH1le0XH86BSYs5n6cUatteuTfH64+ojh9zStqjoqg5F5ySCcvGKca8+V4TSR/224+t0kpw5Hcf2nJP843P7bVXXcONdprW3OPZ/5oQvkmXvbc/TI8mcnVgUAANBF2AYAAEzCn1XVo6durKqfTXLOyKbXT3Ps/05y53D5P1fVM6c5zx5J3plkzXDT+1pr/29Km9dX1S/uoM4Xjix/aQdtp3PdyPKRHcdP9acjy+dW1UOnNqiqg5K8O/fc7/2PYfg0UVW1V5LzM5guMkn+/dYgtbW2KckJGTyvLEneVlVrtj3LTvn48H1ZkqPGPNeuNhq2XTixKgAAgC49/zITAABgHBdkMA3i/62qtyf5hySbkzw6g+ei3WvY7v2ttfdNPbi1dn1V/ackZ2VwT/Peqvrb4Xl/kMGzyv59kkOHh3w7yYumqeOZSX6vqq5L8vcZTN93c5KfTnJgkt9I8shh2+/nnqkOd8b/GVn+78NpL69JcvfW2lprX57tyVprf11Vv55BMLU6yeer6twkn87gOzwqg+9w60iui5K8qaPuXeF/JtkaDp7ZWvvw6M7W2her6pVJ/izJfZK8vaqePMbzyz6Q5I+Gy2uTXNx5nvmwddrU61prPaEuAAAwQcI2AABgvl2WwQintyY5bfia6oIkJ810gtbaX1ZVZRDg7JHkuOFrqq8kecbwWW9TbX2e2oOS/NZ26r0hyb9trf3zdtrMVOeVVXV+BuHYz2QQJI16e5JTd/K0p2TwPLLTkuyZwei7F07T7r1JThkjrJozVXV8ktOHq1clefkMTd+Q5CkZhLFPTPLSbPudzUpr7aqq+mIGgemJSV7Vc55drap+PveEuu+aYCkAAEAn00gCAADzrrX2zgxGsr01yTeS/DDJLRmMPjqptfarrbUf7uAcZyX5uQymVvxiBqPa7krynQzCuucleeTwWWfTOTLJ8RlMS/m5JN9L8i9JfpTkxuE5XpDk51trn5/hHLNxcgZh2PrhNe7ebusdaK3d3Vr7rSS/lORtSa7NIHy7M4NpK9+Z5Amttd9ord0585nmR1UdkMGfczL4bk+cqa5hMPjcDL6nJPmTqhpn+s2to/p+tqr+9Rjn2ZWeM3zfnOQtkywEAADoUwvgHzkCAAC7uapam+QTw9XXtNbWTawYlozhs/tuSHL/JGe31n57wiX9hKpankFYekiS97TWnj3ZigAAgB5GtgEAALBbGo6OfN1w9ZSqWjPJeqZxQgZB25Ykr5lsKQAAQC9hGwAAALuzN2cwveYeSV4x4Vp+bDiq7Q+Gq+e21q6eZD0AAEA/YRsAAAC7reHott8brv7W8BlyC8EJSR6S5LYsoBAQAADYecI2AAAAdmuttQ+21qq1tkdr7duTridJWmvvHNa0X2vt5knXAwAA9BO2AQAAAAAAQKdqrU26BgAAAAAAAFiUjGwDAAAAAACATsI2AAAAAAAA6CRsAwAAAAAAgE7CNgAAAAAAAOgkbAMAAAAAAIBOwjYAAAAAAADo9P8DsrLSbA4A1XAAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "x0 = 1\n",
+ "\n",
+ "fig, ax = make_figure(xlims=(0, 2))\n",
+ "add_absolute_position(ax, x0, 1, 'green')\n",
+ "update_plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "93fb5983",
+ "metadata": {},
+ "source": [
+ "where $p(x)$ in y-axis stands for the belief percentage in the state $x$. And in that case, the $p(x)$ would be $1$ because we are 100% sure that this is the correct value."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4f93e5e5",
+ "metadata": {},
+ "source": [
+ "As we explained in the overview section above, assuming an exact measurement from a sensor or a model is not realistic because all sensors which manufactured has certain degree of errorness which could be illustrated in the datasheet of sensor when you buy it or could even be variable and sensitive to to physical conditions like eg. temperature."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9952f397",
+ "metadata": {},
+ "source": [
+ "This will lead us to assume that the measurements are not exact and this belief must be modeled in a mathematical form. The Gaussian distribution or sometimes also called Normal distribution is the belief mathematical model of choice for most of the modern robotics applications because of its simplicity."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d2ce529c",
+ "metadata": {},
+ "source": [
+ "## Gaussian PDF"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7f9c3e47",
+ "metadata": {},
+ "source": [
+ "One of the most and simplest models to express the uncertainty in belief is the Gaussian distribution (Normal Distribution).\n",
+ "\n",
+ "The reason for this is that Gaussian distribution model has only two parameters which are the mean and variance. And sometimes the standard deviation term is used instead of variance which is basically its square root $\\sigma_{std} = \\sqrt{\\sigma^2_{std}}$\n",
+ "\n",
+ "The Gaussian's probability density function (pdf) is:\n",
+ "\n",
+ "$$\n",
+ "p(x) = \\frac{1}{\\sqrt{2\\pi \\sigma^2}} \\exp^{\\frac{1}{2}\\left( \\frac{(x-\\bar{x})^2}{\\sigma^2} \\right)}\n",
+ "$$\n",
+ "\n",
+ "where; $\\sigma^2$ is the variance, $\\bar{x}$ is mean of the distribution. $x$ is the sample of interest which lies inside the distribution.\n",
+ "\n",
+ "We can express a state which is normally (Gaussian) distributed as:\n",
+ "\n",
+ "$$\n",
+ "x = \\mathcal{N}(\\bar{x}, \\sigma^2)\n",
+ "$$\n",
+ "\n",
+ "where $\\mathcal{N}(...)$ stands for Normal distribution."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f58757b6",
+ "metadata": {},
+ "source": [
+ "Now, lets visualize the normal distribution in 1-D space and understand what does it mean."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 52,
+ "id": "bab4a162",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def gaussian_pdf(x, mu, var):\n",
+ " return (1. / np.sqrt(2. * np.pi * var)) * np.exp(-0.5 * (x - mu)**2 / var)\n",
+ "\n",
+ "def generate_normal_samples(mu, var, sigma_num=3, num=300):\n",
+ " '''\n",
+ " generate normally distributed 1D [samples, pdfs] such that the mean value\n",
+ " is included as well in the middle index of the array.\n",
+ " '''\n",
+ " sigma = np.sqrt(var)\n",
+ " sigma_3 = sigma_num * sigma\n",
+ " x = np.linspace(mu - sigma_3, mu + sigma_3, num)\n",
+ " middle_idx = int(num / 2)\n",
+ " x = np.insert(x, middle_idx, mu) # add the mean value to the samples in the correct order of points (middle)\n",
+ " p = gaussian_pdf(x, mu, var)\n",
+ " return x, p\n",
+ "\n",
+ "def add_gaussian_bel(ax, x, var, color, visualize_details=False):\n",
+ " p = gaussian_pdf(x, x, var)\n",
+ " add_absolute_position(ax, x, p, color, False)\n",
+ " \n",
+ " x_bel, p_bel = generate_normal_samples(x, var)\n",
+ " ax.plot(x_bel, p_bel, color=color, label=f'x={round(x, 2)}, var={round(var, 2)}')\n",
+ " \n",
+ " if visualize_details == True:\n",
+ " sigma = np.sqrt(var)\n",
+ " sigma1_range = (x - sigma, x + sigma) # sigma 1 x-range\n",
+ " sigma2_range = (x - sigma*2, x + sigma*2) # sigma 2 x-range\n",
+ " sigma3_range = (x - sigma*3, x + sigma*3) # sigma 3 x-range\n",
+ " \n",
+ " # fill sigma 1 area\n",
+ " ax.fill_between(x_bel, p_bel, where=((x_bel >= sigma1_range[0]) & (x_bel <= sigma1_range[1])), color='C0', alpha=0.3)\n",
+ " \n",
+ " # fill sigma 2 areas\n",
+ " ax.fill_between(x_bel, p_bel, where=((x_bel >= sigma2_range[0]) & (x_bel <= sigma1_range[0])), color='C1', alpha=0.3)\n",
+ " ax.fill_between(x_bel, p_bel, where=((x_bel <= sigma2_range[1]) & (x_bel >= sigma1_range[1])), color='C1', alpha=0.3)\n",
+ " \n",
+ " # fill sigma 3 areas\n",
+ " ax.fill_between(x_bel, p_bel, where=((x_bel >= sigma3_range[0]) & (x_bel <= sigma2_range[0])), color='C2', alpha=0.3)\n",
+ " ax.fill_between(x_bel, p_bel, where=((x_bel <= sigma3_range[1]) & (x_bel >= sigma2_range[1])), color='C2', alpha=0.3)\n",
+ " \n",
+ " # arrow marking sigma 1 area\n",
+ " ax.arrow(x, -0.25, sigma1_range[0], 0, head_length=0.01, head_width = 0.05, width = 0.01, length_includes_head = True)\n",
+ " ax.arrow(x, -0.25, sigma1_range[1], 0, head_length=0.01, head_width = 0.05, width = 0.01, length_includes_head = True)\n",
+ " \n",
+ " # arrow marking sigma 2 area\n",
+ " ax.arrow(x, -0.5, sigma2_range[0], 0, head_length=0.01, head_width = 0.05, width = 0.01, length_includes_head = True)\n",
+ " ax.arrow(x, -0.5, sigma2_range[1], 0, head_length=0.01, head_width = 0.05, width = 0.01, length_includes_head = True)\n",
+ " \n",
+ " # arrow marking sigma 3 area\n",
+ " ax.arrow(x, -0.75, sigma3_range[0], 0, head_length=0.01, head_width = 0.05, width = 0.01, length_includes_head = True)\n",
+ " ax.arrow(x, -0.75, sigma3_range[1], 0, head_length=0.01, head_width = 0.05, width = 0.01, length_includes_head = True)\n",
+ " \n",
+ " # area covered by sigma 1\n",
+ " ax.text(x, -(0.25-0.05), \"68.27%\", fontsize=20)\n",
+ " \n",
+ " # area covered by sigma 2\n",
+ " ax.text(x, -(0.5-0.05), \"95.45%\", fontsize=20)\n",
+ " \n",
+ " # area covered by sigma 3\n",
+ " ax.text(x, -(0.75-0.05), \"99.73%\", fontsize=20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 53,
+ "id": "948f6f7d",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABtsAAAJgCAYAAADrpNycAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAC2F0lEQVR4nOzdd3hT5cPG8fuk6V500EFpC2UUyip7FgrIBhG3KIqCe7/ugVsRccuQ7QQBlSkoiBYRFFmyKXtD2XTSlfP+UegPZNNx2vL9eOVKmjwnzx2KIcmd8xzDNE0BAAAAAAAAAAAAuHw2qwMAAAAAAAAAAAAApRVlGwAAAAAAAAAAAHCFKNsAAAAAAAAAAACAK0TZBgAAAAAAAAAAAFwhyjYAAAAAAAAAAADgClG2AQAAAAAAAAAAAFfIbnWAkq5cuXJm1apVrY4BoIxJS0uTp6en1TEAlDE8twAobHv37pUkVahQweIkAMoaXrcAKAo8twAoCsuWLTtkmmb5C42hbLuI4OBgLV261OoYAMqYhIQExcfHWx0DQBnDcwuAwvb6669Lkl599VWLkwAoa3jdAqAo8NwCoCgYhrHjYmNYRhIAAAAAAAAAAAC4QpRtAAAAAAAAAAAAwBWibAMAAAAAAAAAAACuEGUbAAAAAAAAAAAAcIUo2wAAAAAAAAAAAIArRNkGAAAAAAAAAAAAXKEyU7YZhtHZMIxEwzA2G4bx/HnGxBuG8a9hGGsNw5hf3BkBAAAAAAAAAABQttitDlAYDMNwkjRUUgdJuyUtMQxjumma604bU07SMEmdTdPcaRhGkCVhAQAAAAAAAAAAUGaUlT3bmkjabJrmVtM0syR9J6nnf8b0lvSjaZo7Jck0zQPFnBEAAAAAAAAAAABlTFkp28Ik7Trt590nrztddUl+hmEkGIaxzDCMO4stHQAAAAAAAAAAAMqkMrGMpCTjHNeZ//nZLqmhpPaS3CX9ZRjG36ZpbjzrzgzjPkn3SVL58uWVkJBQuGkBXPVSU1N5bgFQ6HhuAVBUeG4BUNh43QKgKPDcAsAqZaVs2y0p/LSfK0rae44xh0zTTJOUZhjGH5LqSTqrbDNNc6SkkZIUHR1txsfHF0VmAFexhIQE8dwCoLDx3AKgsM2fP1+SeG4BUOh43QKgKPDcAsAqZWUZySWSqhmGUdkwDBdJt0qa/p8x0yTFGYZhNwzDQ1JTSeuLOScAAAAAAAAAAADKkDKxZ5tpmjmGYTwi6RdJTpLGmqa51jCMB07e/rlpmusNw/hZ0ipJDkmjTdNcY11qAAAAAAAAALi43NxcJScnKyUlRRkZGXI4HFZHKpF8fX21fj37VwBXO5vNJnd3d3l7e8vHx0dOTk5FPmeZKNskyTTNWZJm/ee6z//z82BJg4szFwAAAAAAAABcqaysLO3YsUMeHh4qV66cwsLCZLPZZBiG1dFKnJSUFHl7e1sdA4CFTNOUw+FQWlqaUlJSdOjQIUVGRsrFxaVI5y0zZRsAAAAAAAAAlCW5ubnasWOHAgMD5efnZ3UcACjxDMOQk5OTfHx85OPjo6NHj2rHjh2Kiooq0j3cysox2wAAAAAAAACgTElOTpaHhwdFGwBcIT8/P3l4eCg5OblI56FsAwAAAAAAAIASiGURAaDgvL29lZKSUqRzULYBAAAAAAAAQAmUkZEhT09Pq2MAQKnm6empjIyMIp2Dsg0AAAAAAAAASiCHwyGbjY9wAaAgbDabHA5H0c5RpPcOAAAAAAAAALhihmFYHQEASrXieB6lbAMAAAAAAAAAAACukN3qAAAAAACAwnci54T2p+7PPx07cUwpmSlKzkxWStaZ56lZqcrOzVauI1c5Zq5yHblymA7t1R6ZMjVx6CS5OrnKzdlN7nY3udvd5ebsJje7m9yc3OTu7C5/d38FuAfknXsEKMA9IP/c181XNoPvegIAAAAomyjbAAAAAKCUyc7N1s7jO7Xl6BZtObJFW49u1Z6UPdqful97U/YpKXW/jmUeO+/2dsNZ7s5e8rB7y83uJVebh5wMu2yGk2yGiwzDSQfSdyhHOTJk6HhGlhxmhgLcw3QkN0XZjsPKdmQq23FC2Y5MZeWeUFr2cZkyzz2fza4KXmGK8I1QZLkIhfuEK8I3QhG+EQr3DVekb6R83XyL6E8LAAAAAIoWZRsAAAAAlFBJqUlafWC1ViWt0sbDG7X16FZtObJFO47vUK6Zmz/O2eaqQPdQ+bgEysclShHBTVXOpbx8XfNO5VzKy8e1nLxcvOXl7CVXu5ucbIZshiGbIdlOXj5dh8kh//sh7ZAk6etuf+Vf5TBNOUxTpinlOkxlO3KUknlcx04c0fHMIzqeeVQp2UeVmn1MKVmHdfjEPh1M3avEQ/N15MR+5Zo5Z8wX7Bmi6MBo1SofoxqBNfJPFX0qslccAAAAgBKNsg0AAAAALJaRnaG1B9dqdVJesXaqYDuYfjB/jLeLn4LcIxTkXku1/bso2CNSQe4RCvOqrCDPELna7XJ2ssnJVvQH/5Z0sqjLm8vZSXKTk7xdg1TBJ+iC2zkcpk7kZOtgepL2pe5RUvpuHczYrX1pW7T3+BYt2/Ot0nKS88d72D0UHVhTDSvUV6PQRmoQ2kB1guvIze5WpI8PAAAAAC4VZRsAAAAAFCPTNLX5yGYt3rNYf+/+W4v3LNa/+/9VjiNvTy9XJ3dV9Kqmmn5t1Sk8WhW9o1XZp6aCPIPl6myTs1Pp3svLZjPk4eKiSJdwRZYLP+v27JxcHUg7oK3HNmpX6mbtTd2sXamJmrBqkkYvHy0pb1nKmMBaalihgRpVaKTGFRorNiRWzk7Oxf1wAAAASqy0tDSNGDFCP/zwgzZt2qTk5GQFBwerWbNmuueee9SpU6dCn3PHjh0aPny4fvrpJ+3cuVO5ubmqWLGiOnTooAceeEC1atUq9DlReP766y+NGjVK8+fP1759++Tm5qbKlSurV69eeuCBBxQYGFgo88THx2v+/PmXNDYyMlLbt28vlHmLEmUbAAAAABShjOwM/bX7Ly3cuVB/7/lbi3cv1uGMw5IkN7uHqvjGqnPkvarsU0cR3jUU6RslL1eXUl+qXSlnu5PCfEMV5hsqqU3+9dm5udpxfLs2HF6prcfXaHvyak1eO1Xj/h0nSXK3e6hZxWZqHRmnuIg4NavYTJ4unhY9CgAAAGutWLFCN954o7Zu3XrG9Tt37tTOnTs1adIk9e7dW+PGjZOLi0uhzPntt9/qgQceUGpq6hnXJyYmKjExUSNHjtS7776rJ598slDmQ+ExTVNPPfWUPv74Y5nm/47DnJGRoaNHj2r58uUaMmSIxo8fr3bt2lmYtOSibAMAAACAQpSVm6Ule5bot22/6bftv+mvXX8pMzdThgyFe1dXLf/2qupbX1XLxaqqX015u7rIfpUWa5fD2clJVf2rqKp/FUnXS5Jych3aeXyn1hxapg1Hlyjx8D9K2P6GTJlyMpwUG1JfrSPj1LZSW8VXipe3q7e1DwIAAKAY7NixQ126dFFSUpIkqUmTJrrjjjsUGBio1atXa+TIkTp8+LDGjx8vm82mr7/+usBz/vTTT7rrrruUm5srwzB04403qlOnTnJ2dtb8+fP19ddfKysrS//3f/8nb29v9e/fv8BzovC88MIL+uijjyRJnp6e6tevn5o0aaLU1FT98MMPmjt3rpKSktSzZ08tWLBAsbGxhTb3lClTLni7h4dHoc1VlIzTW0qcLTo62kxMTLQ6BoAyJiEhQfHx8VbHAFDG8NwCWMM0Ta1MWqk5W+bot22/acHOBUrPTpchQ5V9aym6XFPFBLRUjH9jlff0l5uzTYZRPMdVK4gOk0POum7uTfstSHJ5jqQf1b8HlmjNob+18ehSbU1eqWxHpuw2u5qFNVeXap3VqUon1Q+tL5tByQlYhdctwKVZv369atasaXWMUiMlJUXe3ny5plevXpo6daok6Z577tGoUaNks/3vdc/OnTsVFxennTt3SpJmzpypbt26XfF86enpqlatmvbu3StJ+uKLL3TXXXedMWbu3Lnq2rWrcnJy5OXlpc2bNys4OPiK50ThWbFihRo2bCjTNOXr66s//vhDdevWPWPMa6+9ptdff12S1LhxYy1evLhA72lOX0ayuDqqgjyfGoaxzDTNRhcaw55tAAAAAHCZ0rLS9OvWX/XTpp80a9Ms7UnZI0mK8K6ulqE3Kca/ueoENFeId6BcnZ0sTnt18ffwU7tKHdWuUkdJUnpWhpbuX6wVBxK0+tACvfTbS3rpt5fk7x6oDlHXqHPVTupctbNCvM4uFwEAAEqblStX5hdtERERGjp06BlF26nrhw8fnl+wvfbaawUq20aNGpVftN10001nFW2S1KFDBz355JMaPHiwUlNT9f7772vw4MFXPCcKzxtvvJFfeL3zzjtnFW2S9Oqrr2r27Nn6559/tGTJEs2aNatAf2fKIr7GBwAAAACXYOvRrfps8Wfq/E1nBbwXoOsmXqdvV01QmEdd3Vt7sIa2/UeftftNzzR5V92rXadI/2CKthLAw8VdrSPi9Xij1zS68zx91flfPVT3Y9X0i9PPm37V3dPuVoUPKqjpqOZ6b+F72nh4o9WRAQBACTJ//nw5OTnJMAxFRETo2LFj5x27bds2+fr6yjAMeXp6yooV0yZOnJh/+b777pObm9s5x3Xp0kVVq1aVJC1dulRbtmwplDkff/zx84579NFH8/eGmjRp0hXPdzHTp0+XYRgyDENPPfXUJW3zf//3f/nbzJgx44zbTNPUggUL9NJLL6ldu3aqUKGCXF1d5enpqcqVK+vWW2/VjBkzLrqH1muvvZY/R0JCgiRp3rx5uu2221S5cmW5ubnJMAxt3779Sh72FUlJSdHs2bMlST4+Purbt+85xxmGoUcffTT/59N/58jDnm0AAAAAcB4bDm3Q5LWT9f3677UqaZUkKcwrSm0r3qHYwHaqG9RUfh4estv4HmNpEeodol7Rt6pX9K3Kyc3V2oOr9de+OVp2YI6e+/U5Pffrc6ruX0PX17xOvWr2UqMKjVhuEgCAq1ibNm30/PPP65133tGuXbt03333nbMoysnJUe/evZWcnCxJ+uSTTxQdHV3ccTVnzpz8y507dz7vOMMw1KlTJ23evFmS9Msvv+ihhx667PmSk5P1999/S5J8fX3VvHnz844NDw9XTEyM1q5dq507d2rdunWKiYm57DkvpkuXLgoMDNShQ4c0YcIEDR48+Ky9+06Xm5ur7777TpIUGBh41p/bPffcoy+++OKs7bKysrR9+3Zt375dEydOVOfOnTVx4kT5+PhcNKNpmnrkkUc0dOjQy3twhWz+/PnKzMyUJLVu3fqCx0fr1KlT/uVTBR3+h7INAAAAAE6z9sBafb/ue01eN1lrD66VJNXwb6ze0S+rQfl2qupfXR4uTqXiuGu4MLuTk+qFxKpeSKykZ7Xz2E7N3z1LS5Pm6L1Fg/XuwncV4llBN8T0Uu86vdW8YnN+7wAAXIVef/11zZs3T4sXL9bkyZM1duxY3XPPPWeNOVU63XDDDerfv3+x53Q4HFq/fr0kyW63q169ehcc36jR/w5BtWbNmiuac926dfl7dMXGxl6w1Do159q1a/PnLIqyzdnZWbfccouGDh2qffv2ad68eerQocN5x8+bN0/79u2TJN16661ydnY+4/aMjAy5urqqTZs2atKkiapUqSJPT08dPHhQGzdu1Ndff60jR47o559/1p133pm/jOeFDB48WLNnz1ZISIj69u2r2rVrKycnR//8849cXV0L9Pgvx+m/94YNG15wbPny5RUZGakdO3bo0KFDOnDggIKCggqcoVu3blq+fLkOHz4sb29vhYeHKy4uTv369VNsbGyB77+4ULYBAAAAuOptOLRBE1ZP0OR1k7X+0HoZMlTDv7HuqPGqmoZ0UaVy4XJjScgyL6JchPqUe0B9aj+gw+mHNX/nHC1J+lkjl43W0CVDFe4Tod61b1Pvur1VJ6gOxRsAAFcJu92u8ePHKzY2VikpKXrssccUFxenatWqSZL+/PNPDRw4UFLe3lujRo065/2kp6efsedZQURERKhBgwZnXLd7926lp6dLksLCwmS3X/jj/8jIyPzLGzde2VLap29XqVKli44vjDkvxR133JG/19g333xzwbLtm2++OWO7/3r44Yf1+eefq1y5cufc/u2339bdd9+tyZMna9q0aZo/f77atGlzwXyzZ89Wq1at9NNPP52xJ9x/j3e3fPly7dy584L3dak6dux41p5rV/L727FjR/62hVG2zZo1K//ykSNHdOTIEa1cuVJDhgzR3XffraFDh8rd3b3A8xQ1yjYAAAAAV6VD6Yf03Zrv9NXKr7Rk7xIZMhQT0FR31nhdTUK6qJJfmFztFGxXqwCPAF1f4zZdX+M2HT9xXPN2/KSFe6Zp8F/va9CiQYoOqKnb69ym3nV6q4p/FavjAgCAIhYVFaWhQ4fqzjvvVFpamnr37q1FixYpLS1Nt99+u3Jzc2Wz2fT111/Lz8/vnPdx4MAB9erVq1Dy3HXXXWctbXj68eQCAwMveh8BAQHn3PZyWDHnpWjWrJmqVaumTZs26ccff9Tw4cPPuURienq6pkyZIkmqVq2amjZtetaYuLi4C87l6empMWPGaNasWUpLS9PXX3990bLN09Pzkpac/PTTT/Xll19ecMyl2rZt21mFmpW/v4CAAHXq1EkNGzZUhQoVZJqmtm/frpkzZ2rRokWSpHHjxmnnzp36+eefL1oeW61kpwMAAACAQpSZk6mZG2fqq1VfadamWcpx5Kiyb4xuq/6SWlboqUrlwuTKHmz4D183X10f3VvXR/fWofSDmrNtqhbunaZXEl7RKwmvqGlYc93boJ9urnWzvF29rY4LAACKSJ8+ffTLL7/o22+/1dKlSzVgwABt27Ytf8+jF1544aIlS1FKTU3Nv+zm5nbR8afvLZSSklJq5rxUd9xxh1599VWlpqZq2rRpuu22284aM3Xq1PzH0KdPnyuey9vbW3Xq1NHff/+txYsXX3T8DTfcoAoVKlzxfIXFqt/fwIED1ahRo7OW7JTy/j+aMmWK7rjjDqWnp2vevHkaNGiQXnrppSuerzhQtgEAAAAo00zT1LJ9yzRm+RhNXDtRR08cVYBbsDqG36OWYdepdvm68nDhrREuTaBHefWuda9617pXO4/v1NztP2j+nu/Vf0Z/PTr7Md0Yc5PubdBPrSJascwkAKBYPfHzE/p3/79WxyhWsSGx+rjzx8U657Bhw7Ro0SJt27ZNgwYNyr++adOmeu211y64baVKlfKPb1bUrHgdUtJe+5wq26S8pSLPVbadvoTk7bffft77yszM1KRJkzRt2jStXLlSSUlJSk1NPefvc/fu3RfNdrG95U754osvztqDsagU5++vefPmF7y9V69eGjVqVP7vZPDgwXr66aeL9Xh2l4t3lAAAAADKpOTMZI1fPV4jl43Uiv0r5Gb3UKOgjmoR0ksNQ9uonLurbCXsAwGULhG+EepX70ndXedxrUhaop+3T9DktT/o61VfqnK5Kurf4B7dVe8uhfmEWR0VAAAUEh8fH40fP15xcXHKycmRlLdX0/jx4y1f5s7Lyyv/ckZGxkXHnz7G2/vK9s63Ys5LFRUVpRYtWmjRokWaM2eODh48qPLly+fffuDAAc2dO1eS1LJlS0VFRZ3zflavXq0bbrhBmzZtuqR5k5OTLzomLKxkvD4syb+/3r1764033lBiYqKOHz+uhQsXql27dkU6Z0FQtgEAAAAoM0zT1JK9SzRy2UhNWDNB6dnpivKtpb4131KrsOsU5uMvu5PN6pgoY2w2mxqGNlXD0KZKy3pbc7ZN02+7Juql317SgN8HqEvVbnq0ycPqUKWDbAZ//wAARaO49/C6moWFhcnT01PHjx+XJDVs2PC8RU1xKleuXP7lw4cPX3T86WNO37akz3k5+vTpo0WLFiknJ0ffffedHn300fzbvvvuu/zC9HxLSB45ckTXXHONDhw4IEkKDw9X9+7dVaNGDZUvX15ubm75e4S9/PLLWrt2rRwOx0Vznb4co5VK+u8vPj5eiYmJkqTExETKNgAAAAAoSsmZyfpm1TcauWykViatlLvdU01DrlXbsNtUN6iBvNzOPhYAUBQ8XTzVK7q3ekX31rZjWzRzy3gl7JionzbNUCXfKD3c+EHd0+Ae+bv7Wx0VAABcAYfDoT59+uQXbZKUkJCg4cOH68EHH7zgtunp6ZozZ06h5IiIiFCDBg3OuK5ixYry8PBQenq6du/erZycnAvubbdjx478y9WrV7+iHKdvt3379ouOL4w5L8fNN9+sxx9/XFlZWfrmm2/OKNtOLSHp4uKim2+++ZzbDxkyJL9ou+uuuzR69Ojz/pm+/fbbhZxeWr58ef4xAQuqY8eO8vDwOOO6kv77CwgIyL989OjRIp+vICjbAAAAAJRamw5v0pB/hmjcv+OUkpWiKr611bfm24oL66kKvv6y29iLCNapXK6KHm04QPfFPqu522Zo9rYv9Myvz+jl3wfo5lq36NEmD6txWGOrYwIAgMswcOBAzZ8/X5LUvn17LV26VMePH9dTTz2lNm3aKCYm5rzbHjhwQL169SqUHHfddddZx/Ky2WyqWbOmli1bppycHK1cuVINGzY8730sXbo0/3Lt2rWvKEdMTIxsNpscDodWrFghh8Mh2wVegxfGnJfD399fXbt21dSpU/XPP/9o06ZNqlatmjZu3KglS5ZIkrp16yY/P79zbv/rr79Kkux2uz7++ONLLi8Ly6effqovv/yyUO5r27ZtqlSp0hnXnf47OP13cy4HDx7Mf4yBgYEKCgoqlFwXUtx70hUE7zwBAAAAlCqmaWrOljnqPr67oodEa9jS4aoX2F6vNvlR77f5WbfX7qcIv0CKNpQYrk6u6l71Rg3tMFOfxM9Vy9AbNGntZDUZ3UQNRjTSN6u+UVZultUxAQDARSxevFivvfaaJKlChQqaOHGihg8fLinvWFa9e/dWZmamhQmlTp065V/+5ZdfzjvONM0zbj99u8vh4+OjZs2aSZKOHz+uv//++7xjd+3apXXr1knK2zPvQsVkYTp9ichTe7OdOv/v7f+VlJQkKW8PqwuVPStWrNDBgwcLmLT4xcfHy9XVVZL0xx9/XPC4baf/fenSpUuRZ5OUX2xLxbMnXUHw7hMAAABAqZCalaphS4YpZliMOn3TSX/t+kc9ox7Tx60X6sVmw9QqsoW8XFm8AyVbTPk6eqH5B/q22wr1rfmG9qccU58pfRT5USUNXDBQRzKOWB0RAACcQ0pKim6//Xbl5OTIMAx9+eWXCggI0G233ZZf1qxcuVLPP//8ee+jUqVKMk2zUE7/3avtlNOXQxwxYoROnDhxznGzZ8/W5s2bJUmNGjVSlSpVrvBPRrrlllvyL3/yySfnHffZZ5/JNM2zcha17t275++59u2338o0TX377beSJD8/P3Xr1u28255advHAgQNKSUk577g33nijEBP/zxdffFFof2f+u1ebJHl5ealr166SpOTk5PP+vTJNU0OGDMn/+fTfeVGZMGGCNmzYIEny9vZWq1atinzOgqBsAwAAAFCi7UvZp+d/fV4VP6yoh2c9rJwcV91X+0N9Fr9IDzZ4XtHlI+TsxFsblC6+rr66vfZ9Gtf5D73U5CsFuEbpxd9eVMUPw/XgzIe1+chmqyMCAIDTPPzww9qyZYsk6amnntI111yTf9vQoUMVFRUlKa9sutAeZUWtXr16uu666yRJO3fu1COPPCKHw3HGmJ07d55xfLlTe+udS6VKlWQYhgzDUEJCwjnH9O/fXxUqVJAkTZo06ZzLHv7666/66KOPJOUVPE8//fRlPKqCcXFx0U033SRJ2rJliz788ENt3bpVUl7p5+Lict5tGzfOW/LbNE29/PLLZ91umqZeeeUVTZ06tfCDF5MBAwbIMAxJ0gsvvKBVq1adNeaNN97Q4sWLJeX9mZwq6P7riy++yP/7Eh8ff84xn376af59nc/UqVPVv3///J+feuopubm5XcrDsQxf+wQAAABQIm04tEHvL3pfX6/6WjmOHDUJ6aIO4feoQXATebk5Wx0PKBRONifFR3ZUfGRHrT+0WpM3jtTo5aM1YtlwdavWQ8+0fEpxEXH5H4AAAIDiN2HCBH399deSpPr16+vtt98+43Zvb2+NHz9erVq1Uk5Ojvr27atVq1apfPnyVsTVxx9/rL/++ktJSUkaM2aM1qxZoz59+iggIECrV6/WiBEj8o+Fdfvtt19wz65L4eHhoZEjR6pnz57Kzc3V3XffrZ9++kldunSR3W7X/Pnz9dVXXyknJ0eS9NFHHyk4OPi891epUqX8Y4P9/vvv5y1tLkefPn00cuRISdKLL754xvUX8tBDD2ns2LHKzc3Vp59+qn///VfXX3+9QkJCtGvXLo0fP14rVqxQTEyM3N3dtWzZsgJnLW7169fXs88+q0GDBun48eNq0aKF+vfvryZNmig1NVU//PCD5syZIymvKB05cmSBXpv+9ttvevzxxxUdHa327durVq1aCggIkGma2r59u2bMmKFFixblj2/btq1eeOGFAj/OokbZBgAAAKBEWbhzod5b9J6mJ06Xq5O7Wofdoi6R/RUdWFWudier4wFFpmZgHb0S+JkOpL2k7xPHau72rzVz03Q1DG2iAa1fVI/oHrIZ7MUJAEBx2r59e/5eYB4eHho/fvw594Rq2rSpXnvtNb388svav3+/7r77bs2cObO440qSIiMjNXv2bN14443aunWrFi9efM49iXr37q2xY8cWypzdunXTl19+qQceeECpqamaPHmyJk+efMYYZ2dnDRo06Iw9lopLy5YtVblyZW3btk1ZWXnHyo2KilLLli0vuF1sbKw+++yz/D0E//jjD/3xxx9njKlZs6amTZtmyeMqLAMHDlRWVpY+/vhjpaWlnXM50KCgIE2YMEGxsbGFMmdiYqISExPPe7thGLr33nv10UcfXXDvw5KCV+kAAAAALOcwHZq6YapajGmhVuNaaf72P3Vd1OP6pM2feqrxINUNiaZow1UjyDNEDzV4UeO7LVO/Wm9r57F9um7idYoZWkdfr8zb0xMAABS93Nxc3XHHHTp+/Lgk6cMPP1SNGjXOO/6FF15Q69atJUk//fTTGce4Km7169fXqlWr9MEHH6h58+YKDAyUq6urwsPDddNNN2n27Nn69ttvC7XEuP3227VmzRo9++yzqlWrlry9veXp6anq1avr4Ycf1ooVK/Tkk09e9H4yMjLyLwcGBhZKNsMwdMcdd5yV91I8+OCDWrhwoW666SaFhITI2dlZQUFBatGihT788EMtXbpUVatWLZScVjEMQx9++KEWLlyovn37KioqSm5ubipXrpwaNGigN954Q2vXrlW7du0KPNcHH3ygUaNG6Z577lGjRo0UEREhDw8Pubi4KCgoSK1atdLzzz+vDRs2aMSIEfnHzSvpjFMHJMS5RUdHmxdqVwHgSiQkJBTKLvAAcDqeW1Aa5TpyNXndZL294G2tObBGoZ4Ruib8HrUPv0WhvuVkY+k8y3SYHHLWdXNv2m9BEuTkZmv21h/14+Zh2p2aqHCfSD3X8hndU/8euTu7Wx0PuCK8bgEuzfr161WzZk2rY5QaKSkp8vb2tjoGCiAxMTG/0Lz22ms1bdo0ixOhrCjI86lhGMtM02x0oTHs2QYAAACg2GXnZuvLf79UzLAY3fbDbUo+kaX763yoj1onqE/t+xVWzo+iDTjJ7uSsHtVu0ZjOv+v5xmPkYvjrkdmPKPLjSnp3wbtKyUyxOiIAAECh+PXXXyVJNptN77zzjsVpgEtH2QYAAACg2GTmZGrkspGKHhKtvtP6KjvHrkfqDtX7cXN1Y43eCvDyKNDBtoGyzGbY1L5SNw3vMEtvtpikYPdovfDbC4r4qJLe/uMdSjcAAFDqnSrb+vTpo1q1almcBrh0dqsDAAAAACj7MnMyNXr5aL278F3tTt6tauVi9UTsKMVV7CQf95J/sGugJDEMQ83CWqtZWGutTFqqr9d9oJd/f0nvL3pfT7d4Wo81fVTeriyhBQAASheHw6GEhAS5urrq9ddftzoOcFko2wAAAAAUmazcLI1bMU5vLXhLu5N3KyagiZ5u8LZahLWTt5uz1fGAUq9ecCPVC56gVQeW6qu1eaXbB399oKebP61Hmz5C6QYAAEoNm82mo0ePWh0DuCIsIwkAAACg0OU4cjRuxThFD4nWAz89IC97sJ5t8I3eavGDOlXpRNEGFLK6QY30ftsJ+qDNTEV41dNLv7+oyI8r6Z0FA5WalWp1PAAAAKBMo2wDAAAAUGhyHbn6dtW3ihkao3um3yO7fPR/9cfpnZZT1aHKNZRsQBE7s3SL1Uu/vahKH0fp078/VWZOptXxAAAAgDKJsg0AAABAgZmmqR/W/aC6n9fVHVPuUHaOXY/HjtCgVjPVpWoXSjagmOWVbuP1Xtx0BblV1eO/PK4qn1bTmOVjlePIsToeAAAAUKZQtgEAAAAokITtCWo2pplunHyjUk5k66E6n2lw3M/qXq2nfNxdrI4HXNXqhzTRJ+1/1OvNJ8jF8FP/Gf1UY0gtTVo7SQ7TYXU8AAAAoEygbAMAAABwRVYlrVLXb7uq7Zdtte3obvWr9Z4Gx81Rrxo3qZyHq9XxAJxkGIZaVGyrER1/0fONRutElnTL97co9vOGmr1ptkzTtDoiAAAAUKrZrQ4AAAAAoHTZeXynXvn9FX218it5ufjolmovqFvlvgrx8ZFhGFbHA3AehmGofeXuiq/URbM2f68Jie+r6/iuah0Rr486f6AGoQ2sjggAAACUSpRtAAAAAC7JkYwjGrhgoD775zOZkrpUuk/XRT2oSP9g2SjZgFLDyXBSj2q3qFPUdfp+w5eavOkjNRzZULfW6q1BHQYqwjfC6ogAAABAqULZBgAAAOCCMrIz9OniTzXwz4FKzkxWXNiNur7KE4ouX1l2GyvTA6WVi5Orete6Tz2q3aIvVn2sH9aP1Y8bftAjjR/VgDYvqZxbOasjAgAkmabJ6gEAUADFsWw674wBAAAAnFOuI1djV4xVtc+q6fl5z6uKbyO91Xy2nm/6iWoFV6FoA8oIbxdfPdroVY3p9KeaBHfTR39/oMqfVNGHf32srNwsq+MBwFXNZrPJ4XBYHQMASjWHwyFbEb9/5d0xAAAAgLPM3TJXsSNi1W96P3nag/RCwwl6rflXalIxVs5OvI0AyqJQr3C92nKYPmn7syp41NRTc55U9c9qatKaycXybWAAwNnc3d2VlpZmdQwAKNXS0tLk7u5epHPwLhkAAABAvsRDieoxoYc6ftNRh9OS9XDdIRrYcpraRbWVu4uT1fEAFIOagfX0cbvv9Uqzr5Sb66xbfrhZTUa10KJdi6yOBgBXHW9vb6WkpFgdAwBKtZSUFHl7exfpHJRtAAAAAHQ046ie/PlJ1R5eW79vS9At1Z7T4Fbz1LP6DfJxd7E6HoBiZhiG4sI7anTn3/Rg3cHafGSrWo5tqesmXK9tR7dZHQ8Arho+Pj5KT0/X0aNHrY4CAKXS0aNHlZ6eLh8fnyKdx16k9w4AAACgRMtx5GjE0hF6NeFVHck4orbht+mGqk+qqn9F2WyG1fEAWMzJcNL10X3UOep6fbN2qKZtGa7ZQ2fpiaZPakCbl+Tl4mV1RAAo05ycnBQZGakdO3YoPT1d3t7e8vT0lM1mk2HwWg0A/ss0TTkcDqWlpSklJUXp6emKjIyUk1PRrtRC2QYAAABcpX7Z/Iv+b87/ad3Bdaod0FxPxr6sBqH1OSYbgLN4OHvqvthndW212/X5v2/pvUXv6suVX+q9awbpjnq3y2bwvAEARcXFxUVRUVFKTk7WsWPHtG/fPjkcDqtjlUgnTpyQm5ub1TEAWMxms8nd3V3e3t4KCQkp8qJNomwDAAAArjobDm3QU3Oe0qxNs1TBq5IerTdC7SO7ytPV2epoAEq4EM8wvdZyuP5N6qth/w7QXdPu1Kf/DNGwbp+pSVgTq+MBQJnl5OQkPz8/+fn5WR2lREtISFD9+vWtjgHgKsRXzwAAAICrxJGMI3p89uOqM7yO5m9foFurv6DBrebq2uo9KdoAXJbY4Kb6vOPPeiT2A206vFVNRzfVHT/epX0p+6yOBgAAABQ79mwDAAAAyrhcR67GrhirF+a9oKMnjqpdxdt0fdUnVcU/jOOyAbhiNsOmntVuV/vIHhq3+iNNXDNGUzb8qJfiXtJTzZ+Uq93V6ogAAABAsWDPNgAAAKAMW7x7sZqNaab7Zt6nEI9qer3pTD3R6D1VC6xI0QagUHi5+OjRhq9qRIffFV2umV767QVFD4nR1A1TZZqm1fEAAACAIkfZBgAAAJRBB9MOqt+0fmo2ppm2Hd2l+2t/rDeaT1Kz8AZytRf9waEBXH0ifKvovfhv9Hrz8crOsanXxF5q/2UHJR5KtDoaAAAAUKRYRhIAAAAoQ3IcOfp86eca8PsApWamqlul+3VDtcdU0ddfhsGebACKXouK7dSkQpwmrR+jiRs/UO3hdfRks//Tq20GyNPF0+p4AAAAQKFjzzYAAACgjFiwY4EajmyoR2c/qkivOnqrxc96uMGrCi8XQNEGoFjZbc7qXesBje20UM1DrtXgRYNU7bMa+n7tDywtCQAAgDKHsg0AAAAo5fal7FOfKX3U+ovWSko5okfqDtdrzcerYYXacnbiJT8A6wR4BOmVlkM1KG6K7PLSTd/fqGu+6qRNhzdZHQ0AAAAoNLzzBgAAAEqp7NxsfbDoA1UfUl0T10xSz6hH9V6rX3Vt9evk5eZsdTwAyNcgpLlGdfpVd9d6XX/t/lu1htXW83NfVHp2utXRAAAAgAKjbAMAAABKoQU7Fqj+iPp6eu7TivZrqndazNEDsS+ogm85lowEUCI52ezqHXO/xnb6U01DumvQooGq9mkN/bDuR5aWBAAAQKlG2QYAAACUIofSD+meafeo9RetdTg9WY/HjtKApl8qNrSG7CwZCaAUCPQI1qsth+ndVj/IJnfdOPkGdfiqM0tLAgAAoNTi3TgAAABQCjhMh8YsH6PoIdH6euXX6lH5Qb3bco66Ve0uT1e71fEA4LI1DG2pUZ3mqW/MK1q4a5FqDautF+e9rBM5J6yOBgAAAFyWMlO2GYbR2TCMRMMwNhuG8fwFxjU2DCPXMIwbizMfAAAAcKVWJ61W63Gt1X9Gf4V4VNMbzX/Sg/UHKMzXjyUjAZRqdpuzbq/1kMZ0+lONgrto4J9vq+aQ2pq7Za7V0QAAAIBLVibKNsMwnCQNldRFUoyk2wzDiDnPuEGSfinehAAAAMDlS8tK07Nzn1WDkQ205sB69as1WG81/16Nw+rJmSUjAZQhQZ4heqPVCL3ZYoIysnLV8ZuOunnybUpKTbI6GgAAAHBRZeUdehNJm03T3GqaZpak7yT1PMe4RyX9IOlAcYYDAAAALtf0xOmKGRajwYsGK67CDXqv1TzdXPMOebs7Wx0NAIpMs7C2GtP5d91Q9XFNWf+jqn8WrWH/DJfDdFgdDQAAADivslK2hUnaddrPu09el88wjDBJvSR9Xoy5AAAAgMuy49gO9fyup3p+11M200MvNZ6spxp/qCj/UNlYMhLAVcDV7q4H6r+g4df8qjDPmnp49kNqOqqFViWtsjoaAAAAcE5l5Ujq5/rUwfzPzx9Les40zdyLHdfCMIz7JN0nSeXLl1dCQkIhRASA/0lNTeW5BUCh47mldMtx5Gjy7sn6asdXMiX1qdhfPYKvl5vNWY6965RhdUBAUsbO1VZHwFUkWNK71d7QvENz9cXOkar/eX3dVPEm3VXpLrk7uVsdDwXE6xYARYHnFgBWMUzzv51U6WMYRnNJr5mm2enkzy9IkmmaA08bs03/K+UCJaVLus80zakXuu/o6GgzMTGxKGIDuIolJCQoPj7e6hgAyhieW0qvP3f+qQd/elBrDqxRo+AOuj36VdUsX0VONvZkg3U6TA4567q5N+23IAkgHTtxWMNWvKnfd3+nMO8IDes6RNfW6GF1LBQAr1sAFAWeWwAUBcMwlpmm2ehCY8rKMpJLJFUzDKOyYRgukm6VNP30AaZpVjZNs5JpmpUkfS/poYsVbQAAAEBROpx+WP2n91fcuDgdSD2qx2NHaECzcaodXJWiDQBOU84tQC82/1iD4qZIDjf1nHitrh3fS7uTd1sdDQAAACgbZZtpmjmSHpH0i6T1kiaZprnWMIwHDMN4wNp0AAAAwJlM09S3q75VjaE19MW/X6hb5fs1qOVcdat6rTxcyspK7wBQ+BqENNeozr+qd/Sz+nnLbEUPqakP//pYOY4cq6MBAADgKlZm3smbpjlL0qz/XPf5ecb2LY5MAAAAwH9tO7pND/70oH7Z8ouq+9XX43W/UsMKsXJ2KhPfgwOAIudsc9Hddf9P11TqpY+XPq+n5jypL/79SmN7jlSjChdc3QcAAAAoEryjBwAAAIpBjiNHHyz6QLWH19aCHQt1R43X9GaLKWoW3oCiDQCuQLhPZb3f9js90+hz7Tq+R01GNdHDPz2mlMwUq6MBAADgKsO7egAAAKCILd+3XE1GNdHTc59WjH8LvdNiju6odb/8PdysjgYApZphGOpY+TqN7bxA10T00fClQxQ9JEbTN8ywOhoAAACuIpRtAAAAQBFJy0rT03OeVuNRjbXj2B49UneoXm46TrWCo+RkM6yOBwBlhreLr55t+p7eaz1VNtNDPSdeqxsm3qyk1CSrowEAAOAqQNkGAAAAFIFfNv+i2sNr64O/PlB8xVs1qNVcXVv9enm6OlsdDQDKrNjgphrV+VfdUv1pTU+cpupDamjUstEyTdPqaAAAACjDKNsAAACAQnQg7YBu//F2df62s3Jz7Xqx0UT9X6PBquQXLMNgbzYAKGrONhf1r/e0hl/zq0I9quu+mfcqbmy8Nh3eZHU0AAAAlFGUbQAAAEAhME1TX/z7hWoOralJayerV9TjerflbLWt3Eaudier4wHAVadSuer6tP1UPVh3kFbsX6Haw+rojYS3lJ2bbXU0AAAAlDGUbQAAAEABbT6yWdd8fY3unna3gt2r6M1mP+m++s8pyNvb6mgAcFWzGTZdH32XRndcoNjy7fXq/AGqO7y+/t71t9XRAAAAUIZQtgEAAABXKDs3WwMXDFSd4XW0ePcS3VXzbb3Z4ns1Cqsru42X2gBQUpT3DNHbrcfqpSbjlJR6WC3GttBDMx9VSmaK1dEAAABQBvAJAAAAAHAFFu9erIYjG+rF315UvcC2GtTiV/WOuUe+7q5WRwMAnEd8ZBeN7fyHOkT00efLhip6SIymb5hhdSwAAACUcpRtAAAAwGVIyUzRY7MfU/MxzbU/5ZAeqzdCLzUdreigSNlshtXxAAAX4eXio2eavqfBrafJZnqo58RrdcPEm5WUmmR1NAAAAJRSlG0AAADAJZqROEMxw2I05J8h6hB5p95tOVfdq10rdxcnq6MBAC5TveAmGtX5V91a/WlNT5ym6p9Fa+TSUTJN0+poAAAAKGUo2wAAAICL2JeyTzdPvlnXfnet7PLSy41/0OMNBirCL1CGwd5sAFBaOdtc1K/e0xre4VeFekbr/p/uU9zYeG06vMnqaAAAAChFKNsAAACA83CYDo1cNlI1h9bUtMTpuqnqM3qn5Uy1rtRCLnZeSgNAWVHJt7o+bT9VD9YdpBX7V6j2sDp6Y/5bys7NtjoaAAAASgE+IQAAAADOYcOhDYr/Il73z7xfkd619Faz2bqn7pMq7+VldTQAQBGwGTZdH32XRndcoNjy7fVqwgDVHV5fi3cvtjoaAAAASjjKNgAAAOA0WblZenP+m6r3eT2t3L9a/WIG6dVm36l+hRjZnXj5DABlXXnPEL3deqxebDJWSamH1XxMcz008xGlZKZYHQ0AAAAlFJ8WAAAAACf9vftvNRjRQK8kvKLGwZ30Tsu5urnmnfJxd7E6GgCgmLWN7Kqxnf9Qh4g++nzZMEUPidGMxBlWxwIAAEAJRNkGAACAq15KZooenfWoWoxpoaMZx/RE7Gg923i4ogPDZbMZVscDAFjEy8VHzzR9T++1nirD9NC1312rW7+/VUmpSVZHAwAAQAlC2QYAAICr2syNMxUzLEZDlwzVI00e0W99lqth8DXycLFbHQ0AUELEBjfVOy1m6rFGL2vKhimqMbSGxiwfI9M0rY4GAACAEoCyDQAAAFelpNQk3fL9LeoxoYd8Xby0qN8ifdrlU3m5eFsdDQBQAtltLnqwwTNa9cAq1Q2uq/4z+qvduNbadHiT1dEAAABgMco2AAAAXFVM09TYFWNVc2hNTV0/RW9Wu1bLu45Qs4rNrI4GACgFogOj9ftdv2tk/JtasW+Z6gyvrXfmv6ns3GyrowEAAMAilG0AAAC4amw6vEntv2qvftP7qbZXqFa2fFkvR/eSi83Z6mgAgFLEZth0b61btD7udfUoX0cvJbyihp/X0+Ldi62OBgAAAAtQtgEAAKDMy87N1rt/vqu6n9fV8r1LNKLWHUpo8aJqhDWWKNoAAFco1N1fk+Pf1LRmz+pIyj41H9Ncj//0sFIyU6yOBgAAgGJE2QYAAIAybcmeJWo8qrFemPeCugbV1bqWr+m+WrfI5uFvdTQAQBlxbaV4res2Ug9FttVnS4er1pAa+ilxptWxAAAAUEwo2wAAAFAmpWal6smfn1SzMc10MHmPptR/UD80fVoVgmMkm5PV8QAAZYyPi5eGNH9aC+PfkY+k7t/10K2TblBSapLV0QAAAFDEKNsAAABQ5vy8+WfVHlZbHy/+WPdHttW6uNd0XfVukquX1dEAAGVc85B6Wt55mN6ofr2mJE5XzSHRGrt8tEzTtDoaAAAAighlGwAAAMqMg2kHdfuPt6vLt13kbjq0oOkzGtbwIfn6R0kGL30BAMXDxe6iAQ36a2WHj1XbI0j9Ztyr9l+01qbDm6yOBgAAgCLAJw4AAAAo9UzT1Fcrv1LNoTU1ee1kvVLtWv3b8lW1qhQvObtbHQ8AcJWq4RelhI4faUS9flq+d5nqDK+tgX+8pezcbKujAQAAoBBRtgEAAKBU23p0qzp900l3Tb1L1T3Ka0WLl/R67D1y9a0gGYbV8QAAVzmbYdN9NW/Q+i7D1aN8Hb34+wA1+jxW/+z5x+poAAAAKCSUbQAAACiVchw5en/R+6o9rLb+3rVIQ2v11p8tX1Ktik0kJxer4wEAcIZQzyBNjn9T05o9q8Mpe9VsdDM9MesRpWSmWB0NAAAABUTZBgAAgFJn+b7lajq6qZ6Z+4w6BNbSulav6KFat8rmEWB1NAAALujaSvFa122kHopsq0+XDFOtIdH6KXGm1bEAAABQAJRtAAAAKDXSstL07Nxn1WRUE+09tkOTY+/T1GbPqGJwHclmtzoeAACXxMfFS0OaP60/49+St6Tu3/XQrRNvUFJqktXRAAAAcAUo2wAAAFAqzN40W7WH19bgRYPVN7yV1sW9phujr5Xh5m11NAAArkiLkPpa0Xm43oi+XlM2TlfNIdU1dvlomaZpdTQAAABcBso2AAAAlGj7Uvbplu9vUdfxXeXmyNX8pk9pdOPH5edfRTJ4OQsAKN1c7C4aUL+/Vnb4WLU9gtVvxr1qP661Nh3eZHU0AAAAXCI+nQAAAECJ5DAdGr5kuGoMraFpG6bqzerX6d9Wr6l1pXaSs5vV8QAAKFQ1/KKU0PEjjajXT8v3LVOd4bX1VsLryszJtDoaAAAALoKyDQAAACXOqqRVajm2pR6a9ZAa+1TS6pYD9HK9u+XqEyoZhtXxAAAoEjbDpvtq3qD1XT5Xz6B6GjD/NcUOq6352+dbHQ0AAAAXQNkGAACAEiM9O13P//q8Go5sqM0HN+jruvdobovnVa1CQ8nJ2ep4AAAUi1DP8prY5nXNavGiTpw4qvgv43X3j310KP2Q1dEAAABwDpRtAAAAKBF+3vyzag2rpUELB+nOii21ofUbuqPG9TLcy1kdDQAAS3SJaKW1XUfq+Srd9M2aCarxWTWNWz5GpmlaHQ0AAACnoWwDAACApfal7NOt39+qLt92kZsjVwlNntKYxo8qIKCqZOPlKgDg6ubh7K6BjR/Wims+VLRbgO6Z0V9tx8Vpw6ENVkcDAADASXx6AQAAAEs4TIc+X/q5ag6tqSnrf9Qb1a/Tv61eU5vK7SRnD6vjAQBQotQOqKYFnT7RyHr9tWr/CtUdXkcDfn1RGdkZVkcDAAC46lG2AQAAoNitTlqtVmNb6cGfHlQDn3CtbvWKBtTrK1efUMkwrI4HAECJZDNsurfm9drQZYRuCWmktxYOVJ2hNTV3y1yrowEAAFzVKNsAAABQbNKy0vT8r8+rwcgG2nhwnb6se7fmtXhJ1Ss0lJxcrI4HAECpEOQRoK9bv6JfW70iW3aGOn7TUb0n36T9qfutjgYAAHBVslsdAAAAAGWfaZqaljhNj//8uHYe36m+4XEaHH2jAv2rcFw2AACuUPuKzbQqpL4GrvxC726Yqtmb5+jda97VvY3ul83g31cAAIDiwisvAAAAFKmtR7eq+4Tu6jWxl3xl04Kmz2hckycVGFiNog0AgAJys7vq9Yb3a1XHTxTrFaIHZj2kVqOaalXSKqujAQAAXDX4dAMAAABF4kTOCb0x/w3FDI3RH9sT9GHNm7Us7lW1qtxWcnazOh4AAGVKdLnK+q3DR/qywUPadGiDGoxooCdnParkzGSrowEAAJR5lG0AAAAodL9s/kV1htfRqwmvqmdIfW2Ie01P1rlDzl7BVkcDAKDMMgxDd1bvrg1dR6p/eJw+WTJU0Z9W1fiV38g0TavjAQAAlFmUbQAAACg0u5N366bJN6nzt51lZGdoTuMnNLHp/yksqLZk43DBAAAUhwD3cvq8xbNa3O5dVXT20O1T+6jduNZae2Ct1dEAAADKJMo2AAAAFFh2brbeX/S+agypoZmJM/RW9V5a3ep1dYjqILl4WR0PAICrUuOgOvq70xB9Xvdurdy/XLGf19Mzv/yfUjJTrI4GAABQplC2AQAAoEAW7Fig+iPq65m5z6htQA2ti3tVL9XrK1ffCpJhWB0PAICrmpPNSffH3KSNXUfqroot9P7fH6nGZ9U0cc13LC0JAABQSCjbAAAAcEUOpB3QXVPvUusvWis1/bCmNXhIM5o/q8ohsZKTs9XxAADAaQLd/TW65Qv6K/4dBTu56NYfblOHL9tqw6ENVkcDAAAo9SjbAAAAcFlyHbkavmS4oodEa8Lq8Xqxaneta/26rq3WVXL1tjoeAAC4gGYhsVrSeZiG1rlLy/YsUd3hdfT8nGeUmpVqdTQAAIBSi7INAAAAl2zRrkVqMrqJHpr1kBp6h2tVywF6u35/efiGSwYvLQEAKA2cbE56qNYtSuz6uW4PbapBf72vmp9V1/drJ7O0JAAAwBXgExEAAABc1L6Ufbpzyp1qObalko7v1IR6/TW35YuqEdZYcnKxOh4AALgCQR6BGhf3kv5s85YCDCfd9P3N6vxVe208vNHqaAAAAKUKZRsAAADOKys3S4MXDlb1IdU1cc13erFKdyW2flu31rhOhpuv1fEAAEAhaBnaQEu7DNente/U37v/Vu1htfTCXJaWBAAAuFSUbQAAADin2Ztmq87wOnr212fV1j9a6+Je09sN+suzHEtGAgBQ1thtTnq09q1K7DJCt4Y21ruL3lf1T6ro63+/lMN0WB0PAACgRONTEgAAAJxh85HNunbCteo6vquUla5ZjR7V9ObPqUpofZaMBACgjAvxDNRXcQO0KH6gwpzddee0vmo5qqmW7FlidTQAAIASi7INAAAAkqTUrFS9NO8l1RpWS79vm6f3atyo1a1fV5cqnSVXL6vjAQCAYtQ8pJ4Wdx6qsbH3advhjWoyuonumXKn9qfutzoaAABAiUPZBgAAcJUzTVMTVk9QjSE19M6f7+iW0CZKjHtDz9S9Uy7eoZJhWB0RAABYwGbYdHeN67Sx22g9E9VF36wer+qfVtXgPwcpKzfL6ngAAAAlBmUbAADAVWzJniWKGxen3j/2VrDdTX82fUZfNX1SFYJiJJvd6ngAAKAE8HH10ntNHtWajp+qdbkoPTvvedUeUkM/bfzJ6mgAAAAlAmUbAADAVWh38m7dOeVONRndRJsOrtPI2n30T9xralm5reTsbnU8AABQAlX3q6yZ7QdpVvMXZGSnq/uE7ur6dQclHkq0OhoAAICl+LoyAADAVSQtK03vL3pfgxYOUq4jR89V6aoXq3SXj1+EZPA9LAAAcHFdIuPUPqypPls3UW9snKraw2rp0cYPaUD86/Jz97M6HgAAQLHjExUAAICrgMN06OuVXyt6SLRem/+augfV1Ya41/Vug/vk41+Jog0AAFwWF7uLnqrbRxu7jlDfii318T9DVOWTyvrkr484nhsAALjq8KkKAABAGbdw50I1G91Md069UyF2d/3R9GlNavaMKofGSk4uVscDAAClWLBHoEa1fF7/XvOhGnpV0BNz/k+1hkRr6oapMk3T6ngAAADFgrINAACgjNp+bLtu+f4WtRrXSnuObtOXde/WP3GvKq5yO8nFw+p4AACgDKkbGK0517yvn5o/L+fsTPWa2EvxY1tp2d5lVkcDAAAocpRtAAAAZUxyZrJenPeiagypoRkbpuuVatdqY+u3dGfNG2TzCLA6HgAAKKMMw1DXyNZa1XWEhtW5S+uSVqnRqEa684fe2nV8l9XxAAAAigxlGwAAQBmR7cjWZ4s/U5VPq2jgnwN1U2gjbWz9pl6P7S9PvwiOywYAAIqF3cmuB2vdos3dxui5Kl00ad1kVf+smgbMe1EpmSlWxwMAACh0ZeYTF8MwOhuGkWgYxmbDMJ4/x+23G4ax6uRpkWEY9azICQAAUNhM09SktZPUd0lfPfbzY6rjGaIlLV7U102fUsXgWpKT3eqIAADgKuTr5q13Gz+qDZ2H6rqgunrrz4Gq9mmURi0doVwz1+p4AAAAhaZMlG2GYThJGiqpi6QYSbcZhhHzn2HbJLUxTbOupDcljSzelAAAAIVv/vb5ajammW75/ha5Gs6a1fBRzWv5shpFtJKc3ayOBwAAoEo+4ZrQ5nX9Ff+Oolx8dN9PD6j/0v6anjhdpmlaHQ8AAKDAykTZJqmJpM2maW41TTNL0neSep4+wDTNRaZpHj3549+SKhZzRgAAgEKz9sBa9ZjQQ/Ffxmvv0W0aV6evRtUerC5VO8tw87E6HgAAwFmahcRqYafPNLnxE8rNzVTP73oqbkxz/bnzT6ujAQAAFEhZWVMoTNLpR9rdLanpBcb3kzS7SBMBAAAUgT3Je/TK76/oi5VfyNvZQ+9G36DHojrJ3aeCEnbkSoZhdUQAAIDzMgxDN1bpqHKK05bMmXo98UfFjYtTj6pd9E6H91Q7qLbVEQEAAC5bWSnbzvWp0jnXITAMo63yyrZW570zw7hP0n2SVL58eSUkJBRCRAD4n9TUVJ5bAFyW1JxUfbfrO32/+3s5zFxdH9RVd1S4Qb4uflp81JCO5io101TC9myro5Y+Dnfp4BFpW4IkKTvXlMeJbGUcKyuLQACFJ2PnaqsjAJZxz3Voe4pd+xNP/vuQkyll+UpH+Lf3SpzIcVK0x3UaU6eTftg3Td9tm6q6w+uqU3BH9a10t4Ldgq2OCKAU4vMWAFYxysLa2IZhNJf0mmmanU7+/IIkmaY58D/j6kqaIqmLaZobL+W+o6OjzcTExEJODOBql5CQoPj4eKtjACgFMrIzNGzJMA38c6AOZxxW74ot9FbV7qpcPkZycjljbML2bMVXcrYoaSmWfkTyj5Iim0uS9hzL0O8bDijEh2Pe4erWYXLIWdfNvWm/BUmAkiEp+YQaRvqpRujJ5ZoPbZK2/SH5VLA2WCn139cthzOOaOCqr/TZjt9kGDY90vhhvRD3kgI8AixMCaC04fMWAEXBMIxlpmk2utCYsvJ13SWSqhmGUdkwDBdJt0qafvoAwzAiJP0oqc+lFm0AAABWycrN0udLP1fVz6rq6blPq4F3mJa2eEnfNn1alUNizyraAAAASrMAd3+93/QJbeoyXLeFNNKHf3+sqE8q6Z0/3lJaVprV8QAAAC6oTJRtpmnmSHpE0i+S1kuaZJrmWsMwHjAM44GTw16RFCBpmGEY/xqGsdSiuAAAAOeV68jVVyu/Uo0hNfTgTw+qsouvEpo8pTmtXlbDiJaSM3tbAQCAsivCO0zj4l7Wqms+VJtyUXrp9wGq9mmUhi4eosycTKvjAQAAnFOZKNskyTTNWaZpVjdNs4ppmm+fvO5z0zQ/P3m5v2mafqZpxp48XXCXPwAAgOLkMB36ft33qjO8ju6aepf8DJtmNXpUC1q9ojZR7SUXL6sjAgAAFJvagdGa3u5dLWj9pqq4+OiRnx9V9U+raNSykcrO5Th5AACgZCkzZRsAAEBpZJqmZm2apUYjG+mmyTdJWWn6vv79Whr3urpU7SLD3dfqiAAAAJZpVaGh/uj4iX5p8aJCbM66b+b9qvFZNX357xfKceRYHQ8AAEASZRsAAIBl5m+fr7hxceo2vpuOpe7Xl3Xv1uo2b+qG6tfK8PC3Oh4AAECJYBiGOka00t+dh2pGs2fkazrUd9rdqjWkhiasniCH6bA6IgAAuMpRtgEAABSzRbsWqePXHRX/Zby2HUrU8Fq3a0Obt3VnzRvk5FleMgyrIwIAAJQ4hmGoe6W2Wtblc/3Q+Am5ZGeo94+9VXdoLf2w7gdKNwAAYBnKNgAAgGKyYMcCXfPVNWo5tqX+3btE79e4SZvjB+qB2rfJxTtEMnhpBgAAcDGGYej6Kh21susITWj4sHJOHNWNk29Uw8/raUbiDJmmaXVEAABwleETHQAAgCKWsD1Bbb9sq9ZftNbqfcv1fo2btC1+kJ6qe5fcfcMo2QAAAK6AzeakW6t105quo/Rl/fuVnLJf1353rZqObKiZG2dSugEAgGLDJzsAAABFwDRNzds6T22+aKO2X7bVhqTV+qjmLdrW9l09VfcueZYLl2y8FAMAACgou5Ndd0b31IbuYzS6Xj8dPL5TPSb0UIPP67G8JAAAKBZ8wgMAAFCITNPUnC1zFDcuTtd8fY22HFyvz2Ju09b4gXqiTh95+FKyAQAAFAVnJ2f1q3mDNnYfq3Gx9yotNUk3Tr5RdYbG6NtV3yrHkWN1RAAAUEbxSQ8AAEAhME1TszfNVouxLdTpm07acXijhsb01uY27+iROrfL3bciJRsAAEAxcHZyVt8avbS+22hNaPiwbJkpumPKHar5WXWNXTFWWblZVkcEAABlDJ/4AAAAFECuI1c/rPtBTUY3UdfxXbX36FZ9Xut2bY4fqIfq9JYbx2QDAACwhJOTXbdW66aVXUdoSpMn5ePIVb/p/VTtkygN+2eoTuScsDoiAAAoI/jkBwAA4Apk5mRq9PLRihkWoxsn36ijyXs0qnYfbYp/V/fXvk2uPhUo2QAAAEoAm81J10V10NIuwzWr2bMKc3LVw7MfUdTHlfTRog+VlpVmdUQAAFDK8QkQAADAZUjOTNbghYNV+ZPKunfGvfJy5GpS7H1KbDtI/WvdKhfvEEo2AACAEsgwDHWpFK+FnT7Tb60GqIZrOf3f3KdU6aMIvf77qzqUfsjqiAAAoJSyWx0AAACgNEhKTdIniz/RsCXDdDzzuNqXr6uvat6i9hWayHAvZ3U8AAAAXCLDMNS2YnO1rdhcC/ct1aD1P+i1P97QoEXv6e56ffV/LZ5WFf8qVscEAAClCGUbAADABWw5skXvL3pf4/4dp6zcLN1QoYmeq9RejYJjJVcvq+MBAACgAFqGNtL00EZad3ijPlj/vUavGK3Pl4/UDdHX6ZlWz6txWGOrIwIAgFKAsg0AAOAcVuxbofcWvadJayfJbjjproot9HSla1S9fIzk7G51PAAAABSimIDqGtPqRb2Vsl+frv9ewzfP1uQNP6pNeCs90+p5danWRTaWCgcAAOdB2QYAAHBSriNXMzbO0Md/f6z5O+bL29lDT1XuqCcqX6MK/lUlJxerIwIAAKAIhXqHaGCTR/RivTs1asNUfbTtF3Wf0F21Amro6VbPqXed3nLhNSEAAPgPvpIDAACuesmZyfrk709UfUh19ZrYS9sOrtf7NW7UzraD9V6jh1ShfAxFGwAAwFXE29VH/1fvTm3tMU5f179ftqwU3T3tblX+KEKDFryrIxlHrI4IAABKEPZsAwAAV61tR7fp08WfasyKMUrJSlHLgJoaFHu/rqvYQnbPAImlggAAAK5qzk4uuiO6p26v1kNzdv2pwRun6vnfXtDrf7yuO+rcrkebPq46wXWsjgkAACxG2QYAAK4qpmnqz51/6qO/P9K0xGmyGTbdXKGJHg+PV5OQepKrt9URAQAAUMIYNps6RbZWp8jWWnVonT7bME1fr/xKo1aMUduI1nqs+ZPqUb2HnGxOVkcFAAAWoGwDAABXhazcLE1aO0kf/f2Rlu9bLn9XHz0X1UUPR7ZVmH+UZHezOiIAAABKgbqBMRrVKkbvph/W6I3TNHT7b+o1sZcq+UTo4SaPqF+D/vJz97M6JgAAKEasjQQAAMq0Hcd26KV5Lyniowj1mdJHGWkHNaLWHdrVbrDeaXi/woJiKNoAAABw2QI8AvRc7D3a2mOcfmj0qCLtbnrm12dV8cMwPTDjPq09sNbqiAAAoJiwZxsAAChzch25+mXLLxq+dLhmbZolSeoWHKuHa96qjhWayHAvJxmGtSEBAABQJtidnHV91S66vmoXrTywRp9tnK4v//1CI5aPUvvIeD3S7HF1r95ddhsfwwEAUFbxrzwAACgzDqYd1NgVYzVi2QhtO7ZNwW7+eqFKF90X3kYRAVXZgw0AAABFql5QbY0Oqq130w9pdOI0Dd2Rt8RkBc8Q9WvQX/0b3qsI3wirYwIAgEJG2QYAAEo10zS1cNdCDV86XN+v+15ZuVmKL19b78bep+vCmsrFM0jiQPUAAAAoRoEegXq+fj89XfdO/bQ9QSO2z9VbC97WWwveVpcqHXV/44fUtVpX9nYDAKCM4F90AABQKiVnJuvbVd9q+NLhWn1gtXycPXV/eGs9EB6nmPI1JRcvqyMCAADgKmd3clbPKh3Us0oHbT+2Q2M2/6Qxuxao55ZfVNGrgvo16K9+Dfor3Dfc6qgAAKAAKNsAAECpYZqm/tjxh8b+O1aT105WRk6G6peL0qjad+q2ii3l6R0qOfHyBgAAACVPpXKRerPRQ3oltr9mbv9NI7bP0xt/vKk3F7ylrlU66/7GD6pL1S5yYlUGAABKHT6NAgAAJd7u5N368t8vNe7fcdpydIu8nT3Up0JT3RPWTE2CY2W4+VgdEQAAALgkznYX9araWb2qdta2Y9s0etNPGrtroWZunqVw7zDdU7+f7oy9S1F+UVZHBQAAl4iyDQAAlEiZOZmanjhdY/8dqzlb5shhOtS2fG29Wvce3RDWVB7eoRLHuAAAAEApVrlcZb3d+BG9Vv8+zdj+m0Zs/1Vv/PGmXv/jDbUOb6m76t+jm2Jukrert9VRAQDABfAJFQAAKFFW7l+psSvG6pvV3+hIxhFV9Civl6p0Vd+wlooKqCq5eFodEQAAAChUznYXXV+1s66v2lm7ju/WN1t+1hd7Fqrf9H56dNYjuqHm9bor9m61rdxWNsNmdVwAAPAflG0AAMBy+1P3a+Kaifpq1Vdavm+5XGzO6hXSUPfUaqb2oQ3k5O4v2fhQAQAAAGVfuG9FvdCgv56PvUeL9y3TF9vn6bv1U/T16m8V4V1Rferdqbti+6paQDWrowIAgJMo2wAAgCWSM5M1Zf0Ufbv6W83bNk8O06H65aL0Wcyt6h3WUv6+4ZLdxeqYAAAAgCUMm03NwhqrWVhjfZSVpunbf9MXOxdo4J8D9faf76hFWFP1rd9PN9W6SeXcylkdFwCAqxplGwAAKDZZuVmavWm2xq8Zr+mJ03Ui54Qqe4boxSpd1Tu0iWqWryG5eFkdEwAAAChR3F08dUv1Hrqleg/tTd6jb7b8oi/3LNR9M+/TI7MeUecqHXVb3dvVo3oPebLsOgAAxY6yDQAAFCmH6dCCHQs0fvV4TV43WUdPHFV5t3LqX7Gleoc0VrOgOjLcfSWOPQEAAABcVAWfMD1b/x49U6+vlh1YqQnbEzRx10JN3zRTHnZ3XVu9h26t01udq3aWq93V6rgAAFwVKNsAAEChM01Ty/ct16S1kzRhzQTtSt4lT7u7rguur9tDG+ma4Fg5ewZKNl6KAAAAAFfCsNnUKKS+GoXU1+DcHP259x99t+tPTd48W9+tmyRfVx9dX+N63VrnNrWr3E52XnsDAFBk+FcWAAAUCofp0D97/tH3677XD+t/0PZj22U3nNQpqI4GVe6ka0Mby9M7RHJytjoqAAAAUKbYnOxqHd5CrcNb6JOcE/pt1yJ9t3uRflg7UeNWfqHy7gG6qdbNurX2bWoZ0VI2VpUAAKBQUbYBAIArluvI1aJdi/T9uu/144YftTt5t5xtdnUoX1uv1Omra0MaKsC3osTyNQAAAECxcLa7qVPldupUuZ2GZ6Xp551/aMLuvzRu+RgNWzpcIZ5Buq5GL/Wqeb3iK8XLxcnF6sgAAJR6lG0AAOCy5Dhy9MeOP/T9uu81ZcMU7U/dL1cnF3UuX0cDK3VS95D6KudTQbK7WR0VAAAAuKq5uXjquqpddF3VLkrNTNaM7Qmasm+pvv73C32+bITKufqqe/Xu6lXzenWq0kmeLp5WRwYAoFSibAMAABeVnp2ueVvnaXridE1NnKpD6Yfk7uSqbkH1dGPVa9U1uJ68vSuwBxsAAABQQnm5+ui26Gt1W/S1yshK1a+7FunHvf9o+oap+mb1t3K3u6lTlY7qVfMG9ajeQ37uflZHBgCg1KBsAwAA57Q3Za9mbpypGRtn6Netv+pEzgl52d3VI6ieboi+SZ2DY+XpHSyx7AwAAABQqri7eKlHlY7qUaWjcrIztWDvYv24d7Gm7FigqYnTZbfZFR/RWr1iblD36t0V4RthdWQAAEo0yjYAACBJMk1Ty/ct14yNMzRz40wt27dMklTJM1j3hrVUj6C6ah1UR64egZITLyEAAACAssDu7Kq2ka3VNrK1PsnN1tKklZqy+y/9mLRcD8/6TQ/Pelh1yseoa/Ue6latm5qHN5fdxvsBAABOx7+MAABcxTKyMzRv2zzNSJyhmZtmam/KXhky1Dygut6p3ks9guupll81Ge6+kmGzOi4AAACAImRzclaTCo3UpEIjveNwaMPhRM3as1g/HVipDxa9r0ELB6mcq686VemkbtW7q3PVzirvWd7q2AAAWI6yDQCAq4hpmlp7cK3mbJmjOVvmaP6O+fnLQ3YqX1s9KndS16B6Ku9TUXLxsDouAAAAAIsYNptqlq+pmuVr6ilJx9MP69fdf+mnpJWateVnTVw3SYYMNanQWN2qd1fXal1VP7S+bHxJDwBwFaJsAwCgjDuYdlBzt87NL9j2pe6TJNUMrKn76tyubk6eahNUT66egZKTs8VpAQAAAJREvh4BuqF6d91QvbscuVlacWCNftr9l2al7tarCa/qlYRXFOIVovaV26tDVAe1j2qvij4VrY4NAECxoGwDAKCMyczJ1KJdi/LKta1ztHzfckmSj6uPagfXVv9G/XVv7L0K9w2XkvdJibMln1CLUwMAAAAoLWxOLmoY2kANPUP0SlS8Drh56+fNP2vSukmasXGGvl39rSSpekB1dYjqoA5RHRRfKV6+br4WJwcAoGhQtgEAUMrlOHK0Yt8KJWxP0O/bf9f8HfOVnp0uu82u6MBo3VLnFtUNqavowGjZDJtCPEPyijYAAAAAKARBnkG6s96dahLeRP8e+FdJKUlatneZViet1ujlozV0yVA5GU5qWKGhOkZ1VIcqHdSsYjO5OLlYHR0AgEJB2QYAQCmT48jR8n3LlbA9QfN3zNeCHQuUkpUiSQr3CVdcpTjVDamr2sG1FewRLFe7a/62p8YBAAAAQFGw2+yqF1JP9ULqSZLSstK0fN9yrdi3QmuS1uidP9/RWwvekruzu+Ii4hQfGa/Wka3VqEKjM967AABQmlC2AQBQwp1eriVsT9CfO//ML80ifCPULKKZagbVVO3ytRXmEyZ3u7sMw7A4NQAAAABIni6eiouMU1xknEzT1OGMw1qyZ4lW7l+ptUlrNWfLHEmSm91NTcOaqk1kG7WObK1mFZvJ08XT4vQAAFwayjYAAEqYlMwULd6zWIt2LdKiXYu0cNdCpWalSvpfuRZTPkYxQTH55ZrNsFmcGgAAAAAuzDAMBXoEqku1LupSrYtM01RSWt6Sk+sOrNOGgxv01oK35PjDIbvNroahDfPLt5YRLVXOrZzVDwEAgHOibAMAwEKmaWrbsW35xdqiXYu0+sBqOUyHDBmKLBepZuHNVCuolmoF1VIFnwqUawAAAADKBMMwFOIVom7Vu6lb9W4yTVNHMo5o+b7lWndgndYfXK8P//5Q7y16T4YM1QqqpeYVm6t5xeZqVrFZ/nGpAQCwGmUbAADF6ETOCS3ft/yMci0pLUmS5OnsqWoB1dQrppeqB1ZXdGC0gjyD5ObkxrKQAAAAAMo8wzAU4BGgDlU6qEOVDpKk5BPJWpm0UquTVivxUKLGrx6vUctHSZJ8XH3UNKxpfvnWJKyJAjwCrHwIAICrFGUbAABFJCs3S2sOrNHSvUvzT6sPrFaOI0eSFOYdpujy0epes7uqB1RXVf+q8nLxkouTi8XJAQAAAKBk8HHzyT/mmyRl5mZqy+EtWnNgjTYd3qSNhzdq3rZ5cpgOSVIVvypqEd4iv3yrE1RHrnZXKx8CAOAqQNkGAEAhyHHkaP3B9fml2pK9S7QyaaWycrMk5X3jMsovSt2ju6uKfxXVKF9Dod6hLAkJAAAAAJfB1clVMUF5x7CWJIfp0LETx/L3fNt8eLNmbJyhr1d9LUmy2+yKKR+jxhUaq0FoAzUIbaB6wfXk7uxu5cMAAJQxlG0AAFym9Ox0rTmwRiv3r9TKpJVasX+FVuxboYycDEl5y0FG+UepU7VOivKLUtWAqgr3DZeHs4ecbc4WpwcAAACAssNm2OTv7q82ldqoTaU2kqSc3BxtP75d6w6u07Yj27T16FZNWjdJY1aMkSQ5GU6KDozOL+AahjZUvZB68nLxsvKhAABKMco2AADOwzRN7U7erVVJq7QyKa9YW7l/pTYd2ZS/RIm7s7sqlauk+Kh4VfGroioBVRRZLlKezp4sBwkAAAAAFrA72VXVv6qq+lfNvy4rN0u7kndpw8EN2nZ0m7Ye2appidP05covJUmGDFXxr6K6wXVVN6iu6gbXVZ3gOoryi2I1EgDARVG2AQAg6WjGUa0/tF7rDq7L22staaVWJa3SkYwj+WNCvUIVXi5cvWJ6qVK5SqrkV0kVfSvK0+4pZyf2WAMAAACAksrFySXvC5J+VfKvy3HkaE/yHq0/uF5bjm7RzmM79dfuvzRl/RSZMiVJHs4eiikfo7pBeeVb3eC6qhNUR+U9y1v1UAAAJRBlGwDgqmGapg6mH9T6g3ml2rqD67TuUN75/tT9+ePc7G6KLBep+qH1FekXqUjfSFX2ryx/d3+5ObnJyeZk4aMAAAAAABQGu82uyHKRiiwXmX+dw3ToWMYxbT66WVuPbNWu47u08/hO/bDhB439d2z+uCDPINUqX0s1A2uqRmAN1Syfdx7mHSbDMKx4OAAAC1G2AQDKnKzcLG07uk0bD2/UpiObtPHwxvxy7XDG4fxxHs4eCvcNV43yNdS+SntV9K2ocJ9whfmGycPuwTKQAAAAAHCVsRk2+Xv4q4lHEzUJa5J/fXZutval7tPmI5u1/dh27Tq2S7uTd+ufPf8oLTstf5yXi5eiA6LzyreAGvlFXFX/qrzHBIAyjLINAFAq5TpyteP4jrxC7fCm/FJt05FN2n5se/4x1STJ28VbFX0rql5oPVX0raiKPhUV7huuUO9Qudnd5GJz4ZuHAAAAAIDzcnZyVoRvhCJ8I864PjMnU0lpSdp2dJt2Ht+pfSn7tCd5j37e/LO+WfVN/jgnw0kRvhGq6l9V1fyr5R9Trop/FUX5RcnN7lbcDwkAUIgo2wAAJdbRjKPadmybth3ddsb51qNbtfXoVmU7svPHuju7q4J3BQV7Bys2NFYh3iF5x1jzDVeAR4BcnVw5rhoAAAAAoFC52l3PWcLlOHJ07MQxbT+2XTuO7dDe5L3an7pfW45u0aJdi87YG86QoTCfsPwiropfFVX1r6rKfpUV6Rspf3d/viAKACUcZRsAwBKmaeroiaPanbxbu47vOrNUO3n5eObxM7bxcvFSkGeQAj0D1TWoq0K9QxXsFawwnzAFeQbJze4mZ5uzbIbNokcFAAAAAEDe8eACPQIV6BGoRhUa5V9vmqaycrN0KOOQdh7bqb0pe5WUmqT9qfu1J2WPVuxbcc73wpG+kapUrlL+6fSfAz0CKeMAwGKUbQCAQmeapo6dOJZXpCXvyi/UdqfknZ+6Lj07/YztXJ1cFeSVV6Y1DW+qIK8gBXkGKcgrSBW8K8jPzU8uTi5ytjnzRgIAAAAAUOoYhiFXu6vCvMMU5h12xm2maebvEXdqScoDaQd0KP2QDqYd1JqDa5SwPeGMveKkk8cj9wlXuG+4KvpUVJh3WP55mE/e5UCPQL6YCgBFiLINAHBZ0rLStD91/1mnPSl7zijW/vvi32bYFOAeIH8Pf/l7+KtqYFUFegQqwCNA/u7+CvEKUZBnUP5yj7wJAAAAAABcTQzDkLOTs8p7lld5z/Jn3e4wHcp2ZOtIxhHtS9mnfSn7dDDtoA6lH9KBtAPafmy7VuxboaMnjp5xHHNJcrY5q4J3hfzyraJ3RYX5hOUXcxW8KyjYK1gezh7F9XABoEyhbAMAKDs3WwfTD56zRDt12pe6T/tT9ys1K/Ws7W2GTX7ufgpwD5Cfh5+i/KMU4BGQX66deqNwaplH9kwDAAAAAODy2AybXJ1cFeoVqlCvUCn0zNtP7Rl3IueEDqYfVFJakg6lHdKRjCM6kn4k7zzjiLbt2KYjGUeUmZt51hynDt8Q7BmsEK8QBXsGK9gr+JznXi5evLcHgJMo2wCgjMl15OroiaM6lH7okk//XQ/+FC8XL/m5+8nX1VdBXkGqFlgt/+dybuVUzq2cAj0C5efhJze7m+w2u+yGnRfbAAAAAAAUs1N7xjk7Ocvb1VtRflHnHJfjyFFWbpaOnTimpLQkHUw7qCPpR3Q887iOn/jfade+XUo+kazkzORz3o+73T2vmDtZvp360m2Ae4ACPALyVrM5efnUuYuTS1H+EQCAZSjbAKAEcpgOJWcm69iJYzqacTTv/MTRMy6fcZ5xVEcyjuhQet431kyZ57xfVydX+bj5yNvFW16uXgr2Dla1wGrydvWWj6uPyrnnFWj+7v4K8AiQp7NnXoFms8vJcKJEAwAAAACglDv1Pt/D2UMVvCucd1yuIzdvT7ncEzqS/r/PHJJPJOt45nEdO3FMySfyPrtYfWC1UrNSlZKZcs495k7xcvHK+8zBPSD/0BIB7nmHlzj1pd5ybuXO+JJvObdy8nXzld3GR9kASi6eoQCgEGXnZislK0UpmSlKzkw+7+W1W9bqu9Tvzrguv1w7cVTHTxw/b2Em5S0d4eXiJQ9nD3m6eMrD2UN+Hn6K8IuQj6uPvF295e3inX/u6+4rf3d/eTh75Bdndpud46IBAAAAAIBzcrI5ycnmJFe7q3xdfVXZr/J5xzpMR145Z+YoPStdRzOP6njGcR3PPK6UzJT8Ii4lM0UpWSlKzUzVtuPbtObAGqVkpSgtK+2Cn4NIkqezp3zd8ko4Pze//BKunGs5+bj6yMvFS/t379e2Fdvk5eKV/5nIfy+72d34MjGAQldmyjbDMDpL+kSSk6TRpmm++5/bjZO3d5WULqmvaZrLiz0oAEuZpqkTOSeUnp2u9Ox0pWWn/e9y1v8u//e2/Ntzzvw5JStFySdOFmlZKTqRc+KScrjYXORxyENudje5O7vLze4mN7ubwnzDVL18dXk6e8rTJe/k4eIhT2fP/BeHPq4+8nTxlLPNWXbDLpvNJifDieIMAAAAAABYwmbYZHOyyVnOcre7K8AjQPK78DamaSrXzFWumavs3GylZqXmfVn5ZCF3+uc0aVlpSstOU0ZWhtKy03Q887j2pu7Nuz0rb0yumZt3x1suPK+T4SRv17zizcvFS94u3vll3alSzsPZ44pObnY3Pp8BrlJlomwzDMNJ0lBJHSTtlrTEMIzppmmuO21YF0nVTp6aShp+8hzAVSAjO0PlB5dXenb6Rb8p9V82w5Zfhrk4ucjV7ioXJxe5OLnI3e6uCr4V5O7sLne7u9yc3eRud8/7+WSJduo2TxfP/BLNvs0u52rO+SWZk42yDAAAAAAAXD0Mw5DdsMsuu1ydXOXl4qUQr5BL3t5hOpRr5ubvVZeZk6nUjalKD0tXanaq0rPTlZGdoRM5J5SRnaHMnExl5GToRPaJvOtyMvKv35WySydyTuSNyc5QVm7WJX+h+r/c7e76q99fqhdS74q2B1A6lYmyTVITSZtN09wqSYZhfCepp6TTy7aekr4yTdOU9LdhGOUMwwg1TXNf8ccFUNxc7a66K/YuJaUn5Rdlbna3/OLM1clVLnaX/+1p5uSWX5y5OLnkl2E22fLODZsMw7jigizVlioPZ49CfpQAAAAAAABXh1Ofz0iSnCQPZw85uzorPDD8su/LNE05TEfeSY78Au9Ezon806miLiMnr6DLys1SVk6WMnMz83/OzM3MK+lYpRK46pSVsi1M0q7Tft6ts/daO9eYMEkXLNtSUlL0+uuvF0ZGABYLOvnf+ZgylXHyv2KxqHimAc5ljub855pd5xyH0mf+31YnKK02S//5/+Iiq88AV6WFkz+3OgJgqc3nvHZ3MacoO3jdUlZ8Y3UA4EzF8HmLy8n/zmdq4lRN1dSiDwKgxCgrZdu5vivw33XiLmVM3kDDuE/SfZIUGhpasGQAAAAAUAq1URurIwAAAABAqWDkrapYuhmG0VzSa6Zpdjr58wuSZJrmwNPGjJCUYJrmhJM/J0qKv9gyktHR0WZiYmKRZQdQvDJzM62OIElatGCRWsS1sDoGrlJ2wy4nm9P/rsi+snXoUfIk/PmX4ls1tzpG6eTkItn+tzTwiexcC8MAJcegd96SJD334ssWJwFKBhcnm2y2k9/lNU0pp2S8vyiNeN1ShthdJSPv/wuH6VC2I9viQLialZTPW1xsLjIM1pIEygrDMJaZptnoQmPKyp5tSyRVMwyjsqQ9km6V1Ps/Y6ZLeuTk8dyaSjrO8dqAq4+rk6vVESRJhowSkwWQs5vVCVBYDIPfZyFxc3a6+CDgKsL/E8A58O9uwfDnVybZDBvvdWEpPm8BYJUyUbaZppljGMYjkn6R5CRprGmaaw3DeODk7Z9LmiWpq/KWWE+XdLdVeQEAAAAAAAAAAFA2lImyTZJM05ylvELt9Os+P+2yKenh4s4FAAAAAAAAAACAsst28SEAAAAAAAAAAAAAzoWyDQAAAAAAAAAAALhClG0AAAAAAAAAAADAFaJsAwAAAAAAAAAAAK4QZRsAAAAAAAAAAABwhSjbAAAAAAAAAAAAgCtE2QYAAAAAAAAAAABcIco2AAAAAAAAAAAA4ApRtgEAAAAAAAAAAABXiLINAAAAAAAAAAAAuEL2wrgTwzCCJDWRVFdSpCQ/Se6SMiQdkbRD0ipJ/5imebAw5gQAAAAAAAAAAACsdsVlm2EYVSTdIamnpHqXsd2/kqZK+sY0zW1XOj8AAAAAAAAAAABgtcteRtIwjI6GYfwsaaOkV5RXtBmXcYqV9JqkzYZhzDYMo0OBHwUAAAAAAAAAAABggUves80wjFaS3pXU/NRVJ88PS/pH0mJJ6yUdPXldsiRfSf4nTzUlNVXecpP+J7ftKKmjYRiLJD1vmubCgjwYAAAAAAAAAAAAoDhdUtlmGMa3km7V/wq23ZImSPrWNM1VlzupYRh1JfWWdJukcEktJf1hGMYE0zTvuNz7AwAAAAAAAAAAAKxwqctI3qa8ou03SdeYphlhmuZzV1K0SZJpmqtM03zeNM1ISdecvF/j5DwAAAAAAAAAAABAqXCpZdtvkuJM07zGNM3fCjOAaZq/maZ5jaS4k/MAAAAAAAAAAAAApcIlLSN5sgwrUieP19ahqOcBAAAAAAAAAAAACsul7tkGAAAAAAAAAAAA4D8o2wAAAAAAAAAAAIArVKCyzTAM/wJu37Ug2wMAAAAAAAAAAABWKuiebasNw2h3uRsZhuFiGMZnkmYUcH4AAAAAAAAAAADAMgUt20IlzTEMY5BhGPZL2cAwjNqSlkp6qIBzAwAAAAAAAAAAAJYqaNmWK8mQ9LSkvwzDqHqhwYZhPCrpH0m1Tm6XWMD5AQAAAAAAAAAAAMsUtGyLk7RdecVZA0krDMO4+7+DDMMobxjGTEkfS3I7OX60pEYFnB8AAAAAAAAAAACwTIHKNtM0/5ZUT9K3yivQPCWNNgxjomEYvpJkGEZnSaskdTk55qikG03TvM80zfSCzA8AAAAAAAAAAABYqaB7tsk0zVTTNPtIul3SceUVajdKWmkYxhhJP0kKPnl9gqS6pmn+WNB5AQAAAAAAAAAAAKsVuGw7xTTNCZLqS1qkvGItQlLfk5ezJL0oqb1pmnsKa04AAAAAAAAAAADASoVWtkmSaZrbJU049eNp5z9L+sA0TfNc2wEAAAAAAAAAAAClUaGVbYZh+BmG8aOkT5VXsBmSck+e95D0j2EYNQprPgAAAAAAAAAAAMBqhVK2GYbRVtIqST2VV64dk3SzpKaSNp68rq6kZYZhPFAYcwIAAAAAAAAAAABWK1DZZhiG3TCMdyXNlVRBeaXaH5Lqmab5vWmaK5R3HLcxJ29zlzTUMIxphmEEFCw6AAAAAAAAAAAAYK2C7tn2l6RnTt5PrqRXJLU1TXP3qQGmaWaYpnmvpBslHVFe6dZd0mrDMDoUcH4AAAAAAAAAAADAMgUt2xoqrzzbJinONM23TNM0zzXQNM0fJcVKmn9ymxBJswo4PwAAAAAAAAAAAGCZwjhm2zeSYk3TXHyxgSf3eGsn6SVJ2YU0PwAAAAAAAAAAAGCJgpZdd5qmeadpmimXuoGZZ6CkVpK2FHB+AAAAAAAAAAAAwDIFKttM0/ymANsukVS/IPMDAAAAAAAAAAAAVrJ0GUfTNNOsnB8AAAAAAAAAAAAoCI6ZBgAAAAAAAAAAAFyhSyrbDMMoluUeDcNoUBzzAAAAAAAAAAAAAIXhUvdsW2oYxhTDMOoVRQjDMOobhjFN0j9Fcf8AAAAAAAAAAABAUbicZSSvlbTcMIyZhmHcYhiGW0EmNgzDzTCMWw3DmC1pqaQeksyC3CcAAAAAAAAAAABQnOyXOK6xpKGSmkrqcvKUahjGFEm/S/rHNM31F7sTwzBiJDWRFC+plySvUzdJ+kvSI5cTHgAAAAAAAAAAALDSJZVtpmkul9TcMIzrJb0mqbYkb0l9Tp5kGEaKpE2Sjpw8pUjykeR/8lT15DanGCfPV0l6zTTNqQV7KAAAAAAAAAAAAEDxutQ92yRJpmn+KOlHwzA6SnpQUldJzidv9pHU4AKbG6ddzpI0S9Iw0zR/vZwMAAAAAAAAAAAAQElxWWXbKaZpzpE0xzAMf+UVbh2Ut8RkNZ1Zqp3ikLRR0mJJcyXNMk3z6BUlBgAAAAAAAAAAAEqIKyrbTjFN84ikb06eZBiGi6Rw5S0b6SopU3lLSu40TTO7YFEBAAAAAAAAAACAkqVAZdt/maaZJWnLyRMAAAAAAAAAAABQptmsDgAAAAAAAAAAAACUVoW6Z5skGYYRJKmxpAqSvCSlStoraYlpmgcKez4AAAAAAAAAAADAKoVWthmG0UvS05KaXWDMX5LeN01zamHNCwAAAAAAAAAAAFilwMtIGobhYhjGJEnfK69oMy5wai7pB8MwJhmG4VLQuQEAAAAAAAAAAAArFcaebT9I6qq8Mk2S1kn6TdJmSWmSPCVVldRWUq2TY26Q5Cbp2kKYHwAAAAAAAAAAALBEgco2wzBuldRNkqm847L1M03zlwuM7yhpjKQwSd0Mw7jFNM2JBckAAAAAAAAAAAAAWKWgy0j2O3meJqnNhYo2STJNc46keEmpJ6/qX8D5AQAAAAAAAAAAAMsUtGyrp7y92saYprnlUjY4OW6M8padjC3g/AAAAACAYrRgwQLdcMMNCg0Nlaurq0JDQ9WxY0fNmjXrjHGZmZkaOnSomjRposDAQHl5ealmzZp67LHHtGPHjkueb9OmTRo0aJDatWun8PBwubi4KDg4WD179tTvv/9+zm0qVaokwzAueHrzzTfP2Gbp0qVq06aNfHx8FBUVpVdeeUVZWVln3bdpmmrdurWaNWsmh8NxyY8DAAAAQNlV0GO2eZ08X3KZ250a71HA+QEAAAAAxeStt97SgAEDFBgYqO7duys0NFSHDh3SihUrlJCQoK5du0qScnJy1L59ey1cuFA1atTQbbfdJldXVy1ZskSfffaZvvrqKy1atEgxMTEXnXPAgAGaOHGiYmJi1LVrV/n7+ysxMVHTp0/X9OnT9cknn+ixxx47Y5snnnhCx44dO+u+TNPUwIEDlZ2drS5duuRfv2fPHrVr105+fn669957tXr1ar355pvKyMjQ4MGDz7iPIUOGaPHixVqxYoVstoJ+fxUAAABAWVDQsm2vpMqSnC5zu1Pj9xZwfgAAAABAMZg8ebIGDBiga665Rj/++KO8vb3PuD07Ozv/8pQpU7Rw4UK1b99ec+bMOaOUevXVV/XGG2/o/fff19ixYy86b+fOnfXcc8+pfv36Z1w/f/58dejQQc8884xuuukmhYaG5t/2xBNPnPO+fvnlF2VnZ6t+/fpq1KhR/vXffPON0tLStHLlSlWuXFmS1K5dOw0bNkzvvfeeDMOQJG3fvl0vvviiXnnllUsqCgEAAABcHQr6NbzfTp7HXeZ2ccpbfvK3iw0EAAAAAFjL4XDoueeek4eHh8aPH39W0SZJzs7O+Ze3bt0qSerWrdtZe3/17NlTknTw4MFLmrtv375nFW2S1KZNG8XHxysrK0uLFi26pPsaOXKkJOn+++8/4/odO3aofPny+UWbpP9v777D7aoK9AF/KwmBXEMJEGpAAgIKKIi0cRQiiIIFUBCQFhwp+kMBKQODI0UEdXB0kNGhGWAAGyWELgRMQJHQRIqAdMbQEYiQRpL1++OexJt+c1LOzc37Ps957t77rLP3dw64PZfvrr2z5ZZbZuzYsXn11VenbTv44IOz/vrr57jjjuvU8QAAgCXD/JZtP04yMckBpZQtO/OCUsoWSQYnmdB4PQAAAF3YHXfckaeffjqf+tSn0q9fv1x33XX5/ve/nzPPPDN/+MMfZhq/8cYbJ0luuOGGme5rdu211yZJPv7xj893rqkFX69ec79oy0svvZRrrrkmffv2zT777DPdc2uvvXZeeeWVPPfcc9O23XPPPWlra8vKK6+cJDnvvPMyYsSIDBkypFPHAwAAlhzz9RtCrfWhUsrBSX6W5OZSyjFJLqy1TppxbCmlV9pLth+kfVbbQbXWh+fn+AAAACx8d9/dftvtVVddNZtvvnkefPDB6Z7fdtttc/nll6d///5J2me0ff7zn8+VV16Z97///fn4xz+e3r175957783vfve7fP3rX8/Xvva1+cr07LPP5pZbbklbW1u23XbbuY4fMmRI3nnnnRx44IEzzczbb7/9ctppp2W77bbL7rvvngcffDC33nprjjrqqJRSMnr06Bx77LE5/vjjs9lmm81XbgAAoPuZr7KtlHJiY/HmJJ9Kck6S75VSbk/yRJKxSdqSvCfJR5Ks2Bh/fZL3dHj9TGqt356fbAAAACwYL7/8cpLk7LPPzsCBAzN8+PBsvfXWefbZZ3P00UfnN7/5Tb7whS9kxIgRSZJSSi6//PJ8+9vfzqmnnpo///nP0/a1ww47ZJ999knPnvN66+9/mDBhQvbdd99MmDAh//Ef/5F+/frNcXytNeeff36S5JBDDpnp+QEDBmT48OE55phjcs4552TllVeedm+2pP2ykwMGDMi3vvWtPPDAAzn88MNzxx13pG/fvtl///1zxhlnpHfv3k2/HwAAYPE2v9e+ODnts9TS4eeKSXaZxdjSYcynGo85UbYBAAB0AZMnT07SXlpdfvnl2XTTTZO0Xy5y6NCh2WCDDTJy5Mj84Q9/yD/90z9l/PjxOeCAA3LDDTfkJz/5SXbddde0tbXl97//fQ4//PBsu+22ueyyy6bdv21es+y///75/e9/n7322ivHHHPMXF8zfPjwPPXUU9l8882zxRZbzHLM1ltvndtvv32m7RdffHFuvPHG3HHHHZk0aVJ23nnn9OvXL8OGDcsTTzyRY445Jr17984ZZ5wxz+8FAADoHub3nm1Je4nW8TGrbXPaPruxAAAAdAFTZ46tu+6604q2qfr06ZNPfvKTSZK77rorSfK9730vl112WU477bQceuihWW211bLccstl5513zuWXX5533nknRxxxxDznmDx5cvbbb79cdtll2XPPPXPJJZeklLn/CnnuuecmmfWstjl56aWXcuSRR+Yb3/hGttpqq1x66aV5/vnnc/bZZ2fnnXfO17/+9ey3334566yzMnbs2Hl+PwAAQPcwvzPbPrZAUgAAANBlbbjhhkmSFVZYYZbPTy3jxo0blyS59tprkyQf+9jMvzJuuummWXHFFfPss8/mtddey0orrdSpDJMmTco+++yTyy67LPvss0/+93//t1OXonz55ZczbNiw9O3bN/vss0+njjXVYYcdlpVWWinf/nb7hVceeeSRJMnmm28+bcyHPvShDBkyJE8++WTe//73z9P+AQCA7mG+yrZa68gFFaRZpZQVk/wqyTpJnkmyZ6319RnGrJXkf5OslmRKknNrrWcu2qQAAACLp2233Ta9evXK448/nokTJ850f7KHHnooSbLOOuskab+nWpK88sorM+1rwoQJGTNmTJJ0+j5nEydOzJ577plhw4blgAMOyAUXXJAePTp3oZYLLrgg77zzTg488MAsu+yynXpNklx++eW58sorM3LkyPTp0ydJ+2U0p76Htra2JMn48eM7vU8AAKB7WhCXkWy145PcUmtdP8ktjfUZTUpydK31fUm2SXJYKWWjRZgRAABgsbXyyitnr732yptvvjltltdUN998c37zm99k+eWXz0477ZQk+ehHP5okOf3006cVb1OdfPLJmTRpUrbccsvpyq8333wzjz76aF544YXpxk+YMCGf+9znMmzYsHz5y1+ep6Kt1przzz8/SXLooYd2+v2+9tprOeyww3LYYYdNey9J+z3qkuSaa66Ztu3aa6/N0ksvnfXWW6/T+wcAALqX+b2MZFewa5JBjeWLkoxIclzHAbXWF5K80Fj+eynlkSRrJvnzIksJAACwGPvhD3+YUaNG5bTTTsttt92WrbbaKs8++2yGDh2anj175rzzzpt2mclvfvObueaaa3LLLbfkve99b3baaaf06dMnv//973PXXXelT58+OfPM6S82MnTo0HzpS1/K4MGDc+GFF07b/pWvfCXXX399Vl555ay55pozlX1JMmjQoAwaNGim7bfeemueeOKJbL755vnQhz7U6fd6+OGHp62tLd/97nen277vvvvm5JNPzle/+tWMGjUqTz75ZH7729/m2GOPnTbTDQAAWPJ0h7Jt1UaZllrrC6WUVeY0uJSyTpIPJhm1CLIBAAB0C6usskpGjRqV73znOxk6dGjuvPPOLLvssvn0pz+df/u3f8s222wzbeyaa66Z++67L9///vdz3XXX5YILLsiUKVOy+uqr58ADD8xxxx2X9773vZ067tNPP50kefXVV2dZtE01q7Lt3HPPTZIccsghnX6f1113XX7+85/n5ptvTt++fad7rk+fPrnxxhtzxBFHZMiQIenbt2+OPPLIfOc73+n0/gEAgO6nTL3mfFdWShme9vutzeibSS6qta7QYezrtdZ+s9lP3yQjk5xWa71yDsc7JMkhSdK/f/8P/frXv56P9AAze+utt2b6jzcA88u5BVjQRo5sv033dttt1+IkQHfjewuwMDi3AAvDxz72sXtrrVvMacxiMbOt1vrx2T1XSnmplLJ6Y1bb6klens24pZJckeTSORVtjeOdm+TcJNlwww3rrP5CEmB+jBgxYpZ/fQ0wP5xbgAVtatnm3AIsaL63AAuDcwvQKp27q3TXdnWSwY3lwUmGzTiglFKS/CzJI7XWHy7CbAAAAAAAAHRj3aFs+16SHUspjyfZsbGeUsoapZTrG2P+Ocn+SbYvpdzfeHyqNXEBAAAAAADoLhaLy0jOSa31tSQ7zGL780k+1Vj+XZKyiKMBAAAAAADQzXWHmW0AAAAAAADQEso2AAAAAAAAaJKyDQAAAAAAAJqkbAMAgBnUWlsdAYAuxP8vAAAwJ8o2AACYweHfODrfOObYVscAoAs4//zzs/Nndml1DAAAujBlGwAAdFBrzRVDh2bMmL+3OgoAXcDbb7+dW4ffnLFjx7Y6CgAAXZSyDQAAOnjsscfywnPPtDoGAF3IOxMnZPjw4a2OAQBAF6VsAwCADq66alhKr96tjgFAF1J69c6vrhja6hgAAHRRyjYAAOjgl1dclWXevWmrYwDQhfQduFmuv+66TJkypdVRAADogpRtAADQ8Oqrr+bRPz+UZdZ+f6ujANCF9O63erJ039xzzz2tjgIAQBekbAMAgIbrr78+y677QZeRBGAmPdbZIlcOvarVMQAA6IJ6tToAAAB0Fb+47MrUtTZPzz7LZch5p+aCn53X6kjQUiedeGKSpEfPni1OAq1Tp0zJyjsclF6rbZDLhl6Y73339FZHAgCgi1G2AQBAkgkTJmTkiFuz0oH/k57vWiFrHzus1ZGgC/hjkmSto4e2OAe0WOmR1Cl58YUX8uyzz+bd7353qxMBANCFKNsAACDJc889lx5LLZ0ebcsnSUoPM3lgKv97gCSlZ/qs+u489NBDyjYAAKajbAMAgCTvec97skzvpTLptb+mV7/VMu7pP7Y6ErTe+9tv8z32ibtaHARaa+kBG6X06Jm3Rj+ej3zkI62OAwBAF6NsAwCAJKWU7PrZz2boE6NSlu6bpR68Khu8b6NWx4IW+3CS5L1v3NniHNA6o//vubwxeqP0XP292WzzLbP88su3OhIAAF2Msg0AABq+sPvnMuxrx6Wu++F8+tOfzs/OPbvVkaClTjnllCTJbcN/0+Ik0DpnnnlmTv35bzPl2XvzxQN2a3UcAAC6oB6tDgAAAF3FoEGD8vaLT2Xy2DGtjgJAF1LrlIx74q7ssssurY4CAEAXpGwDAICGZZZZJtsO2j7jnrqn1VEA6ELGjX4sq6y6agYOHNjqKAAAdEHKNgAA6GDv3XfLxBf+0uoYAHQh457/S/b43K6tjgEAQBelbAMAgA4+85nPpJTS6hgAdDG7f263VkcAAKCLUrYBAEAH/fv3zyYf3LLVMQDoQlZYceVstdVWrY4BAEAX1avVAQAAoKs5+ojD8s6kKa2OAUAXsNFGG+Xoo49Ojx7+XhkAgFlTtgEAwAwGH3BAqyMA0EXsuOOO2XHHHVsdAwCALsyfZQEAAAAAAECTlG0AAAAAAADQJGUbAAAAAAAANEnZBgAAAAAAAE1StgEAAAAAAECTlG0AAAAAAADQJGUbAAAAAAAANEnZBgAAAAAAAE1StgEAAAAAAECTlG0AAAAAAADQJGUbAAAAAAAANEnZBgAAAAAAAE1StgEAAAAAAECTlG0AAAAAAADQJGUbAAAAAAAANEnZBgAAAAAAAE1StgEAAAAAAECTlG0AAAAAAADQJGUbAAAAAAAANEnZBgAAAAAAAE1StgEAAAAAAECTlG0AAAAAAADQJGUbAAAAAAAANEnZBgAAAAAAAE1StgEAAAAAAECTlG0AAAAAAADQJGUbAAAAAAAANEnZBgAAAAAAAE1StgEAAAAAAECTlG0AAAAAAADQJGUbAAAAAAAANEnZBgAAAAAAAE1StgEAAAAAAECTlG0AAAAAAADQJGUbAAAAAAAANEnZBgAAAAAAAE1StgEAAAAAAECTlG0AAAAAAADQJGUbAAAAAAAANEnZBgAAAAAAAE1StgEAAAAAAECTFvuyrZSyYinl5lLK442f/eYwtmcp5Y+llGsXZUYAAAAAAAC6p8W+bEtyfJJbaq3rJ7mlsT47RyR5ZJGkAgAAAAAAoNvrDmXbrkkuaixflGS3WQ0qpQxI8ukk5y+aWAAAAAAAAHR33aFsW7XW+kKSNH6uMptx/5XkX5NMWUS5AAAAAAAA6OZ6tTpAZ5RShidZbRZPfbOTr/9MkpdrrfeWUgZ1YvwhSQ5Jkv79+2fEiBGdzgrQGW+99ZZzC7DAObcAC4tzC7Cg+d4CLAzOLUCrLBZlW63147N7rpTyUill9VrrC6WU1ZO8PIth/5xkl1LKp5Isk2S5Usoltdb9ZnO8c5OcmyQbbrhhHTRo0Hy/B4CORowYEecWYEFzbgEWtJEjRyaJcwuwwPneAiwMzi1Aq3SHy0henWRwY3lwkmEzDqi1/lutdUCtdZ0keye5dXZFGwAAAAAAAHRWdyjbvpdkx1LK40l2bKynlLJGKeX6liYDAAAAAACgW1vsy7Za62u11h1qres3fv6tsf35WuunZjF+RK31M4s+KQAAwOKr1pohQ4Zkm222ybLLLpu2trZ88IMfzI9//ONMnjx5urHPPPNMSimzfey9997zleXLX/7ytH098cQTMz1/4YUXzvH4Z5999kyvueeee7LddttlueWWy7rrrpsTTzwxEydOnOXnsO2222abbbbJlClT5ut9AAAA3cNicc82AAAAWmvw4MG5+OKLs8oqq2SvvfbKu971rgwfPjxHHHFEbrvttlx22WUppUz3mk033TS77bbbTPvaZJNNms5xzTXXZMiQIenbt2/eeuutOY7ddddds9lmm820fYsttphuffTo0dl+++3Tr1+/HHzwwXnwwQdz6qmnZty4cTnjjDOmG/vf//3fGTVqVP74xz+mR4/F/u9XAQCABUDZBgAAwBxdddVVufjiizNw4MDcddddWXnllZMk77zzTvbcc89cccUVueiii3LggQdO97rNNtssJ5988gLL8corr+Tggw/OXnvtlRdffDEjR46c4/jddtttpkyzcskll+Ttt9/On/70pwwcODBJsv322+enP/1p/uM//mNaifjMM8/khBNOyIknnpiNNtpovt8PAADQPfgzPAAAAOboyiuvTJIcffTR04q2JFlqqaVy6qmnJknOOuushZ7jkEMOSZL85Cc/WaD7ffbZZ9O/f/9pRVuSbLnllhk7dmxeffXVadsOPvjgrL/++jnuuOMW6PEBAIDFm5ltAAAAzNGLL76YJFl33XVnem7qtvvuuy9vvPFGVlhhhWnPPf/88znnnHPy2muvZaWVVso//dM/5QMf+EBTGS688MJcddVVGTp0aFZaaaVOveb+++/Pf/3Xf2X8+PFZc80187GPfSwDBgyYadzaa6+dV155Jc8991zWXnvtJO33cGtra5tWLp533nkZMWJE7r777vTq5VdpAADgH/yGAAAAwBxNLZyefvrpmZ576qmnpi0/+uij2Wabbaat33zzzbn55punGz9o0KBcdNFF00qtznj22WdzxBFHZL/99pvlPeBm58wzz5xuvWfPnjnooIPyX//1X1lmmWWmbd9vv/1y2mmnZbvttsvuu++eBx98MLfeemuOOuqolFIyevToHHvssTn++ONneQ84AABgyeYykgAAAMzRZz7zmSTJD3/4w/ztb3+btn3SpEk56aSTpq2//vrrSZK2trZ861vfyr333pvXX389r7/+ekaOHJmPfexjGTFiRHbYYYe8/fbbnTr2lClTMnjw4PTt2zc//vGPO/WagQMH5qyzzspjjz2Wt99+O88//3x+/etfZ5111sk555yTf/mXf5lu/IABAzJ8+PAMGDAg55xzTv7yl7/khBNOyOmnn54kOfTQQzNgwIB861vfygMPPJBBgwald+/eWXHFFXPEEUdk4sSJncoFAAB0T2a2AQAAMEd77713Lrnkktxwww3ZaKONsssuu6StrS3Dhw/Pk08+mfXXXz+PP/54evbsmSRZZZVV8u1vf3u6fWy77ba56aab8pGPfCSjRo3K+eefnyOOOGKux/7Rj36UkSNH5rrrrku/fv06lXe77bbLdtttN229ra0tX/jCF7LNNttk0003zS9+8Yscd9xx2XTTTaeN2XrrrXP77bfPtK+LL744N954Y+64445MmjQpO++8c/r165dhw4bliSeeyDHHHJPevXvnjDPO6FQ2AACg+zGzDQAAgDnq0aNHrr766vzgBz/IaqutlosvvjhDhgzJgAED8rvf/W7aPdRWWWWVOe6nV69eOeigg5Ikt91221yP+/jjj+eb3/xmvvSlL+VTn/rUfL+PtdZaa9p+OnP8l156KUceeWS+8Y1vZKuttsqll16a559/PmeffXZ23nnnfP3rX89+++2Xs846K2PHjp3vfAAAwOJJ2QYAAMBc9erVK0cffXTuv//+jBs3LmPGjMmNN96YjTbaKPfff3/69OmTjTfeeK776d+/f5J06jKSDz/8cCZMmJALLrggpZTpHiNHjkySrL/++iml5KqrrurU+5iX4x922GFZaaWVps3Se+SRR5Ikm2+++bQxH/rQhzJhwoQ8+eSTnTo+AADQ/biMJAAAAE27+OKLM378+AwePDhLLbXUXMffeeedSZJ11113rmPXWWedfPnLX57lc9ddd11efPHFfOELX8hyyy2XddZZp1N5R40a1anjX3755bnyyiszcuTI9OnTJ0lSa02STJgwIW1tbUmS8ePHd+q4AABA96VsAwAAYK7GjBmT5ZZbbrptd999d44//vj07ds3J5544rTto0aNygc/+MH07t17uvG33nprfvSjHyVJ9ttvv+mee/PNN/PCCy9k+eWXz+qrr54k2WyzzXL++efPMs+gQYPy4osv5vTTT8973vOe6Z67/fbb89GPfnS6bbXWfO9738sf/vCHrLzyytlpp51m+15fe+21HHbYYTnssMOm28/UmXvXXHNNDjjggCTJtddem6WXXjrrrbfebPcHAAB0b8o2AAAA5mrHHXdMnz59sskmm2TZZZfNww8/nOuvvz5LL710rrzyyulmih133HF5+OGHM2jQoAwYMCBJ8sADD+TWW29Nkpx66qn58Ic/PN3+hw4dmi996UsZPHhwLrzwwvnKuu2222aDDTbIlltumTXXXDNvvvlmfv/73+ehhx5KW1tbLr300pmKw44OP/zwtLW15bvf/e502/fdd9+cfPLJ+epXv5pRo0blySefzG9/+9sce+yx02a6AQAASx5lGwAAAHO1xx575Je//GUuueSSjBs3LmussUYOOuigHH/88TNdwnH//ffP0KFDc/fdd+eGG27IO++8k1VXXTV77rlnvva1r80062xBO+aYY3LXXXfl1ltvzd/+9rf06NEja6+9dg477LAcddRRc7yE5HXXXZef//znufnmm9O3b9/pnuvTp09uvPHGHHHEERkyZEj69u2bI488Mt/5zncW6vsBAAC6tjL1mvPM2oYbblgfe+yxVscAupkRI0Zk0KBBrY4BdDPOLcCCdsoppyRJTjrppBYnAbob31uAhcG5BVgYSin31lq3mNOYHosqDAAAAAAAAHQ3yjYAAAAAAABokrINAAAAAAAAmqRsAwAAAAAAgCYp2wAAAAAAAKBJyjYAAAAAAABokrINAAAAAAAAmqRsAwAAAAAAgCYp2wCAfOX/fS333Xdfq2MAAABd3IsvvpjP7/GFTJkypdVRAKDLULYBwBLu1VdfzXnn/E9Gjx7d6igAAEAXN2bMmAy94vLce++9rY4CAF2Gsg0AlnDXX3+9v0oFAADmyZVDr2p1BADoMpRtALCE++XlQ5NSWh0DAABYXJSSy4YOa3UKAOgylG0AsASbMGFCRvz2lqyw9ntbHQUAAFhMLNd/zTz//PN59tlnWx0FALoEZRsALMFGjhyZtlXend59+7U6CgAAsJjo0aNH2tbbItdcc02rowBAl6BsA4Al2OVDr8qUtT7U6hgAAMBiprx7i/zisqGtjgEAXUKvVgcAAFqj1pqrhl2TZXb+t0z629M56l//Lad+/wetjsV8+Jf998m//vtJrY4BdCOf3nH7JMlWH9muxUmA7sb3lsXXuLFjU3v2Sp91Pph7b/pxxowZk+WWW67VsQCgpZRtALCEevDBBzNhUk2flddOz+0OzphXns2YVodivkxYavk8O+ATrY4BdCuTksS5BVjgfG9ZvL1rq9XSY+m2LLv2Rrnpppuyxx57tDoSALSUsg0AllAjRozIUmttklJKer6rX/q8y33bFnc9lp6UPuts1uoYQLdyT5I4twALnO8t3cOkVTfOb26+RdkGwBJP2QYAS6hNN9009bX/SZLUKZNTJ73T4kTMt9ozUyaOb3UKoDvp0/7DuQVY4HxvWayVnr1SevZKrzeezZYf2rvVcQCg5ZRtALCE+ud//udMeP3F9Bnzaibec1lev/+m9Ojpq8Hi7J3TTstL//PNVscAupPjj0uSvPQ/+7c4CNDd+N6y+KpTpqTvWu/Lsp87OW89cW8++9lLWx0JAFrOf1EDgCVUr1698olPfjIjn7wrvca+niuvuCKf/exnWx2L+TBixIhMGDe21TGAbuSUU05JEucWYIHzvWXx9Ze//CVbb7djxv/14Qxcd72svvrqrY4EAC3Xo9UBAIDW2Wv3z6XH/93X6hgAAMBiZvLT92TP3XdrdQwA6BKUbQCwBNtpp53y92ceyOSJ41odBQAAWEzUWvPO03flc7vt2uooANAlKNsAYAm2/PLLZ9PNt8zrTz/c6igAAMBi4u+vvZjePWo+8IEPtDoKAHQJyjYAWMJ9cY/dMmXSxFbHAAAAFhNTJr2T3XbZJaWUVkcBgC5B2QYAS7hddtml1REAAIDFzB6f363VEQCgy1C2AcASbt11183mW2yZtra2VkcBAAC6uKWWWiprDBiQQYMGtToKAHQZvVodAABovXvvvqvVEQAAgMXAwIEDM/r//q/VMQCgSzGzDQAAAAAAAJqkbAMAAAAAAIAmKdsAAAAAAACgSco2AAAAAAAAaJKyDQAAAAAAAJqkbAMAAAAAAIAmKdsAAAAAAACgSco2AAAAAAAAaJKyDQAAAAAAAJqkbAMAAAAAAIAmKdsAAAAAAACgSco2AAAAAAAAaJKyDQAAAAAAAJqkbAMAAAAAAIAmKdsAAAAAAACgSco2AAAAAAAAaJKyDQAAAAAAAJqkbAMAAAAAAIAmKdsAAAAAAACgSco2AAAAAAAAaJKyDQAAAAAAAJqkbAMAAAAAAIAmKdsAAAAAAACgSYt92VZKWbGUcnMp5fHGz36zGbdCKeXyUsqjpZRHSin/tKizAgAAAAAA0L0s9mVbkuOT3FJrXT/JLY31WTkzyY211vcm2TTJI4soHwAAAAAAAN1Udyjbdk1yUWP5oiS7zTiglLJckm2T/CxJaq0Ta61vLKJ8AAAAAAAAdFPdoWxbtdb6QpI0fq4yizHrJnklyQWllD+WUs4vpbxrUYYEAAAAAACg++nV6gCdUUoZnmS1WTz1zU7uoleSzZN8vdY6qpRyZtovN/mt2RzvkCSHJEn//v0zYsSIec4MMCdvvfWWcwuwwDm3AAuLcwuwoPneAiwMzi1AqywWZVut9eOze66U8lIpZfVa6wullNWTvDyLYX9N8tda66jG+uWZ/b3dUms9N8m5SbLhhhvWQYMGNZ0dYFZGjBgR5xZgQXNuARa0kSNHJolzC7DA+d4CLAzOLUCrdIfLSF6dZHBjeXCSYTMOqLW+mOT/SikbNjbtkOTPiyYeAAAAAAAA3VV3KNu+l2THUsrjSXZsrKeUskYp5foO476e5NJSygNJNkty+qIOCgAAAAAAQPeyWFxGck5qra+lfabajNufT/KpDuv3J9li0SUDAAAAAACgu+sOM9sAAAAAAACgJZRtAAAAAAAA0CRlGwAAAAAAADRJ2QYAAAAAAABNUrYBAAAAAABAk5RtAAAAAAAA0CRlGwAAAAAAADRJ2QYAAAAAAABNUrYBAAAAAABAk5RtAAAAAAAA0CRlGwAAAAAAADRJ2QYAAAAAAABNUrYBAAAAAABAk5RtAAAAAAAA0CRlGwAAAAAAADRJ2QYAAAAAAABNUrYBAAAAAABAk5RtAAAAzFWtNUOGDMk222yTZZddNm1tbfngBz+YH//4x5k8efJM4996661861vfyvve974ss8wyWWGFFbLDDjvk+uuvn6fjHnjggSmlzPGxww47TPea2267Lfvvv3822WSTrLTSSllmmWUycODA7LLLLrnllltmeZx77rkn2223XZZbbrmsu+66OfHEEzNx4sRZfg7bbrttttlmm0yZMmWe3gsAANA99Wp1AAAAALq+wYMH5+KLL84qq6ySvfbaK+9617syfPjwHHHEEbntttty2WWXpZSSJHnjjTfy0Y9+NA899FA23njjHHrooXn77bdz9dVX59Of/nTOPPPMHH744Z067m677ZZ11llnls9dfPHFeeqpp7LzzjtPt/3WW2/Nrbfemq233jrbb7993vWud+W5557L1VdfnWuuuSb//u//nlNPPXXa+NGjR2f77bdPv379cvDBB+fBBx/MqaeemnHjxuWMM86Ybt///d//nVGjRuWPf/xjevTw96sAAEBSaq2tztClbbjhhvWxxx5rdQygmxkxYkQGDRrU6hhAN+PcAixop5xySpJk0003zec+97kMHDgwd911V1ZeeeUkyTvvvJM999wzV111VS644IIceOCBSZIjjzwyZ555Zj7/+c/nV7/6VXr1av87z1deeSVbbbVVRo8enYcffjjrr79+09neeOONrLHGGpk8eXJGjx49LVOSjB8/Pssss8xMrxk9enQ233zzvPrqq/nrX/+a1VdfPUny/e9/PyeccEKeeOKJDBw4MEmy/fbbZ9SoUXnrrbemlYjPPPNM3v/+9+f444/PN7/5zaazA763AAuHcwuwMJRS7q21bjGnMf4MDwAAgDm68sorkyRHH330dKXWUkstNW2G2FlnnTXT+G9/+9vTirYk6d+/f44++ui88847Ofvss+cr08UXX5xx48bl85///HSZksyyaEuSNddcMx/+8IczZcqUPPXUU9O2P/vss+nfv/+0oi1Jttxyy4wdOzavvvrqtG0HH3xw1l9//Rx33HHzlR0AAOhelG0AAADM0YsvvpgkWXfddWd6buq2++67L2+88Uanx8/u3mmddd555yVJDjnkkE6/5uWXX86oUaOy9NJLZ8MNN5y2fe21184rr7yS5557btq2e+65J21tbdOKvPPOOy8jRozIkCFDpisQAQAA/IYAAADAHE0tnJ5++umZnus4Q+zRRx/NNttsk5VXXjkvvPBCnn766Wy00UazHP/oo482necPf/hDHnzwwWywwQb52Mc+Nttx99xzT6699tpMmjQpf/3rX3P11VdnzJgxOeuss6abDbfffvvltNNOy3bbbZfdd989Dz74YG699dYcddRRKaVk9OjROfbYY3P88cdns802azo3AADQPZnZBgAAwBx95jOfSZL88Ic/zN/+9rdp2ydNmpSTTjpp2vrrr78+3fiTTz45kydPnvb8a6+9lh/+8IdJkgkTJmTcuHFN5Tn33HOTtF/WcU7uueeenHLKKTnttNNy0UUXZdKkSbngggvy1a9+dbpxAwYMyPDhwzNgwICcc845+ctf/pITTjghp59+epLk0EMPzYABA/Ktb30rDzzwQAYNGpTevXtnxRVXzBFHHJGJEyc29T4AAIDuwcw2AAAA5mjvvffOJZdckhtuuCEbbbRRdtlll7S1tWX48OF58skns/766+fxxx9Pz549k7Tfq+2mm27KZZddlkceeSQ77LBDxo4dm2HDhmXZZZdNW1tbxo4dO238vHjzzTfz61//Or17986BBx44x7Ff+cpX8pWvfCXjx4/P008/nbPPPjsHHHBAfv/73890z7itt946t99++0z7uPjii3PjjTfmjjvuyKRJk7LzzjunX79+GTZsWJ544okcc8wx6d27d84444x5fi8AAED3YGYbAAAAc9SjR49cffXV+cEPfpDVVlstF198cYYMGZIBAwbkd7/7XVZaaaUkySqrrJIkWW211XL33Xfn8MMPz9tvv52f/vSnGTZsWD7zmc9k+PDhGTduXJZffvn07t17nrNccsklGTt2bD7/+c9PdynIOVlmmWXyvve9L2eeeWYOPfTQnHPOObn88svn+rqXXnopRx55ZL7xjW9kq622yqWXXprnn38+Z599dnbeeed8/etfz3777ZezzjorY8eOnef3AgAAdA/KNgAAAOaqV69eOfroo3P//fdn3LhxGTNmTG688cZstNFGuf/++9OnT59svPHG08b3798/Z555Zp566qlMnDgxL730Un72s5/l6aefTq01W265ZVM5zjvvvCTtl3Zsxs4775wkGTFixFzHHnbYYVlppZXy7W9/O0nyyCOPJEk233zzaWM+9KEPZcKECXnyySebygMAACz+XEYSAACApl188cUZP358Bg8enKWWWmqu46eWZfvuu+88H2vUqFH505/+lA022CCDBg2a59cnyejRo5O0l4dzcvnll+fKK6/MyJEj06dPnyRJrTVJ+/3m2trakiTjx49vKgcAANB9mNkGAADAXI0ZM2ambXfffXeOP/749O3bNyeeeOK07VOmTMlbb7010/jzzz8/v/jFL7LZZpvNVLa9+eabefTRR/PCCy/MNsO5556bJDnkkEPmmHXkyJGZMmXKTNuffPLJnHbaaUmST3/607N9/WuvvZbDDjsshx12WD760Y9O2z515t4111wzbdu1116bpZdeOuutt94cMwEAAN2XmW0AAADM1Y477pg+ffpkk002ybLLLpuHH344119/fZZeeulceeWVWXfddaeNHTt2bFZdddXsuOOOec973pMkuf3223PXXXdlvfXWy9ChQ2eaBTd06NB86UtfyuDBg3PhhRfOdPwxY8bkV7/6VXr37p3BgwfPMeuuu+6aFVZYIVtvvXXWWmutTJo0KU8++WRuvPHGTJo0KV//+tez4447zvb1hx9+eNra2vLd7353uu377rtvTj755Hz1q1/NqFGj8uSTT+a3v/1tjj322Gkz3QAAgCWPsg0AAIC52mOPPfLLX/4yl1xyScaNG5c11lgjBx10UI4//viss846041deumls/fee+d3v/tdbr755iTJeuutl1NOOSVHHXVU+vbtO8/Hv/TSS/P2229n7733zsorrzzHsaecckpuuumm3HnnnbnmmmsyefLkrLrqqtltt91y0EEH5ZOf/ORsX3vdddfl5z//eW6++eaZcvbp0yc33nhjjjjiiAwZMiR9+/bNkUceme985zvz/H4AAIDuo0y95jyztuGGG9bHHnus1TGAbmbEiBFN32cEYHacW4AF7ZRTTkmSnHTSSS1OAnQ3vrcAC4NzC7AwlFLurbVuMacx7tkGAAAAAAAATVK2AQAAAAAAQJOUbQAAAAAAANAkZRsAAAAAAAA0SdkGAAAAAAAATVK2AQAAAAAAQJOUbQAAAAAAANAkZRsAAAAAAAA0SdkGLHEmTpyYH/znjzJlypRWRwEAAABgMfezCy7Iiy++2OoYQAsp24AlzsiRI3PsMUcp2wAAAACYbyeeeEquuOKKVscAWkjZBixxLh86rNURAAAAAOgmJtWaX1w2tNUxgBZStgFLlFprhl6lbAMAAABgwbnzjtvy97//vdUxgBZRtgFLlIceeijjJ01J6eH0BwAAAMCCsfTyq+Smm25qdQygRfzXZmCJMvSqYek9cMuUlFZHAQAAAKCb6LnOFvn1FVe1OgbQIso2YInyqyuuSs+BW7Y6BgAAAADdSNt7ts4NN1yfyZMntzoK0AK9Wh0AYFF58cUX8+QTf8mqO26cJDn99NPTs2fPlmRZb731ctppp7Xk2ED35dwCLCzOLcCC5nsLsDC06tzy9pg3s/zyq6RX3xVz55135p//+Z8XeQagtZRtwBLj2muvzbLrbp7Sc6n0++Rh+dFvHm5ZlpMOWD0/uP6Blh0f6J6cW4AF7chPbJQkzi3AAud7C7AwtOrcsvQWu6fXcv2Td38oV141TNkGSyBlG7DEuOyqa1LX3jxJ0vcDn2hplp59J2X5jx7Q0gxA9+PcAix49ySJcwuwwPneAiwMrT63LD1wy1w57Pz85xn/0bIMQGu4ZxuwxFh5pRUzZdzfWx0DAAAAgG5o8vi/p1+/FVsdA2gBM9uAJcZeu38uNx17SrLlbhl7439mypiXWpZlyoD/l7d+/dOWHR/onpxbgAVu8J5Jkrd+/a8tDgJ0N763AAtDy84tvd+Vtp2PzZRn7snee+626I8PtFyptbY6Q5e24YYb1scee6zVMYAFYOzYsVmp/ypZ+eCf5fmz9s3tt9+WXr1a8zcHr776alZeeeWWHBvovpxbgAXthhtuSJLsvPPOLU4CdDe+twALQ6vOLTt9+rPp8/nT8uZlJ+S+O3+XDTbYYJFnABaeUsq9tdYt5jTGzDZgidHW1pZtPvzRPPTUvUmSrbbaqmVl24gRI7LVVlu15NhA9+XcAixoU8s25xZgQfO9BVgYWnVuWWrpZTLxpSezwnLLKtpgCeWebcASZe89dkueu7fVMQAAAADoRiY8OSq7f363VscAWkTZBixRPvvZz+atJ+9JrVNaHQUAAACAbmLC0/dm9912bXUMoEWUbcASZY011sg666wb96sEAAAAYEFZqmePfPjDH251DKBFlG3AEmevPT7X6ggAAAAAdCOf3Gnn9OrVq9UxgBZRtgFLnN123aXVEQAAAADoJnr3LNlr991aHQNoIVU7sMTZdNNN89BDD6Vnz56tjgIAAADAYm7ErbdkjTXWaHUMoIWUbcASp5SSjTfeuNUxAAAAAOgG1ltvvVZHAFrMZSQBAAAAAACgSco2AAAAAAAAaJKyDQAAAAAAAJq02JdtpZQVSyk3l1Ieb/zsN5tx3yilPFxKeaiU8otSyjKLOisAAAAAAADdy2JftiU5Pskttdb1k9zSWJ9OKWXNJIcn2aLWukmSnkn2XqQpAQAAAAAA6Ha6Q9m2a5KLGssXJdltNuN6JelTSumVpC3J8ws/GgAAAAAAAN1ZdyjbVq21vpAkjZ+rzDig1jo6yQ+SPJfkhSRv1lpvWqQpAQAAAAAA6HZ6tTpAZ5RShidZbRZPfbOTr++X9hlwA5O8keSyUsp+tdZLZjP+kCSHJEn//v0zYsSIJlIDzN5bb73l3AIscM4twMLi3AIsaL63AAuDcwvQKotF2VZr/fjsniulvFRKWb3W+kIpZfUkL89i2MeTPF1rfaXxmiuTfDjJLMu2Wuu5Sc5Nkg033LAOGjRoPt8BwPRGjBgR5xZgQXNuARa0kSNHJolzC7DA+d4CLAzOLUCrdIfLSF6dZHBjeXCSYbMY81ySbUopbaWUkmSHJI8sonwAAAAAAAB0U92hbPtekh1LKY8n2bGxnlLKGqWU65Ok1joqyeVJ7kvyYNrf97mtiQsAAAAAAEB3sVhcRnJOaq2vpX2m2ozbn0/yqQ7rJyU5aRFGAwAAAAAAoJvrDjPbAAAAAAAAoCWUbQAAAAAAANAkZRsAAAAAAAA0SdkGAAAAAAAATVK2AQAAAAAAQJOUbQAAAAAAANAkZRsAAAAAAAA0SdkGAAAAAAAATVK2AQAAAAAAQJOUbQAAAAAAANAkZRsAAAAAAAA0qdRaW52hSyul/D3JY63OAXQ7Kyd5tdUhgG7HuQVYGJxbgIXBuQVYGJxbgIVhw1rrsnMa0GtRJVmMPVZr3aLVIYDupZRyj3MLsKA5twALg3MLsDA4twALg3MLsDCUUu6Z2xiXkQQAAAAAAIAmKdsAAAAAAACgScq2uTu31QGAbsm5BVgYnFuAhcG5BVgYnFuAhcG5BVgY5npuKbXWRREEAAAAAAAAuh0z2wAAAAAAAKBJyra5KKWcWkp5oJRyfynlplLKGq3OBCz+SilnlFIebZxfhpZSVmh1JmDxV0r5Qinl4VLKlFLKFq3OAyzeSik7lVIeK6U8UUo5vtV5gO6hlDKklPJyKeWhVmcBuodSylqllN+WUh5p/D50RKszAYu/UsoypZS7Sil/apxbTpnjeJeRnLNSynK11jGN5cOTbFRr/UqLYwGLuVLKJ5LcWmudVEr5fpLUWo9rcSxgMVdKeV+SKUnOSXJMrfWeFkcCFlOllJ5J/pJkxyR/TXJ3ki/WWv/c0mDAYq+Usm2St5L8b611k1bnARZ/pZTVk6xea72vlLJsknuT7OZ7CzA/SiklybtqrW+VUpZK8rskR9Ra75zVeDPb5mJq0dbwriTaSWC+1VpvqrVOaqzemWRAK/MA3UOt9ZFa62OtzgF0C1sleaLW+lStdWKSXybZtcWZgG6g1npbkr+1OgfQfdRaX6i13tdY/nuSR5Ks2dpUwOKutnursbpU4zHbfkjZ1gmllNNKKf+XZN8kJ7Y6D9Dt/EuSG1odAgCggzWT/F+H9b/Gf7QCALq4Uso6ST6YZFSLowDdQCmlZynl/iQvJ7m51jrbc4uyLUkpZXgp5aFZPHZNklrrN2utayW5NMnXWpsWWFzM7dzSGPPNJJPSfn4BmKvOnFsAFoAyi22u8gEAdFmllL5Jrkhy5AxXKwNoSq11cq11s7RflWyrUspsL4Hda5Gl6sJqrR/v5NCfJ7kuyUkLMQ7QTczt3FJKGZzkM0l2qG6gCXTSPHxvAZgff02yVof1AUmeb1EWAIA5atxP6Yokl9Zar2x1HqB7qbW+UUoZkWSnJA/NaoyZbXNRSlm/w+ouSR5tVRag+yil7JTkuCS71FrHtjoPAMAM7k6yfillYCmld5K9k1zd4kwAADMppZQkP0vySK31h63OA3QPpZT+pZQVGst9knw8c+iHiskUc1ZKuSLJhkmmJHk2yVdqraNbmwpY3JVSnkiydJLXGpvurLV+pYWRgG6glPK5JGcl6Z/kjST311o/2dJQwGKrlPKpJP+VpGeSIbXW01qbCOgOSim/SDIoycpJXkpyUq31Zy0NBSzWSikfSXJ7kgfT/t9wk+SEWuv1rUsFLO5KKR9IclHafx/qkeTXtdZvz3a8sg0AAAAAAACa4zKSAAAAAAAA0CRlGwAAAAAAADRJ2QYAAAAAAABNUrYBAAAAAABAk5RtAAAAAAAA0CRlGwAAwEJSSqmNx4gFtL8RU/e5IPZHu1LK5xqf6/hSypqtzpMkpZT9G5neKKWs0uo8AADA7CnbAAAAWqSUslsp5eTGY4VW51kSlVKWSfLDxuq5tdbRrczTwc+T/CXJ8km+2+IsAADAHCjbAAAAWme3JCc1Hiu0NMmS6/8lWSfJ+CTfa22Uf6i1Tk7yncbqgaWU97UyDwAAMHvKNgAAgIWk1loaj0ELaH+Dpu5zQexvSVdK6ZPk+MbqhbXW51uZZxZ+nuTZtP/uflKLswAAALOhbAMAAGBJdUCS/o3l/21lkFlpzG67tLG6Ryll7VbmAQAAZk3ZBgAAwJLqq42fT9Za/9DSJLN3SeNnzySHtDIIAAAwa8o2AACg5Uopg0optfE4ubHt/aWUc0spT5ZSxpVSXimlDC+lfHEe9rtWKeV7pZT7Sil/K6VMKKWMLqVcU0o5sJTSsxP7WL+U8p+llHtLKW+UUt4ppbxWSnmslHJTKeVfSykbz+a1U9/TiBm2X1hKqUkGd9j8dIfxUx8XzvC6EVOf60TurRuf32OllL+XUt5ufJYXlVK278Trp8teSmkrpRxTSrmnlPJ6Y38Pl1K+W0rpN7f9zeVY3+pwvKvnMnb3DmMfLKUs0+Qx359k08bqz+cy9uQOxxzU2LZDKeWKUsr/lVLGNz7bc0sp757htcuUUg4tpdzR+Hd4bCP38aWUpeeWs9b6SJL7G6v7llJcQhQAALqYXq0OAAAAMKNSyv5JzkvSsYxYJskOSXYopeybZI9a6/g57OPQJD9K0meGp9ZoPD6T5KhSyi611mdms4+DkvwkSe8Znlqx8dggyY5J9kmyWWfe28JWSumV5KdJDp7F0+s2HgeUUi5LMrjWOq4T+1w3yTVJNprhqY0ajy+WUgbN7nPshNOSfDzJtkk+W0r5f7XWn84ix4C0/3uRJOOTfHFO/w7MxW4dln87Ly8spXwvyXEzbJ762e5RStmh1vrHUspqaf/ctphh7CZJvpvkU6WUT3bin8Fv0/7v1zppLwjvn5e8AADAwqVsAwAAupotk5zQWB6S5LYkkxvbv5zkXUk+nfbL6+0xqx00irazO2y6Jsl1Sd5Ie0H2pSQDk7w/ye9KKR+stb4ywz4+mOSctF8RZFKSKxpZXk6yVJLVk3wwySeaeI8/TnJVksOTfKyx7dDGvjt6rol9/2+SqbP/xie5KMkdaf8Mt0j7Z7hski8kWb6UslOtdU4z5ZZL+2f33iRXJ7khyd/SXix9NcnaSd7dOO62TeRNrXVKKWW/JH9K0i/JD0opI2utD08dU0rpkfZ/5lNn0R1ba32omeM17Nj4OSXJPfPwusPS/u/d00kuSPKXJCsk2T/JPzfyXV5K2STtn9vmSa5Pcm2S19L+OR6eZKUkH03yzST/Ppdj3tlh+ZNRtgEAQJdS5vw7FQAAwMLXuDRfx9lFf0/yiVrrnTOMWz/JiLTPTEvaZ7ddMcOYdZL8Oe0z2iYn2afW+usZxvRJclnaS7skubzW+oUZxvx32ouVJNlrxn10GNczyda11jtm8dzUX7hG1loHzeL5C/OPS0kOnNvMsMYlHbdLklrrTJcTLKXsleSXjdWXkmxfa/3zDGPenfbPemBj09dqrT+ZQ/YkmZhk91rrtTOMWSnJ3R32tXWt9a45vYc5KaXskfZ/LknyQJKtaq0TGs+dkPYZcElyba31s/NxnJ5JxiRpS/JwrXWTuYw/OclJHTZdm+QLHWfVNcrA65Ls1Nh0b9rL2P1rrdNdprKUskHaC7M+aS+AV5v6Pmdz/HcneaaxOrTW+vk5vkEAAGCRcs82AACgKzp2xqItSWqtj6d9ZtZUx8zitYfnH5eO/M9ZlWSNy/btk+SFxqbdGwVIR+9p/Hwz/yiAZlJrnTyroq1FOl7a8EszFm1JUmt9NsneSaaWacd24t5135mxaGvs67Ukp3fY9Ml5zDvj/i5P+2zGJPlAkv9IklLKVklOaWx/Mcm/zM9x0j4rr62x/Ng8vvblJPvNePnKWuuUJN/usOlDSc6ZsWhrjP1L2mfpJe2z4raa0wEb/8ymXmryA/OYFwAAWMiUbQAAQFfzetovzzdLtdYb0z5zLUm2adwXq6Ops34mJfnPOexnTNrvbZYkJdPfwytJxjZ+Lpv2SyV2aY0ZfR9srD5Ya71hdmMbs89ubay+O+3F0OxMTvLfc3j+1g7LM97TrRmHp/3SjEny9VLKnkl+nvbbINS032fuldm9uJPe3WH5b/P42otrrW/O5rm7k7zTYX2mGYMd/K7Dcmc+t9cbP9cqpcw0qxEAAGgdZRsAANDV3F5rnTiXMR0Lni2nLpRSVsk/ipQ/1VpnvAfajG7qsLz1DM/d3PjZI8lvSykHlVJWnsv+Wqnj7KibZjtq1mNmfO8d/aXW+vocnh/dYbnfbEd1Uq317bTfc25i2kvQXyVZr/H0D2utnXlvc7Nih+V5LdtGze6JWuuktN+XLUnezj9K4Vl5qcNyZz63qfvtnfb7FgIAAF2Esg0AAOhqnpjHMWt0WF69w/JfMncdx6w+w3M/S/v94ZL2e5Kdl+TlUsqDpZRzSilfLKUs34ljLCoL8r139OqcdjLDvcaW6cRx56rWel+Sf59h8x+TnLAg9p9k6Q7Lf5/H1742l+enfh5/q3O+Sfq8fm5jOiz3me0oAABgkVO2AQAAXc3YuQ/J2x2W+3ZYXnY2Y2bnrdm8No3ZdZ9McmySZxqbS5JNkhyS9ksbvlRK+UkpZblOHGthW2DvfQZTmosz32a8l9qwTsx47KyORde8/rPr7OexoD+3jsXuuNmOAgAAFjllGwAA0NW0dWJMx8vodSyN/j6bMbPTsaibaYZTrXVirfUHtdaBSTZOe8l2UZK/NoYsneT/JbmtlNLq2UYL9L23UuM+fOfPsPmEUspmC+gQHS8dueJsR3UtU3NOTOfKVAAAYBFRtgEAAF3Ne+ZxzPMdll/osLx+J/bTcczzsx2VpNb651rrebXWA2utayXZPv+Y8bZpki934ngL00J774tSKaWkvdDs39h0ZeNn7yQ/X0Cl5jMdlhe3su25uVyeEgAAWMSUbQAAQFfzkVJK77mM+ViH5bunLtRaX07ybGN1s1JK/8zZJzos39X5iEmt9bdJvtZh00fm5fUNHS81WJp4fUcd8+/YifFNv/eF7Kj8I9tvkuyR5NzG+vuS/GgBHOPp/GN22IYLYH8LVSllnfzjvm4PtDAKAAAwC8o2AACgq1kxyeDZPVlK+UTaL+mYJH+otb44w5ArGj97JTlyDvtZNu2XgEySmmRoE1mf6bDcq4nXd7wEZmcu/ThbtdZnktzXWN208TnNUilli7TPzEvay8l75+fYC0rjMpGnN1ZfSXJgYxbXN5I82th+aCll1/k5Tq11cv7xnt/bRe65Nydbd1ge1bIUAADALCnbAACArugHpZQtZ9xYSlkvyZAOm/5zFq89K8m4xvK/llJ2n8V+lklySZI1GpuuqLU+PsOY/yylbDOXnF/tsPynuYydlac7LG/exOtn9P0OyxeWUt4744BSytpJfpl//D54RqN8aqlSSluSX6T9cpFJ8i9Ti9Ra69gkX0z7/cqS5GellDVm3ss8ubnxs0eSLeZzXwtbx7LtNy1LAQAAzFIzf3kJAACwMF2f9ssg/r6UclGS25NMTrJl2u+L1rcx7spa6xUzvrjW+kwp5RtJzk777zyXl1KGNfb7RtrvVfYvSdZtvGR0ksNmkWP3JEeVUp5OMjztl+97OcnSSdZK8oUkmzXGvpZ/XOpwXtzSYfk/Gpe9fCzJpKnZaq0PdnZntdZfl1J2S3sxtXqS+0opFyb5Q9o/wy3S/hlOncl1U5KfNpF7YfhRkqnl4E9qrdd2fLLWen8p5YQkP0iyUpKLSimfmI/7lw1NcmpjeVCSW5vcz6Iw9bKpT9damyl1AQCAhUjZBgAAdDV3p32G0/lJDmo8ZnR9kn1nt4Na6zmllJL2AmeZJLs2HjN6KMlnG/d6m9HU+6kNTHLwHPI+m+TztdaX5jBmdjkfKKX8Iu3l2KppL5I6uijJgfO42wPSfj+yg5L0Sfvsu6/OYtzlSQ6Yj7JqgSmlfC7JIY3Vh5McO5uhP0zyybSXsR9PcnRm/sw6pdb6cCnl/rQXpvskObGZ/SxspZT35R+l7qUtjAIAAMyGy0gCAABdTq31krTPZDs/yVNJxif5W9pnH+1ba/10rXX8XPZxdpIN0n5pxfvTPqttYpIX0l7WfSnJZo17nc3K5kk+l/bLUt6V5NUk7ySZkOSvjX18Jcn7aq33zWYfnbF/2suwEY1jTJrj6LmotU6qtR6c5J+S/CzJE2kv38al/bKVlyTZodb6hVrruNnvadEopayZ9n/OSftnu8/scjWKwcFp/5yS5LRSyvxcfnPqrL71Sikfno/9LEz7NX5OTnJeK4MAAACzVrrAHzECAABLuFLKoCS/bayeUms9uWVhWGI07t33bJJVkpxbaz20xZGmU0rpmfaydJ0kv6q17t3aRAAAwKyY2QYAAMASqTE78nuN1QNKKWu0Ms8sfDHtRduUJKe0NgoAADA7yjYAAACWZP+T9strLpPk31qcZZrGrLZ/b6xeWGt9pJV5AACA2VO2AQAAsMRqzG47qrF6cOMecl3BF5NsmOTNdKESEAAAmJmyDQAAgCVarfWqWmuptS5Tax3d6jxJUmu9pJFphVrry63OAwAAzJ6yDQAAAAAAAJpUaq2tzgAAAAAAAACLJTPbAAAAAAAAoEnKNgAAAAAAAGiSsg0AAAAAAACapGwDAAAAAACAJinbAAAAAAAAoEnKNgAAAAAAAGjS/wckUvhtldjGKQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, ax = make_figure(xlims=(-3, 3))\n",
+ "\n",
+ "add_gaussian_bel(ax, 0.0, 0.5, 'green', visualize_details=True)\n",
+ "\n",
+ "update_plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5c802a64",
+ "metadata": {},
+ "source": [
+ "To understand more about the standard deviation ($\\sqrt{\\sigma^2} = \\sigma$), I created the above figure. It is shown there the distribution areas covered by $1\\sigma$, $2\\sigma$, and $3\\sigma$.\n",
+ "\n",
+ "The blue area of $1\\sigma$ covers 68.27% of the whole bell-shape area of the normal distribution, the orange area of $2\\sigma$ covers 95.45%, and the green area of $3\\sigma$ covers 99.73%.\n",
+ "\n",
+ "In another way, this means that $\\pm 1\\sigma$ is the area where we think that 68.27% of the randomly distributed samples or guesses lie within. And for $\\pm 2 \\sigma$ area 95.45% of the samples or guesses lies within the area from the mean to it."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "78208c6e",
+ "metadata": {},
+ "source": [
+ "In the normal distribution, the mean has the highest probability $p(x)$ to be correct expectation. The far you go away from the mean the less probability you get which actually makes sense. The probability decrease exponentially which makes the model even better as the far I go away from mean I need to have more reduction in probability."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ac3424d9",
+ "metadata": {},
+ "source": [
+ "The next aspect to observe is that the more uncertainty you have (more $\\sigma^2$) the less the peak probability at the mean is.\n",
+ "\n",
+ "In the below exercise, we try to overlap several plots of gaussian curves with difference variances to observe how the peak probability $p(x)$ at the mean changes."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 54,
+ "id": "412b8824",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABtMAAAJgCAYAAAD4c5xoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzde3zO9f/H8cdndrLZhs0hxxlzPhPlECFCkSLHEUkqkvTtR6lQKvXNKUuRU1gO34oKOdVQSmHOcp5RGBI7YG3X5/fHlastO9mu7bPN83677bbPdV3vz/V+Xruurjav6/V+G6ZpIiIiIiIiIiIiIiIiIiI3c7E6gIiIiIiIiIiIiIiIiEhepWKaiIiIiIiIiIiIiIiISBpUTBMRERERERERERERERFJg4ppIiIiIiIiIiIiIiIiImlQMU1EREREREREREREREQkDSqmiYiIiIiIiIiIiIiIiKTB1eoAVipatKhZpUoVq2OISAETFxeHt7e31TFEpIDRe4uIONvvv/8OQJkyZSxOIiIFjX5vEZGcoPcWEckJO3bsuGCaZomMxt3WxbRSpUqxfft2q2OISAETHh5O69atrY4hIgWM3ltExNnGjx8PwGuvvWZxEhEpaPR7i4jkBL23iEhOMAzjZGbGaZlHERERERERERERERERkTSomCYiIiIiIiIiIiIiIiKSBhXTRERERERERERERERERNKgYpqIiIiIiIiIiIiIiIhIGlRMExEREREREREREREREUmDimkiIiIiIiIiIiIiIiIiaVAxTURERERERERERERERCQNKqaJiIiIiIiIiIiIiIiIpEHFNBEREREREREREREREZE0qJgmIiIiIiIiIiIiIiIikgYV00RERERERERERERERETSoGKaiIiIiIiIiIiIiIiISBpUTBMRERERERERERERERFJg6vVAURERERERERERERuZ0lJSVy5coWYmBiuXr2KzWazOlKe4+fnx8GDB62OISIWc3FxoXDhwvj4+ODr60uhQoVyZV4V00REREREREREREQskpCQwMmTJ/Hy8qJo0aKULVsWFxcXDMOwOlqeEhMTg4+Pj9UxRMRCpmlis9mIi4sjJiaGCxcuULFiRdzd3XN8bhXTRERERERERERERCyQlJTEyZMnCQgIoFixYlbHERHJ0wzDoFChQvj6+uLr68ulS5c4efIkQUFBOd6hpj3TRERERERERERERCxw5coVvLy8VEgTEcmCYsWK4eXlxZUrV3J8LhXTRERERERERERERCygpQtFRLLHx8eHmJiYHJ9HxTQRERERERERERERC1y9ehVvb2+rY4iI5Fve3t5cvXo1x+dRMU1ERERERERERETEAjabDRcX/ROtiEhWubi4YLPZcn6eHJ9BRERERERERERERFJlGIbVEURE8q3ceg9VMU1EREREREREREREREQkDa5WBxAREREREZEc8FcsXN4HMccg7gTERcFff9qvT4xhSPmjuBqJsPozcC0C7sXsX4XLQpFK4F0J/GqCVznQJ+ZFREREROQ2pmKaiIiIiIhIfmeaEHsMzm6E6M1waSdcOQSY/4zxLAXuxe2Fs+vncXP5C5tpQNJf8NdZsCXA5YNw9Tf78Q0eAVCsIQTcBaXa2L8X8sj1hygiIiIiImIVFdNERERERETyI1uivXB26jP47SuIP2W/vvAd4N8EKvaGYvXBJxi8A8G18D/nhhkEuP99HHPB/r3rcft30wZXf4fY4/DnPnth7o8dsP8N2DcBChWGUvdC+YehbFfwDMilBywiIiIiImINFdNERERERETykz8i4PhcOPkpXL9oL27d0QFqjYFSbe3Fs+wsy2i42Jd29CoHJe/55/qEP+3Fu7Mb4bcv4ffVYDxp71YLGgTlH4JCntl9dCIiIiIiInmOi9UBREREREREJANJ1+DYHFjTEL5pCEdnQ6l20PIzeOQ83PMFBD8FvlVzbn8z96JQrgs0ngZdjsP9O6HmaIg5DFt7wxdlYMdIiD2RM/OLiIiISApxcXFMnjyZ5s2bU7JkSTw9PalYsSI9e/Zk7dq1OTLnyZMnGT16NHXq1MHPz48iRYpQvXp1hg8fzv79+3NkTsm+yMhIPvvsM8aMGUP79u3x9/fHMAwMw6B169Y5Nq9pmixdupQHHniAcuXK4eHhwR133EHbtm35+OOPSUxMzLG5nU2daSIiIiIiInnV9T/gcCgcmQHXoqFoHWj0PgT2AY/i1uUyDCjewP5Vd4K9W+3YHDg8Aw5Ph3IPQ43/QEAT6zKKiIiIFGARERF0796d48ePp7g+KiqKqKgoli1bRp8+fZg3bx7u7u5p3MutWbx4MUOHDiU2NjbF9YcOHeLQoUPMmjWLt99+m5EjRzplPnGO999/n2effTbX57106RLdu3fn22+/TXH92bNnOXv2LN9++y0zZ87kiy++oEKFCrme71apmCYiIiIiIpLXJFyGXyfDr1MgMQbuuB9qvGBfUjGnOs+yynCBO+6zf8WfhkPvw9GP4NT/oExne7GteEOrU4qIiIgUGCdPnqRjx46cO3cOgCZNmtCvXz8CAgLYu3cvs2bN4uLFi4SFheHi4sLChQuzPeeqVasYMGAASUlJGIZB9+7d6dChA25ubmzatImFCxeSkJDA888/j4+PD4MHD872nOIcSUlJKS4XLlyY4OBg9uzZk2NzJiQk0LVrV7Zs2QJA+fLlGTJkCFWqVOH06dPMnTuXgwcPsnPnTjp27MiPP/6Ir69vjuVxBhXTRERERERE8oqk63BoOhx4CxIuQbluUGccFKtrdbLM8SoHDSZB7bH2LrWD78I3jaD8w1B/EvhUsTqhiIiISL733HPPOQppgwYNYvbs2bi42Hd06t27N0OHDqVly5ZERUWxaNEievXqRefOnbM8X3x8PEOGDHEUZebNm8eAAQMct/fv359evXrRqVMnEhMTGTlyJA8++CClSpXKxqMUZwkMDOSZZ56hUaNGNGrUiJo1a3L69GkqVaqUY3POnDnTUUhr2LAhGzZsoFixYo7bhw0bxkMPPcTatWs5cOAAr7/+Ou+++26O5XEG7ZkmIiIiIiJiNdOEUytgVS3Y9SL43wX374B7Ps8/hbTk3Hyg1hjocgJqvwZn1sKqmhDxIvx1xep0IiIiIvnW7t27WbFiBQAVKlQgNDTUUUi7oUKFCsycOdNxedy4cdmac/bs2fz+++8A9OjRI0Uh7Yb77rvPsbxjbGws//3vf7M1pzjPQw89xIwZMxg4cCB169bF1TVne6wSExOZOHEiAIZh8Mknn6QopAF4enryySef4O3tDdiXorx48WKO5souFdNERERERESsFHscvrsftnQDF3do/Q3cu7pgLI3o7gd1x8GDRyCwr71T7auqELnEXkAUERERsdimTZsoVKgQhmFQoUIF/vzzzzTHnjhxAj8/PwzDwNvbm0OHDuVe0L8tXbrUcTxkyBA8PT1THdexY0eqVLGvCrB9+3aOHTvmlDlHjBiR5rjhw4dj/L0k+bJly7I8X0a+/PJLDMPAMAxGjRqVqXOef/55xzlfffVVittM02TLli28/PLLtGnThjJlyuDh4YG3tzeVKlWiV69efPXVV5gZ/P46btw4xxzh4eEAbNy4kd69e1OpUiU8PT0xDIPIyMisPOx849tvv+X8+fMAtG3bllq1aqU6rmTJkvTq1QuA69evs3LlylzLmBUqpomIiIiIiFjBlggH/wurasOFrdBwKnTaDWU6WJ3M+QrfAXfNgw6/gFd52NobNj0IcVFWJxMREZHbXKtWrRg9ejQAp06dYsiQIamOS0xMpE+fPly5Yu+ynzZtGtWqVcu1nDesW7fOcXz//fenOc4wDDp0+Of3yrVr12ZpvitXrvDTTz8B4Ofnx913353m2PLly1OzZk0AoqKiOHDgQJbmzEjHjh0JCAgA4NNPP8Vms6U7PikpiSVLlgAQEBBw089t0KBB3HPPPbz55pt89913nDlzhoSEBOLj44mMjGTp0qV06dKFTp06OZ7/jJimybBhw2jXrh1LliwhMjKS69evZ+HR5j+ZfY3++/ZvvvkmxzI5g4ppIiIiIiIiue3KIVh3N0T8B0q3g84HoPoIcHGzOlnO8m8M7X+ChpPh3Hf2ZS2PfqwuNREREbHU+PHjadq0KQDLly9n7ty5qY65UVR65JFHGDx4cK5mBLDZbBw8eBAAV1dX6tWrl+74xo0bO4737duXpTkPHDjg6MiqX7/+TUtK5sScGXFzc6Nnz54AnDlzho0bN6Y7fuPGjZw5cwaAXr164eaW8nfuq1ev4uHhQfv27Rk7dizz5s1j2bJlhIaGMmLECIoXLw7Yiz39+/fPVMZ3332X0NBQSpcuzejRo1m0aBHz58/n6aefxsPD41Yfcr6S/Hlv1KhRumNz4/XiLDm7OKaIiIiIiIj8wzThyAf2IlqhwtB8KVToAX8vh3NbcCkE1UdCuW6w7XH4+Qn47StoOhs8S1qdTkRERG5Drq6uhIWFUb9+fWJiYnj22Wdp2bIlwcHBAHz//fe89dZbgL37avbs2aneT3x8fIqunOyoUKECDRumXPb79OnTxMfHA1C2bNkM976qWLGi4/jw4cNZypH8vMDAwAzHO2POzOjXrx+hoaEALFq0iPvuuy/NsYsWLUpx3r8988wzfPjhhxQtWjTV8ydOnMjAgQNZvnw5K1euZNOmTbRq1SrdfGvWrKFFixasWrUKX19fx/X/3m9u586dREU5Z7WG9u3b4+Xl5ZT7yo5bec2UK1eOQoUKkZSUxJEjRzBN07FUaF6jYpqIiIiIiEhuuHYBfhoAv6+GOzrCXXPsyx/erooEQpv1cGg67BoNq+vA3QvhjvZWJxMREZHbUFBQEKGhofTv35+4uDj69OnD1q1biYuLo2/fviQlJeHi4sLChQspVqxYqvcRHR1Nt27dnJJnwIABzJ8/P8V1yfdzu7HMYXr8/f1TPfdWWDFnZtx1110EBwdz5MgRPv/8c2bOnJlqISk+Pp4vvvgCgODgYEcHYnItW7ZMdy5vb2/mzJnD6tWriYuLY+HChRkW07y9vVm6dGmKQlpqpk+fzoIFC9Idk1knTpzIVMEzp93Ka8bV1RVfX18uXbpEYmIicXFxFClSJIcTZo2WeRQREREREclp57fCNw3g7EZoPANar7q9C2k3GC5Q/Tm4fwd4lITv7oc9r4ItyepkIiIichsKCQmhb9++AGzfvp1XXnmFJ5980tE5NGbMmAyLKDkpNjbWcezp6Znh+MKFCzuOY2Ji8s2cmXWjyyw2NpaVK1emOmbFihWOxxASEpLluXx8fKhTpw4A27Zty3D8I488QpkyZbI8X36Wl18z2aHONBERERERkZximvDrFNj1f+BdEdr/CMUbWJ0q7ylaCzpsg+3DYN/rcP57aL5Eyz6KiIgk89w3z7Hr7C6rY+Sq+qXrM/X+qbk65wcffMDWrVs5ceIEkyZNclzftGlTxo0bl+65gYGBjv3FcpoVS+HlteX3+vXrx2uvvQbYl3Ls3bv3TWOSL/F4o1CamuvXr7Ns2TJWrlzJ7t27OXfuHLGxsak+n6dPn84wW0bdbjfMnz//pg5EyZvyTWeaYRj3G4ZxyDCMo4ZhjE7l9v8YhrHr7699hmEkGYZR3IqsIiIiIiIiJF6FH0MgYhSUfdDefaVCWtpcveCuudB0Llz4Eb65E/6IsDqViIiI3GZ8fX0JCwtLsR+Zj4/PTddZIfnyd1evXs1wfPIxPj4++WbOzAoKCqJZs2YArFu3jvPnz6e4PTo6mvXr1wPQvHlzgoKCUr2fvXv3UqdOHfr3789nn33G0aNHiYmJSbMweuXKlQyzlS1b9lYeSoGS/DVz7dq1DMfn5msmO/JFZ5phGIWAUOA+4DTwi2EYX5qmeeDGGNM03wXe/Xv8g8BI0zT/sCKviIiIiIjc5uJPw+Zu8Md2qPsG1HoJ8tgnefOsygOhWF3Y/BCsbw53zYOKPa1OJSIiYrnc7tC6nZUtWxZvb28uX74MQKNGjdIsxOSmokWLOo4vXryY4fjkY5Kfm9fnvBUhISFs3bqVxMRElixZwvDhwx23LVmyhMTERMe41Pzxxx+0a9eO6OhoAMqXL88DDzxA9erVKVGiBJ6eno6OvLFjx7J//35sNluGuZIvXXi7KVq0KJcuXQLsr4f09kBLTEx0FCddXV3x9vbOlYxZkS+KaUAT4KhpmscBDMNYAnQFDqQxvjfwaS5lExERERER+ccfOyD8AUiMhXtWQrkuVifKf4o3gg7b4ftH4IdecOVXqP2qCpIiIiKS42w2GyEhIY5CGkB4eDgzZ87kqaeeSvfc+Ph41q1b55QcFSpUoGHDhimuK1euHF5eXsTHx3P69GkSExPT7ZY7efKk47hq1apZypH8vMjIyAzHO2POW/Hoo48yYsQIEhISWLRoUYpi2o0lHt3d3Xn00UdTPX/GjBmOQtqAAQP4+OOP0/yZTpw40cnpYefOnY49+bKrffv2eHl5OeW+sqNq1aqcOHECsL9mKlasmObY06dPk5Rk3y85ODg4zy0lmlx+KaaVBU4lu3waaJraQMMwvID7gWG5kEtEREREROQfv62GHx4Fd3/7/mhFa1udKP8qXArabISfh8DecRAXCU1mgYub1clERESkAHvrrbfYtGkTAG3btmX79u1cvnyZUaNG0apVK2rWrJnmudHR0XTr1s0pOQYMGHDTXlouLi7UqFGDHTt2kJiYyO7du2nUqFGa97F9+3bHce3aWfu9tGbNmri4uGCz2YiIiMBms+HikvbuUc6Y81YUL16cTp06sWLFCn7++WeOHDlCcHAwhw8f5pdffgGgc+fOFCtWLNXzN2zYANi7oqZOnZrp4qSzTJ8+nQULFjjlvk6cOEFgYKBT7is7ateuzdq1awH766FVq1Zpjs3t10t25JdiWmrlyLR2cnwQ+CGtJR4NwxgCDAEoUaIE4eHhTgkoInJDbGys3ltExOn03iKS990R9xVVL08l1q0ye33eImHXBSDc6lipap3KdXn2PcZ8jMAiBoHH5/PH6b3sLz6eJJe8u/yLiOj3FpFb4efnR0xMjNUx8oWkpKQc/1n98ssvjBs3DoA77riDjz/+mG+//ZbHH3+cq1ev0qtXL7799ls8PDxSPT82NtZpWf76669UH++9997Ljh07APjyyy/T7P4yTZM1a9Y4Ljdv3jxLPz/DMLjzzjvZtm0bly9f5ttvv6Vp01T7XDh9+jQHDtgXkytfvjzly5fPldd39+7dWbFiBQBz5szh5ZdfZs6cOSluTyvHmTNnAHtRrlChQmmO2717d4o92VIbd/36dcdxfHx8ph77X3/9leGYzIqNjc30zzv5a9XZ/221bNmS9957D4BVq1YxZMiQNMd+9dVXjuPWrVtnOce1a9dy/HcPI61N9PISwzDuBsaZptnh78tjAEzTfCuVsV8Ay03TDMvofqtVq2YeOnTI2XFF5DYXHh5O69atrY4hIgWM3ltE8jDThP0TYc8rUKYTNF8KbmnvC5AnhKXyecU+efxvw+PzYdsTULQu3PsNeJawOpGIpEG/t4hk3sGDB6lRo4bVMfKFmJgYfHx8cvT+GzRowLFjxzAMg3Xr1tGuXTsA+vfvz8KFCwF47rnnmDJlSo7lyMju3bupX78+YF8K8tChQ3h6et40bvXq1XTu3BmAxo0bO7q0smL69OmMGDECsC+ruHTp0lTHvfjii7z77rsAvPDCC47jnJaQkEDp0qW5dOkSlStX5siRI1SpUoXjx49TrFgxzp49i7u7e6rnNmjQgF27dmEYBpcvX07zNdatWzdHwQ7sxcp/GzduHOPHjwfgu+++y9P/L4yMjKRSpUoAtGrVyqmFqMTERMqUKcP58+cxDIO9e/dSq1atm8ZFR0cTFBREXFwcnp6enD59Gn9//yzNmZ33UsMwdpim2TijcWn3Y+YtvwDBhmFUMgzDHegFfPnvQYZh+AGtgJW5nE9ERERERG5Hpg12Pm8vpFXqb98jLa8X0vKroMfsP98rB2FDS4hzzt4SIiIiIgDPPPMMx44dA2DUqFGOQhpAaGgoQUFBAEybNs2xhJ0V6tWrx0MPPQRAVFQUw4YNw2azpRgTFRWVYn+3G912qQkMDMQwDAzDSLOgMnjwYMqUKQPAsmXLUl2WcMOGDY4iY5EiRXjhhRdu4VFlj7u7Oz169ADg2LFjTJ48mePHjwP24l9ahTSAO++8E7AXx8aOHXvT7aZp8uqrr6YopN3O5s+f73i9pFUsdHV15eWXXwbsP7/+/ftz6dKlFGOuXbvGgAEDiIuLA2DYsGFZLqTllnyxzKNpmomGYQwD1gKFgLmmae43DGPo37d/+PfQbsA60zTjLIoqIiIiIiK3C1sS/DzY3jFV9VloNAWM/PJ5xXyqbCe4dx1segDWt4A2G8A35ze2FxERkYLt008/dXSeNWjQgIkTJ6a43cfHh7CwMFq0aEFiYiKPPfYYe/bsoUQJazrlp06dyo8//si5c+eYM2cO+/btIyQkBH9/f/bu3ctHH33ExYsXAejbt6+jQy2rvLy8mDVrFl27diUpKYmBAweyatUqOnbsiKurK5s2beKTTz4hMTERgClTplCqVKk07y8wMNCx/5izOrhCQkKYNWsWAC+99FKK69Pz9NNPM3fuXJKSkpg+fTq7du3i4YcfpnTp0pw6dYqwsDAiIiKoWbMmhQsXdiyxmd/8u1B4+fJlx/GJEyduur1hw4Y8/PDDWZ7vqaee4rPPPmPLli3s3LmTevXq8eSTT1KlShVOnz7NnDlzOHjwIGDfly+1QmZeky+KaQCmaa4GVv/rug//dXk+MD/3UomIiIiIyG3Jlgg/9oeTn0KdcVD7VTBS2+pZnK5kC2gXDt+2hw2toO234KflsURERCRrIiMjHV1cXl5ehIWFpdrJ1LRpU8aNG8fYsWM5e/YsAwcO5Ouvv87tuABUrFiRNWvW0L17d44fP862bdvYtm3bTeP69OnD3LlznTJn586dWbBgAUOHDiU2Npbly5ezfPnyFGPc3NyYNGkSgwcPdsqct6J58+ZUqlSJEydOkJCQAEBQUBDNmzdP97z69evz/vvvOzr8Nm/ezObNm1OMqVGjBitXrrTkcTnLvwvEyUVFRd10+4ABA7JVTHN3d2flypV0796db7/9llOnTqVaMGvYsCFffPEFfn5+WZ4rt+hjkyIiIiIiIrfC9hds7WsvpNV/G+q8pkJabitW315Qw4SN98Kf+y0OJCIiIvlRUlIS/fr1c3TpTJ48merVq6c5fsyYMdxzzz0ArFq1ihkzZuRKztQ0aNCAPXv28N5773H33XcTEBCAh4cH5cuXp0ePHqxZs4bFixenu8Threrbty/79u3jxRdfpFatWvj4+ODt7U3VqlV55plniIiIYOTIkRnez9WrVx3HAQEBTslmGAb9+vW7KW9mPPXUU/zwww/06NGD0qVL4+bmRsmSJWnWrBmTJ09m+/btVKlSxSk5byfFihVjw4YNLFmyhM6dO1OmTBnc3d0pVaoUbdq0YdasWWzbto0KFSpYHTVTjNQ2yrtdVKtWzTx06JDVMUSkgNFm2yKSE/TeIpJH2P6CH/rAqf9Bg/9CjVFWJ8qasFSKf33y4d+Gl3+Fb9vYOwXbfgtFa1udSETQ7y0it+LgwYPUqKEO68yIiYnBx8fH6hiSTYcOHXIULLt06cLKlSstTiQFQXbeSw3D2GGaZuOMxqkzTUREREREJDNMG/w0yF5Iazg5/xbSChK/6tA2HFzc4Nu2cEUflhQRERHJyzZs2ACAi4sLb775psVpRDJPxTQREREREZGMmCZsfxYiF0G9iVA94+VrJJf4VoU2G+3HG9tC7HFr84iIiIhImm4U00JCQqhVq5bFaUQyT8U0ERERERGRjOx5BY6EQo3/QM0xVqeRf/OrDveuh6Sr9oJa3CmrE4mIiIjIv9hsNsLDw/Hw8GD8+PFWxxG5JSqmiYiIiIiIpOfAu7B/IlR+AupPAiOV/cbEesXqQpt1kPAHfNcBrv9hdSIRERERScbFxYVLly5x7do1KlasaHUckVuiYpqIiIiIiEhajs6GXS9ChZ5w50wV0vK64o3gni8h9hhs7gKJV61OJCIiIiIiBYCKaSIiIiIiIqk5uRR+fhLKdIK7PwGXQlYnkswo1QruXgjnt8LWvmBLsjqRiIiIiIjkcyqmiYiIiIiI/NuZ9bC1H5RsCS2WQyF3qxPJraj4KDScAqe/gB3PgmlanUhERERERPIxV6sDiIiIiIiI5CmXD8D33cGvhn3JQFcvqxNJVlQfAVd/g4Pvglc5qDXG6kQiIiIiIpJPqZgmIiIiIiJyw9VzEN4ZCnlBq6/B3c/qRJId9d+Gq7/D7pegcBkIGmB1IhERERERyYdUTBMREREREQFIvAqbH4Jr56DdJvCuYHUiyS7DBZrOhatnYdvj4FkKytxvdSoREREREclntGeaiIiIiIiIaYOfBsLFbdBsEfjfaXUicZZC7nDP5+BXG75/FC4ftDqRiIiIiIjkMyqmiYiIiIiI7HkVopZC/UlQ/mGr04izuflCq6/AtTBs6gIJl6xOJCIiIiIi+YiKaSIiIiIicns7vgD2T4TKg6HGC1ankZziXR5afg7xJ+H7nmBLtDqRiIiIiIjkEyqmiYiIiIjI7St6C/z8BJRqC3d+AIZhdSLJSSWaw50z4ex6iPiP1WlERERERCSfcLU6gIiIiIiIiCXif4Pvu4N3JWj5P3BxszqR5IbKj8OlPXBoKhStC5UHWp1IRERERETyOHWmiYiIiIjI7SfpOmzpDolxcM8X4F7U6kSSmxq+Z+9G/GUonP/R6jQiIiIiIpLHqZgmIiIiIiK3n50j4eJPcNc88KtpdRrJbS6u0GIpeJWHLd0g/rTViUREREREJA9TMU1ERERERG4vx+fDkZlQ4z9QoYfVacQqHv5wz0p7d+LmbvZuRRERERERkVSomCYiIiIiIrePP3bCz0Oh1L1Q702r04jVitaCuxfCH9th5yir04iIiIiISB6lYpqIiIiIiNwerl+ELQ+DZ0lovtS+1J9I+Yeg+ig4Egonl1qdRkRERERE8iAV00REREREpOCzJcEPveHqGWj5GXiWsDqR5CX134KAZrBtMFw5ZHUaERERERHJY1RMExERERGRgm/feDi7HhqHgv+dVqeRvMbFDVoshUIe8H0PSIy3OpGIiIhIhuLi4pg8eTLNmzenZMmSeHp6UrFiRXr27MnatWtzZM6TJ08yevRo6tSpg5+fH0WKFKF69eoMHz6c/fv358ic4jw//vgjgwYNonLlynh5eVG8eHEaNWrEG2+8wYULF5w+365duxg+fDgNGjSgaNGiuLq6UrRoUerWrcuQIUP4/vvvnT5nTtG6JiIiIiIiUrCd/Rb2vQFBj0GVwVankbzKqxzcvQjCO8H24XDXHKsTiYiIiKQpIiKC7t27c/z48RTXR0VFERUVxbJly+jTpw/z5s3D3d3dKXMuXryYoUOHEhsbm+L6Q4cOcejQIWbNmsXbb7/NyJEjnTKfOI9pmowaNYqpU6dimqbj+qtXr3Lp0iV27tzJjBkzCAsLo02bNtmez2azMXLkSN5///0U8wFcvnyZvXv3snfvXmbPnk2vXr2YN28enp6e2Z43J6mYJiIiIiIiBde18/BjP/CtCo1nWJ1G8roy90Otl2H/G1Cypb0AKyIiIpLHnDx5ko4dO3Lu3DkAmjRpQr9+/QgICGDv3r3MmjWLixcvEhYWhouLCwsXLsz2nKtWrWLAgAEkJSVhGAbdu3enQ4cOuLm5sWnTJhYuXEhCQgLPP/88Pj4+DB6sD7HlJWPGjGHKlCkAeHt78/jjj9OkSRNiY2P57LPPWL9+PefOnaNr165s2bKF+vXrZ2u+559/nunTpzsuP/jgg7Ru3ZoyZcoQHR3Njz/+yPLly0lKSmLJkiUkJSWxbNmybM2Z04x/VwVvJ9WqVTMPHdJ6+CLiXOHh4bRu3drqGCJSwOi9RSQLTBtsehDOboQO26BYPasT5R1hxs3X9bl9/zZMwZYE390HF36CDj9D0dpWJxLJd/R7i0jmHTx4kBo1algdI1+IiYnBx8fH6hh5Qrdu3VixYgUAgwYNYvbs2bi4/LOjU1RUFC1btiQqKgqAr7/+ms6dO2d5vvj4eIKDg/n9998BmD9/PgMGDEgxZv369XTq1InExESKFCnC0aNHKVWqVJbnFOeJiIigUaNGmKaJn58fmzdvpm7duinGjBs3jvHjxwNw5513sm3bNgwjlb8ZMiEyMpLKlStjs9koVKgQq1evpn379jeN27lzJ61atXJ0OkZERGS5iJed91LDMHaYptk4o3HaM01ERERERAqmQ9Pg99XQ8D0V0iTzXApBszBw84Pvu0NinNWJRERERBx2797tKKRVqFCB0NDQFIW0G9fPnDnTcXncuHHZmnP27NmOQlqPHj1uKqQB3HfffY7lHWNjY/nvf/+brTnFeSZMmOBYavHNN9+8qZAG8Nprr9GkSRMAfvnlF1avXp3l+TZs2IDNZgPg4YcfTrWQBtCwYUOefPJJx+UtW7Zkec7coGKaiIiIiIgUPH/sgF3/B+UeguCnrU4j+U3h0tA8DK4chp3PW51GREREctCmTZsoVKgQhmFQoUIF/vzzzzTHnjhxAj8/PwzDwNvbGytWPVu6dKnjeMiQIWnuM9WxY0eqVKkCwPbt2zl27JhT5hwxYkSa44YPH+7oZsrJJfu+/PJLDMPAMAxGjRqVqXOef/55xzlfffVVittM02TLli28/PLLtGnThjJlyuDh4YG3tzeVKlWiV69efPXVVzft/fVv48aNc8wRHh4OwMaNG+nduzeVKlXC09MTwzCIjIzMysPOkpiYGNasWQOAr68vjz32WKrjDMNg+PDhjsvJn/NbFR0d7TgODg5Od2zVqlUdx3FxeftDbCqmiYiIiIhIwfLXFfi+J3iWhqZzIIvLk8htrtS9UPNFODoLTq2wOo2IiIjkkFatWjF69GgATp06xZAhQ1Idl5iYSJ8+fbhy5QoA06ZNo1q1armW84Z169Y5ju+///40xxmGQYcOHRyX165dm6X5rly5wk8//QSAn58fd999d5pjy5cvT82aNQH7UpMHDhzI0pwZ6dixIwEBAQB8+umnji6otNzYlwsgICDgpp/boEGDuOeee3jzzTf57rvvOHPmDAkJCcTHxxMZGcnSpUvp0qULnTp1cjz/GTFNk2HDhtGuXTuWLFlCZGQk169fz8KjzZ5NmzY55r3nnnvw8vJKc2zy18uNAlxWJF/e88iRI+mOTX57Xl/yVsU0EREREREpOEwTfnka4k5As8XgUdzqRJKf1ZkAxRrCz4Ph6hmr04iIiEgOGT9+PE2bNgVg+fLlzJ07N9UxN4pKjzzyCIMHD87VjAA2m42DBw8C4OrqSr166S9l3rjxP9tA7du3L0tzHjhwwNGRVb9+/ZuWlMyJOTPi5uZGz549AThz5gwbN25Md/zGjRs5c8b+u1yvXr1wc3NLcfvVq1fx8PCgffv2jB07lnnz5rFs2TJCQ0MZMWIExYvb/6b45ptv6N+/f6Yyvvvuu4SGhlK6dGlGjx7NokWLmD9/Pk8//TQeHh63+pCzLPlz0KhRo3THlihRgooVKwJw4cKFFB1mt6Jjx464u7sD8Pnnn7N+/fpUx+3cuZOPPvoIsHewderUKUvz5RZXqwOIiIiIiIg4zYlPIHKxvQhSsqXVaSS/K+RuX+5xTQP48TG4dw0Y+kyqiIhIQePq6kpYWBj169cnJiaGZ599lpYtWzqWqPv+++956623AHv31ezZs1O9n/j4+BSdY9lRoUIFGjZsmOK606dPEx8fD0DZsmVxdU3/n/dvFEYADh8+nKUcyc8LDAzMcLwz5syMfv36ERoaCsCiRYu477770hy7aNGiFOf92zPPPMOHH35I0aJFUz1/4sSJDBw4kOXLl7Ny5Uo2bdpEq1at0s23Zs0aWrRowapVq/D19XVc/+/95nbu3ElUVFS695VZ7du3v6nzLCvP38mTJx3nlixZ8pZzlClThnfeeYfnnnuOpKQk2rdvz4MPPsi9995LmTJliI6OZuvWrSxfvpykpCRq1qzJihUrbipy5jUqpomIiIiISMEQewK2D4OSraDWS1ankYLCtxo0nAK/DIVD06H6c1YnEhERkRwQFBREaGgo/fv3Jy4ujj59+rB161bi4uLo27cvSUlJuLi4sHDhQooVK5bqfURHR9OtWzen5BkwYADz589PcV3y/dxuLHOYHn9//1TPvRVWzJkZd911F8HBwRw5coTPP/+cmTNnprqEYXx8PF988QVg73660YGYXMuW6X8Iz9vbmzlz5rB69Wri4uJYuHBhhsU0b29vli5dmqKQlprp06ezYMGCdMdk1okTJ24qmFn1/I0YMYJSpUrxf//3f0RFRfHVV1/dtFddiRIlmDhxIn379k13+cm8Qh+pExERERGR/M+WBD8OAAy4ewG4FLI6kRQkVYZA2S6w6//g0h6r04iIiEgOCQkJoW/fvgBs376dV155hSeffNLROTRmzJgMiyg5KTY21nHs6emZ4fjChQs7jmNiYvLNnJl1o8ssNjaWlStXpjpmxYoVjscQEhKS5bl8fHyoU6cOANu2bctw/COPPEKZMmWyPJ+zWPn8PfLII0yZMoWyZcumevv58+d55513WLp0abbmyS3qTBMRERERkfzv0BQ4vwXumgfeFTMeL3IrDAOafgyr68LWvtDhZ3AtnPF5IiIiTvTcc7Brl9Upclf9+jB1au7O+cEHH7B161ZOnDjBpEmTHNc3bdqUcePGpXtuYGCgY3+xnGYYRq7MY/Wc6enXrx+vvfYaYF/KsXfv3jeNSb7E441CaWquX7/OsmXLWLlyJbt37+bcuXPExsam+nyePn06w2wZdbvdMH/+/Js6EHNKbj5/x44do0uXLhw4cIBKlSrxySefcN999+Hv78/FixdZv349r732GkePHmXQoEEcPnzYsZRqXqXONBERERERyd/+3Ae7X4ZyD0GlARkOF8kSzxL2Yu3lfbBrtNVpREREJIf4+voSFhaWYj8yHx+fm66zQpEiRRzHV69ezXB88jE+Pj75Zs7MCgoKolmzZgCsW7eO8+fPp7g9Ojqa9evXA9C8eXOCgoJSvZ+9e/dSp04d+vfvz2effcbRo0eJiYlJszB65cqVDLOl1Y2V26x4/n7//XfuuusuDhw4QJUqVdi+fTshISGULl0aNzc3SpcuTUhICNu3b6dy5coAvP3226xatSpL8+UWdaaJiIiIiEj+lZQAW/uBe1Fo8pG9g0gkp5S5H6qNgEPToOwDcEfaG92LiIg4W253aN3OypYti7e3N5cvXwagUaNGaRZiclPRokUdxxcvXsxwfPIxyc/N63PeipCQELZu3UpiYiJLlixh+PDhjtuWLFlCYmKiY1xq/vjjD9q1a0d0dDQA5cuX54EHHqB69eqUKFECT09PR0fX2LFj2b9/PzabLcNcyZdLtJIVz98bb7zBhQsXHMfFixdPdVzx4sV54403HB2F77//Pp07d87SnLlBxTQREREREcm/9o2HP3fDPSvAs6TVaeR2UO8tOPMNbHscOu8Dt/Q3lRcREZH8xWazERIS4iikAYSHhzNz5kyeeuqpdM+Nj49n3bp1TslRoUIFGjZsmOK6cuXK4eXlRXx8PKdPnyYxMTHdbrmTJ086jqtWrZqlHMnPi4yMzHC8M+a8FY8++igjRowgISGBRYsWpSim3Vji0d3dnUcffTTV82fMmOEopA0YMICPP/44zZ/pxIkTnZwedu7c6diTL7vat2+Pl5dXiuuseP6Sd5i1a9cu3bHJb//555+zNF9uUTFNRERERETyp/Nb4cDbEDQQynW1Oo3cLlwLw13zYX1z2PkCNJ1ldSIRERFxorfeeotNmzYB0LZtW7Zv387ly5cZNWoUrVq1ombNmmmeGx0dTbdu3ZySY8CAATftpeXi4kKNGjXYsWMHiYmJ7N69m0aNGqV5H9u3b3cc165dO0s5atasiYuLCzabjYiICGw2Gy4uae8e5Yw5b0Xx4sXp1KkTK1as4Oeff+bIkSMEBwdz+PBhfvnlFwA6d+5MsWLFUj1/w4YNALi6ujJ16tRMFyedZfr06SxYsMAp93XixAkCAwNTXJf8OUj+3KTm/PnzjscYEBBAyZJZ+7Di77//7jj29U3/g2d+fn6O47i4uCzNl1u0Z5qIiIiIiOQ/f8XCj/3Bqzw0mmp1GrndBNwF1V+AY7Ph97VWpxEREREn2bZtG+PGjQOgTJkyLF26lJkzZwL2vaT69OnD9evXLUwIHTp0cByvXZv27yGmaaa4Pfl5t8LX15e77roLgMuXL/PTTz+lOfbUqVMcOHAAsHfWpVd4dKbkSzje6Ea78f3ft//buXPnAPD39093WcOIiIib9mTLD1q3bo2HhwcAmzdvTnfftOSvl44dO2Z5zuQFtFOnTqU7NnmB0t/fP8tz5gYV00REREREJP/Z9SLEHoe7FmiZPbFG3fHgWwN+HgwJlzMeLyIiInlaTEwMffv2JTExEcMwWLBgAf7+/vTu3dtRjNm9ezejR49O8z4CAwMxTdMpX//uSrsh+XKFH330EdeuXUt13Jo1azh69CgAjRs3pnLlyln8yUDPnj0dx9OmTUtz3Pvvv49pmjflzGkPPPCAo/Ns8eLFmKbJ4sWLAShWrFi6+3DdWBYxOjqamJiYNMdNmDDBiYn/MX/+fKe9Zv7dlQZQpEgROnXqBMCVK1fSfF2ZpsmMGTMcl5M/57cqeTfckiVL0h2b/PbGjRtnec7coGKaiIiIiIjkL+fC4chMqPYclGpldRq5XRXytC/3ePV32Pm81WlEREQkm5555hmOHTsGwKhRo1Ls5RQaGkpQUBBgLyal1xGW0+rVq8dDDz0EQFRUFMOGDcNms6UYExUVlWJ/txvddqkJDAzEMAwMwyA8PDzVMYMHD6ZMmTIALFu2LNVlCTds2MCUKVMAewHnhRdeuIVHlT3u7u706NEDgGPHjjF58mSOHz8O2It67u7uaZ575513AvZi0tixY2+63TRNXn31VVasWOH84LnklVdewTAMAMaMGcOePXtuGjNhwgS2bdsG2H8mNwpw/zZ//nzH66V169apjundu7fj+PXXX2fjxo2pjtu4cWOKfejS6yDMC7RnmoiIiIiI5B+J8bBtMBSpAvXesDqN3O4CmkCN/4MDb0GF7lAm68vhiIiIiHU+/fRTFi5cCECDBg1S/AM/gI+PD2FhYbRo0YLExEQee+wx9uzZQ4kSJayIy9SpU/nxxx85d+4cc+bMYd++fYSEhODv78/evXv56KOPuHjxIgB9+/ZNtzMrM7y8vJg1axZdu3YlKSmJgQMHsmrVKjp27IirqyubNm3ik08+ITExEYApU6ZQqlSpNO8vMDDQsbzfd999l2ZR5laEhIQwa5Z9L9uXXnopxfXpefrpp5k7dy5JSUlMnz6dXbt28fDDD1O6dGlOnTpFWFgYERER1KxZk8KFC7Njx45sZ81tDRo04MUXX2TSpElcvnyZZs2aMXjwYJo0aUJsbCyfffYZ69atA+yF0FmzZjmKb1nx+OOPM3fuXH755ReuXbtG+/bteeihh2jfvj3+/v5cvHiRdevWsWLFCkch+P7776d79+5Oebw5RcU0ERERERHJP/a8ArHHoG04uHpZnUYE6rwGv31pL/J23g/uRa1OJCIiIrcgMjLS0cXl5eVFWFhYqp1MTZs2Zdy4cYwdO5azZ88ycOBAvv7669yOC0DFihVZs2YN3bt35/jx42zbts3RVZRcnz59mDt3rlPm7Ny5MwsWLGDo0KHExsayfPlyli9fnmKMm5sbkyZNYvDgwU6Z81Y0b96cSpUqceLECRISEgAICgqiefPm6Z5Xv3593n//fUeH3+bNm9m8eXOKMTVq1GDlypWWPC5neeutt0hISGDq1KnExcWlulxnyZIl+fTTT6lfv3625nJzc2PNmjX07duXtWvXYrPZ+Pzzz/n8889THd+jRw/mzp2brQJebtAyjyIiIiIikj9c2AaHpkKVoVreUfKOQh725R6vnYOdI61OIyIiIrcgKSmJfv36cfmyff/TyZMnU7169TTHjxkzhnvuuQeAVatWpdhjKrc1aNCAPXv28N5773H33XcTEBCAh4cH5cuXp0ePHqxZs4bFixenu8Threrbty/79u3jxRdfpFatWvj4+ODt7U3VqlV55plniIiIYOTIjH8funr1quM4ICDAKdkMw6Bfv3435c2Mp556ih9++IEePXpQunRp3NzcKFmyJM2aNWPy5Mls376dKlWqOCWnVQzDYPLkyfzwww889thjBAUF4enpSdGiRWnYsCETJkxg//79tGnTxinz+fv7880337B+/XoGDhxIzZo18fX1pVChQvj6+lK7dm2eeOIJvv/+e5YtW0aRIkWcMm9OMm5sCHg7qlatmnno0CGrY4hIARMeHu6U9nQRkeT03iK3vaTr8E1D+CsGOu8DN1+rE+VvYal86rPP7fu3oVPsHgv7J0Lr1VruUW57+r1FJPMOHjxIjRo1rI6RL8TExODj42N1DMmmQ4cOOQqWXbp0YeXKlRYnkoIgO++lhmHsME2zcUbj1JkmIiIiIiJ53/6JcPkANPlIhTTJm2q/An414eeh8Fes1WlERERE8qQNGzYA4OLiwptvvmlxGpHMUzFNRERERETytku7Yf9bEBiijh/Juwp5QJNZEB9l39tPRERERG5yo5gWEhJCrVq1LE4jknkqpomIiIiISN5lS4Rtj4NHcWg0xeo0Iukr0RyCn4bD0+HiL1anEREREclTbDYb4eHheHh4MH78eKvjiNwSFdNERERERCTv+vU9+GMHNA4FD3+r04hkrP5b4HkHbBsMtr+sTiMiIiKSZ7i4uHDp0iWuXbtGxYoVrY4jcktUTBMRERERkbwp5ijsHQflH4YK3a1OI5I5br5wZyj8uQcOvmd1GhERERERcQIV00REREREJO8xTfjlaXBxh0bvW51G5NaU6wrlH4F94+1FYRERERERyddUTBMRERERkbzn5BI4ux7qTgSvMlanEbl1jd8HFw/4+Ul7cVhERERERPItFdNERERERCRvSbgEO5+D4ndC8FNWpxHJmsJ3QIN34Ny3cHy+1WlERERERCQbVEwTEREREZG8ZdcYuH4BmnwELoWsTiOSdZUHQ4mWEDEKrp6zOo2IiIiIiGSRimkiIiIiIpJ3nP8Rjn4EVUdA8QZWpxHJHsMFmsyCxDiIeMHqNCIiIiIikkUqpomIiIiISN5g+wt+HgJe5aHuBKvTiDiHX3Wo+X8QuQjOhVudRkREREREskDFNBERERERyRt+nQKX90Hj98GtiNVpRJyn5hjwrgS/PA1JCVanERERERGRW6RimoiIiIiIWC/2BOwdB+W62r9EChLXwtB4Blw5CIemWJ1GRERERERuUb4pphmGcb9hGIcMwzhqGMboNMa0Ngxjl2EY+w3D2JTbGUVEREREJAtME7YPs+8v1eh9q9OI5IyynaBcN9g7AeJOWp1GRERERERuQb4ophmGUQgIBToCNYHehmHU/NeYosAHQBfTNGsBPXI7p4iIiIiIZMHpFfD7aqgzAbzLW51GJOc0mmr/vuM5K1OIiIiIiMgtyhfFNKAJcNQ0zeOmaSYAS4B/r/3SB/jcNM0oANM0o3M5o4iIiIiI3KrEeHthwa82VHvW6jQiOcu7AtR5zV5A/u1rq9OIiIiIiEgm5ZdiWlngVLLLp/++LrmqQDHDMMINw9hhGEb/XEsnIiIiIiJZs/8tiI+CO0PBxdXqNCI5r9pz4FcTtg+3F5NFRERERCTPyy9/rRqpXGf+67Ir0AhoCxQGfjQM4yfTNA+nuCPDGAIMAShRogTh4eHOTysit7XY2Fi9t4iI0+m9RQqiwom/cWf0JM4XbsvBAzY4EG51pNtG61Su03tM7vFzfYIGl0cSuXookb6DrI4j4nT6vUUk8/z8/IiJibE6Rr6QlJSkn5WIpOratWs5/rtHfimmnQaSb55QDvg9lTEXTNOMA+IMw9gM1ANSFNNM05wFzAKoVq2a2bp165zKLCK3qfDwcPTeIiLOpvcWKXBMEzY9AK4elOrwCaW8ylid6PYSdvNVeo/JTa1h604Co5YS2Ppl8K1mdSARp9LvLSKZd/DgQXx8fKyOkS/ExMToZyUiqfL09KRBgwY5Okd+WebxFyDYMIxKhmG4A72AL/81ZiXQ0jAMV8MwvICmwMFczikiIiIiIpnx21fw+2qoMw5USJPbUYN3oVBh2P6svbgsIiIiIiJ5Vr4oppmmmQgMA9ZiL5AtM01zv2EYQw3DGPr3mIPAN8Ae4GfgY9M091mVWURERERE0pB4FXaMsO8bVe1Zq9OIWKNwKag7Ac6ug9/+/VlRERERERHJS/JFMQ3ANM3VpmlWNU2zsmmaE/++7kPTND9MNuZd0zRrmqZZ2zTNqZaFFRERERGRtB2YBHGR0HgGuLhZnUbEOsFPgV8t2DESkq5ZnUZERETymbi4OCZPnkzz5s0pWbIknp6eVKxYkZ49e7J27docmfPkyZOMHj2aOnXq4OfnR5EiRahevTrDhw9n//79OTKnOM+PP/7IoEGDqFy5Ml5eXhQvXpxGjRrxxhtvcOHChRyb94cffmDYsGHUrl2b4sWLU7hwYSpWrEiLFi146aWX+P7773NsbmfJL3umiYiIiIhIQRB7HA68DRV6Qql7rU4jYi0XN2g0Db5tBwffg9ovW51IRERE8omIiAi6d+/O8ePHU1wfFRVFVFQUy5Yto0+fPsybNw93d3enzLl48WKGDh1KbGxsiusPHTrEoUOHmDVrFm+//TYjR450ynziPKZpMmrUKKZOnYqZbInxq1evcunSJXbu3MmMGTMICwujTZs2Tpv3woULPPXUU/zvf/+76bYbr9UffviB1atXs2vXLqfNmxNUTBMRERERkdyzYyS4uELD/1qdRCRvKN0Wyj8C+9+ESv3Bu7zViURERCSPO3nyJB07duTcuXMANGnShH79+hEQEMDevXuZNWsWFy9eJCwsDBcXFxYuXJjtOVetWsWAAQNISkrCMAy6d+9Ohw4dcHNzY9OmTSxcuJCEhASef/55fHx8GDx4cLbnFOcZM2YMU6ZMAcDb25vHH3+cJk2aEBsby2effcb69es5d+4cXbt2ZcuWLdSvXz/bc547d462bds6OhYrVqxI9+7dqVWrFl5eXvz222+cOHGCb775Jttz5QYV00REREREJHf8/o19b6j6k8CrnNVpRPKOBv+F31fBrheh+adWpxEREZE87rnnnnMU0gYNGsTs2bNxcbHv6NS7d2+GDh1Ky5YtiYqKYtGiRfTq1YvOnTtneb74+HiGDBlCUlISAPPmzWPAgAGO2/v370+vXr3o1KkTiYmJjBw5kgcffJBSpUpl41GKs0RERPDOO+8A4Ofnx+bNm6lbt67j9ieffJJx48Yxfvx4YmNjGTJkCNu2bcMwjCzPaZomjz76qKOQ9uKLL/L666+n2SV56tSpLM+VW/LNnmkiIiIiIpKP2f6Cnc+BTzBUe87qNCJ5S5FAqPF/cHIJnNtkdRoRERHJw3bv3s2KFSsAqFChAqGhoY5C2g0VKlRg5syZjsvjxo3L1pyzZ8/m999/B6BHjx4pCmk33HfffY7lHWNjY/nvf7USRV4xYcIEx9KOb775ZopC2g2vvfYaTZo0AeCXX35h9erV2Zrzo48+YvPmzQAMHTqUSZMmpbvcaPnyeX91BhXTREREREQk5x0OhSuHoOFkKOScPRtECpSaL4JXBdjxLNgSrU4jIiJy29i0aROFChXCMAwqVKjAn3/+mebYEydO4Ofnh2EYeHt7c+jQodwL+relS5c6jocMGYKnp2eq4zp27EiVKlUA2L59O8eOHXPKnCNGjEhz3PDhwx3dTMuWLcvyfBn58ssvMQwDwzAYNWpUps55/vnnHed89dVXKW4zTZMtW7bw8ssv06ZNG8qUKYOHhwfe3t5UqlSJXr168dVXX6XYayw148aNc8wRHh4OwMaNG+nduzeVKlXC09MTwzCIjIzMysPOkpiYGNasWQOAr68vjz32WKrjDMNg+PDhjsvJn/NbZZom7733HgBFihRh0qRJWb6vvETFNBERERERyVnXzsPecXBHByiT9eVlRAo0Vy97sfnPPXB0ltVpREREbhutWrVi9OjRgH2puSFDhqQ6LjExkT59+nDlyhUApk2bRrVq1XIt5w3r1q1zHN9///1pjjMMgw4dOjgur127NkvzXblyhZ9++gmwLxF49913pzm2fPny1KxZE4CoqCgOHDiQpTkz0rFjRwICAgD49NNPsdls6Y5PSkpiyZIlAAQEBNz0cxs0aBD33HMPb775Jt999x1nzpwhISGB+Ph4IiMjWbp0KV26dKFTp06O5z8jpmkybNgw2rVrx5IlS4iMjOT69etZeLTZs2nTJse899xzD15eXmmOTf56uVGAy4otW7Zw9OhRAB599FF8fX2zfF95iYppIiIiIiKSs/a8Comx0HAKZGPdfZECr/zDUKoN7BkL1y9anUZEROS2MX78eJo2bQrA8uXLmTt3bqpjbhSVHnnkEQYPHpyrGQFsNhsHDx4EwNXVlXr16qU7vnHjxo7jffv2ZWnOAwcOODqy6tevf9OSkjkxZ0bc3Nzo2bMnAGfOnGHjxo3pjt+4cSNnzpwBoFevXri5uaW4/erVq3h4eNC+fXvGjh3LvHnzWLZsGaGhoYwYMYLixYsD8M0339C/f/9MZXz33XcJDQ2ldOnSjB49mkWLFjF//nyefvppPDw8bvUhZ1ny56BRo0bpji1RogQVK1YE4MKFC0RHR2dpzhvLOwK0adOGxMREPvroI1q0aIG/vz+FCxcmMDCQvn37smHDhizNYQVXqwOIiIiIiEgBdmkPHJsFwcPAr4bVaUTyNsOARtNgTX3Y8wrc+YHViURERG4Lrq6uhIWFUb9+fWJiYnj22Wdp2bIlwcHBAHz//fe89dZbgL37avbs2aneT3x8fIrOseyoUKECDRs2THHd6dOniY+PB6Bs2bK4uqb/z/s3CiMAhw8fzlKO5OcFBgZmON4Zc2ZGv379CA0NBWDRokXcd999aY5dtGhRivP+7ZlnnuHDDz+kaNGiqZ4/ceJEBg4cyPLly1m5ciWbNm2iVatW6eZbs2YNLVq0YNWqVSk6s/6939zOnTuJiopK974yq3379jd1nmXl+Tt58qTj3JIlS95yju3btzuOAwICaNasGb/88kuKMSdPnuTkyZOEhYXRs2dP5s2bR+HChW95rtykYpqIiIiIiOQM04Sdz4F7Mag7zuo0IvlD0doQ/BQc+QCCn7ZfFhERkRwXFBREaGgo/fv3Jy4ujj59+rB161bi4uLo27cvSUlJuLi4sHDhQooVK5bqfURHR9OtWzen5BkwYADz589PcV3y/dxuLHOYHn9//1TPvRVWzJkZd911F8HBwRw5coTPP/+cmTNnprqEYXx8PF988QUAwcHBjg7E5Fq2bJnuXN7e3syZM4fVq1cTFxfHwoULMyymeXt7s3Tp0gyXOJw+fToLFixId0xmnThx4qaCmRXP39mzZx3Hw4YN4+jRo/j6+jJ48GAaNWpEYmIiW7ZsYcGCBfz1118sXbqUhIQEPv/88yzNl1u0zKOIiIiIiOSM01/Aue+gzgR7QU1EMqfOOHD1hZ3P24vSIiIikitCQkLo27cvYO+ueeWVV3jyyScdnUNjxozJsIiSk2JjYx3Hnp6eGY5P3ukTExOTb+bMrBtdZrGxsaxcuTLVMStWrHA8hpCQkCzP5ePjQ506dQDYtm1bhuMfeeQRypQpk+X5nMWK5y95Ee7o0aMEBgayZ88e3nvvPfr06UP//v2ZPXs2P/zwg6PY+MUXX7Bs2bIszZdb1JkmIiIiIiLOl3QNdr4AfrWhSuqbuItIGjz8oc5rsHMk/L4ayna2OpGIiOQFzz0Hu3ZZnSJ31a8PU6fm6pQffPABW7du5cSJE0yaNMlxfdOmTRk3bly65wYGBjr2F8tphgV7EVsxZ3r69evHa6+9BtiXcuzdu/dNY5Iv8XijUJqa69evs2zZMlauXMnu3bs5d+4csbGxqT6fp0+fzjBbRt1uN8yfP/+mDsScklvPn81mS3F51qxZKZb/vOHOO+9k4sSJDB8+HIBp06bx6KOP5krGrFBnmoiIiIiION+vUyDuBDSaCi76DJ/ILQt+GnyCIWIU2P6yOo2IiMhtw9fXl7CwsBT7kfn4+Nx0nRWKFCniOL569WqG45OP8fHxyTdzZlZQUBDNmjUDYN26dZw/fz7F7dHR0axfvx6A5s2bExQUlOr97N27lzp16tC/f38+++wzjh49SkxMTJqF0StXrmSYrWzZsrfyUHKMFc9f8vMqVqyY7n52AwcOxM3NDbB3/CXvpMtr9FetiIiIiIg419UzsH8ilHsISre1Oo1I/lTIHRq8B5u7wJEPodpwqxOJiIjVcrlD63ZWtmxZvL29uXz5MgCNGjVKsxCTm4oWLeo4vnjxYobjk49Jfm5en/NWhISEsHXrVhITE1myZImjywlgyZIlJCYmOsal5o8//qBdu3ZER0cDUL58eR544AGqV69OiRIl8PT0dHR0jR07lv3799/UeZWa5MslWsnq10zDhg3THevt7U21atXYt28fSUlJREZGUrt23twzWMU0ERERERFxrt1jwZYADf5rdRKR/K3sA1CqLewdB4F9waO41YlEREQKPJvNRkhIiKOQBhAeHs7MmTN56qmn0j03Pj6edevWOSVHhQoVbipElCtXDi8vL+Lj4zl9+jSJiYnpdsudPHnScVy1atUs5Uh+XmRkZIbjnTHnrXj00UcZMWIECQkJLFq0KEUx7cYSj+7u7mkuHzhjxgxHIW3AgAF8/PHHaf5MJ06c6OT0sHPnTseefNnVvn17vLy8UlxnxfNXrVo1vv32WwD8/PwyHJ98TPL/7vIaFdNERERERMR5Lu2B4/Og+kjwqWx1GpH8zTCg4WT4pgHsm2BfNlVERERy1FtvvcWmTZsAaNu2Ldu3b+fy5cuMGjWKVq1aUbNmzTTPjY6Oplu3bk7JMWDAgJv20nJxcaFGjRrs2LGDxMREdu/eTaNGjdK8j+3btzuOs9rtU7NmTVxcXLDZbERERGCz2XBxSXv3KGfMeSuKFy9Op06dWLFiBT///DNHjhwhODiYw4cP88svvwDQuXNnihUrlur5GzZsAMDV1ZWpU6dmujjpLNOnT2fBggVOua8TJ04QGBiY4rrkz0Hy5yY158+fdzzGgIAASpYsmaUcdevWdRxnZknM5AW0zBTfrKI900RERERExHki/gPuRaH2WKuTiBQMxepC5cFwOBSuHLI6jYiISIG2bds2xo0bB0CZMmVYunQpM2fOBOx7SfXp04fr169bmBA6dOjgOF67dm2a40zTTHF78vNuha+vL3fddRdgL3r89NNPaY49deoUBw4cAOyddekVHp0p+RKON7rRbnz/9+3/du7cOQD8/f3TXdYwIiLipj3Z8oPWrVvj4eEBwObNm9PdNy3566Vjx45ZnjP5uTt37kx3bFxcHIcO2X/HdXNzo1KlSlmeN6epmCYiIiIiIs7x+zdwdh3UfhXcU//kp4hkQZ0JUKiwvVgtIiIiOSImJoa+ffuSmJiIYRgsWLAAf39/evfu7SjG7N69m9GjR6d5H4GBgZim6ZSvf3el3ZB8ucKPPvqIa9eupTpuzZo1HD16FIDGjRtTuXLWV43o2bOn43jatGlpjnv//fcxTfOmnDntgQcecHSeLV68GNM0Wbx4MQDFihWjc+fOaZ57Y1nE6OhoYmJi0hw3YcIEJyb+x/z58532mvl3VxpAkSJF6NSpE2DvEkvrdWWaJjNmzHBcTv6c36qKFSty9913A/alJdevX5/m2Hnz5vHXX38B0KJFC7y9vbM8b05TMU1ERERERLLPlggRL0CRyhD8tNVpRAqWwqXs3Z6/fQVnN1idRkREpEB65plnOHbsGACjRo2iXbt2jttCQ0MJCgoC7MWk9DrCclq9evV46KGHAIiKimLYsGHYbLYUY6KiolLs73aj2y41gYGBGIaBYRiEh4enOmbw4MGUKVMGgGXLlqW6LOGGDRuYMmUKYC/gvPDCC7fwqLLH3d2dHj16AHDs2DEmT57M8ePHAXtRz93dPc1z77zzTsBeTBo79ubVNUzT5NVXX2XFihXOD55LXnnlFQzDAGDMmDHs2bPnpjETJkxg27ZtgP1ncqMA92/z5893vF5at26d5pxvvPGG43jIkCGpLpG5fft2Xn75Zcfl//wnb39wTHumiYiIiIhI9h2fD5f3Q4v/QaG0/1gVkSyqNgKOfAg7n4f7I8ClkNWJRERECoxPP/2UhQsXAtCgQQMmTpyY4nYfHx/CwsJo0aIFiYmJPPbYY+zZs4cSJUpYEZepU6fy448/cu7cOebMmcO+ffsICQnB39+fvXv38tFHH3Hx4kUA+vbtm25nVmZ4eXkxa9YsunbtSlJSEgMHDmTVqlV07NgRV1dXNm3axCeffEJiYiIAU6ZMoVSpUmneX2BgoKO48t1336VblMmskJAQZs2aBcBLL72U4vr0PP3008ydO5ekpCSmT5/Orl27ePjhhyldujSnTp0iLCyMiIgIatasSeHChdmxY0e2s+a2Bg0a8OKLLzJp0iQuX75Ms2bNGDx4ME2aNCE2NpbPPvuMdevWAfZC6KxZsxzFt6xq06YNTz31FDNnziQyMpK6desyePBgGjduTGJiIlu2bGHBggUkJCQA8MQTT2RracncoGKaiIiIiIhkz1+xsOcVCGgG5R+2Oo1IwVTIA+q/DT/0hMiFEPSY1YlEREQKhMjISEcXl5eXF2FhYal2MjVt2pRx48YxduxYzp49y8CBA/n6669zOy5gX0ZvzZo1dO/enePHj7Nt2zZHV1Fyffr0Ye7cuU6Zs3PnzixYsIChQ4cSGxvL8uXLWb58eYoxbm5uTJo0icGDBztlzlvRvHlzKlWqxIkTJxwFmqCgIJo3b57uefXr1+f99993dPht3ryZzZs3pxhTo0YNVq5cacnjcpa33nqLhIQEpk6dSlxcXKrLdZYsWZJPP/2U+vXrO2XOGTNm4OrqyowZM7hy5QqTJ09OddywYcMcXY15mZZ5FBERERGR7Dn4Llw7Cw3fg2x+glFE0lGhB/g3gd1jITHe6jQiIiL5XlJSEv369ePy5csATJ48merVq6c5fsyYMdxzzz0ArFq1KsUeU7mtQYMG7Nmzh/fee4+7776bgIAAPDw8KF++PD169GDNmjUsXrw43SUOb1Xfvn3Zt28fL774IrVq1cLHxwdvb2+qVq3KM888Q0REBCNHjszwfq5eveo4DggIcEo2wzDo16/fTXkz46mnnuKHH36gR48elC5dGjc3N0qWLEmzZs2YPHky27dvp0qVKk7JaRXDMJg8eTI//PADjz32GEFBQXh6elK0aFEaNmzIhAkT2L9/P23atHHanC4uLkyfPp2tW7cyePBgqlSpgpeXF15eXgQHBzN48GB27NjB+++/j6tr3u/7Mm5sCHg7qlatmnno0CGrY4hIARMeHu6U9nQRkeT03iJ5Vvxv8FUwlO0CLZZYnUYyKyyVomef2/dvw3wlegtsuAfqTYRaL2U8XsQC+r1FJPMOHjxIjRo1rI6RL8TExODj42N1DMmmQ4cOOQqWXbp0YeXKlRYnkoIgO++lhmHsME2zcUbj1JkmIiIiIiJZt+cVMJOg/ltWJxG5PZRsCeW6wv634dp5q9OIiIiI3JINGzYA9q6lN9980+I0IpmnYpqIiIiIiGTNpd1wfD5UHQ5FKlmdRuT2Ue9tSIqHfROsTiIiIiJyS24U00JCQqhVq5bFaUQyT8U0ERERERG5daYJES+AezGo/bLVaURuL37VofITcORDuHLE6jQiIiIimWKz2QgPD8fDw4Px48dbHUfklqiYJiIiIiIit+7MN3B2A9R+1V5QE5HcVec1KOQBu8dYnUREREQkU1xcXLh06RLXrl2jYsWKVscRuSUqpomIiIiIyK2xJdq70opUgeCnrE4jcnsqXBpqvAinPoPzP1qdRkRERESkQFMxTUREREREbs3xeXD5ADSYBIXcrU4jcvuq/jx4lrYXt03T6jQiIiIiIgWWimkiIiIiIpJ5f8XAnlegRHMo183qNCK3N7ciUHcCXNgKp1dYnUZEREREpMBSMU1ERERERDLv4H/h2jlo8B4YhtVpRCRoIPjWgF3/B7a/rE4jIiIiIlIgqZgmIiIiIiKZc/Us/PoeVOgBAU2tTiMiAC6u0OAdiDkCR2dZnUZEREREpEBSMU1ERERERDJn3+uQdB3qTrQ6iYgkV6YzlGwFe8fDX1esTiMiIiIiUuComCYiIiIiIhmLOWrveqnyBPgGW51GRJIzDGjwLlw/DwfesTqNiIiIiEiBo2KaiIiIiIhkbM8r4OIOtV+1OomIpMb/TqjYC36dDPG/WZ1GRERERKRAUTFNRERERETS98cOOLkEqo+EwqWtTiMiaan3JpiJsEdFbxERERERZ1IxTURERERE0rdrDHj4Q43/WJ1ERNJTpBIED4Pj8+DP/VanEREREREpMFRMExERERGRtJ3dAGfXQ62Xwd3P6jQikpHaL4ObD+wZa3USEREREZECQ8U0ERERERFJnWmDXaPBuyIEP211GhHJjBtdpKdXwIWfrE4jIiIiIlIgqJgmIiIiIiKpi/qffb+0OhOgkIfVaUQks6o9B54l7cVw07Q6jYiIiIhIvqdimoiIiIiI3Mz2F+x+GfxqQ2Bfq9OIyK1wKwK1XoHoTXBmrdVpRERERETyPRXTRERERETkZsc+htijUP9tcClkdRoRuVVVhoB3Jdg9xr5kq4iIiIiIZJmKaSIiIiIiktJfsbB3PJRoCWU6WZ1GRLKikDvUfR0u7YKTy6xOIyIiIiKSr6mYJiIiIiIiKR2aCtfOQf1JYBhWpxGRrArsDUXrwp6x9qVbRUREREQkS1RMExERERGRf1w7DwfegXIPQYm7rU4jItlhuEC9NyH2GBybY3UaERERcbK4uDgmT55M8+bNKVmyJJ6enlSsWJGePXuydm3O7Jt68uRJRo8eTZ06dfDz86NIkSJUr16d4cOHs3///hyZU5znxx9/ZNCgQVSuXBkvLy+KFy9Oo0aNeOONN7hw4YJT5jBNkx9++IGpU6fSt29fGjZsSPny5SlcuDBeXl6UK1eOjh07MmPGDP7880+nzJkbDNM0rc5gmWrVqpmHDh2yOoaIFDDh4eG0bt3a6hgiUsDovUVyzY6RcHg6dNoHfjWsTiM5JSyVjsM+t+/fhgWaacKGeyDmKHQ5Bq5eVieS24B+bxHJvIMHD1Kjhn7nyoyYmBh8fHysjpFnRERE0L17d44fP57mmD59+jBv3jzc3d2dMufixYsZOnQosbGxqd7u7u7O22+/zciRI50ynziPaZqMGjWKqVOnklZNqFSpUoSFhdGmTZtszXXt2jUKFy6cqbElSpRg9uzZdO3aNVtzZue91DCMHaZpNs5onGuW7l1ERERERAqe2Eg48gEEDVQhTaSgMAyo9xZsaAmHpkGtMVYnEhERkWw6efIkHTt25Ny5cwA0adKEfv36ERAQwN69e5k1axYXL14kLCwMFxcXFi5cmO05V61axYABA0hKSsIwDLp3706HDh1wc3Nj06ZNLFy4kISEBJ5//nl8fHwYPHhwtucU5xkzZgxTpkwBwNvbm8cff5wmTZoQGxvLZ599xvr16zl37hxdu3Zly5Yt1K9fP9tzli1blqZNm1KjRg1Kly5NyZIluX79Or/++ivLly/nyJEjnD9/nkceeYQ1a9Zw3333ZXvOnKTONHWmiYiT6VOYIpIT9N4iueLHARC1DB48Al7lrE4jOUmdabef8Afh/Bbochw8iludRgo4/d4iknnqTMs8dab9o1u3bqxYsQKAQYMGMXv2bFxc/tnRKSoqipYtWxIVFQXA119/TefOnbM8X3x8PMHBwfz+++8AzJ8/nwEDBqQYs379ejp16kRiYiJFihTh6NGjlCpVKstzivNERETQqFEjTNPEz8+PzZs3U7du3RRjxo0bx/jx4wG488472bZtG0YW98+22Wz8+uuv1KxZM80xSUlJDB8+nJkzZwJQvXp1Dh48mKX5IHc607RnmoiIiIiIwOWDcGIhBD+jQppIQVT/TfjrChyYZHUSERERyYbdu3c7CmkVKlQgNDQ0RSHtxvU3ihRgL5Rkx+zZsx2FtB49etxUSAO47777HMs7xsbG8t///jdbc4rzTJgwwbG045tvvnlTIQ3gtddeo0mTJgD88ssvrF69Osvzubi4pFtIAyhUqBDTpk3D398fgF9//TXdJUvzAhXTREREREQE9o4DV2+o+X9WJxGRnFC0DgT2s++JGP+b1WlERETyjE2bNlGoUCEMw6BChQr8+eefaY49ceIEfn5+GIaBt7c3Vqx6tnTpUsfxkCFD8PT0THVcx44dqVKlCgDbt2/n2LFjTplzxIgRaY4bPny4o5tp2bJlWZ4vI19++SWGYWAYBqNGjcrUOc8//7zjnK+++irFbaZpsmXLFl5++WXatGlDmTJl8PDwwNvbm0qVKtGrVy+++uqrNPcau2HcuHGOOcLDwwHYuHEjvXv3plKlSnh6emIYBpGRkVl52FkSExPDmjVrAPD19eWxxx5LdZxhGAwfPtxxOflznlPc3NwIDg52XD579myOz5kdKqaJiIiIiNzuLu22L+9Y7TnwLGF1GhHJKXXHg5kE+yZYnURERCTPaNWqFaNHjwbg1KlTDBkyJNVxiYmJ9OnThytXrgAwbdo0qlWrlms5b1i3bp3j+P77709znGEYdOjQwXF57dq1WZrvypUr/PTTTwD4+flx9913pzm2fPnyjo6kqKgoDhw4kKU5M9KxY0cCAgIA+PTTT7HZbOmOT0pKYsmSJQAEBATc9HMbNGgQ99xzD2+++SbfffcdZ86cISEhgfj4eCIjI1m6dCldunShU6dOjuc/I6ZpMmzYMNq1a8eSJUuIjIzk+vXrWXi02bNp0ybHvPfccw9eXl5pjk3+erlRgMtJNpstRWGxdOnSOT5ndqiYJiIiIiJyu9vzKrj5QY3nrU4iIjmpSCWoMhSOzYErh61OIyIikmeMHz+epk2bArB8+XLmzp2b6pgbRaVHHnmEwYMH52pGsBcfbuwr5erqSr169dId37jxP9tA7du3L0tzHjhwwNGRVb9+/ZuWlMyJOTPi5uZGz549AThz5gwbN25Md/zGjRs5c+YMAL169cLNzS3F7VevXsXDw4P27dszduxY5s2bx7JlywgNDWXEiBEUL27fb/abb76hf//+mcr47rvvEhoaSunSpRk9ejSLFi1i/vz5PP3003h4eNzqQ86y5M9Bo0aN0h1bokQJKlasCMCFCxeIjo7OsVymaTJ27FhHN1r9+vUJCgrKsfmcwdXqACIiIiIiYqELP8NvX0Ld18G9mNVpJKclJUFCQuq3/fUXuLpCFjcal3yi1stwfC7sGQstcm75JRERkfzE1dWVsLAw6tevT0xMDM8++ywtW7Z0LEH3/fff89ZbbwH27qvZs2enej/x8fEpOseyo0KFCjRs2DDFdadPnyY+Ph6AsmXL4uqa/j/v3yiMABw+nLUP0iQ/LzAwMMPxzpgzM/r160doaCgAixYt4r777ktz7KJFi1Kc92/PPPMMH374IUWLFk31/IkTJzJw4ECWL1/OypUr2bRpE61atUo335o1a2jRogWrVq3C19fXcf2/95vbuXMnUVFR6d5XZrVv3/6mzrOsPH8nT550nFuyZMls5/rmm2+4du0aYP9v5OjRo3z++efs3r0bAH9/f+bMmZPteXKaimkiIiIiIrezva+Chz9US3vvA8mjYmLgxAk4dQrOnIGzZ+3fz52DS5fsX3/+af+6etVeRLuxBM7iVO7P3f2f7+7u4OsLxYpB0aL27wEBcMcd9q/SpaFMGahUyX6cwSeUJQ8pXAqqPw/7Xoc/dkDx9D+hLCIicrsICgoiNDSU/v37ExcXR58+fdi6dStxcXH07duXpKQkXFxcWLhwIcWKpf4htOjoaLp16+aUPAMGDGD+/Pkprku+n9uNZQ7T4+/vn+q5t8KKOTPjrrvuIjg4mCNHjvD5558zc+bMVJcwjI+P54svvgAgODjY0YGYXMuWLdOdy9vbmzlz5rB69Wri4uJYuHBhhsU0b29vli5dmqKQlprp06ezYMGCdMdk1okTJ24qmOWF5++xxx7j3LlzN13v7u5Oly5deOedd6hUqZJT5spJKqaJiIiIiNyuorfAmbXQ4F1w87E6jaTm+nU4fBgOHvzn69gxexHt4sWbxxcrBqVKQfHi9mJXrVrg5wdeXvYCmYfH30Wz0Tef+8Yb9oJbQgJcuwZXrtgLcZcuwenTEBFhL9QlJqY8z8MDAgMhKAiqVoUaNaBmTfv3TPzBLhaoPgoOh8LuV+De1VanERERyTNCQkJYu3YtixcvZvv27bzyyiucOHHC0Tk0ZsyYDIsoOSk2NtZx7OnpmeH4woULO45jYmLyzZyZ1a9fP1577TViY2NZuXIlvXv3vmnMihUrHI8hJCQky3P5+PhQp04dfvrpJ7Zt25bh+EceeYQyZcpkeT5nycvPX/Xq1WnXrp1Tut9yg4ppIiIiIiK3I9OEPa+AZ2kIftrqNAL24lVEBOzcaf+KiIBff7UvzQj25RcrVYIqVaBRI/txpUpQocI/3WKZ3X8hLJVi2ssvZ3yezWYv4p05A7/9Zi/q3fg6fhw2bYK/lx4C7IW9hg2hQQP794YN7YU3LSVpLXc/qPki7BoN53+AEs2tTiQiIpmx4zm4tMvqFLmrWH1oNDVXp/zggw/YunUrJ06cYNKkSY7rmzZtyrhx49I9NzAw0LG/WE4zLPh9yoo503OjmAb2pRxTK6YlX+Kxb9++ad7X9evXWbZsGStXrmT37t2cO3eO2NjYVJ/P06dPZ5gto263G+bPn39TB2JOser5u7EvmmmaxMTEsG/fPhYtWsSsWbMYOnQo77//PitXrqRy5cqW5MssFdNERERERG5H576F6E3QaDq43rwciuQw07R3mG3dav/68UfYu9d+Pdi7yho2hG7d7F1eNWvau76SfVLUEi4uUKKE/atu3Ztvt9nsy04ePAgHDtgf086dsG7dP0XBUqXg7ruhWTP79zvvzHwRUJyn6jD4dQrsfhnafqcCp4iIyN98fX0JCwujZcuWJP7dke/j40NYWFiGe5TltCJFijiOr169muH45GN8fLK2EoUVc2ZWUFAQzZo1Y+vWraxbt47z589TokQJx+3R0dGsX78egObNmxMUFJTq/ezdu5dHHnmEI0eOZGreK1euZDimbNmymbqvnJaXnj/DMPD19aVZs2Y0a9aMrl270rlzZ/bv3899993H3r178fb2duqczqRimoiIiIjI7cY0YfdY8CoPVYZYneb2cfIkfPstfPed/evGJ1p9fe1FpYcfhiZN7EW0UqWszZpVLi5QsaL96/77/7n+2jXYtw9++QV++sleQFyxwn6bpyc0bw733gtt2kDjxuDmZkn824qrN9R6GXY8C2c3wB33WZ1IREQykssdWrezsmXL4u3tzeXLlwFo1KhRmoWY3FS0aFHH8cXUlvz+l+Rjkp+b1+e8FSEhIWzdupXExESWLFnC8OHDHbctWbLEURBNa4nHP/74g3bt2hEdHQ1A+fLleeCBB6hevTolSpTA09PT0dE1duxY9u/fj+3GPsTpKGz1h+D+lpefvw4dOvDYY48xZ84cTpw4wSeffMJTTz2Vo3Nmh4ppIiIiIiK3m99Xw8WfoMlHUEgdQTnm+nXYvBlWr7Z/HT5sv75ECXvh6N57oWVL+95iLi7WZs1pnp72IlnjxnDjD+ToaHtHXni4vcg4dqz9el9fuO8+6NTJXpDLA3tNFFhVhsDB/9q700q3U3eaiIgIYLPZCAkJcRTSAMLDw5k5c2aG/9AfHx/PunXrnJKjQoUKNGzYMMV15cqVw8vLi/j4eE6fPk1iYmK63XInT550HFetWjVLOZKfFxkZmeF4Z8x5Kx599FFGjBhBQkICixYtSlFMu7HEo7u7O48++miq58+YMcNRSBswYAAff/xxmj/TiRMnOjk97Ny507EnX3a1b98eL6+Uq47k9efv/vvvZ86cOYD9vzMV00REREREJG+4sVdakSAIGmh1moLnjz/gq6/sXVfr1tn3D/PwgNat7UWkdu2gVi0VLQBKloSuXe1fABcu2Atr69bZi4+ffWa/vn59eOgh+5KXderoZ+dMhTygzquwbTD89iWU62p1IhEREcu99dZbbNq0CYC2bduyfft2Ll++zKhRo2jVqhU1a9ZM89zo6Gi6devmlBwDBgy4aS8tFxcXatSowY4dO0hMTGT37t00atQozfvYvn2747h27dpZylGzZk1cXFyw2WxERERgs9lwSeeDYM6Y81YUL16cTp06sWLFCn7++WeOHDlCcHAwhw8f5pdffgGgc+fOFCtWLNXzN2zYAICrqytTp07NdHHSWaZPn86CBQuccl8nTpwgMDAwxXXJn4Pkz01qzp8/73iMAQEBlCxZ0im50pN8Kck///wzx+fLjnzz8UfDMO43DOOQYRhHDcO4abdswzBaG4Zx2TCMXX9/vWpFThERERGRPO30F3ApAmq/Bi5aSs8poqPhgw/shbKSJeGxx2D7dvv3r7+2F9i++Qaeew5q11YxKC0BAdC9O8yaZd93bc8eePttKFIExo+HevUgOBj+8x/4+ed/9peT7KnUH4pUsRfZzYyXLBIRESnItm3bxrhx4wAoU6YMS5cuZebMmYB9L6k+ffpw/fp1CxPal8a7Ye3atWmOM00zxe3Jz7sVvr6+3HXXXQBcvnyZn376Kc2xp06d4sCBA4C9sy69wqMzJV/C8UY32o3v/779386dOweAv79/ussaRkREcP78+WwmzX2tW7fG4+/9iTdv3pzuvmnJXy8dO3bM8WwAR48edRwHBATkypxZlS+KaYZhFAJCgY5ATaC3YRip/Ze4xTTN+n9/TcjVkCIiIiIieZ0tCfa8Cr7VIbCv1Wnyt8uXYf586NDBvgzhM8/Y90B78UV7oScqCkJDoXNn+NdSK5IJhmHvQvu//4MtW+DMGfjoI3sxbdo0aNrUfvzKK/D3P9hIFrm4Qd3x8OdeOLnM6jQiIiKWiYmJoW/fviQmJmIYBgsWLMDf35/evXs7ijG7d+9m9Oib+jwcAgMDMU3TKV//7kq7IflyhR999BHXrl1LddyaNWschYrGjRtTuXLlLP5koGfPno7jadOmpTnu/fffx/z7A09pLauYEx544AFH59nixYsxTZPFixcDUKxYMTp37pzmuTeWRYyOjiYmJibNcRMm5Ey5Yf78+U57zfy7Kw2gSJEidOrUCYArV66k+boyTZMZM2Y4Lid/znOKzWZzLPEI0KxZsxyfMzvyRTENaAIcNU3zuGmaCcASQOtPiIiIiIjciqilcHk/1BkHLoWsTpP/JCXZO8x69oRSpWDgQPs+aC++aO+i+vVXePNNuPNOdZ85W6lSMGQIrFkD587BnDlQqZL9512rFjRoANOn25eKlFtXsRf41Ya9r4Et0eo0IiIilnjmmWc4duwYAKNGjaJdu3aO20JDQwkKCgLsxaT0OsJyWr169XjooYcAiIqKYtiwYdhsKbvLo6KiUuw9daPbLjWBgYEYhoFhGISHh6c6ZvDgwZT5ex/bZcuWpbos4YYNG5gyZQpgL+C88MILt/Cossfd3Z0ePXoAcOzYMSZPnszx48cBe1HP3d09zXPvvPNOwF5MGntjD99kTNPk1VdfZcWKFc4PnkteeeUVjL//PhkzZgx79uy5acyECRPYtm0bYP+Z3CjA/dv8+fMdr5fWrVunOmbq1KnpdjCCvXjdr18/IiIiAPtynb169crsQ7JEftkzrSxwKtnl00DTVMbdbRjGbuB34AXTNPfnRjgRERERkTzPlgh7x0HROlChh9Vp8pejR2HuXPjkE/jtNyheHJ54Avr2tXdIqXCWu4oVg0GD7F9nz8KyZfbnZsQIeOEFePBB+2333w+FVDTOFMMF6r4OW7rBiU+g8iCrE4mIiOSqTz/9lIULFwLQoEEDJk6cmOJ2Hx8fwsLCaNGiBYmJiTz22GPs2bOHEiVKWBGXqVOn8uOPP3Lu3DnmzJnDvn37CAkJwd/fn7179/LRRx9x8eJFAPr27ZtuZ1ZmeHl5MWvWLLp27UpSUhIDBw5k1apVdOzYEVdXVzZt2sQnn3xCYqL9QzlTpkyhVKlSad5fYGCgY2+u7777Ls2izK0ICQlh1qxZALz00ksprk/P008/zdy5c0lKSmL69Ons2rWLhx9+mNKlS3Pq1CnCwsKIiIigZs2aFC5cmB07dmQ7a25r0KABL774IpMmTeLy5cs0a9aMwYMH06RJE2JjY/nss89Yt24dYC+Ezpo1y1F8y4rw8HBGjhxJcHAwbdu2pXbt2vj7+1OoUCHOnz/Pzp07+eKLL/jjjz8A+351H3/8Mf7+/k55vDklvxTTUnvm/r1A/k6gommasYZhdAJWAME33ZFhDAGGAJQoUSLNaruISFbFxsbqvUVEnE7vLZJdpePXUD3mCHuLvc7FTZutjpPnGYmJ+G/dSpkvv6T4jh2YLi780aQJZ554got3343p7g7XrsHfm9PnN61TuS7fvsfUrQv//S/ex45R+ptvKLVhA+6ff861kiU588ADnOnUiYQ8/od5nmD60dCtOu7bX2JbVDlMI+1PcItkRL+3iGSen59fukvLyT+SkpJy5Gd18uRJRxeXl5cXs2fP5vr16zftjVazZk3GjBnD66+/ztmzZwkJCWH58uVOz5MZxYsX53//+x8hISFERkaybds2R1dRcj169GDatGnp/txuLMsIEB8fn+bYe+65hw8//JCRI0cSGxvL8uXLb3r8bm5ujB8/np49ezplzltRt25dAgMDiYyMJCEhAbAX7erWrZvu/VeuXJl3332XF154AZvNxubNm9m8OeXfS9WqVWPx4sUMHz7ccV1q95n8NeOsx+UsL730ErGxsXzwwQfExcWlulxniRIlmDt3LpUrV04ze/JlRdP6b/JGUfXIkSMcOXIk3VyBgYFMmzaNe++9N1s/r2vXruX47x75pZh2Giif7HI57N1nDqZpXkl2vNowjA8MwwgwTfPCv8bNAmYBVKtWzXRG1VtEJLnw8HCnfKJGRCQ5vbdItiQlwNePQfHG1Onwsjqp0vP77/Dhh/Dxx/Z9usqXh9dfxxg0CP8yZSgwJZmwm6/K9+8xrVvD449DQgJ89RWeH35IpblzqfTJJ9C1KwwbBq1a6fWfnjPT4LsOtCpzGKoNszqN5GP6vUUk8w4ePIiPj4/VMfKFmJgYp/+skpKSGDp0KJcvXwZg8uTJNGrUKM3x48aNY9OmTWzevJm1a9eyYMEChg2z5v+ZLVq0YN++fXz00Uf873//48iRI8TExFCyZEnuuusuBg0axP3335/h/STvQPLy8kr3Zzx48GDuu+8+PvjgA1atWkVUVBQ2m42yZcty33338dRTT1GrVq0M50xekKlQoYLTnteQkBBef/31FJczc98jR47k7rvvZvLkyWzZsoWLFy9SrFgxqlSpQvfu3XnyySfx8vKiULJVD1K7Xw8PD8dxRj9LK8yYMYO+ffsya9YsNm/ezO+//46npydBQUE89NBDPPXUUwQEBKR7H56eno7jQoUKpfoYFy9ezJYtWwgPD+fnn3/mzJkzREdHEx8fj4+PD+XLl6dBgwZ06dKFBx54IN1lODPL09OTBg0aZPt+0mMkrwLnVYZhuAKHgbbAb8AvQJ/kyzgahlEaOGeapmkYRhPgf9g71dJ8gNWqVTMPHTqUs+FF5LajPxxFJCfovUWy5ciH8MtT0HoNlMn4D+rb0vbtMHWqfcnAxETo2BGeesr+vSAuFRiWSkGpT97/2/CWHTkCs2bZl+n84w+oVw+eew569YJk/xAgfzNN2NAKYo5Al2Pg6mV1Ismn9HuLSOYdPHiQGjVqWB0jX8iJYprkvkOHDlG9enUAunTpwsqVKy1OJAVBdt5LDcPYYZpm44zGuWTp3nOZaZqJwDBgLXAQWGaa5n7DMIYahjH072HdgX1/75k2HeiVXiFNREREROS2kHgV9r0OJZrDHR2sTpO32GzwxRfQogXceSd8+SU8/bS9ALNqFTzwQMEspN1OgoPh3Xfh9GmYPdteKB04ECpUgPHj7QU2+YdhQL2JcO0sHA61Oo2IiIgUQBs2bADAxcWFN9980+I0IpmXL4ppYF+60TTNqqZpVjZNc+Lf131omuaHfx/PME2zlmma9UzTvMs0za3WJhYRERERyQOOfgRXf4e6b2h5uxuuX4c5c6BmTXj4YfvSjlOm2AsuU6dC5cpWJxRnK1wYBg+GvXthwwZo0gTGjYOKFeHFF+HsWasT5h0lW9oL7wfehr+uZDxeRERE5BbcKKaFhIRkaklIkbwi3xTTRERERETkFiXGwYG3oFQbKNXa6jTWi4+HyZMhKMheWClcGD79FA4fti/95+trdULJaYYBbdvC11/Dnj3QpQu89x4EBsIzz8DJk1YnzBvqvgEJf8CvU6xOIiIiIgWIzWYjPDwcDw8Pxo8fb3UckVuiYpqIiIiISEF1eAZci4a6r2c8tiC7etXecRYUBKNGQbVqsHYt7Nxp3zvL1dXqhGKFOnVg8WI4dAhCQuzLQFapAo89Br/+anU6a/k3hnLd4OB7cP2i1WlERESkgHBxceHSpUtcu3aNihUrWh1H5JaomCYiIiIiUhAlXIYDk6BMJyjRzOo01rh2DWbMsC/bOHKkfVnHzZvh22+hfXsteyl2VarYC2nHj9u705Yts79WevSAffusTmeduhMgMRYOvGN1EhERERERy6mYJiIiIiJSEB2aCgmX7P8gfru5fh1mzoTgYBg+3F4s+fZb+1fLllank7yqXDl7B2NkJIwZA+vWQd26MGCA/brbTdHaULE3HH4frp6xOo2IiIiIiKVUTBMRERERKWiu/wG/TrYv01a8kdVpcs9ff9k7jKpWhaefhgoVYMMG2LQJ7r3X6nSSX5QsCRMnwokT8MIL9k61atXs++qdP291utxVdzzYEmD/W1YnERERERGxlIppIiIiIiIFzcH/wl8x9n8Ivx2YJnz5pX0PrCFD4I474Jtv4PvvoW1bLecoWVO8OLzzDhw5Av37w/vv2/fdGz8eYmKsTpc7fKpA0EA4+hHERVmdRkRERETEMiqmiYiIiIgUJNei4dA0qNgLitaxOk3Oi4iwF8y6drVfXrkSfvwROnRQEU2co1w5e8fj/v32vfbGjbPvwzd9un1J0YKu9iv27/tuwyVjRURERET+pmKaiIiIiEhBsv9tsF2DOq9ZnSRn/fYbPPYYNGoEe/bAjBmwdy906aIimuSM6tXhs89g2zaoXRtGjPjnOtO0Ol3O8a4AVZ6E4/PhyhGr04iIiIiIWELFNBERERGRgiL+Nzg6Eyr1B99qVqfJGbGx8NprEBwMn35q39Pq6FF45hlwc7M6ndwOmjSBjRth7Vrw8YHu3aFdO3vnWkFV6yVw8YC946xOIiIiIiJiCRXTREREREQKiv1vgi0Rar9qdRLns9lg7lyoWhUmTIAHH4Rff7XvaVW0qNXp5HZjGPYlH3futHdFRkRAvXr2brVLl6xO53yFS0PVYXDyU/izABcNRUQsYhbkDmcRkRyWW++hKqaJiIiIiBQEcSfh2Gyo/DgUqWR1GueKiIBmzeDxx6FiRfjhB1i6FCoVsMcp+Y+rq70r8vBheOIJeP99e8H3448hKcnqdM5V4z/g6g17C/gSsiIiuczFxQWbzWZ1DBGRfMtms+HikvOlLhXTREREREQKgn2vAy5Qe6zVSZznyhV47jlo3BiOH4cFC2DrVnthTSQvCQiAmTNhxw77PmpPPAFNm9pfrwWFZwBUHwmnPoM/IqxOIyJSYBQuXJi4uDirY4iI5FtxcXEULlw4x+dRMU1EREREJL+7cgSOz4fgoeBVzuo02Wea9s6z6tVh+nQYMgQOHYL+/e3L64nkVQ0awObNEBYGZ89C8+YwYABcuGB1Mueo/jy4FYU9BXApWRERi/j4+BATE2N1DBGRfCsmJgYfH58cn0fFNBERERGR/G7feHDxgJqjrU6SfYcPQ4cO0KsX3HEH/PSTveOnWDGrk4lkjmFA7972Pf3GjLEX1qpXh4UL7YXi/My9KNR4AX7/Gi5sszqNiEiB4OvrS3x8PJcK4p6bIiI57NKlS8THx+Pr65vjc6mYJiIiIiKSn10+AJFhUHUYFC5tdZqsu3oVXn0V6tSBbdvse0/9/DM0aWJ1MpGsKVIE3nzTvudf1ar2zsoOHexLluZn1Z4FD3/Y84rVSURECoRChQpRsWJFLly4wG+//caVK1dISkrCzO8fwBARyQGmaZKUlMSVK1f47bffuHDhAhUrVqRQoUI5Prdrjs8gIiIiIiI5Z89r4FoEar5odZKs27IFHn8cjhyBPn3gvfegdD4uDIokV7s2fP+9vcNyzBj75fHjYeRIcM2Hf5K7+di7YCP+A9GboeQ9VicSEcn33N3dCQoK4sqVK/z555+cOXMGm81mdaw859q1a3h6elodQ0Qs5uLiQuHChfHx8aF06dK5UkgDFdNERERERPKvPyLg1P+g9qv2TpH8JjbWXlyYMQMqVYING6BtW6tTiTifiws88wx07QrDhsGLL9qXf/z4Y2jUyOp0ty74aTj4nr07rW249jIUEXGCQoUKUaxYMYppaes0hYeH06BBA6tjiMhtSss8ioiIiIjkV3teBbeiUH2k1Ulu3caN9iUdQ0Ph2Wdh714V0qTgK1cOvvgCPvsMzp2zL2M6ahTExVmd7Na4ekGtl+ydaec2Wp1GRERERCTHqZgmIiIiIpIfXdgGv38NNf8D7kWtTpN5V67Ak09Cu3bg5gabN8O0aeDtbXUykdxhGPDww3DgADzxBEyeDPXqwQ8/WJ3s1lR5ArzKwe6xoH19RERERKSAUzFNRERERCQ/2vMKeARA1WetTpJ533xj3y/q44/hhRdg925o0cLqVCLWKFoUPvwQwsMhKQlatoT/+z+4ds3qZJlTyBNqvwIXt8Hvq61OIyIiIiKSo1RMExERERHJb6I3w9n1UHMMuBWxOk3G/vwTBg6Ejh2hSBHYuhXefRcKF7Y6mYj1WrWCPXvsXWrvvAONG8POnVanypyggeBdyV7cV3eaiIiIiBRgKqaJiIiIiOQnpmlfVq3wHRD8lNVpMhYeDnXrwsKF8NJL9iJB06ZWpxLJW3x84KOPYPVq+OMP+38jEybAX39ZnSx9Lm5Q5zW4FAGnv7A6jYiIiIhIjlExTUREREQkPzm7Ac5vgVovg2se7uxKSLAvWdemDXh42LvRJk4ET0+rk4nkXR07wr598Oij8Npr0KyZfW+1vCywL/hUhT2vgi3J6jQiIiIiIjlCxTQRERERkfzCNGHPWPCqAJUHW50mbQcO2Dtr3nnHvnRdRAQ0aWJ1KpH8oXhxWLwYli+HEyegYUOYPBlsNquTpc7FFeqMh8v7IWqZ1WlERERERHKEimkiIiIiIvnFb1/DxZ+h9itQyMPqNDczTZgxAxo1gtOnYeVK+9J1RfLBvm4ieU337rB/P3ToAKNG2b+fOWN1qtRVfBT8asPecWBLtDqNiIiIiIjTqZgmIiIiIpIfmDbY+yoUqQxBA6xOc7OzZ6FTJxg+HO69F/buhS5drE4lkr+VKgUrVsCsWfDDD/b9B1evtjrVzQwXqDsBYg5D5CKr04iIiIiIOJ2KaSIiIiIi+cGpz+HSLqgzDlzcrE6T0sqVUKcOhIdDaCisWgWlS1udSqRgMAz7cqk7dkCZMtC5M4wcCdevW50spXIPQbGGsHcCJCVYnUZERERExKlUTBMRERERyetsSbDnVfCtARV7W53mH9euwbBh8NBDUL487NwJTz9t/8d/EXGuGjVg2zZ79+fUqXDXXXDokNWp/mEYUPd1iDsBx+dZnUZERERExKlUTBMRERERyetOLoErB6HueHApZHUau6NHoVkzeyfayJHw00/2f+wXkZzj6QnTp8OXX8KpU9CwIcybZ9+vMC8o0xH874L9b0DSNavTiIiIiIg4jYppIiIiIiJ5me0v2DsOitaD8o9YncZu6VL7P+JHRtqXeJw8GdzdrU4lcvt48EHYvRuaNoVBg6BPH7h82epU9u60em9A/Gk4OsvqNCIiIiIiTuNqdQAREREREUnHiU/g/9m76/Aori6O49+J4e6uwQnuFtyKS1vc3alAW5xSrLiWAoXixYsVt+LuLsXdNTLvH5cKL052swn8Ps+zT8juzL1naLtN5uw55/4JKLgQLBd/Fu7RI1OFNnasaTE3YwYkSeLamOQFtg0PH8L9++bx5An4+4Ofn3n4+0P+l5y3eTN4eICn579fI0SAiBHNw0O/PYYsCRLAihXQrx907WpaQM6ebRLdrhSnCMQuBAf7QIpG4BHetfGIiIiIiDiAfh0SEREREQmpAp7A/p4QIyck+MS1sRw9CtWrw7598OWX8P33JtsiTvfwIVy8CJcuweXL/369dg1u3oQbN8zj5k24d88k0N7U9c+e+uJzefO+/pywYU1SLVo0iBEDokc3X2PEgDhxIF48iBvXfI0XD2LG1Pg8p3N3h2++gcKF4dNPzT/EYcOgcWPX/eX/PTttZUE4NhLSfemaOEREREREHEjJNBERERGRkOrkeHj4F+Qa59qsxNSp0LSpyaYsWgRly7oulg+Qn5/pmHn8uBlFd+YMnD377+P69RfP8fD4N5EVIwakSAE5ckCUKCbhFSnSvxVlYcI8X23m6QlcfXHNZcuer157+vTfCre/k3T37sGtWyZ5d+kSHDxo4nvw4MX1woaFxIlN8WKSJJA0KSRPDqlSgbc3RI7s2L/Hj1qePLBrF9Ssaf5b3bgRRo82pYWuELsAxC0Bh/uBdzPwjOSaOEREREREHETJNBERERGRkMj/ERzsDbEKQNzironh8WNo0wbGjYN8+Uxbx4QJXRPLB+DBAzh82CSg/n4cO2aSZ/7+/x4XPvy/Cajs2U1CKkGCfyu+4sY1CTS3oHT9nPbiUyVLvv9yDx48Xzl38SKcO/dvQnDvXrj6fwm82LFNUi1NGsiQAdKnN4948VTR9l5ixoQlS0zVaPfusHu3afuYOrVr4vHpBctzwdGhkOE718QgIiIiIuIgSqaJiIiIiIREx0fDo0uQb4ZrMgt//QVVqsCOHfD119C7t4ZmvYNLl0wu4+/Hnj1w6tS/7Re9vEyOI3Nm0z3T2/vfR6xYoS+ZFCECpExpHq/y6BGcPGkq8I4fN4nEY8dg/nwYP/7f46JFAx8fyJLFPLJmNQk3/ev3Ftzdzfy0PHmgRg2TjR0/3vxLFtxi5oQE5eDwQEjVEryiBX8MIiIiIiIOol9HRERERERCGr/7cKgvxC0GsQsG//4rV8Jnn5l+f/PmQcWKwR9DKHL3rsk5btkCW7fCtm2mQutvKVKYpFCdOv9WX6VM+fElh8KFMxVoGTI8/7xtm6q1/1bs7dkDY8eaBByYlpFZskCuXOaRO7ep3AttScdgU7y4afv46afm8eefMGCAyeIGJ5+esDQLHB4EmXoF794iIiIiIg70kf36JiIiIiISChwbDk+umTZpwcm2oV8/+PZbUwo0b54ZcCXPOXcONmwwj40bTfLn74ozb28oVgyyZTMVVZkymTlm8mqWBXHimEeRIv8+7+8PR4+ayr5du0yScswYGDLEvB47NuTPD76+5pE+fRBbX35oEiWCtWtNZemQIeYvcNYs83xwiZYZElWFo0MgdVsIGzP49hYRERERcSAl00REREREQpKnd+DwAIj/CcTMHXz73r0L9eqZBFr16qY1XMSIwbd/CHbpEqxYYQr21q83M8AAIkWCvHmhalVTLZUzJ0SP7tpYPyQeHv9W8tWqZZ7z84P9+00F4JYt5p/H3LnmtRgxoFAhJdee4+UFgwebmYcNGpgs7+zZUDAYK14zdodzc8z7WpZ+wbeviIiIiIgDKZkmIiIiIhKSHBkMT2+Z9mjB5fBhqFQJTpyAH3+E9u0/6v55jx6ZqrPly81j/37zfMyYJlnTvj0UKGDmen1srRpdzdPTVPxlzQrNm5vnzpyBdetMEdbatS9PrhUvbmbUfbT/WletavprVqwIRYuaBFvLlsHzFxI1PSStYSpu07SHcHGdv6eIiIiIiIPpVz8RERERkZDiyQ04MggSVYHoWYJnz9mzoX59CB/elF75+gbPviGIbcO+ff8mzzZsgCdPTFFP/vzQty+UKGFaNn70lU4hUNKk5lG3rvn+Vcm1FCmgbFn45BNTmBUmjEvCdZ00aUxJX61a0Lq16Z05apQZSOdsGbrB2RlmFmS2Ic7fT0RERETEwZRMExEREREJKQ4PAP/7kLGH8/cKCDCz0fr1g9y54bffIGFC5+8bQjx5AqtXm66Wv/8Oly+b59OnhxYtTPKsYEGTY5TQ5f+Ta6dPw7JlsGgR/PQTDBtmOpgWL26Sa2XKQLx4row4GEWJAgsWQPfu0KuXGfg3dy4kSODcfSN7Q7K6cHw0pP0Cwn887zUiIiIi8mFQMk1EREREJCR4dAWODjft0KKmd+5ed+9CjRqweDE0aQLDh5syrA/c/fuwdKlJoC1ebP4aIkY0yZQyZaBYMefnFCT4JUtmWkI2bw4PH5ok6uLFJrk2b545Jls2k1irVMlUIH7Q7SDd3KBnT8iSBerUMRc/Z46Zq+ZMGbrAmV/hwPeQc7Rz9xIRERERcTA1KRERERERCQkO9YXAJ6YdmjOdOGEq0ZYtMy3exo79oBNp16/DhAlQrpyZeVa9uulmWa2aSaZcuwYzZ5oqJiXSPnzhw5s2j6NHw19/wd690KePafnYu7fJL6VJA126wIEDro7WySpVgi1bIFIkKFzYvBc4U8SkkKIRnPwZ7p927l4iIiIiIg6mZJqIiIiIiKs9PG/anyWra9qhOcvKlZAzJ1y5AitWmFKdD9CtWzBunMkPxIkDDRvC/v3mctetg0uX4OefTSVScIyLkpDJssDHBzp3hj//NK0+x46FRIlMgi1jRtP2s0cPOHzY1dE6Sfr0sG2bKcts1sxUqj596sT9vgXLHQ70ct4eIiIiIiJOoGSaiIiIiIirHfgeCDRt0JzBts2gqFKlTPnV9u0m0/QBefLEjH6qXBnixjU5gUuXzFi4XbvM3KzBg80cNHd3V0crIVGsWObfm5Ur4eJFGDnSVDP26AHp0pnEW+/ecPy4qyN1sGjRzODAzp1NFrpYMVPS6QzhE4B3czg9Ce4ec84eIiIiIiJOoGSaiIiIiIgr3T8Np8ab9mcRkzp+/SdPoHFjaNvWlGJt2gTJkzt+HxcIDIT1600CJG5cqFLFXF6LFrBjh6km+ns01Ac9A0scLk4c8+/RunVw/jwMHQqRI5v2j6lSmQLP0aPh9m1XR+og7u6mHG/aNFOpljMnHDrknL3SdQK3sLC/h3PWFxERERFxAiXTRERERERc6UAvwM20P3O0q1ehaFEYP96UaM2bZ+YjhXKHDsE330CyZFCokLn//8knZgzc+fOmAi1bNiXQxDHix4c2bWDjRjNnbeBAePzYJNvixYMaNUzX1MBAV0fqAJ9/bjKIDx9CnjzmPypHCxcHUreGs9Ph9oc+mE5EREREPhRKpomIiIiIuMrdY6bdmXcL0/7Mkfbtgxw5TI/DGTNMfzq30Pvj/8OHMGkS5M1rxjz162da702dakbA/forlCwJHh6ujlQ+ZIkSQceOsHev6ZbaoAEsXQolSkDSpNC1K5w65eoogyhXLnNxyZKZatZhw0yrWEdK+yV4RIT93R27roiIiIiIk4Te36ZFREREREK7/d1Nu7P0nRy77pIlkC8f+PvDhg3w6aeOXT8YHTgArVub6qB69eDGDVMZdPGiSWLUqAERIrg6SvnYWBZkz27mql26ZPLVadOanHWKFODra5K/Dx+6OtL3lCiRKcUrX960iG3eHPz8HLd+mBiQpj2cmwM3dztuXRERERERJ1EyTURERETEFW4fgLMzIHUbCBvbceuOGAHlyoG3t5l9lC2b49YOJn9XoeXLBxkzwk8/QZkysHYtHDliKoPixHF1lCJG2LAmX/3HH3D2rEmonT9vkr8JEph/X0+ccHWU7yFiRJgzBzp3hrFjoVQpuHnTceunaQ+eUWFfV8etKSIiIiLiJEqmiYiIiIi4wv5u4BnJtDtzhIAAM9ipdWszQGz9enMnPxQ5eNBcQoIEJhFx/bqpQrtwwcxFK1RIc9AkZEuUyIwnPH7cJH9LljRdElOlMgnhJUtC2Ww1Nzfo0wcmTzaVarlzw9GjjlnbKyqk+xIuLoLrWxyzpoiIiIiIkyiZJiIiIiIS3G7ugnNzIU0HCBM96OvduwcVKsDw4dChA8yda6pKQoHAQPj9dyhSBDJkMAUwpUs/X4UWM6aroxR5N5Zlkr8zZphqtW7dYPduM4LM2xt+/NGxRV5OV7s2rF4Nt2+bhNratY5ZN1UbCBNT1WkiIiIiEuIpmSYiIiIiEtz2dQWv6JC6XdDXOncO8ueHZctg9Ghzl97dPejrOtn9+6YjZerUZizT8ePQt6+q0OTDEz++SaadPWuSawkSwBdfQMKE0KiRSbKFCvnymdax8eJBiRIwZUrQ1/SMCOk6weUVcHV90NcTEREREXESJdNERERERILTtc1wcbFp7+gVJWhr7dgBOXPCmTOmf1yzZg4J0Zn++gu++sq0w2vdGmLEMAmGU6fg669VhSYfLi8vM1tt/XrYu9cUe02fDlmzmuTxokWhoAVk0qTw558mgV+7NvTqBbYdtDW9m0PYuLCvS9DXEhERERFxEiXTRERERESC074uEDY2pG4dtHXmz4eCBSFMGNi0yVSKhGCbN5tEQvLkMGiQCXfzZtiyxTzv6enqCEWCj4+PaWl64YL57+HMGShXzrQ6nTABnjxxdYSvES2aqYStUwe6doUGDeDp0/dfzyM8pP/WVKZdWeW4OEVEREREHEjJNBERERGR4HJlrblZnK4zeER4/3WGDYPKlc0d+a1bIX16h4XoSIGBMG+eGbGUNy/88YcZ6XbqFMycaZ4X+ZhFjQrt28OJEzB1qqlea9gQkiWDfv3MiLIQycsLfvkFunc3X8uUCVqwKRtD+ESw9ztVp4mIiIhIiKRkmoiIiIhIcLBtU5UWLj54v2c7xsBA6NgR2raFChVg9WqIE8excTqAnx/8+itkzGhyfteumflo589D//6QOLGrIxQJWTw9oUYNMz9t+XKTH+/Uyfy30rGjGY0Y4liWGQb3yy+wbp1p/Xj27Put5R4GMnwHN7bCxSUODVNERERExBGUTBMRERERCQ6XlsO1jeaGsXvYdz//8WP4/HPTE65VK5g9G8KHd3ycQfD4MYweDalSmQ5wbm4wbRocPQotW0LEiK6OUCRksywoXhxWrIBdu0zrx6FDTXvUOnXgwAFXR/gSdeuastPz50256Y4d77dO8voQMblmp4mIiIhIiKRkmoiIiIiIs9k27PsOIiSB5A3f/fybN82QsVmzYMAA0+bR3d3xcb6ne/dMWMmSQYsWEDcuLFwIe/ea/J+Hh6sjFAl9smQxrR9PnDDJ6LlzTbVntWqwb5+ro/s/RYqY2Y1hwkChQrBo0buv4eYJGbrCrd1wfp7jYxQRERERCYJQk0yzLKuUZVlHLcs6YVlWp9ccl8OyrADLsqoGZ3wiIiIiIq904Xe4uQMydAN3r3c798wZyJfPzEabMQO++MKUr4QAN26YLm9JksBXX5kb/WvWmHvq5cqZyjQRCZqkSWHIENNB8dtvTRFYpkymheru3a6O7j/SpYMtWyBtWtOG9uef332NpDUhcmrY1xUCAxwfo4iIiIjIewoVv95aluUOjARKA+mAzy3LSveK4/oBfwRvhCIiIiIir2AHmrZlkbwhWe13O3fXLsiTBy5fNn3fPv3UOTG+oxs3oHNnk0Tr2RN8fWHbNjPrydc3xOT6RD4oMWJA794mqda1qxmZmDWryVvt3Onq6J6JGxfWrjWVtI0bQ48e79ay0c0DMnSHOwfhr1nOilJERERE5J2FimQakBM4Ydv2Kdu2nwIzgAovOa41MAe4GpzBiYiIiIi80l+z4fY+yNjd3Ch+W0uXQsGC4OUFf/5p/uxit2+bSrRkyaBfPyhf3sxwmjsXcuRwdXQiH4do0UyO6swZ83X9esieHT75xCS1XS5iRNPntW5d6N4dmjYFf/+3Pz9JdYiSAfZ3g8B3OE9ERERExIlCy/SCBMC5/3x/Hsj13wMsy0oAVAKKAPpVXkRERERcLzDA3BCOkg4Sv0NV2cSJpqojY0ZYvBjix3dejG/h3j0zpm3gQJNQq1LF3CPPkMGlYcl/BNqBPPF/wpOAJzz2f8wT/2dfX/L904CnVH7JGguOLCCMRxjCeoQljPuzr6/43uNdEsPiFFGjmgq1du1g+HAYNAhy5YJSpUySLWdOFwbn6WnexxIkgD59THXtjBkQPvybz7XcwKcnbKgMZ6ZA8npOD1dERERE5E0s+11aLrxqEcuKjake8wGSANGAcMAj4CZwFtgHbLNt+9p7rF8NKGnbdqNn39cGctq23fo/x/wG/Gjb9hbLsn4BFtm2PfslazUBmgDEihUr26xZah0hIo51//59IkaM6OowROQDo/eW0CnOw2Wkvd2PA9F6cD3cW1SW2TaJp00j+c8/czN7dg726EHA29x8dpLHj92YPz8B06cn5u5dT/LmvU69emfw9r7vspg+dLZtc8fvDtefXufW01vc87/Hff/73PW7y33/+9zzv2cefvf+/bP/PR4FPHq3fbxffM46/vbne1geRPKIRCTPSETyiEREj4hE9ohMRM+I5vn/PCJ7RiZmmJjE8IqBp5vnO8Upb+/hQ3fmz0/AzJmJuHvXkwIFrtGgwWmSJn3o0rjiz5uH9/Dh3E2blgN9+uAXJcqbT7Jtsl1vikfgPbbFnoxt6d+b0EY/t4iIM+i9RUScoXDhwjtt287+puPeO5lmWVYKoBam3WKmdzh1DzAfmGLb9um33CsP0N227ZLPvu8MYNv2D/855jTw93SGmMBDoIlt2/NftW7q1Knto0ePvkPoIiJvtnbtWnx9fV0dhoh8YPTeEgoFPIVFqSFMDCi5/c2DxAIDoX17UwJWo4ap6vDyCp5Y/8/jxzB2LPzwA1y5AiVLmtloLq10+QD4Bfhx8d5Fzt89z4V7F7hw9wIX7l147vuL9y7yJODJS88P6xGW6OGiEy1sNKKFi/bvn8NGI3KYyITzDPfGirIw7mHwcvci0+rML6y/q/DO11a0/ff7B34PuPXoFrce3+Lmo5v/fn10iztP7rzy7yB2hNgkiJSAhJETkiBSAhJETvDv95HN18hhIjvqr/yjdO8eDB5sKkkfPIDatU0ladKkLgxq7lzzvpY0KSxb9nbBXFgC68pCjjHg3dTZEYqD6ecWEXEGvbeIiDNYlvVWybR37s1hWVYJoANQ/L9Pv8MSmZ89uluWtRwYZNv2ijecsx3wtiwrGXAB+Ayo8d8DbNtO9p8Yf8FUps1/h7hERERERBzn1Hh4cAZyjH5zIu3JEzNfaOZM07Ptxx/BLfjHG/v7w6RJZi7ahQtQuDDMng358wd7KKGWf6A/Z26f4fiN4xy/efzfrzePc+b2GQLtwOeOD+sR9p/EUp5EeUyC6VlyKXaE2CZhFs4kzMJ5hnNq7FnjZXXIOgGBAdx+fJtbj29x69Etrj28xsV7F/9JHl64d4Gzd86y6dwmbjy68cL5McLFwDuGN97Rnz1i/PtVibY3ixTJtH9s0QL69oURI2DaNGjWDL79FuLEcUFQlSvDihVm0GKePGYmZObMrz8nfmmImQcO9obkdcE9bLCEKiIiIiLyMm+dTLMsKz/QF8jz91PPvt4AtgFbgcPArWfP3QWiANGfPdJi5pzlfPY9QAmghGVZm4BOtm3/+bK9bdv2tyyrFfAH4A5MsG37oGVZzZ69PuZtr0NERERExOn8H8GB3hArP8Qr+fpj790zN5pXroR+/eDLL9+cfHMw24ZFi6BTJzh0CHLnhsmToUiRYA0jVLnz+A77ruxj/9X9HLtx7J/E2enbp/EP9P/nuEhekfCO4U2O+DmokaEGSaImea4qK1rYaFjB/M/b2dzd3IkRPgYxwsd447GP/R//W6139wLn7p7j5M2THL95nDVn1vDrvl+fOz52hNjPJdjSx0qPTxwfkkZN+sH9PQZVzJimOq1tW1NZOmoUTJhgCmC/+ALeptuiQxUoABs3mqFuBQvC/Pmvf5OxLPDpBauLwYmfIHWbYAtVREREROT/vVUyzbKsqZhqsL9/OzkPTAem2ra97103tSzLB1NZ9jmQCMgHrLcsa7pt27Vedo5t20uAJf/33EuTaLZt13vXmEREREREHOb4KHh0EfJOe31i7OpVKF0a9u6FX34x1WnBbOtWk7/bsAG8vU0lWuXKwZ7PC7ECAgM4eeskey/vZd+Vfey7uo+9l/dy9s7Zf46J4BkB7xjeZIqbiarpqj6X7IkdIbaSPK8R1iMsyaMlJ3m05C99/aHfw3+Sa/+t8vvjxB/8cv+Xf46L5BUJnzg++MTxIVOcTPjE8SFjnIxE9NJclUSJYNw48995ly7Qu7dJrHXqBK1aQTjnFjw+L3162LzZJNRKl4YZM6BSpVcfH6cIxPaFg30gRSPwcN0MSRERERH5uL3VzDTLsv7uRbIa6GPb9mqHBWBZRYBvgCKAbdu2u6PWfhPNTBMRZ1APbxFxBr23hCJ+92BhcoiWBYosf/Vxp06ZYWQXLsBvv0HZssEXI3D8OHzzjUmexY5tZio1agSensEaRojyxP8Jey7vYfvF7SZ5dnUfB64e4KHfQwDcLXdSx0z9XMLGJ44PCSIlCH0Js2kvibfG+83TdpV7T+5x6Noh9l4xic6/v959cvefY1JES0GmuJnwie1D1nhZyZUwF7EjxHZh1K63a5dp97hsGSRMaGYj1qgRzJ1lb94073nbtplMX4MGrz726kZYWQAy94d0XwZfjBIk+rlFRJxB7y0i4gyOnpm2Guj2qjaMQfEsMbfasqx8QHdHry8iIiIiEqyODoUn18Gn96uP2bPHVGb4+cGqVWaGUDC5etW0fBs7FsKEMfPROnY0c5Y+JrZtc/bOWbae38qW81vYcmELuy7t4mnAUwCih4tOpjiZaJK1iUmexc1EuljpCOuhuU0hRaQwkciVMBe5Eub657m//7nuu7Lvn4To3st7mXd4HjYmWZg8WnJyJ8xN7gS5yZUwF5njZsbL3ctVlxHssmY1I8vWrjXtHmvXhqFDzajGggWDKYjo0U1r2ypVoGFDuH4dvvrq5cfGftYu93A/8G4Gnh/Zm5WIiIiIhAhvlUyzbbuYswN5lqgr7ux9RERERESc5uktODwQElaAmDlffsy6dVCuHESNCmvWQNq0wRLaw4fmZnn//vDoETRpAl27Qty4wbK9y91/ep8dF3eYxNmzx5UHVwAI5xGO7PGz0yZnG3InzE3OBDlJGDlh6Ks2EyzLImnUpCSNmpTyqcv/8/yDpw/YfXn3P//s151Zx7T90wAI4x6GrPGymgTbs0eiyIk++H/+vr6mMGzqVFOlWqiQ6bjYr59p+ep0ESLAwoVQpw58/bVJqPXr9/Iesxl7wvJc5sMKGb4LhuBERERERJ73tpVpIiIiIiLyJocGgN9d8On18tcXLYJq1SBZMli+3PRYczLbhunTzb3q8+fNPLQ+fSB1aqdv7VL3ntxjw18bWHN6DWvOrGH35d0E2qZ7faoYqSiZsuQ/lUkZY2fE0/0j7m/5EYjgFYH8ifOTP3H+f547f/f8c5WJo3eMZvCWwQDEjxQf36S+FE5amMJJC5M8WvIPMrnm5mYq06pUgcGDTcvHRYugZUszXy16dCcH4OVlsnkxYsCAAXDjhimb9fi/WxUxc0KC8ubDCqlaglc0JwcmIiIiIvI8JdNERERERBzh0RVTNZHkM4ia8cXXp06FunUhSxbTYy1mTKeHtH07tG0LmzdDtmwmqZY//5vPC43uP73Pn3/9yZozJnm28+JOAuwAvNy9yJ0wN98W+JY8CfOQM0FOYoSP4epwJQRIGDkhCdMlpEq6KgD4Bfix/+p+tpzfwoa/NrDq1Kp/qtcSRU70b3ItWWGSRk3qwsgdL3x4M0etYUNTsTpsGEyaZBJqLVuanJfTuLvDiBHmPbFnT7h1C6ZNg7D/11LVpycszQyHB0GmV3xgQURERETESYKUTLMsK7pt2zeDcH4Z27aXBCUGEREREZEQ4dAPEPgEMnZ/8bWRI6FVK9NXbcECiBzZqaFcvAidO8PkyRAnDkyYYPJ4bm5O3TZYPfJ7xJ/n/mTN6TWsPbuWbRe24R/oj4ebB7kS5KJz/s4UTlaYPAnzEM4znKvDlVDA092TrPGykjVeVlrkaIFt2xy9cfSf6sZlJ5bx675fAUgaNSmFkxbGN6kvRZIVIWFk51eZBoe4ceGnn6B1azNPrUMH8/Y1cCBUqPDyDowOYVnQo4epUGvbFsqUgfnzn3+vjJYJEleDo0MgdVsI6/wPJIiIiIiI/C2olWn7Lcuqbdv26nc5ybIsL+BHoAXgHsQYRERERERc68E5OD4aktWFyKn+fd624fvvTXlH+fIwc+aL1RYO9OgRDBpkWrX5+UGnTmYWUqRITtsyWJ28eZIlx5ew9MRS1pxZw2P/x7hb7mSPn50v8nxB4WSFyZcoHxG8Irg6VPkAWJZFmphpSBMzDc1zNMe2bQ5eO/hPcm3B0QVM3DMRgPSx0lPGuwylU5YmX+J8eLk7s5TL+TJmhD/+gGXLTFKtUiUoUQKGDoU0aZy4cZs2JqFWrx4ULmyqeGPH/k9g3eGv2XC4P2Tp78RARERERESeF9RkWjxguWVZPwLf2rbt/6YTLMvKAEwD0gdxbxERERGRkOFAL8CGjF3/fS4w0NyFHjzYDCWaMOHFOUAOYtswezZ8+SWcPWtufA8cCMmTO2W7YPPY/zHrz65nyfElLDm+hOM3jwPgHd2bptmaUiJFCQokLkCkMB9ItlBCNMuyyBA7AxliZ6B1rtYE2oHsu7KPladWsvTEUoZsGcKATQOI5BWJ4imKUzplaUqnLE2CyAlcHfp7K1UKihWDUaNM+8eMGU3hWNeuTiywrVkTokWDqlWhQAEzXzJJEvNalHSQtCYcGwFpOkC4uE4KQkRERETkeUH9bT4AcAO+AIpYlvW5bdsnXnWwZVmtgX5AGMACjgRxfxERERER17p3Ak5NAO/mEOHZDV9/f2jcGH75xfRLGzLEaT0W9+0zW6xfDz4+sHq1KegIrc7cPsPS40tZcmIJq0+v5qHfQ8J6hKVw0sK0ztma0t6lSRk9pavDFMHNciNz3MxkjpuZL/J+wb0n91h1etU///7OPTwXgExxMlE6ZWnKeJchT6I8eLiFrtHlHh6mYOyzz8xctUGDYMoU6NfPfE7AKW9tZcrAihXwySeQL59JqKVLZ17L2A3OToeDP0D2oU7YXERERETkRUH9Kb4AMBVIBmQFdluW1ca27Yn/PciyrFjARKA0JokG8DPQLoj7i4iIiIi41v4e4OYF6b813z9+DDVqwLx50L27KeFwwqChO3egWzcYMQKiRoUxY6BRI3APZU3Ubdtmz+U9zD08l7lH5nLo2iEAkkdLToPMDSjtXRrfpL6E9wzv4khFXi9SmEhUTFORimkqYts2B64eYOmJpSw5voSBmwfS98++RA0blbLeZamctjIlU5QMVS1JY8eGceOgSROTwK9Xz7zvDB8O2bM7YcN8+WDdOihZ0lSoLVkCuXJBpJSQvB6cGANpv4AIiZywuYiIiIjI84KUTLNte4tlWZmA0UBNIALws2VZpYAmtm3fefbniUBsTCLtFtDYtu25QQtdRERERMTFbh+EM1Mh7Zem3di9e6bH4qpVphqtbVuHb2nbMHWq6SB59So0bWrGskWP7vCtnCbQDmTzuc3/JNDO3D6Dm+VGoSSFaJy1MWW8y+Ad3RvLCUlIkeBgWRYZ42QkY5yMfJXvK+48vsPKUytZfHwxC48uZOr+qYTzCEeplKWonLYyn6T6hKhho7o67LeSIwds2gS//gpffw05c0LDhtCnD8SK5eDNfHzgzz+heHEoWhQWLDBfM3SB05Ph4PeQc4yDNxUREREReVGQ+0vYtn0fqG1Z1hJgFBAFqArksixrFVCPf6vR1gK1bdu+ENR9RURERERcbn9X8IgI6b6CmzehdGnYuRMmTYI6dRy+3YED0LKlaemYIwcsWuSkihAn8AvwY+2Ztcw9PJf5R+dz+f5lvNy9KJ68OF0KdqF86vLEDB/T1WGKOEWUsFGokq4KVdJVwT/Qnw1nN/yTTJ53ZB4ebh4UTVaUymkrUyF1BeJEjOPqkF/LzQ3q1oWKFaFnTxg2zMxt7NULmjd3cIVs8uQmoVaiBJQtC7/9BuXKQYpGcGIcpPsaIiZz4IYiIiIiIi9yWHdz27anA1mATZjkWWL+TaQ9Bb4BiiqRJiIiIiIfhJs74dxcSNMBbjyBggVh716YM8fhibS7d6FjR8ic2STUfvoJtmwJ+Ym0J/5PWHBkAXXn1yX2wNiUmFKCX/f9SoHEBZheZTrXvrzGohqLaJClgRJp8tHwcPOgcLLCDC8znHPtz7G54Wba527PiZsnaLqoKfF+jEfBiQUZsmUI5++ed3W4rxUlCvz4o5ndmD27af+YKxfs2OHgjeLGhbVrIVMmqFwZZswwrXUtdzjQy8GbiYiIiIi8yKGTj23bPmNZ1nQgL2D//TSwDPjRtm37lSeLiIiIiIQme78Dr+gQpiLkzw/XrsHSpVC4sMO2sG1zz7hjR7h82cxE69MHYobgvFNAYADrzq5j2v5pzD40mztP7hAtbDQqpK5A5bSVKZ68OOE8w7k6TJEQwc1yI3fC3OROmJt+xfqx/+p+U7F2eC7t/2hPhz86UDBJQWpkrEHVdFWJHi5k9nNNmxaWL4eZM6F9e9P6sWVL6N3bJNwcInp0WLnSVKXVqGE+VZClORwbBuk6QeRUDtpIRERERORFDqtMsywrmmVZc4FhmASaBQQ8+1oO2GZZVhpH7SciIiIi4jJXN8KlZRC9LviWhjt3YPVqhybSjhwxo4Fq1ID48WHzZnPvOCQm0mzbZsfFHXT4owOJBiei6OSizDw4kwppKrC05lKufHGFXyr+QvnU5ZVIE3kFy7LwieNDd9/u7Gu+j2OtjtHDtweX71+m6aKmxB0Yl/LTyzPjwAwePH3g6nBfYFnw2WfmvatlSxg5EtKkMR8IcNjHaiNFgiVLoFQpaNwYNkYHt7Cwv4eDNhAREREReTmHJNMsyyoM7AMqYJJnt4HqQC7g2LPnfICdlmU1c8SeIiIiIiIuYduw71twjwE1J5k7yH8PMXOAx4+he3fTzWz3bhg1CrZuNa3TQpqj14/SfW13Uo9ITY5xORi5fSS5EuZiVtVZXP3iKpMqTqJUylJ4unu6OlSRUMc7hjddCnXhcMvD7Gqyi7a52rLr0i4+n/M5cQbGodbcWiw5vgS/AD9Xh/qcKFFg+HDYtg0SJIDPPzfjzo4fd9AG4cPD/PlQpQq06wrXs8LZ6XD7gIM2EBERERF5UZDaPFqW5QH0Br7AJMwsYD1Qy7bt88+OyYKpVmsIhANGWpZVGmhg2/aNoOwvIiIiIhLsLq+Eq+thRlgIEwdWrYIUKRyy9Nq10LQpHDtmbkAPHgxx4jhkaYe5fP8y0/ZPY9r+aey8tBMLi8LJCvN1vq+pnLYy0cJFc3WIIh8Uy7LIEi8LWeJloV/xfqw/u/6fNqpT908lRrgYVE9fnVo+tciTMA+WZbk6ZMDMUNu6FcaMgW++gYwZoXNn+PprCBs2iIt7eZmSt0aNoNMkGOUF+7tDgdmOCF1ERERE5AVBrUzbDHz5bJ0AoCtQ+O9EGoBt249s224MVAVuYhJunwD7LcsqHsT9RURERESCj23DhtZww4LjCWDDBock0m7cgAYNTJdIPz8zem3atJCTSPML8GP+kfmUn16ehIMS0nF5RyzLYlCJQZzvcJ5VdVbRMGtDJdJEnMzNcsM3qS8/lfuJSx0vseCzBRRPUZxf9vxCvgn5SDsyLf029uPSvUuuDhUAd3fT8vHIEahUyVTdZsxoRp8FmYcHTJgAdVvCgqdwbg5c3+GAhUVEREREXhTUZFo2THLsNFDAtu3etv3ybui2bc8FMgPrnp0TF1gSxP1FRERERILPgu/A/yhsiQ9rNkKiREFazrZhyhQzV2jyZFOxceCAGQcUEhy4eoCOf3QkwaAEVJpZie0Xt/NF3i843PIw2xtvp32e9sSPFN/VYYp8lMJ4hKF86vJMrzKdK19cYUL5CcSKEItOqzqRaHAiPpn2CXMPz+VpwFNXh0q8eDB9Oixfbr4vXhzq1TMfJAgSNzfTUzJ1O7gHTK0A/v5BXFRERERE5EWOmJk2Bchs2/bWNx34rGKtCPAt4Oeg/UVEREREnG/WDDjeB26EhSE7IW7cIC134oSZI1S7tilu27UL+vY144Bc6fbj24zZMYac43KScXRGhm8bToEkBVj0+SLOtT9H32J9SRMzjWuDFJHnRAoTifpZ6rOh/gaOtjrKV/m+Yvfl3VSZVYUEgxLQfll79l/Z7+owKV4c9u0zbR+nToW0aU23xpd/JPctWRZ8Pxj8S0Gsi9CiCDx54rCYRUREREQg6MmsOrZt17Ft+97bnmAbPwD5gZNB3F9ERERExPkmT4ZRNSABUPwniPX+/RefPoU+fUyrs23bYORI+PNP8PFxXLjvKtAOZNWpVdScW5N4P8aj+eLmPPZ/zOCSg7nQ4QJzqs+hbKqyeLgFaeSyiASDVDFS0adoH862O8uSGkvwTerLyO0j8RnjQ45xORi1fRS3Ht1yWXzhwsH338POnZA0qZkP+ckn8NdfQVy46VwIjALxN0D5cvDwoSPCFREREREBgphMs217ShDO3Q5kCcr+IiIiIiJON3o0NKoLNbwgajZIXeu9l9qxA3LkgG+/NTePDx+GFi3MXCFXuPbgGv3/7I/3cG+K/VqMJceX0CBzA3Y03sHeZntpl7sdsSLEck1wIhIkHm4elPYuzW/VfuNix4sMLTUUvwA/Wi5pSfxB8am/oD7bLmzjFZManM7HBzZvhsGDYe1aSJfOdGwMCHjPBT3CQe4BkAq4sRJKloQ7dxwYsYiIiIh8zFzaZtG27Qeu3F9ERERE5LV+/NFku9qkg4hPIGs/01LsHT16BF99BblywfXrMH8+/PYbxHfBuDHbttn410Zqza1FwsEJ+Xrl1ySMnJBpladxqeMlRpYdSbb42bDe4zpFJGSKGT4mbXK1YU+zPexsspN6meox+9Bscv2ci2w/ZWPcznE8eBr8v567u0O7dnDwIBQoAG3aQL58Znbke0leHyKlgg4JYetmKFrUAYPZREREREQ0s0xERERE5EW2DT16wBdfQI1KkPsqxC0GcYu+81Lr10OmTDBgADRoYG4aV6jghJjf4O6Tu4zaPopMYzJRYGIBfj/2O02yNuFA8wOsq7eOzzN+TliPsMEfmIgEq6zxsjL6k9Fc6HCBUWVG4R/oT5NFTYg/KD6tl7Tm4NWDwR5T0qSwZImZo3byJGTJAl27wuPH77iQmwf49ALOway25g23cGG4csUJUYuIiIjIx+StkmmWZQVLO0bLsrIGxz4iIiIiIq9k26aMrHt3qFcPvsoAT69Dpj7vtMzdu6aorVAh8PeHlSth3DiIGtUZQb/a3st7abaoGQkGJaDlkpZ4unsyrtw4Lna4yPAyw0kfO33wBiQiIULkMJFpnqM5e5vtZWP9jZRLVY6fdv1EhtEZKDixINP3T+eJ/5Ngi8eyoEYN0/7288+hVy+TVNuy5R0XSlwVomUFaw78Ptdk53x94eJFZ4QtIiIiIh+Jt61M22FZ1jzLsjI5IwjLsrJYlrUA2OaM9UVERERE3kpgILRsCQMHmq8j+8LRwZCoKsTI8dbLLFkCGTLAmDGmhdn+/abbWHB5GvCUKfumkHd8XjKPzcykvZOomq4qWxttZUfjHTTK2ogIXhGCLyARCbEsyyJf4nxMqTyF8+3P079Yfy7cu0CNuTVINDgRnVd25tydc8EWT8yYMHkyLFsGDx6Yto9ffGHa5b4Vyw0y/wAPzkKiE2ah8+ehYEH46y+nxi4iIiIiH653afNYHthlWdYiy7I+tSwrSD1gLMsKa1nWZ5ZlLQV2AOUA10w+FhERERHx9zd9GEePNpVpw4fD4b4Q8PBZ27A3u3EDateGsmUhUiTYtAkGD4YIwZS3uvrgKr3W9SLJkCTUnlebG49uMKjEIC50uMDEChPJmSCnZqGJyCvFihCLL/N9yfHWx1lWcxl5E+Wl/6b+JBuajE9nf8qmc5uw7eD5tb1kSTM7rXFjM74yUybYuPEtT45bHOIUhgO9IHdmWLHCDKwsWBBOnXJm2CIiIiLygXrbZFoOTNWYBZQGpgFXLMv6xbKsupZlpX2bRSzLSmdZVj3Lsn4BrgBTgRLP1t0M5HzH+EVEREREgs7Pz2TBJk0ys9L69oWHf8HxUZC8PkRJ88Yl5syBdOlgxgzo0gV27YLcuYMhdkwrxwYLGpB4cGK6ru1K5riZWVpzKYdbHqZ9nvZEDxc9eAIRkQ+Cm+VGyZQlmf/ZfE62OUn73O1ZfnI5+SbkI9fPuZi6bypPA546PY7IkU2F76pV5m26YEFo29ZUrL2WZZnWvE+uwZEh5s149Wq4d88scuyY02MXERERkQ/LWyXTbNveZdt2HqAqcBCT/IoE1AYmAAcsy7ptWdZ2y7L+sCxrumVZP1mWNcOyrOWWZe2wLOs2sB8Y/+y8SM/W2Q9Utm07n23bux1+hSIiIiIir/P0qRnQM2MG9O8PXbuaG7H7uwMWZOj22tOvX4fPPoOqVSFhQtixA3r2hDBhnBt2QGAA84/Mp/CkwmQem5mZB2fSIEsDDrc8zNKaSymVshRu1rs0ohAReVHSqEkZUGIA59qfY2SZkdx9cpda82qRdEhSeq/vzbUH15weQ5Eipl1uy5YwbBj4+MDatW84KWZuSFgRDg+Ax9cha1Zz0tOnJqF28KDT4xYRERGRD8c7/XZt2/Zc27Z9gFLAAsAfkxCzgMhAVqAYUB1oCFQDigJZnr3+97F+wHyghG3bmW3bnu+AaxEREREReTdPnpgs2Jw5MGQIfPmlef7OITg9GVK1ggiJXnn6vHmQPj3MnQu9esGWLaYVmTPdeXyHwZsH4z3cm0ozK3Hq1ikGFB/A+fbnGVV2FGlivrmKTkTkXUX0ikiLHC041PIQS2suxSeOD13WdCHR4EQ0XNCQfVf2OXf/iKb77rp15vMOhQtDixam2OyVfHpDwAM41Nd8nzGjWcDNDXx9Yc8ep8YsIiIiIh+O9/qoqm3by23brgTEA+oAvwJ/90mwXvKwgaPAZExVWjzbtivbtr0yaOGLiIiIiLynR4+gYkX4/XcYOdL0Dvvb3u/AIyKk7/zSU2/cgJo1oXJliB/fVKN99x14ejov3DO3z9B2aVsSDk5Ih+UdSBA5AbOrzeZkm5N8kfcLooWL5rzNRUSecbPcKJWyFMtqLeNQi0PUz1yfGQdnkGlMJopMKsLiY4sJtAOdtn/BgrBvH7Rvb1pAZswIK191ZyFqekhWB46NgAfnzHNp08L69RAunCl5277dabGKiIiIyIcjSH1fbNu+adv2FNu269q2nQYIB3gDuYCCz756A+Fs205r23Y927an2rZ9K8iRi4iIiIi8r4cPoXx5+OMPGDfOlDf87fpWOD8P0nwBYWK8cOrChZAhA8yaZcarbdtmWo45y+5Lu6kxpwYph6Vk9I7RVEpTiR2Nd7Ch/gaqpKuCh5uH8zYXEXmNtLHSMvqT0Zxrf45+xfpx4uYJPpn+CT6jfZi0Z5LT5qqFDw+DBsHGjRA2LBQvDq1avWKWWsbugA0Hevz7XMqUJqEWNSoUKwabNjklThERERH5cDh0iIJt209t2z5p2/Z227Y3Pvt60rZtP0fuIyIiIiLy3u7fh7JlYfVq+OUXaNTo39dsG/Z0gjCxIE375067dQvq1IEKFSB2bFPM0LWrc6rRbNtmxckVFP+1OFl/ysqiY4vokKcDp9ueZnKlyWSLn83xm4qIvKfo4aLzVb6vONnmJL9W+hU3y416C+qRfGhyBm4ayN0nd52yb968sHs3tGtnCowzZ4bNm//voAhJwLs5nJoId478+3zSpCahFjculCjxFkPYRERERORjponkIiIiIvLxuHsXSpWCDRvg119Nduy/Lq+Aq2shQxfwjPjP04sWmdlo06aZBNr27eamraP5B/ozbf80sv6UlRJTSnDw6kH6FevHufbn6F+8PwkiJ3D8piIiDuLp7kktn1rsbbaXZTWXkTpmar5c8SWJBifi6xVfc/HeRYfvGS4cDB4Ma9aAnx/kzw+dO5uRmP9I/w24h4d93z1/csKEZoZakiRQujQsX+7w+ERERETkw+DwZJplWbEtyyprWVZjy7LaP/ta1rKs2I7eS0RERETkrd2+baoPtm6FGTOgRo3nX7cDYe83ECEppGwCwL17pnCtXDmIGdO0dOzRA7y8HBva/af3GbplKCmHpaTm3Jo88X/ChPITON32NF/l+4ooYaM4dkMRESeyLIuSKUuyqs4qdjTeQemUpRm4eSBJhySl4YKGHL522OF7+vqaWWr160PfvpAjB+zZ8+zFsLEhTUc4Nwdu/N+MtLhxTVVa6tTmzX7RIofHJiIiIiKhn8OSaZZlVbIs60/gErAQGAMMfPZ1IXDJsqyNlmVVdNSeIiIiIiJv5eZNMxdn1y6YPRuqVn3xmL9+g5s7IWMPcA/Dhg1mFtrEiabKYccOyJrVsWFdf3idLqu7kHhwYtr90Y7EURLz++e/c6DFAepnqU8YjzCO3VBEJJhli5+NGVVncLz1cZpka8L0A9NJNyod5aeXZ9M5x84qixwZfv4Zfv8drl2DnDnh++/B3x9I2wHCxIQ9X5uWvv8VK5Zp/ZspE1SuDHPnOjQuEREREQn9gpxMsyzLy7KsWcBsIDdgveaRB5hjWdYsy7Ic/HleEREREZGXuHYNihSBAwdg/nwz9Oz/BTw1VWlRfXgSvyZffQWFCoGbm+kI2aePY6vRLt67SIc/OpBkSBK+3/A9vkl92dRgE+vrr+eTVJ/gZqkbu4h8WJJHS86IMiP4q/1fdC/UnU3nNpFvQj4KTyrMqlOrsP8/wRUEn3xi3vIrVYLvvjOtH4+eimxa+F5ZA5eWvXhS9OiwYoUpaateHaZPd1g8IiIiIhL6OeK39DlAFf5NmB0CRgDtgMbPvo4ADv7nmCqY5JuIiIiIiPNcuQKFC8PRo6ZUoUyZlx93YgzcP8WpKP3IkdOdAQOgSRPYuxfy5nVcOGdun6H5ouYkG5qMYVuHUTVdVQ62OMjcT+eSJ1Eex20kIhJCxQwfk26+3Tjb7iyDSgzi2I1jFPu1GHnG52HRsUUOS6rFiAEzZ5quvsePQ5YsMOKPZtgRkpvqtMCAF0+KEgX++AMKFICaNeGXXxwSi4iIiIiEfkFKplmW9RlQ9tm3F4HStm1nsG27jW3bw2zbHv/saxvbtjMCpYALmIRaWcuyPg1S9CIiIiIir3Lxohmic/o0LFkCxYu//Di/u9gHenHmcRHSFC7JtWuweDGMGQMRIzomlKPXj1Jvfj1SDkvJhD0TqJ+5PsdaH2NSxUmkjZXWMZuIiIQiEbwi0D5Pe061OcWYsmO48uAK5aaXI8vYLMw6OIuAlyW73sOnn5oqtcKFoXVbL3r//j3c3g9nprz8hIgRzf8Eihc3A9jGjnVIHCIiIiISugW1Mq3hs68PgEK2bf/xuoNt214O+AL3nz3VKIj7i4iIiIi86Nw506fx/HlYtszcRX2FW5v6Yz25TpVe/Slf3mL//lcXsL2rvZf38unsT0k7Mi2zDs6idc7W5sbxJ2NIHi25YzYREQnFwniEoWn2phxrZT5g8CTgCZ/O/pT0o9Izac8k/AL8grxHvHiwaBGMGwcDZlVn15ns3N/cBdv/8ctPCB8eFiww/SKbNYNhw4Icg4iIiIiEbkFNpmUCbGC8bdsn3+aEZ8eNx1SnZQ7i/iIiIiIizztzxiTSrl41828KFHjpYbYN08ZfJMzpQfy2/XPa98rGb79BzJhBD2Hr+a2Um16OzGMzs/T4Ujrl78SZdmcYXGowCSInCPoGIiIfGE93T+pkqsOB5geYVXUWYT3CUm9BPVKNSMWYHWN4/KrE11uyLGjUCPbudWPy/v5EtM4xsfNwLl9+xQlhw8KcOVC5MrRtCwMGBGl/EREREQndgppM+7vxzfZ3PO/v48MHcX8RERERkX+dPGkSabduwapVkDv3Sw+7cgUqVIAHW7rh6e5PvhbfU6uWudkaFFvOb6HUlFLkHp+bTec20dO3J2fbnaVP0T7EjhA7aIuLiHwE3N3cqZa+Grub7mbR54uIGzEuzRc3J+WwlIzcNpIn/k+CtH6yZDBoamFOPylNpVR9KJDrJgsWvOJgLy8zeO2zz+Crr+D774O0t4iIiIiEXkFNpl189tX9Hc/7+/iLrz1KRERERORtHT0KBQvCgwewZg1kz/7Sw+bNgwwZ4NyBQzT0nYBH2hbE904WpK23nN9C6amlyTM+Dzsv7aRfsX6cbXeWLoW6EC1ctCCtLSLyMbIsi7KpyrKpwSZW1l5J8mjJabW0FSmHp2TU9lFBSqq5uUGyin2JGuEOXSr3oWJFaNwY7t9/ycEeHjBlCtSuDd99B926mdJmEREREfmoBDWZtvrZ15f3znm1Apj2kKvfdKCIiIiIyBsdOmQq0vz9Ye1ayJz5hUPu3IF69UzHrsSJYf2wzrh5RcTK8N17b7v1/NZ/kmg7Lu6gX7F+nG57mq/yfUVEr4hvXkBERF7LsiyKJi/KunrrWFl7JUmiJKHlkpakHJ6S0dtHv39SLZoPVvK61M41nB++O8v48ZAlC2zb9pJj3d1h4kRo2BB69oRvvlFCTUREROQjE9Rk2jDgKVDHsqwcb3OCZVnZgbrAk2fni4iIiIi8v337wNfXlBqsXWvKzv7P+vXg42OKC7p0gS0LNxDp7kJI1wnCvvuQtG0XtlFmahlyj8/N9gvb6Vu0r5JoIiJO9HdSbUP9DayovYLEURLTYkkLvId7M2bHmPdLqmXsiWW50al0F9asgSdPIG9e6NXLfDbjOe7u8NNP0Lw59O0LHTsqoSYiIiLyEQlSMs227QNAY8ACVliW1ciyLI+XHWtZlodlWQ2BFZiqtEa2bR8Myv4iIiIi8pHbtQsKF4YwYWDdOkib9rmX/fzg229Nrs3LCzZuhJ49bDwPfAXhEkDqtu+03fYL2yk7rSy5fs7Ftgvb+KHoD5xpd4av83+tJJqISDCwLItiyYuxsf5GltdaTsLICWm+uDnew70Zu2MsTwOevv1iERJBqjZwZgqFfPawbx9Urw5du5pi51On/u94NzcYORLatoXBg6F1awgMdOj1iYiIiEjI9NLE19uyLKvrsz+uAMoAY4G+lmVtAE4AD4HwQEogPxD92fFLgJT/Of8Ftm33DEpsIiIiIvKB27YNSpaEyJHNjLTkyZ97+fhxqFEDduwwnbmGDIGIEYG/5sKNLZDrZ/AI/1Zb7bq0i65rurL4+GKih4tOnyJ9aJWzFZHCRHL8dYmIyBtZlkXxFMUplrwYK06toNvabjRb3Iw+G/vwXYHvqJe5Hp7unm9eKH0nODkOdn9N1CJ/MG0afPKJKUDLnBmGD4c6dcCy/tnYJNK8vGDAAHj6FMaMMYk2EREREflgBSmZBnTHVJnxn6/RgfIvOdb6zzFlnj1eR8k0EREREXm5TZugVCmIFQtWr4YkSf55ybZh/HhTOBA2LMyZY+akARDoB3s7Q5T0kKzuG7c5dO0QXdd0Zc7hOUQLG43vi3xP65ytlUQTEQkhLMuiRIoSFE9enOUnl9NtbTeaLGpCvz/70cO3B59l+Ax3N/dXL+AVDdJ/B7s7wuWVELcYNWpAvnwmiVavHixaBGPHQvTo/2wK/fqZhNr335uE2vjxphWkiIiIiHyQHPHRKev/Hi977nXPv+pYEREREZEXrV9vKtLixjWtHf+TSLtxA6pUgcaNIU8eM07tn0QawMmf4d5xyNwX3F79ubJTt05RZ14dMo7OaG7OFurG6ban+abAN0qkiYiEQJZlUTJlSTY33MyizxcR0SsitebVItOYTMw7PA/7dfPNUrWECElg91dgm7aNSZKYz2r88APMnw8ZM8LKlc9tCL17Q8+eMGmSyby9MGhNRERERD4UQa1MK+yQKERERERE3saqVVC+vLnLuWoVxIv3z0srV0LdunDtGgwcCO3b/1/XLb97sL87xC4I8cu+dPkLdy/Qe31vft79Mx5uHnTM05Gv8n1FzPAxnXtdIiLiEJZlUTZVWUp7l2b2odl0XdOVyrMqkz1+dnoX7k2JFCWwrP/7DK97GPDpDZtrw5npkKymedodOnWCEiVM2+DixaFDB1OMFjbss3O7dAFPT+jc2QzqnDrVfC8iIiIiH5QgJdNs217nqEBERERERF7rjz+gYkXw9jaZs9ixAXjyBL79Fn78EdKkMe24smR5yfmHf4THV6Hgwv8MvzGuPbhG3419GbVjFAGBATTJ2oRvC35L/EjxnX9dIiLicG6WG9XTV6dy2spM2TeF7mu7U2pqKQomKcj3Rb4nf+L8z5+QtAYc+RH2fQeJq5oE2zNZs8KuXfDllzBoEKxYAdOmQYYMzw7o1AnChDGZtqdPYeZM872IiIiIfDA0IVdEREREQr5Fi0xFWpo0pu/Ws0TaoUOQK5dJpDVvDjt3viKR9ugyHBkIiatBzFz/PH3n8R26rulK8mHJGbJ1CJ9l+IxjrY8xsuxIJdJERD4AHm4e1Mtcz7y3lxnJ8RvHKTCxAKWnlmbnxZ3/Hmi5Qeb+8OAMHB/1wjrhw8PIkeZ/R1euQPbsMHSomdMJmHLoESNgwQLTX/jx42C5PhEREREJHkqmiYiIiEjINm+euTHp42NaO8aMiW3DqFGQLRtcuAALF5rvw4d/xRr7u0HAE/D5HoCHfg/pt7EfyYYmo9f6XpROWZqDLQ4yscJEkkZNGmyXJiIiwcPL3YsWOVpwos0JBhQfwLYL28g+LjtVZ1Xl6PWj5qB4xSFuCTjQC57cfOk6ZcvC/v2m5WO7dvDJJ3D16rMXW7aEsWNh6VLzAZCHD4Pl2kRERETE+ZRMExEREZGQa9YsqFbNlACsXAnRo3P1KpQrZ+5ZFipkbmqWK/eaNW4fgJM/Q6qW+EdMxrid4/Ae7k2nVZ3Imygvu5rsYla1WaSJmSbYLktERFwjvGd4vsj7BafbnqZ7oe4sP7mc9KPS0/T3ply8dxGyDgS/Oyah9gqxY5sPcQwfbj7j4eMDy5c/e7FJE5gwwfw/65NP4MGD4LkwEREREXEqJdNEREREJGSaOhU+/xzy5DHz0qJEYelSyJjR3KMcOhSWLIG4cd+wzu4vsD2j8LtXFjKMykCTRU1IEiUJ6+utZ1GNRWSJ97K+kCIi8iGLHCYy3Xy7cbLNSVrlbMXEPRNJOSwl3+6cwdMkteD4SLh7/JXnWxa0agXbtkGMGFCypJmp9vQpUK8e/PorrFsHpUrBvXvBdl0iIiIi4hxKpomIiIhIyPPLL1C7tik9W7aMJ16RaNcOypQxFQHbt0ObNuD2pp9mLy6DS38w5H4kys+th7ubO/M/nc+fDf6kQJICwXAhIiISksWKEIshpYZwpNURKqWtRJ+Nfci86Xee2hYBu7984/k+Pub/Sc2awcCBkDcvHD8O1KwJM2bA5s1QogTcvu30axERERER51EyTURERERClnHjoH59M5Bm0SKOXYhAnjymEq11a3PTMmPGNy+z9+JOzq6pxvGnMPxWABPKT2Bfs31USFMBy7Kcfx0iIhJqJI+WnKmVp7KryS4Sxc1Bj2tPcb+wgOWbvyXQDnztueHDw+jRMHcunD4NWbKYz4TYVavB7NmwcycUKwY3Xz6HTURERERCPiXTRERERCTkGDnSzJspUwYWLGDy7PBkzQpnz8KCBTBsGIQN+/olTt86Ta25tRgzKztJrPscTFCHg62OUz9Lfdzd3IPnOkREJFTKEi8Lf9T6g6Klf+dyoCfRD/ch29gsLDuxDNu2X3tupUqwd68Z81m/PtSoAXcKV4R588yAzyJF4Pr14LkQEREREXEoJdNEREREJGQYPNgMoKlYkXuT51G7cVjq1oVs2czNyfLlX3/69YfXabu0LalHpGbFkTkMiBMe/5h5qVjsF8J5hgueaxARkQ9CEe9PiJ33Z7KHhSLWJUpPLU3RyUXZfmH7a89LmBBWrYLeveG33yBzZtgcvSz8/jscPQq+vnDlSrBcg4iIiIg4TqhJplmWVcqyrKOWZZ2wLKvTS16vYFnWPsuy9liWtcOyrPyuiFNERERE3kO/ftChA1Srxs5Os8ia24tp06BHD1i92tycfJXH/o/p/2d/UgxLwYjtI6iXuR4nijUiov0Qj2xDQS0dRUTkPbglqwXRszMwthejS/7IgasHyPlzTqr/Vp3jN46/8jx3d/j2W9iwwXxfoAD03laCgIWLTR9IX1+4eDF4LkJEREREHCJUJNMsy3IHRgKlgXTA55Zlpfu/w1YBmWzbzgw0AH4O1iBFRERE5P306gWdOmF/XoPBOaaRp4Anjx/DmjXQtau5KfkygXYgU/dNJfWI1Hy98msKJinI/ub7+anwN0Q6NQ6S1oYY2YP3WkRE5MNhuUHWQViPLtAs4kNOtjlJt0LdWHJ8CelGpaPl4pZcuf/qKrM8eWDPHqheHbp0gaLfF+Hq5GVw/jwUKgTnzgXftYiIiIhIkISKZBqQEzhh2/Yp27afAjOACv89wLbt+/a/DcwjAK9vZi4iIiIirmXb5u5i1648rl6H8rcn0+ErD8qUMTcfCxZ89alrTq8hx7gc1JpXi5jhY7K6zmp+//x30sVKB3u/MTdAM30fbJciIiIfqNgFIFFlONSXSIH36e7bnZNtTtIkaxN+2vUTKYaloNuabtx/ev+lp0eJAlOnwi+/wI4dkKZxAdZ9uxyuXjUJtTNngvVyREREROT9hJZkWgLgvx/ZOv/suedYllXJsqwjwGJMdZqIiIiIhES2DZ06Qe/eXCzTiBTrJ7JitTsjRsC8eRAjxstPO3ztMOWml6PI5CJcf3idXyv9yvbG2ymcrLA54PoWODsd0nSECImC73pEROTDlbkfBD6FfV0AiBMxDiPLjuRQi0OU8S5Dz/U98R7uzfhd4wkIDHjhdMuCunVh925Inhx8O+ehb7GV2LdumYTayZPBfUUiIiIi8o6sf4u5Qi7LsqoBJW3bbvTs+9pATtu2W7/i+IJAV9u2i73ktSZAE4BYsWJlmzVrlvMCF5GP0v3794kYMaKrwxCRD8wH9d5i26QYNYpEs2ezwrs2pY5PJEGiJ3TtepCUKR+89JSbT2/yy5lfWHxpMeHcw1EzcU0qJ6hMGPcwz62b5XprwgZcYlvsKQS4hQumCxIJfXwvFn7hubXx17ggEpHQIcWdUSR8MJsdsX7igWfK5147dPcQo06O4uDdgySPkJzmyZuTPfrL2wz7+VmMH5+MmTMTUybeJubcK4MV1pM9P/7Io8SJg+NSgsUH9XOLiIQYem8REWcoXLjwTtu23zgjIrQk0/IA3W3bLvns+84Atm3/8JpzTgM5bNu+/qpjUqdObR89etTR4YrIR27t2rX4+vq6OgwR+cB8MO8tgYHQujWMGsWseG359NJgGjSwGDYMIkR48fAHTx8waPMg+m/qz2P/xzTP3pyuhboSM3zMFw8+Owv+/BRy/QwpGjr/WkRCs2nWi8/VCPm/G4q4zNNbsDAlRM8KhZebcrP/sG2b2Ydm8/XKrzl9+zSlU5ZmQPEBpI+d/qXLrVgBdepA/Bv72RC2GOHCW1irV0O6/x8PHzp9MD+3iEiIovcWEXEGy7LeKpkWWto8bge8LctKZlmWF/AZsPC/B1iWldKyzE+zlmVlBbyAG8EeqYiIiIi8XGAgNG0Ko0YxLMyXNLo3mGnTLMaPfzGRFhAYwMTdE0k1IhVd13alRIoSHGpxiGGlh708kRbwGPZ0gqg+kKxesFyOiIh8RLyiQcZucHklXFz6wsuWZVEtfTUOtzzMwOID2XRuEz5jfGi2qBlX7l954fjixWHfPohXIiPZ7q3l1m2LwEK+5kkRERERCXFCRTLNtm1/oBXwB3AYmGXb9kHLsppZltXs2WFVgAOWZe0BRgKf2qGh7E5ERETkYxAQgH/dBvDzz/TiO6Zk7MfuPRaff/7ioctPLifL2Cw0WNiARJETsbH+RuZUn4N3DO9Xr390ODw4DVl/BDd3512HiIh8vLybQ6RUsLsjBPq99JAwHmHomLcjJ9ucpFWOVozfPZ6Uw1PSZ0MfHvk9eu7YWLHg99+h+dC0FAxcx+WbXvjlLwy7dgXH1YiIiIjIOwgVyTQA27aX2LadyrbtFLZtf//suTG2bY959ud+tm2nt207s23beWzb3ujaiEVEREQEAH9/bleog8eUSXShJ/e+7MXGPy1SpHj+sH1X9lFySklKTinJA78HzKo6i80NN5Mvcb7Xr//4GhzsDfHLQtwXRuaKiIg4hpsnZBkAd4/AiXGvPTRG+BgMLT2Ugy0OUix5Mb5d/S2pR6Rmyr4pBNqB/xxnWdCmDUzdnoq6Sddz8V5EHuUriv+mbc6+GhERERF5B6EmmSYiIiIioY/91I+TuWsQdfE0ekf4gfzLutC/P3h5/XvM1QdXafp7U7KMzcL2C9sZVGIQh1ocolr6aljWS+Y6/b/93cD/gbnBKSIi4kwJykGcwub/PU9vvfHwVDFSMe/Teaytu5ZYEWJRe15tco7Lyboz6547LlMmmL8vOSOrr+fi4+g8KViMS7P/dNZViIiIiMg7UjJNRERERJzi9pUnbE9WnRQ7f2OM9480OtGJkiX/ff2J/xP6/9mflMNSMmHPBNrkbMOJNidon6c9YTzCvN0mt/bCibHg3QKipHXOhYiIiPzNsiDrYHh6E/b3eOvTCiUtxPbG25lccTJXHlzBd5IvlWZW4tiNY/8cEyEC9J+ZhAMj1nHJjkukaiVZ22PdqxcVERERkWCjZJqIiIiIONyWtY/ZmawKOS/OZ3m54TQ50oG4cc1rtm0z59Ac0o1Kx9crv8Y3qS8Hmh9gcKnBRA8X/e03sW3Y2Ra8ooHP29/QFBERCZJomSBFEzg2Au4ceuvT3Cw3ameqzdFWR+lduDcrT60k/aj0tF3alhsPb/xzXIWWCfH8cx3XwiYmZ/fSDP5kFQ8fOuNCRERERORtKZkmIiIiIg4TGAgDej7ibuEKFH20mFNfj6XEwla4Pfupc9elXfhO8qXqb1UJ7xme5bWWs/DzhaSOmfrdNzs3G66uA5/eJqEmIiISXHx6gUck86EO236nU8N7hufbgt9yvPVxGmRuwIjtI0g5PCVDtwzFL8APgCS545HwxFruxEpJs8Wf0D7tMg4ccMaFiIiIiMjbUDJNRERERBzi0iUoX/QB2bqVpRgreDhiAsn7NjGv3btEgwUNyP5Tdg5dO8SYsmPY3XQ3xVMUf7/N/B/Cri8gaiZI0diBVyEiIvIWwsYEn55weSWcX/BeS8SNGJex5cayt9lessfPTrs/2pFxdEaWHF8CgGeC2MQ7tBq/FGkY9lcFumX9nTFj3jl3JyIiIiIOoGSaiIiIiATZsmWQN+M9Oq0vja+1DmvyZMK3rM8jv0f02dAH7+HeTNk3hY55OnKi9QmaZm+Kh5vH+294qD88/AuyDwM3d8ddiIiIyNvybg5R0sOuDhDw+L2XyRA7g6nU/mwhgXYgZaeVpfTU0hy+dhhixiTy9tW4Zc7ETP/KLG8+l2rV4NYtB16HiIiIiLyRkmkiIiIi8t6ePoUvvoBPS99h3sOS5LM24TZ9GtSqycwDM0kzMg3frv6WEilKcKjlIQaUGECUsFGCtumDs3C4HySuDrELOuZCRERE3pWbB2QbCg9Ow5FBQVrKsizKpS7HgRYH+LHEj2w+t5mMozPSdmlbboa18Vy7AvfcOZjtVp0w82aQOTP8+adjLkNERERE3kzJNBERERF5LydOQL58MP7HW+yNVZxM/juwfvuNbfmTkX9ifj6b8xnRwkZjdZ3VzP10Limjp3TMxru/BCzIMsAx64mIiLyvuEUhYSU42AceXgjycl7uXnTI04HjrY/TKGsjRmwfgfdwb0Yc/ZWApYtxy5+PKdSk6qNfKVQIeveGgAAHXIeIiIiIvJaSaSIiIiLyzqZNg6xZ4eax65xKVpSkd/Zy49ex1GEeuX7OxcmbJ/m53M/sbLKTwskKO27jK2vhr98gXSeIkNhx64qIiLyvrD9CoD/s+dphS8aKEIsxn5j5opniZKL10tZkmpqfVSM6Yvn6MvB6XUZln0CXLlCsGFwIeh5PRERERF5DyTQREREReWv370P9+lCzJhRIfZXD8YsQ9eIhpvaqTuITLZl1cBad8nXiWOtjNMzaEHdHzjML9IedbSFCEkj7pePWFRERCYqIySDtF3BmKlxzbO9Fnzg+rKqzinmfzuOJ/xOKza1AlTpheOibjyZbG7Kpzhi2bYNMmWDRIoduLSIiIiL/oWSaiIiIiLyVPXsge3aYNAn6tr7AorsFcTtzlFr1o1Dr0RTKpirL4ZaH+aHYD0QOE9nxAZwcB7f3QZaB4BHO8euLiIi8r/SdIVwC2NEGAh3bd9GyLCqmqcjBFgfpX6w/Ky5uJE7+zRzMlYw8k5tzqt0wEiWCcuWgbVt48sSh24uIiIgISqaJiIiIyBvYNgwfDrlywd27sHHKGdovzM3Dv05Q+POn7POJzeo6q/mt2m8ki5bMOUE8uQl7v4PYvpCoinP2EBEReV8eESBLf7i1C05NdMoWYTzC8GW+Lzne+jifZ69P1uKnWZTeizh92rKlen/atoVhwyB3bjh61CkhiIiIiHy0lEwTERERkVe6cQMqVoQ2bcxMlk3TdpC2bUYeXDlPhYbh+bTZcHY33e3YuWgvs78b+N2GbEPBspy7l4iIyPtI8jnEygd7v4Gnt522TZyIcRhXfhxbWuxiULuczEwPYb75mtYeDfn9dzh3DrJlg19+MR+IEREREZGgUzJNRERERF5q3Tozg2XpUhj4YyD1ancnfLmc+D28z8j+VZnR/xStcrbCw83DuYHcPgDHR0PKZhDNx7l7iYiIvC/LgmzD4Ml12N/T6dtliZeFVQ3X4zltJvOyRyDFjxN4+EtaFq37ixw5zIzTWrVMVbmIiIiIBI2SaSIiIiLyHH9/6N4dihSBcOFg9Lw97LqRnsINemB5eHJ96Wy+a/0bMcPHdH4wtg0724JnZPBx/o1JERGRIImeFVI0hGPD4c5hp29nWRaVfapTasNl9pTOSvU5R9jQIjn5v+lG1+5PmTEDsmaF7dudHoqIiIjIB03JNBERERH5x7lzJonWowdUqv6QrN0bMX5uFkYPOkrYaDGJuf0g6QoG48yyc3Phymrw6QVhYgTfviIiIu8r0/dmhtrOdsHWZzFc2IhkXrSd+/Vr8uX6AKJ17cnESCno9ssq/Pxs8uaFgQMhMDBYwhERERH54CiZJiIiIiIALFgAmTPDrl021b5dxLKMsbm9ahJrpnkSMUFyIm7eiZUyZfAF5P8QdneEqBkhZdPg21dERCQowsaGjN3h8nI4vyD49nVzI+L4X6F1azpsgf4LH9H9RDESflWOQiXv8OWXUKYMXLkSfCGJiIiIfCiUTBMRERH5yD1+DK1bQ8WKEDXuHaK3K85vnuX46m5Glk53J0xyb9w2bIDEiYM3sIN94MFZyD4SnD2XTURExJFStYQoGUyrYv+HwbevZcHQodCxI5+tu8GBffk5dm8zq3NEp2CL6axbZ5MpE6xYEXwhiYiIiHwIlEwTERER+YgdOQK5c8OIEZCk1DxOVY5NhHgX2B2rC10H7cQtbTpYtw7ixQvewO4eg8MDIGltiF0gePcWEREJKjdPyDESHv4FB78P3r0tCwYMgM6dSTd/I+f3F6NNtub8Gac2Xs3zY4W/SYkS0KkT+PkFb2giIiIioZWSaSIiIiIfIduGiRMhWzabY6cf4FazArcK1WNQmb7sj9KZzG36QPbssHo1xIwZ/MHtaA3uYSHLgODdW0RExFFiFzQfCjk8wHxIJDhZFnz/PfTqRZhpsxgy8RJ76m0lW6YwXP48IdHz/0a/flCgAJw+HbyhiYiIiIRGSqaJiIiIfGTu3oUaNW0aNAC/eJt41CgV9arF5FirY7Q/GAmPOvXM3bXlyyFq1OAP8NwcM2fGpzeEixP8+4uIiDhKlv7gHs58SMS2g3dvy4LvvoPBg2HuXDI0/Y5VVX9nds1fiVjlC6hWjV37H5ApcyAzZgRvaCIiIiKhjZJpIiIiIh+R7dshnc9jZswIhMLfkeWrL9nWYT7jK4wnzoSZ0LgxlCwJS5ZAxIjBH6DffdjVHqJlBu/mwb+/iIiII4WLaz4ccnm5+bCIK7RrB+PGwR9/YJUpQ5WExTnc8jDdW2TAap6VB1G28fnnULe+Pw8euCZEERERkZBOyTQRERGRj0BgIHT7/h658vhz4dZVoreozKTBqdjceCM5EuSAvn2hbVuoVAnmz4dw4VwT6IFe8PA8ZB8Fbh6uiUFERMSRvJubD4nsam8+NOIKjRrBtGmwaRMUK0b4e4/p5tuNY98tp1K/oVDgeyZPciO1z1327AnmCjoRERGRUEDJNBEREZEP3LmLT0mX9ww9v4sEqRbRasJ4Tv/4K3Uy1cENC7p0gc6d4fPPYeZMCBPGNYHeOQxHBkHyBhArj2tiEBERcTQ3D8g+0nxY5EAv18Xx2WcwZw7s3Qu+vnDlCkmiJmH259NZMzkfydo04cLV+2TL6cc3P1wM9q6UIiIiIiGZkmkiIiIiH7AfftlBsjR3OLojLunqjeDw+nQMr9KDyGEim9ktHTtC797QsCH8+it4eromUNuGHS3BMxJk7uuaGERERJwlVl5IXt98aOTOYdfFUb48LF4MJ0+a+ah//QWAb1Jfjg0aww+zl+KWfC0/fBOfFHn3cfL8bdfFKiIiIhKCKJkmIiIi8gE6cuUk3hVm8039rLiFv8Pwuds4OLEVqWOmMgcEBkKLFjB4MLRuDT/9BO7urgv47Ey4sgYy9YGwsVwXh4iIiLNk7mc+NLKjFS4t+ypWDFasgKtXTULtxAkAPNw86FSyIZd2ZiNv4984vT0NqTI84IufFhIQGOC6eEVERERCACXTRERERD4g95/ep+WUgaTLcY0TC6uS45P9XD6aiFblC/57kL8/1KsHY8bA11/D0KHg5sIfC5/egd0dIHp2SNHYdXGIiIg4U9hY5kMjV1bD2emujSVvXli9Gh48MAm1Awf+eSlmhBj8+VM1pi85Q5iwgfzYrCwJyo9j7amNLgxYRERExLWUTBMRERH5ANi2zbT900jcuCOjGjXC44YPoybeZNvvmYge5T8z0B4/hqpVTUvHXr3ghx/AslwXOMDeb+HxFcgxGtxcWB0nIiLibCkaQ/QcsKs9PL3l2liyZoX1683PAYUKwc6dz738WYlUXD6WkILl/uLK4mYULhxIhbGtOH/3vIsCFhEREXEdJdNEREREQrndl3aTb2wJatZ9yK3JY0mXzp2jB8LTvF705w+8dw/KloUFC2D4cPjuO9cn0q5vg+OjwLsVxMju2lhERESczc0dcv0ET27Ans6ujgbSpYONGyFyZChSxPz5PyJHtli3IBk/T3yM17VcLGzfkxQtOvD9+u957P/YRUGLiIiIBD8l00RERERCqesPr9NsUTOy9mjAtq6jsPY05OtOgezZGolkyf7v4Js3zYyUdetg0iRo1colMT8n0B+2N4Vw8SBTL1dHIyIiEjyiZYbUbeHEWLi22dXRQPLksGEDxIsHJUqYeWr/p2G9sBzYG4YMqSPwdOosvvsiCmmGZGb+kfnYrpz/JiIiIhJMlEwTERERCWX8A/0ZvnU4KYd589OosLiP304s9xSsXGnR9wc3PD3/74RLl0z7pj17YM4cqFPHFWG/6OgwuLUHsg0Dz8iujkZERCT4ZOwB4RPBtiYQ6OfqaCBhQtPyMVUq+OQTmDfvhUO8vWHn1jB06ABsb8XlwQuoNKIzJaeU5PC1w8Efs4iIiEgwUjJNREREJBRZfXo1WcZmoc2cnnjMWIq9dAilS3mwf78bRYq85ITTpyF/fvN16VKoUCHYY36pB3/B/q4QvywkquzqaERERIKXZ0TIPhzuHIAjg10djRE7NqxZY2apVa0KEye+cIiXF/z4IyxeDJH9UuH58z42zk9NxtE+dPijA3ce33FB4CIiIiLOp2SaiIiISChw+fFlqv1WjaKTi3LtgA/RfvmLe4dzMWwYLFwIMWO+5KSDByFfPrh1C1at4uXZNhfZ2QZsG7KPcP3cNhEREVdIWAESVoT93eH+GRcH80y0aLBypWkN3aABDBr00sPKlIG9ey0K5vfk0dzhJFm5icFrJ5BqRCom7J5AoB0YzIGLiIiIOJeSaSIiIiIh2EO/h3Rf25262+uy6PAfFDy+kaujpxAnRji2bbNo3foVuajt26FgQfPn9eshV65gjfu1zs2H8wsgY3eImNTFwYiIiLhQtmFgucOOluZDJiFBhAjmkzrVqkHHjvDddy+NLV48WL4c+vSBs5tyEH/qFWLfLE/DhQ1pubslW85vcUHwIiIiIs6hZJqIiIhICGTbNrMPzSbtyLT0WNeDrHZV0v5+jfVT89GwocWOHZAp0ytOXrvWVKFFiQIbNkCGDMEZ+uv53YOdrSFqRkjTztXRiIiIuFaERODTEy4ugXNzXB3Nv8KEgenToXFj+P57aNECAgJeOMzNDTp3Nj9ueLqF4ciAn6h+cxdXH10nz/g81Jtfj8v3L7vgAkREREQcS8k0ERERkRBm/5X9FJ1clGq/VSNq2Kh0iXaQff0mcep4GGbOhHHjzIfGX+r336FUKUicGDZuhBQpgjX2N9rXDR5egBxjwc3T1dGIiIi4XqrWEC2zaYH8NATNHHN3h7FjoVMnGDMGataEp09femiePLBnD1SqZDFrWBYSzz1Mq7S9mbZ/GqmGp2LgpoE8DXj5uSIiIiKhgZJpIiIiIiHEzUc3ab2kNVnGZmHvlb0M8v2JzFt206ttOpIle8CePVC9+msWmDoVKlUCHx/T2jF+/OAK/e3c2AHHhkLKJhArj6ujERERCRncPCDnT/DoMuz9xtXRPM+y4IcfoH9/mDkTKlSAhw9femjUqOaQn36CwwejMbPVt4xOfZpCSQvx5YovyTg6I0uPLw3e+EVEREQcRMk0ERERERcLCAxg7I6xpBqeilE7RtE0W1N+y3eS0Y0b8+tkN7p0gaFD95A06WsWGTUKatc2c9JWrYIYMYIr/LcT6AdbG0LYOJC5r6ujERERCVli5IDUbeD4KLi60dXRvOjLL01p/PLlULw43Lr10sMsy3SGHDNmJ3HiQKNPE5B65+/Mr7oE27YpM60M5aaX48TNE8F8ASIiIiJBo2SaiIiIiAtt/Gsj2cdlp9niZqSPnZ4djXaR8thIShWOysOHsHo19OwJ7u72yxewbTPLpGVLKFcOliyBSJGC9yLexuGBcHsfZB8FXlFdHY2IiEjI49MbIiSBbY0h4LGro3lRo0Ywaxbs2AG+vnD51bPQkiZ9yLZtZtTajz9C73qlmV/iAP2L9WftmbWkH5Wezis7c//p/eCLX0RERCQIlEwTERERcYHzd89TY04NCkwswPWH15lZdSazSq/l20aZ6NABypSBvXvNvapXCgyEtm3hu++gVi2YPRvChg2uS3h7d4/C/h6QqCokqujqaEREREImz4hmpujdI3Dge1dH83JVqsDixXDyJOTPD6dPv/LQcOFg5EiYO9ccniu7F/HPfMmxVsf4LMNn9P2zL6lHpGbqvqnY9is+NCQiIiISQiiZJiIiIhKMHvs/ps+GPqQekZq5h+fSpWAXjrQ8QrSL1cmUyWL1anPjad68N3RqfPoUataE4cOhQweYNAk8PYPtOt6aHQjbmoB7OMg+3NXRiIiIhGzxS0LS2nCoL9ze7+poXq5YMdNS+uZNyJcPDhx47eGVKsGePZA5s/nsT+fW8RhZbBKbGmwiXsR41JpXiwITC7Dr0q5gCV9ERETkfSiZJiIiIhIMbNtm4dGFpB+Vnm9Xf0vJFCU53PIw3+XrSc8uEShRwiTPtm83LZEs6zWL3bsHn3wCM2ZA//6mf5JbCP2x7sQ4uLoesv4I4eK6OhoREZGQL9tg8IoGWxtBYICro3m5XLlgwwbzA0vBgrBly2sPT5wY1qyBrl3h118hWzYIez0P2xpv4+dyP3PsxjGy/5Sdpr835dqDa8F0ESIiIiJvL4TedRERERH5cBy+dphSU0tRYUYFwnqEZUXtFcz9dC5+15KRN6/JhzVrZhJpGTO+YbFr16BIETNMbeJE+PLLYLmG9/LwAuz5CuIUgeT1XR2NiIhI6BAmBmQbBje2wbEQXNWdPj1s3AjRo5tqteXLX3u4hwf06GF+hHnwAHLnhmFD3WiQpSHHWh+jXe52TNgzgVQjUjF863D8A/2D6UJERERE3kzJNBEREREnufP4Dh3/6IjPGB+2nt/KkJJD2NN0D0WTFePnnyFLFjNqZM4cGD0awod/w4Jnzpj5JAcPwvz5UK+e8y/ifdk27GgJgX6Q86c3lNqJiIjIc5J8CvHLwt5v4f6r55K5XLJkJqGWMiWULQtTprzxlEKFTNvHkiWhfXsoVw787kVlUMlB7G22l+zxs9NmWRsyj8nM6tOrnX8NIiIiIm9ByTQRERERBwu0A5mw23yyevCWwdTLVI9jrY/RNndb7t72pEoVaNwY8uSBffugcuU3rxnh1CnImxeuXoWVK02bx5Ds3Gw4vwB8ekKkFK6ORkREJHSxLMgxGix32NbUfEglpIobF9atgwIFoHZtGDjwjafEjAkLFsCwYbBiBWTKZNpApouVjuW1ljPv03k88HtA0clFqTqrKmdun3H+dYiIiIi8hpJpIiIiIg605fwWcv+cm4YLG5IiWgq2N97OuPLjiB0hNqtWgY8PLFpk7jMtXw4JErzFohs3krltW3NjbcMGk1QLyZ7chB2tIXo2SN3O1dGIiIiEThESQea+cHkFnJ7s6mheL0oUWLoUqleHL78kxahREBj42lMsC1q3hq1bIXJkKFoUvv0W/P0tKqapyKEWh+hVuBdLji8h7ci0dF/bnYd+D4PpgkRERESep2SaiIiIiANcvHeR2vNqk2d8Hs7fPc/kipP5s8GfZIufjSdPzGizYsXMzaKtW6FjR3B7m5/EFi6E4sXxixYNNm2CDBmcfi1BtrMtPLkBuX4GNw9XRyMiIhJ6eTeDWPlhZzt4eNHV0bxemDAwfTq0aUOi336DWrXg6dM3npY5M+zcabpX9+kD+fLB8eMQzjMc3xX8jqOtjlIxTUV6rOtB2pFpmX1oNnZIrtQTERGRD5KSaSIiIiJB8Nj/MT9s+IFUw1Mx6+AsOufvzLHWx6idqTaWZXHkiGnnOHAgNGtmbhZlyfKWi0+YAJUqgY8Pu4cPhyRJnHotDnF+IZyZAum/hWiZXR2NiIhI6Ga5Qa4JEPgEtjUJ2e0ewXxSaMgQTjVubBJrZcvCvXtvPC1CBPNjz2+/wYkTJsE2bpy53ERREjG9ynTW1VtH1LBRqfZbNYpOLsqBqwecfz0iIiIizyiZJiIiIvIebNtm/pH5pB+Vnm9Wf0Ox5MU41OIQfYr2IaJXRGwbxoyBrFnh3DkzF2T0aAgf/q0Wh759oWFDKF4cVq3CL0oUp19TkD25aea6RM0E6b9xdTQiIiIfhsjekKkPXFwMp391dTRvZln8VaMGTJxoBqH5+sKVK291atWqZp5s7tzQpImZK3v9unmtYJKC7Gyyk1FlRrH3yl4yj8lMm6VtuPXolvOuRUREROQZJdNERERE3tGha4coMaUElWZWIqxHWJbXWs78z+aTInoKAK5dg4oVoXlzKFDA3BQqX/4tFw8MhA4doHNnqFHDtHmMGNFp1+JQO9vCk+uQ5xdw93J1NCIiIh+O1G2etXtsG/LbPf6tXj3zc8yRI2be64kTb3VawoSwYoWp6l+yBDJmhD/+MK95uHnQPEdzjrU6RtNsTRm5fSTew735aedPBAQGOO9aRERE5KOnZJqIiIjIW7r16BZtl7bFZ7QPOy7uYGipoexpuofiKYr/c8zy5eDjA8uWweDBsHQpxIv3lhs8eWLmiwwZAu3awa+/glcoSUqpvaOIiIjzhLZ2j38rUwZWr4Y7d0xCbceOtzrNzc3Ml922DaJHh1KloG1bePzYvB4jfAxGlh3Jria7SB87PU0XNSXHuBz8+defTrwYERER+ZgpmSYiIiLyBgGBAYzZMQbv4d6M2D6Cxlkbc6zVMdrkaoOnuydgbu60bw8lS5qbPtu3m3yY29v+tHX7tjl5+nTT4nHQoHc42cXU3lFERMT5Qlu7x7/lygV//ml6Xfv6mk8evaVMmUz+rXVrGDYMcuQwFf//vB43E2vrrmVGlRlce3iN/BPzU3NuTS7cveD46xAREZGPWii5QyMiIiLiGuvOrCPrT1lpvrg56WOnZ2eTnYz+ZDSxIsT655iDB819oiFDoFUrc9PHx+cdNvnrL8iXDzZtgqlT4euvwbIcfi1Oo/aOIiIiwSNVa4iVL3S1ewRIndr8nJMiBZQta37eeUvhwplE2tKlppV2jhym+j8w0LxuWRafZviUIy2P0KVgF+YcmkPqEan5YcMPPPF/4qQLEhERkY+NkmkiIiIiL3H29lmq/1Yd30m+3H58m1lVZ7G27loyx838zzGBgeZmTrZscOkSLFoEw4ebmz5vbc8eyJ0bLlwwA0Fq1HDwlTiZ2juKiIgEHzd3yDUx9LV7BIgfH9avh/z5TVvrH398p9NLlYL9+83XDh1MQf/F/+QTI3hFoGfhnhxueZgSKUrwzepvSD8qPb8f/R07NP09iYiISIikZJqIiIjIfzz0e0j3td1JMzINi44tonuh7hxueZhq6ath/ada7Nw5KF7835s5Bw6YD1q/k+XLoUAB8PCAjRuhcGHHXoyzqb2jiIhI8Huu3eNkV0fzbqJEMSVmVavCF1+YQWgBAW99eqxYMH8+jB1rCt0yZoS5c58/Jlm0ZMz9dC7Lay3Hy92L8jPKU2ZaGY5eP+rYaxEREZGPipJpIiIiIoBt28w8MJM0I9LQY10PKqSuwJFWR+jm243wnuH/cxxMm2Zu3mzdCj//bG7qxI79jhv+8ovJviVPDps3Q4YMjryc4LG9hWnvmHui2juKiIgEp1StIVZ+2NkGHvzl6mjeTdiwMGOGSaQNG2YSaw8fvvXplgVNmsDu3ebHqCpVoGFDuH//+eOKpyjO3mZ7GVxyMJvObSLD6Ax0+KMDtx/fduz1iIiIyEdByTQRERH56O2+tJtCvxTiszmfESN8DNbVW8eMqjNIHCXxc8fdvAmffw41a0L69LB3r7l5807jzWwbevaE+vVNJdqGDZAggWMvKDicmQ5/zQSfHhA9i6ujERER+bi4uUOeSWAHwpZ65mto4u5uhs0OGQILFpifia5ceaclUqUy1WnffAMTJ0LmzOb7//J096Rd7nYcb32cepnqMWTLELyHezN6+2j8A/0ddTUiIiLyEVAyTURERD5a1x5co+nvTcn2UzYOXz/M2E/GsqPxDgomKfjCscuXm2q0OXOgTx8z8iNFinfc0M8PGjeGbt2gbl1YvBgiR3bMxQSnh+dNVVrMPJD2K1dHIyIi8nGKmByyDoYra+DoMFdH837atjV9Gvfvhzx54MiRdzrd0xO+/x7WrTPdIgsUgM6d4enT54+LHSE248qPY1fTXaSPlZ4WS1qQZWwWVp5a6cCLERERkQ9ZqEmmWZZVyrKso5ZlnbAsq9NLXq9pWda+Z49NlmVlckWcIiIiEvI9DXjKkC1DSDUiFeN3j6dNrjYca3WMJtma4O7m/tyxDx9C69ZmLlqUKKa1Y+fO5gPV7+TePShfHsaPhy5dzEeoPT0dd1HBxQ6ELQ3A9oM8k8HNw9URiYiIfLxSNIQE5WBPJ7hzyNXRvJ+KFWHtWnjwAPLmNZ9YekcFCpiOAfXrQ9++kDOnyc/9v8xxM7Om7hrmVp/LQ7+HFP+1OOWnl+f4jeNBvgwRERH5sIWKZJplWe7ASKA0kA743LKsdP932GmgkG3bPkAv4KfgjVJERERCOtu2WXRsERlHZ6T9H+3JmSAn+5rvY0ipIUQLF+2F43fsgGzZYMQI88HpnTsha9b32PjSJShUCFasgHHjTJvHd+oNGYIcGwWXV0CWHyFSSldHIyIi8nGzLMg5DjwjwabaEPD0zeeERDlzmhmysWND8eJmQO07ihzZzLJduND86JU9OwwYYCrW/suyLCqlrcShFofoV6wfa8+sJf2o9HT8o6PmqYmIiMgrhYpkGpATOGHb9inbtp8CM4AK/z3Atu1Ntm3fevbtFiBhMMcoIiIiIdiBqwcoOaUk5aaXw8JicY3FLKu5jHSx/v/zOeDvD717m25D9+6ZHNiQIRAu3HtsfPiwWejYMfj9d2jUKMjX4jJ3jsCeryB+GUjZxNXRiIiICEC4OJDzJ7i1Cw70cnU07y95cjP0LHduM6C2Tx8za/YdlSsHBw5A2bLw1VdmHNvp0y8eF8YjDF/l+4rjrY9TN1NdBm8ZrHlqIiIi8kqhJZmWADj3n+/PP3vuVRoCS50akYiIiIQK1x5co/mi5mQak4kdF3cwtNRQ9jffTxnvMlgvqQ47ccK0CurSBapVMy2CihV7z83Xr4d8+eDxYzPMo3TpoF2MKwX6weba4BEecv0ceivrREREPkSJKkGyunCoD1zb7Opo3l/06GZQbY0a8O230KSJmTn7jmLFMnNuJ00y7R99fEyn7Zfl5uJEjKN5aiIiIvJGlv0en/IJbpZlVQNK2rbd6Nn3tYGctm23fsmxhYFRQH7btm+85PUmQBOAWLFiZZs1a5ZTYxeRj8/9+/eJGDGiq8MQ+ej5Bfox78I8Jp+dzKOAR1RMUJG6SeoS2TPyS4+3bVi0KB6jRqXEwyOQdu2OU7To1ffeP87y5aQeMIBH8eOzv18/HseN+95rgevfW5Le/YWk9ydxMFp3roUr5LI4RMQxfC8WfuG5tfHXuCASEXEU98D75LjWiEA82BFrHIFu71NS7xhB/rnFtkk2YQJJpkzhZo4cHOzWjYAIEd5rqStXwtCvXxp2745G3rzX6djxKNGjvzxBZ9s2G65vYMypMVx6fIm8MfLSPHlzEoZX8yORkMDVvxOJyIepcOHCO23bzv6m40JLMi0P0N227ZLPvu8MYNv2D/93nA8wDyht2/axN62bOnVq++jRo06IWEQ+ZmvXrsXX19fVYYh8tGzbZuHRhXyx4gtO3DxBGe8yDCw+kLSx0r7ynIsXoXFjWLIEihaFX36BhO97z8S2oVs36NXL9BWaMweivTiP7V259L3l+jZYkReSfA55f3VNDCLiWNNeUl1aI+T/bigib3BlLawqYtox5xzjsjAc9nPLzz9Ds2aQPj0sXvzeP6AFBsLw4dCpE0SMCGPHQuXKrz7+sf9jhm4Zyvcbvuex/2Na52xNl0JdiBo26vtdh4g4hO63iIgzWJb1Vsm00NLmcTvgbVlWMsuyvIDPgIX/PcCyrMTAXKD22yTSRERE5MOz9/Jeik4uSsWZFfF082RpzaUsrrH4lYk024apUyFDBlizBoYONZ2F3juR9vixaUvUqxc0bAjLljkkkeZSfvdgUw0IFx+yD3d1NCIiIvI6cXwhbUc4MRbOL3B1NEHXqJFJop0+bWap7d37Xsu4uUHbtrBrFyRJAlWqQJ06cOfOy48P6xGWr/N/zbHWx56bpzZmxxjNUxMREflIhYpkmm3b/kAr4A/gMDDLtu2DlmU1syyr2bPDugIxgFGWZe2xLGuHi8IVERGRYHbl/hWa/N6ELGOzsO/KPkaUHsG+5vsolbLUq8+5Ym6k1KoFadLAnj3Qpo252fJerl2DIkVgxgzo1w/GjQMvr/dcLATZ0QoenIa808ArqqujERERkTfx6Q3RssCWBvDwgqujCbqSJWHDBvPnAgVg6dL3XiptWti82TQRmDYNMmaE1atffXzciHGfm6fWfHFzsozNwqpTq947BhEREQmdQkUyDcC27SW2baeybTuFbdvfP3tujG3bY579uZFt29Fs28787PHGsjwREREJ3Z74P6H/n/3xHu7NxD0TaZe7HcdbH6dlzpZ4uHm88rzffjPVaEuWQP/+5v5MqlRBCOTQIciVC3bvhtmz4auvwHpJC7XQ5sw0OD0Z0neB2PldHY2IiIi8DfcwkG86BDyGzbUhMMDVEQVdpkywZQskTw6ffALDhpkWA+/B0xO6d4dNmyBcONPiu107ePjw1edkjpuZNXXXMKf6HB48fUCxX4tRYUYFjt84/l4xiIiISOgTapJpIiIiIn+zbZu5h+eSblQ6vl75Nb5JfTnY4iCDSg4iWrhXt1W8cQM++wyqV4ekSU2rny+/BHf3IASzciXkzWvuwKxbZ8rdPgT3T8P25hAzL2T4ztXRiIiIyLuInBqyD4Mra+DIQFdH4xgJE8LGjVCunOnZ2KIF+Pm993I5c5rPQbVubVp9Z85sln8Vy7KonLYyh1oeom/Rvqw5vYb0o9LT8Y+O3H58+73jEBERkdBByTQREREJVbZf2E6hXwpRZVYVwnuGZ0XtFSz8fCGpYry+tGzhQjO7fu5cM9Js82ZIly6IwYwbB6VKQaJEsHWruSvzIQj0h001AQvyToXXVPmJiIhICJW8ASSqCnu/g+vbXB2NY0SMaH6Y++orGDMGypSBW7fee7nw4U2R25o14O8PBQtC+/avr1J72Ty1lMNSMnzrcPwC3j+5JyIiIiGbkmkiIiISKpy9fZaac2uS8+ecHL1xlDFlx7C76W6KJS/22vNu34a6daFCBYgbF7Zvh+++A4+g5IcCAqBjR2jSBIoXhz//NNPsPxQHesL1zZBjDERM6upoRERE5H1YFuT6CcLFg001wO+eqyNyDDc3M592wgTTFSBPHjhxIkhL+vrCvn2m2G3IEFOl9uefrz/nv/PUMsXNRJtlbUg/Kj3zj8zHfs8WlCIiIhJyKZkmIiIiIdqdx3f4esXXpB6RmnmH5/Fdge840foETbM3fe1cNIBly8xstKlToUsX2LbNjNwIWkB3THuhQYNMX6Dff4fIkYO4aAhydT0c/B6S14Okn7k6GhEREQkKr2imyvzBadjRytXROFb9+qbd9rVrZnbtunVBWi5iRBgxAlavNt0jCxQwn516XZUamHlqK2uvZNHni/Bw86DSzEr4TvJlx8UdQYpHREREQhYl00RERCRE8gvwY8S2EaQcnpIBmwbwWYbPONb6GL2K9CJSmEivPffePVM0Vro0RIli5tX37AleXkEM6sQJ8+nnFStg7FjTFyhIJW4hzNNbpr1jhOSQbZiroxERERFHiF0A0n8LpyfDmWmujsaxChY0n5aKHdt0C5gwIchLFi78P/buOzyqam3j8G+lkYRA6J0AofciVZCuUhRQQcWCir33fs6xHNvxsxw92HuliFJEmoAoSO899N5LSEgIafv7Y6WTQICZ7Eny3Ne1r5nMTGa/iTjZez9rvQtWr4Z77rFjp1q1gnnzzvw9xhj6N+jPqntX8VH/j1h/aD3tPmvHTb/cxI7oHRdck4iIiLhPYZqIiIj4FMdxmLBhAs0+asaDUx6kReUWLL1rKV8P+poapWuc9ftnzYLmzeGLL+xyGkuXQtu2Hijsjz/sqOcDB2yYdtddHnhTH+I4sOB2OLkfOo+EwDMHliIiIlKINPsXVOgEi+6B2Atriehz6ta1i+F27w633w5PPmlbcl+AsDD48EOYORMSE6FLFztL7eTJM39fgF8A97S9h80Pbea5Ls/x8/qfaTiiIc/OeJbjCccvqCYRERFxl8I0ERER8RlL9i6hxzc9GDR6EP7Gn0lDJzHj5hm0rtr6rN8bGwv33w+9etkZaHPn2uU0goM9UNjHH8Nll2Uuuta9uwfe1MdEvQ+7x0GrN6C8J9JHERER8Rl+AXawjPGHuddCSoLbFXlWmTIwebJd9Oytt2xL7ujoC37bnj3PfZYaQOkSpXm116tsfGAj1za9ljf+foN6/6vHh4s/JCkl6YLrEhERkYKnME1ERERct/P4Tm4edzPtPmvHukPr+Kj/R6y6dxX9G/THGHPW7586FZo2hY8+gkcegRUrbDfGC5acbNdFu/deG6bNnw+RkR54Yx9zeBGseBKqD4BGj7ldjYiIiHhDyVrQ6Rs4thyWPe52NZ4XEAAffGAPCH//HTp2hI0bL/htS5Wys9RmzIBTp+wstSeeOPssNYCa4TX59qpvWXrXUppVasb9k++n+UfNmRg1EcdxLrg2ERERKTgK00RERMQ1MadieG7mczQc0ZCx68byXJfn2PzQZu5pew8Bfmdfi+zoUbj1Vrs2WlgY/P03vPsuhIZ6oLhjx+wbjxhhr5hMnAilS3vgjX1M4jH4+zoIqQYdv4J8hJciIiJSSNUYAI0eh00fwo4xblfjHffcY/szHjkC7dvbUVce0KuXnaV2113w9tvQurUdZ5Ufbaq2YdawWUy8fiIAA0cNpOe3PVm2b5lHahMRERHvU5gmIiIiBS45NZmPFn9Evffr8frc1xnSZAhRD0Txaq9XKV0if4HVzz9Dkybw/ffw/POwfLmHZqMBrFtn10f76y/46iv4v/8Df38PvbkPcRxYcBvE74bOo6FEObcrEhEREW9r9TqU7wgL7yh666el69rVtuauXRv697fHch6YCVaqlO3+/fvvdmZaly52ibb4+LN/rzGGKxteyep7V/NBvw9Yc3ANF316EcPGDWPX8V0XXJuIiIh4l8I0ERERKTCO4zB+w3iaf9Sc+ybfR5OKTVhy5xK+vepbIsIj8vUe+/fD4MF2q1YNliyBV16BEiU8VOT48TZIi4mBWbPs1LeiKuo92D0BWr8JFTq4XY2IiIgUBL9A6DLarqNWFNdPS1e7tm1bcPXV8NRTMGxY/noz5kPv3naW2h132CXaWrSwh435EegfyH3t7mPzg5t5tsuzjFk7hgYjGvDsjGeJToj2SH0iIiLieQrTREREpED8vfNvunzVhatGXwXAhOsn8Mctf3BRtYvy9f2OA99+a2ejTZoEr70GCxfaheA9IjUVXngBrrrK7mTpUujc2UNv7oMOL4IVT0GNgdDwEberERERkYJUMgI6FuH109KVLAljxsDLL9t2Bt26wZ49Hnnr0qXhk08yQ7RevWy4duxY/r4/PDic13q9xsYHNzK4yWD+8/d/qPt+Xd6Z/w4JyUU04BQRESnEFKaJiIiIV607tI6BowbS5asubI/ezmdXfsbqe1czoOEATD7X59q5E/r1g1tugcaNYcUKePZZCAz0UJHHj8OgQfZCy223wZ9/QvXqHnpzH3TqKPx9rdZJExERKc5qXAmNn0hbP22029V4jzHwz3/CuHGwfj20bQsLFnjs7Xv0sLPUnnoKvv7ajsn65Zf8f39EeATfXfUdy+5eRrtq7Xh8+uM0HNGQ71Z+R0pqisfqFBERkQujME1ERES8YnfMbu6YeAfNP2rO7O2zea3na2x6cBN3tLmDAL+AfL1Haip89BE0bWqXL3vvPXvbqJEHC42Ksm0dp0yBESPgiy8gONiDO/AxTiosuBVO7oXOYyCorNsViYiIiFtavgYVOsHCOyEmyu1qvGvQIJg/H0JC7Jpqn37qsbcOCYH//AcWLYIqVeCaa+y2b1/+36NVlVZMvWkqM26eQcXQigwbP4w2n7Zh6uapOB5Y701EREQujMI0ERER8ajohGiemfEM9f9Xn+9WfcfDHR5m60NbefaSZwkNDM33+2zaZEf63ncfdOwIa9bAQw+Bv78Hi/31V2jfHo4cgRkz4P77i/4srbWvwZ5fofXbUKG929WIiIiIm/wCofNo8A+GOVdDUqzbFXlXs2Z2wd2ePeHuu+HOOyHBcy0V27Sxgdobb8Dkybajwuef23bl+dUrsheL7lzEqGtGEZcYR98f+tLr214s3rPYY3WKiIjIuVOYJiIiIh6RkJzA2/PeJvK9SN78+00GNxlM1ANRvHP5O5QPLZ/v90lOhv/7P7uQ+8qV9gLE9OlQp44Hi01NhX//GwYMgHr17Ppo3bp5cAc+au9UWPUvqH0jNHjA7WpERETEF5SsCZ1HQcwGWDD83JKfwqhcOfjtN3j+eXug2bUr7NrlsbcPDISnn4ZVq+zavnfeaddT27w5/+/hZ/y4rtl1rLt/HSP6jmDNwTW0/7w91/50LZuObPJYrSIiIpJ/CtNERETkgqSkpvDtym9pOKIhT/z+BB1qdGDZ3cv47qrvqF2m9jm91/LldhbaU0/BZZfBunVw++0enix2/DhcfTX8619w000wdy5ERHhwBz7qxDaYdwOUaQ7tPy36M/BEREQk/6r0hJZvwK6xsOFtt6vxPn9/eOUVu7jZhg1w0UXwxx8e3UX9+jBrFnzyiR231by5HTCWnJz/9wjyD+L+9vez5aEtvNDtBSZvmkyTD5tw/2/3c+DEAY/WKyIiImemME1ERETOi+M4TN40mdaftOaW8bdQMbQiM4fNZMqNU2hVpdU5vVdcHDzxhF0PfvduGDUKxo+HatU8XPTq1XYnkybBO+/At9/aRS6KuuSTtnWT48Alv0BA/tttioiISDHR+AmoORhWPA0HPBss+ayrrrJ9GcuXh0svtceHHpyZ5+cHd91lB4hdfrkdMNahA6xYcW7vU6pEKV7s/iJbHtrCXW3u4tNln1L3/bq88McLxJ4q4q05RUREfITCNBERETlni/Ysoue3Pen/Y3/ik+IZPXg0i+5cRM86Pc/5vSZPhqZN4e237Sy09evhuuu8MHHqhx/s1YsTJ+zI40cfLR6zsxwHFt8Lx1bAxd9DqbpuVyQiIiK+yBjo+CWUaghzr4M4z7U+9GmNGtlAbeBAePxxuOEGO9LLg6pXh3Hj4Kef7MCxtm3h2Wfh5Mlze5/KYZX5oP8HrLtvHf3q9+Plv16m7vt1GbFoBIkpiR6tWURERLJTmCYiIiL5tv7Qeob8NIQOn3dg7cG1jOg7gnX3r+PaptfiZ87tsOLAARg6FPr3h9BQ+Osv+PRTKFvWL1FT1QAAf4hJREFUw0UnJsIDD9iWjm3bwrJlcMklHt6JD9v8MWz7Bpq9ANX7u12NiIiI+LLAUnYWe0oCzB0MKafcrqhglCoFY8fC66/D6NG27/gmz65NZgwMHmwHjg0bBm+8AS1bwsyZ5/5e9cvXZ8yQMSy8YyFNKzXlwSkP0uSDJvy4+kdSnVSP1i0iIiKWwjQRERE5q23HtnHr+Ftp9lEzpm6eygvdXmDLQ1u4v/39BPkHndN7pabatd4bNbLLVLz0kl0rzSv51u7d0K0bfPABPPaYvVpRtaoXduSjDs2HpQ9DtX7Q/F9uVyMiIiKFQXgj6PQ1HFlkjyOKC2PgmWdg6lTYu9euo/bzzx7fTbly8OWX8Pvv9ri4d2+4+WY4ePDc36t99fbMGjaLKTdOISwojBt/uZGWH7dkwoYJOB5sVykiIiIK00REROQM9sXu4/7f7qfhiIaMXjuaRzs+ytaHtvJi9xcpVaLUOb/f+vXQvTvceacdibtqFfzrX1CihOdrZ9YsaNMG1qyBMWNsH8nAQC/syEfF74W510BoTdve8RxnDoqIiEgxVvNqaPI0bP4ENn/qdjUF67LL7Eivxo3tVLJHH7WdDjysd2+7nO8//mEnwzVqBJ99ZgO2c2GMoU+9Piy7exmjrhnFqeRTDBo9iI5fdGTG1hkK1URERDxEV1VERETkNEfij/DU709R9/26fLrsU25vfTubH9zMW5e9RcWSFc/5/U6ehBdegFatbLb1xRd22bKGDT1fO44D//mPXUS+QgW7BsaQIV7YkQ9LPgl/DYKkWOg6HoI83TtTREREirwWr0LVPrD4fjj4l9vVFKyICJgzBx58EP77XzsabJfn15ALCYF//xtWroTmzeGuu6BrV3u8fK78jB/XNbuOdfev44sBX7Avdh+XfncpPb/tybxd8zxeu4iISHGjME1EREQyxJyK4eU/Xyby/UjemvcWg5sMZsP9G/joio+oXrr6eb3n1Kn24sDLL9vBvRs2wPDhtpOOxx09ahePf+YZu7NFi+yo4uLEcWDhHXB0iZ2RVqa52xWJiIhIYeTnD51HQqm6MOcaOLHd7YoKVlAQvP++nTa2ejW0bg3TpnllV40bw+zZ8NVX9li5dWt49lmIjz/39wrwC2B46+FsenAT7/d5n3WH1tH5y85cOfJKVu5f6fHaRUREiguFaSIiIsLJpJO8Pe9tIt+L5IXZL9A7sjer713Nt1d9S91ydc/rPffssRPC+vaFgACYMQN++AEqVfJw8ekWLLBXHqZOhffeg1GjICzMSzvzYevfhB0/QstXoMZAt6sRERGRwiyoDHSdCKnJ8NdASDrhdkUF79prYckSu+5u377w4ouQkuLx3RgDt95qw7SbboI33oBmzWDKlPN7vxIBJXiww4NsfWgrr/V8jbk759Lqk1ZcP/Z6og5HebR2ERGR4kBhmoiISDGWmJLIR4s/ot7/6vHE709wUbWLWHTHIn6+9meaVmp6Xu+ZnAzvvGPXfZg0CV55xbau6dXLw8Wncxy7Htoll4C/P8ybBw895KWpbz5u96+w4lmodT00edbtakRERKQoKN0AuoyG42tg/jBwznFRr6KgYUNYuBCGDYOXXoI+feDQIa/sqkIFO0Nt9my7rnC/fjbP2737/N6vZFBJnr3kWbY9vI3nL3meSRsn0eTDJtw+4XZ2RO/waO0iIiJFmcI0ERGRYiglNYXvVn5HoxGNuG/yfdQpU4fZt8xm2k3TaFe93Xm/77x5cNFF8Pjjdr2HtWvh+efthQCvSG/r+MQTMGAALFsGbdt6aWc+LnotzLsByrWBDl8UzzBRREREvKPqZdD6bdg9Dla/6HY17ggNtSnX55/b9dRatYK/vLeWXLdusGKFXVPt11/tQLW33oKkpPN7vzLBZXil5ytsfXgrD7V/iO9Xf0+DEQ14aMpD7D+x36O1i4iIFEUK00RERIoRx3H4Zf0vtPi4BcPGD6NMcBkm3zCZObfNoVvtbuf9vkeOwB13QOfONt/65Rc7Ky0y0oPF55S1reP778PYsVCmjBd36MNOHYG/BkBAGHQdDwGhblckIiIiRU3DhyFyOKz5N+wY43Y17jAGbr/dHoeWLAk9etiFgb3Q9hHsgLR//MMOUOvZE5580mZ4f/xx/u9ZqWQl3u3zLpsf3MwtLW/hw8UfUvf9ujw741mOnjzqsdpFRESKGoVpIiIixYDjOPwa9SttP2vLNWOuIdVJ5achP7HkriX0rd8Xc56zmFJT4YsvbOebb76xJ/jr18NVV3lxYlTOto5//w0PPlh8Z2KlJMLcIRC/B7qOg9AablckIiIiRZEx0O5DqHAxLLgVji51uyL3tGoFS5fCDTfACy9A796wd6/XdhcZCRMn2u3kSRus3XDDhe2yZnhNPr3yU9bfv55BjQbxn7//Q5336vDi7BeJToj2WO0iIiJFhcI0ERGRIixriDZg1ACiE6L5auBXrL53NYObDMbPnP+hwKJF0LGjnZHWuDEsXw5vvglhYR78AXI6fPj0to7tzr8tZaHnOLD4bjjwB3T4DCp0dLsiERERKcr8S8Alv0BwJZh9BcTtdLsi95QqBd99B19/bQ+MW7aEKVO8ussrr7Sz1P71L9sJolEjePfd82/9CFC/fH1+uPoHVtyzgt6RvXnpz5eo/d/aCtVERERyUJgmIiJSBOUVom24fwO3trqVAL+A837vQ4dsgNahA+zaZa8h/PUXNGvmwR8gN7Nm2YsU06bBe+8V77aO6da+Clu/hmYvQJ2b3a5GREREioOQytDtN0g5CbP7Q+Jxtyty1y232Flq1apBv3520Fdiotd2FxICL70Ea9ZAly7w2GPQps2FL9/WonILfr72Z5bfvZyedXpmhGovzX5JoZqIiAgK00RERIoUx3GYtHES7T5rlxGifTngy4wQLdA/8LzfOzkZRoyABg1sS8cnnoCoKLjpJi93WExKgmefte1zSpWChQvhoYeKb1vHdNt+gFX/hNo3Q/MX3K5GREREipMyTeGSnyFmA8wdDKkXMDWqKGjUyK6jdt99th15ly6wdatXd1mvHvz2G4wfD7Gx0K0b3HzzhXebbFWlFb9c90tGqPbiny8qVBMREUFhmoiISJGQNUS7cuSVHD15NCNEu631bRcUogHMmQMXXWSXJmvbFlatgv/7Pyhd2kM/QF62bLEXI954w06HW7rUrlFR3B38CxYOh0rdbHvH4h4sioiISMGr0gvafwr7Z8Die2376eIsJAQ++MB2T9i4EVq3htGjvbpLY2wH9HXr4PnnYcwYu5bxf/4Dp05d2Hunh2rL7lpGjzo9ePHPF6nzXh1e/vNljicU89mIIiJSLClMExERKcQcx+G3jb/R/vP2GSHaFwO+IOqBKI+EaHv3wo03QteuEB1trw1Mn27XSPO677+3FyE2boSffoJPP4WSJQtgxz4uJgr+GgRhdaDrOLt2iYiIiIgb6t4GTZ+HLV/AujfcrsY3XHMNrFgBTZrA9dfbNpAxMV7dZWgovPKKDdV69oRnnrEt2CdNuvCMs3XV1oy7bhzL7lpG99rdeWH2C9R+r7ZCNRERKXYUpomIiBRCWUO0K0ZewZH4Ixkh2vDWwy84RDt1Ct58045s/fln+Oc/Yf16e23A65OgYmJs78ibb7az0FauhMGDvbzTQiLhEMzuByYAuk+GoLJuVyQiIiLFXYt/Q62hsPI52D7K7Wp8Q+3adhGzf/3LDhBr1QrmzfP6buvWhQkT7BLDAQFw5ZV2GbeoqAt/b4VqIiJS3ClMExERKURyhmiH4w/z+ZWfeyxEcxwYN84OpH36aejRA9auhZdftiNevW7hQjsbbeRIu7L6H39AREQB7Nj3+aUmwF8D4eRe6DYRwiLdLklERETEjrTq+BVU7AILboWDc9yuyDcEBtrj2Tlpv49LLoEXXrALEXvZZZfZtuzvvmszvGbN7HrHxz2QeWUN1brV6pYRqv37z38rVBMRkSJNYZqIiEghkL4mWofPO2QL0TY+sJHb29x+wSEa2AlgvXrB1VfbJR+mT4eJE+0IV69LSrIXFzp3thcY0kfy+vsXwM4LgdRkmhx7GQ4vgE7fQYWOblckIiIiksm/BHQdDyVrwZ8DKJm01e2KfMfFF9u2jzfdZEeodekCmzd7fbeBgfDII7BpE9x6K7zzDjRoAF9+CampF/7+rau2Zvz141l611K61erGv2b/K2OmWnRC9IXvQERExMcoTBMREfFhKakpjFk7htaftObKkVdyKP4Qn135GVEPRHksRDt4EO6+G9q0sSNYP/jAnu9feumF158vUVH2IsPLL9sF2latsqGaWI4Di+6iwqn50HYERKjlpYiIiPigEuWhxzQICKXFkachbofbFfmO0qXhm29g9Gh77NuqFXz11YUvaJYPlSrBZ5/B4sVQrx7cfjt06ABz53rm/dtUbZMRqnWt1ZUXZr9AxLsRPDfzOQ7FHfLMTkRERHyAwjQREREflJSSxDcrvqHph025bux1JCQn8PXAr9n4wEbuaHMHQf5BF7yPxER46y2oX9+OUH3wQTty9b777BoLXuc4MGKEbeu4dSv89JO9yBAeXgA7L0RWPgdbv2J72DBocJ/b1YiIiIjkLaw29JiKn5MAf1wOCYfdrsi3XHutHTjWrh0MHw5DhsCRIwWy64susgHa99/Dvn226+SQIfYw3BPaVG3DhOsnsOLuFfSt35c35r5Brf/W4tGpj7InZo9ndiIiIuIihWkiIiI+JCE5gY+XfEyDEQ24dcKtlAgowejBo1l731puaXWLR2aiOY5t39i0KTz5pO00s3o1/Pe/ULbshf8M+bJnD/TpYxO87t1hzRoYrBlXp9nwX1j3BtS7i+2lbnW7GhEREZGzK9OcNeVetTPTZveDpBNuV+RbataEmTPhzTftQXmzZjBpUoHs2hjbCGLjRtsUYvJkaNzYnhNER3tmHy2rtGT04NGsu38d1za9lv8t+h+R70dy9693s/WY2n+KiEjhpTBNRETEB8QlxvHu/HeJfC+Se3+7l8olK/Pr0F9ZcfcKrm16Lf5+nlk7bPly6N0bBg60s8+mTIHffoNGjTzy9vkzejQ0b26Hxn70kS2gatUCLKCQ2P4jLHsUal4NbT+0Vz9ERERECoHjJVpA59FwbCnMuQZSEt0uybf4+dkEa/Fi24fxyitt/8Xjxwtk96Gh8M9/2q4UN90Eb79tW0B+8IFdytgTGlVoxNeDvmbTg5sY3mo4X6/8mgb/a8CwccNYf2i9Z3YiIiJSgBSmiYiIuOh4wnFem/Matd+rzWPTH6NhhYbMuHkG82+fzxUNrsB4KEDZuROGDbPtXVauhPfesx1m+vTxyNvnz7Fjdijs9dfb3pLLl8M99ygkys2+6TD/FqjUDS7+ATwUpoqIiIgUmBoDoP2nsH86LLgNnFS3K/I9LVvCokXw3HPw9dfQooWdtVZAqlWDL76AZcvsrh94wN7+9pvnlnOrU7YOH13xEdse3sZDHR7i5/U/0/TDpgz5aQjL9y33zE5EREQKgMI0ERERF+yL3cfTvz9NxH8jeH7W87Sr1o65t83lj1v+oFdkL4+FaMePw7PPQoMGMGYMPPUUbN4MDz0EgRfeMTL/fv3V9pUcPRpeegn+/tsWJac7vADmXA3hTaHrBPAPdrsiERERkfNT93Zo+Rrs+BGWPuK5hKYoKVECXn0V5s2D4GDbRuLBByEursBKaNXKZngTJ0JqKlxxBVx2mR185ynVSlXjncvfYfvD23nukueYvmU6bT5tQ5/v+zB7+2wc/dsQEREfpzBNRESkAG06som7fr2L2u/V5q35b9GnXh+W3rWUyTdOpnNEZ4/tJykJRoyw7VreeMMuLh4VZe+XKeOx3ZzdsWN2StyAAVChgh15+69/2R6Tcrqjy+CPPhBcFXpMgaBwtysSERERuTBNnoFGj8HG/8HK592uxnd16GA7NzzyiD2Qb9XKBmwFxBjbbXLNGnj/fTtbrVUruPVW2+XCUyqWrMgrPV9hxyM7eK3nayzfv5we3/Sg4xcdGbd+HKmawSgiIj5KYZqIiEgBWLJ3CUN+GkLDEQ35duW3DG81nKgHohg9eDRtqrbx2H4cB8aNs5PAHnzQLk22ZAl89x3UquWx3eRP+my0H3+0izIsWQJtPPezFjnRa+GPyyAwHHrNhBCtIyciIiJFgDHQ+i2odzesex3WvOp2Rb4rNBTefRf++AOSk6FLF9ta4uTJAishMNCeR2zeDI8/DqNG2YYSTz5px8l5SpngMjx7ybNsf3g7H/X/iMPxh7l6zNU0+aAJXy7/klPJpzy3MxEREQ9QmCYiIuIljuMwY+sMen/bm3afteP3Lb/zTJdn2P7Idj664iPqlavn0f0tWACXXAJXX21PgidNsu1aLrrIo7s5u6NH4eab7Wy0ihXtbLSXX4agoAIupBCJ2QSzeoNfkA3SSka4XZGIiIiI5xgD7T6E2jfDqn/Ahnfdrsi3de9ueyzecQf83//ZKWJz5xZoCWXL2l1v3GiXPH77bYiMtI8lJHhuPyGBIdzT9h6iHohi1DWjCA0M5faJtxP5fiRvzXuL2FOxntuZiIjIBVCYJiIi4mEpqSmMWTuGtp+15dLvLmXdoXW82ftNdj66k9d6vUaVsCoe3d/atXDVVdCpkx1B+umnsHIl9O9vr1sUqIkT7Wy0UaNsO8fFizUb7WzidsCsXuAkQ88ZUMqzIauIiIiITzB+0PFLqDkYlj0Gmz5xuyLfVqqUPbCfPh0SE+2ouQcegNiCDZciIuDrr2HFCnu+8dRTdqbaN99ASorn9hPgF8B1za5j6V1LmXbTNBpVaMSTvz9p15ie+TwHThzw3M5ERETOg8I0ERERD4lLjGPEohE0HNGQ68Zex4nEE3x25Wdse3gbT3Z+ktIlSnt0fzt2wG23QYsWMGsWvPKKDdPuvNOFJckOH7az0QYOhEqV7Gy0l17SbLSzid8LM3tCUiz0/B3Cm7hdkYiIiIj3+AXAxT9Atf6w+F7Y9p3bFfm+Sy+F1avhoYfgww+hWTOYNq3Ay2jRAiZPtucdVarYtdRat7aPOY7n9mOM4bK6lzFz2EwW3bGIXnV68frc16n9Xm3u/vVuog5HeW5nIiIi50BhmoiIyAXaF7uP52c+T813a/LglAepWLIiY4eMZd1967ijzR2UCCjh0f0dOgSPPmpHhI4cCY89Blu3wvPPQ1iYR3d1do4D338PjRtnn43WunUBF1IIJRy0rR0TDkKPqVC2ldsViYiIiHiffxBcMhYq94QFt8LOn9yuyPeFhcF779lWj6Gh0KePTbOOHi3wUnr0gIULYfRoiI+33TB69IB58zy/r3bV2zH22rFseGADN7e4mW9WfkOjDxoxYOQA/tz+J44nUzwREZGzUJgmIiJyntYcXMPwCcOp/V5tXp/7Ot1rd+fv4X8z//b5XNPkGvz9/D26v9hYO9krMhLefx+GDYNNm+y6BeXLe3RX+bNtG/Tta2ek1asHy5drNlp+nTwAM3tA3Hbo/htU6OB2RSIiIiIFxz8Yuk2ACp3g76EK1PLr4ovtMfdzz9kBbU2awC+/FHgZxsC118K6dTBiBKxfD507wxVX2HaQntagfAM+vfJTdj66kxe6vcD83fPp/k132n3WjpGrR5KUkuT5nYqIiOSgME1EROQcOI7DjK0z6PN9H5p/1JzRa0dzZ5s72fjgRn657hcurnmxx/d56pQdiBoZCS++aAeirl0Ln30GNWt6fHdnl5xsVyBv1gz+/hv+9z87SrZZMxeKKYRO7oOZ3eHEdug+GSp1dbsiERERkYIXUBK6T8kM1LaPcruiwiE4GF591XaDqFoVrrnGbnv2FHgpQUFw//22S8brr9tTg9at4brrYMMGz++vUslKvNj9RXY+spOP+39MbGIsN/xyA/X+V4935r9DzKkYz+9UREQkjcI0ERGRfEhMSeTbld/S6pNWXPrdpazYv4JXerzCzkd2MqLfCOqVq+fxfSYl2TXH69eHRx6BVq3sUmQ//QSNGnl8d/mzfDl07AhPPAG9etnhqA88AP6enYVXZMXvhRndIX4X9JgClbu7XZGIiIiIewJL2UCtYmeYfyNs+8HtigqP1q3tycHrr9uFyxo3tu0rUlIKvJSSJeGZZ2zjin/8A377DZo2tes7b9/u+f2FBIZwd9u7WX//eiZeP5E6Zerw+PTHqfluTZ6c/iS7ju/y/E5FRKTYU5gmIiJyBofiDvHqX69S57063DL+FlJSU/hywJfseGQHz3d9nvKhnu+vmJwMX30FDRvC3XdD9erw++92a9fO47vLn/h4eOopW8Du3TBmDEyY4NLUuEIqfo+dkXZyL3SfqhlpIiIiIgCBYWmz9bvBgmGw7Tu3Kyo8AgNtirVmjW0B+fDDduDbsmWulFOmDPz733am2sMP2/WdGzSws9f27fP8/vyMH1c2vJLZt85m8Z2L6Ve/H+8ueJfI9yMZ+vNQFuxe4PmdiohIsaUwTUREJBerDqzi9gm3U/Pdmvzjj3/QrFIzptw4hdX3rua21rdRIqCEx/eZkmKXPmjcGIYPt+ugTZ5sF/Pu3dvju8u/X3+1Q0v/7//s8NL162HIELtYguRP3C6Y0Q1O7oce06BSF7crEhEREfEdASWh2ySo1APm3wJbv3a7osKlbl2YMsWmV7t22QFwjzxiF112QaVK8M47sHmzPX349FNb4lNPwaFD3tln22ptGXnNSLY8tIWH2j/E5E2T6fRFJzp83oEfVv1AYkqid3YsIiLFhsI0ERGRNCmpKYzfMJ4e3/Sg5cctGbV2FLe1uo21961l2k3T6FOvD8YLAVJqqp3o1bw53HyzbZMyYYLt2tK3r4uZ1fbtMHAgDBgAoaEwe7ZdqK1sWZcKKqTidtgZaacOQc/pUNHz6+qJiIiIFHoBodDtV6jSGxYMhy1fuF1R4WIMXH+9Xazs7rtty8fGjeGXX8BxXCmpRg345BNb0tVXw1tvQe3a8PTT3gvVapWpxduXv82ex/Ywou8IohOiuWncTdT+b23+/ee/ORh30Ds7FhGRIk9hmoiIFHvRCdG8M/8d6v+vPleNvoqtx7byZu832f3obj664iOaVGzilf06DowbZ9dCu+468PODsWNtV5YBA1wM0U6dgtdegyZNYMYMePNNWLECunVzqaBC7PgG+L0LnDoCPX6HCh3drkhERETEdwWEQNcJUPVyWHgHbPiv2xUVPmXKwIcf2vYW5cvDNdfYkwtvLF6WT3Xr2g4ca9fCoEG24YW3Q7WwoDDub38/6+9fz+QbJtOicgv+NftfRLwbwW0TbmPF/hXe2bGIiBRZCtNERKTYijocxf2/3U+Nd2rw+PTHqVG6BmOHjGXLQ1t4svOTlA3xzgys1FT4+Wdo08aO0Dx1Cn78EVautOe6fm7+dZ45E1q2hOefh3797DDSJ5+06zHIuTm6DGZcAqmJ0PtPqNDe7YpEREREfF9ACHQdDzWvgWWPwqoXXJtZVah17AhLltjkatYsO0vt5Zfh5EnXSmrcGH744fRQ7amn4KCXJoz5GT/61u/L1Jumsu6+dQxvPZwxa8fQ+pPWdPu6G7+s/4Xk1GTv7FxERIoUhWkiIlKsJKcmM2HDBC777jIafdCIz5d/zuAmg1l21zL+uu0vrmlyDQF+AV7Zd0qKDc2aN4fBgyE+Hr75xp5MDh0K/v5e2W3+7N1ri+jdG5KT7ZoLY8dCzZouFlWIHfwLZvYA/1DoPRfKtnS7IhEREZHCw78EdB4FkcNhzcuw9GFwUt2uqvAJDIQnnrAD5AYMgBdesGshT5zoakCZHqqtWwdXXQVvvw116ng3VANoXLExH/b/kN2P7ub/Lv0/dkTv4Jox11D3/bq8Pud1tYAUEZEzUpgmIiLFwsG4g7w25zXqvl+XQaMHse7QOl7u/jI7H9nJ14O+pnXV1l7bd1ISfP21PWm88UbbvnHkSHvyOGwYBHgnu8ufxES7eEGjRrbn5Isvwpo10KePi0UVcnsmwx+XQ0g1uOxvKF3f7YpERERECh+/AOjwOTR6DDb+D+bfCppBdH5q1oTRo20XipAQuy5y//6waZOrZTVqlNn+MWuo9uSTsH+/9/ZbNqQsT1z8BJsf2szP1/5MvXL1eG7Wc9R8tyY3/XIT83bNw9FsSBERyaHQhGnGmD7GmChjzGZjzDO5PN/IGDPfGHPKGPOEGzWKiIhvcRyHebvmceMvN1LjnRo8P+t56pWrx8/X/sz2R7bzz27/pHJYZa/tPzERPv0UGjaE226DkiXtZK9Vq+za4K7ORHMcmDQJmjWzZ6tdu9qz2BdegOBgFwsr5LaPgr8GQnhT6P0XhNZwuyIRERGRwssYaP0WtHgFtn8HcwdDSoLbVRVePXvatZDfeQfmzrXnAs89B3FxrpaVHqqtW2fb4L/zjm3/eP/9sGOH9/Yb4BfA1Y2vZuawmay7bx13tbmLiVET6fxlZ9p82obPl31OXKK7vxsREfEdhSJMM8b4Ax8AfYEmwFBjTJMcLzsKPAS8VcDliYiIj4lLjOOzpZ/R5tM2dP6yM5M2TuKetvew7r51zBw2k6sbX+21Vo4ACQkwYoRdaPvuu6FCBdtJZdkyH1gTDWD9eujbF6680hYzebIN1urWdbmwQm7TRzDvBqh4MfSaBcEV3a5IREREpPAzBpo9D21HwO4JMLsfJB53u6rCKzAQHn0UNm60bd5ff92mWaNHu742XcOG8N13tivlzTfDZ59BvXpw6632FMabGldszP/6/Y+9j+/lo/4fkZyazJ2/3kn1d6rz6NRH2Xhko3cLEBERn+f25bz8ag9sdhxnq+M4icAoYGDWFziOc9BxnMVAkhsFioiI+zYc3sCjUx+l+jvVuWvSXaSkpvBx/4/Z89ge3u/7Po0rNvbq/qOj7blo7drw4INQqxZMnQoLF9rcyhiv7j5/BT76KLRoAQsW2CGfq1fbYE3On5MKK56FxfdB9Sug+1QILO12VSIiIiJFS4P7odP3cHAOzLgE4ne7XVHhVqWK7UX/999QsaJtnXHJJbBokduVUb++DdK2boUHHoAxY+xSb4MHw9Kl3t13WFAY97S9h1X3rOKvW/+iT70+jFg8goYjGnLZd5cxfsN4ktVuVESkWCosYVp1YFeWr3enPSYiIsVcQnICP67+kW5fd6PxB40ZsXgEfev3Zc5tc1h5z0rubns3YUFhXq1h7167WHZEhO2S0rIlzJoFc+bA5Zf7QIiWkgKffGLPSt97D4YPtyNRH33UjkyV85dyCubdDOvegHr3wCW/QECI21WJiIiIFE11boTuk+HEdpjWEaJXu11R4XfxxbB4sU2vNm+GDh3gpptg166zf6+X1agB775rWz0+9xzMmAFt29rlnefM8e6+jTFcUusSRg0exa5Hd/Fy95dZd2gdV42+ilr/rcU/Z/2THdFe7EEpIiI+xxSGBTWNMUOAyx3HuSPt65uB9o7jPJjLa18ETjiOk2u7R2PMXcBdABUrVrxozJgxXqtbRIqnEydOEBbm3fBGYEfcDibtm8T0A9OJSY6hWnA1rqh6BZdXuZxyQeUKpIZdu0IYPbom06dXISXF0K3bIa6/ficNGpwokP3nR9klS6j78ceEbdlCdIsWbH7gAU7Ur+92WUVCQOoJmh79J2UTV7C11J3sDBvq1eRUny0i4knd9/Y47bHZ1f5woRIRKYq8fdxSMmkLLY48g79zkjXlXiK6xEVe21dx4h8fT8SPP1JzzBgcY9h13XXsGjqUlBDfGCx24oQ/EydW56efahAdHUSzZse5/vqddOp0pEBa6ac4Kcw/Mp9J+yax6Kidwde+XHuuqHoFHct19OpSAmLpnEhEvKFHjx5LHcdpe7bXFZYwrRPwouM4l6d9/SyA4ziv5/LaFzlDmJZVw4YNnaioKA9XKyLF3ezZs+nevbvbZRRJCckJ/LzuZz5Z+glzds4hwC+AqxpdxV0X3UXPOj3xMwUz4XrxYvjPf+CXXyAoCG67DZ54wseWHFu1yk6XmzbN9p184w249lofmCZXRMTthNl9IXYTdPjKjpL2Mn22iIhH/ZjL34MbfP/cUEQKhwI5bonfDX/0hZgN0PFLqHOzd/dXnOzYAc8+CyNH2naQr74Kt9wC/v5uVwZAfDx88QW89Rbs3GmXfHv8cTuhLji4YGrYEb2DL5d/yefLP2dv7F6qhlVleOvh3NHmDmqXqV0wRRRDOicSEW8wxuQrTCssbR4XA/WNMXWMMUHA9cBEl2sSEZECsv7Q+oy10G4adxN7Y/fyRq832P3obsYMGUPvyN5eD9Icx+ZSvXpB+/a2xcgzz9jzzI8+8qEgbc8e28axVSu73sHbb9sVvK+7TkGapxxbAdM72gs43acWSJAmIiIiIjmE1oBL50KlrjB/GKx51R60y4WrVQt+/BHmz4c6deD2221/xVmz3K4MgNBQu0b15s3www82QLvzTjuG8NVX4ehR79dQq0wtXurxEjse2cGE6yfQpmobXpvzGpHvRdL3h76MWz+OpJQk7xciIiIFplCEaY7jJAMPANOA9cAYx3HWGmPuMcbcA2CMqWKM2Q08BvzDGLPbGFPavapFRORCxJ6K5cvlX3LJV5fQ5MMmfLD4A3pH9mbGzTPY+OBGnu7yNJXDKnu9joQE+PJLaN7c9uZfvx7efNOOgHztNajs/RLyJyYGnn/erov2ww/w2GP27PKxx6BECberKzp2jYffu4DxtxdvqvR0uyIRERGR4isoHLpPgdo3wap/wPxbICXB7aqKjo4d4e+/YdQoOHbMjiy8/HJYvtztygC7/PMNN8CyZXawY+vW8I9/2LWsH34Ytm3zfg0BfgEMaDiASTdMYvsj2/ln13+y+sBqrh5zNRH/jeCZGc8QdVhdsUREioJCEaYBOI4z2XGcBo7j1HUc59W0xz52HOfjtPv7Hcep4ThOacdxyqTdj3G3ahEROReO4zBnxxyGTxhO1bercvvE2zkUd4j/9P4Pux/bzejBo+kV2atA2jkePAgvvWQHZd5+u+1o8vXX9oTsySehtK8M10hKgg8+gHr1bLo3aJCdifbWW1CuYNaOKxYcB9a+BnOugtJN4LKFUKa521WJiIiIiH8QdPoWmr8M27+DGT3g5H63qyo6jLFdLjZssF0vliyBNm1sirVli9vVAbbEXr1gyhTb7f6aa+DDD+0p0vXX25ILQkR4BC/1eIntj2xn4vUTaVetHW/Ne4tGHzSi85ed+WLZF8Seii2YYkRExOMKTZgmIiJF156YPbw+53UajmhI16+78tO6n7i+2fX8Pfxv1t+/nqc6P0WlkpUKpJZ16+Cuu+xoxhdftN1MZsyAFSvsMgE+M8krNdWuYdCkCTzwADRtahdz+/FH24pFPCf5JMy7EVY+D7VugN5/Qmg1t6sSERERkXTGQPN/QpexEL0KprWDo74xe6rICA62XS+2boXnnoPx4+1iZQ88AAcOuF1dhubN4Ztv7CDIxx+3AVu7dnDJJTB2LCQne7+GAL8Armx4JROHTmT3Y7t5s/ebHD15lDt+vYMqb1fh1vG38teOv3DUllREpFBRmCYiIq44lXyKsevG0v/H/kT8N4LnZj1H1VJV+Xrg1+x7fB+fD/ici2tejCmAdb4cxwZm/frZTOq77+DWW21Lx99+s6McfWa5MceBiRPtmmg33GAXDPj1V7t+QduzrpUq5yp+L8zoBjtGQsvX4OLvISDE7apEREREJDcR19hW3Bj4vTPsHOt2RUVPeLhdmGzLFrjjDvj4Y7uA9Asv2NbzPqJGjcz2/O+8Y5eWHjLElvrmmwWzrhpAlbAqPNn5Sdbdt455w+dxY/Mb+WX9L3T7uhsNRjTgtTmvsTtmd8EUIyIiF0RhmoiIFBjHcViydwkPT3mY6u9UZ8hPQ1i5fyXPdH6GjQ9s5M9b/+SWVrcQFhRWIPWcOAGffAItWsCll9pe+//+N+zaZc8JGzUqkDLyb+ZMu27BwIF2MbeRI+16BVdc4UNpXxFyZIkd1RyzDrqOh6bP6vcsIiIi4uvKtYbLF0GZljB3CKx+CZxUt6sqeqpWhY8+sq09+vWDl1+2SdU770B8vNvVZQgPh0cfhU2b7GS6unXh6aehZk249147gLIgGGPoVLMTn175Kfse38c3g76hRukaPD/reWr9txZ9f+jLqDWjOJl0smAKEhGRc6YwTUREvG7n8Z28Pud1mn7YlHaftePjpR/To04Pptw4hR2P7ODVXq9Sv3z9Aqtn0yZ7QlWjBtxzj124+quvYMcOu2B1hQoFVkr+LFhgp8f17g379sHnn9uT1uuvBz/9KfeKLV/A713ALxAunQc1BrpdkYiIiIjkV0gV6P0H1BkGq1+Ev66CxGi3qyqaGjSAMWNg0SLbPePxx21i9f77dgCgj/D3t2MSZ82ClSvtqdRXX9mu+ZdfDpMn2076BaFkUEmGtRzGH7f8weYHN/Ncl+dYe3AtQ38eSuW3KjN8wnBmb59NqkJgERGfoitwIiLiFTGnYvhq+Vf0/KYntf9bm+dmPUe5kHJ8csUn7H98Pz8N+Yk+9frg7+dfIPWkptoTpH797PneiBH2/t9/w9Kltq2jz6yHlm75chgwADp1gjVr4L33YONGuP12CAhwu7qiKSUBFt5ht0qXwOWLoWwLt6sSERERkXPlHwwdv4Y2/4W9k2FqOzi2yu2qiq527eD33+HPP6FhQ3j4YahXDz78EE6dcru6bFq0gC++sB1JXnnFnmr17w+NG8N//wvHjhVcLXXL1eXfPf/N9ke2M2vYLAY3GcxP636ixzc9qPNeHZ6b+RzrDxXQ9DkRETkjhWkiIuIxyanJTNk0hRt+voEqb1Vh+MTh7Dy+kxe7v8iWh7Ywd/hc7rroLsqGlC2wmqKj4d13bYDWv7/Np1580fbO//FHuPhiH+zct2SJDdHatIE5c+C11+yaBA89ZBf+Fu84sR2md7az0po+D92nQnBFt6sSERERkfNlDDR6GHr9ASlxML0jbPve7aqKtq5dYfZsOwWsdm24/36oXx8+/RQSE92uLpuKFeH552HbNntuWL687WBSvbodv7h0acHV4mf86FGnB18O/JIDTxzgx6t/pEnFJvzn7//Q5MMmtPusHe8vfJ+DcQcLrigREclGYZqIiFwQx3FYvGcxj017jBrv1KDfj/2Yunkqt7a6lXnD57HpwU38q9u/iCwbWaB1LV0Kd91lT4QeewyqVLFLjO3YYdfGrlq1QMvJn4ULbeLXrh3MnWsXcNu+HZ59FsIKZh25YmvvFJjaBk5sga4ToeUrUECzJkVERETEyyp1gT7LoHx7mH8zLL4PUnxrtlSR06OHHRg4fbo9Kbv7bjtj7csvISnJ7eqyCQqCoUNh3jw7+PLmm2HUKGjbFtq3h6+/hpMFuJRZaGAoQ5sPZcqNU9jz2B7euewdklOTeXjqw1R7uxpXjrySkatHEpcYV3BFiYiIwjQRETk/6w6t45+z/kmDEQ1o/3l7RiwawcU1L+aXa39h3+P7+LD/h3Sq2QlTgNO+TpyAzz6zJz1t28L338N119lgbe5c2xc/KKjAysm/efOgTx/o2NEGaq+9ZkO0f/zDrpgt3pOaAqtehNn9ITQC+iyFGle6XZWIiIiIeFpIFeg5Axo/AZs+ghndIG6n21UVbcbApZfa853Jk+3i1Lffbts/fvBBwSZU+dSqFXzyCezda5d9O3ECbrvN5oGPP27X3y5IVcKq8GinR1l+93JW37uaxzs9zvJ9y7nhlxuo9FYlhv48lIlRE0lM8a1ZfyIiRZFxHMftGlzTsGFDJyoqyu0yRKSImT17Nt27d3e7DK/YHr2dUWtGMXLNSFYdWIWf8aNnnZ4MbTaUqxpdVaDtG7NascKe8PzwA8TGQrNmduDjTTdBmTKulJQ/c+bAyy/DjBm2x8gTT8B992kWWkGJ3w3zboKDf0KdW6DdhxAQ6nZVeSrKny0i4oIfcxnsckPxPTcUEc/y+eOWXb/A/FvB+EPHL6Dm1W5XVDw4DkyZAq++agO2ypVtQnXPPVCqlNvV5cpx7DJwH34I48ZBcrLNB++8EwYOdGewZqqTypwdcxi5ZiRj143lyMkjlAkuwzWNr2Fos6F0r929wNYmL2g+/9kiIoWSMWap4zhtz/o6hWkK00TEs4rawd2BEwcYs3YMI9eMZP7u+QB0qtGJoc2GMqTpEKqEVXGlrrg423rj009h0SK7lNi119oQrVMnH1wHLV1qKvz2G7zxhj2BrFQJnnrKnkCWLOl2dcXH7gmwYDiknoK2H0LkMLcrOqui9tkiIi5TmCYiXlQojltit8DfQ+HoYqh3D7R5BwJC3K6qeEhPqF591Q4sLFsWHn4YHnwQypVzu7o87dsHn39uz0F377YT7W65xU62a9zYnZqSUpL4fevvjFwzkvEbxnMi8QRVwqpwbZNrGdp8KB2qdyjQbjHeVig+W0Sk0FGYlg8K00TEG4rCwd2huEOM2zCOn9b9xKxts0h1UmlZuSVDmw3lumbXUbtMbVfqchxYsgS++srOQouJgSZNbIB28832HMxnJSXZRdv+8x9Ytw5q1bIz0YYPh1DfnQ1V5KQkwPInYeMIKNsGOo+E0g3cripfisJni4j4EIVpIuJFhea4JSURVv0T1r8J4U2h8ygo08ztqoqXRYtsm/sJE2yHjnvvzVz02kelpNil4D7/HCZOtLPVOneGO+6AIUPcGyN5Mukkv236jZFrRvLbxt84lXKKOmXqcG3TaxnSZAhtqrYp9MFaoflsEZFCRWFaPihMExFvKKwHdwdOHOCX9b8wdv1YZm+fTaqTSv1y9bm+2fVc3+x6mlRs4lpthw7Z9c++/BLWrLGz0AYPtiFa584+PAsN7BS6zz+Ht9+GXbugeXN4+mk7jS4w0O3qipfj6+Dv6yF6NTR6DFq+Bv4l3K4q3wrrZ4uI+CiFaSLiRYXuuGXfdJg/DJKO2xlq9e7x8ZOMImj1anj9dRg9GgICYNgwG6q5NeUrnw4cgG+/tad8GzdC6dJwww02WGvTxr1/RscTjjN+w3hGrhnJzG0zSU5Npk6ZOgxuMpjBTQbTrlq7QhmsFbrPFhEpFBSm5YPCNBHxhsJ0cLcvdl9GgPbXjr9IdVJpWL4hQ5oMYUjTITSv1Ny1A+zkZNtO/6uv4Ndf7dft29uJXNdd5+NroQEcPgwjRsD//gdHj0LXrjZE69tXJ+YFzUmFjR/AiqchIAw6fQPV+rpd1TkrTJ8tIlIIKEwTES8qlMctJw/Agltg3zSofiW0/xRCfHd2VJG1eTO88449EUxIgCuusB09unb16fMox4G5c22oNmaMLb1VK7j1Vhg61Hb3d8uR+CNMiJrA2HVj+X3r7ySnJhMRHsHgxoMZ0nQI7au3x8/4uVfgOSiUny0i4vMUpuWDwjQR8QZfP7jbE7OHn9f/zNh1Y5m7cy4ODk0qNsk4kG5asamrI9TWr7fnTd99B/v325OOm2+G226Dpk1dKyv/1q2D//7X/gAJCXZV6qeftgu5ScGL22HXRjswC6r2tQvMh1R1u6rz4uufLSJSyChMExEvKrTHLU4qRL0HK56FwDBo9xFEDHG7quLp0CH46CM7QPHQIWjb1oZq11xjZ675sOho2+H/iy9g6VJbbt++dn21K66AEi42xzh28hgToyby07qfmL5lOkmpSdQoXYPBje2MtU41O/l0sFZoP1tExKcpTMsHhWki4g2+eHAXdTiK8RvGMz5qPAt2LwCgWaVmGQGamy0cwZ4bjR5tWzkuXAj+/tC/v52F1q9fIeiG6DgwbRq8+65tnh8cbBPARx6xi7pJwXMc2PoVLH0EcKDNu1D3dp8ezXo2vvjZIiKFmMI0EfGiQn/ccnw9zL8Fji6GWtdD2w+gRDm3qyqeTp60AxXfftv2UaxVCx591J4slirldnVntXYtfPONPdfdtw/KlYPrr7fBWrt27p6eRCdE82vUr4xdP5apm6eSmJJI1bCqDGw4kKsaX0X32t0J8g9yr8BcFPrPFhHxSQrT8kFhmoh4gy8c3KU6qSzZu4TxG8YzbsM4NhzeAMBFVS9iUKNBDG4ymEYVGrla48mTdrHm77+HqVNtG8cWLWwGddNNPr3edKb4eHti9957dkpd1apw//12MbcKFdyurvg6uQ8W3gV7J0GlbtDxKwir43ZVF8wXPltEpAhRmCYiXlQkjltSk2HdG7D6JQiuCO0/h+r93K6q+EpNhUmT4K23YM4cG6Tddhs88ADUr+92dWeVnAwzZ9pgbdw428SkUSO7NNzNN0ONGu7WF3Mqhl+jfmXchnFM2TyF+KR4SpcoTf/6/RnUaBB96/WlVAn3w8si8dkiIj5HYVo+KEwTEW9w6+AuMSWR2dtnM37DeCZETWBv7F78jT/da3dnUKNBDGg4gIjwiAKvK6uUFPjzTxugjR0LsbFQvTrceKPdWrRwtbz8270bPvwQPvnErofWpo0dHXnttRDkWyP3ihXHge3f29loKfHQ8g1o+CD4cJuSc6ETRxHxKIVpIuJFReq45ehymD8Mjq+ByNug9Vuapea2RYvs2tSjR0NSEvTpAw89BJdfDn6+f+x//Dj89JMN1ubOtbPTunWDG26wXSzLufzP62TSSWZum8n4DeOZGDWRQ/GHCPIPondkbwY1HMSVDa+kSpg7o1+L1GeLiPgMhWn5oDBNRLyhIA/uohOimbZ5GhM3TuS3jb9x/NRxQgND6VuvL4MaDaJf/X6UC3H3SNxxYNUq+OEH+PFH2LPHDiIcPNjOQOvWzbZ19HmpqXYo4Ycf2il1jgODBtkQrUuXQt0+sEg4sRUW3QP7f4fyHe1stHB3Z196mk4cRcSjFKaJiBcVueOWlFN2htr6N6FEeWjzHtS6TucAbtu/Hz79FD7+2PZQrF/fdgq59VYID3e7unzZssUONh05EqKi7BIHffrA0KEwYACULOlufSmpKczbNS9j2Yitx7ZiMHSq2YmBDQdyZYMraVShUYGtu17kPltExCcoTMsHhWki4g3ePLhzHIeNRzYyaeMkJm2axJwdc0hxUqgQWoEBDQYwqNEgekf2JiQwxCv7Pxfr1tmBgqNH25OC9EWXb7oJrrwSQtwvMX+OHYOvv7aLX2/aZNs33nGHbeVYu7bb1UlqMmx4F1a/ACYAWr0O9e8tMrPRstKJo4h4lMI0EfGiInvccmwlLLzTrqVWrR+0+xBK1nK7KklMhF9+sbPV5s2DsDDbP/Gee6B5c7eryxfHgeXLbag2cqQdhBoaasdvDh0Kl13mfhMUx3FYc3BNRrC2bN8yACLLRnJF/Su4osEVdK3VlRIBJbxWQ5H9bBERVylMyweFaSLiDZ4+uEtMSeSvHX/x28bfmLRpEpuPbgagReUWGQes7au3x9/P/eldmzZlBmhr1tiBmt27w3XXwdVXQ8WKbld4DpYutbPQRo60C7xdfDHcd5+dUlfCeycHcg6OLrUXM44thxoDoe0ICHV5sQEv0omjiHiUwjQR8aIifdySmgIb/wer/mG/bvEKNHgQfOB8TLDncf/7H4waBadOQadOcNddtiV/aKjb1eVLaqpdFm7kSNsO8uhR2/px8GD7Y3TrZgerum3X8V1M3jSZSZsmMWPrDBKSEwgLCuOyupfRv35/+tXv5/F2kEX6s0VEXKMwLR8UpomIN3ji4O7AiQNM2TyFSRsnMX3LdGITYynhX4Jekb24ov4V9G/Q3/X1z9Jt2wZjxtgAbfly+1iXLjZAGzwYqrjTSv38xMTYH+Szz2DxYnuyddNNcO+90KqV29VJusRoWPUv2PQBBFe2IVqNq4p8mx2dOIqIRylMExEvKhbHLXE7YPF9sHcylLvIHpNW6Oh2VZLuyBH49lu7znVUFJQpAzffbDuMNG3qdnX5lpgI06fbYG38eIiPt81SrrrKnm/36GFbQ7otPimeP7b9kdFFZ3fMbgDaVWvHFQ3sIOBWVVrhd4EdRIrFZ4uIFDiFafmgME1EvOF8Du6SUpKYv3s+UzdPZdqWaRntEqqVqpYx+6xnnZ6UDHK5YXqajRth3Dj4+WebOQG0b28DtCFDoGZNd+s7J45jW4F88YUN0uLjoUkT2xJk2LBC02u/WHBSYevXsOIZSDwC9e6Glq9BUBm3KysQOnEUEY9SmCYiXlRsjlscB3aOgWWPwcm9EHkbtHwdQiq7XZmkcxz46y8bqv38s02nLr7YhmpDhhSi9QfsqerUqXa22qRJcOKEnbE2aJD9UXr2dL8VJNh2kKsOrMoI1hbuXoiDQ6WSlbi87uX0qdeHSyMvpWLJc29dU2w+W0SkQClMyweFaSLiDfk9uNsevZ1pm6cxdctUZm6dSWxiLP7Gn4trXkyfen3oU68Prau0LrCFfM/EcWDlShug/fKLbeEI0K4dXHONbTVRp467NZ6zgwftSMUvvoANG2xf/euvh9tvhw4divwsp0LnyGJY8gAcWQQVO9uRv2VbuV1VgdKJo4h4lMI0EfGiYnfckhQLa16BqHfBPwSavwwN7gc/H+jFJ5kOH4ZvvoFPP7UjRMPD7TngrbcWunPAkydh2jQYOxYmToTYWDv5btAgO2OtVy8IDna7Sutg3MGMgcPTNk/jyMkjGAwXVbsoI1zrWKMjAfn4/6XYfbaISIFQmJYPCtNExBvyOriLT4rnz+1/Mm3LNKZunkrUEfv5ExEeQZ+6NjzrWacn4cG+MRMqNRUWLLDh2S+/2HaOfn5wySV2/bNBgyDCNzpN5l9Skj3j+Oore8aRnGxHJd5+u00Ew8LcrlBySjgIK5+HLV/Ylo6t/w9q31ioTnQ9RSeOIuJRCtNExIuK7XFLTBQsfRj2TYPwZtD2fajcw+2qJCfHgdmz7Xnh2LE2mWrUyIZqN98M1aq5XeE5SUiA33+3P8qECXD8uD217dPHnrf36wdly7pdpZWSmsKyfcsyrovM3z2fVCeV8BLh9IrsRZ+6fbi83uV5LmtRbD9bRMSrFKblg8I0EfGG9IO75NRklu5dysxtM5mxdQZ/7/qbxJREggOC6V67e8YIrIblG/rE7DOwB+GzZsGvv9qD8H37bP/1Sy+1AdqAAVDx3DsxuMtx7CLU331nG80fOmR/iGHDbIjWuLHbFUpukuNhw7uw7j+QchIaPgzN/wWBpd2uzDU6cRQRj1KYJiJeVKyPWxwH9kyEpY9A3HaofiW0egPCm7hdmeQmJsb2Tfz6a5g7144gvfxyG6wNGOA707vy6dQpe04/YYLd9u+HgADo2tUGawMH+tag2OiEaGZuncnUzVOZumVqxlprDco3oHed3vSO7E332t0pG2LTwGL92SIiXqMwLR8UpomIJzmOw4bDG/h4+sfs8N/B7O2zOX7qOAAtK7ekV51eXFb3MrrW6kpIoO/0Zd+/H377zQZov/9u+7CXLGlHsV1zjR3FViiXDdu5E374wbZy3LDBNo8fMMCONOzTxzeaycvpUlNg27ew6p9wcg/UGGQvPpRu6HZlrtOJo4h4lMI0EfEiHbcAySdh4/uw9jVIPgF174DmL0FIFbcrk7xs2mTbQH7zDezebadzDRkCN9xgW7T4+bld4TlJTbVrnI8fb4O19evt461b21Bt4EBo2dJ3mn44jsP6w+uZunkqM7fN5M/tfxKXFIef8eOiqhfRq04vKsRW4P4r7yc4oHCFnCLi2xSm5YPCNBG5UHti9jBz28yM2Wd7Y/cCULtM7YxRVD3q9KBSyUouV5opff2zSZNsgLZokX08IgKuvNJu3btDiRKulnl+jh+3PSm/+8627XAc6NLFBmhDhvhObwvJ3d5psOIpiF4F5TvYlo6VLnG7Kp+hi1Ii4lEK00TEi3TckkXCYVjzb9j0IfiXgMZPQqPHIVAt5n1WSgr88YedrTZ+PMTFQY0aMHSoDdZ8KYE6Bxs32lBt/HiYP9+eLteoYQfQ9utn11nzpZUPElMSWbRnETO2zmDG1hks3LOQ5NRkSviXoEtEF3rV6UXvyN60qdoGfz9/t8sVkUJMYVo+KEwTkXO1O2Y3f27/kz93/Mns7bPZdHQTABVCK9CzTk961+lNyYMluaHvDS5Xmt2JE7bVw9SpNkTbtcs+3r69nax15ZXQvHmhPB+wP9yvv8KoUfYHTEyEevVsgHbTTRAZ6XaFcjaH5tmZaAdmQVgktHwdIoYU0n+Q3qOLUiLiUQrTRMSLdNySi9jNsOJZ2DXWrgXc9Dmodxf4a4aNT4uLs+ebP/xgzzeTk+1SATfcYMO1unXdrvC8HDhgrw1MngzTp9vT6qAgO7C2Xz/o39+eVvuS2FOxjJg0gkNhh5ixdQarD64GILxEOJfUuoRutbrRvXZ3WlVpRYBfgMvVikhhojAtHxSmicjZ7Dq+i9nbZ2eEZ1uObQHswVrXWl3pVqsbvSJ70aJyC/yMbfngCyeOjgNr1thj/alTYc4cSEqy7Rt797bhWf/+UKWwdhiJj7dH/aNH2x6VJ09C9ep29tl110GHDgpiCoMji2HVv2DfVAiuBE2eg/r32BG7chpf+GwRkSJEYZqIeJGOW87g0HxY+RwcnA2hNaDp8xA5HPzVht7nHTkCY8faYG3OHPtY+/Zw7bUweDDUquVufecpMdEuF/fbb3ZLv1Rav769btCvn+1y6QvLx2X9bDlw4gCzts1i9vbZzN4xm41HNgJQKqhUtnCtTdU2CtdE5IwUpuWDwjQRycpxHLZHb2fOzjkZAdrWY1sBKBNchq61utK9Vne61+5Oi8ot8mwj4NaJY3S0XfMsPUDbaztO0ry5XSKsTx/o3LmQtm8EG5hNn24DtIkT7QjBSpUyA7TOnQtdD/ti69gKWPWCXZi9RHlo/BQ0uB8CSrpdmU/TRSkR8SiFaSLiRTpuyYf9s2x3hsPzoGQtaPZPqDMM/ALdrkzyY+dO2x1l5EhYscI+1q6dDdUGDy7UHVK2bLFjV3/7za6ecOoUhIRA165w2WV2a9rUnfGrZ/ps2Re7L2Mg9J87/mTD4Q0AhAWF0SWiC91qdaNbrW5cVO0ighRei0gWCtPyQWGaSPGWnJrMqgOrmLtzbsa278Q+AMoGl6Vb7W4ZI5maV2qe7x7cBXXimJgICxbAjBkwcyYsXGhbu4eHw6WX2vDs8sttD/RC6/hxewT/yy82IYyLg3Ll7MnJdddBt27gr97ohcbRpXYB9l2/QGAZaPw4NHwYAku5XVmhoItSIuJRCtNExIt03JJPjgP7ptlQ7egSCKsLTZ6BOjerW0NhsmUL/Pwz/PQTLFliH2vTJjNYq1/f3fouQFycXT7u99/t2NYNNp+iatXMYK13bzvOtSCcy2fL/hP7+WvHX3bm2vbZrD+8HoDggGDaV29P55qd6RLRhU41OlE2ROurixRnCtPyQWGaSPFyIvEEC3cvtMHZrrks2L2AE4knAIgIj8g4kOoS0YVmlZpltG08V946cUxNhdWrbXg2Ywb89ZftdujnB23b2gCtb1/b4TCgMHcwOHDAroo8bpxNCZOSbD/KQYPgqqugRw8I1GjNQsNxbAubta/D/t8hMNwGaI0ehaAybldXqOiilIh4lMI0EfEiHbecI8eBPZNg9YtwbBmEVIdGj9k11QLD3K5OzsX27TZYGzvWjn4F2y5m4EC7YPlFFxXqjio7d2YGazNmwNGj9vHWre01iV69bNOYkl5qOnIhny0HThzg711/ZwymXr5/OcmpyRgMTSs1pUvNLhnXhCLCIzBaOkKk2FCYlg8K00SKLsdx2Ba9jQW7F7Bg9wLm7ZrHiv0rSHFSMBhaVG5Bl4gudK7Zmc4RnYkIj/DYvj114ug49jh85kx7kDprFhw6ZJ9r2NCO/urd2y4QXKbMBe/OPY4DGzfa1Y/Hj4e//7aP1a1rw7OrroKOHQv1CUex5KTCnl9tiHZkoV1kvdFjdk20wNJuV1co6aKUiHiUwjQR8SIdt5wnx7ED0Na+bgekBZWDBg9Cwwdte3QpXHbutF1Wxo+3a6ylpkK1anYR84ED7UBRX1iI7DylpMCyZTZYmz4d5s2D5GQ79rV9e+jZ0/6InTp57sf05GdLXGIci/YsyhhwPX/XfGITYwGoXqo6nSM606lGJzrW6EjrKq0pEaDZoiJFlcK0fFCYJlJ0xJ6KZfHexRnh2YLdCzgUb5On0MBQ2ldvT5eaXTIOhsKDw71Wy/ke3DkObN4Mf/6Zue3aZZ+rWtUGZ7162a1Qt24E26Pyr79sgDZpkm2LAdCiBVx9tQ3Qmjd3pwm7XJjkeNj+PWz4L8Ssh5J1oMlTEHkr+BfeE0VfoItSIuJRCtNExIt03OIBh+bDutftALWAkhB5GzR4CEoX3paBxdqRI3YhsgkTMpcwCAuzazMMGAD9+kGFCm5XeUFOnLBjY2fNsq0hly61+WGJEnDxxTZY69nTLi0XdJ5LlnnzsyUlNYXVB1czd+dc/t71N3/v/JtdMfaiTJB/EK2rtKZjjY50qN6BjjU6UrtMbc1eEykiFKblg8I0kcIpJTWF9YfXs2jPoozgbM3BNTjYz7NGFRrRsUZHOlbvSMcaHWlaqSkBfgXX9zC/B3eOA1FR2cOzvXvtc5Uq2eXAunWzB5yNGxeBXOnAAXvyMGmS7QsRG2uPqnv1giuugP79IcJzMwSlgMXvgY0fwOZPIPEolG0NjR6HWtdBAf7/V5TpopSIeJTCNBHxIh23eFD0alj3f7BzFKQmQ/UroOEjULlHEThJLKYSEmzaNGECTJwI+/bZ/5bt2tm1G/r2tWs5FPL1wY8ft2No//jDbitX2usgoaF2ttoll9itY0f7WH4U9GfL3ti9LNy90F572rOAxXsWczL5JACVSlbKdu3pomoXUbqEurCIFEYK0/JBYZqI70t1Utl8dDNL9i5h8Z7FLNm3hGX7lhGfFA9A2eCy9uAlbWtXrZ3rC8fmdXCXlAQrVtiRWn//bbs8HDhgn6taNTM8697dtnEs9OdFiYm2z8P06TBtmu3/AFC9emZ41rOn95qpi/c5DhxZDFHvwc4x4KRAjUHQ6BGoeEkR+EfsW3RRSkQ8SmGaiHiRjlu84OQ+2PQxbPoITh2CMs1tqFZrKASEuF2dnK/UVHuuPHkyTJkCCxfa86wKFeystb597W0hn7UGdnLen3/aYG3OHFi1yv6oAQF2Kbn0cK1LFyhXLvf3cPuzJTk1mTUH12TrihR1JPPacsPyDWlbrS3tqrWjbbW2tKrSipJBuuYh4usUpuWDwjQR3+I4Dtujt7Nk7xIbnu1dzNJ9S4k5FQNASEAIrau2zjgoaVetHQ3KN/C5afXpB3fR0TB/fmZ4tmgRxNsMkIgIe5CYHp7Vq1cEcof0PpXTptntjz9s64qAADvs7LLLbIjWsmUR+GGLuaRY2DHSnswfWw4BpaDuHdDwAQiLdLu6IsvtE0cRKWIUpomIF+m4xYtSEmD7SIj6L0SvgqCyUOcWqHc3hDdyuzq5UEeO2AGpU6bYdpCHDmXOWrv0Urv+Q6dOtstLIRcdbcffzpljt8WL7ZhcgKZN7TWTiy+2P27duvbX4IufLUdPHmXRnkUZ17KW7F3Cntg9APgZP5pWbErbam0ztpaVW2r9NREfozAtHxSmibgnKSWJDYc3sGL/CrsdsLdHTx4FbD/qlpVbZhxstKvWjsYVGxdou8ZzkZoKGzfaQWRjx+5l27ZqrFtn8yV/f2jVCjp3ttvFFxeBNc/SHTxoQ7NZs+wB//bt9vHISDt67vLLbZ/K0mp1UCQcWwGbPrFroiWfsKNh690DdW6CQP039jZfPHEUkUJMYZqIeJGOWwqA48DBP+0At92/QGoSVOpmQ7WaV4O/LtYXellnrU2bZi84pKRASAh07WqXTOjd2w5Y9fNzu9oLlpBgByGnh2vz5tnVIQAqVrTtICtX3sqNN0bSrp1vN7nZF7sv20DxxXsXczj+MACBfoE0qdiEVlVaZWwtK7d0vcuSSHGmMC0fFKaJFIzjCcdZdWBVtuBszcE1JKbYIUfBAcE0r9SclpVbclG1i2hXrR3NKjXz6ZE6hw7Z49j0bfFiO6oKoGTJZLp0CcgIz9q3t+sKFwlHj9q+DOkrCq9dax8vVcq2bLzsMhug1a3rbp3iOYnHYMdo2PoVHFkE/sEQcZ09Sa/QUbMMC5AuSomIRylMExEv0nFLAUs4aI/XN38KJ7ZCiQpQZ5idsVa2hdvViafExNjz8Rkz7LZunX28fHkbrPXsadvfFIl1I2xuuG6d7fiTvqVfxvX3h+bN7ay1Tp3sxL0GDXw3U3Qch10xu+zyJXuXZAwo339if8ZraoXXyhawtarSilrhtXyuG5NIUaQwLR8Upol4luM47I7Zfdpss63Htma8pkJoBVpXaZ3t4KBB+QY+O+MMbKfCFSvsCKmFC+3ttm32OT8/ewDXoUPmtn//bHr16u5myZ5z9KjtUTl7tg3PVqzIXDG4Sxc766xnT2jTxrZzlKIhNRn2TYdt38DuCZB6CsKbQt07IXKYbSUjBU4XpUTEoxSmiYgX6bjFJU4q7J8Bmz+BPb/a2WplW9lQrfYNEFzJ7QrFk/butQNdZ8yA33+3XwNUrmxnrqUvzN6kie+mTOdo4sS5BAZ2yQjXFi7MnL1WqpS9NNG2beaW3h7SV+0/sZ+V+1dmu4YWdTgKB3tMFl4i/LSArUnFJgT5B7lcuUjRojAtHxSmiZy/I/FHWHtoLWsPrrW3h9ay6sCqjDaNBkO9cvVO+6NfNayqT4+qiY62edGyZZnbhg02PwKoWTN7cNamzemtBQr1iePOnbafwty59jZ95lmJEna4V8+eNkBr3x6CdPBWpDiOXf9s+4+w/QdI2A8lykOtGyDyFijbxrfPQoqBQv3ZIiK+R2GaiHiRjlt8QMJh2DHKDpA7ugRMAFTrC3Vuhmr9ISDU7QrFkxwHNm2yM9fSt9277XPly2eGa1262LaQhXQwbM7PlpQUWL8elizJ3FasgFOn7PPh4XDRRdkDttq1ffvUNi4xjjUH17Bi/wpWHliZcRufFA/YNpGNKzamWaVmNK3Y1G6VmlKnTB38/fxdrl6kcFKYlg8K00TO7tjJY6eFZmsPruVA3IGM15QKKkXTSk1pXql5xqyz5pWbExbk270NDx3KDMyWL7e3W7ZkPl+jhg3L2rSB1q1t24CqVc/+voXmxDElxYZl6Sv+zp1rwzSwQ7o6d7YH2pdcYn/4kBB36xXviF5rT7J3jobYTfYku/oVdvRqtX6gEW8+o9B8tohI4aAwTUS8SMctPub4Otj6jV37+OReCCgJ1QdCreug6uVaX60ochzbUidruJa+xnloqB0dfPHF9ry/Y0coWzi6j+TnsyUpyV7qWLIEli61tytX2scBypXLHrC1amUDNl+evJeSmsKWY1syO0HtX8HaQ2vZeXxnxmuCA4JpXKExTSs1zRay1S5TGz/jwz+ciA9QmJYPCtNEMh1POM66Q+uyBWdrDq5h34l9Ga8JCwqjScUm2f4oN63YlBqla/j0bLPUVNixA1avzgzNli3LHKQFEBmZGZylh2eVzrMDhs+eOB44AAsWZG6LF9selgBVqtjQ7JJLbIDWooVtQi5F0/ENsGusDdGOrwXjB5V6QK3roeZVdkaa+Byf/WwRkcJJYZqIeJGOW3xUagoc+ittMN1YSDwKgeH2HCDiWqjcU8FaUbZrl13GYd48u61YYQfZgm0F2bmz7UjTvj00auST1wTO97Pl1ClYsyb7DLbVqzN//LAwu4RHy5b2ckjLltCsGZQu7dn6PS32VOxp1/LWHlrL7pjMC16hgaG5XsuLCI/w6Wt5IgVJYVo+KEyT4iY5NZltx7ax8chGoo5EZbvdG7s343WhgaHZRrOkTx2vGV7T50ezHDxoD5BWr7bbmjV2RNKJE/Z5Y+xavFmDs1atPDsIyydOHE+csMnh0qW2ifiCBZmj0AICbFrYoYMdgdaxo00TdRBVdDmpcGQR7B5vt5i0v30Vu6QFaIMhpLKbFUo++MRni4gUHQrTRMSLdNxSCKQmwf6ZNljbPQ6SYiCglO1OUfMq2xIy0MeTBLkwcXF2Ufj0cG3ePLv2Bdj1LNq0sV1q0jcfuG7gyc+Wkydh1ars28qVcPx45mvq1MkM2NJDtshI357FBpkD5tccXJOty1TWAfMlA0vSoHwDGlZoSINyDTLvl29A6RL6f1+Kl/yGaYWzQa6I5MlxHA7GHcwMyw5HsfGovd1ybAvJqckZry0fUp4G5RtwWd3LaFi+YaGaAn7ihA3J0gOz9NuDBzNfU768HVl02232tlkzexvm290nz11MTGZwtnSpnXYXFZV9obeOHeHBB+1t69Zq2VgcJMfBgdl24fHdE+waaCYAKneHBg9BjQEQWsPtKkVERERExA1+gVCtj91SPob9s2yotmeibQHvFwiVe0GNgTZgKxnhdsXiaSVL2jXRe/SwX6em2msJS5bYTjaLF8MHH2QuQFa2rO2L2K5d5m316q4HbOcrJMSOMe7QIfMxx7ET+NKDtfSQbeJE++sB+2tr3tyGa02aQOPGdqtRw3d+FeHB4XSq2YlONTtlezzrUi7rD68n6kgUi/YsYszaMaQ6qRmvqxJWxYZr5Rtmu40sG0mgf2BB/zgiPkNhmkgh5DgOh+MPs+XYFrYe28qWo1uyzTSLORWT8doS/iWoX74+TSs15erGV2f7I1g+1PdbuR0+bI/lNmzIvF2zxrb+ThcaCk2bwhVXZAZmzZpB5cq+cyDjMdHR2YOzpUvtIsPpqle3zb+HDrWjyC66KH8LvUnh5zi2ZeO+abBvKhz8C1IT7XoIVftAjaugej8IKhy98EVEREREpID4B9tzher9IPVjOLLAdrTYNQ4W32tfE97Uzlar1g8qdNbaykWRn19mMnTzzfax9AXI0sO1xYvhP//J7I9YpUrmwmPpU7fq1vXJFpH5YQxERNjtiisyH4+Ph3Xrss9gGzsWjh7NfE2pUrY7ZvqvMH2LjLQNgnxB2ZCydInoQpeILtkeP5V8ii3HttgB+Vm6WI3bMI7D8YczXudv/IksG5kxm61++frULVuXyLKRRIRHKGiTIk9tHtXmUXxUYkoiO6J32LAsLTTLev9E4olsr48IjzhtxEjDCg2pWbom/n6+fRCTlGTDsayBWfr9I0cyXxcUBPXr2+As60yzOnV8a4q9R9oOJCfbkCzr1LvVq2HLlszXRETYsCw9NGvTxiaIUnwkRsP+GTY82zsVTu6xj4c3sQFa1T5Q6RJ7ciyFntoliYhHqc2jiHiRjluKCMeBmA2wdwrsmwIH/7TtIQPCoEpvO3OtSk8o3bgIjmSVPJ08adOkxYszFyCLisoM2EJD7QWbli2z90gMD7/gXfvSZ4vjwKFDsH69DdrWr8/c9uzJfF1QEDRocHrIVr++/VX5uqMnj7LxyMaMLT1o23hkIwnJCRmv8zf+RIRHEFk2ksiykRkhW2TZSOqWq0uZ4DLu/RAiZ6E2jyI+znEcDsUfygjMcoZmu2J2ZZtiHRwQnPFHqHut7tQtl/lHqU6ZOoQE+nbbvtRU2LfPZkFbtmSfbbZ5s82O0lWubEfzXHONvW3Y0N7WqlVoBzflzXFg9+7si7ytXm2PvhIT7Wv8/OyRV5s2cPvtNjhr3RoqVnS3dil4STFw6G97EnvgTzi6GJwUu5ZBlUvTArTLoWRNtysVEREREZHCzhgIb2y3xo9BUiwcmJUWrk21s9cAgitD5R5QuafdwtxfW0u8KCQkc/31dAkJNlFK7424ciX8/DN89lnma2rXzpy9lt4jsV49mzYVQsZApUp269Yt+3MxMfaaV9aQbfly+ytJzbzUR/Xq9ldQv769Tb9ft65tJ+kLyoWUo2ONjnSs0THb46lOKntj92Z0zNp6bCtbo+398RvGcyj+ULbXlw0umxGsRZaJzLymWbYONUrXIEizXaUQUJgm4iWnkk+xO2Y3O47vYOfxnew8vpMd0TvYGWNvd8XsyjaCA6ByycpElo3kklqXZPxhSQ/NqoRV8fl1zE6dgu3bMwOzrNu2bfbYKl1goD1IaNwYrroqMzBr2BDKlHHrJ/CilBTYscOmh1n7Va5Zk3112xo17HS7yy6zt82b219MsGYWFUuJx+DgXBueHfwTji0DJ9WufVa+HTR5Gqr2hQod7JoGIiIiIiIi3hJYyq6hVmOg/frENhuu7Z8FB/+AHaPs46E104K1HlCxi8K14iA42A4AbtMm8zHHgb17bbCWNWSbNCkzUfL3z7w4lHVr1KhQL3hfujS0b2+3rBISbBOi9evt7ebN9vbXX+HAgeyvrVYt76DNF341fsaPGqVrUKN0DbrW6nra87GnYjMmDGSdQLB833LGrR9HUmpSxmsNhiphVahVphYR4RHUCre3We+XCS6D0eeIuExtHtXmUc5DqpPK4fjD7InZkxGU7Ty+M1twtu/EvtO+r2pYVfuHoEwtIkpHZPxhSB+NUTLIR4ad5MFx7B/3nTttLpQzMNu1y74mXWio/SOf21arlu/0jPao48dZ+uOPXBQWln363aZNmYv2gl24t1mzzF6VzZvb/pVltZ5VseU4cGILHF4IRxbaNc+iVwEO+AVBhY5QsStU7gYVOtm10KRY8aWWJiJSBKjNo4h4kY5biiHHgZgoG64dmAUHZ8OptHUbgitB+Y72PKbixVCuLQQUgv524h0nT2bviZi+bdqUvW1RzZqnhWzzDh3i4quvLpLhbEyMvbaWHrBlvd2/P/trK1WyE/1y22rV8v32kSmpKeyO2c2WY1vsxINcrqueSjmV7XvCgsIygrVsYVuZWlQvVZ1qpapRIqCESz+RFHb5bfOoME1hmuQQnxTPnpg97Indw56YPeyN3Wvvp329J3YP+2L3ZRtBAbYNY16jJyLCI6hRuobPf6gnJtqOgzt22C09NEu/v3Nn9jwI7B/w3MKyyEjbrrEIHt/YmWRbt9ota9/KqKjsRzj+/vYXkT7lLuv0uwoViugvR/It4RAcWWyDsyOL7JaYtnqxf6gNzyp1s1uFDlr3THRRSkQ8S2GaiHiRjlsEJxWi18Dh+XB4nr2N3WSfMwFQtqUN1yp0gnLtoFRd8PFuPOJlSUk2OcoZsm3YAPHxma8LDbXTtOrWzZyylb7VqGGXyihiYmPtpaf0cG37drtt22av2aWvEpKucuW8w7aaNX2nhWReHMfhYNzBXEO29PuH4w+f9n0VQitQrVQ1qpeqbrfSmbfpj1cIraAZbnIahWn5oDCteDmReIL9J/Zz4MQBext3IDMoSwvJ9sbuJToh+rTvLRVUKtsHb9YP5JrhNYkIj6BiaEWf/jBOSrI5z5492besgdm+fdlnlgFUrWpHtURE2Nv0LSIC6tSBUqXc+Xm8KiXF/nLSw7KswdnWrXDkSPbXly9v1zRLC8rWJCXRbPBgG6QV0t7f4mEn98OxFRC90t4eWQQnttrnjB+EN4XyHaB8e3sb3gT8iuLUTbkQuiglIh6lME1EvEjHLZKrhMNwZIEN1g7Ns+dFKWkhSUApKNcayraGsm3s/dKNdV4ktiXkrl2wYQMbJ0+mgZ+fTZQ2b7bXaLImSSVK2Gsx6eFa3brZp2z5Qn9ED0tNtdf70gO2rFt62JaUfT4AZcva3DHnVrNm5n1fv94XnxSfsaROzuu76fcPxh3EIfvxbZB/UMb13YzrvKWrUyWsCpVLVqZKWBWqhFWhfGh5n19uRzwnv2Ga/iJJoXYy6SQH4g6cFpLtP7E/2/0DJw4QlxR32vf7G3+qhFWheunqNCzfkJ61e2YPzdICs1IlfPcviOPYiVJ79thW1DnDsvTtwIHTg7LAQPuHslYtu0RX1qCsVi37XAnfnkx3fhIS7IFY+nS7rFt6spj1YCwgwP5CIiNh8ODMqXd169pEMTw829sfnj3bBmtS/KQm2dYmx1ZC9Iq025WQcDDzNaERdr2zevfY8KzcRRBY9A7oRUREREREsgmuANWvsBtAajJEr7ZrQx9dBseWw+ZPIeWkfd4/GMKbQ7k2diZbeFO7lSjv3s8gBc/PL+OC1d4SJWiQNahPHwydHq5l3WbMsC0lsypfPvPiV3rAlvV+mTKFrouQn59dX61aNbj44tOfT021g+fTA7Zdu2xXqvRt2bLT12sDu+5bzpCtalW7ValibytXdm8MeWhgKI0qNKJRhbyvvyWlJLH/xP7sQVvMHvae2MuemD2sPLCSyZsm53nNuFLJSlQOywzY0sO2jNu058oGl/XpCRbiOQrTxGc4jsOJxBMcij/E4fjDHIo7lO3+4fjDHIrPfOxg3EFiTsXk+l7lQ8pnfNB1rNGRKiUzP+CyfuBVDK2Iv59/Af+k+XPypB1ZcuBA7rdZ72ed7Z6uXDmoXt1urVpl3s+6lS9fBGe/nzqVfQpeemiWNTw7ePD076ta1aaIrVrB1VfbsCw9MKtZs4gu8CbnLfkkxG6E4+shJn3bYIO01LQg1i/InuhV6w9lWtqTvzItoEQ5d2sXERERERHxBX4BdgZaudZQ93b7WGoKxEbB0eU2ZDu2HHaMgs2fZH5fcGXbzSM9XMsI2XSuVez4+9trORER0LNn9uccx6ZI6YOmt2/PvN2wAaZNO/2CWunSNlSrUSP7BbSsX5crV6gCNz+/zNI7d879NadO2QH6WUO2rKHb6tX2UltuDe7Klz89ZMvtfqlSBf9rC/QPpGZ4TWqG18zzNY7jEHMqhgNxB06bqHHgxAH2x9kJG2sPrmX/if2nLfsDEOgXSKWSlahYsiIVQytSIbQCFUMrUrFk5v0KoRUyni8XUs5nr0fLmenqsHhFUkoSxxKOcfTkUY6dTLvN8vWRk0cywrGsYVnOxSXTBfkHZfsQqlOmDhVDK2aODMgSlFUqWYlA/8AC/onPLikJDh+226FDp98eOJA9MIvJPSekfHk78qNKFejQwd7PGZJVqwYhIQX783ldcrL9xezde+bt8Ok9kylZMnPKXZs29rZmzcwDrurVi+gUPLkgqckQvwtObIHYLba/f8x6G6DFbYeMVgEGwiKhdCOoenlacNYKSjcEP9/7LBIREREREfFZfv5pQVkTqHOjfcxxIH43HF+bfdv6NSSfyPze4MpQqj6Uqpd2m7aF1VM3kOLImMwpW506nf6849hrSFmDtvT7e/bYKVsHD56eIAUH5x6yVamSuVWubLsYFZLQrUQJ23ipTp28X5OUlHndct8+u+W8HxVlb3Ou4Qb211axIlSqlP02t8cqVSq4dd2MMYQHhxMeHE6D8g3O+FrHcYhOiD69M9qJAxyIO5BxrXvrsa0cjj/M8VPHc98nhnIh5bIFbBVCK1AhtAJlg8tSLqQcZUPSbtO+LhdSjtDAUM2Ac5nCNMlTejKfVyiW8VjC6c+dSDxxxvcuXaJ0RjhWo3QNWldpfVpKn/V+WFCYz3xYOI4duHLsmN2OHs28nzUgyxmWHc/98xOwvYrTA7I2bTL/7qbfpt+vVMm2Ziwy4uPtgcmBA7nfZr1/+PDpBzB+fvYXU62anZJ/8cWZB0rpW0REoZymLwXAcSDpOMTthLhtNjA7sSUzPIvbDk5y5uv9g6FUQ9uaMfIW27+/dCMo3cA+JyIiIiIiIp5nDJSsabdqfTIfdxw7ADI9XIvZYAdB7ptmg7asgqtkBm0la6dttSCsNoRU19psxZExmWlO2zyWSkpMtElR1nVUdu/OvL9ggf06t/SoRInMC3o5L/Sl31asCBUq2AuDPt46KjAws+3jmTiOvVaaNWjbt89eGz10yF7iO3QI1q2z9xMScn+fkJDMcK18eTshMP0265b1sTJlvNtYyhhD2ZCylA0pS+OKjc/6+sSURA7HH861A1vG/fhDbDyykb93/c3Rk0dJTk3O8/0C/QJzDdqyBm6nPRdSlrLBZX1y4klhpL8URdSp5FPEnIrh+KnjHE84nnE/5lRMtq+PJxwnJjEmz9fkXKQxqyD/oMz/UYPLEhEeQasqrU5L0HP+D1wmuAwBPnCQkpCQGYLlDMVyfp3zudz+RqYLCsr8W1yhgh3VUaFC5tc5b8uXLwIdBB0HYmPtL+rIkdy3nM8dPAgn8ghdS5e2fzErV4YGDeCSS+zXOYOySpXslH6R3DipELfDhmXxO+1JVtzOzK/jdkJybPbvCSwDperanvwRgyGsrv06rG7aCZb+vYmIiIiIiPgEY6BkhN2q9c3+XHIcxG624VrGthn2TYWT+3K8jz+E1rDhWnrIFlrTPhZaE8LqQEABTZMR3xIUlLmuWl4cx17nOtP6LNu3w8KFuc90AxuklSuXeaGwQoWzbz46880Y+yOULw9Nm575tY4DcXGnB205b48etcvgHT0K0dG5/wrThYfnHbylPx4envvm6euzQf5BVCtVjWqlquXr9elLIOWc2JKz49vRBPvY3ti9rDm4hmMJx/JcCildSEAI4cHhlC5RmvAS4dnuZ7sNDs92P+tzvjTZxS2F/RJ+keA4DvFJ8ZxIPJHnFpcUd8bnc4ZgebVLzCo4IPi0/1nqlayX7X+i8ODw0wKx9FAsJCCkwP8Hchzbxzcmxs70iok5fcvt8dweO1MgBvZDtGxZu6WvP5Z+P+vj6ffLlrV/y8LCfPJv2dmlpGT+sqKj7W1u96Ojcw/Kkk7vGZyhdOnMv6Tly0P9+plhWc7bihWLYI9KcUVqMkysC1kHBZSoAKERdkRi5V6ZJ14la9vATD32RURERERECr+Aknbd6rItT38uJQHidtluJHE7st8emAXxe8h2HtnuQ6h/b8HULYWPMZkB19nSo+Rk23kpPWQ7fNheV0tvcZW+bd0KixbZ+3ldb/P3z0yMypTJ3MqWzf51bo+Hh9ug0GXG2OuoYWFnbjGZVUqKvUSZPmb/6NHct/Tntm3LnCSRmnrm9w4NtZcw8wrb0recryldOvPnKFny/Mf9G2MoVaIUpUqUIiI84py+Nzk1meiE6Ozd5LKEcBm5QZZJNXtj92Y8HpsYe9Z9+Bk/SgWVyha4lSpRirCgMLsFhmXez7GVDCqZ6+O+MOHmXBSual2QnJrMyaSTnEw+SXxSPCeT0m5z+fpMz8UnxWcEZjmDsbjEuDPOAMvKYHL9x1g1rCoNyzfMMznOmTyXCipFiQDvrhGVmGgnHsXFee42JubMmU26wMDMD7P0rUaNzA+70qXtwpd5hWPeGI3guldesWuK5RWWxZ79Q5OQEPtHN/2PdcOG2UOy3LayZYtYb0opNPyDoNN3EFzJBmahNSEg1O2qRERERERExE3+wVC6vt1yk5pkZ6/F77JrtZW7qGDrk6IrICCz7WPLXILenBzHXhTNGbZl3Y4dyxz4vnlz5kD45LzbBQI2OcoatqVfQE2/cDp8ODRpcqE/scf5+2fOMqtXL//fl5pqrysfOZJ5KTR9TsGZtl27Mu/Hx+dvXyEhNlgrVSozZEvfcnss5+MlS9otNDTzNiTkzJM3AvwCMtZdOx+pTiqxp2Lz7G6X69enjnP05FF2Ht+ZLetITDnLDJYsSviXyDN8CwkIITQwlJCAEEICM++HBobm+nVezwX5B3lsQlChiQuMMX2A9wB/4HPHcd7I8bxJe74fEA/c6jjOsjO9596Te+nzfZ8zBmVJqflIbnIR5B+U63/gUkGlqBBawaaxZ0hrz/SPqDBMp1y6NO92w7nx88v8sMh6W66cXfIq/UMkZ0CW9TM+61aiRCGdHeZN33xj/8CGh2eOQqlXL/N+1sfzuu8Do1ZEzkn6gtUiIiIiIiIi+eEXmNnFRMRNxtiUpVSp/E/dgrT1BOMzg7X0wC3rlvOx9Blx6S29LrvMJ8O08+Xnl5kbnq+kJDsXIWfgFhtrM8+8tvTv2bMn++Onzt5YLsNdd8Enn5x/7WfjZ/zsjLPgcGpS84LeKzElkbjEuHx33MutQ9+R40dyzWryOyEpK4M5axiXX4UiTDPG+AMfAJcCu4HFxpiJjuOsy/KyvkD9tK0D8FHabZ4SnUSOnjxKaGAoFUIrZP+FniHlzE8K6l/M19WpWdNOhMoZjuV1q/CrAGzcqF+yiIiIiIiIiIhIUWZM5syE6tXdrqbICAzMnBXnCUlJuQdv8fG2Q1v6bVxc/iYy+oog/yCCQoIoG1LWo+/rOA6nUk6dtTvgWb/O8fiRk0fyXUOhCNOA9sBmx3G2AhhjRgEDgaxh2kDgW8dxHGCBMaaMMaaq4zj7Tn87q3ZobRbducibdRdblSrB88+7XYVkoyBNRERERERERERExHWBgZlLD8nZGWMIDggmOCDY40GduSd/180LS5hWHdiV5evdnD7rLLfXVAfyDNNiY2N56aWXPFWjiEiGP//80+0SRKQI0meLiHjKC7ksE6NzIxHxJB23iIg36LNFRNxSWMK03KLBnA0y8/MajDF3AXcBVK1a9cIrExERERERKWQWzGx4+oNaGkZERERERCRXxnZF9G3GmE7Ai47jXJ729bMAjuO8nuU1nwCzHccZmfZ1FND9TG0eGzZs6ERFRXm1dhEpfmbPnk337t3dLkNEihh9toiIp6XPRHvhhRdcrkREihodt4iIN+izRUS8wRiz1HGctmd7nV9BFOMBi4H6xpg6xpgg4HpgYo7XTASGGasjcPxMQZqIiIiIiIiIiIiIiIjI2RSKNo+O4yQbYx4ApgH+wJeO46w1xtyT9vzHwGSgH7AZiAduc6teERERERERERERERERKRoKRZgG4DjOZGxglvWxj7Pcd4D7C7ouERERERERERERERERKboKS5tHERERERERERERERERkQKnME1EREREREREREREREQkDwrTRERERERERERERERERPKgME1EREREREREREREREQkDwrTRERERERERERERERERPKgME1EREREREREREREREQkDwrTRERERERERERERERERPKgME1EREREREREREREREQkDwrTRERERERERERERERERPKgME1EREREREREREREREQkDwrTRERERERERERERERERPKgME1EREREREREREREREQkDwrTRERERERERERERERERPKgME1EREREREREREREREQkDwrTRERERERERERERERERPKgME1EREREREREREREREQkDwrTRERERERERERERERERPKgME1EREREREREREREREQkDwrTRERERERERERERERERPKgME1EREREREREREREREQkD8ZxHLdrcI0xJhaIcrsOESlyKgCH3S5CRIocfbaIiDfos0VEvEGfLSLiDfpsERFvaOg4TqmzvSigICrxYVGO47R1uwgRKVqMMUv02SIinqbPFhHxBn22iIg36LNFRLxBny0i4g3GmCX5eZ3aPIqIiIiIiIiIiIiIiIjkQWGaiIiIiIiIiIiIiIiISB6Ke5j2qdsFiEiRpM8WEfEGfbaIiDfos0VEvEGfLSLiDfpsERFvyNdni3Ecx9uFiIiIiIiIiIiIiIiIiBRKxX1mmoiIiIiIiIiIiIiIiEiein2YZoz5tzFmlTFmhTFmujGmmts1iUjhZ4z5P2PMhrTPl3HGmDJu1yQihZ8xZogxZq0xJtUY09btekSkcDPG9DHGRBljNhtjnnG7HhEp/IwxXxpjDhpj1rhdi4gUHcaYmsaYP4wx69POhx52uyYRKfyMMcHGmEXGmJVpny0vnfH1xb3NozGmtOM4MWn3HwKaOI5zj8tliUghZ4y5DJjlOE6yMeY/AI7jPO1yWSJSyBljGgOpwCfAE47jLHG5JBEppIwx/sBG4FJgN7AYGOo4zjpXCxORQs0Y0xU4AXzrOE4zt+sRkaLBGFMVqOo4zjJjTClgKTBIxy0iciGMMQYo6TjOCWNMIDAXeNhxnAW5vb7Yz0xLD9LSlASKd7ooIh7hOM50x3GS075cANRwsx4RKRocx1nvOE6U23WISJHQHtjsOM5Wx3ESgVHAQJdrEpFCznGcv4CjbtchIkWL4zj7HMdZlnY/FlgPVHe3KhEp7BzrRNqXgWlbnvlQsQ/TAIwxrxpjdgE3Av9yux4RKXKGA1PcLkJEREQki+rArixf70YXpURERMTHGWNqA62BhS6XIiJFgDHG3xizAjgI/O44Tp6fLcUiTDPGzDDGrMllGwjgOM7zjuPUBH4AHnC3WhEpLM722ZL2mueBZOzni4jIWeXns0VExANMLo+pS4eIiIj4LGNMGPAz8EiObmMiIufFcZwUx3FaYbuKtTfG5NmmOqDAqnKR4zi98/nSH4HfgBe8WI6IFBFn+2wxxtwCXAH0cor7ApUikm/ncNwiInIhdgM1s3xdA9jrUi0iIiIiZ5S2ntHPwA+O4/zidj0iUrQ4jhNtjJkN9AHW5PaaYjEz7UyMMfWzfDkA2OBWLSJSdBhj+gBPAwMcx4l3ux4RERGRHBYD9Y0xdYwxQcD1wESXaxIRERE5jTHGAF8A6x3HecftekSkaDDGVDTGlEm7HwL05gz5kCnukyWMMT8DDYFUYAdwj+M4e9ytSkQKO2PMZqAEcCTtoQWO49zjYkkiUgQYY64C/gdUBKKBFY7jXO5qUSJSaBlj+gH/BfyBLx3HedXdikSksDPGjAS6AxWAA8ALjuN84WpRIlLoGWO6AHOA1dhruADPOY4z2b2qRKSwM8a0AL7Bng/5AWMcx3k5z9cX9zBNREREREREREREREREJC/Fvs2jiIiIiIiIiIiIiIiISF4UpomIiIiIiIiIiIiIiIjkQWGaiIiIiIiIiIiIiIiISB4UpomIiIiIiIiIiIiIiIjkQWGaiIiIiIiIiIiIiIiISB4UpomIiIiIiJwnY4yTts320PvNTn9PT7yfWMaYq9J+rwnGmOpu1wNgjLk5raZoY0wlt+sREREREZG8KUwTERERERHxEmPMIGPMi2lbGbfrKY6MMcHAO2lffuo4zh4368niR2AjEA687nItIiIiIiJyBgrTREREREREvGcQ8ELaVsbVSoqv+4DaQALwhrulZHIcJwV4Je3LW40xjd2sR0RERERE8qYwTURERERE5Dw5jmPStu4eer/u6e/pifcr7owxIcAzaV9+7TjOXjfrycWPwA7sufkLLtciIiIiIiJ5UJgmIiIiIiIiRdUwoGLa/W/dLCQ3abPTfkj7crAxJsLNekREREREJHcK00RERERERKSoujftdovjOPNdrSRv36fd+gN3uVmIiIiIiIjkTmGaiIiIiIh4nTGmuzHGSdteTHusuTHmU2PMFmPMSWPMIWPMDGPM0HN435rGmDeMMcuMMUeNMaeMMXuMMb8aY241xvjn4z3qG2PeNsYsNcZEG2OSjDFHjDFRxpjpxpinjDFN8/je9J9pdo7HvzbGOMAtWR7eluX16dvXOb5vdvpz+ai7Q9rvL8oYE2uMiUv7XX5jjOmZj+/PVrsxJtQY84QxZokx5lja+601xrxujCl7tvc7y77+mWV/E8/y2muyvHa1MSb4PPfZHGiZ9uWPZ3nti1n22T3tsV7GmJ+NMbuMMQlpv9tPjTG1cnxvsDHmbmPMvLR/w/FpdT9jjClxtjodx1kPrEj78kZjjFp8ioiIiIj4mAC3CxARERERkeLHGHMz8BmQNWwIBnoBvYwxNwKDHcdJOMN73A28C4TkeKpa2nYF8JgxZoDjONvzeI87gA+AoBxPlUvbGgCXAjcArfLzs3mbMSYA+BC4M5enI9O2YcaYn4BbHMc5mY/3jAR+BZrkeKpJ2jbUGNM9r99jPrwK9Aa6AlcaY+5zHOfDXOqogf13AZAADD3Tv4GzGJTl/h/n8o3GmDeAp3M8nP67HWyM6eU4znJjTBXs761tjtc2A14H+hljLs/Hf4M/sP++amMDwBXnUq+IiIiIiHiXwjQRERERESlo7YDn0u5/CfwFpKQ9fjtQEuiPbX83OLc3SAvSPs7y0K/Ab0A0NgC7DagDNAfmGmNaO45zKMd7tAY+wXbsSAZ+TqvlIBAIVAVaA5edx8/4PjAeeAjokfbY3WnvndXO83jvb4H02XsJwDfAPOzvsC32d1gKGAKEG2P6OI5zpplupbG/u0bARGAKcBQbHN0LRAC10vbb9TzqxXGcVGPMTcBKoCzwljHmT8dx1qa/xhjjh/1vnj4L7knHcdacz/7SXJp2mwosOYfvux/7724b8BWwESgD3Ax0TqtvrDGmGfb31gaYDEwCjmB/jw8B5YFLgOeBf5xlnwuy3L8chWkiIiIiIj7FnPmcSkRERERE5MKltc7LOjsoFrjMcZwFOV5XH5iNnVkGdnbazzleUxtYh52RlgLc4DjOmByvCQF+woZyAGMdxxmS4zUjsMEJwHU53yPL6/yBDo7jzMvlufQTqj8dx+mey/Nfk9nqsc7ZZnaltVzsBuA4zmnt/owx1wGj0r48APR0HGddjtfUwv6u66Q99IDjOB+coXaAROAax3Em5XhNeWBxlvfq4DjOojP9DGdijBmM/e8CsApo7zjOqbTnnsPOYAOY5DjOlRewH38gBggF1jqO0+wsr38ReCHLQ5OAIVlnxaWFfb8BfdIeWooNW292HCdbG0ljTANsIBaCDXirpP+ceey/FrA97ctxjuNcfcYfUERERERECpTWTBMRERERETc8mTNIA3AcZxN2ZlW6J3L53ofIbO34dm4hWFpbvRuAfWkPXZMWcGRVL+32OJkBz2kcx0nJLUhzSdbWg7flDNIAHMfZAVwPpIdlT+Zj7bhXcgZpae91BHgty0OXn2O9Od9vLHY2IkAL4E0AY0x74KW0x/cDwy9kP9hZdaFp96PO8XsPAjflbC/pOE4q8HKWhy4CPskZpKW9diN2lh3YWW3tz7TDtP9m6a0gW5xjvSIiIiIi4mUK00REREREpKAdw7bPy5XjOFOxM88AOqatS5VV+qydZODtM7xPDHZtMQBD9jW0AOLTbkthWxn6tLQZea3TvlztOM6UvF6bNntsVtqXtbDBT15SgBFneH5Wlvs511Q7Hw9hWycCPGiMuRb4EbsMgYNd5+1QXt+cT7Wy3D96jt/7neM4x/N4bjGQlOXr02b8ZTE3y/38/N6Opd3WNMacNitRRERERETcozBNREREREQK2hzHcRLP8pqsAU679DvGmEpkBiUrHcfJuQZZTtOz3O+Q47nf0279gD+MMXcYYyqc5f3clHV20/Q8X5X7a3L+7FltdBzn2Bme35Plftk8X5VPjuPEYdd8S8SGnKOBumlPv+M4Tn5+trMpl+X+uYZpC/N6wnGcZOy6aABxZIa+uTmQ5X5+fm/p7xuEXTdQRERERER8hMI0EREREREpaJvP8TXVstyvmuX+Rs4u62uq5njuC+z6bGDXBPsMOGiMWW2M+cQYM9QYE56PfRQUT/7sWR0+05vkWOsrOB/7PSvHcZYB/8jx8HLgOU+8P1Aiy/3Yc/zeI2d5Pv33cdQ58yLk5/p7i8lyPyTPV4mIiIiISIFTmCYiIiIiIgUt/uwvIS7L/bAs90vl8Zq8nMjje0mbHXc58CSwPe1hAzQD7sK2HjxgjPnAGFM6H/vyNo/97Dmknl85FyznWmYT8jFjMb+yBlnn+t8uv78PT//esga3J/N8lYiIiIiIFDiFaSIiIiIiUtBC8/GarG3usoZCsXm8Ji9Zg7jTZig5jpPoOM5bjuPUAZpiQ7RvgN1pLykB3Af8ZYxxe7aQR392N6Wtg/d5joefM8a08tAusrZ2LJfnq3xLep2J5C8sFRERERGRAqIwTUREREREClq9c3zN3iz392W5Xz8f75P1NXvzfBXgOM46x3E+cxznVsdxagI9yZyx1hK4PR/78yav/ewFyRhjsIFlxbSHfkm7DQJ+9FBouT3L/cIWpu08S/tIEREREREpYArTRERERESkoHUxxgSd5TU9stxfnH7HcZyDwI60L1sZYypyZpdlub8o/yWC4zh/AA9keajLuXx/mqytAM15fH9WWeu/NB+vP++f3cseI7O2acBg4NO0rxsD73pgH9vInN3V0APv51XGmNpkrqu2ysVSREREREQkFwrTRERERESkoJUDbsnrSWPMZdiWiwDzHcfZn+MlP6fdBgCPnOF9SmFbNAI4wLjzqHV7lvsB5/H9WVtU5qc1Y54cx9kOLEv7smXa7ylXxpi22Jl1YMPHpReyb09Ja+P4WtqXh4Bb02ZhPQpsSHv8bmPMwAvZj+M4KWT+zI18ZM27M+mQ5f5C16oQEREREZFcKUwTERERERE3vGWMaZfzQWNMXeDLLA+9ncv3/g84mXb/KWPMNbm8TzDwPVAt7aGfHcfZlOM1bxtjOp6lznuz3F95ltfmZluW+23O4/tz+k+W+18bYxrlfIExJgIYReb53v+lhUuuMsaEAiOx7RwBhqcHpY7jxANDseuFAXxhjKl2+ruck9/Tbv2Athf4Xt6WNUyb5loVIiIiIiKSq/MZWSkiIiIiInIhJmPbFP5tjPkGmAOkAO2w65KFpb3uF8dxfs75zY7jbDfGPAp8jD2nGWuMmZD2vtHYtcKGA5Fp37IHuD+XOq4BHjPGbANmYNvrHQRKADWBIUCrtNceIbMV4bmYmeX+m2ltKaOA5PTaHMdZnd83cxxnjDFmEDZ4qgosM8Z8DczH/g7bYn+H6TOxpgMfnkfd3vAukB7+feA4zqSsTzqOs8IY8xzwFlAe+MYYc9kFrB82Dvh32v3uwKz/b+/eQeyqojAA/xubsbNS0EYRlHRip5WgYCEiEQST6KiQ8dEqFoKIKQQrW18JKIxIIIWVrdYKEsRgI0pAEUUEq0SNLou9x8fknkmcceYM1++Dw2XDZt3FueV/197brLMXNo41/aqqthPaAgAAu0iYBgAA7LWP0yeUjic5Op7N3k9yZKpAVb3eWmvpAc1KkvvGs9lnSe4dd61ttnGf2Q1J1rbo92yS+6vquy32TPX5aWvt3fTw65r0oOjv3k7y6L8su5p+H9jRJFemT889tWDfqSSrOwij/jOttYNJHh/LM0mendj6SpK708PWu5I8k4vf2WWpqjOttdPpgejhJC9sp85ua60dyF+h7TsztgIAAExwzCMAALDnqmo9fRLteJIvk5xP8mP69NCRqrqnqs5fosZrSW5KP/rwdPpU2i9Jvk0P4x5Lcsu4a2yRW5McTD828qMkPyT5NcnPSb4eNZ5McqCqPpmocTkeTg+7PhzfcWHL3ZdQVReqai3JbUlOJPkiPVw7l36s5HqSO6vqgao6N11pb7TWrkv/nZP+bg9P9TWCv0fS31OSvNRa28nxmBtTeTe21m7fQZ3d9ND4/C3Jm3M2AgAALNb2wZ8UAQCAJddauyPJB2N5rKpenK0Z/jfG3Xlnk1yd5I2qemLmlv6htXZFehh6fZKTVfXgvB0BAACLmEwDAABgKY3pxpfHcrW1du2c/SxwKD1I+z3JsXlbAQAApgjTAAAAWGavph9/uZLkuZl7+dOYSnt+LN+qqs/n7AcAAJgmTAMAAGBpjem0p8dybdzhth8cSnJzkp+yj0I+AADgYsI0AAAAllpVvVdVrapWquqbuftJkqpaHz1dVVXfz90PAAAwTZgGAAAAAAAAE1pVzd0DAAAAAAAA7Esm0wAAAAAAAGCCMA0AAAAAAAAmCNMAAAAAAABggjANAAAAAAAAJgjTAAAAAAAAYIIwDQAAAAAAACb8ASrWhXN9W/CBAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, ax = make_figure(xlims=(-3, 3))\n",
+ "\n",
+ "add_gaussian_bel(ax, 0.0, 1.0, 'green')\n",
+ "add_gaussian_bel(ax, 0.0, 0.8, 'blue')\n",
+ "add_gaussian_bel(ax, 0.0, 0.6, 'red')\n",
+ "add_gaussian_bel(ax, 0.0, 0.3, 'orange')\n",
+ "\n",
+ "update_plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "eabdd1cd",
+ "metadata": {},
+ "source": [
+ "As we see in the above figure, the less the variance is the more the mean probability is $p(\\mu)$ which makes totally sense, as the more certain we are in our estimate or measurement, the more confidence or probability of occurance we give to the mean value."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "87e7b68f",
+ "metadata": {},
+ "source": [
+ "## Example"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f12b4e45",
+ "metadata": {},
+ "source": [
+ "Lets think of an example of having a robot moving in 1-D space.\n",
+ "\n",
+ "The model to predict the robot next position based on the current position and speed is:\n",
+ "\n",
+ "$$\n",
+ "x_{t} = x_{t-1} + v_{t-1} \\Delta{T}\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "v_{t} = v_{t-1}\n",
+ "$$\n",
+ "\n",
+ "this is known as constant velocity model, since the velocity state is always assumed to be constant and equal to velocity at previous time.\n",
+ "\n",
+ "where; $x$ and $v$ are position and velocity, respectively. $\\Delta{T}$ is the sampling time."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "eaa7c42d",
+ "metadata": {},
+ "source": [
+ "Lets assume that {$x_{t-1}=2m$}, {$v_{t-1}=2 \\frac{m}{s}$} and {$\\Delta T=1s$}.\n",
+ "\n",
+ "Then the result is:\n",
+ "\n",
+ "$$\n",
+ "\\begin{align}\n",
+ "x_{t1} &= x_{t0} + v_{t0} \\\\\n",
+ " &= 2 + 2 \\\\\n",
+ " &= 4 m\n",
+ "\\end{align}\n",
+ "$$\n",
+ "\n",
+ "In this example we predicted the new position but we didn't consider any uncertainty in our belief. Hence, the positions are absolute and exact values without any errors."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
+ "id": "8f7c18e3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "inf = 100000.\n",
+ "\n",
+ "x0 = 2 # initial position\n",
+ "v0 = 2 # initial velocity"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "id": "eb55d243",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABtMAAAJgCAYAAAD4c5xoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA9CUlEQVR4nO3debidZX0v/O8vSSmDCeDQNkEGqailVoGq1LcqERSn1qHKq4AgtpRqHY5WPUVbazynrbZH7XDEAYdCVdRWtLWIBc+rwQEHwCqKigdlimgRQQhhasj9/rFWYLuz72Qne6+9snc+n+ta13qG+3nu31rZ133t5Jv7fqq1FgAAAAAAAGBTi8ZdAAAAAAAAAGyvhGkAAAAAAADQIUwDAAAAAACADmEaAAAAAAAAdAjTAAAAAAAAoEOYBgAAAAAAAB1Lxl3AOO26667twAMPHHcZwAKzbt267LbbbuMuA1hgjC3AKBhbgFEwtgCjYGwBRuGiiy66rrV2ny2126HDtD322CMXXnjhuMsAFpjVq1dn5cqV4y4DWGCMLcAoGFuAUTC2AKNgbAFGoaqunE47yzwCAAAAAABAhzANAAAAAAAAOoRpAAAAAAAA0CFMAwAAAAAAgA5hGgAAAAAAAHQI0wAAAAAAAKBDmAYAAAAAAAAdwjQAAAAAAADoEKYBAAAAAABAhzANAAAAAAAAOoRpAAAAAAAA0CFMAwAAAAAAgA5hGgAAAAAAAHQsGXcBAAAAAADA9uvOO+/MTTfdlLVr1+bWW2/Nhg0bxl0SO6hFixZll112ydKlS7Ns2bIsXrx4TvoVpgEAAAAAAFO64447cuWVV2bXXXfNHnvskb322iuLFi1KVY27NHYwrbVs2LAh69aty9q1a3Pddddl3333zU477TTyvoVpAAAAAADAJu68885ceeWVufe9750999xz3OWwg6uqLF68OMuWLcuyZctyww035Morr8z+++8/8hlqnpkGAAAAAABs4qabbsquu+4qSGO7tOeee2bXXXfNTTfdNPK+hGkAAAAAAMAm1q5dm6VLl467DOhaunRp1q5dO/J+hGkAAAAAAMAmbr311uy2227jLgO6dtttt9x6660j72dehGlV9d6quraqvtk5X1X191V1WVVdXFWHzHWNAAAAAACwkGzYsCGLFs2LGIEd1KJFi7Jhw4bR9zPyHmbHaUmeuJnzT0pywPB1UpK3z0FNAAAAAACwoFXVuEuArrn6+ZwXYVpr7bNJrt9Mk6cl+cc28KUke1TV8rmpDgAAAAAAgIVqXoRp07BXkqsn7K8ZHgMAAAAAAIBttmTcBcySqebxtSkbVp2UwVKQWb58eVavXj3CsoAd0c0332xsAWbNaVecliS544477to+Yb8TxlYPsLD4vQUYBWMLMArGlvHYfffds3bt2nGXAZt12223jXx8WChh2poke0/Yv2+Sa6Zq2Fo7NcmpSbJixYq2cuXKkRcH7FhWr14dYwswWx77+sducuy0E06b+0KABcnvLcAoGFuAUTC2jMe3v/3tLF26dNxlwGbtvPPOOfjgg0fax0JZ5vHjSY6vgd9IcmNr7YfjLgoAAAAAAID5bV7MTKuqDyZZmeTeVbUmyeuS/FyStNbekeTsJE9OclmSW5I8fzyVAgAAAAAA7LiuuuqqfPKTn8xnP/vZfP3rX89VV12V2267Lbvvvnse+MAH5vDDD8+JJ56YffbZZ9ylTtu8CNNaa0dv4XxL8qI5KgcAAAAAAIBJnv70p+fjH/94BrHNz7ruuuty3XXX5Qtf+EL++q//On/+53+eV77ylWOocuvNizANAAAAAACA7ds3v/nNu4K0hz/84XnsYx+bBzzgAVm2bFnWrFmTM888M1/4whdy++2351WvelVuv/32/Mmf/MmYq94yYRoAAAAAAAAztvPOO+dFL3pRXvKSl+SBD3zgJudf/vKX52//9m/z8pe/PEmyatWqHHXUUXnAAx4w16VulUXjLgAAAAAAAID573Of+1ze+ta3ThmkbfSyl70sz3zmM5Mk69evzwc+8IG5Km+bCdMAAAAAAAC2U+edd14WL16cqso+++yTn/70p922l19+eXbfffdUVXbbbbdceumlc1dokj333HNa7Y466qi7tr/xjW+MqpxZI0wDAAAAAADYTh122GE5+eSTkyRXX311TjrppCnbrV+/Psccc0xuuummJMnf/d3fbXaG2DgtXbr0ru1bb711jJVMjzANAAAAAABgO/b6178+hx56aJLkn//5n/Pe9753yjZf+tKXkiTPfOYzc+KJJ85pjVvjm9/85l3b++677xgrmZ4l4y4AAAAAAACAviVLluSMM87IQQcdlLVr1+alL31pHv3oR+eAAw5Iknz+85/PG97whiTJ3nvvnXe9612b3OOWW27JueeeOyv17LPPPjnkkEO26dr169fnH/7hH+7af8pTnjIrNY2SMA0AAAAAAGA7t//+++eUU07J8ccfn3Xr1uWYY47J+eefn3Xr1uXYY4/NnXfemUWLFuV973vflM8uu/baa/OMZzxjVmp53vOel9NOO22brn3Tm96U73znO0mSX/u1XxOmAQAAAAAAO4ZVq1fl9ee9ftxlzJnXHfa6rFq5ak77PO6443LOOefkAx/4QC688MK89rWvzeWXX56rrroqSfLqV786hx122JzWtDU+85nP5LWvfW2SwWy7d77znVm0aPt/IpkwDQAAAAAAYJ5429velvPPPz+XX355/uqv/uqu44ceemhWrVrVvW6//fZLa20OKpzad77znRx11FFZv359kuQv//Iv88hHPnJs9WyN7T/uAwAAAAAAIEmybNmynHHGGVmy5O75UkuXLt3k2Pbk8ssvz+Mf//j85Cc/SZK87GUvy6te9aoxVzV9wjQAAAAAAIB5ZK+99spuu+121/6v//qvZ//99x9jRX1XX311Dj/88KxZsyZJ8oIXvCB/8zd/M+aqts72GVECAAAAAACwiQ0bNuS4447LjTfeeNex1atX5+1vf3te+MIXdq+75ZZbcu65585KDfvss08OOeSQLba75pprcvjhh+eKK65Ikvzu7/5u3va2t81KDXNJmAYAAAAAAMzYqpWrsmrlqnGXseC94Q1vyHnnnZckOeKII3LhhRfmxhtvzCte8YocdthhOfDAA6e87tprr80znvGMWanhec97Xk477bTNtvnRj36Uww8/PJdddlmS5Nhjj8273vWuVNWs1DCXLPMIAAAAAAAwD3z5y1/OqlWrkiQrVqzIhz/84bz97W9Pktx666055phjcvvtt4+xwoEf//jHOeKII3LppZcmSZ797Gfn9NNPz6JF8zOWmp9VAwAAAAAA7EDWrl2bY489NuvXr09V5fTTT8+97nWvHH300TnuuOOSJF//+tdz8sknT3n9fvvtl9barLw2Nyvt+uuvz+Me97h861vfSpL8zu/8Tt7//vdn8eLFs/6dzBVhGgAAAAAAwHbuRS96Ub73ve8lSV7xilfkcY973F3nTjnllOy///5Jkr/7u7/LOeecM5Yab7zxxhx55JG5+OKLkyRPfepT86EPfShLlszvp47N7+oBAAAAAAAWuA9+8IN53/velyQ5+OCD8xd/8Rc/c37p0qU544wz8qhHPSrr16/PCSeckIsvvjj3uc995rTOJz3pSbnooouSDJahPPbYY/OJT3xis9fsuuuuOfLII+eivG0mTAMAAAAAANhOXXHFFXnhC1+YZBA8nXHGGdlpp502aXfooYdm1apV+dM//dP86Ec/yvOf//ycddZZc1rrF7/4xbu2r7nmmjz72c/e4jX77rtvrrjiihFWNXOWeQQAAAAAANgO3XnnnXnuc5+bG2+8MUnylre8JQ960IO67V/96lfnMY95TJLkE5/4RN761rfOSZ0LnZlpAAAAAAAA26HFixfn85///LTbL1q0KOedd94IK9q81trY+h4lM9MAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAU2qtjbsE6Jqrn09hGgAAAAAAsIlFixZlw4YN4y4DujZs2JBFi0YfdQnTAAAAAACATeyyyy5Zt27duMuArnXr1mWXXXYZeT/CNAAAAAAAYBNLly7N2rVrx10GdK1duzZLly4deT/CNAAAAAAAYBPLli3LLbfckhtuuGHcpcAmbrjhhtxyyy1ZtmzZyPtaMvIeAAAAAACAeWfx4sXZd999c+WVV+aWW27J0qVLs9tuu2XRokWpqnGXxw6mtZYNGzZk3bp1Wbt2bW655Zbsu+++Wbx48cj7FqYBAAAAAABT2mmnnbL//vvnpptuyk9/+tP88Ic/zIYNG8ZdFjuoRYsWZZdddsnSpUvzS7/0S3MSpCXCNAAAAAAAYDMWL16cPffcM3vuuee4S4Gx8Mw0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQMe8CdOq6olVdWlVXVZVJ09xfveq+req+npVXVJVzx9HnQAAAAAAACwc8yJMq6rFSU5J8qQkByY5uqoOnNTsRUm+1Vp7aJKVSd5cVTvNaaEAAAAAAAAsKPMiTEvyiCSXtda+31q7I8mHkjxtUpuWZGlVVZJ7JLk+yfq5LRMAAAAAAICFZL6EaXsluXrC/prhsYnemuRXklyT5BtJ/ltrbcPclAcAAAAAAMBCtGTcBUxTTXGsTdp/QpKvJTk8yS8n+VRVfa61dtPP3KjqpCQnJcny5cuzevXqWS8W2LHdfPPNxhZgpIwxwGzxewswCsYWYBSMLcA4zZcwbU2SvSfs3zeDGWgTPT/JG1trLcllVXV5kgcl+crERq21U5OcmiQrVqxoK1euHFXNwA5q9erVMbYAs+a8TQ8ZY4DZ4vcWYBSMLcAoGFuAcZovyzxekOSAqrpfVe2U5DlJPj6pzVVJjkiSqvrFJA9M8v05rRIAAAAAAIAFZV7MTGutra+qFyc5J8niJO9trV1SVS8Ynn9Hkv+Z5LSq+kYGy0L+cWvturEVDQAAAAAAwLw3L8K0JGmtnZ3k7EnH3jFh+5okR851XQAAAAAAACxc82WZRwAAAAAAAJhzwjQAAAAAAADoEKYBAAAAAABAhzANAAAAAAAAOoRpAAAAAAAA0CFMAwAAAAAAgA5hGgAAAAAAAHQI0wAAAAAAAKBDmAYAAAAAAAAdwjQAAAAAAADoEKYBAAAAAABAhzANAAAAAAAAOoRpAAAAAAAA0CFMAwAAAAAAgA5hGgAAAAAAAHQI0wAAAAAAAKBDmAYAAAAAAAAdwjQAAAAAAADoEKYBAAAAAABAhzANAAAAAAAAOoRpAAAAAAAA0CFMAwAAAAAAgA5hGgAAAAAAAHQI0wAAAAAAAKBDmAYAAAAAAAAdwjQAAAAAAADoEKYBAAAAAABAhzANAAAAAAAAOoRpAAAAAAAA0CFMAwAAAAAAgA5hGgAAAAAAAHQI0wAAAAAAAKBDmAYAAAAAAAAdwjQAAAAAAADoEKYBAAAAAABAhzANAAAAAAAAOoRpAAAAAAAA0CFMAwAAAAAAgA5hGgAAAAAAAHQI0wAAAAAAAKBDmAYAAAAAAAAdwjQAAAAAAADoEKYBAAAAAABAhzANAAAAAAAAOoRpAAAAAAAA0CFMAwAAAAAAgA5hGgAAAAAAAHQI0wAAAAAAAKBDmAYAAAAAAAAdwjQAAAAAAADoEKYBAAAAAABAhzANAAAAAAAAOoRpAAAAAAAA0CFMAwAAAAAAgA5hGgAAAAAAAHQI0wAAAAAAAKBDmAYAAAAAAAAdwjQAAAAAAADoEKYBAAAAAABAhzANAAAAAAAAOoRpAAAAAAAA0CFMAwAAAAAAgA5hGgAAAAAAAHQI0wAAAAAAAKBDmAYAAAAAAAAdwjQAAAAAAADoEKYBAAAAAABAhzANAAAAAAAAOoRpAAAAAAAA0CFMAwAAAAAAgA5hGgAAAAAAAHQI0wAAAAAAAKBDmAYAAAAAAAAdwjQAAAAAAADoEKYBAAAAAABAhzANAAAAAAAAOoRpAAAAAAAA0CFMAwAAAAAAgA5hGgAAAAAAAHQI0wAAAAAAAKBDmAYAAAAAAAAdwjQAAAAAAADoEKYBAAAAAABAhzANAAAAAAAAOoRpAAAAAAAA0CFMAwAAAAAAgA5hGgAAAAAAAHQI0wAAAAAAAKBDmAYAAAAAAAAdwjQAAAAAAADomDdhWlU9saourarLqurkTpuVVfW1qrqkqs6b6xoBAAAAAABYWJaMu4DpqKrFSU5J8vgka5JcUFUfb619a0KbPZK8LckTW2tXVdUvjKVYAAAAAAAAFoz5MjPtEUkua619v7V2R5IPJXnapDbHJPloa+2qJGmtXTvHNQIAAAAAALDAzJcwba8kV0/YXzM8NtEDkuxZVaur6qKqOn7OqgMAAAAAAGBBmhfLPCapKY61SftLkvx6kiOS7JLki1X1pdbad3/mRlUnJTkpSZYvX57Vq1fPfrXADu3mm282tgAjZYwBZovfW4BRMLYAo2BsAcZpvoRpa5LsPWH/vkmumaLNda21dUnWVdVnkzw0yc+Eaa21U5OcmiQrVqxoK1euHFXNwA5q9erVMbYAs+a8TQ8ZY4DZ4vcWYBSMLcAoGFuAcZovyzxekOSAqrpfVe2U5DlJPj6pzb8meXRVLamqXZMcmuTbc1wnAAAAAAAAC8i8mJnWWltfVS9Ock6SxUne21q7pKpeMDz/jtbat6vq35NcnGRDkne31r45vqoBAAAAAACY7+ZFmJYkrbWzk5w96dg7Ju3/ryT/ay7rAgAAAAAAYOGaL8s8AgAAAAAAwJwTpgEAAAAAAECHMA0AAAAAAAA6hGkAAAAAAADQIUwDAAAAAACADmEaAAAAAAAAdAjTAAAAAAAAoEOYBgAAAAAAAB3CNAAAAAAAAOgQpgEAAAAAAECHMA0AAAAAAAA6hGkAAAAAAADQIUwDAAAAAACADmEaAAAAAAAAdAjTAAAAAAAAoEOYBgAAAAAAAB3CNAAAAAAAAOgQpgEAAAAAAECHMA0AAAAAAAA6hGkAAAAAAADQsWQ2blJVv5DkEUkekmTfJHsm2SXJrUmuT3JlkouTfKW19uPZ6BMAAAAAAABGbZvDtKr65STPTfK0JA/diuu+luRfkry/tXb5tvYPAAAAAAAAo7bVyzxW1ZFV9e9JvpvkzzII0morXgclWZXksqr6ZFU9fsafAgAAAAAAAEZg2jPTqupRSd6Y5JEbDw3ff5LkK0m+nOTbSW4YHrspye5J7jl8/UqSQzNYDvKew2uPTHJkVZ2f5OTW2hdm8mEAAAAAAABgNk0rTKuqDyR5Tu4O0NYk+WCSD7TWLt7aTqvqIUmOSXJ0kr2T/GaSz1bVB1trz93a+wEAAAAAAMAoTHeZx6MzCNI+neRxrbV9Wmt/vC1BWpK01i5urZ3cWts3yeOG961hPwAAAAAAALBdmG6Y9ukkj26tPa619unZLKC19unW2uOSPHrYDwAAAAAAAGwXprXM4zDsGqnh89IeP+p+AAAAAAAAYLqmOzMNAAAAAAAAdjjCNAAAAAAAAOiYUZhWVfec4fVPnsn1AAAAAAAAMEoznZn2jao6fGsvqqqdqup/J/m3GfYPAAAAAAAAIzPTMG15knOr6q+qasl0LqiqBye5MMkfzrBvAAAAAAAAGKmZhml3Jqkkr0zyxaq6/+YaV9VLknwlya8Or7t0hv0DAAAAAADAyMw0THt0kisyCMYOSfIfVfX8yY2q6j5VdVaSv02y87D9u5M8bIb9AwAAAAAAwMjMKExrrX0pyUOTfCCDgGy3JO+uqg9X1e5JUlVPTHJxkicN29yQ5FmttZNaa7fMpH8AAAAAAAAYpZnOTEtr7ebW2nFJjk1yYwaB2bOSfL2q3pPkE0l+cXh8dZKHtNY+OtN+AQAAAAAAYNRmHKZt1Fr7YJKDk5yfQXC2T5IThtt3JHlNkiNaaz+YrT4BAAAAAABglGYtTEuS1toVST64cXfC+78neXNrrU11HQAAAAAAAGyPZi1Mq6o9q+qjSf4+gwCtktw5fP/tJF+pqgfNVn8AAAAAAAAwarMSplXVY5NcnORpGYRnP03y/yY5NMl3h8cekuSiqnrBbPQJAAAAAAAAozajMK2qllTVG5N8KsmKDEKzzyZ5aGvtI621/8jgOWrvGZ7bJckpVfWvVXWvmZUOAAAAAAAAozXTmWlfTPKq4X3uTPJnSR7bWluzsUFr7dbW2u8neVaS6zMI1X4ryTeq6vEz7B8AAAAAAABGZqZh2q9nEI5dnuTRrbU/b621qRq21j6a5KAk5w2v+aUkZ8+wfwAAAAAAABiZ2Xhm2vuTHNRa+/KWGg5nrB2e5E+S/Ncs9Q8AAAAAAAAjMdMw6/jW2vGttbXTvaANvCHJo5J8b4b9AwAAAAAAwMjMKExrrb1/BtdekOTgmfQPAAAAAAAAozTWZRZba+vG2T8AAAAAAABsjmeWAQAAAAAAQMe0wrSqmpPlGKvqkLnoBwAAAAAAAKZjujPTLqyqj1XVQ0dRRFUdXFX/muQro7g/AAAAAAAAbIutWebxqUm+WlVnVdWzq2rnmXRcVTtX1XOq6pNJLkzy20naTO4JAAAAAAAAs2nJNNs9PMkpSQ5N8qTh6+aq+liSzyT5Smvt21u6SVUdmOQRSVYmeUaSe2w8leSLSV68NcUDAAAAAADAKE0rTGutfTXJI6vqd5KsSvLgJEuTHDd8parWJvm/Sa4fvtYmWZbknsPX/YfXbFTD94uTrGqt/cvMPgoAAAAAAADMrunOTEuStNY+muSjVXVkkhcmeXKSnxueXpbkkM1cXhO270hydpK3tdb+z9bUAAAAAAAAAHNlq8K0jVpr5yY5t6rumUGg9vgMloA8ID8bmm20Icl3k3w5yaeSnN1au2GbKgYAAAAAAIA5sk1h2katteuTvH/4SlXtlGTvDJZ1/Pkkt2ew5ONVrbX/mlmpAAAAAAAAMLdmFKZN1lq7I8n3hi8AAAAAAACY1xaNuwAAAAAAAADYXs3qzLQkqapfSPLwJCuS3CPJzUmuSXJBa+3a2e4PAAAAAAAARmXWwrSqekaSVyb5jc20+WKSN7XW/mW2+gUAAAAAAIBRmfEyj1W1U1X9U5KPZBCk1WZej0xyZlX9U1XtNNO+AQAAAAAAYJRmY2bamUmenEFYliTfSvLpJJclWZdktyT3T/LYJL86bPPMJDsneeos9A8AAAAAAAAjMaMwraqek+QpSVoGz0X7vdbaOZtpf2SS9yTZK8lTqurZrbUPz6QGAAAAAAAAGJWZLvP4e8P3dUkO21yQliSttXOTrExy8/DQiTPsHwAAAAAAAEZmpmHaQzOYlfae1tr3pnPBsN17MlgW8qAZ9g8AAAAAAAAjM9Mw7R7D9wu28rqN7XedYf8AAAAAAAAwMjMN064Zvi/eyus2tr9ms60AAAAAAABgjGYapn16+P7orbzu0RksD/npLTUEAAAAAACAcZlpmPb3Se5IcnxVPXw6F1TVw5I8L8ntw+sBAAAAAABguzSjMK219s0kv5+kknyqqk6sqiVTta2qJVX1e0k+lcGstBNba5fMpH8AAAAAAAAYpSmDr+mqqj8bbn4qyZOTvDPJG6vqc0kuS3JLkl2T3D/Jo5Lcc9j+7CT3n3D9Jlpr/2MmtQEAAAAAAMBMzShMS7Iqg1lmmfB+zyRPnaJtTWjz5OFrc4RpAAAAAAAAjNVMw7RkEJJN59jmjk/WttwEAAAAAAAARmumYdpjZ6UKAAAAAAAA2A7NKExrrZ03W4UAAAAAAADA9mbRuAsAAAAAAACA7ZUwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0zJswraqeWFWXVtVlVXXyZto9vKrurKpnzWV9AAAAAAAALDzzIkyrqsVJTknypCQHJjm6qg7stPurJOfMbYUAAAAAAAAsRPMiTEvyiCSXtda+31q7I8mHkjxtinYvSXJmkmvnsjgAAAAAAAAWpvkSpu2V5OoJ+2uGx+5SVXsleUaSd8xhXQAAAAAAACxgS8ZdwDTVFMfapP2/TfLHrbU7q6ZqPrxR1UlJTkqS5cuXZ/Xq1bNUIsDAzTffbGwBRsoYA8wWv7cAo2BsAUbB2AKM03wJ09Yk2XvC/n2TXDOpzcOSfGgYpN07yZOran1r7V8mNmqtnZrk1CRZsWJFW7ly5YhKBnZUq1evjrEFmDXnbXrIGAPMFr+3AKNgbAFGwdgCjNN8CdMuSHJAVd0vyQ+SPCfJMRMbtNbut3G7qk5LctbkIA0AAAAAAAC2xrwI01pr66vqxUnOSbI4yXtba5dU1QuG5z0nDQAAAAAAgFk3L8K0JGmtnZ3k7EnHpgzRWmsnzEVNAAAAAAAALGyLxl0AAAAAAAAAbK+EaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAxb8K0qnpiVV1aVZdV1clTnD+2qi4evs6vqoeOo04AAAAAAAAWjnkRplXV4iSnJHlSkgOTHF1VB05qdnmSw1prD0nyP5OcOrdVAgAAAAAAsNDMizAtySOSXNZa+35r7Y4kH0rytIkNWmvnt9ZuGO5+Kcl957hGAAAAAAAAFpj5EqbtleTqCftrhsd6fi/JJ0daEQAAAAAAAAveknEXME01xbE2ZcOqx2YQpj2qc/6kJCclyfLly7N69epZKhFg4Oabbza2ACNljAFmi99bgFEwtgCjYGwBxmm+hGlrkuw9Yf++Sa6Z3KiqHpLk3Ume1Fr7yVQ3aq2dmuHz1FasWNFWrlw568UCO7bVq1fH2ALMmvM2PWSMAWaL31uAUTC2AKNgbAHGab4s83hBkgOq6n5VtVOS5yT5+MQGVbVPko8mOa619t0x1AgAAAAAAMACMy9mprXW1lfVi5Ock2Rxkve21i6pqhcMz78jyZ8luVeSt1VVkqxvrT1sXDUDAAAAAAAw/82LMC1JWmtnJzl70rF3TNg+McmJc10XAAAAAAAAC9d8WeYRAAAAAAAA5pwwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0CNMAAAAAAACgQ5gGAAAAAAAAHcI0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADrmTZhWVU+sqkur6rKqOnmK81VVfz88f3FVHTKOOgEAAAAAAFg45kWYVlWLk5yS5ElJDkxydFUdOKnZk5IcMHydlOTtc1okAAAAAAAAC868CNOSPCLJZa2177fW7kjyoSRPm9TmaUn+sQ18KckeVbV8rgsFAAAAAABg4Vgy7gKmaa8kV0/YX5Pk0Gm02SvJDzd349e//vWzUR/AzzjvvPPGXQKwgPn9BZhNfm8BRsHYAoyCsQUYl/kSptUUx9o2tElVnZTBMpBZvtzENQBg+3ZYDht3CQAAAAA7tGptk7xpu1NVj0yyqrX2hOH+q5OktfaGCW3emWR1a+2Dw/1Lk6xsrXVnpq1YsaJdc801I60d2PGsXr06K1euHHcZwAJjbAFGwdgCjIKxBRgFYwswClV1UWvtYVtqN1+emXZBkgOq6n5VtVOS5yT5+KQ2H09yfA38RpIbNxekAQAAAAAAwJbMi2UeW2vrq+rFSc5JsjjJe1trl1TVC4bn35Hk7CRPTnJZkluSPH9c9QIAAAAAALAwzIswLUlaa2dnEJhNPPaOCdstyYvmui4AAAAAAAAWrvmyzCMAAAAAAADMOWEaAAAAAAAAdAjTAAAAAAAAoEOYBgAAAAAAAB3CNAAAAAAAAOgQpgEAAAAAAECHMA0AAAAAAAA6hGkAAAAAAADQIUwDAAAAAACADmEaAAAAAAAAdAjTAAAAAAAAoEOYBgAAAAAAAB3CNAAAAAAAAOgQpgEAAAAAAECHMA0AAAAAAAA6hGkAAAAAAADQIUwDAAAAAACADmEaAAAAAAAAdAjTAAAAAAAAoEOYBgAAAAAAAB3VWht3DWNTVWuTXDruOoAF595Jrht3EcCCY2wBRsHYAoyCsQUYBWMLMAoPbK0t3VKjJXNRyXbs0tbaw8ZdBLCwVNWFxhZgthlbgFEwtgCjYGwBRsHYAoxCVV04nXaWeQQAAAAAAIAOYRoAAAAAAAB07Ohh2qnjLgBYkIwtwCgYW4BRMLYAo2BsAUbB2AKMwrTGlmqtjboQAAAAAAAAmJd29JlpAAAAAAAA0LXDhmlV9cSqurSqLquqk8ddDzD/VdV7q+raqvrmuGsBFo6q2ruqPlNV366qS6rqv427JmD+q6qdq+orVfX14djy+nHXBCwMVbW4qv6jqs4ady3AwlFVV1TVN6rqa1V14bjrARaGqtqjqj5SVd8Z/rvLI7ttd8RlHqtqcZLvJnl8kjVJLkhydGvtW2MtDJjXquoxSW5O8o+ttQePux5gYaiq5UmWt9a+WlVLk1yU5Ol+bwFmoqoqyW6ttZur6ueSfD7Jf2utfWnMpQHzXFX9UZKHJVnWWvutcdcDLAxVdUWSh7XWrht3LcDCUVWnJ/lca+3dVbVTkl1baz+dqu2OOjPtEUkua619v7V2R5IPJXnamGsC5rnW2meTXD/uOoCFpbX2w9baV4fba5N8O8le460KmO/awM3D3Z8bvna8/2kJzKqqum+SpyR597hrAQDYnKpaluQxSd6TJK21O3pBWrLjhml7Jbl6wv6a+EcpAGA7V1X7JTk4yZfHXAqwAAyXYvtakmuTfKq1ZmwBZupvk/z3JBvGXAew8LQk51bVRVV10riLARaE/ZP8OMk/DJeofndV7dZrvKOGaTXFMf8LEwDYblXVPZKcmeRlrbWbxl0PMP+11u5srR2U5L5JHlFVlqkGtllV/VaSa1trF427FmBB+s3W2iFJnpTkRcNHbQDMxJIkhyR5e2vt4CTrkpzca7yjhmlrkuw9Yf++Sa4ZUy0AAJs1fJ7RmUk+0Fr76LjrARaW4VImq5M8cbyVAPPcbyZ56vC5Rh9KcnhVvX+8JQELRWvtmuH7tUk+lsFjfABmYk2SNRNW6PhIBuHalHbUMO2CJAdU1f2GD5V7TpKPj7kmAIBNVFVlsH73t1trbxl3PcDCUFX3qao9htu7JHlcku+MtShgXmutvbq1dt/W2n4Z/DvLp1trzx1zWcACUFW7VdXSjdtJjkzyzfFWBcx3rbUfJbm6qh44PHREkm/12i+Zk6q2M6219VX14iTnJFmc5L2ttUvGXBYwz1XVB5OsTHLvqlqT5HWttfeMtypgAfjNJMcl+cbw2UZJ8prW2tnjKwlYAJYnOb2qFmfwnyz/qbV21phrAgCYyi8m+djg/xlmSZIzWmv/Pt6SgAXiJUk+MJx09f0kz+81rNY8KgwAAAAAAACmsqMu8wgAAAAAAABbJEwDAAAAAACADmEaAAAAAAAAdAjTAAAAAAAAoEOYBgAAAAAAAB3CNAAAgG1UVW34Wj1L91u98Z6zcT8GquoZw+/1tqraa9z1JElVHTes6adV9QvjrgcAAOgTpgEAAIxIVT29qlYNX3uMu54dUVXtnOQtw91TW2s/GGc9E5yR5LtJdk/yhjHXAgAAbIYwDQAAYHSenuR1w9ceY61kx/WHSfZLcluSN463lLu11u5M8ufD3ROq6lfGWQ8AANAnTAMAANhGrbUavlbO0v1WbrznbNxvR1dVuyQ5ebh7WmvtmnHWM4UzklyZwd/NXzfmWgAAgA5hGgAAAAvV8UnuM9z+x3EWMpXh7LQPDHefVVX7jLMeAABgasI0AAAAFqoXDt+/11r74lgr6Xv/8H1xkpPGWQgAADA1YRoAADByVbWyqtrwtWp47Neq6tSq+l5V3VpVP66q/1NVR2/FffeuqjdW1Ver6vqqur2qflBV/1ZVJ1TV4mnc44CqenNVXVRVP62q/6qqn1TVpVV1blX996r61c61Gz/T6knHT6uqluR5Ew5fPqH9xtdpk65bvfHcNOo+dPj9XVpVa6tq3fC7PL2qDp/G9T9Te1XtWlWvrKoLq+qG4f0uqao3VNWeW7rfFvp67YT+Pr6Fts+c0PYbVbXzNvb5a0keOtw9YwttV03oc+Xw2BFVdWZVXV1Vtw2/21Orat9J1+5cVX9QVecPf4ZvGdZ9clX9/JbqbK19O8nXhrvHVpUlPgEAYDuzZNwFAAAAO56qOi7Ju5JMDBt2TnJEkiOq6tgkz2qt3baZe/xBkr9JssukUyuGr99K8kdV9dTW2hWde5yY5JQkO006dc/h6wFJHp/kmCQHTeezjVpVLUnytiS/P8Xp/Yev46vqn5M8r7V26zTuuX+Sf0ty4KRTBw5fR1fVyt73OA1/keRxSR6T5Ler6g9ba2+boo77ZvBzkSS3JTl6cz8DW/D0Cduf2ZoLq+qNSf540uGN3+2zquqI1tp/VNUvZfC9PWxS2wcneUOSJ1fVE6bxZ/CZDH6+9ssgAPza1tQLAACMljANAACYaw9P8prh9nuTfDbJncPjv5dktyRPyWD5u2dNdYNhkPaOCYf+Lcknkvw0gwDs+Unul+TXkny+qg5urf140j0OTvLODFbsWJ/kzGEt1yb5uSTLkxyc5Mht+Ix/n+Rfkrw0yWOHx/5geO+JrtqGe/9jko2z925LcnqS8zP4Dh+WwXe4NMlRSXavqie21jY3021ZBt/dg5J8PMknk1yfQXD0wiT7JNl32O9jtqHetNY2VNVzk3w9yZ5J3lRV57XWLtnYpqoWZfBnvnEW3Ktaa9/clv6GHj9835Dkwq247kUZ/NxdnuQfknw3yR5Jjkvym8P6PlJVD87gezskydlJzkrykwy+x5cmuVeSRyf5kyR/uoU+vzRh+wkRpgEAwHalNv93KgAAgJkbLp03cXbQ2iRHtta+NKndAUlWZzCzLBnMTjtzUpv9knwrgxlpdyY5prX2T5Pa7JLknzMI5ZLkI621oya1eWsGwUmSPHvyPSa0W5zk0Nba+VOc2/gXqvNaayunOH9a7l7q8X5bmtk1XHLxsCRprW2y3F9VPTvJh4a7/5nk8Nbatya12TeD7/p+w0Mvbq2dspnak+SOJM9srZ01qc29klww4V6Htta+srnPsDlV9awM/lyS5OIkj2it3T4895oMZrAlyVmttd+eQT+Lk9yUZNckl7TWHryF9quSvG7CobOSHDVxVtww7PtEkicOD12UQdh6XGvtZ5aRrKoHZBCI7ZJBwPtLGz9np/99k1wx3P1Ya+13NvsBAQCAOeWZaQAAwDi8anKQliSttf+bwcyqjV45xbUvzd1LO755qhBsuKzeMUl+ODz0zGHAMdH9h+835u6AZxOttTunCtLGZOLSg8+fHKQlSWvtyiTPSbIxLHvVNJ4d9+eTg7ThvX6S5C8nHHrCVtY7+X4fyWA2YpI8JMlfJ0lVPSLJ64fHf5Tkd2fSTwaz6nYdbl+6lddem+S5k5eXbK1tSPI/Jhz69STvnBykDdt+N4NZdslgVtsjNtfh8M9s41KQD9nKegEAgBETpgEAAHPthgyWz5tSa+3fM5h5liS/MXwu1UQbZ+2sT/LmzdznpgyeLZYklZ99hlaS3DJ8X5rBUobbteGMvIOHu99orX2y13Y4e+zTw919Mwh+eu5M8tbNnP/0hO3Jz1TbFi/NYOnEJHlJVf2/Sc7I4DEELYPnvP24d/E07Tth+/qtvPZ9rbUbO+cuSPJfE/Y3mfE3wecnbE/ne7th+L53VW0yKxEAABgfYRoAADDXPtdau2MLbSYGOA/fuFFVv5C7g5Kvt9YmP4NssnMnbB866dynhu+Lknymqk6sqntv4X7jNHF207ndVlO3mfzZJ/pua+2GzZz/wYTtPbutpqm1ti6DZ77dkUHI+eEkvzw8/ZbW2nQ+25bcc8L21oZpX+6daK2tz+C5aEmyLneHvlP5zwnb0/neNt53pwyeGwgAAGwnhGkAAMBcu2wr26yYsL18wvZ3s2UT2yyfdO49GTyfLRk8E+xdSa6tqm9U1Tur6uiq2n0afcyV2fzsE123uZtMetbXztPod4taa19N8qeTDv9HktfMxv2T/PyE7bVbee1PtnB+4/dxfdv8Q8i39nu7acL2Lt1WAADAnBOmAQAAc+2WLTfJugnb95iwvbTTpufmzrUZzo57QpJXJblieLiSPDjJSRksPfifVXVKVS2bRl+jNmuffZIN21bOjE1+ltm/TmPG4nRNDLK29s9uut/HbH9vE4PbW7utAACAOSdMAwAA5tqu02gzcZm7iaHQ2k6bnolB3CYzlFprd7TW3tRau1+SX80gRDs9yZphk59P8odJPltV454tNKuffZyGz8F796TDr6mqg2api4lLO96z22r7srHOOzK9sBQAAJgjwjQAAGCu3X8r21wzYfuHE7YPmMZ9Jra5ptsqSWvtW621d7XWTmit7Z3k8Nw9Y+2hSX5vGv2N0sg++1yqqsogsLzP8NBHh+87JTljlkLLKyZsz7cw7aotLB8JAADMMWEaAAAw1x5VVTttoc1jJ2xfsHGjtXZtkiuHuwdV1X2yeUdO2P7K9EtMWmufSfLiCYcetTXXD01cCrC24fqJJtb/+Gm03+bPPmJ/lLtrOyfJs5KcOtz/lSR/Mwt9XJ67Z3c9cBbuN1JVtV/ufq7axWMsBQAAmIIwDQAAmGv3TPK83smqOjKDJReT5IuttR9NanLm8H1Jkpdt5j5LM1iiMUlako9tQ61XTNhesg3XT1yicjpLM3a11q5I8tXh7kOH39OUquphGcysSwbh40Uz6Xu2DJdx/Mvh7o+TnDCchfXyJN8ZHv+DqnraTPpprd2Zuz/zg7aTZ95tzqETtr88tioAAIApCdMAAIBxeFNVPXzywar65STvnXDozVNc+7+T3Drc/u9V9cwp7rNzkvcnWTE8dGZr7f9OavPmqvqNLdT5wgnbX99C26lcPmH7kG24frK/mrB9WlU9aHKDqtonyYdy99/3/tcwXBqrqto1yQczWM4xSX53Y1DaWrslydEZPC8sSd5TVSs2vctW+dTwfVGSh83wXqM2MUw7Z2xVAAAAU9qW/1kJAAAwE2dnsEzhF6rq9CSfS3Jnkodn8FyyewzbfbS1dubki1trV1TVy5O8I4O/03ykqv51eN+fZvCssN9Nsv/wkh8kedEUdTwzyR9V1eVJ/k8Gy+tdm+Tnk+yd5KgkBw3b/iR3L0W4Nf6/Cdt/PVyW8tIk6zfW1lr7xnRv1lr7p6p6egbB0/IkX62q05J8MYPv8GEZfIcbZ2Kdm+Rt21D3KPxNko3h3ymttbMmnmytfa2qXpPkTUnuleT0qjpyBs8P+1iS/zncXpnk09t4n7mwcVnTy1tr2xLaAgAAIyRMAwAA5toFGcxQeneSE4evyc5OcmzvBq21d1ZVZRDQ7JzkacPXZN9M8tvDZ61NtvF5ZvdL8vubqffKJL/TWvvPzbTp1XlxVX0wg/DrFzMIiiY6PckJW3nb4zN4HtiJSXbJYPbcC6do95Ekx88gjJo1VfWMJCcNdy9J8qpO07ckeUIGYevjkrwim35n09Jau6SqvpZBIHpMkj/blvuMWlX9Su4ObT8wxlIAAIAOyzwCAABzrrX2/gxmor07yfeT3Jbk+gxmDx3bWntKa+22LdzjHUkekMHSh1/LYFbaHUl+mEEY9/wkBw2fNTaVQ5I8I4NlI7+S5Lok/5Xk9iRrhvd4QZJfaa19tXOP6Tgug7Br9bCP9ZttvQWttfWttd9P8sgk70lyWQbh2q0ZLCv5/iRHtNaOaq3d2r/T3KiqvTL4c04G3+0xvbqGwd/zMviekuQvqmomy2NunJX3y1X1/8zgPqP03OH7nUneNc5CAACAqdV28J8UAQCABa6qVib5zHD39a21VWMrhh3G8Nl5Vyb5hSSnttb+YMwl/YyqWpxBGLpfkg+31p4z3ooAAICpmJkGAADAgjSc3fjG4e7xVbVinPVM4egMgrQNSV4/3lIAAIAeYRoAAAAL2dszWP5y5ySvHnMtdxnOSvvT4e5prbVvj7MeAACgT5gGAADAgjWcnfZHw93fHz7DbXtwdJIHJrkx21HIBwAAbEqYBgAAwILWWvuX1lq11nZurf1g3PUkSWvt/cOa9mitXTvuegAAgD5hGgAAAAAAAHRUa23cNQAAAAAAAMB2ycw0AAAAAAAA6BCmAQAAAAAAQIcwDQAAAAAAADqEaQAAAAAAANAhTAMAAAAAAIAOYRoAAAAAAAB0/P81J3AmVIL51AAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, ax = make_figure(xlims=(0, 6))\n",
+ "add_absolute_position(ax, x0, 1, 'green')\n",
+ "update_plot()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "id": "463301d7",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABtMAAAJgCAYAAAD4c5xoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABCOklEQVR4nO3de7hdVX0v/O8vSSkXw8VLlSAXafFCrQKi1LcqERBvrUjRVwG5VUQp1uOlngNWazinivaorZaLolKoGLRe2lrFgufVRBEvgAqCiAdNuBQpIreQIJhkvH+sFdju7JnsZO+1V/bO5/M861lzjjnmHL+9kmc+K/nuMWa11gIAAAAAAACsbdawCwAAAAAAAIBNlTANAAAAAAAAOgjTAAAAAAAAoIMwDQAAAAAAADoI0wAAAAAAAKCDMA0AAAAAAAA6zBl2AcO09dZbtz333HPYZQAzzPLly7PNNtsMuwxghnFvAQbBvQUYBPcWYBDcW4BBuOKKK25vrT1qff026zBt++23z+WXXz7sMoAZZtGiRZk/f/6wywBmGPcWYBDcW4BBcG8BBsG9BRiEqrphPP0s8wgAAAAAAAAdhGkAAAAAAADQQZgGAAAAAAAAHYRpAAAAAAAA0EGYBgAAAAAAAB2EaQAAAAAAANBBmAYAAAAAAAAdhGkAAAAAAADQQZgGAAAAAAAAHYRpAAAAAAAA0EGYBgAAAAAAAB2EaQAAAAAAANBBmAYAAAAAAAAd5gy7AAAAAAAAYNO1atWq3HPPPVm2bFnuu+++rF69etglsZmaNWtWttpqq8ydOzfbbrttZs+ePSXjCtMAAAAAAIAxPfDAA7nhhhuy9dZbZ/vtt89OO+2UWbNmpaqGXRqbmdZaVq9eneXLl2fZsmW5/fbbs+uuu2aLLbYY+NjCNAAAAAAAYC2rVq3KDTfckEc+8pHZYYcdhl0Om7mqyuzZs7Pttttm2223zZ133pkbbrghu++++8BnqHlmGgAAAAAAsJZ77rknW2+9tSCNTdIOO+yQrbfeOvfcc8/AxxKmAQAAAAAAa1m2bFnmzp077DKg09y5c7Ns2bKBjyNMAwAAAAAA1nLfffdlm222GXYZ0GmbbbbJfffdN/BxpkWYVlXnVNVtVXV1x/Gqqg9V1fVVdVVV7TPVNQIAAAAAwEyyevXqzJo1LWIENlOzZs3K6tWrBz/OwEeYHOcmecE6jr8wyR791wlJzpqCmgAAAAAAYEarqmGXAJ2m6u/ntAjTWmtfT3LHOrockuSfWs+3k2xfVTtOTXUAAAAAAADMVNMiTBuHnZLcNGL/5n4bAAAAAAAAbLQ5wy5gkow1j6+N2bHqhPSWgsyOO+6YRYsWDbAsYHN07733urcAk+bcpecmSR544IEHt4/d7dih1QPMLL63AJNpt3PPTZLMe+CBLO1vLz322KHVA8wsvrcMx3bbbZdly5YNuwxYp1/96lcDvz9Ua2NmTpucqtotyRdba08e49hHkixqrV3Q378uyfzW2s/Xdc158+a1W265ZRDlApuxRYsWZf78+cMuA5gh6tS1f2eovXN6fH8DNn2+twCTaqxnlkyT/3cCNn2+twzHtddemyc96UnDLgPWaSJ/T6vqitbavuvrN1OWefxCkqOr5w+T3L2+IA0AAAAAAADWZ1os81hVFySZn+SRVXVzkncm+a0kaa19OMmFSV6U5PokK5IcN5xKAQAAAAAANl833nhjvvzlL+frX/96rrzyytx444351a9+le222y5PeMITcsABB+T444/PLrvsMuxSx21ahGmttcPXc7wlOWmKygEAAAAAAGCUl770pfnCF76QsR4xdvvtt+f222/PN7/5zfzt3/5t/uZv/iZ/+Zd/OYQqN9y0CNMAAAAAAADYtF199dUPBmlPf/rT89znPjePf/zjs+222+bmm2/O5z73uXzzm9/M/fffn7e+9a25//7781d/9VdDrnr9hGkAAAAAAABM2JZbbpmTTjopf/EXf5EnPOEJax1/05velL//+7/Pm970piTJggUL8vKXvzyPf/zjp7rUDTJr2AUAAAAAAAAw/X3jG9/I6aefPmaQtsYb3/jGHHbYYUmSlStX5pOf/ORUlbfRhGkAAAAAAACbqMWLF2f27Nmpquyyyy656667OvsuWbIk2223Xaoq22yzTa677rqpKzTJDjvsMK5+L3/5yx/c/uEPfziociaNMA0AAAAAAGATtf/+++fkk09Oktx000054YQTxuy3cuXKHHHEEbnnnnuSJB/84AfXOUNsmObOnfvg9n333TfESsZHmAYAAAAAALAJO/XUU7PffvslST7zmc/knHPOGbPPt7/97STJYYcdluOPP35Ka9wQV1999YPbu+666xArGZ85wy4AAAAAAACAbnPmzMnChQuz1157ZdmyZXnDG96QZz/72dljjz2SJJdccklOO+20JMnOO++cj370o2tdY8WKFbn44osnpZ5ddtkl++yzz0adu3LlyvzjP/7jg/svfvGLJ6WmQRKmAQAAAAAAbOJ23333nHHGGTn66KOzfPnyHHHEEbn00kuzfPnyHHnkkVm1alVmzZqVT3ziE2M+u+y2227LoYceOim1HHPMMTn33HM36tz3ve99+fGPf5wk+YM/+ANhGgAAAAAAsHlYsGhBTl186rDLmDLv3P+dWTB/wZSOedRRR+Wiiy7KJz/5yVx++eV5xzvekSVLluTGG29MkpxyyinZf//9p7SmDfG1r30t73jHO5L0Ztt95CMfyaxZm/4TyYRpAAAAAAAA08SZZ56ZSy+9NEuWLMl73/veB9v322+/LFiwoPO83XbbLa21KahwbD/+8Y/z8pe/PCtXrkySvPvd784zn/nModWzITb9uA8AAAAAAIAkybbbbpuFCxdmzpyH5kvNnTt3rbZNyZIlS/K85z0vv/zlL5Mkb3zjG/PWt751yFWNnzANAAAAAABgGtlpp52yzTbbPLj/tKc9LbvvvvsQK+p200035YADDsjNN9+cJHnd616Xv/u7vxtyVRtm04woAQAAAAAAWMvq1atz1FFH5e67736wbdGiRTnrrLNy4okndp63YsWKXHzxxZNSwy677JJ99tlnvf1uueWWHHDAAVm6dGmS5M/+7M9y5plnTkoNU0mYBgAAAAAATNiC+QuyYP6CYZcx45122mlZvHhxkuTAAw/M5Zdfnrvvvjtvectbsv/++2fPPfcc87zbbrsthx566KTUcMwxx+Tcc89dZ59bb701BxxwQK6//vokyZFHHpmPfvSjqapJqWEqWeYRAAAAAABgGvjOd76TBQsWJEnmzZuXT3/60znrrLOSJPfdd1+OOOKI3H///UOssOcXv/hFDjzwwFx33XVJkle84hU577zzMmvW9IylpmfVAAAAAAAAm5Fly5blyCOPzMqVK1NVOe+88/KIRzwihx9+eI466qgkyZVXXpmTTz55zPN32223tNYm5bWuWWl33HFHDjrooPzoRz9Kkvzpn/5pzj///MyePXvSP5OpIkwDAAAAAADYxJ100kn56U9/miR5y1vekoMOOujBY2eccUZ23333JMkHP/jBXHTRRUOp8e67787BBx+cq666Kknykpe8JJ/61KcyZ870furY9K4eAAAAAABghrvgggvyiU98Ikmy9957513vetdvHJ87d24WLlyYZz3rWVm5cmWOPfbYXHXVVXnUox41pXW+8IUvzBVXXJGktwzlkUcemS996UvrPGfrrbfOwQcfPBXlbTRhGgAAAAAAwCZq6dKlOfHEE5P0gqeFCxdmiy22WKvffvvtlwULFuTtb397br311hx33HH54he/OKW1futb33pw+5ZbbskrXvGK9Z6z6667ZunSpQOsauIs8wgAAAAAALAJWrVqVV71qlfl7rvvTpJ84AMfyBOf+MTO/qecckqe85znJEm+9KUv5fTTT5+SOmc6M9MAAAAAAAA2QbNnz84ll1wy7v6zZs3K4sWLB1jRurXWhjb2IJmZBgAAAAAAAB2EaQAAAAAAANBBmAYAAAAAAAAdhGkAAAAAAADQQZgGAAAAAAAAHYRpAAAAAAAA0EGYBgAAAAAAAB2EaQAAAAAAANBBmAYAAAAAAAAdhGkAAAAAAADQQZgGAAAAAAAAHYRpAAAAAAAA0EGYBgAAAAAAAB2EaQAAAAAAANBBmAYAAAAAAAAdhGkAAAAAAADQQZgGAAAAAAAAHYRpAAAAAAAA0EGYBgAAAAAAAB2EaQAAAAAAANBBmAYAAAAAAAAdhGkAAAAAAAAM1B133JHHPOYxqaoHX0uXLh12WeMiTAMAAAAAAGCg3vzmN+e//uu/hl3GRhGmAQAAAAAAMDBf+cpXct5552XWrFnZcssth13OBhOmAQAAAAAAMBDLly/Pa1/72iTJSSedlEc/+tFDrmjDCdMAAAAAAAAYiLe//e1ZsmRJdtppp7zrXe8adjkbRZgGAAAAAACwiVq8eHFmz56dqsouu+ySu+66q7PvkiVLst1226Wqss022+S6666bukLH8N3vfjcf+tCHkiT/8A//kLlz5w61no0lTAMAAAAAANhE7b///jn55JOTJDfddFNOOOGEMfutXLkyRxxxRO65554kyQc/+ME84QlPmLI6R/v1r3+dV7/61Vm9enUOOeSQHHrooUOrZaKEaQAAAAAAAJuwU089Nfvtt1+S5DOf+UzOOeecMft8+9vfTpIcdthhOf7446e0xtFOO+20XH311XnYwx6W008/fai1TNScYRcAAAAAAABAtzlz5mThwoXZa6+9smzZsrzhDW/Is5/97Oyxxx5JkksuuSSnnXZakmTnnXfORz/60bWusWLFilx88cWTUs8uu+ySffbZp/P4tddem3e/+91Jkne961157GMfOynjDoswDQAAAAAAYBO3++6754wzzsjRRx+d5cuX54gjjsill16a5cuX58gjj8yqVasya9asfOITn8gOO+yw1vm33XbbpC21eMwxx+Tcc88d89jq1atz/PHH5/7778++++6b17/+9ZMy5jBZ5hEAAAAAAJi4BQuSqs3ntWDBlH/ERx11VI488sgkyeWXX553vOMdee1rX5sbb7wxSXLKKadk//33n/K6RjrjjDNy6aWXZvbs2Tn77LMza9b0j6LMTAMAAAAAAJgmzjzzzFx66aVZsmRJ3vve9z7Yvt9++2XBOgK+3XbbLa21gdZ244035m1ve1uS5I1vfGP23nvvgY43VaZ/HAgAAAAAALCZ2HbbbbNw4cLMmfPQfKm5c+eu1TYMJ554Yu69997suuuuOfXUU4day2QSpgEAAAAAAEwjO+20U7bZZpsH95/2tKdl9913H2JFyfnnn58LL7wwSW+px5H1TXeWeQQAAAAAAJgmVq9enaOOOip33333g22LFi3KWWedlRNPPLHzvBUrVuTiiy+elBp22WWX7LPPPr/R9vGPfzxJ8pjHPCbf//738/3vf3/Mc0fWffrpp2f77bdPkrzmNa/Jox/96Empb7IJ0wAAAAAAgIlbsKD3YqBOO+20LF68OEly4IEH5vLLL8/dd9+dt7zlLdl///2z5557jnnebbfdlkMPPXRSajjmmGNy7rnn/kbbmuex3XrrrXnHO94xruu8//3vf3D7j//4jzfZMM0yjwAAAAAAANPAd77znSzoB5bz5s3Lpz/96Zx11llJkvvuuy9HHHFE7r///iFWODMJ0wAAAAAAADZxy5Yty5FHHpmVK1emqnLeeeflEY94RA4//PAcddRRSZIrr7wyJ5988pjn77bbbmmtTcpr9Ky0pLfU5HjO3XXXXR88Z8mSJQ+277XXXoP42CaFMA0AAAAAAGATd9JJJ+WnP/1pkuQtb3lLDjrooAePnXHGGdl9992TJB/84Adz0UUXDaXGmUqYBgAAAAAAsAm74IIL8olPfCJJsvfee+dd73rXbxyfO3duFi5cmDlz5qS1lmOPPTa/+MUvhlHqjCRMAwAAAAAA2EQtXbo0J554YpJk6623zsKFC7PFFlus1W+//fZ78Hlqt956a4477ripLHNGE6YBAAAAAABsglatWpVXvepVufvuu5MkH/jAB/LEJz6xs/8pp5yS5zznOUmSL33pSzn99NOnpM6Zbs6wCwAAAAAAAGBts2fPziWXXDLu/rNmzcrixYsHWNHELV26dNglbDAz0wAAAAAAAKCDMA0AAAAAAAA6CNMAAAAAAACggzANAAAAAAAAOgjTAAAAAAAAoIMwDQAAAAAAADoI0wAAAAAAAKCDMA0AAAAAAAA6CNMAAAAAAACggzANAAAAAAAAOgjTAAAAAAAAoIMwDQAAAAAAGFNrbdglQKep+vspTAMAAAAAANYya9asrF69ethlQKfVq1dn1qzBR13CNAAAAAAAYC1bbbVVli9fPuwyoNPy5cuz1VZbDXwcYRoAAAAAALCWuXPnZtmyZcMuAzotW7Ysc+fOHfg4wjQAAAAAAGAt2267bVasWJE777xz2KXAWu68886sWLEi22677cDHmjPwEQAAAAAAgGln9uzZ2XXXXXPDDTdkxYoVmTt3brbZZpvMmjUrVTXs8tjMtNayevXqLF++PMuWLcuKFSuy6667Zvbs2QMfW5gGAAAAAACMaYsttsjuu++ee+65J3fddVd+/vOfZ/Xq1cMui83UrFmzstVWW2Xu3Ll5zGMeMyVBWiJMAwAAAAAA1mH27NnZYYcdssMOOwy7FBgKz0wDAAAAAACADsI0AAAAAAAA6CBMAwAAAAAAgA7CNAAAAAAAAOggTAMAAAAAAIAOwjQAAAAAAADoMG3CtKp6QVVdV1XXV9XJYxzfrqr+vaqurKprquq4YdQJAAAAAADAzDEtwrSqmp3kjCQvTLJnksOras9R3U5K8qPW2lOTzE/y/qraYkoLBQAAAAAAYEaZFmFakmckub619rPW2gNJPpXkkFF9WpK5VVVJHpbkjiQrp7ZMAAAAAAAAZpLpEqbtlOSmEfs399tGOj3Jk5LckuSHSf5ba2311JQHAAAAAADATDRn2AWMU43R1kbtPz/JD5IckOR3k3ylqr7RWrvnNy5UdUKSE5Jkxx13zKJFiya9WGDzdu+997q3AAPlHgNMFt9bgMk0f4w29xhgsvjeAgzTdAnTbk6y84j9x6Y3A22k45K8p7XWklxfVUuSPDHJd0d2aq2dneTsJJk3b16bP3/+oGoGNlOLFi2KewswaRav3eQeA0wW31uAQXOPASaL7y3AME2XZR4vS7JHVT2uqrZI8sokXxjV58YkByZJVT06yROS/GxKqwQAAAAAAGBGmRYz01prK6vq9UkuSjI7yTmttWuq6nX94x9O8r+SnFtVP0xvWcj/0Vq7fWhFAwAAAAAAMO1NizAtSVprFya5cFTbh0ds35Lk4KmuCwAAAAAAgJlruizzCAAAAAAAAFNOmAYAAAAAAAAdhGkAAAAAAADQQZgGAAAAAAAAHYRpAAAAAAAA0EGYBgAAAAAAAB2EaQAAAAAAANBBmAYAAAAAAAAdhGkAAAAAAADQQZgGAAAAAAAAHYRpAAAAAAAA0EGYBgAAAAAAAB2EaQAAAAAAANBBmAYAAAAAAAAdhGkAAAAAAADQQZgGAAAAAAAAHYRpAAAAAAAA0EGYBgAAAAAAAB2EaQAAAAAAANBBmAYAAAAAAAAdhGkAAAAAAADQQZgGAAAAAAAAHYRpAAAAAAAA0EGYBgAAAAAAAB2EaQAAAAAAANBBmAYAAAAAAAAdhGkAAAAAAADQQZgGAAAAAAAAHYRpAAAAAAAA0EGYBgAAAAAAAB2EaQAAAAAAANBBmAYAAAAAAAAdhGkAAAAAAADQQZgGAAAAAAAAHYRpAAAAAAAA0EGYBgAAAAAAAB2EaQAAAAAAANBBmAYAAAAAAAAdhGkAAAAAAADQQZgGAAAAAAAAHYRpAAAAAAAA0EGYBgAAAAAAAB2EaQAAAAAAANBBmAYAAAAAAAAdhGkAAAAAAADQQZgGAAAAAAAAHYRpAAAAAAAA0EGYBgAAAAAAAB2EaQAAAAAAANBBmAYAAAAAAAAdhGkAAAAAAADQQZgGAAAAAAAAHYRpAAAAAAAA0EGYBgAAAAAAAB2EaQAAAAAAANBBmAYAAAAAAAAdhGkAAAAAAADQQZgGAAAAAAAAHYRpAAAAAAAA0EGYBgAAAAAAAB2EaQAAAAAAANBBmAYAAAAAAAAdhGkAAAAAAADQQZgGAAAAAAAAHYRpAAAAAAAA0EGYBgAAAAAAAB2EaQAAAAAAANBBmAYAAAAAAAAdhGkAAAAAAADQQZgGAAAAAAAAHYRpAAAAAAAA0EGYBgAAAAAAAB2EaQAAAAAAANBBmAYAAAAAAAAdhGkAAAAAAADQQZgGAAAAAAAAHYRpAAAAAAAA0EGYBgAAAAAAAB2EaQAAAAAAANBBmAYAAAAAAAAdhGkAAAAAAADQQZgGAAAAAAAAHYRpAAAAAAAA0EGYBgAAAAAAAB2EaQAAAAAAANBBmAYAAAAAAAAdhGkAAAAAAADQQZgGAAAAAAAAHYRpAAAAAAAA0EGYBgAAAAAAAB2mTZhWVS+oquuq6vqqOrmjz/yq+kFVXVNVi6e6RgAAAAAAAGaWOcMuYDyqanaSM5I8L8nNSS6rqi+01n40os/2Sc5M8oLW2o1V9TtDKRYAAAAAAIAZY7rMTHtGkutbaz9rrT2Q5FNJDhnV54gkn2+t3ZgkrbXbprhGAAAAAAAAZpjpEqbtlOSmEfs399tGenySHapqUVVdUVVHT1l1AAAAAAAAzEjTYpnHJDVGWxu1PyfJ05IcmGSrJN+qqm+31n7yGxeqOiHJCUmy4447ZtGiRZNfLbBZu/fee91bgIFyjwEmi+8twGSaP0abewwwWXxvAYZpuoRpNyfZecT+Y5PcMkaf21try5Msr6qvJ3lqkt8I01prZyc5O0nmzZvX5s+fP6iagc3UokWL4t4CTJrFaze5xwCTxfcWYNDcY4DJ4nsLMEzTZZnHy5LsUVWPq6otkrwyyRdG9fm3JM+uqjlVtXWS/ZJcO8V1AgAAAAAAMINMi5lprbWVVfX6JBclmZ3knNbaNVX1uv7xD7fWrq2q/0hyVZLVST7WWrt6eFUDAAAAAAAw3U2LMC1JWmsXJrlwVNuHR+3/7yT/eyrrAgAAAAAAYOaaLss8AgAAAAAAwJQTpgEAAAAAAEAHYRoAAAAAAAB0EKYBAAAAAABAB2EaAAAAAAAAdBCmAQAAAAAAQAdhGgAAAAAAAHQQpgEAAAAAAEAHYRoAAAAAAAB0EKYBAAAAAABAB2EaAAAAAAAAdBCmAQAAAAAAQAdhGgAAAAAAAHQQpgEAAAAAAEAHYRoAAAAAAAB0EKYBAAAAAABAB2EaAAAAAAAAdBCmAQAAAAAAQAdhGgAAAAAAAHQQpgEAAAAAAECHOZNxkar6nSTPSPKUJLsm2SHJVknuS3JHkhuSXJXku621X0zGmAAAAAAAADBoGx2mVdXvJnlVkkOSPHUDzvtBkn9Ncn5rbcnGjg8AAAAAAACDtsHLPFbVwVX1H0l+kuSv0wvSagNeeyVZkOT6qvpyVT1vwj8FAAAAAAAADMC4Z6ZV1bOSvCfJM9c09d9/meS7Sb6T5Nokd/bb7kmyXZKH919PSrJfestBPrx/7sFJDq6qS5Oc3Fr75kR+GAAAAAAAAJhM4wrTquqTSV6ZhwK0m5NckOSTrbWrNnTQqnpKkiOSHJ5k5yR/lOTrVXVBa+1VG3o9AAAAAAAAGITxLvN4eHpB2leTHNRa26W19j82JkhLktbaVa21k1truyY5qH/d6o8DAAAAAAAAm4TxhmlfTfLs1tpBrbWvTmYBrbWvttYOSvLs/jgAAAAAAACwSRjXMo/9sGug+s9Le96gxwEAAAAAAIDxGu/MNAAAAAAAANjsCNMAAAAAAACgw4TCtKp6+ATPf9FEzgcAAAAAAIBBmujMtB9W1QEbelJVbVFV/5Dk3yc4PgAAAAAAAAzMRMO0HZNcXFXvrao54zmhqp6c5PIkfz7BsQEAAAAAAGCgJhqmrUpSSf4yybeq6vfW1bmq/iLJd5P8fv+86yY4PgAAAAAAAAzMRMO0ZydZml4wtk+S71fVcaM7VdWjquqLSf4+yZb9/h9Lsu8ExwcAAAAAAICBmVCY1lr7dpKnJvlkegHZNkk+VlWfrqrtkqSqXpDkqiQv7Pe5M8nLWmsntNZWTGR8AAAAAAAAGKSJzkxLa+3e1tpRSY5Mcnd6gdnLklxZVR9P8qUkj+63L0rylNba5yc6LgAAAAAAAAzahMO0NVprFyTZO8ml6QVnuyQ5tr/9QJK3JTmwtfafkzUmAAAAAAAADNKkhWlJ0lpbmuSCNbsj3v8jyftba22s8wAAAAAAAGBTNGlhWlXtUFWfT/Kh9AK0SrKq//4nSb5bVU+crPEAAAAAAABg0CYlTKuq5ya5Kskh6YVndyX5f5Psl+Qn/banJLmiql43GWMCAAAAAADAoE0oTKuqOVX1niRfSTIvvdDs60me2lr7bGvt++k9R+3j/WNbJTmjqv6tqh4xsdIBAAAAAABgsCY6M+1bSd7av86qJH+d5LmttZvXdGit3ddae02SlyW5I71Q7Y+T/LCqnjfB8QEAAAAAAGBgJhqmPS29cGxJkme31v6mtdbG6tha+3ySvZIs7p/zmCQXTnB8AAAAAAAAGJjJeGba+Un2aq19Z30d+zPWDkjyV0l+PUnjAwAAAAAAwEBMNMw6urV2dGtt2XhPaD2nJXlWkp9OcHwAAAAAAAAYmAmFaa218ydw7mVJ9p7I+AAAAAAAADBIQ11msbW2fJjjAwAAAAAAwLp4ZhkAAAAAAAB0GFeYVlVTshxjVe0zFeMAAAAAAADAeIx3ZtrlVfUvVfXUQRRRVXtX1b8l+e4grg8AAAAAAAAbY0OWeXxJku9V1Rer6hVVteVEBq6qLavqlVX15SSXJ/mTJG0i1wQAAAAAAIDJNGec/Z6e5Iwk+yV5Yf91b1X9S5KvJflua+3a9V2kqvZM8owk85McmuRhaw4l+VaS129I8QAAAAAAADBI4wrTWmvfS/LMqvrTJAuSPDnJ3CRH9V+pqmVJ/m+SO/qvZUm2TfLw/uv3+uesUf33q5IsaK3968R+FAAAAAAAAJhc452ZliRprX0+yeer6uAkJyZ5UZLf6h/eNsk+6zi9Rmw/kOTCJGe21v7PhtQAAAAAAAAAU2WDwrQ1WmsXJ7m4qh6eXqD2vPSWgNwjvxmarbE6yU+SfCfJV5Jc2Fq7c6MqBgAAAAAAgCmyUWHaGq21O5Kc33+lqrZIsnN6yzr+dpL701vy8cbW2q8nVioAAAAAAABMrQmFaaO11h5I8tP+CwAAAAAAAKa1WcMuAAAAAAAAADZVkzozLUmq6neSPD3JvCQPS3JvkluSXNZau22yxwMAAAAAAIBBmbQwraoOTfKXSf5wHX2+leR9rbV/naxxAQAAAAAAYFAmvMxjVW1RVf+c5LPpBWm1jtczk3yuqv65qraY6NgAAAAAAAAwSJMxM+1zSV6UXliWJD9K8tUk1ydZnmSbJL+X5LlJfr/f57AkWyZ5ySSMDwAAAAAAAAMxoTCtql6Z5MVJWnrPRXt1a+2idfQ/OMnHk+yU5MVV9YrW2qcnUgMAAAAAAAAMykSXeXx1/315kv3XFaQlSWvt4iTzk9zbbzp+guMDAAAAAADAwEw0THtqerPSPt5a++l4Tuj3+3h6y0LuNcHxAQAAAAAAYGAmGqY9rP9+2Qaet6b/1hMcHwAAAAAAAAZmomHaLf332Rt43pr+t6yzFwAAAAAAAAzRRMO0r/bfn72B5z07veUhv7q+jgAAAAAAADAsEw3TPpTkgSRHV9XTx3NCVe2b5Jgk9/fPBwAAAAAAgE3ShMK01trVSV6TpJJ8paqOr6o5Y/WtqjlV9eokX0lvVtrxrbVrJjI+AAAAAAAADNKYwdd4VdVf9ze/kuRFST6S5D1V9Y0k1ydZkWTrJL+X5FlJHt7vf2GS3xtx/lpaa/9zIrUBAAAAAADARE0oTEuyIL1ZZhnx/vAkLxmjb43o86L+a12EaQAAAAAAAAzVRMO0pBeSjadtXe2jtfV3AQAAAAAAgMGaaJj23EmpAgAAAAAAADZBEwrTWmuLJ6sQAAAAAAAA2NTMGnYBAAAAAAAAsKkSpgEAAAAAAEAHYRoAAAAAAAB0EKYBAAAAAABAB2EaAAAAAAAAdBCmAQAAAAAAQAdhGgAAAAAAAHQQpgEAAAAAAEAHYRoAAAAAAAB0EKYBAAAAAABAB2EaAAAAAAAAdBCmAQAAAAAAQAdhGgAAAAAAAHSYNmFaVb2gqq6rquur6uR19Ht6Va2qqpdNZX0AAAAAAADMPNMiTKuq2UnOSPLCJHsmObyq9uzo994kF01thQAAAAAAAMxE0yJMS/KMJNe31n7WWnsgyaeSHDJGv79I8rkkt01lcQAAAAAAAMxM0yVM2ynJTSP2b+63PaiqdkpyaJIPT2FdAAAAAAAAzGBzhl3AONUYbW3U/t8n+R+ttVVVY3XvX6jqhCQnJMmOO+6YRYsWTVKJAD333nuvewswUO4xwGTxvQWYTPPHaHOPASaL7y3AMFVrozOpTU9VPTPJgtba8/v7pyRJa+20EX2W5KHQ7ZFJViQ5obX2r13XnTdvXrvlllsGVTawmVq0aFHmz58/7DKAGaJOXfuXhNo7N/3vb8D04HsLMKnG+uXmafD/TsD04HsLMAhVdUVrbd/19ZsuM9MuS7JHVT0uyX8meWWSI0Z2aK09bs12VZ2b5IvrCtIAAAAAAABgfaZFmNZaW1lVr09yUZLZSc5prV1TVa/rH/ecNAAAAAAAACbdtAjTkqS1dmGSC0e1jRmitdaOnYqaAAAAAAAAmNlmDbsAAAAAAAAA2FQJ0wAAAAAAAKCDMA0AAAAAAAA6CNMAAAAAAACggzANAAAAAAAAOgjTAAAAAAAAoIMwDQAAAAAAADoI0wAAAAAAAKCDMA0AAAAAAAA6CNMAAAAAAACggzANAAAAAAAAOgjTAAAAAAAAoIMwDQAAAAAAADoI0wAAAAAAAKCDMA0AAAAAAAA6CNMAAAAAAACggzANAAAAAAAAOgjTAAAAAAAAoIMwDQAAAAAAADoI0wAAAAAAAKCDMA0AAAAAAAA6CNMAAAAAAACggzANAAAAAAAAOgjTAAAAAAAAoIMwDQAAAAAAADoI0wAAAAAAAKCDMA0AAAAAAAA6CNMAAAAAAACggzANAAAAAAAAOgjTAAAAAAAAoIMwDQAAAAAAADoI0wAAAAAAAKCDMA0AAAAAAAA6CNMAAAAAAACggzANAAAAAAAAOgjTAAAAAAAAoIMwDQAAAAAAADoI0wAAAAAAAKCDMA0AAAAAAAA6CNMAAAAAAACggzANAAAAAAAAOgjTAAAAAAAAoIMwDQAAAAAAADoI0wAAAAAAAKCDMA0AAAAAAAA6CNMAAAAAAACggzANAAAAAAAAOgjTAAAAAAAAoIMwDQAAAAAAADoI0wAAAAAAAKCDMA0AAAAAAAA6CNMAAAAAAACggzANAAAAAAAAOgjTAAAAAAAAoIMwDQAAAAAAADoI0wAAAAAAAKCDMA0AAAAAAAA6CNMAAAAAAACggzANAAAAAAAAOgjTAAAAAAAAoIMwDQAAAAAAADoI0wAAAAAAAKCDMA0AAAAAAAA6CNMAAAAAAACggzANAAAAAAAAOgjTAAAAAAAAoIMwDQAAAAAAADoI0wAAAAAAAKCDMA0AAAAAAAA6CNMAAAAAAACggzANAAAAAAAAOgjTAAAAAAAAoIMwDQAAAAAAADoI0wAAAAAAAKCDMA0AAAAAAAA6CNMAAAAAAACggzANAAAAAAAAOgjTAAAAAAAAoIMwDQAAAAAAADoI0wAAAAAAAKCDMA0AAAAAAAA6CNMAAAAAAACggzANAAAAAAAAOgjTAAAAAAAAoIMwDQAAAAAAADoI0wAAAAAAAKCDMA0AAAAAAAA6CNMAAAAAAACggzANAAAAAAAAOgjTAAAAAAAAoMO0CdOq6gVVdV1VXV9VJ49x/Miquqr/urSqnjqMOgEAAAAAAJg5pkWYVlWzk5yR5IVJ9kxyeFXtOarbkiT7t9aekuR/JTl7aqsEAAAAAABgppkWYVqSZyS5vrX2s9baA0k+leSQkR1aa5e21u7s7347yWOnuEYAAAAAAABmmOkSpu2U5KYR+zf327q8OsmXB1oRAAAAAAAAM96cYRcwTjVGWxuzY9Vz0wvTntVx/IQkJyTJjjvumEWLFk1SiQA99957r3sLMFDuMcBk8b0FmEzzx2hzjwEmi+8twDBNlzDt5iQ7j9h/bJJbRneqqqck+ViSF7bWfjnWhVprZ6f/PLV58+a1+fPnT3qxwOZt0aJFcW8BJs3itZvcY4DJ4nsLMGjuMcBk8b0FGKbpsszjZUn2qKrHVdUWSV6Z5AsjO1TVLkk+n+So1tpPhlAjAAAAAAAAM8y0mJnWWltZVa9PclGS2UnOaa1dU1Wv6x//cJK/TvKIJGdWVZKsbK3tO6yaAQAAAAAAmP6mRZiWJK21C5NcOKrtwyO2j09y/FTXBQAAAAAAwMw1XZZ5BAAAAAAAgCknTAMAAAAAAIAOwjQAAAAAAADoIEwDAAAAAACADsI0AAAAAAAA6CBMAwAAAAAAgA7CNAAAAAAAAOggTAMAAAAAAIAOwjQAAAAAAADoIEwDAAAAAACADsI0AAAAAAAA6CBMAwAAAAAAgA7CNAAAAAAAAOggTAMAAAAAAIAOwjQAAAAAAADoIEwDAAAAAACADsI0AAAAAAAA6CBMAwAAAAAAgA7CNAAAAAAAAOggTAMAAAAAAIAOwjQAAAAAAADoIEwDAAAAAACADsI0AAAAAAAA6CBMAwAAAAAAgA7CNAAAAAAAAOggTAMAAAAAAIAOwjQAAAAAAADoIEwDAAAAAACADsI0AAAAAAAA6CBMAwAAAAAAgA7CNAAAAAAAAOggTAMAAAAAAIAOwjQAAAAAAADoIEwDAAAAAACADsI0AAAAAAAA6CBMAwAAAAAAgA7CNAAAAAAAAOggTAMAAAAAAIAOwjQAAAAAAADoIEwDAAAAAACADsI0AAAAAAAA6CBMAwAAAAAAgA7CNAAAAAAAAOggTAMAAAAAAIAOwjQAAAAAAADoIEwDAAAAAACADsI0AAAAAAAA6CBMAwAAAAAAgA7CNAAAAAAAAOggTAMAAAAAAIAOwjQAAAAAAADoIEwDAAAAAACADsI0AAAAAAAA6CBMAwAAAAAAgA7CNAAAAAAAAOggTAMAAAAAAIAOwjQAAAAAAADoIEwDAAAAAACADsI0AAAAAAAA6CBMAwAAAAAAgA7CNAAAAAAAAOggTAMAAAAAAIAOwjQAAAAAAADoIEwDAAAAAACADsI0AAAAAAAA6CBMAwAAAAAAgA7CNAAAAAAAAOggTAMAAAAAAIAOwjQAAAAAAADoIEwDAAAAAACADsI0AAAAAAAA6CBMAwAAAAAAgA7CNAAAAAAAAOggTAMAAAAAAIAOwjQAAAAAAADoIEwDAAAAAACADsI0AAAAAAAA6CBMAwAAAAAAgA7CNAAAAAAAAOggTAMAAAAAAIAOwjQAAAAAAADoIEwDAAAAAACADsI0AAAAAAAA6CBMAwAAAAAAgA7CNAAAAAAAAOggTAMAAAAAAIAOwjQAAAAAAADoIEwDAAAAAACADsI0AAAAAAAA6CBMAwAAAAAAgA7TJkyrqhdU1XVVdX1VnTzG8aqqD/WPX1VV+wyjTgAAAAAAAGaOaRGmVdXsJGckeWGSPZMcXlV7jur2wiR79F8nJDlrSosEAAAAAABgxpkWYVqSZyS5vrX2s9baA0k+leSQUX0OSfJPrefbSbavqh2nulAAAAAAAABmjjnDLmCcdkpy04j9m5PsN44+OyX5+boufOqpp05GfQC/YfHixcMuAZjBfH8BJpPvLcBkeecYbb63AJPJ9xZgWKZLmFZjtLWN6JOqOiG9ZSCz444mrgEAm7b9s/+wSwAAGJdF+/veAgDMTNXaWnnTJqeqnplkQWvt+f39U5KktXbaiD4fSbKotXZBf/+6JPNba50z0+bNm9duueWWgdYObH4WLVqU+fPnD7sMYIZxbwEGwb0FGAT3FmAQ3FuAQaiqK1pr+66v33R5ZtplSfaoqsdV1RZJXpnkC6P6fCHJ0dXzh0nuXleQBgAAAAAAAOszLZZ5bK2trKrXJ7koyewk57TWrqmq1/WPfzjJhUlelOT6JCuSHDesegEAAAAAAJgZpkWYliSttQvTC8xGtn14xHZLctJU1wUAAAAAAMDMNV2WeQQAAAAAAIApJ0wDAAAAAACADsI0AAAAAAAA6CBMAwAAAAAAgA7CNAAAAAAAAOggTAMAAAAAAIAOwjQAAAAAAADoIEwDAAAAAACADsI0AAAAAAAA6CBMAwAAAAAAgA7CNAAAAAAAAOggTAMAAAAAAIAOwjQAAAAAAADoIEwDAAAAAACADsI0AAAAAAAA6CBMAwAAAAAAgA7CNAAAAAAAAOggTAMAAAAAAIAOwjQAAAAAAADoIEwDAAAAAACADtVaG3YNQ1NVy5JcN+w6gBnnkUluH3YRwIzj3gIMgnsLMAjuLcAguLcAg/CE1trc9XWaMxWVbMKua63tO+wigJmlqi53bwEmm3sLMAjuLcAguLcAg+DeAgxCVV0+nn6WeQQAAAAAAIAOwjQAAAAAAADosLmHaWcPuwBgRnJvAQbBvQUYBPcWYBDcW4BBcG8BBmFc95ZqrQ26EAAAAAAAAJiWNveZaQAAAAAAANBpsw3TquoFVXVdVV1fVScPux5g+quqc6rqtqq6eti1ADNHVe1cVV+rqmur6pqq+m/DrgmY/qpqy6r6blVd2b+3nDrsmoCZoapmV9X3q+qLw64FmDmqamlV/bCqflBVlw+7HmBmqKrtq+qzVfXj/v+7PLOz7+a4zGNVzU7ykyTPS3JzksuSHN5a+9FQCwOmtap6TpJ7k/xTa+3Jw64HmBmqasckO7bWvldVc5NckeSlvrcAE1FVlWSb1tq9VfVbSS5J8t9aa98ecmnANFdVb06yb5JtW2t/POx6gJmhqpYm2be1dvuwawFmjqo6L8k3Wmsfq6otkmzdWrtrrL6b68y0ZyS5vrX2s9baA0k+leSQIdcETHOtta8nuWPYdQAzS2vt56217/W3lyW5NslOw60KmO5az7393d/qvza/37QEJlVVPTbJi5N8bNi1AACsS1Vtm+Q5ST6eJK21B7qCtGTzDdN2SnLTiP2b4z+lAIBNXFXtlmTvJN8ZcinADNBfiu0HSW5L8pXWmnsLMFF/n+S/J1k95DqAmaclubiqrqiqE4ZdDDAj7J7kF0n+sb9E9ceqapuuzptrmFZjtPktTABgk1VVD0vyuSRvbK3dM+x6gOmvtbaqtbZXkscmeUZVWaYa2GhV9cdJbmutXTHsWoAZ6Y9aa/skeWGSk/qP2gCYiDlJ9klyVmtt7yTLk5zc1XlzDdNuTrLziP3HJrllSLUAAKxT/3lGn0vyydba54ddDzCz9JcyWZTkBcOtBJjm/ijJS/rPNfpUkgOq6vzhlgTMFK21W/rvtyX5l/Qe4wMwETcnuXnECh2fTS9cG9PmGqZdlmSPqnpc/6Fyr0zyhSHXBACwlqqq9Nbvvra19oFh1wPMDFX1qKravr+9VZKDkvx4qEUB01pr7ZTW2mNba7ul9/8sX22tvWrIZQEzQFVtU1Vz12wnOTjJ1cOtCpjuWmu3Jrmpqp7QbzowyY+6+s+Zkqo2Ma21lVX1+iQXJZmd5JzW2jVDLguY5qrqgiTzkzyyqm5O8s7W2seHWxUwA/xRkqOS/LD/bKMkeVtr7cLhlQTMADsmOa+qZqf3S5b/3Fr74pBrAgAYy6OT/Evv9wwzJ8nC1tp/DLckYIb4iySf7E+6+lmS47o6VmseFQYAAAAAAABj2VyXeQQAAAAAAID1EqYBAAAAAABAB2EaAAAAAAAAdBCmAQAAAAAAQAdhGgAAAAAAAHQQpgEAAGykqmr916JJut6iNdecjOvRU1WH9j/XX1XVTsOuJ0mq6qh+TXdV1e8Mux4AAKCbMA0AAGBAquqlVbWg/9p+2PVsjqpqyyQf6O+e3Vr7z2HWM8LCJD9Jsl2S04ZcCwAAsA7CNAAAgMF5aZJ39l/bD7WSzdefJ9ktya+SvGe4pTyktbYqyd/0d4+tqicNsx4AAKCbMA0AAGAjtdaq/5o/Sdebv+aak3G9zV1VbZXk5P7uua21W4ZZzxgWJrkhvX+bv3PItQAAAB2EaQAAAMxURyd5VH/7n4ZZyFj6s9M+2d99WVXtMsx6AACAsQnTAAAAmKlO7L//tLX2raFW0u38/vvsJCcMsxAAAGBswjQAAGDgqmp+VbX+a0G/7Q+q6uyq+mlV3VdVv6iq/1NVh2/AdXeuqvdU1feq6o6qur+q/rOq/r2qjq2q2eO4xh5V9f6quqKq7qqqX1fVL6vquqq6uKr+e1X9fse5a36mRaPaz62qluSYEc1LRvRf8zp31HmL1hwbR9379T+/66pqWVUt73+W51XVAeM4/zdqr6qtq+ovq+ryqrqzf71rquq0qtphfddbz1jvGDHeF9bT97ARfX9YVVtu5Jh/kOSp/d2F6+m7YMSY8/ttB1bV56rqpqr6Vf+zPbuqdh117pZV9dqqurT/d3hFv+6Tq+q311dna+3aJD/o7x5ZVZb4BACATcycYRcAAABsfqrqqCQfTTIybNgyyYFJDqyqI5O8rLX2q3Vc47VJ/i7JVqMOzeu//jjJm6vqJa21pR3XOD7JGUm2GHXo4f3X45M8L8kRSfYaz882aFU1J8mZSV4zxuHd+6+jq+ozSY5prd03jmvunuTfk+w56tCe/dfhVTW/63Mch3clOSjJc5L8SVX9eWvtzDHqeGx6fy+S5FdJDl/X34H1eOmI7a9tyIlV9Z4k/2NU85rP9mVVdWBr7ftV9Zj0Prd9R/V9cpLTkryoqp4/jj+Dr6X392u39ALAH2xIvQAAwGAJ0wAAgKn29CRv62+fk+TrSVb121+dZJskL05v+buXjXWBfpD24RFN/57kS0nuSi8AOy7J45L8QZJLqmrv1tovRl1j7yQfSW/FjpVJPtev5bYkv5VkxyR7Jzl4I37GDyX51yRvSPLcfttr+9ce6caNuPY/JVkze+9XSc5Lcml6n+G+6X2Gc5O8PMl2VfWC1tq6Zrptm95n98QkX0jy5SR3pBccnZhklyS79sd9zkbUm9ba6qp6VZIrk+yQ5H1Vtbi1ds2aPlU1K70/8zWz4N7aWrt6Y8bre17/fXWSyzfgvJPS+3u3JMk/JvlJku2THJXkj/r1fbaqnpze57ZPkguTfDHJL9P7HN+Q5BFJnp3kr5K8fT1jfnvE9vMjTAMAgE1KrfvfVAAAABPXXzpv5OygZUkObq19e1S/PZIsSm9mWdKbnfa5UX12S/Kj9GakrUpyRGvtn0f12SrJZ9IL5ZLks621l4/qc3p6wUmSvGL0NUb0m51kv9bapWMcW/MPqsWttfljHD83Dy31+Lj1zezqL7m4f5K01tZa7q+qXpHkU/3d/0pyQGvtR6P67JreZ/24ftPrW2tnrKP2JHkgyWGttS+O6vOIJJeNuNZ+rbXvrutnWJeqell6fy5JclWSZ7TW7u8fe1t6M9iS5IuttT+ZwDizk9yTZOsk17TWnrye/guSvHNE0xeTvHzkrLh+2PelJC/oN12RXth6VGvtN5aRrKrHpxeIbZVewPuYNT9nx/i7Jlna3/2X1tqfrvMHBAAAppRnpgEAAMPw1tFBWpK01v5vejOr1vjLMc59Qx5a2vH9Y4Vg/WX1jkjy837TYf2AY6Tf67/fnYcCnrW01laNFaQNycilB48bHaQlSWvthiSvTLImLHvrOJ4d9zejg7T+tX6Z5N0jmp6/gfWOvt5n05uNmCRPSfK3SVJVz0hyar/91iR/NpFx0ptVt3V/+7oNPPe2JK8avbxka211kv85oulpST4yOkjr9/1JerPskt6stmesa8D+n9mapSCfsoH1AgAAAyZMAwAAptqd6S2fN6bW2n+kN/MsSf6w/1yqkdbM2lmZ5P3ruM496T1bLEkqv/kMrSRZ0X+fm95Shpu0/oy8vfu7P2ytfbmrb3/22Ff7u7umF/x0WZXk9HUc/+qI7dHPVNsYb0hv6cQk+Yuq+n+TLEzvMQQtvee8/aLr5HHadcT2HRt47idaa3d3HLssya9H7K8142+ES0Zsj+dzu7P/vnNVrTUrEQAAGB5hGgAAMNW+0Vp7YD19RgY4T1+zUVW/k4eCkitba6OfQTbaxSO29xt17Cv991lJvlZVx1fVI9dzvWEaObvp4s5eY/cZ/bOP9JPW2p3rOP6fI7Z36Ow1Tq215ek98+2B9ELOTyf53f7hD7TWxvOzrc/DR2xvaJj2na4DrbWV6T0XLUmW56HQdyz/NWJ7PJ/bmutukd5zAwEAgE2EMA0AAJhq129gn3kjtnccsf2TrN/IPjuOOvbx9J7PlvSeCfbRJLdV1Q+r6iNVdXhVbTeOMabKZP7sI92+rouMetbXluMYd71aa99L8vZRzd9P8rbJuH6S3x6xvWwDz/3leo6v+TzuaOt+CPmGfm73jNjeqrMXAAAw5YRpAADAVFux/i5ZPmL7YSO253b06XJvx7npz457fpK3Jlnab64kT05yQnpLD/5XVZ1RVduOY6xBm7SffZTVG1fOhI1+ltm/jWPG4niNDLI29M9uvJ/HZH9uI4Pb+zp7AQAAU06YBgAATLWtx9Fn5DJ3I0OhZR19uowM4taaodRae6C19r7W2uOS/H56Idp5SW7ud/ntJH+e5OtVNezZQpP6sw9T/zl4HxvV/Laq2muShhi5tOPDO3ttWtbU+UDGF5YCAABTRJgGAABMtd/bwD63jNj++YjtPcZxnZF9bunslaS19qPW2kdba8e21nZOckAemrH21CSvHsd4gzSwn30qVVWlF1g+qt/0+f77FkkWTlJouXTE9nQL025cz/KRAADAFBOmAQAAU+1ZVbXFevo8d8T2ZWs2Wmu3Jbmhv7tXVT0q63bwiO3vjr/EpLX2tSSvH9H0rA05v2/kUoC1EeePNLL+542j/0b/7AP25jxU20VJXpbk7P7+k5L83SSMsSQPze56wiRcb6Cqarc89Fy1q4ZYCgAAMAZhGgAAMNUenuSYroNVdXB6Sy4mybdaa7eO6vK5/vucJG9cx3XmprdEY5K0JP+yEbUuHbE9ZyPOH7lE5XiWZuzUWlua5Hv93af2P6cxVdW+6c2sS3rh4xUTGXuy9JdxfHd/9xdJju3PwnpTkh/3219bVYdMZJzW2qo89DM/cRN55t267Ddi+ztDqwIAABiTMA0AABiG91XV00c3VtXvJjlnRNP7xzj3H5Lc19/+71V12BjX2TLJ+Unm9Zs+11r7v6P6vL+q/nA9dZ44YvvK9fQdy5IR2/tsxPmjvXfE9rlV9cTRHapqlySfykP/3vvf/XBpqKpq6yQXpLecY5L82ZqgtLW2Isnh6T0vLEk+XlXz1r7KBvlK/31Wkn0neK1BGxmmXTS0KgAAgDFtzG9WAgAATMSF6S1T+M2qOi/JN5KsSvL09J5L9rB+v8+31j43+uTW2tKqelOSD6f3b5rPVtW/9a97V3rPCvuzJLv3T/nPJCeNUcdhSd5cVUuS/J/0lte7LclvJ9k5ycuT7NXv+8s8tBThhvj/Rmz/bX9ZyuuSrFxTW2vth+O9WGvtn6vqpekFTzsm+V5VnZvkW+l9hvum9xmumYl1cZIzN6LuQfi7JGvCvzNaa18cebC19oOqeluS9yV5RJLzqurgCTw/7F+S/K/+9vwkX93I60yFNcuaLmmtbUxoCwAADJAwDQAAmGqXpTdD6WNJju+/RrswyZFdF2itfaSqKr2AZsskh/Rfo12d5E/6z1obbc3zzB6X5DXrqPeGJH/aWvuvdfTpqvOqqrogvfDr0ekFRSOdl+TYDbzs0ek9D+z4JFulN3vuxDH6fTbJ0RMIoyZNVR2a5IT+7jVJ3trR9QNJnp9e2HpQkrdk7c9sXFpr11TVD9ILRI9I8tcbc51Bq6on5aHQ9pNDLAUAAOhgmUcAAGDKtdbOT28m2seS/CzJr5Lckd7soSNbay9urf1qPdf4cJLHp7f04Q/Sm5X2QJKfpxfGHZdkr/6zxsayT5JD01s28rtJbk/y6yT3J7m5f43XJXlSa+17HdcYj6PSC7sW9cdYuc7e69FaW9lae02SZyb5eJLr0wvX7ktvWcnzkxzYWnt5a+2+7itNjaraKb0/56T32R7RVVc/+Dsmvc8pSd5VVRNZHnPNrLzfrar/ZwLXGaRX9d9XJfnoMAsBAADGVpvALykCAAAzXFXNT/K1/u6prbUFQyuGzUb/2Xk3JPmdJGe31l475JJ+Q1XNTi8M3S3Jp1trrxxuRQAAwFjMTAMAAGBG6s9ufE9/9+iqmjfMesZweHpB2uokpw63FAAAoIswDQAAgJnsrPSWv9wyySlDruVB/Vlpb+/vnttau3aY9QAAAN2EaQAAAMxY/dlpb+7vvqb/DLdNweFJnpDk7mxCIR8AALA2YRoAAAAzWmvtX1tr1VrbsrX2n8OuJ0laa+f3a9q+tXbbsOsBAAC6CdMAAAAAAACgQ7XWhl0DAAAAAAAAbJLMTAMAAAAAAIAOwjQAAAAAAADoIEwDAAAAAACADsI0AAAAAAAA6CBMAwAAAAAAgA7CNAAAAAAAAOjw/wPtZ0J+5TlcMAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "x0 = 2 # initial position\n",
+ "v0 = 2 # initial velocity\n",
+ "\n",
+ "x1 = x0 + v0 # position at t1\n",
+ "\n",
+ "fig, ax = make_figure(xlims=(0, 6))\n",
+ "\n",
+ "add_absolute_position(ax, x0, 1, 'green')\n",
+ "add_absolute_position(ax, x1, 1, 'red')\n",
+ "\n",
+ "update_plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "887afeb3",
+ "metadata": {},
+ "source": [
+ "In order to respect and consider the uncertainty in our system model, we represent the position state as normal distribution.\n",
+ "\n",
+ "Additionally, we also propagate the error uncertainty to the gaussian state.\n",
+ "\n",
+ "$$\n",
+ "x_{t1} = x_{t0} + v_{t0}\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "\\sigma^2_{t1} = \\sigma^2_{t0} + q\n",
+ "$$"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "id": "b5dfdeb5",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "noise_var = 0.1\n",
+ "var0 = 0.1\n",
+ "\n",
+ "x1 = x0 + v0 # position at t1\n",
+ "var1 = var0 + noise_var # position at t1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "id": "be02036f",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABtMAAAJgCAYAAAD4c5xoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADLs0lEQVR4nOzdd3hU1d7F8bWTEEggoUnvLXRFQAEFBZUemhRFRECqF1QUFbw27FiRC4ooCIJ0FISAIogBxUpRagg99F4SOsl5/xjIC0JCIJPsKd/P8+TJZOacOWsuMDdmZf+2cRxHAAAAAAAAAAAAAK4UYDsAAAAAAAAAAAAA4Kko0wAAAAAAAAAAAIAUUKYBAAAAAAAAAAAAKaBMAwAAAAAAAAAAAFJAmQYAAAAAAAAAAACkgDINAAAAAAAAAAAASEGQ7QA2hYaGOpUqVbIdA4CPOXHihLJnz247BgAfw3sLgIzAewuAjMB7C4CMwHsLgIywfPnyg47j5LvWcX5dpuXKlUvLli2zHQOAj4mOjlb9+vVtxwDgY3hvAZAReG8BkBF4bwGQEXhvAZARjDHb03IcYx4BAAAAAAAAAACAFFCmAQAAAAAAAAAAACmgTAMAAAAAAAAAAABSQJkGAAAAAAAAAAAApIAyDQAAAAAAAAAAAEgBZRoAAAAAAAAAAACQAso0AAAAAAAAAAAAIAWUaQAAAAAAAAAAAEAKKNMAAAAAAAAAAACAFFCmAQAAAAAAAAAAACmgTAMAAAAAAAAAAABSQJkGAAAAAAAAAAAApIAyDQAAAAAAAAAAAEhBkO0AAAAAAAAAAIDMlZiYqOPHjys+Pl6nTp1SUlKS7Uipypkzp9avX287BgDLAgICFBISorCwMIWHhyswMDBTrkuZBgAAAAAAAAB+5OzZs9q+fbtCQ0OVK1cuFSlSRAEBATLG2I6Wovj4eIWFhdmOAcAix3GUlJSkEydOKD4+XgcPHlSJEiUUHByc4demTAMAAAAAAAAAP5GYmKjt27frpptuUu7cuW3HAYA0M8YoMDBQ4eHhCg8P15EjR7R9+3aVLl06w1eosWcaAAAAAAAAAPiJ48ePKzQ0lCINgNfLnTu3QkNDdfz48Qy/FmUaAAAAAAAAAPgJxiUC8CVhYWGKj4/P8OtQpgEAAAAAAACAnzh16pSyZ89uOwYAuEX27Nl16tSpDL8OZRoAAAAAAAAA+ImkpCQFBPBjYQC+ISAgQElJSRl/nQy/AgAAAAAAAADAYxhjbEcAALfIrPczyjQAAAAAAAAAAAAgBUG2AwAAAOD/OY6j9QfXa8n2JVq+e7n2JOzR/hP7tf/ofhXaXEhFw4uqSr4quqPYHapXop6yBWWzHRkAAAAAAMCnUaYBAAB4gMOnDuuz5Z9p/D/jtf7geknSTaE3KSggSNmzuDYH35ewT7GHYvX1uq/lyFF41nC1rtBaj9/+uGoWrmkzPgAAAAAAgM+iTAMAALDo2OljevuXtzX8z+E6ee6k7ipxl/rd3k9NyjZRqVylFPDaJVO5T7o+HR14VEt3LNXX677W9HXTNf6f8WpQsoHebfgupRoAAAAAAICbUaYBAABY4DiOJq+ZrCe/f1IHTx5Up6qdNPDOgapaoOo1z82ZLaealWumZuWaaWiToRq9YrSG/DJEt31+mx6t9qg+aPyBcmXLlfEvAgAAAAAAwA8EXPsQAAAAuNORU0fUbno7dfqmk8rkLqNlPZfpq/u/SlOR9m/hWcP1dJ2ntemJTXr2jmc17p9xqvJJFf209acMSA4AAAAA8EdxcXEaNWqUOnXqpCpVqig8PFzBwcHKly+f6tatq5dffllxcXG2Y+Iatm/frkGDBqlq1arKmTOncuTIoQoVKujxxx/X2rVr3Xqtbdu26euvv9bzzz+vRo0aKW/evDLGyBij+vXru/VamYGVaQAAAJno771/q+20ttpxbIfeue8dDagzQIEBgel+3vCs4Xq34btqX6m9Hpn1iO6bcJ/evvdtPXvHszLGuCE5AAAAAMAftW7dWrNnz5bjOFc8dvDgQR08eFBLly7Vu+++qzfeeEPPPPOMhZS4lokTJ6pPnz5KSEi47P4NGzZow4YN+uyzzzRkyBA99dRT6b7W8OHD9cQTT6T7eTwJZRoAAEAmmbdxntpPb6/c2XJrSbclql20ttuvcVuR2/Rnjz/VfXZ3DVw4UDEHYzQqcpSyBGZx+7UAAAAAAL5vzZo1yUXabbfdpgYNGigiIkLh4eHauXOnvv76ay1dulRnzpzRs88+qzNnzuiFF16wnBqXmjt3rrp06aLExEQZY9SuXTs1btxYWbJk0eLFizVhwgSdPXtWTz/9tMLCwtSjR490XS8xMfGyr0NCQlSuXDmtWrUqXc9rE2UaAABAJhj/z3g9+u2jurnAzZrXaZ4K5iiYYdcKyxqmqe2mqvLiyhq8eLD2JuzV1x2+VkiWkAy7JgAAAADAN2XLlk19+/bV448/rvLly1/x+FNPPaWPPvooeUXT4MGD1b59e0VERGR2VFzFyZMn1atXr+SCa+zYserSpUvy44888ogefPBBNWvWTOfPn9dTTz2lFi1aqECBAjd8zZIlS6pv376qUaOGatSooUqVKmnnzp0qVapUul+PLeyZBgAAkMG+WPmFus7qqgalGmhx18UZWqRdZIzRK/Vf0WeRn+n7Td+r5ZSWOnnuZIZfFwAAAADgW37++WeNGDHiqkXaRf3791fbtm0lSefPn9fEiRMzKx6u4fPPP9fu3bslSe3bt7+sSLuoYcOGyWVoQkKC3n///XRds3Xr1hoxYoS6deumm2++WUFB3r+uizINAAAgA3216iv1mN1Djco00uwHZyssa1imXr9njZ4a13qcftzyo1pPaa0z589k6vUBAAAAAJdbvHixAgMDZYxR8eLFdfTo0RSP3bp1q3LmzCljjLJnz64NGzZkXtALcufOnabj2rdvn3x79erVGRVHhw4dUnBwsIwxqlGjRprOmT17towxMsZowIABVzweExOj9957Ty1btlTp0qUVGhqqrFmzqlChQmrSpIk++eQTnT59OtVrREdHJ19j8ODBklz7kfXv318VK1ZUeHi4jDEaN27c9b7kdJk6dWry7SeffDLF4x5//PHkPdenTZuW4bm8DWUaAABABvlu43fq9m03NSjVQLMenGVtzOIjtzyiL1p9oQVbFqjLrC5KcpKs5AAAAAAASHfffbcGDRokSdqxY4d69ep11ePOnz+vhx56SMePH5ckDRs2LNXVYbaFhf3/L4+eOnUqw66TN29eNW3aVJK0YsUKrV+//prnfPXVV8m3O3fufNlj48ePV8WKFfXcc89pzpw52rp1q06dOqWzZ89q7969mj9/vvr27asqVaqk6VqXPu+tt96qYcOGKSYmRvHx8Wk+112OHz+u33//XZKUM2dO1alTJ8VjixUrpkqVKkmS4uLitG7dukzJ6C0o0wAAADLAij0r1G56O1XNX1UzH5ipbEHZrObpWq2r3rnvHU1dO1XPLXjOahYAAAAA8HevvvqqatWqJUmaPn26vvjii6sec7EIadu2rXr06JGpGa/XmjVrkm+XKFEiQ691aSF2aVF2NcePH9ecOXMkSVWqVFG1atUue/zkyZMyxqhmzZp6+umnNWrUKE2bNk2jR4/WSy+9lLz32+bNm9W0adNUVxJetHTpUnXv3l1JSUnq3r27vvjiC02aNEmvvPKKChbM+K0fLlq3bp0cx5EkVatWTQEBqVdCNWvWTL596Z8nJO8fVAkAAOBh9sTvUasprZQ3JK/mdZqn8KzhtiNJkp6941ntOLZDH/z2gSrnq6xut3azHQkAAAAA/FJQUJAmTZqkatWqKT4+Xk888YTq1auncuXKSZJ++eUXvf3225JcK4Y+//zzqz7PyZMn9cMPP7glU/HixVW9evUbOvf8+fMaO3Zs8tfNmzd3S6aUtGjRQjlz5tSxY8c0ceJEvfHGG8kjCv9txowZySMaH3744Sser1evnjZv3qxSpUpd9fzBgwfrww8/1LPPPqvt27dr2LBheuWVV1LNt3DhQhUsWFA//vhj8mqvq4mLi9OKFStSfa60ql69uooXL37ZfbGxscm3S5Ysec3nuLQEvfRcUKYBAAC41bnEc2o7ra0OnzqsXx/9VQVzZN5vnF2LMUZDmwxVzKEY9Y7qrYr5Kqp20dq2YwEAAACAXypdurQ+/vhjPfLIIzpx4oQeeugh/frrrzpx4oQ6deqkxMREBQQEaMKECSnuW7Z//361adPGLXm6dOlyw/t5vf/++4qJiZEkVa1aNcPLtKxZs6p9+/YaPXq0tm/frl9++UX16tW76rEXV64FBASoU6dOVzxeuXLlVK8VEBCgZ555RnPmzNGSJUs0YcKEa5ZpkjRq1KhUizRJWrRokbp1c88vuo4dO1Zdu3a97L5LV9HddNNN13yOvHnzXvVcMOYRAADArV5c9KJ+2/mbxrUap1sK3mI7zhWCAoI0rd00FQ0vqgdnPKijp4/ajgQAAAAAfqtz587JBc+yZcv00ksvqXfv3oqLi5MkPf/887r77rttRrymn376SS+99JIk14q7UaNGXXOcoDukZdTjrl27tHjxYklS/fr1VbRo0Ru+3h133CHJNe7x4MGDqR5bokQJtWjR4oav5S4JCQnJt7Nlu/b2EyEh/7/Xu4093jwZK9MAAADc5PtN3+vdX99Vnxp91L5ye9txUpQ7JLcmt52sumPrqsfsHprefnqK4zAAAAAA+K/+3/fX33v/th1DkpSYmKjAwMAMv061gtX0UZOPMvw6l/rkk0/066+/auvWrXrnnXeS769Vq5YGDx6c6rklS5ZM3hPLhpiYGLVv317nz5+XJL311luqU6dOply7Xr16KlGihLZv367p06dr+PDhCg4OvuyYiRMnKikpSdLVRzxeauHChZoyZYr++usvxcXFKT4+XomJiVc9dteuXamu9Kpbt26a/ju7a9euV6wmyyj8d3/6sDINAADADfbE79EjMx9RlfxV9GHjD23HuaZaRWvprXve0tfrv9Znyz+zHQcAAAAA/FZ4eLgmTZqkoKD/X/sSFhZ2xX2eZuvWrWrYsKEOHTokSerfv7+effbZTLu+MSZ5Vd+RI0c0d+7cK465uGItJCREbdu2verzHDt2TI0bN1bDhg01ZswYrVq1SkePHk2xSJOk48ePp5qtSJEiaX0ZGSpHjhzJt0+dOnXN4y89JiwsLEMyeSvP/ZcIAADgJRKTEvXwzIeVcDZB0e2iFZIl5NoneYABdwzQj1t/VP/5/XVHsTtUtUBV25EAAAAAeJDMXqGVmvj4eJ/+4X6RIkWUPXt2HTt2TJJUo0YNlS5d2nKqlO3YsUP33HOPdu7cKUnq06ePhg4dmuk5OnfurLfeekuSqzi7dP+41atXa/Xq1ZKkVq1aKTw8/KrP0a5dOy1cuFCSq0Bq0aKFqlWrpkKFCik0NDR5ZOWUKVM0depUSUq1aJMuH5doU65cuZJvXyw9U3PpMZeeC8o0AACAdBv6+1At2rpIo1uMVqV8qW8u7EkCTIDGtxmvWz69RR2/7qjlvZYra1BW27EAAAAAwK8kJSWpc+fOyUWaJEVHR2vkyJF67LHHUj335MmT+uGHH9ySo3jx4qpevfo1j9u9e7fuuecebdu2TZL06KOP6pNPPnFLhutVoUIF1axZU8uWLdPcuXN19OjR5BJowoQJycddur/apZYsWZJcpN1yyy1asGCB8uXLd9Vjly5d6t7wkuLi4rRixQq3PFf16tVVvHjxy+6LiIhIvn3xzys127dvv+q5oEwDAABIl02HN+mln15Sy/It9eitj9qOc93yZ8+vMS3HqPmk5npn6Tt6+e6XbUcCAAAAAL/y9ttva/HixZKke++9V8uWLdOxY8c0YMAA3X333apUKeVf2ty/f/9lq7HSo0uXLho3blyqx+zdu1f33HOPNm3aJEnq1KmTPv/8c6v7cT388MNatmyZzpw5o+nTp6tnz55KSkrS5MmTJUn58uVTo0aNrnruxSJNkt58880UizTp8qLJXRYtWqRu3bq55bnGjh17xf5rlSpVUkBAgJKSkrRy5UolJSUlr7S7mmXLliXfrlKlilty+Qr2TAMAALhBjuOod1RvBQcG65Nmn3jtZr7NyjVTxyod9caSN7TuwDrbcQAAAADAb/zxxx8aPHiwJKlw4cKaOnWqRo4cKcm1f9VDDz2kM2fOWEz4/w4cOKB7771XGzZskCQ98MAD+vLLL1MtZzJDx44dk/eWu7hHWnR0dPIIyksf/7d9+/Yl3y5TpkyK1zh79qyio6PdlDjzhIeHq3bt2pJce8P9/vvvKR67Y8cOrVvn+plA8eLFUy1x/ZFXlGnGmC+MMfuNMWtSeLyTMWbVhY9fjTG3ZHZGAADgf8b9PU6Lti7Su/e9qyLhnrG58I36qMlHCssapp5zeirJSbIdBwAAAAB8Xnx8vDp16qTz58/LGKMvv/xSefPmVceOHZPHEv7zzz8aNGhQis9RsmRJOY7jlo/UVqUdPnxY9913X3LZcv/99+urr75SYGCgW/83uRH58+dPXnn2888/Ky4uLrlUk1Ie8ShJoaGhybc3b96c4nEjR47UgQMH3JD2cl27dnXbn9+/V6Vd9MADDyTfHjZsWIpZhg8fLsdxJEkdOnRw6+v0BV5RpkkaJ6lJKo9vlXS34zg3S3pd0meZEQoAAPivfQn7NOCHAapXvJ561uhpO0665c+eX0MbD9WvO37Vp8s+tR0HAAAAAHxe3759kwucAQMG6L777kt+7OOPP1bp0qUluQqQ+fPnW8kouVY0NWrUSKtWrZIktWzZUlOmTElxtZcNDz/8sCTXBJkxY8bo66+/liSVL19eNWvWTPG82267Lfn2a6+9dtVVgHPmzEm10PR0PXr0UOHChSVJ06ZN05dffnnFMQsXLtTQoUMlSTly5NAzzzxz1efatm2bjDHJH/7Ec/62p8JxnCXGmJKpPP7rJV/+LqlohocCAAB+7cnvn9SJcyf0eYvPFWC85feTUtf55s76atVXGrhwoFpEtFCxnMVsRwIAAAAAnzR58mRNmDBBknTrrbfqzTffvOzxsLAwTZo0SXXr1tX58+fVtWtXrVq1KtU9vTJK06ZNtXz5ckmuUZSdOnXS3LlzUz0nNDQ0xX3KunbtmlzovPLKK8ljLtOjdevWCgsLU3x8vIYMGaKzZ89KSn1VmiS1adNGRYoU0a5du/Tnn3+qUqVK6t69u0qXLq2jR49q3rx5mjNnjkJDQ3X//ffrm2++SXfWzBYaGqrPPvtMrVq1UmJiorp166a5c+eqadOmCgoK0uLFizV+/HidP39ekjR06FAVKFAg3dd98cUXL/v62LFjybe3bt16xePVq1fX/fffn+7rZhSvKNOuU3dJ39kOAQAAfNdPW3/S1LVT9Vr911T+pvK247iNMUajIkep0ieV9NzC5zS57WTbkQAAAADA52zbtk2PPfaYJFfRMWnSJAUHB19xXK1atTR48GC9+OKL2rt3r7p166aoqKjMjqvffvst+fbu3bsvGxuYkhIlSmjbtm0ZmOpyISEhatu2rcaNG5dcpBlj1KlTp2ueN2PGDDVr1kxHjhzRli1b9MILL1x2TK5cuTRx4kT9+eefXlmmSVLz5s315Zdfqk+fPkpISND06dM1ffr0y47JkiWL3nnnHfXo0cMt1/x3QXypuLi4Kx7v0qULZVpmMcY0kKtMq5vKMb0k9ZKkQoUKeeWmgQA8W0JCAu8tgA9LdBLVe3lvFchaQLUSa1n5957R12xfuL0mrJmgO4PuVJWcVTL0WgDs4vsWABmB9xbAs+XMmVPx8fG2Y1y3xMREr8z9b4mJierYsWPyKp233npLRYoUSfG19evXT999952WLl2quXPn6v3331fv3r0zM/INcRwnxdd0/Pjx5NsXV5O5w8Uy7aI6deoob96813z+ypUra+nSpfroo4+0YMEC7dq1SyEhISpSpIgaN26sHj16qFixYvr555+Tzzl58uQVz3vy5Mnk22fOnPG4v68tW7ZUtWrVNHr0aM2fP187d+5UUlKSChUqpAYNGqhHjx6qWLFiqrkTEhIu+9qdr/HcuXM3/HynT5/O8O89zMUN5TzdhTGPUY7jXPUnOsaYmyXNlNTUcZzYtDxn4cKFnd27d7svJADI9UPu+vXr244BIIOMXjFaPef01LR209S+cvsMv5559coZ5M4rGfv9W8LZBJUfUV5Fw4vqt+6/+cwYSwBX4vsWABmB9xbAs61fv14VK1a0HeO6xcfHKywszHYMuEHhwoW1Z88eFSpUSJs2bVJoaKjtSPBy6XlfM8Ysdxwn5Y31LvCJn4wYY4pL+kZS57QWaQAAANfr+JnjemHRC6pbvK7aVWpnO06GyRGcQ2/f+7b+3PWnJq2eZDsOAAAAAMBHrF27Vnv27JEkvfzyyxRp8BpeUaYZYyZL+k1SeWPMTmNMd2NMH2NMnwuHvCwpr6RPjDF/G2OWWQsLAAB81ls/v6UDJw7oo8YfyZgrV4z5kodvflg1C9fUoIWDdOLsCdtxAAAAAAA+YOHChZKksmXLum1vLiAzeEWZ5jhOR8dxCjmOk8VxnKKO44xxHOdTx3E+vfB4D8dxcjuOU+3CxzWX5AEAAFyPLUe2aOjvQ/XILY+oRuEatuNkuAAToKGNh2pX/C699+t7tuMAAAAAAHzAjz/+KEl6/fXXFRQUZDkNkHb8bQUAAEiDFxe9qKCAIL1171u2o2SausXrqkPlDnp36bvqU7OPCuYoaDsSAAAAAMCLzZ4923YE4IZ4xco0AAAAm1bvW60pa6aof63+KhxW2HacTPVGgzd0NvGshvwyxHYUAAAAAAAAKyjTAAAAruGV6FcUljVMA+4YYDtKpiuXt5y63NJFI5eN1M7jO23HAQAAAAAAyHSUaQAAAKlYvnu5ZsbM1IA6A5QnJI/tOFa8dPdLchxHby5503YUAAAAAACATEeZBgAAkIqXfnpJeULyqH/t/rajWFMyV0n1rN5To1eO1tYjW23HAQAAAAAAyFSUaQAAAClYGrdU3236TgPvHKjwrOG241j1wl0vKCggSK8tec12FAAAAAAAgExFmQYAAJCCl356SQWyF1Df2/rajmJd4bDC+k/N/2j8P+O14eAG23EAAAAAAAAyDWUaAADAVfwS94t+2vaTnq/7vLIHZ7cdxyMMrDtQ2YKy6c2f2TsNAAAAAAD4D8o0AACAq3j7l7eVLzSfetboaTuKx8ifPb96Ve+lSasnadvRbbbjAAAAAAAAZArKNAAAgH/5Z+8/mrdxnp6s9aRCs4TajuNRBtwxQAEmQO//+r7tKAAAAAAAAJmCMg0AAOBfhiwdorDgMPW9nb3S/q1oeFF1vrmzxqwco30J+2zHAQAAAAAAyHCUaQAAAJfYdHiTpq2dpsdqPqZc2XLZjuORnrvzOZ05f0bD/hhmOwoAAAAAAECGo0wDAAC4xHtL31OWgCx6qs5TtqN4rPI3lVfbSm318V8f69jpY7bjAAAAAAAAZCjKNAAAgAt2x+/WuH/GqVu1biqYo6DtOB7t+brP6/iZ4xq5bKTtKAAAAAAAABmKMg0AAOCCj37/SOeTzuvZO5+1HcXjVS9UXY3KNNLQ34fq9PnTtuMAAAAAAABkGMo0AAAASQlnE/TZ8s/UrlI7lc5d2nYcr/DcHc9p/4n9mrx6su0oAAAAAAAAGYYyDQAAQNKXf3+pY2eO6ana7JWWVveUukdV8lfRR398JMdxbMcBAAAAAADIEJRpAADA7yU5SRr2xzDVKlJLtYvWth3Haxhj1L9Wf63at0rR26JtxwEAAAAAAMgQlGkAAMDvfbfxO208vFH9a/e3HcXrPFT1Id0UepM++uMj21EAAAAAAJns8OHDKliwoIwxyR/btm2zHQsp2L59uwYNGqSqVasqZ86cypEjhypUqKDHH39ca9euddt1zp8/r4ULF2rQoEG65557VKhQIWXNmlU5cuRQmTJl9OCDD2rWrFlKTEx02zUzWpDtAAAAALYN/X2oioQVUduKbW1H8TohWULUp0Yfvfnzm9p0eJPK5ilrOxIAAAAAIJM8/fTT2rdvn+0YSIOJEyeqT58+SkhIuOz+DRs2aMOGDfrss880ZMgQPfVU+ra/+Omnn9SuXTsdPnz4isfOnj2rLVu2aMuWLZo6dapuu+02TZ48WWXKlEnXNTMDK9MAAIBfW71vtX7c+qP63d5PWQKz2I7jlR677TEFBQRp+B/DbUcBAAAAAGSSBQsW6Msvv1RAQICyZctmOw5SMXfuXHXp0kUJCQkyxqh9+/YaPXq0vvzySz366KPKkiWLzp49q6efflqjR49O17V27dqVXKTlyZNHHTp00IcffqjJkydr/Pjx6tevn8LDwyVJf/31lxo0aKC9e/em+zVmNMo0AADg14b9MUwhQSHqWb2n7Sheq3BYYT1Q5QF98fcXOnb6mO04AAAAAIAMduLECfXu3VuS1LdvXxUoUMByIqTk5MmT6tWrV/JIxbFjx2ratGnq3r27HnnkEY0ZM0Zz585VUJBrkOFTTz2V7tWGVatW1aRJk7R7925NnTpVTz31lB588EF17txZw4cP17p161S5cmVJ0o4dOzRw4MD0vchMQJkGAAD81sGTB/XVqq/0yC2PKG9oXttxvFr/Wv2VcDZBX6z8wnYUAAAAAEAGe/HFF7V161YVKVJEb775pu04SMXnn3+u3bt3S5Lat2+vLl26XHFMw4YNk8c7JiQk6P3337/h60VGRuqff/5Rx44dlTVr1qseU6RIEU2ZMiX56+nTp+vkyZM3fM3MQJkGAAD81hcrv9CZxDN6/PbHbUfxejUK19Adxe7QyGUjleQk2Y4DAAAAAB5r8eLFCgwMlDFGxYsX19GjR1M8duvWrcqZM6eMMcqePbs2bNiQeUFT8Oeff+p///ufJGn48OEKCwvL1OsfOnRIwcHBMsaoRo0aaTpn9uzZMsbIGKMBAwZc8XhMTIzee+89tWzZUqVLl1ZoaKiyZs2qQoUKqUmTJvrkk090+vTpVK8RHR2dfI3BgwdLcu1H1r9/f1WsWFHh4eEyxmjcuHHX+5LTZerUqcm3n3zyyRSPe/zxx2WMkSRNmzbthq+XK1eu5OdJTZUqVVShQgVJ0qlTp7Rp06YbvmZmoEwDAAB+KclJ0qjlo3RXibtUOX9l23F8wmM1H9PGwxu1aOsi21EAAAAAwGPdfffdGjRokCTXiLtevXpd9bjz58/roYce0vHjxyVJw4YNU/ny5TMt59WcO3dO3bt3V1JSklq1aqU2bdpkeoa8efOqadOmkqQVK1Zo/fr11zznq6++Sr7duXPnyx4bP368KlasqOeee05z5szR1q1bderUKZ09e1Z79+7V/Pnz1bdvX1WpUiVN17r0eW+99VYNGzZMMTExio+PT/O57nL8+HH9/vvvkqScOXOqTp06KR5brFgxVapUSZIUFxendevWZXi+S4vYU6dOZfj10oMyDQAA+KUfNv+gLUe26LGaj9mO4jPaVWqnvCF5NXLZSNtRAAAAAMCjvfrqq6pVq5Yk14i7L764cmT+q6++mlyEtG3bVj169MjUjFfz9ttva82aNcqRI4dGjBhhLcelhdilRdnVHD9+XHPmzJHkWg1VrVq1yx4/efKkjDGqWbOmnn76aY0aNUrTpk3T6NGj9dJLLykiIkKStHnzZjVt2jTVlYQXLV26NLl07N69u7744gtNmjRJr7zyigoWLHh9LzYd1q1bJ8dxJEnVqlVTQEDqlVDNmjWTb69ZsyZDs509e1YbN25M/rpEiRIZer30CrIdAAAAwIaRy0Yqf/b8ur/i/baj+IxsQdn06K2P6sPfPtSu47tUJLyI7UgAAAAA4JGCgoI0adIkVatWTfHx8XriiSdUr149lStXTpL0yy+/6O2335bkWjH0+eefX/V5Tp48qR9++MEtmYoXL67q1aun+Pj69ev11ltvSZLefPNNFS1a1C3XvREtWrRQzpw5dezYMU2cOFFvvPFGiqMFZ8yYkTyi8eGHH77i8Xr16mnz5s0qVarUVc8fPHiwPvzwQz377LPavn27hg0bpldeeSXVfAsXLlTBggX1448/Jq/2upq4uDitWLEi1edKq+rVq6t48eKX3RcbG5t8u2TJktd8jksLrUvPzQjTpk1LLiarV6+eqSXjjaBMAwAAfifuWJyiYqM08M6BCg4Mth3Hp/Su0Vvv/fqeRq8YrVfqp/4fFwAAAADgz0qXLq2PP/5YjzzyiE6cOKGHHnpIv/76q06cOKFOnTopMTFRAQEBmjBhgnLnzn3V59i/f7/bRi126dIlxf28kpKS1KNHD505c0Y1a9ZUv3793HLNG5U1a1a1b99eo0eP1vbt2/XLL7+oXr16Vz324sq1gIAAderU6YrHK1dOfeuHgIAAPfPMM5ozZ46WLFmiCRMmXLNMk6RRo0alWqRJ0qJFi9StW7drPldajB07Vl27dr3svktX0d10003XfI68efNe9Vx3O3LkiJ577rnkr59//vkMu5a7MOYRAAD4nc+Xfy7HcdSrxtXn0uPGlclTRo3LNNbnKz7X+aTztuMAAAAAgEfr3LlzcsGzbNkyvfTSS+rdu7fi4uIkuUqGu+++22ZESdLHH3+sX3/9VYGBgfrss8+uOS4wM6Rl1OOuXbu0ePFiSVL9+vXTtZrujjvukOQa93jw4MFUjy1RooRatGhxw9dyl4SEhOTb2bJlu+bxISEhybczao+3xMREPfjgg9qzZ48kqXnz5mrXrl2GXMudWJkGAAD8yrnEcxq9crSalWumkrlK2o7jkx6r+ZhaT22tORvmqE3FzN+MGgAAAICb9O8v/f237RSSpJDERCkwMOMvVK2a9NFHGX+dS3zyySf69ddftXXrVr3zzjvJ99eqVUuDBw9O9dySJUsm74mVUeLi4vTf//5XktS/f3/deuutGXq9tKpXr55KlCih7du3a/r06Ro+fLiCgy+fPjNx4kQlJSVJuvqIx0stXLhQU6ZM0V9//aW4uDjFx8crMTHxqsfu2rUr1ZVedevWTXHs5KW6du16xWqyjJKWPJnhySefTB5NWrx48RRXQ3oa+/UxAABAJpoVM0t7E/bqsZqP2Y7is5pHNFfR8KIauWyk7SgAAAAA4PHCw8M1adIkBQX9/9qXsLCwK+6z5bHHHlNCQoJKlCihV1991XacZMaY5FV9R44c0dy5c6845uKKtZCQELVt2/aqz3Ps2DE1btxYDRs21JgxY7Rq1SodPXo0xSJNko4fP55qtiJFPGMP8Rw5ciTfPnXq1DWPv/SYsLAwt+d54YUX9PHHH0uSChQooAULFqRp/KQnsP8vEQAAIBONWj5KJXKWUJOyTWxH8VlBAUHqVb2XXo5+WZsPb1aZPGVsRwIAAABwIzJ5hVZqTsXHZ8gP9z1FkSJFlD17dh07dkySVKNGDZUuXdpyKlcZNW/ePEmuUY/Zs2e3nOhynTt31ltvvSXJlfXS/eNWr16t1atXS5JatWql8PDwqz5Hu3bttHDhQkmuAqlFixaqVq2aChUqpNDQ0OSRllOmTNHUqVMlKdWiTbp8XKJNuXLlSr596NChax5/6TGXnusOb7zxRvKf1U033aSFCxcqIiLCrdfISJRpAADAb2w9slU/bv1Rr9V/TYEBmTAexI89euujGrx4sMb+PVZv3POG7TgAAAAA4LGSkpLUuXPn5CJNkqKjozVy5Eg99ljqU1VOnjyZPDIvvYoXL67q1atfdt+YMWMkSQULFtTKlSu1cuXKq557afYRI0YkFzE9e/ZUgQIF3JLvaipUqKCaNWtq2bJlmjt3ro4ePZp87QkTJiQfd+n+apdasmRJcpF2yy23aMGCBcqXL99Vj126dKl7w8s1QnPFihVuea7q1aurePHil913aVm1bdu2az7H9u3br3puer377rt66aWXJEm5c+fWggULVKVKFbc9f2agTAMAAH5j7N9jZWTUpVoX21F8XpHwImpStonG/T1Og+sPVlAA33YCAAAAwNW8/fbbWrx4sSTp3nvv1bJly3Ts2DENGDBAd999typVqpTiufv3779sNVZ6dOnS5Yr9qy7ux7Z3797kMuRaPvjgg+TbkZGRGVqmSa690JYtW6YzZ85o+vTp6tmzp5KSkjR58mRJUr58+dSoUaOrnnuxSJOkN998M8UiTbq8aHKXRYsWqVu3bm55rrFjx16x/1qlSpUUEBCgpKQkrVy5UklJSckr7a5m2bJlybfdVXYNHTpUAwcOlOQaaTp//nxVq1bNLc+dmdgzDQAA+IXEpESN/XusGpVppOI5i1/7BKRb91u7a1f8Ls3fNN92FAAAAADwSH/88YcGDx4sSSpcuLCmTp2qkSNd+0+fOnVKDz30kM6cOWMxoefr2LFj8t5yF/dIi46O1s6dO694/N/27duXfLtMmZS3KDh79qyio6PdlDjzhIeHq3bt2pJcqwd///33FI/dsWOH1q1bJ8m1SjG1EjetPv74Yz399NOSXCM0v//+e912223pfl4bKNMAAIBfWLBlgXYe36nut3a3HcVvREZEKl9oPo1ZOcZ2FAAAAADwOPHx8erUqZPOnz8vY4y+/PJL5c2bVx07dkweS/jPP/9o0KBBKT5HyZIl5TiOWz7+vSpNcpVSaTm3RIkSyeds3bo1+f7MWIGUP3/+5JVnP//8s+Li4pJLNSnlEY+SFBoamnx78+bNKR43cuRIHThwwA1pL9e1a1e3/fn9e1XaRQ888EDy7WHDhqWYZfjw4ckrETt06JDu1/b555/r8ccflyRlz55d8+bNU506ddL9vLZQpgEAAL8wZuUY5Q3Jq5blW9qO4jeCA4P1yC2PaE7sHO1L2HftEwAAAADAj/Tt2ze5wBkwYIDuu+++5Mc+/vhjlS5dWpKrAJk/n4kfqXn44YclucZSjhkzRl9//bUkqXz58qpZs2aK5126Suq111676irAOXPmpFpoeroePXqocOHCkqRp06bpyy+/vOKYhQsXaujQoZKkHDly6Jlnnrnqc23btk3GmOSPlEyYMEF9+vSR4zgKDQ1VVFSU6tat64ZXYw+bVwAAAJ934MQBfRvzrfre1ldZg7LajuNXut/aXR/89oEmrJqgZ+64+jfjAAAAAOBvJk+erAkTJkiSbr31Vr355puXPR4WFqZJkyapbt26On/+vLp27apVq1aluqeXt+jatWtyofPKK68kj7lMj9atWyssLEzx8fEaMmSIzp49Kyn1VWmS1KZNGxUpUkS7du3Sn3/+qUqVKql79+4qXbq0jh49qnnz5mnOnDkKDQ3V/fffr2+++SbdWTNbaGioPvvsM7Vq1UqJiYnq1q2b5s6dq6ZNmyooKEiLFy/W+PHjdf78eUmuPc7Ss8/dd999p27duikpKUmS9Oijj+ro0aOaNWtWqudVr15dxYt77rYclGkAAMDnfbXqK51LOqfu1RnxmNkq5quoOkXraMzKMRpQZ0Cqv7kGAAAAAP5g27ZteuyxxyS5io5JkyYpODj4iuNq1aqlwYMH68UXX9TevXvVrVs3RUVFZXZcrxASEqK2bdtq3LhxyUWaMUadOnW65nkzZsxQs2bNdOTIEW3ZskUvvPDCZcfkypVLEydO1J9//umVZZokNW/eXF9++aX69OmjhIQETZ8+XdOnT7/smCxZsuidd95Rjx490nWtP/74Q4mJiclfjxgxQiNGjLjmeWPHjk1xVKUnYMwjAADwaY7jaMzKMbq9yO2qkr+K7Th+qfut3RVzMEa/7fzNdhQAAAAAsCoxMVEPP/ywjh07Jkn68MMPVaFChRSPf/7553XXXXdJkubOnZumUsLTnTx5Mvm2O1fa/XsVWt26dVWyZMlrnle7dm39888/6tevn8qUKaPg4GDlzJlTVapU0cCBA/XPP/+oWbNmbstpS6dOnbRmzRo999xzqly5ssLCwpQ9e3ZFRESob9++WrlypZ566inbMT2WubihnD8qXLiws3v3btsxAPiY6Oho1a9f33YMABf8uetP1RpdS6MiR6lXjV6241w38+qVK7mcV7zr+7eEswkq+H5BPVjlQY1uOdp2HACX4PsWABmB9xbAs61fv14VK1a0HeO6xcfHKywszHYMuEHhwoW1Z88eFSpUSJs2bVJoaKjtSPBy6XlfM8Ysdxwn5Y31LmBlGgAA8Gnj/xmvbEHZ9EDlB2xH8Vs5gnOofeX2mrZ2mk6dO2U7DgAAAADAkrVr12rPnj2SpJdffpkiDV6DMg0AAPiss4lnNXnNZLWu0Fo5s+W0HcevPXLzI4o/G69vN3xrOwoAAAAAwJKFCxdKksqWLZvuvbmAzESZBgAAfNbc2Lk6fOqwHrn5EdtR/N7dJe9WsfBiGv/PeNtRAAAAAACW/Pjjj5Kk119/XUFBQZbTAGnH31YAAOCzxq8arwLZC6hhmYa2o/i9ABOgzjd31pClQ7Q3Ya8K5ihoOxIAAAAAIJPNnj3bdgTghrAyDQAA+KSDJw9qbuxcdaraSUEB/P6QJ3jklkeU5CRp0upJtqMAAAAAAACkGWUaAADwSVPXTNW5pHPqUq2L7Si4oPxN5VWrSC19+c+XtqMAAAAAAACkGWUaAADwSeNXjdctBW7RzQVuth0Fl3jklke0at8q/bP3H9tRAAAAAAAA0oQyDQAA+JyYgzH6c9efeuSWR2xHwb88UPkBZQnIovH/jLcdBQAAAAAAIE0o0wAAgM8Z/894BZgAPVT1IdtR8C95Q/MqMiJSE1dP1Pmk87bjAAAAAAAAXBNlGgAA8ClJTpImrp6oRmUaqWCOgrbj4Co639xZ+07s049bfrQdBQAAAAAA4Joo0wAAgE/5bcdvijsWp4eqsCrNUzUr10w5s+bU5DWTbUcBAAAAAAC4Jso0AADgUyatnqRsQdnUukJr21GQgqxBWdW2Ylt9s/4bnTp3ynYcAAAAwO84jmM7AgC4RWa9n1GmAQAAn3E+6bymr5uuFhEtFJY1zHYcpKJj1Y6KPxuveRvn2Y4CAAAA+JWAgAAlJSXZjgEAbpGUlKSAgIyvuijTAACAz/hxy486cPKAOlbpaDsKrqFByQYqkL0Aox4BAACATBYSEqITJ07YjgEAbnHixAmFhIRk+HUo0wAAgM+YvGaywrOGq2m5praj4BoCAwLVoXIHRcVG6fiZ47bjAAAAAH4jLCxM8fHxtmMAgFvEx8crLCzjpxNRpgEAAJ9w6twpfbP+G91f8X5lC8pmOw7SoGOVjjqTeEazYmbZjgIAAAD4jfDwcJ08eVJHjhyxHQUA0uXIkSM6efKkwsPDM/xalGkAAMAnzNs4T/Fn4/VQlYdsR0Ea1S5aWyVzldSk1ZNsRwEAAAD8RmBgoEqUKKGDBw9q165dOn78uBITE+U4ju1oAJAqx3GUmJio48ePa9euXTp48KBKlCihwMDADL92UIZfAQAAIBNMXjNZ+bPnV4NSDWxHQRoZY9SxSke9u/RdHThxQPmy57MdCQAAAPALwcHBKl26tI4fP66jR49qz549SkpKsh0rVadPn1a2bEwhAfxdQECAQkJCFBYWpoIFC2ZKkSZRpgEAAB9w/MxxRcVGqWf1ngoK4Nsbb9KxSke9/cvbmr5uuv5z239sxwEAAAD8RmBgoHLnzq3cuXPbjpIm0dHRuvXWW23HAOCnGPMIAAC83qyYWTqTeEYdq3a0HQXXqWqBqqqcr7Imr5lsOwoAAAAAAMBVUaYBAACvN3nNZJXMVVJ1itaxHQU34KGqD+mXuF8UdyzOdhQAAAAAAIArUKYBAACvduDEAS3YvEAPVn5QxhjbcXADHqzyoCRpypoplpMAAAAAAABciTINAAB4tenrpivRSWTEoxcrnbu0ahWpxahHAAAAAADgkSjTAACAV5u8ZrIq5aukqvmr2o6CdOhYpaP+3vu3Yg7G2I4CAAAAAABwGco0AADgtXYc26Ff4n5RxyodGfHo5TpU7qAAE8CoRwAAAAAA4HEo0wAAgNf6ev3XklxFDLxbobBCuqvEXZq+brrtKAAAAAAAAJehTAMAAF5rxroZurnAzYrIG2E7CtygXcV2WndgndYdWGc7CgAAAAAAQDLKNAAA4JV2Hd+lpTuWqn2l9rajwE3ur3i/jIxmrJthOwoAAAAAAEAyryjTjDFfGGP2G2PWpPC4Mcb8zxizyRizyhhTPbMzAgCAzPXN+m8kSe0qtbOcBO5SKKyQ6havy6hHAAAAAADgUbyiTJM0TlKTVB5vKqnchY9ekkZmQiYAAGDR9HXTVSV/FVW4qYLtKHCj9pXaa83+NYo5GGM7CgAAAAAAgCQvKdMcx1ki6XAqh7SSNN5x+V1SLmNMocxJBwAAMtue+D36Je4XRjz6oPsr3i9JjHoEAAAAAAAewyvKtDQoImnHJV/vvHAfAADwQd+s/0aOHEY8+qAi4UV0Z7E7GfUIAAAAAAA8RpDtAG5irnKfc9UDjekl1yhIFSpUSNHR0RkYC4A/SkhI4L0FyGCf//25SoSW0P61+7Vf+23HyXS+/h5TLbiaPt7xsSbMm6BiocVsxwF8Gt+3AMgIvLcAyAi8twCwyVfKtJ2SLv1JS1FJu692oOM4n0n6TJIKFy7s1K9fP8PDAfAv0dHR4r0FyDj7EvZp1eJVeumul/zj39riK+/y9ddd5lgZffzRx9oRtkOd63W2HQfwaXzfAiAj8N4CICPw3gLAJl8Z8zhb0iPGpbakY47j7LEdCgAAuN/FEY/tK7Nfmq8qlrOYahetzb5pAAAAAADAI3hFmWaMmSzpN0nljTE7jTHdjTF9jDF9LhwyT9IWSZskfS7pP5aiAgCADDZj/QyVz1telfNVth0FGah9pfZauXelNh/ebDsKAAAAAADwc15RpjmO09FxnEKO42RxHKeo4zhjHMf51HGcTy887jiO09dxnDKO41R1HGeZ7cwAAMD99p/Yr+ht0Wpfqb2MudqWqfAVbSu2lSRNXzfdchIAAAAAAODvvKJMAwAAkKRZMbOU5CSpXaV2tqMgg5XIVUK3F7mdUY8AAAAAAMA6yjQAAOA1pq+brnJ5yunmAjfbjoJM0K5iOy3fs1xbjmyxHQUAAAAAAPgxyjQAAOAVDp48qJ+2/sSIRz9ycQXi1+u+tpwEAAAAAAD4M8o0AADgFWbFzFKik8iIRz9SKncp1ShUg33TAAAAAACAVZRpAADAK8yMmalSuUqpWsFqtqMgE7Wt2FZ/7f5LO4/vtB0FAAAAAAD4Kco0AADg8Y6fOa6FWxaqTYU2jHj0M20qtpHkWpkIAAAAAABgA2UaAADweN9t/E5nE88mFyvwHxVuqqAKN1XQzJiZtqMAAAAAAAA/RZkGAAA83jcx3yh/9vyqU7SO7SiwoE2FNlq8bbEOnTxkOwoAAAAAAPBDlGkAAMCjnT5/WvM2zlOr8q0UGBBoOw4saFOhjRKdREXFRtmOAgAAAAAA/BBlGgAA8Gg/bvlRCWcT1KYCIx79Vc3CNVU0vKi+ifnGdhQAAAAAAOCHKNMAAIBHmxkzU2HBYbqn1D22o8ASY4xal2+tHzb/oBNnT9iOAwAAAAAA/AxlGgAA8FiJSYmavWG2mkc0V9agrLbjwKI2Fdvo9PnT+n7T97ajAAAAAAAAP0OZBgAAPNbSHUt14OQB3V/hfttRYNldJe5SnpA8mhkz03YUAAAAAADgZyjTAACAx/pm/TfKGphVTcs1tR0FlgUFBKll+ZaKio3S2cSztuMAAAAAAAA/QpkGAAA8kuM4mhkzUw3LNFSO4By248ADtKnQRsfOHFP0tmjbUQAAAAAAgB+hTAMAAB5p5d6VijsWpzYV2tiOAg/RsHRDZc+SXTPXM+oRAAAAAABkHso0AADgkWaun6kAE6AWES1sR4GHCMkSoiZlm+jbDd8qyUmyHQcAAAAAAPgJyjQAAOCRZsbMVL3i9ZQvez7bUeBB2lRooz0Je/THzj9sRwEAAAAAAH6CMg0AAHicjYc2au2BtYx4xBWaRzRXUECQZsYw6hEAAAAAAGQOyjQAAOBxLhYlbSpSpuFyubLl0r2l7tU367+R4zi24wAAAAAAAD9AmQYAADzOrJhZql6ouornLG47CjxQmwpttPnIZq09sNZ2FAAAAAAA4Aco0wAAgEfZl7BPv+/8Xa3Lt7YdBR6qRfkWkqTZG2ZbTgIAAAAAAPwBZRoAAPAoUbFRcuSoZfmWtqPAQxUOK6zbCt9GmQYAAAAAADIFZRoAAPAos2Nnq3jO4rq5wM22o8CDtSzfUn/s+kN7E/bajgIAAAAAAHwcZRoAAPAYJ8+d1ILNC9QyoqWMMbbjwIO1Kt9KkjRnwxzLSQAAAAAAgK+jTAMAAB5j4ZaFOnX+lFpVaGU7CjxclfxVVDJXSc2OZdQjAAAAAADIWJRpAADAY8zeMFvhWcN1V4m7bEeBhzPGqGVESy3cslAnzp6wHQcAAAAAAPgwyjQAAOARkpwkzYmdo6Zlmyo4MNh2HHiBluVb6vT501qwZYHtKAAAAAAAwIdRpgEAAI/wx84/tP/EfrUs39J2FHiJu0rcpZxZc2r2BkY9AgAAAACAjEOZBgAAPMLsDbMVFBCkpmWb2o4CL5ElMIualWumqNgoJSYl2o4DAAAAAAB8FGUaAADwCLNjZ+uuEncpd0hu21HgRVqWb6kDJw/o952/244CAAAAAAB8FGUaAACwbtPhTVp3YJ1aRjDiEdenadmmCgoIYtQjAAAAAADIMJRpAADAuotFCPul4XrlzJZT9UvW1+xYyjQAAAAAAJAxKNMAAIB1szfMVtX8VVUqdynbUeCFWka0VMzBGMUeirUdBQAAAAAA+CDKNAAAYNWhk4f0S9wvrErDDbv4d4dRjwAAAAAAICNQpgEAAKu+2/SdEp1EyjTcsBK5SuiWArdQpgEAAAAAgAxBmQYAAKz6dsO3KpSjkGoWrmk7CrxYy/IttXTHUh08edB2FAAA/JPjSKdPS4cPK8uRI1JCgpSUZDsVAACAWwTZDgAAAPzXmfNn9P2m7/VQlYcUYPgdH9y4VuVb6fUlr2tu7Fx1qdbFdhwAAHzTsWPS8uXSmjXS2rXSli3Szp3S7t2XlWd3XnpOSIiUN69UrJhUvLhUsaJUubJ0661S6dKSMVZeCgAAwPWgTAMAANZEb4tWwtkERjwi3aoXqq7CYYU1O3Y2ZRoAAO4SHy8tWiT98IO0ZImrQHMc12N58khly7qKsYYNpfBw6bffpOBgHTpyRHnDwqRz56TbbpMOHJB27JD++kuaNu3/nyN/fumOO6T77pMaN3Y9HwAAgAeiTAMAANZ8u+FbhWYJ1T2l7rEdBV7OGKOWES01YdUEnT5/WtmCstmOBACAdzp6VJo1y1V6LVzoKsSyZ5fq1ZPat5dq15ZuvlkqUODKVWUXvs576X3R0Zcfc/KktH69tGyZq3xbssR1PUkqX17q0MH1UaVKhrw8AACAG8E8JQAAYIXjOJq9YbYal2mskCwhtuPAB7Qs31Inzp3Qoq2LbEcBAMC7OI6r9Hr4YalQIalbN2ndOumJJ6SffpIOH5a++056+WWpUSOpYMEbH88YGirVqCH17i2NG+caFblxo/S//0mFC0tvvilVrSrVrCl9+ql0/Lg7XykAAMANoUwDAABWrNy7UrvidzHiEW5zT6l7lCM4h2ZvmG07CgAA3uH0aemLL1wrzRo0kKKipO7dpT/+kLZuld5/X6pfXwoOztgcZctKjz/uGim5e7c0bJh09qz02GNS0aLSU0+58gAAAFhCmQYAAKyYvWG2jIyal2tuOwp8RNagrGpcprHmxM5RkpNkOw4AAJ7r1Cnpo4+kUqVc5VlAgKtU271bGjFCuv32G195ll4FCrhWxP3zj6vUa9nSlalsWalzZ2nDBju5AACAX6NMAwAAVszeMFt3FLtD+bLnsx0FPqRl+ZbaHb9by3cvtx0FAADPc+6cNHKkVLq0a7VXxYqufdH+/ts12jE01HbC/2eMq9T76itp2zZX3q+/lipVkrp0keLibCcEAAB+hDINAABkul3Hd2nl3pVqEdHCdhT4mGblmsnIaO7GubajAADgWebMkapUkf7zHykiQlq82DVW8d577a1CS6siRVwjJy+WalOnul7DoEFSfLztdAAAwA9QpgEAgEx3seiIjIi0nAS+5qbQm1SnWB1FxUbZjgIAgGfYuVNq08Y1LjEgQPr2Wyk6WrrrLtvJrl/+/K5SbcMGqUMH6Z13pMqVXUUhAABABqJMAwAAmS4qNkolc5VUpXyVbEeBD4osF6nle5Zrd/xu21EAALAnMVEaPtw1FvH776UhQ6RVq1ylmqevRLuWEiWk8eOlX3+VcuZ0vaZ27Vx7vgEAAGQAyjQAAJCpTp07pYVbFqp5ueYy3v6DHHikiyse522cZzkJAACWrFol3XGH9MQTUu3a0po10sCBUpYstpO5V5060vLl0ltvSXPnuvaA++QTKSnJdjIAAOBjKNMAAECmit4WrVPnTzHiERmmSv4qKp6zOKMeAQD+x3GkYcOk226Ttm6VvvpKmj9fKlPGdrKMExwsPf+8tHq163X37Ss1aybt22c7GQAA8CGUaQAAIFNFxUYpNEuo6pesbzsKfJQxRpHlIrVgywKdPn/adhwAADLHwYOucYf9+0uNG0vr1kmdOnn/SMe0KltWWrBAGjlSWrxYuuUW19cAAABuQJkGAAAyjeM4itoYpYalGypbUDbbceDDIiMidfLcSUVvi7YdBQCAjBcd7SqPfvhB+t//pG+/lW66yXaqzGeM1KeP9NdfUt68rlLx+eelc+dsJwMAAF6OMg0AAGSaNfvXKO5YHCMekeEalGqg0CyhjHoEAPi2pCRp8GDpnnuksDDpjz+kxx/3n9VoKalSxVWo9ewpDRki1asn7dhhOxUAAPBilGkAACDTXCw2mpVrZjkJfF22oGxqWLqhomKj5DiO7TgAALhfQoLUrp306qtS587SsmVStWq2U3mO0FBp1Chp2jTXyMvbbnOVjQAAADeAMg0AAGSaqI1Rql6ougqHFbYdBX4gMiJS249t19oDa21HAQDAveLipLp1XeMcP/pIGjdOypHDdirP1L699PvvUvbs0t13S199ZTsRAADwQpRpAAAgUxw8eVC/7/xdkeUY8YjMcXEFJKMeAQA+5bffXKustm6V5s6VnnySsY7XUqmSa1Va7dquVXzPP+8akQkAAJBGlGkAACBTfL/peyU5SeyXhkxTOKywahSqQZkGAPAdX30l1a8vhYe7Vls1aWI7kfe46Sbphx+kXr1c+6jdf7904oTtVAAAwEtQpgEAgEwRFRulAtkLqEbhGrajwI9ERkTqt52/6eDJg7ajAACQPh984FpVdeedrlVWFSvaTuR9goOlTz+Vhg+X5syR7rtPOnzYdioAAOAFKNMAAECGO5d4Tt9v+l7NyzVXgOHbD2SeyIhIJTlJ+m7jd7ajAABwYxzHNZbwmWekDh2k77+X8uSxncp7GSP16yfNmCGtWOHaR233btupAACAh+OnWQAAIMMt3bFUx84cY8QjMl31QtVVMEdBRW1k1CMAwAslJkq9e7vGEvbuLU2a5FpdhfRr08ZVTG7b5lrtt2mT7UQAAMCDUaYBAIAMFxUbpSwBWXRf6ftsR4GfCTABal6uub7f9L3OJZ6zHQcAgLQ7c0Z68EHp88+lF16QRo6UAgNtp/ItDRpIP/0kJSRIdetK//xjOxEAAPBQlGkAACDDzd04V/VL1ldY1jDbUeCHIiMidfzMcf0S94vtKAAApM2pU1KrVq5RhB9+KL3xhms8IdyvZk3p559dK/7uvtu1Hx0AAMC/UKYBAIAMtenwJsUcjGHEI6y5r/R9Cg4MVlQsox4BAF7g9Gnp/vulH36QvvhCeuop24l8X4UK0i+/SDfdJDVqJP31l+1EAADAw1CmAQCADDU3dq4kqXm55paTwF/lCM6hBiUbsG8aAMDznTkjtW3r2str9GipWzfbifxH8eKukY9587oKtRUrbCcCAAAehDINAABkqKiNUap4U0WVyVPGdhT4sciISMUeilXsoVjbUQAAuLqzZ6X27aV586RRo6RHH7WdyP8UK+Yq1HLmlO67T/r7b9uJAACAh6BMAwAAGeb4meNavG0xq9Jg3cW/gxdXSgIA4FHOnZMeeECaM0f65BOpVy/bifxXiRKuQi0szFWorVplOxEAAPAAlGkAACDDLNi8QOeSzrFfGqwrlbuUKuerzKhHAIDnSUyUHnpImjVLGj5ceuwx24lQqpS0aJEUEiLde6+0fr3tRAAAwDLKNAAAkGHmbpyrXNly6Y5id9iOAigyIlJLti/RsdPHbEcBAMDFcaT//EeaMUP64AOpXz/biXBRmTKuQi0wUGrcWNqxw3YiAABgEWUaAADIEElOkuZunKsmZZsoS2AW23EARUZE6nzSef2w+QfbUQAAcBk8WPrsM2nQIOnpp22nwb+VKyd9/7107JjUpIl0+LDtRAAAwBLKNAAAkCGW7V6m/Sf2K7IcIx7hGWoXra08IXkY9QgA8AyffCK99pr06KPSW2/ZToOUVKsmffuttHmz1KKFdPKk7UQAAMACyjQAAJAhomKjFGAC1KRsE9tRAElSUECQmpZtqnkb5ykxKdF2HACAP5s+3TXSsUULadQoyRjbiZCa+vWlSZOk336TOnSQzp2znQgAAGQyrynTjDFNjDEbjDGbjDGDrvJ4TmPMHGPMP8aYtcaYbjZyAgAAl6jYKNUpWkd5Q/PajgIki4yI1MGTB/Xnrj9tRwEA+KtFi6SHH5buuEOaMkUKCrKdCGlx//3SyJHS3LlSr16u/e4AAIDf8IoyzRgTKOljSU0lVZLU0RhT6V+H9ZW0znGcWyTVl/SBMSY4U4MCAABJ0q7ju7Ry70pFRjDiEZ6lcZnGCjSBiopl1CMAwIK1a6U2baSICGnOHCk01HYiXI/evaVXX5XGjXPtdwcAAPyGV5Rpkm6XtMlxnC2O45yVNEVSq38d40gKM8YYSTkkHZZ0PnNjAgAASZq3cZ4kUabB4+QOya26xeuybxoAIPPt3y9FRroKtHnzpNy5bSfCjXjpJdc+d6+9Jk2caDsNAADIJN5SphWRtOOSr3deuO9SIyRVlLRb0mpJTzqOk5Q58QAAwKWiNkapRM4Sqpyvsu0owBUiIyK1at8qxR2Lsx0FAOAvTp+WWreW9u2TZs+WihWznQg3yhjXuMf69V2l2tKlthMBAIBM4C2Dua+2E++/h1M3lvS3pHsklZG0wBjzs+M4xy97ImN6SeolSYUKFVJ0dLTbwwLwbwkJCby3wK+dSTyjHzb+oCYFm2jx4sW24/gk3mPSJ//J/JKkoXOHqlXhfw87APwL37cAmcBxVPGNN1Tgt9+0dvBgHThxQvLRf3f1r3Kfr77HBD31lKpv2qSgyEit+OQTnS5UyHYkwOfxfQsAm7ylTNsp6dJf2yoq1wq0S3WTNMRxHEfSJmPMVkkVJF22u7zjOJ9J+kySChcu7NSvXz+jMgPwU9HR0eK9Bf7su43f6fQvp9W7QW/VL1vfdhzvd5U+kveY9HEcR69tek2xiuV/S/g9vm8BMsGrr0qLFklvvaXKzz9vO02m8+n3mAoVpNq1VfuNN6Rff5Vy5rSdCPBpfN8CwCZvGfP4l6RyxphSxphgSQ9Kmv2vY+Ik3StJxpgCkspL2pKpKQEAgKJioxSaJVT1S9a3HQW4KmOMWkS00I9bftSJsydsxwEA+LLJk6XBg6UuXaRBg2yngbtFREhffy3FxkodOkjnz9tOBAAAMohXlGmO45yX1E/SfEnrJU1zHGetMaaPMabPhcNel3SHMWa1pB8lDXQc56CdxAAA+CfHcRS1MUr3lb5P2YKy2Y4DpCgyIlJnEs9o0dZFtqMAAHzV8uWuPbXq1ZNGjXLttQXf06CB68/3hx+k556znQYAAGQQbxnzKMdx5kma96/7Pr3k9m5JjTI7FwAA+H9rD6xV3LE4vVjvRdtRgFTVK1FPYcFhioqNUovyLWzHAQD4mgMHpPvvl/Llc61cyprVdiJkpEcflf75Rxo6VKpZU3roIduJAACAm3nFyjQAAOAdomKjJEnNyjWznARIXXBgsBqXbayojVFybbkLAICbnD8vPfigtG+f9M03rkINvu/996W77pJ69JD+/tt2GgAA4GaUaQAAwG2iYqNUvVB1FQkvYjsKcE3NyzXX7vjd+nvv37ajAAB8yaBB0qJF0qefulYpwT9kySJNmyblySO1aSMdOmQ7EQAAcCPKNAAA4BYHTx7Ubzt/U/NyzW1HAdKkadmmMjLJKyoBAEi3KVOkDz6Q+vWTuna1nQaZrUAB12rE3btdqxPPn7edCAAAuAllGgAAcIvvN32vJCdJkRGRtqMAaVIgRwHdXuR2RW2kTAMAuMGqVa69s+rWlT780HYa2HL77dLIkdLChdILL9hOAwAA3IQyDQAAuEVUbJTyZ8+vmoUZZwTvERkRqb92/aV9CftsRwEAeLNjx1yj/XLnlqZPd438g/969FGpTx/p3Xelr7+2nQYAALgBZRoAAEi3c4nnNH/zfDUv11wBhm8v4D0iIyLlyNF3m76zHQUA4K0cx1WexMW5irSCBW0ngicYNsy1Su3RR6XNm22nAQAA6cRPuwAAQLr9uuNXHT19lBGP8Dq3FLhFRcKKsG8aAODGDR/u2idryBDpjjtsp4GnCA6Wpk6VAgKkDh2k06dtJwIAAOlAmQYAANItKjZKWQKyqGHphrajANfFGKPm5Zpr/ub5Opt41nYcAIC3+fNP6ZlnpJYtpaeftp0GnqZkSenLL6UVK6QBA2ynAQAA6UCZBgAA0i1qY5TuLnm3wrKG2Y4CXLfIiEglnE3Qku1LbEcBAHiTI0dcK44KF5bGjpWMsZ0InqhlS1eR9sknrpVqAADAK1GmAQCAdNl0eJNiDsYoshwjHuGd7i19r7IFZWPUIwAg7RxH6tZN2r3bVZDkyWM7ETzZ229LtWtLPXtKGzfaTgMAAG4AZRoAAEiXubFzJYn90uC1QrOE6p5S9ygqNkqO49iOAwDwBkOHSt9+K737rlSrlu008HRZsrhK1yxZpPbtpVOnbCcCAADXiTINAACkS9TGKFW4qYLK5CljOwpwwyLLRWrzkc2KPRRrOwoAwNMtWyYNHCi1bi09+aTtNPAWxYtL48dL//wjPfec7TQAAOA6UaYBAIAbFn8mXou3LWbEI7xe84jmksSoRwBA6hISpIcekgoWlMaMYZ80XJ/mzaX+/aURI6QovucAAMCbUKYBAIAbtmDLAp1LOpdcRADeqnjO4qqav6qiNvKDLQBAKp58Utq0SfrqK/ZJw40ZMkS65RbXnnt79thOAwAA0ogyDQAA3LCo2CjlzJpTdxa703YUIN0iIyL18/afdfT0UdtRAACeaNo06YsvpP/+V7r7bttp4K2yZpUmT5ZOnJC6dJGSkmwnAgAAaUCZBgAAbkiSk6S5G+eqSdkmyhKYxXYcIN0iIyKV6CRq/qb5tqMAADzN9u1Sr15SrVrSK6/YTgNvV7Gi9NFH0oIF0tChttMAAIA0oEwDAAA3ZNnuZdp/Yr8iI9gvDb6hVpFayhuSl1GPAIDLJSZKDz/sWkE0aZKUhV8ighv07Cm1aSM9/7y0YoXtNAAA4Boo0wAAwA2Jio1SgAlQk7JNbEcB3CIwIFDNyjXTdxu/U2JSou04AABP8dZb0i+/SJ98IpUubTsNfIUx0uefS/nzSx07usY+AgAAj0WZBgAAbsjcjXNVu2ht3RR6k+0ogNtERkTq0KlD+mPXH7ajAAA8wZ9/Sq++Kj30kGt1GuBOefNKEyZIGzdKzzxjOw0AAEgFZRoAALhuu47v0oo9K9QiooXtKIBbNSrTSEEBQYqKZdQjAPi9kyelzp2lQoWkjz+2nQa+qkED6emnpU8/lb77znYaAACQAso0AABw3eZunCtJ7JcGn5MrWy7VLV6XMg0AIA0aJMXGSuPGSbly2U4DX/bGG1KVKlL37tKhQ7bTAACAq6BMAwAA1y0qNkolcpZQ5XyVbUcB3C6yXKRW71+t7Ue3244CALBlwQJp+HDpySele++1nQa+Lls217jHgwel//xHchzbiQAAwL9QpgEAgOty6twpLdyyUJERkTLG2I4DuN3FFZcXV2ACAPzMkSNSt25ShQrS22/bTgN/Ua2aNHiwNG2aNGWK7TQAAOBfKNMAAMB1+WnbTzp1/hQjHuGzIvJGqGyesox6BAB/1a+ftHeva6VQSIjtNPAnzz0n1anjWp22c6ftNAAA4BKUaQAA4LpExUYpNEuo6pesbzsKkCGMMYosF6lFWxfpxNkTtuMAADLTtGnSpEnSSy9JNWvaTgN/ExQkjR8vnT0rPfoo4x4BAPAglGkAACDNHMdRVGyUGpZuqGxB2WzHATJMZESkziSe0aKti2xHAQBkln37pMcek267Tfrvf22ngb8qW1b64APXvn2ffmo7DQAAuIAyDQAApNnq/au14/gORjzC59UrUU9hwWGMegQAf+E4rtF6J05IX34pZcliOxH8We/eUsOGrrGP27fbTgMAAESZBgAArsPFYqF5ueaWkwAZKzgwWI3KNFLUxig5jFgCAN83fbr0zTfS4MFSxYq208DfGSN9/rnrds+ejHsEAMADUKYBAIA0i4qNUs3CNVUorJDtKECGi4yI1O743fp779+2owAAMtKBA1Lfvq490p55xnYawKVECendd13jHseMsZ0GAAC/R5kGAADS5MCJA/p95++KLMeIR/iHpmWbysgw6hEAfN3jj0vHjkljx0pBQbbTAP+vd2+pQQNpwABpxw7baQAA8GuUaQAAIE2+2/SdHDnslwa/USBHAd1e5HZFbaRMAwCf9c030tSp0ssvS1Wq2E4DXC4gQBo9Wjp/XurVi3GPAABYRJkGAADSJCo2SoVyFNKthW61HQXINJERkfpr11/al7DPdhQAgLsdOiQ99ph0663SwIG20wBXV7q0NGSI9P330pdf2k4DAIDfokwDAADXdDbxrOZvnq/m5ZorwPDtA/xH83LN5cjRd5u+sx0FAOBuTz4pHT7sGu+YJYvtNEDK+vaV6tWTnnpK2r3bdhoAAPwSPw0DAADX9EvcLzp+5jgjHuF3qhWspsJhhdk3DQB8zZw50sSJ0n//K91yi+00QOoCAqQxY6TTp6U+fRj3CACABZRpAADgmuZsmKOsgVl1b+l7bUcBMpUxRpHlIjV/83ydTTxrOw4AwB2OHJF695aqVpVeeMF2GiBtypWT3nzTVQRPmmQ7DQAAfocyDQAApMpxHM2JnaMGpRooR3AO23GATBcZEamEswlasn2J7SgAAHd4+mlp/37XeMfgYNtpgLR78kmpTh3piSekvXttpwEAwK9QpgEAgFTFHorV5iObFVmOEY/wT/eWvlfZgrIx6hEAfMH330vjxkkDB0o1athOA1yfwEDpiy+kEydc+6gBAIBME+SOJzHG5Jd0u6SbJZWQlFtSiKRTkg5L2i5plaQ/Hcc54I5rAgCAzHGxQGge0dxyEsCO0CyhuqfUPYqKjdLQxkNljLEdCQBwIxISXPtNVaggvfyy7TTAjalQQXr1VWnQIGnmTKlNG9uJAADwCzdcphljykh6WFIrSWnerdcY87ekWZK+chxn641eHwAAZI6ojVGqkr+KSuYqaTsKYE3zcs01b+M8xR6KVfmbytuOAwC4Ea+8Im3fLv38s5Q1q+00wI17+mlp8mSpXz/p3nul8HDbiQAA8HnXPebRGNPIGPO9pFhJL8tVpJnr+KgmabCkTcaY74wxDdP9KgAAQIY4evqoft7+s1pEtLAdBbCqeTnXykxGPQKAl1q+XProI6l3b6luXdtpgPTJkkX6/HNpzx7p+edtpwEAwC+kuUwzxtQ1xvwi6TtJDfX/5djhC/cNlvSApEaSakgqJ6nmha8flPSqpO8lHbnk3EaSvjfG/GyMudM9LwkAALjL/E3zlegkKjKC/dLg30rkKqGq+asqaiNlGgB4nfPnpZ49pfz5pSFDbKcB3OO226QnnpBGjpR+/dV2GgAAfF6axjwaYybKVYhd3CBip6TJkiY6jrPqei9qjLlZ0kOSOkoqJulOSUuMMZMdx3n4ep8PAABkjKiNUcobkle1itSyHQWwLjIiUu8ufVdHTx9Vrmy5bMcBAKTVRx9JK1dK06dLuXLZTgO4z+uvS998I/XqJa1YIQUH204EAIDPSuvKtI5yFWmLJN3nOE5xx3EG3kiRJkmO46xyHGeQ4zglJN134XnNhesAAAAPkJiUqHkb56lZuWYKDAi0HQewLjIiUolOouZvmm87CgAgrbZulV5+WWrZUmrb1nYawL3Cwlwr09auld57z3YaAAB8WlrLtEWS6jmOc5/jOIvcGcBxnEWO49wnqd6F6wAAAA/w+87fdfjUYUY8AhfUKlJLeUPyMuoRALyF40iPPSYFBkojRkjGXPscwNs0by516OBapRYbazsNAAA+K01l2oUSbWlGBnEcZ6njOA0z8hoAACDtomKjFBQQpEZlGtmOAniEwIBANS3XVN9t/E6JSYm24wAArmXyZGn+fOmtt6RixWynATLOsGFStmyucY+OYzsNAAA+Ka0r0wAAgJ+J2hilesXrsTcUcInIcpE6dOqQ/tj1h+0oAIDUHDok9e8v1aol/ec/ttMAGatgQdeYx8WLpbFjbacBAMAnUaYBAIArbDu6TWv2r2HEI/Avjcs2VqAJVFQsox4BwKM984x05Ij02WeuMY+Ar+veXbrrLtff/X37bKcBAMDnpKtMM8bkSef5zdJzPgAAyBhzY+dKEmUa8C+5suVSvRL1KNMAwJMtWiSNGyc9+6x088220wCZIyBAGjVKOnHCtSoTAAC4VXpXpq02xtxzvScZY4KNMcMlzUnn9QEAQAaYEztH5fKUU0TeCNtRAI8TWS5Sq/ev1vaj221HAQD82+nTUu/eUpky0ksv2U4DZK4KFaQXXpCmTJG++852GgAAfEp6y7RCkn4wxrxjjAlKywnGmCqSlkliaDkAAB4o4WyCftr2E6vSgBRc/Lcxd+Ncy0kAAFcYMkTatEn69FMpJMR2GiDzDRzoKtX69ZNOnbKdBgAAn5HeMi1RkpH0jKTfjDFlUzvYGPO4pD8lVb5w3oZ0Xh8AALjZwi0LdTbxrFpEtLAdBfBIEXkjVDZPWUY9AoCn2bhRevttqWNH6b77bKcB7MiaVfrkE2nLFumtt2ynAQDAZ6S3TKsnaZtcxVh1SSuNMd3+fZAxJp8xJkrSR5KyXTh+tKSa6bw+AABws6jYKIVnDVfd4nVtRwE8kjFGzcs116Kti3Ti7AnbcQAAkuQ40n/+I2XLJn34oe00gF0NGkgPPyy9844UE2M7DQAAPiFdZZrjOL9LukXSRLkKsuySRhtjphpjckqSMaaJpFWSml445oikdo7j9HIc52R6rg8AANwryUnS3I1z1aRsE2UJzGI7DuCxIiMidSbxjBZtXWQ7CgBAkqZOlRYulN58UypY0HYawL7335eyZ3eVzI5jOw0AAF4vvSvT5DhOguM4nSV1knRMrsKsnaR/jDFjJM2VVODC/dGSbnYc55v0XhcAALjfij0rtDdhryLLsV8akJq7StylHME5NCd2ju0oAIBjx6SnnpJq1JAee8x2GsAzFCjgGvP400/SpEm20wAA4PXSXaZd5DjOZEm3SvpVruKsuKSuF26flfRfSfc6jrPLXdcEAADuNWfDHAWYADUp28R2FMCjBQcGq3GZxpq7ca6SnCTbcQDAv734orRvn/Tpp1JgoO00gOfo1Uu67Tbp6aelo0dtpwEAwKu5rUyTJMdxtkmafPHLSz5/L+kDx2FdOQAAnmx27GzdUewO5cuez3YUwOO1LN9Su+N3a8WeFbajAID/Wr5c+uQT1yi7mmzLDlwmMNBVMh88KL3wgu00AAB4NbeVacaY3MaYbyT9T64CzUhKvPC5haQ/jTEV3HU9AADgXnHH4vT33r/VMqKl7SiAV2herrkCTIC+jfnWdhQA8E+JiVKfPlK+fNIbb9hOA3im6tWlfv2kkSOlv/6ynQYAAK/lljLNGNNA0ipJreQqz45K6iCplqTYC/fdLGm5MaaPO64JAADca84G195PrSq0spwE8A55Q/OqbvG6mh0723YUAPBPo0ZJy5ZJQ4dKuXLZTgN4rtdflwoWdJXPiYm20wAA4JXSVaYZY4KMMUMkLZBUWK7SbImkWxzHmeE4zkq59lEbc+GxEEkfG2O+NcbkTV90AADgTt9u+Fbl85ZXRN4I21EAr9EyoqVW7VulbUe32Y4CAP5l717p+eele++VHnzQdhrAs4WHu0rnFStcY1EBAMB1S+/KtN8kPXvheRIlvSypgeM4Oy8e4DjOKcdxekpqJ+mwXKVapKTVxpiG6bw+AABwg2Onjyl6W7RalmfEI3A9Lv6bubiyEwCQSQYMkE6fdhUDxthOA3i+Dh2khg2lF1+U9uyxnQYAAK+T3jKthlzl2FZJ9RzHecNxHOdqBzqO842kapIWXzinoKR56bw+AABwg/mb5+tc0jnKNOA6lctbThVuqsCoRwDITIsWSZMmSQMHShGsqAfSxBjp44+lM2ekp5+2nQYAAK/jjj3TvpJUzXGcP6514IUVa/dIekHSOTddHwAApNPsDbOVNySv6hStYzsK4HVaRrRU9LZoHTt9zHYUAPB9585J/fpJpUq5xjwCSLty5aRBg6QpU1ylNAAASLP0llmPOI7ziOM48Wk9wXF5W1JdSZvTeX0AAJBO5xLPae7GuYqMiFRgQKDtOIDXaVm+pc4nndf3m763HQUAfN/w4dL69dKwYVJIiO00gPcZONBVRvfrJ509azsNAABeI11lmuM4X6Xj3L8k3Zqe6wMAgPRbumOpjp4+yohH4AbVLlpb+ULzMeoRADLanj3S4MFSs2ZSZKTtNIB3CglxldHr10v/+5/tNAAAeA2rYxYdxzlh8/oAAMA14jE4MFiNyjSyHQXwSoEBgYqMiNS8jfN0LvGc7TgA4LsGDnTt9/TRR679nwDcmBYtXIX0q69Ku3bZTgMAgFdgzzIAAPyY4ziavWG27i11r3IE57AdB/BaLcu31NHTR/Vz3M+2owCAb/rlF2nCBOmZZ1z7PgFIn2HDXHsQPvOM7SQAAHiFNJVpxphMGcdojKmeGdcBAAAu6w+u1+YjmxnxCKRTw9INlTUwq2ZvYNQjALhdYqL0+ONS0aLSf/9rOw3gG0qXdq32nDJF+ukn22kAAPB4aV2ZtswYM9MYc0tGhDDG3GqM+VbSnxnx/AAA4Oou/uC/RUQLy0kA75Y9OLvuK32fZm+YLcdxbMcBAN/y2WfS339LH3wgZc9uOw3gOwYNkkqWlPr1c61SAwAAKbqeMY8tJa0wxkQZYx4wxmRLz4WNMdmMMQ8aY76TtExSC0n85AEAgEz07YZvVbNwTRUJL2I7CuD1WpZvqa1Ht2rtgbW2owCA7zh4UHrhBalBA6l9e9tpAN8SEuIa97hunTR8uO00AAB4tLSWabfJtWrMSGoqaZKkfcaYccaYLsaYiml5EmNMJWNMV2PMOEn7JE2U1OjC8/4m6fZUzm1ijNlgjNlkjBmUwjH1jTF/G2PWGmMWp/G1AQDgl/Ym7NUfO/9QywhGPALuEBkRKUmMegQAd3rhBen4cdcP+o2xnQbwPS1aSM2bS6+8Iu3ebTsNAAAeKygtBzmOs0JSHWPM/ZIGS6oiKUxS5wsfMsbES9oo6fCFj3hJ4ZLyXPgoe+Gciy5+F7xK0mDHcWaldH1jTKCkjyU1lLRT0l/GmNmO46y75Jhckj6R1MRxnDhjTP60vDYAAPzV3Ni5cuSwXxrgJoXDCuu2wrdp9obZ+m899vQBgHRbtkz6/HOpf3+pcmXbaQDfZIxrdVrlytKzz0oTJ9pOBACAR7qeMY9yHOcbx3FultRE0reSzstVihm5irPqku6T1EFSd0ntJd0r6dYLj1889pykWZIaOY5TLbUi7YLbJW1yHGeL4zhnJU2R1Opfxzwk6RvHceIuZN1/Pa8NAAB/Mzt2tornLK6bC9xsOwrgM1qVb6U/dv2hPfF7bEcBAO+WlOTaxyl/fteKGQAZp0wZ6bnnpEmTpMUMegIA4Gquq0y7yHGcHxzHaSOpkKRHJE2QFHvhYXOVD0fSBknj5VrJVshxnPsdx1mYxksWkbTjkq93XrjvUhGSchtjoo0xy40xj1z/KwMAwD+cPHdSCzYvUMuIljKMTALc5uJKz6jYKMtJAMDLjR8v/fGH9M47Us6cttMAvm/QIKlkSalvX+ncOdtpAADwOGka85gSx3EOS/rqwoeMMcGSisk11jGrpDNyjXyMcxwnPf9PfLWf8jn/+jpIUg25VsKFSPrNGPO74zixlx5kjOklqZckFSpUSNHR0emIBQBXSkhI4L0FHu/Xg7/q1PlTKnG6BH9fvRB/Zp7LcRwVzFZQY38dq3Lx5WzHAa6J71vgiYISEnT700/rVOXKWlmsmMTfUa9R/yr38R7jPfJ2766qL72kTf37a2f79rbjAFfg+xYANqWrTPu3CyMYN1/4cKedcpV0FxWV9O9dUXdKOug4zglJJ4wxSyTdov9fMXcx42eSPpOkwoULO/Xr13dzVAD+Ljo6Wry3wNNNnD1RYcFheqLVEwoODLYdB6m5yqQd3mM8W4fTHfTZis902x23KXtwdttxgFTxfQs8Uv/+0tGjCl64UPWrV7edBunEe4wXuftu6bffVHbCBJV98UWpUCHbiYDL8H0LAJtuaMyjBX9JKmeMKXVh9duDkmb/65hvJdUzxgQZY0Il1ZK0PpNzAgDg8ZKcJM2JnaOm5ZpSpAEZoGX5ljp9/rQWbknrRHMAQLLVq6URI6TevSWKNCBzGSMNGyadOSM9+6ztNAAAeBS3l2nGmPzGmObGmJ7GmKcufG5ujMl/o8/pOM55Sf0kzZerIJvmOM5aY0wfY0yfC8esl/S9pFWS/pQ02nGcNel/RQAA+Ja/dv2lfSf2qWVES9tRAJ90V4m7lDNrTs3e8O/f/QIApMpxpMcfd+2R9sYbttMA/qlsWem556SJE6UlS2ynAQDAY7htzKMxpo2kZyTVTuWY3yS97zjOrOt9fsdx5kma96/7Pv3X1+9Jeu96nxsAAH8yK2aWAk2gmpZrajsK4JOyBGZR03JNNTt2thKTEhUYEGg7EgB4h2nTpMWLpZEjpbx5bacB/Nfzz0sTJkh9+0orV0pBbt0lBgAAr5TulWnGmGBjzDRJM+Qq0kwqH3UkfW2MmXZhXCMAAMhkM2Nmqn7J+soTksd2FMBntanQRgdPHtTSHUttRwEA75CQIA0YIN16q9Szp+00gH8LDZU++khas0b65BPbaQAA8AjuGPP4taS2+v/CbJ2kEZL6S+p54fMISWsvOaatXOUbAADIRDEHY7Th0Aa1qdDGdhTApzUt69qTcFbMLNtRAMA7vPmmtGuXa7+0QFb0Ata1aiU1biy99JK0b5/tNAAAWJeuMs0Y86Ck5he+3C2pqeM4VRzHecJxnP85jjPmwucnHMepKqmJpF1yFWrNjTEPpCs9AAC4LjPXz5QktarQynISwLeFZQ3TfaXv08yYmXIcx3YcAPBssbHSBx9IXbpId9xhOw0ASTJGGjZMOnXKNfYRAAA/l96Vad0vfD4h6W7HceandrDjOD9Iqi8p4cJdPdJ5fQAAcB1mxszUbYVvU9HworajAD6vTYU22nZ0m/7Z94/tKADguRxHevJJKSREGjLEdhoAlypfXnr6aWnsWOn3322nAQDAqvSWabdIciSNcRxnc1pOuHDcGLlWp1VL5/UBAEAa7Ty+U3/t/osRj0AmaVm+pQJMQPKKUADAVcyZI33/vTR4sFSwoO00AP7txRelwoWlfv2kxETbaQAAsCa9ZVqOC5//us7zLh4fms7rAwCANLq4d1ObipRpQGbInz2/7ix2p2ZtmGU7CgB4plOnpP79pUqVXD+oB+B5cuRwjWFdvlwaM8Z2GgAArElvmbb7wufr3R344vG7Uz0KAAC4zcyYmapwUwVVuKmC7SiA32hdobVW7VulLUe22I4CAJ7nvfekrVul4cOlLFlspwGQkgcekO6+27V32qFDttMAAGBFesu0RRc+17vO8+rJNR5y0bUOBAAA6Xf41GEt3raYEY9AJrv4b45RjwDwL9u2SW+/LXXoIN1zj+00AFJjjKv0PnbMNfYRAAA/lN4y7X+Szkp6xBhzW1pOMMbUlNRF0pkL5wMAgAwWFRulRCdRrSu0th0F8CulcpfSLQVu0cwYyjQAuMzTT0sBAdL779tOAiAtqlZ1jWMdNUpascJ2GgAAMl26yjTHcdZI6inJSFpgjOlhjAm62rHGmCBjTHdJC+RaldbDcZy16bk+AABIm5kxM1UkrIhqFq5pOwrgd9pUaKNfd/yqfQn7bEcBAM/www/SzJnSCy9IxYrZTgMgrV59VcqXz1WqJSXZTgMAQKa6avGVVsaYly/cXCCpmaRRkoYYY36WtEnSSUmhkspKqispz4Xj50kqe8n5V3Ac57X0ZAMAAC4nz53U/E3z9eitjyrApHdROoDr1aZiGw1ePFizN8xWzxo9bccBALvOnpWeeEIqW1YaMMB2GgDXI2dO6d13pa5dpQkTpC5dbCcCACDTpKtMkzRYrlVmuuRzHkktr3KsueSYZhc+UkOZBgCAG8zfNF+nzp9ivzTAkqr5q6pUrlKaGTOTMg0Ahg2TNmyQ5s6Vsma1nQbA9erc2TXq8bnnpNatXQUbAAB+wB2/nm7+9XG1+1K7P6VjAQCAG8yMmanc2XLrrhJ32Y4C+CVjjNpUaKMft/6o42eO244DAPbs2iW99prUooXU7Fq/XwvAIwUESCNGSAcOSIMH204DAECmSe/KtAZuSQEAADLEucRzioqNUmREpLIEZrEdB/BbbSq20Ye/f6h5G+fpwSoP2o4DAHY895x07pw0dKjtJADSo3p1qXdvafhwqXt3qUoV24kAAMhw6SrTHMdZ7K4gAADA/ZZsX6Ijp48w4hGwrE7ROsqfPb9mxsykTAPgn5YskSZNkl58USpTxnYaAOn1xhvStGnS449LixZJhkFTAADf5o4xjwAAwEPNjJmpkKAQNS7b2HYUwK8FBgSqZURLzds4T2fOn7EdBwAy1/nzrh+4Fy8uPf+87TQA3CFvXumtt6ToaFepBgCAj6NMAwDARyU5SZoVM0uNyzZWaJZQ23EAv9emYhslnE3Qj1t/tB0FADLXp59Kq1ZJH34ohfI9CeAzevRwjXwcMEBKSLCdBgCADEWZBgCAj1q2e5l2xe9ixCPgIe4tda/CgsM0c/1M21EAIPPs3y+99JJ0333S/ffbTgPAnQIDpREjpF27pDfftJ0GAIAMRZkGAICPmrl+pgJNoCIjIm1HASApa1BWNSvXTN9u+FaJSYm24wBA5vjvf10rVv73P/ZUAnxRnTpS167SBx9IsbG20wAAkGEo0wAA8FGzNszS3SXvVp6QPLajALigdYXWOnDygH7b+ZvtKACQ8f78U/riC+nJJ6WKFW2nAZBRhgyRQkKkJ56QHMd2GgAAMgRlGgAAPijmYIxiDsYw4hHwMM3KNVNwYDCjHgH4vqQkqV8/qUAB6eWXbacBkJEKFJBee02aP1/69lvbaQAAyBCUaQAA+KCLP6hvXaG13SAALhOeNVz3lrpXM2NmyuE3twH4srFjpb/+kt57TwoPt50GQEbr21eqUkXq3186dcp2GgAA3I4yDQAAHzRj/QzVKlJLRcOL2o4C4F/aVmyrrUe3auXelbajAEDGOHJEGjRIqltX6tTJdhoAmSEoSBoxQtq+XXrnHdtpAABwO8o0AAB8zNYjW7Vizwq1q9TOdhQAV9GqQisFmkB9ve5r21EAIGO8/LJ0+LA0fLhkjO00ADLL3XdLHTu69lDbssV2GgAA3IoyDQAAH/P1etcP6NtWbGs5CYCruSn0JjUo1UDT101n1CMA37NqlfTJJ1KfPlK1arbTAMhs773nWqX29NO2kwAA4FaUaQAA+JgZ62aoRqEaKpW7lO0oAFLQrmI7bTy8UWv2r7EdBQDcx3Gkfv2k3Lml11+3nQaADUWKuFanfvut9N13ttMAAOA2lGkAAPiQuGNx+mPXH6xKAzxc6wqtFWACNGPdDNtRAMB9Jk+Wfv5ZevttKU8e22kA2NK/vxQRIT35pHTmjO00AAC4BWUaAAA+5Jv130iS2laiTAM8WYEcBXRXibs0Yz1lGgAfER8vPfOMVLOm9OijttMAsCk42LVn4saN0tChttMAAOAWlGkAAPiQGetm6OYCNysib4TtKACuoV3Fdlp3YJ3WHVhnOwoApN/rr0t79kgjRkiBgbbTALCtUSOpTRvXe8POnbbTAACQbpRpAAD4iF3Hd2npjqVqV7Gd7SgA0qBNxTYyMvp63de2owBA+sTESB99JHXrJtWqZTsNAE/x4YdSUpJr1SoAAF6OMg0AAB8xM2amJKldJco0wBsUDiusO4vfyahHAN7NcaQnnpBCQ117pQHARSVLSs8/L02dKv30k+00AACkC2UaAAA+Ysa6GaqUr5Iq5qtoOwqANGpXsZ1W7Vul2EOxtqMAwI2ZNUtasEB67TWpQAHbaQB4mmeflUqVkh5/XDp3znYaAABuGGUaAAA+YF/CPi3ZvoQRj4CXub/i/ZLEqEcA3unkSempp6QqVaT//Md2GgCeKCTENQZ27Vrp449tpwEA4IZRpgEA4ANmxsyUI4cRj4CXKZazmGoXrc2oRwDe6Z13pO3bpREjpKAg22kAeKoWLaSmTaVXXpH27rWdBgCAG0KZBgCAD5ixboYi8kaoSv4qtqMAuE7tKrbTij0rtOXIFttRACDtNm92lWkdO0p33207DQBPZow0bJh0+rQ0cKDtNAAA3BDKNAAAvNyBEwcUvS1a7Sq2kzHGdhwA16ltpbaSGPUIwMv07y9lySK9/77tJAC8Qbly0oAB0vjx0tKlttMAAHDdKNMAAPBy3274VolOIiMeAS9VMldJ1Sxck1GPALzHnDlSVJRrZFvhwrbTAPAWL7wgFS0q9esnJSbaTgMAwHWhTAMAwMvNWDdDpXOXVrWC1WxHAXCD2lVspz93/antR7fbjgIAqTt1SnrySaliRddnAEir7NmlDz+U/v5b+uwz22kAALgulGkAAHixgycPauGWhYx4BLzcxZWl09dNt5wEAK7h3XelrVulESNcYx4B4Hq0ayfdc49rldrBg7bTAACQZpRpAAB4sW/Wf6NEJ1EPVnnQdhQA6VAmTxnVLFxTU9dOtR0FAFK2das0ZIjUoYPrh+EAcL2MkYYPl+LjXYUaAABegjINAAAvNnXtVJXLU44Rj4APeKDyA1q2e5k2H95sOwoAXF3//lJgoPTBB7aTAPBmlSpJTzwhff65tGyZ7TQAAKQJZRoAAF5qb8JeRW+L1gOVH2DEI+ADOlTuIEmsTgPgmebNk2bPll56SSpa1HYaAN7ulVek/Pmlfv2kpCTbaQAAuCbKNAAAvNSMdTOU5CQx4hHwEcVzFledonUo0wB4ntOnXatIypeXnnrKdhoAviA8XHrvPemPP6Qvv7SdBgCAa6JMAwDAS01dO1WV81VW5fyVbUcB4CYPVnlQq/atUszBGNtRAOD/vf++tHmza5+j4GDbaQD4iocflu68Uxo4UDp61HYaAABSRZkGAIAX2nl8p36J+0UPVH7AdhQAbtSuUjsZGU1dw+o0AB5i+3bprbektm2lhg1tpwHgS4yRRoyQDh1yjX0EAMCDUaYBAOCFpq+dLkl6oAplGuBLCocV1l0l7tKUtVPkOI7tOADgGutojPThh7aTAPBF1apJffq4SrVVq2ynAQAgRZRpAAB4oalrp+rWgrcqIm+E7SgA3OyByg8o5mCMVu9fbTsKAH83f740c6b0wgtS8eK20wDwVa+/LuXOLT3+uMQvEwEAPBRlGgAAXmbrka36Y9cfjHgEfFTbSm0VYAIY9QjArjNnXD/YLldOGjDAdhoAvixPHuntt6UlS6TJk22nAQDgqijTAADwMtPWTpMkdajcwXISABkhf/b8urfUvYx6BGDXhx9KGzdK//uflDWr7TQAfN2jj0o1a0rPPCPFx9tOAwDAFSjTAADwMlPXTlWtIrVUKncp21EAZJAHKj+gLUe2aPme5bajAPBHcXHSG29IrVtLTZrYTgPAHwQGuvZN27PHNfYRAAAPQ5kGAIAXiT0Uq5V7VzLiEfBxbSq2UVBAEKMeAdgxYICUlCQNHWo7CQB/UquW1L27670nJsZ2GgAALkOZBgCAF7n4g/X2ldtbTgIgI+UJyaNGZRpp2rppSnKSbMcB4E8WLpRmzJD++1+pZEnbaQD4m7fflnLkcO3ZyLhrAIAHoUwDAMCLTF07VfWK11PR8KK2owDIYA9WflBxx+L0+87fbUcB4C/OnpX69ZPKlJGefdZ2GgD+KF8+15jHhQulmTNtpwEAIBllGgAAXmLN/jVae2AtIx4BP9GqQitlDcyqKWum2I4CwF989JG0YYM0bJiULZvtNAD8VZ8+0s03S089JZ08aTsNAACSKNMAAPAaE1dNVKAJZMQj4CfCs4YrMiJSU9dO1fmk87bjAPB1O3ZIr70mtWwpNW9uOw0AfxYUJI0YIcXFSUOG2E4DAIAkyjQAALxCkpOkSWsmqVGZRsqfPb/tOAAySaeqnbT/xH4t3LLQdhQAvu7JJ6WkJNfqNACwrV49qVMn6d13pc3/196dh1s5Nf4ff6/TqEH1ZGpARTJFUpnpiQwhmYcMGRIqHjI/KNM3MoRE5qlMJVOGQooIkQyJkJBMT0ikUmf9/rhPP0c6jeecdYb367r2dfZw73t/zpbd7v7ca63PU6eRJMkyTZKk0uC1r17jq9lfcfRWR6eOIqkYdWjagdpVazPkgyGpo0gqy555Jlub6OKLoXHj1GkkKdOvH1SqlE33KElSYpZpkiSVAoPfH0z1StU5oNkBqaNIKkZVKlbh0M0P5fEpj/P7gt9Tx5FUFs2dCz16wGabQa9eqdNI0l/q14feveHpp7PSX5KkhCzTJEkq4RYsWsDQj4bSadNOVK9cPXUcScWsc/PO/P7n7zz5yZOpo0gqi664AqZPh1tvhcqVU6eRpL87/XTYdNNsKto//kidRpJUjlmmSZJUwj336XP8PO9nOjfvnDqKpAR22XAX1l9zfad6lFT4pkyBa6+FY4+F3XZLnUaS/qlyZRg4MFs3rW/f1GkkSeWYZZokSSXckA+GsHa1tWm/UfvUUSQlkBNyOKr5UYz8bCQ//v5j6jiSyooY4dRToUYNuOaa1GkkqWDt2sHRR8NVV8HHH6dOI0kqpyzTJEkqwWbPm81TnzzFEVseQcWciqnjSEqkc/POLIqLeGTyI6mjSCorHngAxo7NDk6vs07qNJK0bNdeC9WrwymnZCcDSJJUzCzTJEkqwYZPGc78RfOd4lEq55qv25zm6zR3qkdJheOnn+Dss2H77eGkk1KnkaTlW3dduPrq7CSABx5InUaSVA5ZpkmSVIIN+WAIG9XZiDYN2qSOIimxzs0788aMN/j8p89TR5FU2l1wQVaoDRoEOR4WkFRKnHQS7Lgj9OoFs2alTiNJKmf81ixJUgk1c85MRn8xmqO3OpoQQuo4khI7qvlRADz4wYOJk0gq1d54A26/Hc44A7beOnUaSVpxOTnZSQA//wznnZc6jSSpnLFMkySphHrog4eIRKd4lATA+rXWZ7cNd2PwB4OJrhUiaVUsXJitN9SgAfTpkzqNJK285s3hrLPgrrtg3LjUaSRJ5YhlmiRJJdSQD4bQun5rmtZtmjqKpBKic/POTJ01lXe+fSd1FEml0YAB8N57cOONULNm6jSStGp694YNN8xODliwIHUaSVI5YZkmSVIJNOXHKbz73buOSpP0N4dsfgiVK1RmyPtDUkeRVNrMmAGXXAIdOsBBB6VOI0mrrnp1uPlmmDwZrr8+dRpJUjlhmSZJUgn0wPsPUCFU4PAtD08dRVIJUmeNOuzbdF8e+vAhFuYuTB1HUmly5pnZNI8DBoBrsUoq7fbbDw48EC67DL74InUaSVI5UGrKtBDC3iGET0IIn4UQzl/Gdq1DCItCCIcUZz5JkgrLotxFPPD+A+y98d6sV2O91HEklTDHbX0c3//+PSM/G5k6iqTS4rnnYNgwuPhiaNIkdRpJKhw33QQVKkCPHuB6spKkIlYqyrQQQgVgILAPsDlwZAhh8wK2uxrwyIIkqdQa/cVoZvw6gy4tuqSOIqkE6tC0A2tXW5t737s3dRRJpcHcudmB5k03hbPPTp1GkgpPw4Zw+eXw7LPw2GOp00iSyrhSUaYBbYDPYozTYowLgIeBA5ayXU/gMeCH4gwnSVJhuve9e6lTtQ77b7J/6iiSSqBKFSrRuXlnnvrkKWbNnZU6jqSS7rLLYNo0uPVWqFw5dRpJKlw9esA228AZZ8Cvv6ZOI0kqw0pLmdYA+Drf7Rl59/1/IYQGwIHAoGLMJUlSoZo9bzbDpwznyC2PpErFKqnjSCqhurTowoJFC3j4w4dTR5FUkk2aBNdeCyeeCG3bpk4jSYWvYkUYNAi+/TabylaSpCJSMXWAFbS01ZGXnAz5BuC8GOOisIzFlEMIJwMnA9SrV48xY8YUUkRJyvz2229+tmiVjfh2BPMWzqP5oub+OVKB/LMhgI2qb8SAcQPYYu4WqaOoFPN7Sxm2aBEtu3en6ppr8lbHjiz0v7OKQdul3OdnjIpD0wMOoP7NN/PO5pvzW7NmqeOoiPi9RVJKIZaCBTpDCDsAfWKMe+XdvgAgxtg33zZf8FfpthYwFzg5xvhEQfutX79+nDlzZlHFllROjRkzhrae+atVtNPdO/HLvF/48NQPWdbJISo/wqX//HMQe5f8728qeje8cQNnjjyTD0/9kC3WsVDTqvF7Sxl2ww1w5pnw0ENwxBGp06i8WNr311Jw3EllwOzZ2dqQDRrAG29kI9ZU5vi9RVJRCCG8E2NstbztSss0jxOApiGExiGEysARwFP5N4gxNo4xNooxNgKGAactq0iTJKmkmTprKq9//Tpdtu5ikSZpuY5qfhQVcypy33v3pY4iqaT58ku46CLo0AEOPzx1GkkqerVqwU03wTvvZD8lSSpkpaJMizEuBHoAI4EpwKMxxskhhFNCCKekTSdJUuG4b9J95IQcjt7q6NRRJJUC61Rfh32b7ssD7z/AwtyFqeNIKilihO7ds+u33LL0kUKSVBYdcgh07JidTDBtWuo0kqQyplSUaQAxxmdjjJvEGDeKMV6Zd9+gGOOgpWzbJcY4rPhTSpK0ahblLuL+9+9nr432ol7NeqnjSColurTowne/fceoz0eljiKppHj0UXjmGbjiCthww9RpJKn4hAADB2ZTPHbr5hSjkqRCVWrKNEmSyrLRX4xmxq8z6NKiS+ookkqRDk07sFa1tbh30r2po0gqCX7+GU4/HVq1gp49U6eRpOLXsCFcfTW8+CLcf3/qNJKkMsQyTZKkEuDe9+6ldtXadGzWMXUUSaVI5QqV6dy8M09+8iQ//fFT6jiSUjvnHJg1C+64AypUSJ1GktLo1g122gnOPBO+/z51GklSGWGZJklSYrPnzWb4lOEcueWRVK1YNXUcSaVMlxZdWLBoAQ9/+HDqKJJSGjMG7roLevWCFi1Sp5GkdHJyspMKfv8d/vOf1GkkSWWEZZokSYkN/Wgo8xbOc4pHSaukxXot2HrdrZ3qUSrP5s3LRmI0aQK9e6dOI0npbbYZXHQRPPwwjBiROo0kqQywTJMkKbG7372bTdfalNb1W6eOIqmU6tKiCxNmTmDyD5NTR5GUwhVXwNSpMGgQVKuWOo0klQznnQdbbAGnngpz5qROI0kq5SzTJElKaPIPkxk/YzwnbnMiIYTUcSSVUp2bd6ZSTiXumHhH6iiSitu778JVV8Gxx0L79qnTSFLJUbky3HknfPMNXHBB6jSSpFLOMk2SpITumHgHlXIqcdzWx6WOIqkUW7v62hy02UE88P4DzFs4L3UcScXlzz/hhBNg7bWhf//UaSSp5Nl+e+jZE265BV57LXUaSVIpZpkmSVIi8xbO4/737ufAzQ5k7eprp44jqZTr2rIrP/3xE8OnDE8dRVJx6dcPJk2CW2+Ff/0rdRpJKpmuuALWXx+6doX581OnkSSVUpZpkiQl8thHj/HzvJ/p2rJr6iiSyoB/N/43Teo04fZ3bk8dRVJxmDwZLrsMDj8cOnVKnUaSSq6aNbM1JadMyYo1SZJWgWWaJEmJ3DHxDprUaUK7xu1SR5FUBuSEHLq27MrYL8cyddbU1HEkFaVFi7LpHddcEwYMSJ1Gkkq+ffaBY46Bvn1h4sTUaSRJpZBlmiRJCUydNZWxX47lpG1OIif417GkwtGlRRcq5lTkzol3po4iqSjdcAO89RbcdFO2XpokafluuCH7zDz+eFiwIHUaSVIp49E7SZISuOOdO6gQKtClRZfUUSSVIevVWI/9N9mfeyfdy4JFHiSSyqRPP4WLLoKOHeGII1KnkaTS41//gttug/ffz0aoSZK0EizTJEkqZgsWLeC+9+6jY7OO1KtZL3UcSWXMyduezI9zf+TJj59MHUVSYcvNhZNOgipV4NZbIYTUiSSpdOnYETp3ztZOe++91GkkSaWIZZokScXsyY+f5Me5P9K1ZdfUUSSVQe2btGeDWhtwx8Q7UkeRVNgGDYJXXoH+/aF+/dRpJKl0uvFGqFsXunSBP/9MnUaSVEpYpkmSVMzumHgHG9TagD032jN1FEllUIWcCpy4zYm8MO0Fvvj5i9RxJBWW6dPh3HNhzz2zA8CSpFVTt252csKkSXDVVanTSJJKCcs0SZKK0bSfp/HCtBc4cZsTqZBTIXUcSWXUCducQE7I4c6Jd6aOIqkwxAgnn5xN63j77U7vKEmrq1MnOPJIuPzybA01SZKWwzJNkqRidNfEu8gJOZywzQmpo0gqwxqu2ZAOTTtwz6R7WJi7MHUcSavrjjvghRegXz/YcMPUaSSpbLjpJqhTB44/3ukeJUnLZZkmSVIx+XPRn9wz6R722XgfGq7ZMHUcSWVc15Zd+fa3bxkxdUTqKJJWx7RpcNZZsMce0K1b6jSSVHastRbceitMnJidrCBJ0jJYpkmSVEye/ORJvv3tW7pt64EwSUWvQ9MONFyzIbe+fWvqKJJW1aJF2fpoFSrA3XdDjv+El6RCddBBcPjhcOml8OGHqdNIkkowv4lLklRMbn7rZjastSEdmnZIHUVSOVAxpyLdtu3GqM9HMXXW1NRxJK2KG2+EV1/NpiJbf/3UaSSpbBowAGrXzk5ecLpHSVIBLNMkSSoGH/7wIWO/HMtprU+jQk6F1HEklRNdW3alUk4lbplwS+ooklbWRx/BhRfCAQfAscemTiNJZdfaa2fTPb7zDlx5Zeo0kqQSyjJNkqRiMPCtgVStWJUTtzkxdRRJ5ci6Ndbl0C0O5Z5J9/Dbgt9Sx5G0ov78E447DmrWhNtugxBSJ5Kksu3gg+Hoo+GKK+Ctt1KnkSSVQJZpkiQVsdnzZvPA+w9wxJZHULda3dRxJJUzPVr34Nf5vzL4/cGpo0haUX37wttvw6BBsO66qdNIUvkwYADUqwfHHANz56ZOI0kqYSzTJEkqYve9dx+///k7PVr3SB1FUjm0fcPt2Wa9bRg4YSAxxtRxJC3PxIlw+eXQuXM2UkKSVDxq14Z774WpU+G881KnkSSVMJZpkiQVodyYy8AJA9muwXZsW3/b1HEklUMhBHq06cGHP3zIK1++kjqOpGWZNy9bH22ddbIREpKk4rX77nDGGXDzzfDCC6nTSJJKEMs0SZKK0EvTXmLqrKn0aOOoNEnpHLHlEdSpWoeBEwamjiJpWS65BCZPhrvugjp1UqeRpPKpb1/YbDM4/nj4+efUaSRJJYRlmiRJRWjghIGsXW1tDt380NRRJJVj1SpV48RtTmT4lOF88+s3qeNIWprXXoNrr4WTT4a9906dRpLKrzXWgAcegO+/h+7dU6eRJJUQlmmSJBWRL3/5kqenPk3Xll2pUrFK6jiSyrlTW59KbszltnduSx1F0pJ+/RWOPhoaNcoKNUlSWttuC717w0MPwSOPpE4jSSoBLNMkSSoig94eBMAprU5JnESSoEmdJnRo2oHb37mdBYsWpI4jKb8ePeDrr2HIEKhZM3UaSRLA+efD9tvDqafCN47sl6TyzjJNkqQiMG/hPO6YeAcHNDuA9WutnzqOJAHQvXV3vv/9ex776LHUUSQt9tBD2XRiF18MO+yQOo0kabGKFeH++2H+fDjxRIgxdSJJUkKWaZIkFYGHP3yYWX/Montr59iXVHLstfFebFRnIwa8NSB1FEkA06fDKafAjjvCf/+bOo0kaUlNm2bT744cCQMHpk4jSUrIMk2SpEIWY+T68dfTfJ3mtGvcLnUcSfr/ckIOp293OuNnjOeNGW+kjiOVbwsXwjHHZNcHD85GQEiSSp5TToEOHeDss+GDD1KnkSQlYpkmSVIhe3Hai3zwwwectcNZhBBSx5GkvzlhmxOoVaUW142/LnUUqXy76ioYNw5uuQUaN06dRpJUkBDgnnugdm044giYOzd1IklSApZpkiQVsuvGX8d6NdbjyC2PTB1Fkv6hRuUadNu2G8OnDOeLn79IHUcqn954A/r0gaOOgs6dU6eRJC3POutk61t+9BH06pU6jSQpAcs0SZIK0Yc/fMjIz0fSo3UPqlSskjqOJC1Vz+16khNyuPHNG1NHkcqfOXOyAq1hw2xUmiSpdGjfHs45BwYNguHDU6eRJBUzyzRJkgpR//H9WaPiGpzS6pTUUSSpQA3XbMgRWx7BXe/exS/zfkkdRypfevaE6dNhyBCoVSt1GknSyrjiCmjVCk46Cb7+OnUaSVIxskyTJKmQfPfbdwz+YDBdWnShbrW6qeNI0jL12qEXvy34jdvfuT11FKn8eOQRuO8+uOgi2Gmn1GkkSSurcmV48EH48084+mhYtCh1IklSMbFMkySpkAx8ayB/LvqTM7c/M3UUSVquFuu1oF3jdtz05k38uejP1HGksm/6dDjlFNh+e7j44tRpJEmrqmlTGDgQXnkF/u//UqeRJBUTyzRJkgrB3D/ncuvbt9KxWUea1m2aOo4krZBeO/Timznf8OjkR1NHkcq2BQvg8MMhNzeb3rFixdSJJEmr45hjsvUv+/SB115LnUaSVAws0yRJKgT3v3c/s/6YRa8deqWOIkkrbO+N92bTtTbluvHXEWNMHUcqu84/H956C+6+G5o0SZ1GkrS6QoBbboFGjeCoo+CXX1InkiQVMcs0SZJWU27Mpf8b/WlVvxU7b7Bz6jiStMJyQg5nbX8W7373LmO/HJs6jlQ2Pfkk9O8PPXvCwQenTiNJKixrrpmtnzZzJnTtCp6YJEllmmWaJEmracTUEUydNZVeO/QihJA6jiStlGO2Poa1q63NdeOvSx1FKnumT4cuXWDbbeGaa1KnkSQVtu22g8svh2HDspFqkqQyyzJNkqTVdM3r17BBrQ04ZPNDUkeRpJVWtWJVurfuzoipI/jox49Sx5HKjgUL4IgjsnXSHnkEqlRJnUiSVBTOPRc6dIAzz4QJE1KnkSQVEcs0SZJWw6tfvsq4r8bRa4deVMypmDqOJK2SHm16UK1SNa5+7erUUaSy44IL4M034a67YKONUqeRJBWVnBy4/36oVw8OPRR++il1IklSEbBMkyRpNfQd15e1qq3FSS1PSh1FklZZ3Wp16bZtN4a8P4Tpv0xPHUcq/Z58Eq6/Hnr0gEMcuS5JZV7dujB0aLZ+2nHHZaOSJUllimWaJEmraNJ3k3jus+c4c/szqVapWuo4krRaztrhLHJCDte+fm3qKFLptnidtJYt4Vr/f5KkcqNNm+xEihEjoF+/1GkkSYXMMk2SpFXUd1xfalauyWmtT0sdRZJWW8M1G3Lc1sdx58Q7+e6371LHkUqn/OukPfqo66RJUnnTvTscdhj8978wdmzqNJKkQmSZJknSKpg6aypDJw+le+vu1K5aO3UcSSoU5+50Ln/m/skNb9yQOopUOp13XrZO2p13uk6aJJVHIWR/B2y8cXZyxXeeoCRJZYVlmiRJq6Dfa/2oUrEK/9n+P6mjSFKhaVq3KYdufii3TLiFX+b9kjqOVLo8/DDccEO2Ttqhh6ZOI0lKpWZNGDYMZs+Go46CRYtSJ5IkFQLLNEmSVtLXs7/m/vfu56RtTmLdGuumjiNJheqCnS9gzoI53PzWzamjSKXH5Mlw4omw445w3XWp00iSUmveHG69FV5+GXr3Tp1GklQILNMkSVpJV427ikjk7B3PTh1Fkgrd1uttzb5N96X/G/35df6vqeNIJd/s2XDggbDmmjB0KFSunDqRJKkkOO647ESLK6+EZ55JnUaStJos0yRJWgkzfp3Bne/eyQktTmDD2humjiNJRaL3br356Y+fHJ0mLU9ubnawdNo0ePRRqF8/dSJJUkkyYAC0aAGdO8Nnn6VOI0laDZZpkiSthKvGXUVuzOXCXS5MHUWSikzrBq3Zt+m+XDf+OubMn5M6jlRyXX01PPkkXHst7LJL6jSSpJJmjTXg8cehQgXo1Anm+L1KkkoryzRJklbQjF9ncMfEOzi+xfGOSpNU5jk6TVqOF16Aiy6CI46AM85InUaSVFI1agSPPAJTpsDxx0OMqRNJklaBZZokSSvo6nFXOypNUrnRukFrOjTt4Og0aWk+/xwOPxw23xzuvBNCSJ1IklSS7bEH9OsHjz0GV12VOo0kaRVYpkmStAK++fUbbp94O8e3OJ5GtRuljiNJxaL3br2Z9ccsBk4YmDqKVHLMmQMHHJAVaE8+CdWrp04kSSoNzjoLjjwS/vtfeP751GkkSSvJMk2SpBXgWmmSyqM2Ddqwz8b7cO3r1zo6TQLIzYVjjoGPP4ZHH4UmTVInkiSVFiFko5m32ior1T77LHUiSdJKsEyTJGk5vvzlS26feDtdtu7iqDRJ5U6ftn2Y9ccsbnzzxtRRpPT69MlGo11/Pey+e+o0kqTSplo1ePxxyMmBjh1h9uzUiSRJK8gyTZKk5bh07KUEApfsdknqKJJU7No0aEOnTTtxzevXMGvurNRxpHSGDoXLL4cTToCePVOnkSSVVo0bZ2unffppNkJt0aLUiSRJK8AyTZKkZfj4fx9z33v3cVrr01i/1vqp40hSEpf/+3LmzJ9Dv9f6pY4ipfHee9ClC+ywA9xySzZVlyRJq6ptWxg4EJ57Ds45J3UaSdIKsEyTJGkZLnn5EqpVqsYFO1+QOookJbPlOlvSeavO3PTWTcycMzN1HKl4ffst7L8/1KmTjSSoUiV1IklSWXDyyXD66dC/P9x1V+o0kqTlsEyTJKkAE7+dyNCPhnLm9meydvW1U8eRpKT67NaHhbkLueKVK1JHkYrP3LlwwAEwaxY89RTUq5c6kSSpLLnuOthrLzj1VHjlldRpJEnLYJkmSVIBLhp9Ef9a41/02qFX6iiSlNxG/9qIri27csfEO5j287TUcaSil5sLxx0Hb78NDz4ILVumTiRJKmsqVoSHH4YmTeCgg2Ca37EkqaSyTJMkaSle+fIVnvvsOc7f6XxqVa2VOo4klQgX7XoRFXMqcsnLl6SOIhW9iy6CYcPgmmuy0WmSJBWF2rXh6aezkzj23Rd+/jl1IknSUlimSZK0hNyYy9mjzqZBzQZ0b9M9dRxJKjHq16zPGdudwZAPhjDx24mp40hF5957oW/fbD2bs85KnUaSVNY1bQpPPJGNTDvoIJg/P3UiSdISLNMkSVrCo5MfZcLMCVzZ7kqqVaqWOo4klSgX7HwBddeoS69RvYgxpo4jFb6xY7MSbY894OabIYTUiSRJ5cGuu8I998CYMXDSSeD3LEkqUSzTJEnKZ/7C+Vzw0gW0WK8FR291dOo4klTi1Kpaiz5t+zBm+hie+fSZ1HGkwjV5MnTqBBttBEOHQqVKqRNJksqTo46CK66AwYOhT5/UaSRJ+VimSZKUz81v3cz0X6ZzTftrqJBTIXUcSSqRum3bjab/asq5L5zLwtyFqeNIheObb2CffaBqVXjuuWwNG0mSituFF8KJJ8Jll2XTDkuSSgTLNEmS8vz0x09c8eoV7LPxPuzRZI/UcSSpxKpUoRJX73E1U/43hbsm3pU6jrT6Zs+GDh3g55+zIq1Ro9SJJEnlVQhw663Qvj107Qovvpg6kSQJyzRJkv6/K165gl/n/0q/9v1SR5GkEq/Tpp3YeYOd6T2mN3Pmz0kdR1p1CxbAwQfDRx/B8OHQokXqRJKk8q5SJRg2DDbfHA48ECZOTJ1Iksq9UlOmhRD2DiF8EkL4LIRw/lIe7xxCeD/v8noIYesUOSVJpdPH//uYAW8N4IQWJ7DlOlumjiNJJV4Igev2vI7vf/+e/3v1/1LHkVZNbi6ccAK89BLcdVc2CkCSpJJgzTWz0dJ162bTEH/2WepEklSulYoyLYRQARgI7ANsDhwZQth8ic2+AHaLMW4FXA7cXrwpJUmlVYyRM0eeSbVK1bhy9ytTx5GkUqNNgzYcu/WxXP/G9Xz2kwd4VApdcAEMGQJXXgnHHps6jSRJf1e/PowalZ38seee8N13qRNJUrlVKso0oA3wWYxxWoxxAfAwcED+DWKMr8cYf867+QbQsJgzSpJKqWc+fYbnP3ueS9teyjrV10kdR5JKlat2v4rKFSpz1sizUkeRVs7VV0O/fnDaaVmpJklSSbTJJvDMM/DDD7D33tk6n5KkYldayrQGwNf5bs/Iu68gJwLPFWkiSVKZMH/hfP7z/H/YbK3N6N66e+o4klTq1KtZj4t3vZinpz7N8589nzqOtGLuuAPOPx+OPBIGDIAQUieSJKlgbdpk63pOngydOsG8eakTSVK5UzF1gBW0tH/ZxKVuGMK/ycq0nQt4/GTgZIB69eoxZsyYQoooSZnffvvNz5ZS5MGvHuTznz/nmubX8Nqrr6WOI60QP2NU0rTIbUHDNRpy8vCTuavVXVTKqZQ6klZQefzesvaYMWx+2WX8tN12fHjCCcRXXkkdSSoz2i7lvvL2GSMVmcqVWee889j8yiv5sX17PurTh1ihQupUxao8fm+RVHKEGJfaSZUoIYQdgD4xxr3ybl8AEGPsu8R2WwGPA/vEGKcub7/169ePM2fOLILEksqzMWPG0LZt29QxtAK++fUbmt3cjPYbtefxwx9PHUdaqnDpP88pir1L/vc3lT/Pfvos+z64L9e2v5ZeO/ZKHUcrqNx9bxk1CvbbLzvDf9QoqFYtdSKpbFnaKM9ScNxJKlUGDIDTT4ejj4b77oOc0jLx2Oord99bJBWLEMI7McZWy9uutHzaTgCahhAahxAqA0cAT+XfIISwATAcOGZFijRJknqN6sXC3IVct+d1qaNIUqnXoWkH9m26L33G9mHGrzNSx5H+afx4OPBA2HxzGDHCIk2SVDr17AlXXgmDB2frflpYS1KxKBVlWoxxIdADGAlMAR6NMU4OIZwSQjglb7NLgLrALSGESSGEtxPFlSSVAiM/G8kjkx/hv7v8lyZ1mqSOI0llwk373MTC3IX85/n/pI4i/d0778A++0D9+vD881C7dupEkiStugsvhAsugNtug3POsVCTpGJQWtZMI8b4LPDsEvcNynf9JOCk4s4lSSp9/vjzD0579jSa1W3GuTudmzqOJJUZTeo04eJdL+a/o//LM1OfYd9N9k0dSYL33oP27aFOHXjpJVhvvdSJJElafVdeCb/9BtddBzVrQu/eqRNJUplWKkamSZJUmP7v1f9j2s/TuHXfW6lSsUrqOJJUppy949lsttZm9HiuB3P/nJs6jsq7yZNhjz2genUYPRo22CB1IkmSCkcIcMMN0KUL9OkD11yTOJAklW2WaZKkcuXj/33M1a9dzTFbHcO/G/87dRxJKnMqV6jMoP0GMf2X6Vw+9vLUcVSeffIJ7L47VKoEL78MjRunTiRJUuHKyYE774TDD4dzz81GqUmSioRlmiSp3Igxcuozp1Kjcg2u3fPa1HEkqczadcNdOb7F8Vw7/lo+/OHD1HFUHn3+ObRrl60hM3o0bLxx6kSSJBWNChVg8GA47DA4+2y4/vrUiSSpTLJMkySVG3dMvIMx08fQr30/1qm+Tuo4klSm9Wvfj9pVa3PCkyewMHdh6jgqTz79FHbbDebPz9ZI23TT1IkkSSpaFSvCkCFw6KHQq5eFmiQVAcs0SVK58PXsrzl71Nns3nh3TtzmxNRxJKnMW6vaWty8z81MmDmBG964IXUclRdTpvxVpI0eDVtumTqRJEnFY8lCrX//1IkkqUyxTJMklXkxRrqN6EZuzOWO/e8ghJA6kiSVC4dtcRidNu3ExS9fzNRZU1PHUVn34YfQti3k5sKYMbDVVqkTSZJUvCpVygq1Qw6Bs85yDTVJKkSWaZKkMu+B9x/guc+e46o9rqJxncap40hSuRFC4JYOt1C1YlVOfOpEcmNu6kgqq957D/797+ys/LFjYYstUieSJCmNSpXgwQezEWpnnw2XXZatISpJWi2WaZKkMu3bOd9yxvNnsPMGO3Na69NSx5GkcqdezXr036s/474axy0TbkkdR2XRO+9Au3awxhpZkdasWepEkiSltbhQO+446N0bzj3XQk2SVpNlmiSpzIox0vXprsxbOI+7Ot5FTvCvPUlK4bitj2PvjffmvBfP49NZn6aOo7LklVeyEWk1a2ZF2sYbp04kSVLJULEi3H03dO8O114Lp52WTYUsSVolHlWUJJVZt79zO898+gxX73E1m9TdJHUcSSq3Qgjcuf+dVKlQhWMeP4aFuQtTR1JZMGIE7LUXNGgA48ZBY6dyliTpb3JyYMAAOO88GDQIunSBhX4Pk6RVYZkmSSqTPp31KWeNOov2TdrTo02P1HEkqdxrsGYDBu03iDe/eZMrX7kydRyVdkOGQKdOsOWW8Oqr0LBh6kSSJJVMIUDfvnD55fDAA9laan/8kTqVJJU6lmmSpDJnYe5Cjnn8GKpUqMI9B9zj9I6SVEIctsVhdG7emctfuZy3vnkrdRyVVjffDEcfDbvuCqNHw1prpU4kSVLJFgJcdBHcdBM8+WQ2svuXX1KnkqRSxaOLkqQy5/9e/T/e/OZNBu03iAZrNkgdR5KUz80dbqZ+zfocPfxofl/we+o4Kk1ihD59oGdPOOAAePbZbK00SZK0Ynr2hIcegjfegF12gW++SZ1IkkoNyzRJUpny2levcdnYy+jcvDOHbXFY6jiSpCXUrlqb+w+8n89++owznj8jdRyVFn/+CSeeCJdeCscfD8OGQdWqqVNJklT6HH54dkLK9Omw447w8cepE0lSqWCZJkkqM2bNncWRjx1Jo9qNuGXfW1LHkSQVoG2jtlyw8wXc9e5dDHl/SOo4KunmzIH994d77oHeveGuu6BixdSpJEkqvfbYA8aOhXnzYOedYfz41IkkqcSzTJMklQkxRo5/8ni+++07HjnkEdassmbqSJKkZbj035ey0/o7ccozpzB11tTUcVRSzZyZrY324otw553ZNI8hpE4lSVLp17IlvP461K4N7drB0KGpE0lSiWaZJkkqE25880aenvo01+55LdvW3zZ1HEnSclTMqchDBz9E5QqVOXzY4cxbOC91JJU0H30EO+wAn30GI0Zk0zxKkqTCs9FG2ai0li3hsMOgb99sjVJJ0j9YpkmSSr0J30zg3BfOpdOmnejZpmfqOJKkFbR+rfW5v9P9TPpuEr1G9kodRyXJc89lRdqCBfDKK7D33qkTSZJUNq29Nrz0Ehx5JFx4IZx0Uvb3ryTpbyzTJEml2o+//8jBjx5M/Zr1ubvj3QSnfpKkUmXfTfal1w69uOXtWxj8/uDUcZRajNC/P+y3HzRpAm+9BdtskzqVJEllW9WqMGQIXHIJ3H13dhLLzz+nTiVJJYplmiSp1FqYu5AjHjuCH+f+yPDDh1NnjTqpI0mSVkHf3fuy24a70fXprrz77bup4yiVBQuga1c46yw44AAYNw7WXz91KkmSyocQ4NJL4b77sr+Dt9sum3JZkgRYpkmSSrHzXzyf0V+MZtC+g2hZr2XqOJKkVVSpQiUePfRR6q5Rl4MePYhZc2eljqTi9r//Qfv2cNddcNFFMGwYVK+eOpUkSeXPscfCyy/Dr7/C9tvDk0+mTiRJJYJlmiSpVHr4w4e5bvx1dG/dneNaHJc6jiRpNa1TfR2GHz6cmXNmctTwo1iUuyh1JBWXd96BVq3gzTezKaYuvxxy/KeqJEnJ7LQTvP02NGsGnTrBZZdBbm7qVJKUlP9CkSSVOu9++y4nPnUiO62/E9fvdX3qOJKkQtKmQRsGdhjIqM9Hcf6L56eOo+Jw993ZAbvcXHj1VTjqqNSJJEkSQMOG8MorcMwx0Ls3HHoozJmTOpUkJWOZJkkqVb759Rv2f2h/6q5Rl2GHDaNyhcqpI0mSCtFJLU+ie+vuXDv+Wu6ceGfqOCoq8+dDt25w4omw887Z6LTWrVOnkiRJ+a2xRraG2vXXwxNPuI6apHLNMk2SVGr8vuB3Oj7ckdnzZzPiqBGsV2O91JEkSUXghr1vYO+N9+bUZ07lpWkvpY6jwvb117DrrnD77XD++fD887D22qlTSZKkpQkBzjwTXngBZs3KTn4ZPDh1KkkqdpZpkqRSITfmcvTjRzPpu0k8csgjbLXuVqkjSZKKSMWcijx88MM0q9uMQ4Yewsf/+zh1JBWWESNgm21gyhQYPhz69oWKFVOnkiRJy9OuHbz7brbO6THHZCPM581LnUqSio1lmiSpVDj3hXN54uMn6L9Xfzo07ZA6jiSpiNWqWosRR42gcoXK7Pvgvnz/2/epI2l1LFgAvXrB/vvD+uvD22/DgQemTiVJklZG/frw0ktw3nnZCPMddoDPPkudSpKKhWWaJKnEu/b1a7lu/HX0bNOTnm16po4jSSomjWo34skjnuTbOd/S4cEOzJnvovel0rRp2bpo118PPXrA+PGwySapU0mSpFVRsSJcdRU8/TR8+WU24vz++yHG1MkkqUhZpkmSSrT737ufc144h8O2OIz+e/UnhJA6kiSpGG3fcHuGHjqU9757jwMfOZD5C+enjqSV8fDD2UG2Tz/NpnUcMACqVk2dSpIkra799oNJk6BlSzjuOOjcGWbPTp1KkoqMZZokqcR69tNnOeHJE9i98e7c3+l+KuRUSB1JkpTAvpvsy90H3M1LX7zEsU8cS27MTR1Jy/Pzz9lBtSOPhC22yA62Oa2jJEllywYbwOjRcMUV8OijsPXW8NprqVNJUpGwTJMklUjjvhrHoUMPZev1tubxwx+nSsUqqSNJkhI6dutj6bdHPx6d/Cjdn+lOdCqhkuvFF6F58+yg2uWXwyuvwIYbpk4lSZKKQoUK8N//wrhx2fVdd4WLL87WS5WkMsQyTZJU4oz/ejz7DNmHDWptwHOdn6NmlZqpI0mSSoBzdjqH83Y6j0HvDOLMkWdaqJU0f/wB//kPtG8PNWpka6NddFG2tookSSrbtt8e3n0XjjkmG6nWpg28917qVJJUaCzTJEklytsz32bvIXuzXo31eOnYl1in+jqpI0mSSpC+u/fljO3O4MY3b+T8F8+3UCspXnstWxvtxhuhZ0+YOBFatUqdSpIkFac114R774Unn4Tvv8++C1x+Ofz5Z+pkkrTaLNMkSSXGpO8msecDe1J3jbqMPnY09WvWTx1JklTChBDov1d/Tm11Kv1e78clL19ioZbSb79l5dkuu8C8eTBqFNx0E1SrljqZJElKpWNH+PBDOOwwuOSSbNTa+++nTiVJq8UyTZJUIkz4ZgLt7mtHjco1GH3caNavtX7qSJKkEiqEwM0dbuakbU7iilev4IKXLrBQS+GFF2DLLWHgQOjRIzto1r596lSSJKkkqFsXhgyBxx6Dr7+GbbeFCy7IpoWWpFLIMk2SlNwrX77C7vfvTu2qtRnbZSyNajdKHUmSVMLlhBxu2/82Ttn2FK5+7WpOf+50cmNu6ljlw48/wvHHw557QtWq8Oqr2Wi0GjVSJ5MkSSXNQQfBlClw9NFw1VXQvDm8+GLqVJK00izTJElJjfp8FHsP3psGazbg1eNfpXGdxqkjSZJKiZyQwy373kKvHXpx84SbOfGpE1mUuyh1rLIrNxduvx2aNcvONL/wQpg0CXbaKXUySZJUktWtC/fcAy+9BDk52Uj2Y4/NTtCRpFLCMk2SlMzQyUPZ/6H92aTuJoztMpYGazZIHUmSVMqEELim/TX02a0P9066l8OHHc68hfNSxyp7Jk6EHXaAbt1g663hvffgyiuzkWmSJEkrol27bO20iy6Chx6CTTaBm2+GhQtTJ5Ok5bJMkyQlccMbN3D4sMNpXb81Lx/3MutUXyd1JElSKRVCoHfb3vTfqz+PTXmM9g+056c/fkodq2yYNStbD611a/jySxg8GEaPhs02S51MkiSVRlWrwuWXZyfmtGoFPXtCy5YwdmzqZJK0TJZpkqRilRtzOWvkWZw58kwO3OxAXjjmBeqsUSd1LElSGfCf7f/DI4c8wlvfvMXOd+/Ml798mTpS6bVgAdxwA2y8MQwaBKedBh9/DJ07Qwip00mSpNJu881h1CgYNgxmz4a2beHII+Hrr1Mnk6SlskyTJBWb3xf8zuHDDqf/G/05vc3pPHrIo6xRaY3UsSRJZchhWxzGqKNH8e1v37L9Xdsz4ZsJqSOVLjHCiBHQvDmceSa0aZOdOT5gANSunTqdJEkqS0KAgw+GKVPgkkvg8cezqR8vvDAr2CSpBLFMkyQVi69mf8Uu9+zCYx89xrXtr+WGvW+gQk6F1LEkSWXQbo12Y9zx46hasSq73LMLQ94fkjpS6TBhArRvD/vvnx3ceuYZeP552GKL1MkkSVJZVq0aXHopfPJJVq717ZuNjr/5Zvjzz9TpJAmwTJMkFYNxX42j9R2t+fznzxlx1Ah67diL4BRRkqQitMU6WzCh6wS2b7g9Rz9+NOe9cB6LcheljlUyffwxHHLIX6PQbrwRPvgAOnRwSkdJklR8NtwwW5/17bezUfI9e2Yn9QwdCrm5qdNJKucs0yRJRSbGyC0TbqHdfe2oVaUWb570Jh2adkgdS5JUTqxVbS1eOOYFTtn2FPq93o/9HtqPWXNnpY5Vcnz9Nc2uuSY7SDVyJPTpA9OmwemnQ6VKqdNJkqTyattt4aWXslHylSvDYYdBy5bUHTcum5JakhKwTJMkFYk58+dw5GNH0v3Z7uzRZA/ePOlNNl1r09SxJEnlTKUKlbh1v1sZtO8gRn8xmm1u24bxX49PHSutr76CU0+FjTdm3RdeyMqzadOgd2+oWTN1OkmSpGx0fIcO2aj5wYPh999pfvHF2Uj655+3VJNU7CzTJEmF7v3v36fVHa0Y+tFQ+u7elxFHjaDOGnVSx5IklWPdWnXj9RNep2JORXa9d1f6j+9PLG8HYaZPh5NPztYguesuOOEE3rz/fujfH9ZeO3U6SZKkf6pQATp3hilT+Picc+DHH2GffWDHHeHppy3VJBUbyzRJUqHJjbnc8MYNtLmjDXPmz2H0saM5f+fzyQn+dSNJSm/b+tsysdtE9ttkP84adRb7Prgv3/32XepYRe+jj+CEE6BpU7jvPujaFT7/HG69lfnrrZc6nSRJ0vJVrMh3HTrA1Klw663w3XfQsSNsvTU89BAsXJg6oaQyzqObkqRCMePXGez5wJ6cOfJM9txoTyadMondGu2WOpYkSX9Tu2pthh82nJv3uZmXp7/MlrdsyeNTHk8dq/DFCK++Cvvvn62J9vDD2dSO06bBwIGw/vqpE0qSJK28ypXhlFOyUu3++7MS7aijYNNNYdAgmDs3dUJJZZRlmiRptcQYeeC9B2h+a3PGzxjP7fvdzpNHPMk61ddJHU2SpKUKIdC9TXfe7fYujWo34qBHD6LLE1346Y+fUkdbfQsXwrBh2dRHu+4Kb7wBffpk66TddBM0aJA6oSRJ0uqrVAmOOQY+/BCGD4c6dbITh9ZfH/77X5g5M3VCSWWMZZokaZV9+cuX7DNkH4594lg2W2szJnWbRNdtuxJCSB1NkqTl2nStTXn9xNe5aJeLGPz+YDYfuDlDJw8tnWup/fgj/N//QePGcOih8P332Qi0L7+E3r1hrbVSJ5QkSSp8OTlw4IHw1lvwyiuw227Qty80apSVbRMmuK6apEJhmSZJWmkLcxdy4xs3ssUtWzDuq3HctPdNvHr8qzSt2zR1NEmSVkrlCpW5vN3lvH3y2zRYswGHDTuMAx85kBm/zkgdbflizA4Qdeny11nYm24KTzwBn34Kp50G1aqlTilJklT0QoBddslGqX32WfY96IknoE0b2HZbuO02mDMndUpJpZhlmiRppbzy5Su0vK0l/xn5H3bZcBcmnzaZntv1pEJOhdTRJElaZS3Wa8GbJ71Jvz36MfLzkTS7uRl9X+3L/IXzU0f7p1mz4MYbYeutswNEw4bBiSfCRx/BCy/AAQdABf9eliRJ5VSTJnDDDTBjRjZSf9GibJ21+vWhWzeYODF1QkmlkGWaJGmFzPh1Bkc9dhS73bsbs+fP5rHDHuPZo55lw9obpo4mSVKhqJhTkXN2Oocp3aew10Z7ceHoC9ny1i0ZMXVE+qkfFy2CUaPg8MOzA0H/+Q9UqQK33grffJMdKNpss7QZJUmSSpJatbIRapMmwfjxcMgh8MAD2Ui11q3hjjtg9uzUKSWVEpZpkqRl+mXeL5z/4vk0HdCU4VOGc8mulzCl+xQO2uwg10aTJJVJjWo3Yvjhwxl59EgqhArs/9D+tL2vLa9//Xrxh5k6Ffr0yc6w3msvePHF7Mzq997Lpng85ZTsQJEkSZKWLgTYfnu45x6YORNuugn++ANOPhnWXTdbb/aJJ2B+CZyRQFKJYZkmSVqquX/O5frx17PRTRvR77V+HLL5IXzc42Mu/felVKvk+iuSpLJvz4325P1T32dgh4F88r9P2OnunTjg4QP48IcPi/aFv/wS+vWDli2hWTO47LLs58MPZweAbrwRttqqaDNIkiSVRbVrQ8+e8MEH8Oab2bSPY8fCgQdCvXrZ7Vdfhdzc1EkllTCWaZKkv5kzfw79XutH4xsb02tUL1rVb8XEbhN54MAHaFS7Uep4kiQVq8oVKnNa69P4/PTPubLdlYyZPoatbt2KYx8/lo//93HhvdC332ZnSe+4IzRqBOedB5UqwfXXw1df/TXFY5UqhfeakiRJ5VUI2dqzN96Ynaz03HPQoQMMHgy77gqNG8M558Drr1usSQIs0yRJeX6Z9wuXj72cRjc24rwXz2Ob9bbh1eNfZeTRI2mxXovU8SRJSqp65epcuMuFTDt9GmfveDZDPxrK5gM358BHDuSNGW+s2k4/+QSuvTY7YNOgAZxxBsydC337wuefZ2dLn3kmNGxYuL+MJEmS/lKxIuy9d1ak/fADDBkCW2yRFW077ZStV9utGzz/PCxYkDqtpEQqpg4gSUrr858+55YJt3Dnu3fy6/xf6disI//d5b+0adAmdTRJkkqcutXq0q99P87e8WwGvDmAgRMG8sTHT7Dbhrtx7k7nss/G+xS8pujChfDaa/D00/DUU/Dpp9n9W28Nl1wCRxwBm25afL+MJEmS/q56dTjqqOwyezY8+yw8/jg8+CDcfjusuWY2gq1TJ9hzT6hTJ3ViScXEMk2SyqHcmMsLn7/AgLcG8Oynz1IhpwIHb3Yw5+98vqPQJElaAetUX4fL213OuTudy50T7+S68dex74P70qxuM7pt243jWhzHv9b4VzZt0EsvwciR2cGYn3/Opm9s1y4bibb//rDBBql/HUmSJC2pVi048sjsMm9e9p3u8cezk6IefhhycrKpIvfaK7u0aQMVKqROLamIWKZJUjny/W/fM+SDIdz2zm1MnTWVdauvy8W7Xky3Vt2oX7N+6niSJJU6NavU5MwdzqR7m+48/OHD3PfqAEYPOIvK08+h04waNPh6drbhWmtlxVnHjtlZzDVrpg0uSZKkFVe1Kuy7b3ZZtCibjnvkyGzqx8sug0svhdq1YY89smKtfXvYcMPUqSUVIss0SSrj5i2cx1OfPMV9793HyM9GsiguYvuG2zP4wMEcsvkhVKlYJXVESZJKr9mzYfx4Kr/2GseOHs2xb74Li2BB5cDYDX+jf3v4YtsmtNr7BI7cujONajdKnViSJEmro0IF2HHH7HLppTBrFrz4YlaujRwJw4Zl222wQbY27m67ZT+bNoWCpgOXVOJZpklSGbRg0QJe/uJlhn00jKEfDWX2/Nk0qNmAc3Y8h2O3PpbN1t4sdURJkkqnr76CceOytc/GjYMPPoAYs4Mq224L558Pe+xB5R12YHsWMO2DBxn//v1cOOYiLhxzETutvxNHNT+KQzc/lLWrr536t5EkSdLqqlsXDj88u8QIkyfDmDEwdiyMGgWDB2fbrbdeVqrtsgtsvz1stRVUrpw0uqQVZ5kmSWXE7wt+Z+TnIxk+ZTgjpo5g9vzZ1Khcg06bduK4rY/j343+TYUc5+6WJGmF/fQTvPMOvP12dnnrLZgxI3usRo3sbOSDD4add87WyKhR429Pr0kVurXqRrdW3fji5y94+MOHGfLBELo/253TnzudnTfYmY7NOtKxWUc2/tfGCX5BSZIkFaoQYMsts0uPHlm5NnVqVqy98kr289FHs22rVIFttsm+R263XfZzo40cvSaVUCHGmDpDMvXr148zZ85MHUNSGTNmzBjatm1b5K8TY2TK/6Yw6vNRjPx8JGOnj+WPhX9Qd426HNDsAA7c7ED2aLIHVStWLfIskopOuPSf/5CKvcvv9zepyHz/fTbK7N13/yrPpk376/GNN4ZWrWCnnbJL8+ZQcdXOTfzg+w94dPKjPDX1Kd7//n0ANltrMzo268heG+3FDuvvUGx/fxfX9xZJ5cTSDgCX4+NOkgpXmfjeEmM208Fbb2WXN9/MTt6aOzd7/F//ymY72Hrr7NKiBTRrBpUqJY0tlWUhhHdijK2Wt50j0ySpFPlq9leM+2oco78YzcjPRzLj1+zs+GZ1m9G1ZVc6bdqJXTbchYo5frxLkrRUv/+eTb3zwQd/v/z441/bNG6cHcQ4+eSsQGvZEurUKbQIzddtTvN1m3N5u8uZ/st0nv7kaZ6a+hTXjb+Oq1+7mqoVq7LzBjuze+Pd2b3x7rSs19LR5ZIkSWVBCLDhhtnl0EOz+xYuzL6fLi7X3n0XBgyA+fOzxytXhi22+Ktg23xz2GwzaNjQUWxSMfJoqySVUAtzF/LRjx/x+tev8+pXrzLuq3F8NfsrAGpVqcUeTfbgkl0vYc+N9mTD2hsmTitJUgmSm5tNx/jJJ/+8fPXVX9tVq5YdmNh//2ykWfPm2QGKtdYqtqiNajei53Y96bldT36d/yuvfPkKL017iZe+eIkLXroAgJqVa7Jdw+3YoeEO7Lj+jmzXYDvqrFF45Z4kSZISqljxr6Ksa9fsvj//zL67vvfeX5fnnoN77/3reTVqwKabZsXa4ssmm2Qnhq2xRpJfRSrLLNMkqQRYlLuIT2Z9wtsz3+adme/w9rdv8+637/LHwj8AWK/GeuyywS6cvcPZ7LzBzmy17laeoS5JKt9+/RWmT4cvvsgu+a9/9hn88cdf29aokU2Ps/PO2QGHLbfMirMmTSAnJ9Vv8A9rVlmT/TbZj/022Q+A73/7npenv8yrX77K6zNe58pXryQ35gLZtJDb1t+WbettS8t6LdlmvW2oWaVmyviSJEkqLJUq/bX2WufOf93/ww8wZcrfLy+/DA888Pfn16+frb/WpEl2WXx9o41g7bUd0SatAss0SSoBXvriJfYavBcA1StVp2W9lnTbthvb1t+WHRruQJM6TQh+0ZEklRfz5sHMmfDNN3/9/OabbFTZ4sLsp5/+/pzq1bOzcBs3hj32yMqzxZf11iuVBwzWrbEuR2x5BEdseQQAvy34jbe+eYvxX4/njW/eYPQXoxn8/mAADtn8EIYeOjRlXEmSJBW1ddbJLrvt9vf758yBjz/OTir7/PNs7d/PP4eXXoL77vv7ttWrQ6NG2TSRBV1q1SqV35+lomSZJkklwHYNtuO+TvfRqn4rmtVt5qgzSVL50bdv9o/+/MXZkkUZQNWqsMEGWVnWunV2AGBxeda4MdStW+b/wV+jcg3aNW5Hu8bt/v993/32HRO/nUitKrUSJpMkSVJSNWtm35Fbt/7nY/PmZbM45C/Zvvoqmxb9/ffhu+8gxr8/p3r1rFSrXx/q1csuXbtmJ6pJ5VSpKdNCCHsDNwIVgDtjjFct8XjIe7wDMBfoEmOcWOxBJWkV1Kpai2O3PjZ1DEmSit/gwfDzz9CgQVaK7bxzdr1+/b//rF27zJdlq2K9GuvRoWmH1DEkSZJUUlWtmk11vummS3/8zz/h22+zci3/5euvs5Pd3ngje7xjR8s0lWulokwLIVQABgLtgRnAhBDCUzHGj/Jttg/QNO+yHXBr3k9JkiRJJdUHH5SodcskSZKkcqVSpWwGiA02KHibJUeuSeVQaflXaxvgsxjjtBjjAuBh4IAltjkAuD9m3gBqhxDqFXdQSZIkSSvBIk2SJEkq2UJwlgiVe6ViZBrQAPg63+0Z/HPU2dK2aQB8u6wdX3rppYWRT5L+ZuzYsakjSCrD/P4iqTD5vUVSYem9lPv83iKpMPm9RVIqpaVMW1rtveTY0hXZhhDCycDJAPXqOXBNkiSVbLuxW+oIkiRJK2TMbn5vkSRJZVOIpWC+0xDCDkCfGONeebcvAIgx9s23zW3AmBjjQ3m3PwHaxhgLHJlWv379OHPmzCLNLqn8GTNmDG3btk0dQ1IZ42eLpKLgZ4ukouBni6Si4GeLpKIQQngnxthqeduVlgUKJgBNQwiNQwiVgSOAp5bY5ing2JDZHpi9rCJNkiRJkiRJkiRJWp5SMc1jjHFhCKEHMBKoANwdY5wcQjgl7/FBwLNAB+AzYC5wfKq8kiRJkiRJkiRJKhtKRZkGEGN8lqwwy3/foHzXI9C9uHNJkiRJkiRJkiSp7Cot0zxKkiRJkiRJkiRJxc4yTZIkSZIkSZIkSSqAZZokSZIkSZIkSZJUAMs0SZIkSZIkSZIkqQCWaZIkSZIkSZIkSVIBLNMkSZIkSZIkSZKkAlimSZIkSZIkSZIkSQWwTJMkSZIkSZIkSZIKYJkmSZIkSZIkSZIkFcAyTZIkSZIkSZIkSSqAZZokSZIkSZIkSZJUAMs0SZIkSZIkSZIkqQCWaZIkSZIkSZIkSVIBLNMkSZIkSZIkSZKkAlimSZIkSZIkSZIkSQWwTJMkSZIkSZIkSZIKYJkmSZIkSZIkSZIkFcAyTZIkSZIkSZIkSSqAZZokSZIkSZIkSZJUAMs0SZIkSZIkSZIkqQAhxpg6QzIhhDnAJ6lzSCpz1gL+lzqEpDLHzxZJRcHPFklFwc8WSUXBzxZJRaFZjLHm8jaqWBxJSrBPYoytUoeQVLaEEN72s0VSYfOzRVJR8LNFUlHws0VSUfCzRVJRCCG8vSLbOc2jJEmSJEmSJEmSVADLNEmSJEmSJEmSJKkA5b1Muz11AEllkp8tkoqCny2SioKfLZKKgp8tkoqCny2SisIKfbaEGGNRB5EkSZIkSZIkSZJKpfI+Mk2SJEmSJEmSJEkqULkt00IIe4cQPgkhfBZCOD91HkmlXwjh7hDCDyGED1NnkVR2hBDWDyG8HEKYEkKYHEI4I3UmSaVfCKFqCOGtEMJ7eZ8tl6bOJKlsCCFUCCG8G0IYkTqLpLIjhDA9hPBBCGFSCOHt1HkklQ0hhNohhGEhhI/zjrvsUOC25XGaxxBCBWAq0B6YAUwAjowxfpQ0mKRSLYSwK/AbcH+MccvUeSSVDSGEekC9GOPEEEJN4B2gk99bJK2OEEIAqscYfwshVALGAWfEGN9IHE1SKRdCOAtoBawZY9wvdR5JZUMIYTrQKsb4v9RZJJUdIYT7gFdjjHeGECoD1WKMvyxt2/I6Mq0N8FmMcVqMcQHwMHBA4kySSrkY4yvAT6lzSCpbYozfxhgn5l2fA0wBGqRNJam0i5nf8m5WyruUvzMtJRWqEEJDYF/gztRZJEmSliWEsCawK3AXQIxxQUFFGpTfMq0B8HW+2zPwoJQkSSrhQgiNgG2ANxNHkVQG5E3FNgn4AXghxuhni6TVdQNwLpCbOIeksicCo0II74QQTk4dRlKZ0AT4Ebgnb4rqO0MI1QvauLyWaWEp93kWpiRJKrFCCDWAx4D/xBh/TZ1HUukXY1wUY2wBNATahBCcplrSKgsh7Af8EGN8J3UWSWXSTjHGlsA+QPe8pTYkaXVUBFoCt8YYtwF+B84vaOPyWqbNANbPd7shMDNRFkmSpGXKW8/oMWBIjHF46jySypa8qUzGAHunTSKplNsJ6Ji3rtHDQLsQwuC0kSSVFTHGmXk/fwAeJ1vGR5JWxwxgRr4ZOoaRlWtLVV7LtAlA0xBC47xF5Y4AnkqcSZIk6R9CCIFs/u4pMcbrU+eRVDaEENYOIdTOu74GsAfwcdJQkkq1GOMFMcaGMcZGZMdZRscYj04cS1IZEEKoHkKoufg6sCfwYdpUkkq7GON3wNchhGZ5d+0OfFTQ9hWLJVUJE2NcGELoAYwEKgB3xxgnJ44lqZQLITwEtAXWCiHMAHrHGO9Km0pSGbATcAzwQd7aRgAXxhifTRdJUhlQD7gvhFCB7CTLR2OMIxJnkiRJWpp1gcez8wypCDwYY3w+bSRJZURPYEjeoKtpwPEFbRhidKkwSZIkSZIkSZIkaWnK6zSPkiRJkiRJkiRJ0nJZpkmSJEmSJEmSJEkFsEyTJEmSJEmSJEmSCmCZJkmSJEmSJEmSJBXAMk2SJEmSJEmSJEkqgGWaJEmSJK2iEELMu4wppP2NWbzPwtifMiGEA/Pe13khhAap8wCEEI7Jy/RLCGGd1HkkSZIkFcwyTZIkSZKKSAihUwihT96lduo85VEIoSpwfd7N22OM36TMk8+DwFSgFtA3cRZJkiRJy2CZJkmSJElFpxPQO+9SO2mS8us0oBEwD7gqbZS/xBgXAVfk3ewSQtgsZR5JkiRJBbNMkyRJkqRVFGMMeZe2hbS/tov3WRj7K+9CCGsA5+fdvDfGODNlnqV4EPiS7N/mvRNnkSRJklQAyzRJkiRJUll1LLB23vX7UwZZmrzRaUPybh4SQtggZR5JkiRJS2eZJkmSJEkqq07N+/l5jHF80iQFG5z3swJwcsogkiRJkpbOMk2SJElSkQshtA0hxLxLn7z7mocQbg8hfB5C+COE8GMI4cUQwpErsd/1QwhXhRAmhhB+CiHMDyF8E0J4OoTQJYRQYQX20TSEcF0I4Z0Qwi8hhD9DCLNCCJ+EEEaFEM4NIWxRwHMX/05jlrj/3hBCBI7Ld/cX+bZffLl3ieeNWfzYCuTeLu/9+ySEMCeE8Hvee3lfCKHdCjz/b9lDCNVCCGeHEN4OIfyct7/JIYS+IYQ6y9vfcl7r4nyv99Rytj0437YfhBCqruJrNge2zrv54HK27ZPvNdvm3bd7COGxEMLXIYR5ee/t7SGEDZd4btUQQrcQwut5f4bn5uU+P4RQZXk5Y4xTgEl5NzuHEJziU5IkSSphKqYOIEmSJKn8CSEcA9wB5C8bqgK7A7uHEDoDh8QY5y1jH92A/sAaSzxUP++yH3BWCKFjjHF6Afs4CRgIVF7ioX/lXTYB2gNHAS1W5HcraiGEisAtQNelPNwk73JsCGEocFyM8Y8V2GcT4Glg8yUe2jzvcmQIoW1B7+MKuBLYA9gV2D+EcFqM8Zal5GhI9ucCYB5w5LL+DCxHp3zXX16ZJ4YQrgLOW+Luxe/tISGE3WOM74YQ1iN731otse2WQF+gQwhhrxX4b/Ay2Z+vRmQF4KSVyStJkiSpaFmmSZIkSSpurYEL867fDbwCLMq7/0SgOrAv2fR3hyxtB3lF2qB8dz0NPAP8QlaAHQ80BpoD40II28QYf1xiH9sAt5HN2LEQeCwvyw9AJaAesA2w5yr8jjcBTwCnA//Ou69b3r7z+2oV9n0/sHj03jzgPuB1svewFdl7WBM4FKgVQtg7xriskW5rkr13mwJPAc8BP5EVR6cCGwAb5r3urquQlxhjbgjhaOA9oA5wbQhhbIxx8uJtQgg5ZP/NF4+COyfG+OGqvF6e9nk/c4G3V+J53cn+3H0B3ANMBWoDxwA75eUbFkLYkux9awk8C4wAZpG9j6cDdYFdgP8CFy3nNd/Id30vLNMkSZKkEiUs+99UkiRJkrT68qbOyz86aA6wZ4zxjSW2awqMIRtZBtnotMeW2KYR8BHZiLRFwFExxkeX2GYNYChZKQcwLMZ46BLb3ExWnAAcvuQ+8m1XAdguxvj6Uh5b/A+qsTHGtkt5/F7+muqx8fJGduVNubgbQIzxH9P9hRAOBx7Ou/k90C7G+NES22xI9l43zrurR4xx4DKyAywADo4xjlhim7rAhHz72i7G+NayfodlCSEcQvbfBeB9oE2McX7eYxeSjWADGBFj3H81XqcC8CtQDZgcY9xyOdv3AXrnu2sEcGj+UXF5Zd8zwN55d71DVrYeE2P82zSSIYRNyAqxNcgK3vUW/54FvP6GwPS8m4/HGA9a5i8oSZIkqVi5ZpokSZKkFM5ZskgDiDF+SjayarGzl/Lc0/lrasfrllaC5U2rdxTwbd5dB+cVHPltnPdzNn8VPP8QY1y0tCItkfxTDx6/ZJEGEGP8EjgCWFyWnbMCa8ddsWSRlrevWcD/5btrr5XMu+T+hpGNRgTYCugHEEJoA1yad/93wAmr8zpko+qq5V3/ZCWf+wNw9JLTS8YYc4HL8t21LXDbkkVa3rZTyUbZQTaqrc2yXjDvv9niqSC3Wsm8kiRJkoqYZZokSZKk4vYz2fR5SxVjfJ5s5BnA9nnrUuW3eNTOQuC6ZeznV7K1xQACf19DC2Bu3s+aZFMZlmh5I/K2ybv5QYzxuYK2zRs9Njrv5oZkxU9BFgE3L+Px0fmuL7mm2qo4nWzqRICeIYTDgAfJliGIZOu8/VjQk1fQhvmu/7SSz30gxji7gMcmAH/mu/2PEX/5jMt3fUXet5/zfq4fQvjHqERJkiRJ6VimSZIkSSpur8YYFyxnm/wFTuvFV0II6/BXUfJejHHJNciWNCrf9e2WeOyFvJ85wMshhJNCCGstZ38p5R/dNKrArZa+zZK/e35TY4w/L+Pxb/Jdr1PgVisoxvg72ZpvC8hKzkeAjfIevj7GuCK/2/L8K9/1lS3T3izogRjjQrJ10QB+56/Sd2m+z3d9Rd63xfutTLZuoCRJkqQSwjJNkiRJUnH7bCW3qZ/ver1816eyfPm3qbfEY3eRrc8G2ZpgdwA/hBA+CCHcFkI4MoRQawVeo7gU5u+e3/+WtZMl1vqqugKvu1wxxonARUvc/S5wYWHsH6iS7/qclXzurOU8vvj9+CkuexHylX3ffs13fY0Ct5IkSZJU7CzTJEmSJBW3ucvfhN/zXa+R73rNArYpyG8FPJe80XF7AecA0/PuDsCWwMlkUw9+H0IYGEJYcwVeq6gV2u++hNxVi7PallzL7MkVGLG4ovIXWSv7325F34/Cft/yF7d/FLiVJEmSpGJnmSZJkiSpuFVbgW3yT3OXvxSaU8A2BclfxP1jhFKMcUGM8doYY2NgC7IS7T5gRt4mVYDTgFdCCKlHCxXq755S3jp4dy5x94UhhBaF9BL5p3b8V4FblSyLcy5gxcpSSZIkScXEMk2SJElScdt4JbeZme/6t/muN12B/eTfZmaBWwExxo9ijHfEGLvEGNcH2vHXiLWtgRNX4PWKUpH97sUphBDICsu18+4anvezMvBgIZWW0/NdL21l2lfLmT5SkiRJUjGzTJMkSZJU3HYOIVRezjb/znd9wuIrMcYfgC/zbrYIIazNsu2Z7/pbKx4RYowvAz3y3bXzyjw/T/6pAMMqPD+//Pnbr8D2q/y7F7Gz+CvbSOAQ4Pa825sB/QvhNb7gr9FdzQphf0UqhNCIv9ZVez9hFEmSJElLYZkmSZIkqbj9CziuoAdDCHuSTbkIMD7G+N0SmzyW97Mi8J9l7Kcm2RSNABF4fBWyTs93veIqPD//FJUrMjVjgWKM04GJeTe3znufliqE0IpsZB1k5eM7q/PahSVvGsf/y7v5I9AlbxTWmcDHefd3CyEcsDqvE2NcxF+/86YlZM27Zdku3/U3k6WQJEmStFSWaZIkSZJSuDaE0HrJO0MIGwF357vruqU8dwDwR971c0MIBy9lP1WBwUD9vLseizF+usQ214UQtl9OzlPzXX9vOdsuzRf5rrdchecv6ep81+8NIWy65AYhhA2Ah/nr33vX5JVLSYUQqgEPkU3nCHDC4qI0xjgXOJJsvTCAu0II9f+5l5XyQt7PHKDVau6rqOUv00YmSyFJkiRpqVblzEpJkiRJWh3Pkk1T+FoI4T7gVWAR0JpsXbIaedsNjzE+tuSTY4zTQwhnAoPI/k0zLITwZN5+fyFbK+wEoEneU74Bui8lx8HAWSGEL4AXyabX+wGoAqwPHAq0yNt2Fn9NRbgyXsp3vV/etJSfAAsXZ4sxfrCiO4sxPhpC6ERWPNUDJoYQ7gXGk72Hrcjew8UjsUYBt6xC7qLQH1hc/g2MMY7I/2CMcVII4ULgWqAucF8IYc/VWD/sceDyvOttgdGruJ/isHha0y9ijKtS2kqSJEkqQpZpkiRJkorbBLIRSncCJ+VdlvQs0LmgHcQYbwshBLKCpipwQN5lSR8C++ettbakxeuZNQa6LiPvl8BBMcbvl7FNQTnfDyE8RFZ+rUtWFOV3H9BlJXd7LNl6YCcBa5CNnjt1KdsNA45djTKq0IQQDgROzrs5GTingE2vB/YiK1v3AHrxz/dshcQYJ4cQJpEVokcBl6zKfopaCGEz/ipthySMIkmSJKkATvMoSZIkqdjFGAeTjUS7E5gGzAN+Ihs91DnGuG+Mcd5y9jEI2IRs6sNJZKPSFgDfkpVxxwMt8tYaW5qWwIFk00a+BfwP+BOYD8zI28cpwGYxxokF7GNFHENWdo3Je42Fy9x6OWKMC2OMXYEdgLuAz8jKtT/IppUcDOweYzw0xvhHwXsqHiGEBmT/nSF7b48qKFde8Xcc2fsEcGUIYXWmx1w8Km+jEMKOq7GfonR03s9FwB0pg0iSJElaulACTlKUJEmSVMaFENoCL+fdvDTG2CdZGJUbeWvnfQmsA9weY+yWONLfhBAqkJWhjYBHYoxHpE0kSZIkaWkcmSZJkiRJKpPyRjdelXfz2BBC/ZR5luJIsiItF7g0bRRJkiRJBbFMkyRJkiSVZbeSTX9ZFbggcZb/L29U2kV5N++NMU5JmUeSJElSwSzTJEmSJEllVt7otLPybnbNW8OtJDgSaAbMpgSVfJIkSZL+yTJNkiRJklSmxRifiDGGGGPVGOM3qfMAxBgH52WqHWP8IXUeSZIkSQWzTJMkSZIkSZIkSZIKEGKMqTNIkiRJkiRJkiRJJZIj0yRJkiRJkiRJkqQCWKZJkiRJkiRJkiRJBbBMkyRJkiRJkiRJkgpgmSZJkiRJkiRJkiQVwDJNkiRJkiRJkiRJKoBlmiRJkiRJkiRJklSA/wfBIfuBhRtRigAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, ax = make_figure(xlims=(0, 6))\n",
+ "\n",
+ "add_gaussian_bel(ax, x0, var0, 'green')\n",
+ "add_gaussian_bel(ax, x1, var1, 'red')\n",
+ "\n",
+ "update_plot()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "id": "037f2401",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABtYAAAJgCAYAAAAeWlcsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeVzVVf7H8deXXRBQQURMRUpzF3cztzHT1NLKzJXUcsoyM7Ppp5OVOqk507ikjpNtmruOlZlLLgmapqWiuOUWuKSCO6sgl/v7g+EOJJtw4Qv6fj4ePvre+z3fc96XL13xfjjnGFarFRERERERERERERERERHJnYPZAURERERERERERERERERKAxXWRERERERERERERERERPJBhTURERERERERERERERGRfFBhTURERERERERERERERCQfVFgTERERERERERERERERyQcV1kRERERERERERERERETywcnsAGZyd3e31q1b1+wYIiKlSkJCAh4eHmbHEBEpVfTeKSJy5/TeKSJyZ/S+KSJy5/bu3XvZarVWvJNr7unCWrly5dizZ4/ZMURESpXQ0FA6dOhgdgwRkVJF750iIndO750iIndG75siInfOMIzTd3qNloIUERERERERERERERERyQcV1kRERERERERERERERETyQYU1ERERERERERERERERkXxQYU1EREREREREREREREQkH1RYExEREREREREREREREckHFdZERERERERERERERERE8kGFNREREREREREREREREZF8UGFNREREREREREREREREJB9UWBMRERERERERERERERHJBxXWRERERERERERERERERPJBhTURERERERERERERERGRfFBhTURERERERERERERERCQfVFgTERERERERERERERERyQcnswOIiIiIiIiIiIiI3MssFguxsbHExcWRlJREWlraHffh7e3N0aNHiyCdiEjJ4eDgQJkyZfD09MTLywtHR8diz6DCmoiIiIiIiIiIiIhJUlJSOH36NO7u7pQrV44qVarg4OCAYRh31E9cXByenp5FlFJExHxWq5W0tDQSEhKIi4vj8uXLVK9eHRcXl2LNocKaiIiIiIiIiIiIiAksFgunT5/G19eX8uXLmx1HRKREMwwDR0dHvLy88PLy4tq1a5w+fZqgoKBinbmmPdZERERERERERERETBAbG4u7u7uKaiIiBVC+fHnc3d2JjY0t1nFVWBMRERERERERERExgZZvFBEpHE9PT+Li4op1TBXWREREREREREREREyQlJSEh4eH2TFEREotDw8PkpKSinVMFdZERERERERERERETJCWloaDgz6iFREpKAcHB9LS0op3zGIdTURERERERERERERsDMMwO4KISKllxnuoCmsiIiIiIiIiIiIiIiIi+eBkdgARESnZbllu8c2v37Dm+BqOXznO5euXaXGlBU/Vfoonaz+Js6Oz2RFFREREREREREREioUKayIikqNtp7fx4poXOXblGB7OHvh5+JGSlsK3x75l6aGlPOjzIJ888Qltq7c1O6qIiIiIiIiIiIhIkdNSkCIikq2Zu2bypwV/IjUtla/7fE3CrQQir0fye9LvJNxKACA1LZUOCzowc9dMc8OKiIiIiIiIiIiIFAMV1kRE5DaTt0/m9e9fp8eDPQh/KZwnaz+Zbbvwl8Lp8WAPXv/+daZsn1K8IUVERERERERERESKmQprIiKSxYL9C3j7h7cZ0GAAK3uvxNPVM8e2nq6erOy9kgENBvDXH/7Kgv0LijGpiIiIiIiIiMi958yZM3z88ccMGDCA+vXr4+XlhYuLCxUrVqRNmza8++67nDlzxuyYkofTp08zZswYGjRogLe3N2XLlqV27dqMGDGCw4cP23WsqKgoVq1axdixY+ncuTM+Pj4YhoFhGHTo0MGuY90LtMeaiIjYHLl0hJfXvkzHGh35oucXODnk/deEk4MTX/T8govxF3npu5doUKkBTSo3KYa0IiIiIiIiIiL3lieffJJvv/0Wq9V627nLly9z+fJlduzYwd///nfef/993nzzTRNSSl4WL17MsGHDiI+Pz/L8sWPHOHbsGPPmzeODDz5g1KhRhR5r1qxZvPbaa4XuR/5HhTUREQHgZupN+q/qT1mXsix+ejHOjs75vtbZ0Zllzyyj8ceN6b+qP/uH7cfNya0I04qIiIiIiIiI3HsOHTpkK6o1b96cP/3pT9SqVQsvLy/OnTvHqlWr2LFjB8nJyfzlL38hOTmZt99+2+TUktnatWsZNGgQFosFwzB45pln6NKlC87OzoSFhbFw4UJSUlJ444038PT0ZOjQoYUaz2KxZHlcpkwZatasSURERKH6vZepsCYiIgC8veVtDkQfYG3/tfiX9b/j633dffmsx2d0WdSFydsnM/FPE4sgpYiIiIiIiIjIvcvNzY3hw4czYsQIHnzwwdvOjxo1ihkzZthmOo0fP57evXtTq1at4o4q2UhMTOTFF1+0Fbu++OILBg0aZDv/3HPP0bdvX7p160ZqaiqjRo3iiSeeoFKlSgUeMzAwkOHDh9O0aVOaNm1K3bp1OXfuHDVq1Cj067lXaY81ERHhUMwhZuyewbCmw+hWs1uB++l8f2cGNhzIBz9+wKGYQ3ZMKCIiIiIiIiIi27dvZ/bs2dkW1TK8/vrr9OrVC4DU1FQWL15cXPEkD5988gnnz58HoHfv3lmKahkeffRRW2E0Pj6eDz/8sFBjPvnkk8yePZshQ4bQsGFDnJw036qwVFgTEbnHWa1WRn0/Cm9Xb97v+H6h+5veZTrebt4M+25Ytut9i4iIiIiIiIiUFGFhYTg6OmIYBtWqVeP69es5to2MjMTb2xvDMPDw8ODYsWPFF/S/ypcvn692vXv3th0fPHiwqOJw5coVXFxcMAyDpk2b5uuab7/9FsMwMAyD0aNH33b+119/5R//+Ac9evQgKCgId3d3XF1dqVy5Mo899hj/+te/uHnzZq5jhIaG2sYYP348kL5/2euvv06dOnXw8vLCMAzmz59/py+5UJYvX247HjlyZI7tRowYgWEYAKxYsaLIc8mdUWFNROQe993x79j822bGdxiPj7tPofvzdfdlUsdJ7Di7g7Un1tohoYiIiIiIiIhI0Wjfvj1jxowB4OzZs7z44ovZtktNTaV///7ExsYCMHPmzFxnjZnN09PTdpyUlFRk4/j4+NC1a1cA9u3bx9GjR/O8ZtGiRbbjkJCQLOe+/PJL6tSpw1tvvcWaNWuIjIwkKSmJlJQULl68yPfff8/w4cOpX79+vsbK3G/jxo2ZOXMmv/76K3Fxcfm+1l5iY2PZtWsXAN7e3jz00EM5tq1atSp169YF4MyZMxw5cqRYMkr+qLAmInIPs6RZeHPTm9T2rc3LzV62W79Dgodwf/n7GffDONKsaXbrV0RERERERETE3iZMmEDLli0BWLlyJZ9//nm2bTKKIr169WLo0KHFmvFOHTr0vy06qlevXqRjZS6OZS6aZSc2NpY1a9YAUL9+fYKDg7OcT0xMxDAMmjVrxhtvvMHHH3/MihUr+PTTT3nnnXdse8WdOnWKrl275jrDMMOOHTt44YUXSEtL44UXXuDzzz9nyZIlvPfee/j7+9/Ziy2EI0eO2FZ3Cg4OxsEh9/JMs2bNbMeZ76eYT4tpiojcw/5z5D8cv3Kc//T+D86Oznbr19nRmfEdxhPydQj/OfIfnq33rN36FhERERERERGxJycnJ5YsWUJwcDBxcXG89tprtG3blpo1awLw448/MmXKFCB9JtEnn3ySbT+JiYls3LjRLpmqVatGkyZNCnRtamoqX3zxhe1x9+7d7ZIpJ0888QTe3t7cuHGDxYsX8/7779uWMfyj//znP7ZlHAcOHHjb+bZt23Lq1Clq1KiR7fXjx49n2rRp/OUvf+H06dPMnDmT9957L9d8mzdvxt/fny1btthmgWXnzJkz7Nu3L9e+8qtJkyZUq1Yty3PHjx+3HQcGBubZR+aCaOZrxXwqrImI3KOsViuTf5xMbd/aPFXnKbv3369+P6b8OIV3t75Lrzq9cHRwtPsYIiIiIiIiIiL2EBQUxJw5c3juuedISEigf//+7Ny5k4SEBAYMGIDFYsHBwYGFCxfmuM9ZTEwMTz1ln89YBg0aVOD9vz788EN+/fVXABo0aFDkhTVXV1d69+7Np59+yunTp/nxxx9p27Zttm0zZrQ5ODgwYMCA287Xq1cv17EcHBx48803WbNmDdu2bWPhwoV5FtYAPv7441yLagA//PADQ4YMybOv/Pjiiy8YPHhwlucyz67z9fXNsw8fn/9t2ZKfmXlSfLQUpIjIPWrdiXVEREcwts1YHAz7/3Xg6ODIu+3e5diVY9prTURERERERERKvJCQEFuxZ8+ePbzzzju89NJLnDlzBoCxY8fSvn17MyPmaevWrbzzzjtA+ky8jz/+OM8lB+0hP8tB/v7774SFhQHQoUMH7rvvvgKP17p1ayB9ScjLly/n2rZ69eo88cQTBR7LXuLj423Hbm5uebYvU6aM7diMPeEkZ5qxJiJyD8qYrVbduzr96vcrsnF61e1F1U1Vmb5rOj0e7FFk44iIiIiIiIjc7V7f8Dr7L+7P8bzFYsHR8e5aLSbYP5gZj80o1jH/9a9/sXPnTiIjI5k6dart+ZYtWzJ+/Phcrw0MDLTtoWWGX3/9ld69e5OamgrA5MmTeeihh4pl7LZt21K9enVOnz7NypUrmTVrFi4uLlnaLF68mLS0NCD7ZSAz27x5M8uWLeOXX37hzJkzxMXFYbFYsm37+++/5zoDrE2bNjkuTZnZ4MGDb5tlVlTyk0dKLs1YExG5B/1y/hd2nt3J6IdG23VvtT9ycnBiRIsRhEaF5vrDv4iIiIiIiIhISeDl5cWSJUtwcvrfnBRPT8/bnitpIiMjefTRR7ly5QoAr7/+On/5y1+KbXzDMGyz/a5du8batbevXpQxk61MmTL06tUr235u3LhBly5dePTRR/nss8+IiIjg+vXrORbVAGJjY3PNVqVKlfy+jCJVtmxZ23FSUlKe7TO38fT0LJJMUjAl951ARESKzNw9c/Fw9mBQ8KAiH+vPTf/MhLAJzNg1g/lPzi/y8URERERERETuRnnN3IqLi9OH73ZSpUoVPDw8uHHjBgBNmzYlKCjI5FQ5O3v2LB07duTcuXMADBs2jOnTpxd7jpCQECZPngykF9Ey7zd38OBBDh48CEDPnj3x8vLKto9nnnmGzZs3A+nFpCeeeILg4GAqV66Mu7u7bVnLZcuWsXz5coBci26QdUlFM5UrV852nFEAzU3mNpmvFfOpsCYico+5mnSVZYeWMajRILxcs/8hxp7KuZVjSPAQPt77MX9/9O/4efgV+ZgiIiIiIiIiIgWRlpZGSEiIragGEBoayty5c3n55ZdzvTYxMZGNGzfaJUe1atVo0qRJnu3Onz9Px44diYqKAuD555/nX//6l10y3KnatWvTrFkz9uzZw9q1a7l+/bqtILRw4UJbu8z7sWW2bds2W1GtUaNGbNq0iYoVK2bbdseOHfYND5w5c4Z9+/bZpa8mTZpQrVq1LM/VqlXLdpxxv3Jz+vTpbK8V86mwJiJyj1mwfwE3U2/ycrPcfxi0p5ebv8zsX2azKGIRbzz0RrGNKyIiIiIiIiJyJ6ZMmUJYWBgAjzzyCHv27OHGjRuMHj2a9u3bU7du3RyvjYmJyTJLqzAGDRrE/Pnzc21z8eJFOnbsyMmTJwEYMGAAn3zyian7dw0cOJA9e/aQnJzMypUr+fOf/0xaWhpLly4FoGLFinTu3DnbazOKagCTJk3KsagGWYtO9vLDDz8wZMgQu/T1xRdf3LZfW926dXFwcCAtLY3w8HDS0tJsM/Cys2fPHttx/fr17ZJL7EN7rImI3EOsViv/3vtvHrrvIRr5Nyq2cetWrEur+1rxWfhnpm7iKyIiIiIiIiKSk927dzN+/HgAAgICWL58OXPnzgXS97vq378/ycnJJib8n0uXLvHII49w7NgxAPr06cOCBQtyLdQUh379+tn2osvYUy00NNS2TGXm838UHR1tO77//vtzHCMlJYXQ0FA7JS4+Xl5etGrVCkjfS27Xrl05tj179ixHjhwB0mcv5lbQleJXKgprhmF8bhhGjGEYh3I4P8AwjIj//tlpGEbxfVosIlKKbD+zneNXjjOs2bBiH/v54Oc5cukIP//+c7GPLSIiIiIiIiKSm7i4OAYMGEBqaiqGYbBgwQJ8fHzo16+fbenCAwcOMGbMmBz7CAwMxGq12uVPbrPVrl69SqdOnWyFl6effppFixbh6Oho169JQfj5+dlmpG3fvp0zZ87YCmyQ8zKQAO7u7rbjU6dO5dhu7ty5XLp0yQ5psxo8eLDd7t8fZ6tl6NOnj+145syZOWaZNWuW7ZfTn332Wbu+Tim8UlFYA+YDj+VyPhJob7VaGwJ/A+YVRygRkdJm4YGFeDh70KtOr2Ifu0/9Prg7u/N5+OfFPraIiIiIiIiISG6GDx9uK+aMHj2aTp062c7NmTOHoKAgIL0Y8v3335uSEdJnOnXu3JmIiAgAevTowbJly3KcBWaGgQMHAukrJ3322WesWrUKgAcffJBmzZrleF3z5s1txxMnTsx2duCaNWtyLW6WdEOHDiUgIACAFStWsGDBgtvabN68menTpwNQtmxZ3nzzzWz7ioqKwjAM2x8pPiXn/7ZcWK3WbYZhBOZyfmemh7uA+4o8lIhIKXMz9SYrj6zk6TpP4+HiUezje7l60btub5YeWsq0LtNMySAiIiIiIiIi8kdLly5l4cKFADRu3JhJkyZlOe/p6cmSJUto06YNqampDB48mIiIiFz3ACsqXbt2Ze/evUD6cpUDBgxg7dq1uV7j7u6e475mgwcPthV33nvvPdtSmIXx5JNP4unpSVxcHB988AEpKSlA7rPVAJ566imqVKnC77//zs8//0zdunV54YUXCAoK4vr166xbt441a9bg7u7O008/zVdffVXorMXN3d2defPm0bNnTywWC0OGDGHt2rV07doVJycnwsLC+PLLL0lNTQVg+vTpVKpUqdDjjhs3LsvjGzdu2I4jIyNvO9+kSROefvrpQo97tyoVhbU79AKw3uwQIiIlzXfHv+NG8g1CGub+Q0xRGhI8hAUHFvDtsW/p16CfaTlERERERERERCB91s/LL78MpBc9lixZgouLy23tWrZsyfjx4xk3bhwXL15kyJAhfPfdd8Udl59++sl2fP78+SxLC+akevXqREVFFWGqrMqUKUOvXr2YP3++rahmGAYDBgzI87r//Oc/dOvWjWvXrvHbb7/x9ttvZ2lTrlw5Fi9ezM8//1wqC2sA3bt3Z8GCBQwbNoz4+HhWrlzJypUrs7RxdnZm6tSpDB061C5j/rFYnNmZM2duOz9o0CAV1nJxVxXWDMP4E+mFtTa5tHkReBGgcuXKpXKTQxGRgph+aDo+Lj44nHEg9GyoXfq80/fQNGsavi6+zAmbQ+Urle2SQUSkNIiPj9fPnSIid0jvnSJyL/D29iYuLs4ufVksFrv1da+wWCz069fPNntn8uTJVKlSJcev46uvvsr69evZsWMHa9eu5cMPP+Sll14qzsgFYrVac3xNsbGxtuOMWWb2kFFYy/DQQw/h4+OTZ//16tVjx44dzJgxg02bNvH7779TpkwZqlSpQpcuXRg6dChVq1Zl+/bttmsSExNv6zcxMdF2nJycXOL+3+jRowfBwcF8+umnfP/995w7d460tDQqV67Mn/70J4YOHUqdOnVyzR0fH5/lsT1f461bt0rc1yw3N2/eLNafG42MDfBKuv8uBfmd1Wqtn8P5hsDXQFer1Xo8P30GBARYz58/b7+QIiIl1OXEy1T+Z2VGthzJh50/LFAfxoTb12q2vnfnf4eM2jCKf+35F9FvRlPOrVyBsoiIlDahoaF06NDB7BgiIqWK3jtF5F5w9OhR6tSpY5e+4uLi8PT0tEtfcu8ICAjgwoULVK5cmZMnT+Lu7m52JJE7Vpj3UsMw9lqt1pw3/8uGQ4FGKmEMw6gGfAWE5LeoJiJyL/nq6FekpqXSv0F/s6PQp34fUiwprP51tdlRRERERERERETuWYcPH+bChQsAvPvuuyqqieRTqSisGYaxFPgJeNAwjHOGYbxgGMYwwzCG/bfJu4AP8C/DMPYbhrHHtLAiIiXQV0e/Iqh8EI39G5sdhZZVWlLduzrLDi8zO4qIiIiIiIiIyD1r8+bNADzwwAN228tL5F5QKvZYs1qt/fI4PxTQ//kiItm4lnSNLZFbGNVqFIZx+3KOxc0wDPrU68O0XdO4nHgZX3dfsyOJiIiIiIiIiNxztmzZAsDf/vY3nJxKRalApEQoFTPWRESk4NYcX0NqWirP1H3G7Cg2fer3ITUtlW9+/cbsKCIiIiIiIiIi96Rvv/0Wq9VK3759zY4iUqqosCYicpdbdXQVVb2q0jygudlRbBr7N6a6d3VWH9M+ayIiIiIiIiIiIlJ6qLAmInIXi0uO4/uT3/N0nadLxDKQGQzDoMeDPdj822YSUhLMjiMiIiIiIiIiIiKSLyqsiYjcxdafXE+yJZledXqZHeU2T9Z+kpupN9l4aqPZUURERERERERERETyRYU1EZG72Jrja/B196V11dZmR7lN22ptKedWTstBioiIiIiIiIiISKmhwpqIyF3KkmZh3Yl1dKvZDUcHR7Pj3MbZ0ZnuNbvz3fHvSE1LNTuOiIiIiIiIiIiISJ5UWBMRuUvtOreLq0lX6V6zu9lRctTzwZ5cSbrCzrM7zY4iIiIiIiIiIiIikicV1kRE7lLfHf8OJwcnOt/f2ewoOXrsgcdwcXRhzbE1ZkcRERERERERERERyZMKayIid6m1J9ba9jErqTxdPWlbrS0bTm0wO4qIiIiIiIiIiIhInlRYExG5C52+fpqDMQdL9DKQGR574DEOxRzi7I2zZkcRERERERERERERyZUKayIid6G1J9YC8Hitx01OkreuD3QF4PtT35ucRERERERERERERCR3KqyJiNyFNpzcQI1yNajlU8vsKHmqW7Eu93ndx/qT682OIiIiIiIiIiIiIpIrFdZERO4ytyy32Bq1lS73d8EwDLPj5MkwDB67/zE2/7aZW5ZbZscRERERERERERERyZEKayIid5ld53YRnxLPo/c/anaUfOtasyuxybH8dO4ns6OIiIiIiIiIiIiI5EiFNRGRu8zGUxtxMBzoWKOj2VHy7ZEaj+Dk4MSGkxvMjiIiIiIiIiIiIiKSIxXWRETuMpt+20TLKi0p51bO7Cj55u3mTcsqLdkSucXsKCIiIiIiIiIiIiI5UmFNROQuci3pGr+c/4XO93c2O8od61ijI3vO7+HGzRtmRxERERERERERERHJlgprIiJ3kR8ifyDNmlZqC2tp1jS2nd5mdhQRERERERERERGRbKmwJiJyF9l4aiNerl60qNLC7Ch3rNV9rXBzctNykCIiIiIiIiIiOUhMTGTDhg387W9/o0ePHtSvXx9/f39cXFzw9PSkZs2a9OnTh5UrV2KxWOw+/unTpxkzZgwNGjTA29ubsmXLUrt2bUaMGMHhw4ftPp7Y108//cTzzz/P/fffj7u7OxUqVKBp06a8//77XL582W7j3LhxgxUrVvDyyy/TsmVLfHx8cHZ2pnz58jRq1IhXXnmFX375xW7jFTcnswOIiIj9hJ4OpX319jg5lL63dzcnN9pUa8MPkT+YHUVEREREREREpETatm0bXbt2zfbcrVu3OHnyJCdPnmTFihU0bNiQ5cuXU7t2bbuMvXjxYoYNG0Z8fHyW548dO8axY8eYN28eH3zwAaNGjbLLeGI/VquV0aNHM2PGDKxWq+35pKQkrl27xr59+5g9ezZLliyhY8eOhRrr73//O++++y7Jycm3nbt+/TrXr18nIiKCuXPnMnDgQD7++GPc3d0LNWZxK32fvIqISLbOx53n+JXjvNT0JbOjFFjHwI789Ye/EpMQg5+Hn9lxRERERERERERKpLp169KiRQsCAwOpXLkyFSpU4MaNG+zbt49ly5Zx9epVIiIiaN++PQcOHMDf379Q461du5ZBgwZhsVgwDINnnnmGLl264OzsTFhYGAsXLiQlJYU33ngDT09Phg4daqdXKvYwduxYpk+fDoCHhwcvvPACLVq0ID4+nlWrVrFp0yaio6Pp2bMn27dvJzg4uMBjHT9+3FZUCwoKolOnTgQHB+Pr68u1a9fYsmULq1atwmKxsGjRImJiYli/fj0ODqVngUUjc3XyXhMQEGA9f/682TFEROxi6cGl9P+qP3tf3EuTyk3s3r8xwbjtOet79v07ZPe53bT6rBXLn1nOs/WetWvfIiJmCg0NpUOHDmbHEBEpVfTeKSL3gqNHj1KnTh279BUXF4enp6dd+pKS68qVK6SkpFC5cuUc21y9epVu3bqxe/duAIYNG8bcuXMLPGZiYiI1a9Yk47P0+fPnM2jQoCxtNm3aRLdu3UhNTaVs2bKcPHmSSpUqFXhMsZ/w8HCaNm2K1WrF29ubbdu20bBhwyxtxo8fz4QJEwBo3rw5u3fvxjBu/ywwP/785z9z4cIF/vKXv9CuXbts+9m+fTvdunWzzX78/PPPGTJkSIHGg8K9lxqGsddqtTa7k2tKTwlQRERyFRoVirerN40qNTI7SoE1DWiKp4unloMUEREREREREcmGj49PrkU1gAoVKmQppK1du7ZQY37yySe2olrv3r1vK6oBPProo7YlIOPj4/nwww8LNabYz8SJE23LP06ePPm2ohrAe++9R4sWLQD45ZdfWLduXYHH+/vf/853331H+/btcyzOtW3blilTptgez58/v8DjmUGFNRGRu0To6VDaVW+Ho4Oj2VEKzMnBifaB7VVYExEREREREZFiERYWhqOjI4ZhUK1aNa5fv55j28jISLy9vTEMAw8PD44dO1Z8Qe9Q3bp1bcfR0dGF6mv58uW245EjR+bYbsSIEbZCyooVKwo1Zm6+/fZbDMPAMAxGjx6dr2veeOMN2zVr1qzJcs5qtbJ9+3befvttOnbsSEBAAK6urnh4eFCjRg369u3LmjVryGv1v/Hjx9vGCA0NBWDLli3069ePGjVq4ObmhmEYREVFFeRlF0hcXBzr168HwMvLi8GDB2fbzjAMRowYYXuc+Z7fqfLly+erXe/evW3HBw8eLPB4ZlBhTUTkLpCxv1qHwA5mRym0joEdOXH1BGdvnDU7ioiIiIiIiIjc5dq3b8+YMWMAOHv2LC+++GK27VJTU+nfvz+xsbEAzJw5kwcffLDYct6pU6dO2Y4LsyRjbGwsu3btAsDb25uHHnoox7ZVq1a1FfTOnDnDkSNHCjxubrp27Yqvry8AS5cuJS0tLdf2FouFZcuWAeDr68tjjz2W5fzzzz9Pu3btmDx5Mlu3buXChQukpKSQmJhIVFQUy5cvp0ePHnTr1s12//NitVp59dVX6dSpE8uWLSMqKsq271hxCgsLs43brl073N3dc2zbpUsX23FGMa4oZV66NikpqcjHsycV1kRE7gJhUWEAd0dhrUZHALZGbTU5iYiIiIiIiIjcCyZMmEDLli0BWLlyJZ9//nm2bTIKTL169WLo0KHFmvFOJCQk8Nprr9keP/300wXu68iRI7aZWsHBwTg45F5SaNbsf1tVHTp0qMDj5sbZ2Zk+ffoAcOHCBbZs2ZJr+y1btnDhwgUA+vbti7Ozc5bzSUlJuLq60rlzZ8aNG8cXX3zBihUrmDNnDiNHjqRChQoAbNiwgeeeey5fGf/xj38wZ84c/P39GTNmDIsWLWL+/Pm88soruLq63ulLLrDM96Bp06a5tq1YsSLVq1cH4PLly8TExBRbtoxxSwsnswOIiEjh3Q37q2VoUKkBvu6+bIncwnON8vfDioiIiIiIiIhIQTk5ObFkyRKCg4OJi4vjtddeo23bttSsWROAH3/80bYfVNWqVfnkk0+y7ScxMZGNGzfaJVO1atVo0qRJrm3i4+PZvHkzkD5DKjY2loiICJYuXWorJAUHBzN+/PgC5zh+/LjtODAwMM/2mQskma+1t4EDBzJnzhwAFi1axKOPPppj20WLFmW57o+GDx/Ov//9b8qVK5ft9ZMmTWLIkCGsXLmS1atXExYWRvv27XPNt379etq0acPatWvx8vKyPf/H/en27dvHmTNncu0rvzp37nzbjLSC3L/Tp0/brvXz87NLtuzMmzfPdty9e/ciG6coqLAmInIXuBv2V8vgYDjQvnp72yw8EREREREREZGiFhQUxJw5c3juuedISEigf//+7Ny5k4SEBAYMGIDFYsHBwYGFCxfmuIdUTEwMTz31lF3yDBo0iPnz5+fa5ty5czmOV6FCBQYNGsT777+f6/J/ecm851zG8ou58fHxyfZae2vVqhU1a9bkxIkTfPXVV8ydOzfb15mYmMjXX38NQM2aNW0zEzNr27ZtrmN5eHjw2WefsW7dOhISEli4cGGehTUPDw+WL1+epaiWnY8++ogFCxbk2ia/IiMjbyueldT7t3PnTr744gsA3NzceP3114tsrKKgpSBFREq5u2l/tQxtq7Xl9I3T2mdNRERERERERIpNSEgIAwYMAGDPnj288847vPTSS7YZRWPHjs2zoFJStG7dmvbt21OmTJlC9RMfH287dnNzy7N95vHi4uIKNXZeMmafxcfHs3r16mzbfPPNN7bXEBISUuCxPD09adCgAQC7d+/Os32vXr0ICAgo8Hj2UhLv38WLF3n22Wdte+P97W9/o2rVqkUyVlHRjDURkVLubtpfLUObam0A2HF2B329+5qcRkRERERERMR8C+adJ+q3pBzPWywWHB2Ldk+k4hYYVIZBLxZvceJf//oXO3fuJDIykqlTp9qeb9myZZ5LKgYGBtr2IysOtWvXto1nsVi4cuUKP//8M7Nnz+a7777ju+++45lnnmH+/Pl4eHgUejzDMArdhz0NHDiQ9957D0hf7rFfv363tcm8DGRG0TQ7ycnJrFixgtWrV3PgwAGio6OJj4/P9n6eO3cuz2x5zYLLMH/+/DxnJtpLSbh/CQkJ9OzZk99//x1IXwJy9OjRJqe6c5qxJiJSyt1N+6tlaOTfiLIuZdl+ervZUURERERERETkHuLl5cWSJUtwcvrfnBRPT8/bnitpHB0d8fPz4/HHH2fDhg2MGzcOgP/85z8MGTKkwP2WLVvWdpyUlHNhN7s2np6eBR43P4KCgmjdujUAGzdu5NKlS1nOx8TEsGnTJgAefvhhgoKCsu3n4MGDNGjQgOeee45Vq1Zx8uRJ4uLiciySxsbG5pmtSpUqd/JSikxJun83b96kR48e/Pzzz0D6PVm+fHmJKPjdqZL7TiAiIvkSdjqMttXb3hX7q2VwcnDiofse4sezP5odRURERERERKREyGvmVlxcXJEXMu4VVapUwcPDgxs3bgDQtGnTHIsyJdWECRNYsWIFx48fZ+XKlRw5coS6devecT/lypWzHV+5ciXP9pnbZL62qISEhLBz505SU1NZtmwZI0aMsJ1btmwZqamptnbZuXr1Kp06dSImJn22Z9WqVXn88cepXbs2FStWxM3NzVb4GTduHIcPH7YtYZibwi7BaS8l5f6lpKTw9NNP88MPPwDQokUL1q1bZ5eZlGZQYU1EpBS7lHCJY1eO8Xzj582OYndtqrVhfOh4rt+8Tjm3cmbHEREREREREZF7QFpaGiEhIbaiGkBoaChz587l5ZdfzvXaxMRENm7caJcc1apVo0mTJgW+3sHBgUcffZTjx48DEBYWVqDCWq1atWzHUVFRebY/ffp0ttcWlWeffZaRI0eSkpLCokWLshTWMpaBdHFx4dlnn832+tmzZ9uKaoMGDeLTTz/NcWbipEmT7Jwe9u3bZ9vDr7A6d+6Mu7t7ludKwv27desWvXv3Zv369QA0btyYDRs24OXlZZf+zaDCmohIKfbTuZ8AaF21tclJ7K9NtTZYsfLT2Z/oWrOr2XFERERERERE5B4wZcoUwsLS97N/5JFH2LNnDzdu3GD06NG0b98+1+JUTEwMTz31lF1yDBo0qNB7b2WewXj9+vUC9VG3bl0cHBxIS0sjPDyctLQ0HBxy3mFqz549tuP69esXaMw7UaFCBbp168Y333zDzz//zIkTJ6hZsybHjx/nl19+AdL38Spfvny212/evBkAJycnZsyYketyn5mLTvby0UcfsWDBArv0FRkZSWBgYJbnMt+DzPcmO5cuXbK9Rl9fX/z8/AqdKTU1lX79+vHtt98C0KBBAzZt2pTj/SgttMeaiEgptuPMDpwdnGkW0MzsKHbXskpLnByc2H5G+6yJiIiIiIiISNHbvXs348ePByAgIIDly5czd+5cIH3vqf79+5OcnGxiwjtz8uRJ27Gvr2+B+vDy8qJVq1YA3Lhxg127duXY9uzZsxw5cgRIn3FXkBlyBZF5mceMWWoZ//3j+T+Kjo4GwMfHJ9elD8PDw2/bw6006NChA66urgBs27Yt133Wvv/+e9tx166F/yV3i8VCSEgIq1atAtKLtJs3b8bHx6fQfZtNhTURkVJsx9kdNA1oipuTm9lR7M7DxYMmlZvw4xntsyYiIiIiIiIiRSsuLo4BAwaQmpqKYRgsWLAAHx8f+vXrZyvMHDhwgDFjxuTYR2BgIFar1S5/Cjtb7dy5c6xbt872uHXrgq921KdPH9vxzJkzc2w3a9YsrFYrQI5LLxaFxx9/3DYDavHixVitVhYvXgxA+fLl6d69e47XZiydGBMTQ1xcXI7tJk6caMfE/zN//ny7fc/8cbYaQNmyZenWrRsAsbGxOX5fWa1WZs+ebXuc+Z4XRFpaGs8//zzLli0D0peV3LJli11mwZUEKqyJiJRSyanJ7Dm/h4erPmx2lCLTpmobfv79Z5JTS89vg4mIiIiIiIhI6TN8+HBOnToFwOjRo+nUqZPt3Jw5cwgKCgLSC0uZZ/YUt//7v//Lc0nCU6dO8fjjj5OYmAhA+/btqVevXrZtAwMDMQwDwzAIDQ3Nts3QoUMJCAgAYMWKFdkuXbh582amT58OpBdz3nzzzfy+pEJzcXGhd+/eQPprnzZtGr/99huQXuBzcXHJ8drmzZsD6YWlcePG3XbearXy7rvv8s0339g/eDF55513MAwDgLFjxxIREXFbm4kTJ7J7924g/WuSUYz7o/nz59u+Xzp06JBtG6vVyksvvcSXX34JwAMPPMDWrVvx9/e3w6spGbTHmohIKbXvwj6SLcl3d2GtWhum7ZrG3gt778p95ERERERERETEfEuXLmXhwoUANG7cmEmTJmU57+npyZIlS2jTpg2pqakMHjyYiIgIKlasWOxZP/74Y/7xj3/QqlUrHn74YR588EG8vb1JTU3l/Pnz/Pjjj6xbt46UlBQA/P39+eSTTwo1pru7O/PmzaNnz55YLBaGDBnC2rVr6dq1K05OToSFhfHll1+SmpoKwPTp06lUqVKO/QUGBtqKg1u3bs2xQHMnQkJCmDdvHgB//etfszyfm1deeYXPP/8ci8XCRx99xP79+3n66afx9/fn7NmzLFmyhPDwcOrWrUuZMmXYu3dvobMWt8aNG/PWW28xdepUbty4QevWrRk6dCgtWrQgPj6eVatWsXHjRiC9KDpv3jxbIa4g3n77bT799FMAnJ2dee211/j555/zvK5z5862GYQlnQprIiKl1I6zOwDu6oJTm2ptANh+evtd/TpFRERERERExBxRUVG8/PLLQHoBacmSJdnOcGrZsiXjx49n3LhxXLx4kSFDhvDdd98Vd1wgfUbQTz/9xE8//ZRruw4dOvDpp59y//33F3rM7t27s2DBAoYNG0Z8fDwrV65k5cqVWdo4OzszdepUhg4dWujx7tTDDz9MjRo1iIyMtBUVg4KCePjh3H8hPTg4mFmzZvHqq6+SlpbGtm3b2LZtW5Y2derUYfXq1aa8LnuZMmUKKSkpzJgxg4SEhGyX9PTz82Pp0qUEBwcXaqydO3fajm/dusVrr72Wr+siIyOzXc6yJNJSkCIipdTOszu5v/z9VCqb828AlXYVPSryoM+D/HhW+6yJiIiIiIiIiH1ZLBYGDhzIjRs3AJg2bRq1a9fOsf3YsWNp164dAGvXrs2yJ1VxOXToEAsXLuSFF16gRYsWVK9enTJlyuDq6oqfnx8PPfQQr732Gj/++CNbt261S1Etw4ABAzh06BBvvfUW9erVw9PTEw8PD2rVqsXw4cMJDw9n1KhRefaTlJRkO/b19bVLNsMwGDhw4G158+Pll19mx44d9O7dG39/f5ydnfHz86N169ZMmzaNPXv28MADD9glp1kMw2DatGns2LGDwYMHExQUhJubG+XKlaNJkyZMnDiRw4cP07FjR7OjlgpGxmaC96KAgADr+fPnzY4hInLHrFYr/v/057EHHmPBk7eva10UjAm3TwG3vlf0f4cM/XYoXx39istvXcbB0O+DiEjpFBoaapflTURE7iV67xSRe8HRo0epU6eOXfqKi4vD09PTLn2JFJVjx47Zipc9evRg9erVJieSu0Fh3ksNw9hrtVqb3ck1+oRSRKQUOnXtFDEJMbS+7+5fHrF11dZcu3mNE1dOmB1FREREREREREQKYfPmzQA4ODgwefJkk9OIFIwKayIipdDOs+lrFT9cLfd1ou8GLau0BGDXuV0mJxERERERERERkcLIKKyFhIRQr149k9OIFIwKayIipdCOMzvwdvWmbsW6ZkcpcnUq1sHL1UuFNRERERERERGRUiwtLY3Q0FBcXV2ZMGGC2XFECszJ7AAiInLndpzdwUNVH7on9hxzMBxoUaUFu35XYU1EREREREREpLRycHDg2rVrZscQKbS7/xNZEZG7zPWb1zl86fA9sb9ahlZVWnEw+iAJKQlmRxEREREREREREZF7mAprIiKlzJ7zewBodV8rk5MUn1b3tcJitbD3wl6zo4iIiIiIiIiIiMg9TIU1EZFSZve53QA0r9Lc5CTFp0WVFgDaZ01ERERERERERERMpcKaiEgp8/P5n3nQ50HKuZUzO0qxqehRkfvL36/CmoiIiIiIiIiIiJhKhTURkVLEarWy+9xuWt7X0uwoxa7Vfa346dxPWK1Ws6OIiIiIiIiIiIjIPUqFNRGRUuTMjTNEJ0TTIqCF2VGKXav7WnEx/iJnY8+aHUVERERERERERETuUSqsiYiUIj///jPAPTtjDf63x5yIiIiIiIiIiIhIcVNhTUSkFNn9+25cHV1pWKmh2VGKXcNKDXF1dNU+ayIiIiIiIiIiImIaFdZEREqRn3//mcaVG+Pi6GJ2lGLn4uhC04Cm7PpdhTURERERERERERExhwprIiKlRGpaKnsv7KVllXtvGcgMraq0Yu/5vaRYUsyOIiIiIiIiIiIiIvcgFdZEREqJQzGHSLyVSIsqLcyOYpqW97Uk2ZJMRHSE2VFERERERERERETkHqTCmohIKfHz7z8D3NMz1poHNAdgz/k9JicRERERERERERGRe5EKayIipcTuc7vxKeNDUPkgs6OYJrBcID5lfPjl91/MjiIiIiIiIiIiIiL3IBXWRERKiZ/P/0yLKi0wDMPsKKYxDINmAc3Yc0Ez1kRERERERERERKT4qbAmIlIKxCXHcTjm8D29DGSG5gHNORxzmMRbiWZHERERERERERERkXuMCmsiIqXAvgv7sGKleZXmZkcxXbOAZlisFvZf3G92FBEREREREREREbnHqLAmIlIK7DmfvvRhs4BmJicxX0ZxMeNrIiIiIiIiIiIiIlJcVFgTESkF9l7YS1Wvqvh5+JkdxXQBngEEeAbwy/lfzI4iIiIiIiIiIlJiXL16FX9/fwzDsP2Jioqy6xinT59mzJgxNGjQAG9vb8qWLUvt2rUZMWIEhw8ftutYYn8//fQTzz//PPfffz/u7u5UqFCBpk2b8v7773P58mW7jGG1WtmxYwczZsxgwIABNGnShKpVq1KmTBnc3d2577776Nq1K7Nnz+b69et2GbO4OZkdQERE8rb3wl6aBjQ1O0aJ0SygmWasiYiIiIiIiIhk8sYbbxAdHV1k/S9evJhhw4YRHx+f5fljx45x7Ngx5s2bxwcffMCoUaOKLIMUjNVqZfTo0cyYMQOr1Wp7PikpiWvXrrFv3z5mz57NkiVL6NixY6HGSk5Opk2bNjme//333/n999/ZsGEDEydO5JNPPqFnz56FGrO4qbAmIlLCxSbHcvzKcUIahpgdpcRoHtCcNcfWEJsci5erl9lxRERERERERERMtWnTJhYsWICDgwMuLi7cvHnTrv2vXbuWQYMGYbFYMAyDZ555hi5duuDs7ExYWBgLFy4kJSWFN954A09PT4YOHWrX8aVwxo4dy/Tp0wHw8PDghRdeoEWLFsTHx7Nq1So2bdpEdHQ0PXv2ZPv27QQHBxd6zCpVqtCyZUvq1KmDv78/fn5+JCcn8+uvv7Jy5UpOnDjBpUuX6NWrF+vXr+fRRx8t9JjFRYU1EZESbt+FfQA0rawZaxmaBTTDipV9F/bRIbCD2XFEREREREREREyTkJDASy+9BMDw4cP59ttvOX36tN36T0xM5MUXX8RisQDwxRdfMGjQINv55557jr59+9KtWzdSU1MZNWoUTzzxBJUqVbJbBim48PBw/v73vwPg7e3Ntm3baNiwoe38Sy+9xPjx45kwYQLx8fG8+OKL7N69G8MwCjSei4sLhw8fpm7dujm2mThxIiNGjGDu3LlYLBZee+01jh49WqDxzKA91kRESri95/cCaCnITJoFNAPgl9+1z5qIiIiIiIiI3NvGjRtHZGQkVapUYdKkSXbv/5NPPuH8+fMA9O7dO0tRLcOjjz5qWwIyPj6eDz/80O45pGAmTpxoW/5x8uTJWYpqGd577z1atGgBwC+//MK6desKPJ6Dg0OuRTUAR0dHZs6ciY+PDwC//vorv/32W4HHLG4qrImIlHB7L+ylqldV/Dz8zI5SYvi6+xJYLpA9F7TPmoiIiIiIiIgUXFhYGI6OjhiGQbVq1bh+/XqObSMjI/H29sYwDDw8PDh27FjxBc3Bzz//zEcffQTArFmz8PT0tPsYy5cvtx2PHDkyx3YjRoywzXJasWKF3XNk+PbbbzEMA8MwGD16dL6ueeONN2zXrFmzJss5q9XK9u3befvtt+nYsSMBAQG4urri4eFBjRo16Nu3L2vWrMmyN1l2xo8fbxsjNDQUgC1bttCvXz9q1KiBm5sbhmEQFRVVkJddIHFxcaxfvx4ALy8vBg8enG07wzAYMWKE7XHme15UnJ2dqVmzpu3xxYsXi3xMe1FhTUSkhNt7Ya9mq2WjeUBzzVgTERERERERkUJp3749Y8aMAeDs2bO8+OKL2bZLTU2lf//+xMbGAjBz5kwefPDBYsuZnVu3bvHCCy+QlpZGz549eeqpp+w+RmxsLLt27QLSlxF86KGHcmxbtWpV20ylM2fOcOTIEbvnAejatSu+vr4ALF26lLS0tFzbWywWli1bBoCvry+PPfZYlvPPP/887dq1Y/LkyWzdupULFy6QkpJCYmIiUVFRLF++nB49etCtWzfb/c+L1Wrl1VdfpVOnTixbtoyoqCiSk5ML8GoLJywszDZuu3btcHd3z7Ftly5dbMcZxbiilJaWlqXI6O/vX+Rj2kupKKwZhvG5YRgxhmEcyuG8YRjGR4ZhnDQMI8IwjCbFnVFEpCjEJsdy/Mpx7a+WjWYBzYi8HsmVxCtmRxERERERERGRUmzChAm0bNkSgJUrV/L5559n2yajwNSrVy+GDh1arBmzM2XKFA4dOkTZsmWZPXt2kYxx5MgR20yt4OBgHBxyLyk0a9bMdnzoULYf5xeas7Mzffr0AeDChQts2bIl1/ZbtmzhwoULAPTt2xdnZ+cs55OSknB1daVz586MGzeOL774ghUrVjBnzhxGjhxJhQoVANiwYQPPPfdcvjL+4x//YM6cOfj7+zNmzBgWLVrE/PnzeeWVV3B1db3Tl1xgme9B06a5f75YsWJFqlevDsDly5eJiYkpslxWq5Vx48bZZqkFBwcTFBRUZOPZm5PZAfJpPjAb+DKH812Bmv/90xKY+9//ioiUauEXwgFUWMtG84DmAOw5v4cuD3TJo7WIiIiIiIiISPacnJxYsmQJwcHBxMXF8dprr9G2bVvbMnU//vgjU6ZMAdJnZX3yySfZ9pOYmMjGjRvtkqlatWo0aZLz/JGjR48yefJkACZNmsR9991nl3H/6Pjx47bjwMDAPNtnFGb+eK29DRw4kDlz5gCwaNEiHn300RzbLlq0KMt1fzR8+HD+/e9/U65cuWyvnzRpEkOGDGHlypWsXr2asLAw2rdvn2u+9evX06ZNG9auXYuXl5ft+T/uT7dv3z7OnDmTa1/51blz59tmpBXk/p0+fdp2rZ9f4bem2bBhAzdv3gTS/x85efIkX331FQcOHADAx8eHzz77rNDjFKdSUVizWq3bDMMIzKVJT+BLa3rpfJdhGOUMw6hstVovFE9CEZGisffCXgAtBZmNJpXTf7jcd2GfCmsiIiIiIiIiUihBQUHMmTOH5557joSEBPr378/OnTtJSEhgwIABWCwWHBwcWLhwIeXLl8+2j5iYGLstxzho0CDmz5+f7bm0tDSGDh1KcnIyzZo149VXX7XLmNnJvOdcxvKLufHx8cn2Wntr1aoVNWvW5MSJE3z11VfMnTs322UOExMT+frrrwGoWbOmbWZiZm3bts11LA8PDz777DPWrVtHQkICCxcuzLOw5uHhwfLly7MU1bLz0UcfsWDBglzb5FdkZORtxbOScP8GDx5MdHT0bc+7uLjQo0cP/v73v1OjRg27jFVcSsVSkPlQBTib6fG5/z4nIlKq7Tm/h/u87sPPo/C/HXK38Xbz5v7y97Pv4j6zo4iIiIiIiIjIXSAkJIQBAwYAsGfPHt555x1eeukl24yisWPH5llQKQ5z5sxh586dODo6Mm/evDyXZyyM+Ph427Gbm1ue7cuUKWM7jouLK5JMGTJmn8XHx7N69eps23zzzTe21xASElLgsTw9PWnQoAEAu3fvzrN9r169CAgIKPB49lKS71/t2rXp1KmTXWbFFbdSMWMtH4xsnrNm29AwXgReBKhcuTKhoaFFGEtEpHB+PPUj1d2rl9j3KrNz3ed4Hzt/22l6DhGRvMTHx+u9SkTkDum9U0TuBd7e3vn+8PrcthiSLt3MuYHVCkZ2H5OWXmUqunFfu+L90H3q1Kns2LGDqKgopk6danu+WbNmjB49Otf75ePjQ2xsrN2yZDfW2bNn+etf/wrAK6+8wgMPPHBbu4w90SD979PCFEiSk5NtxykpKXn2lbHkH8CtW7eKtDjz5JNP8t577wEwf/58Hn/88dvaZJ7117NnzxzzJCcn89VXX7Fu3ToOHjzIpUuXiI+Pz/K1zHDu3Lls+8n8tWrevHm+XvusWbOYNWtWnu3y649jpqam2o6TkpLyzHTr1q07ap8fJ06cANK/L+Pi4jh69CjLli1j/vz5DBs2jJkzZ7J06dJC7bF28+bNYv258W4prJ0DqmZ6fB9wPruGVqt1HjAPICAgwNqhQ4ciDyciUhCxybGcDTvLi61epEO7DmbHgbDbnzL7PbSLYxfCfggjuFUw5dzKmZpFRCQ3oaGhpr9nioiUNnrvFJF7wdGjR/H09MxXWxfna9xyvJXj+VSLBSdHR3tFKxFcnJ3z/fWxF09PT5YuXUrbtm1tRQlPT0+WL1+e4xKQxekvf/kL8fHxVK9enSlTpuDh4XFbGyNTgbVs2bKF+hpmXhowLS0tz74yF6IqVKhQpPevYcOGtG7dmp07d/LDDz9w8+ZNKlasaDsfExPD1q1bAXj44Ydp2LBhtv0cPHiQXr162QpAeYmNjc32dbm6utqO77///mL/3s1O5n3jDMPIM1PmQpyfn5/dX4OXlxdVqlShU6dO9O7dm+7du3P06FGeeuopDh48mO33c364ubnRuHFju2bNzd1SWPsWeNUwjGVAS+CG9lcTkdIu/EI4AE0ra3+1nGTss7b/4n46BHYwN4yIiIiIiIhIEbq/c7Vcz8fFxZWID/LvBlWqVMHDw4MbN24A0LRp00LNprGXRYsWsW7dOiB9OciCFiHuRObCzJUrV/Jsn7lN5muLSkhICDt37iQ1NZVly5YxYsQI27lly5bZCkU5LQN59epVOnXqRExMDABVq1bl8ccfp3bt2lSsWBE3NzdboXLcuHEcPnyYtLS0PHNlXlLRTCX5/nXp0oXBgwfz2WefERkZyZdffsnLL79cpGPaS6korBmGsRToAPgahnEOeA9wBrBarf8G1gHdgJNAIjDEnKQiIvaz98JeAJoGqLCWk8aV038TJfxCuAprIiIiIiIiIlJoaWlphISE2IpqkD6Leu7cuXl+6J+YmMjGjRvtkqNatWo0adIky3OfffYZAP7+/oSHhxMeHp7ttZmzz54921Yg+fOf/0ylSpXuKEetWrVsx1FRUXm2P336dLbXFpVnn32WkSNHkpKSwqJFi7IU1hYtWgSAi4sLzz77bLbXz54921ZUGzRoEJ9++ilOTtmXTSZNmmTn9LBv3z7bHn6F1blzZ9zd3bM8V9Lv32OPPWb7vg4NDVVhzZ6sVmu/PM5bgeHFFEdEpFjsvbCX+7zuw8+j9G3gWVz8PPyo4lmFfRf3mR1FRERERERERO4CU6ZMISwsfT+MRx55hD179nDjxg1Gjx5N+/btqVu3bo7XxsTE8NRTT9klx6BBg7LsDwb/W2bx4sWLvPPOO/nq55///Kft+PHHH7/jwlrdunVxcHAgLS2N8PBw0tLScHBwyLH9nj17bMf169e/o7EKokKFCnTr1o1vvvmGn3/+mRMnTlCzZk2OHz/OL7/8AkD37t1zXMZz8+bNADg5OTFjxowci2qQtehkLx999BELFiywS1+RkZEEBgZmeS7zPch8b7Jz6dIl22v09fXFz6/oP5PMPMv2+vXrRT6eveT8f4CIiJhqz/k9WgYyHxpXbsy+CyqsiYiIiIiIiEjh7N69m/HjxwMQEBDA8uXLmTt3LgBJSUn079+f5ORkExMWPy8vL1q1agWkz4TbtWtXjm3Pnj3LkSNHgPQZd7kVIe0p8zKPGbPUMv77x/N/FB0dDaTvJZfb0ofh4eFcunSpkEmLX4cOHWx7v23bto2kpKQc237//fe2465duxZ5NoCTJ0/ajn19fYtlTHtQYU1EpASKTY7l+JXjKqzlQxP/Jvx6+VcSbyWaHUVERERERERESqm4uDgGDBhAamoqhmGwYMECfHx86Nevn60wc+DAAcaMGZNjH4GBgVitVrv8+eNsNUhfKi8/11avXt12TWRkpO354ODgAn1t+vTpYzueOXNmju1mzZplm1WX09KLReHxxx+3zUhbvHgxVquVxYsXA1C+fHm6d++e47UZSyfGxMQQFxeXY7uJEyfaMfH/zJ8/327fM3+crQZQtmxZunXrBkBsbGy231eQPhty9uzZtseZ73lRSUtLsy0DCdC6desiH9NeVFgTESmBwi+kr5HdLKCZyUlKviaVm5BmTSMiOsLsKCIiIiIiIiJSSg0fPpxTp04BMHr0aDp16mQ7N2fOHIKCgoD0wlLmmT2lXWBgIIZhYBgGoaGh2bYZOnQoAQEBAKxYsSLbpQs3b97M9OnTgfRizptvvllkmf/IxcWF3r17A3Dq1CmmTZvGb7/9BqQX+FxcXHK8tnnz5kB6YWncuHG3nbdarbz77rt888039g9eTN555x0MwwBg7NixRETc/hnaxIkT2b17N5D+Nckoxv3R/Pnzbd8vHTp0yLbNjBkzcp3ZCOmF7IEDB9r2CaxQoQJ9+/bN70syXanYY01E5F6z98JeIL1oJLlrXLkxkF6MbHVfK5PTiIiIiIiIiEhps3TpUhYuXAhA48aNmTRpUpbznp6eLFmyhDZt2pCamsrgwYOJiIigYsWKZsQtdu7u7sybN4+ePXtisVgYMmQIa9eupWvXrjg5OREWFsaXX35JamoqANOnT891L7fAwEDbXl5bt27NsUBzJ0JCQpg3bx4Af/3rX7M8n5tXXnmFzz//HIvFwkcffcT+/ft5+umn8ff35+zZsyxZsoTw8HDq1q1LmTJl2Lt3b6GzFrfGjRvz1ltvMXXqVG7cuEHr1q0ZOnQoLVq0ID4+nlWrVrFx40YgvSg6b948WyGuIEJDQxk1ahQ1a9bkkUceoX79+vj4+ODo6MilS5fYt28fX3/9NVevXgXS97f79NNP8fHxscvrLQ4qrImIlED7L+4nwDOASmXvbEPZe1FVr6r4lPHRPmsiIiIiIiIicseioqJ4+eWXgfQC0pIlS7Kd4dSyZUvGjx/PuHHjuHjxIkOGDOG7774r7rim6d69OwsWLGDYsGHEx8ezcuVKVq5cmaWNs7MzU6dOZejQocWe7+GHH6ZGjRpERkaSkpICQFBQEA8//HCu1wUHBzNr1ixeffVV0tLS2LZtG9u2bcvSpk6dOqxevdqU12UvU6ZMISUlhRkzZpCQkJDtkp5+fn4sXbq0wEuG/tGJEyc4ceJErm2CgoL4+OOPs8wQLQ20FKSISAkUfjGcxv6NzY5RKhiGQZPKTdh3UYU1EREREREREck/i8XCwIEDuXHjBgDTpk2jdu3aObYfO3Ys7dq1A2Dt2rVZ9qS6FwwYMIBDhw7x1ltvUa9ePTw9PfHw8KBWrVoMHz6c8PBwRo0alWc/SUlJtmNfX1+7ZDMMg4EDB96WNz9efvllduzYQe/evfH398fZ2Rk/Pz9at27NtGnT2LNnDw888IBdcprFMAymTZvGjh07GDx4MEFBQbi5uVGuXDmaNGnCxIkTOXz4MB07diz0WAsWLGDNmjWMHj2atm3b8sADD+Dl5YWTkxPly5enYcOGDBo0iFWrVnH06NFSV1QDMDI2E7wXBQQEWM+fP292DBGRLG6m3qTs5LKMaTOG9zu+b3YcG2PC7VPAre+VjL9D/m/T/zFj9wzixsbh4pjzutkiImYJDQ21y/ImIiL3Er13isi94OjRo9SpU8cufcXFxeHp6WmXvkSKyrFjx2zFyx49erB69WqTE8ndoDDvpYZh7LVarc3u5BrNWBMRKWEOxRzCYrUQ7B9sdpRSo0nlJqRYUjhy6YjZUUREREREREREJAebN28GwMHBgcmTJ5ucRqRgVFgTESlh9l/cD6ClIO9A48rpXyvtsyYiIiIiIiIiUnJlFNZCQkKoV6+eyWlECkaFNRGREib8QjieLp7UKF/D7CilxgMVHqCsS1nCL4SbHUVERERERERERLKRlpZGaGgorq6uTJgwwew4IgXmZHYAERHJan/0foL9g3Ew9LsP+eVgONDYvzH7LmrGmoiIiIiIiIhISeTg4MC1a9fMjiFSaPrUVkSkBLGkWThw8YD2VyuAxv6N2X9xP5Y0i9lRRERERERERERE5C6lwpqISAly6topEm4laH+1AmhSuQmJtxI5cfWE2VFERERERERERETkLqXCmohICbL/4n4AzVgrgCaVmwCw74KWgxQREREREREREZGiocKaiEgJEn4hHCcHJ+pWrGt2lFKntm9tXB1dVVgTERERERERERGRIqPCmohICbI/ej/1KtbD1cnV7CiljrOjM/X96nMg+oDZUUREREREREREROQupcKaiEgJEn4hXMtAFkKjSo04cPEAVqvV7CgiIiIiIiIiIiJyF1JhTUSkhLgYf5HohGga+zc2O0qpFewfzKXES1yIv2B2FBEREREREREREbkLqbAmIlJChF8IB9CMtUJo5N8IgAMXtRykiIiIiIiIiIiI2J8KayIiJcT+i/uB/xWH5M41rNQQQPusiYiIiIiIiIiISJFQYU1EpITYH72fGuVqUM6tnNlRSq1ybuWo7l1dhTUREREREREREREpEiqsiYiUEOEXwrUMpB008m+kpSBFRERERERERESkSKiwJiJSAsQlx3Hy6kka+zc2O0qpF1wpmGNXjpF0K8nsKCIiIiIiIiIiInKXUWFNRKQEiIiOwIpVM9bsoJF/I9KsaRyKOWR2FBEREREREREREbnLqLAmIlIC7L+4H4DGlTVjrbAaVWoEoH3WRERERERERERExO5UWBMRKQHCL4bjU8aHKp5VzI5S6tUoX4OyLmW1z5qIiIiIiIiIiIjYnQprIiIlwIHoAzTyb4RhGGZHKfUcDAcaVWqkGWsiIiIiIiIiIiJidyqsiYiYzJJm4XDMYdsShlJ4GYU1q9VqdhQRERERERERERG5i6iwJiJislPXTpGUmkQDvwZmR7lrNPJvRGxyLFHXo8yOIiIiIiIiIiJiV4Zh5PvP4MGD7Tr26dOnGTNmDA0aNMDb25uyZctSu3ZtRowYweHDh+06ltjfTz/9xPPPP8/999+Pu7s7FSpUoGnTprz//vtcvny5WDJ07tw5y/fo/Pnzi2Vce3IyO4CIyL0uIjoCgIaVGpqc5O6RMfvvQPQBapSvYXIaEREREREREZHSb/HixQwbNoz4+Pgszx87doxjx44xb948PvjgA0aNGmVSQsmJ1Wpl9OjRzJgxI8sKT0lJSVy7do19+/Yxe/ZslixZQseOHYssx/z589m0aVOR9V9cVFgTETFZRHQEDoYDdSvWNTvKXaO+X30MDA5cPMCTtZ80O46IiIiIiIiIiN3Vq1eP999/P9c21apVs8tYa9euZdCgQVgsFgzD4JlnnqFLly44OzsTFhbGwoULSUlJ4Y033sDT05OhQ4faZVyxj7FjxzJ9+nQAPDw8eOGFF2jRogXx8fGsWrWKTZs2ER0dTc+ePdm+fTvBwcF2zxAdHc3o0aNtGRISEuw+RnFRYU1ExGQHYw5Sy6cWZZzLmB3lruHh4kEtn1ociD5gdhQRERERERERkSLh6+vLk08+WeTjJCYm8uKLL2KxWAD44osvGDRokO38c889R9++fenWrRupqamMGjWKJ554gkqVKhV5NslbeHg4f//73wHw9vZm27ZtNGz4v5WzXnrpJcaPH8+ECROIj4/nxRdfZPfu3RiGYdccI0aM4OrVqwQHB1O/fn0WLVpk1/6Lk/ZYExExWUR0hPZXKwKN/Bux/+J+s2OIiIiIiIiIiJRqn3zyCefPnwegd+/eWYpqGR599FHbEpDx8fF8+OGHxZpRcjZx4kTb8o+TJ0/OUlTL8N5779GiRQsAfvnlF9atW2fXDN9++y0rV67EwcGBefPm4ejoaNf+i5sKayIiJopLjuO3a79pf7Ui0KhSIyKvRxKbHGt2FBEREREREREpocLCwnB0dMQwDKpVq8b169dzbBsZGYm3tzeGYeDh4cGxY8eKL6iJli9fbjseOXJkju1GjBhhm+W0YsWKIsvz7bffYhgGhmHYlhbMyxtvvGG7Zs2aNVnOWa1Wtm/fzttvv03Hjh0JCAjA1dUVDw8PatSoQd++fVmzZk2WvcmyM378eNsYoaGhAGzZsoV+/fpRo0YN3NzcMAyDqKiogrzsAomLi2P9+vUAeHl5MXjw4GzbGYbBiBEjbI8z3/PCio2N5ZVXXgHg1VdfpXnz5nbr2ywqrImImOhQzCEAFdaKQKNKjYD0GYEiIiIiIiIiItlp3749Y8aMAeDs2bO8+OKL2bZLTU2lf//+xMam/wLvzJkzefDBB4stp1liY2PZtWsXkL6M4EMPPZRj26pVq1K3bl0Azpw5w5EjR4okU9euXfH19QVg6dKlpKWl5dreYrGwbNkyIH35zMceeyzL+eeff5527doxefJktm7dyoULF0hJSSExMZGoqCiWL19Ojx496Natm+3+58VqtfLqq6/SqVMnli1bRlRUFMnJyQV4tYUTFhZmG7ddu3a4u7vn2LZLly6244xinD385S9/4ffff+e+++7Lc0/A0kKFNREREx2MOQiosFYUgv2DAThwUfusiYiIiIiIiEjOJkyYQMuWLQFYuXIln3/+ebZtMgpMvXr1YujQocWaMTvHjh2jTZs2+Pj44OLiQqVKlWjXrh0TJkzg4sWLdhnjyJEjtplawcHBODjkXlJo1qyZ7fjQoUN2yfBHzs7O9OnTB4ALFy6wZcuWXNtv2bKFCxcuANC3b1+cnZ2znE9KSsLV1ZXOnTszbtw4vvjiC1asWMGcOXMYOXIkFSpUAGDDhg0899xz+cr4j3/8gzlz5uDv78+YMWNYtGgR8+fP55VXXsHV1fVOX3KBZb4HTZs2zbVtxYoVqV69OgCXL18mJiam0ONv27aNTz75BIBZs2bh6elZ6D5LAiezA4iI3MsioiPwdPGkund1s6PcdQI8A/Ap48OBaBXW7nZWq5WUZCs3b6bh7uGAs7N+b0hERERERETyz8nJiSVLlhAcHExcXByvvfYabdu2pWbNmgD8+OOPTJkyBUiflZVRKPijxMRENm7caJdM1apVo0mTJrm2uXjxYpYCWkxMDDExMWzfvp0pU6YwderUXJduzI/jx4/bjgMDA/Nsn1GY+eO19jZw4EDmzJkDwKJFi3j00UdzbLto0aIs1/3R8OHD+fe//025cuWyvX7SpEkMGTKElStXsnr1asLCwmjfvn2u+davX0+bNm1Yu3YtXl5etuf/uD/dvn37OHPmTK595Vfnzp1vm5FWkPt3+vRp27V+fn4FznPz5k3+/Oc/Y7Vaeeqpp3jyyScL3FdJo8KaiIiJIqIjaFCpgW39abEfwzBo5N9IhbW7UOyNVML3xHJwfzxRp5KIvpDCrVv/W+fcrYwDAVVcCapZhkZNPGnY2BNXNxXbREREREREJGdBQUHMmTOH5557joSEBPr378/OnTtJSEhgwIABWCwWHBwcWLhwIeXLl8+2j5iYGJ566im75Bk0aBDz58/P8fz9999P586dadiwIT4+PiQlJXH48GH+85//8Ntvv5GcnMzrr7/O1atXmTBhQoFzZN5zLmP5xdz4+Phke629tWrVipo1a3LixAm++uor5s6dm+0yh4mJiXz99dcA1KxZ0zYzMbO2bdvmOpaHhwefffYZ69atIyEhgYULF+ZZWPPw8GD58uVZimrZ+eijj1iwYEGubfIrMjLytuKZmfdv/PjxHD9+HE9PT2bNmlWovkoaFdZERExitVo5GHOQvvX6mh3lrtWoUiP+veffWNIsODo4mh1HCunY0QTWfn2ZvT/HYkm14l3OiQcedKeMuyOurgaOTgapt6wk30yjjLsjP4ZeZ/P6q5Rxd6BNh/J0f9IX/4DiW25BRERERERESpeQkBC+//57Fi9ezJ49e3jnnXeIjIy0zSgaO3ZsngWV4hAWFka7du2yPTd58mTGjx9v28tq4sSJPProo7Rp06ZAY8XHx9uO3dzc8mxfpkwZ23FcXFyBxsyvgQMH8t577xEfH8/q1avp16/fbW2++eYb22sICQkp8Fienp40aNCAXbt2sXv37jzb9+rVi4CAgAKPZy9m3b/9+/fzz3/+E0if8VelSpUC91USqbAmImKSc7HnuH7zuvZXK0KNKjUiKTWJE1dPUNu3ttlxpIBO/5bEos8vcHB/PGU9HXnscR8e7lCOwKAyODgY9H084rZrln3XkNRbaRw9nMD2H64Tuukqm9dfod0j5ekz0J8Kvs7ZjCQiIiIiIlJynZqWRMIJS47nU1PTcHKKz/F8aeRR05H73yiTd0M7+te//sXOnTuJjIxk6tSptudbtmzJ+PHjc702MDDQth9ZUcqpqAbg6OjI3/72N6Kjo21LVk6aNIn169cXetyStuJSRmEN0pd7zK6wlnkZyAEDBuTYV3JyMitWrGD16tUcOHCA6Oho4uPjs72f586dyzNbXrPgMsyfPz/XmYn2VFz3z2Kx8MILL5Camkrz5s0ZPnx4sYxbnFRYExExSUR0ejGgQaUGJie5ewX7BwNw4OIBFdZKoeSbaaxYdJF1317Gw8ORkKGVeeQxH9zyuayjk7MDDYI9aRDsSf8h/qz56hLfr7nC7h036DfIn0e7+eDgULL+USAiIiIiIiLm8vLyYsmSJbRt25bU1FQgfbbSkiVLcHIqPR+njx8/nk8//RSr1crWrVtJSkrKMhspv8qWLWs7TkpKyrN95jaenp53PN6dCAoKonXr1uzcuZONGzdy6dIlKlasaDsfExPDpk2bAHj44YcJCgrKtp+DBw/Sq1cvTpw4ka9xY2Nj82xTUmZomXH/PvzwQ/bt24eTkxPz5s3DweHu256j9LwTiIjcZWyFNT8V1opKnYp1cHZw5kD0AfrU72N2HLkD539PZtqkKM6dSabTYxXoO9ifsmUL/mNLufLOhLwQQOfuPnw653e++Pd59u+JY/ibVQvVr4iIiIiISHHJa+ZWXFwcnp5lc20j+VOlShU8PDy4ceMGAE2bNs2xKFNSBQQEUKtWLY4dO0ZycjJRUVHUqVPnjvspV66c7fjKlSt5ts/cJvO1RSUkJISdO3eSmprKsmXLGDFihO3csmXLbMXRnJaBvHr1Kp06dSImJgaAqlWr8vjjj1O7dm0qVqyIm5ubbabXuHHjOHz4MGlpaXnmKkgRsygU9/07efKkbU+/UaNGERwcfMd9lAb6JElExCQHYw5S3bs63m7eZke5a7k4ulCnYh0ORB8wO4rcgT27bjBn2lmcnAzGTqxBoyb2+w23Sv6u/HViDTatu8KCTy7w19dPMvqv1akeVDJ+4BURERERERFzpaWlERISYiuqAYSGhjJ37lxefvnlXK9NTExk48aNdslRrVo1mjRpUqg+fHx8bMfXrl0rUB+1atWyHUdFReXZ/vTp09leW1SeffZZRo4cSUpKCosWLcpSWMtYBtLFxYVnn3022+tnz55tK6oNGjSITz/9NMeZiZMmTbJzeti3b59tD7/C6ty5M+7u7lmeK+77t3jxYpKSkjAMAycnJ9tef38UEfG/bT3WrFljW16zc+fOtGjR4o7HLW4qrImImCQiOkLLQBaDRpUasSVyi9kxJB+sVitfL49hxaJogmqW4Y2x1fH1c7H7OIZh0Lm7L4FBZZg+5TTv/OUkr46uRovWKnKLiIiIiIjc66ZMmUJYWBgAjzzyCHv27OHGjRuMHj2a9u3bU7du3RyvjYmJ4amnnrJLjkGDBhV67y17zB6rW7cuDg4OpKWlER4eTlpaWq5L++3Zs8d2XL9+/QKNeScqVKhAt27d+Oabb/j55585ceIENWvW5Pjx4/zyyy8AdO/enfLly2d7/ebNmwFwcnJixowZuS73mbnoZC8fffQRCxYssEtfkZGRBAYGZnku8z3IfG+yc+nSJdtr9PX1xc/P744zZOxJZ7VamTJlSr6u+eqrr/jqq6+A9KUrS0Nh7e5b3FJEpBRITk3m18u/0tCvodlR7noNKzXkfNx5riZdNTuK5MJqtbJk/kVWLIqmzZ/KMX7q/UVSVMusVh0PpsysSfXAMsz44DQ/hhbst/dERERERETk7rB7927Gjx8PpC+luHz5cubOnQuk7z3Vv39/kpOTTUyYfxcuXOD48eNA+oyt6tWrF6gfLy8vWrVqBcCNGzfYtWtXjm3Pnj3LkSNHgPQZd7kVIe0p8zKPGbPUMv77x/N/FB0dDaTP7sut+BgeHs6lS5cKmbT4dejQAVdXVwC2bduW6z5r33//ve24a9euRZ6tNFNhTUTEBEcvH8VitdCwkgprRS3ja3ww+qDJSSQnaWlW5n98njWrLvFoNx9eGVUVF5fi+RGlXHln/vq3GtSu58Gcf55l60YVYEVERERERO5FcXFxDBgwgNTUVAzDYMGCBfj4+NCvXz9bYebAgQOMGTMmxz4CAwOxWq12+VPY2Wrjx4+3zR5q3749Hh4eBe6rT5//7Vs/c+bMHNvNmjXLNmZOSy8Whccff9w2I23x4sVYrVYWL14MQPny5enevXuO12YsnRgTE0NcXFyO7SZOnGjHxP8zf/58u33P/HG2GqTPAOvWrRsAsbGxOX5fWa1WZs+ebXuc+Z7fiYzvu7z+DBo0yHbNF198YXv+9ddfL9C4xU2FNRERE2QUeVRYK3oN/NKX24yIjsijpZjBak0vqn3/3RW6P+XL8y8H4OBgFGuGMu6O/N97NWjYuCwff3ROxTUREREREZF70PDhwzl16hQAo0ePplOnTrZzc+bMISgoCEgvLGWe2VPcxo4dm+ueXBaLhXfffZd58+bZnnv77bdzbB8YGIhhGBiGQWhoaLZthg4dSkBAAAArVqzIdunCzZs3M336dCC9mPPmm2/m5+XYhYuLC7179wbg1KlTTJs2jd9++w1IL/C5uOS8Ik7z5s2B9M8nxo0bd9t5q9XKu+++yzfffGP/4MXknXfewTDSP2sZO3Zslv3NMkycOJHdu3cD6V+TjGLcH82fP9/2/dKhQ4ciy1zSaY81ERETRERH4OroSk2fmmZHuev5l/XH191XhbUS6tv/XGLj2is8/rQvA4ZUtv2gV9xc3Rx4851A/jExik9mn6NcBScaN/MyJYuIiIiIiIgUr6VLl7Jw4UIAGjduzKRJk7Kc9/T0ZMmSJbRp04bU1FQGDx5MREQEFStWLPasc+fOZerUqbRu3ZqHH36YWrVq4e3tTVJSEkeOHGHFihW2ohKkF9Xat29fqDHd3d2ZN28ePXv2xGKxMGTIENauXUvXrl1xcnIiLCyML7/8ktTUVACmT59OpUqVcuwvMDDQtpfX1q1b7VKgCQkJsRUT//rXv2Z5PjevvPIKn3/+ORaLhY8++oj9+/fz9NNP4+/vz9mzZ1myZAnh4eHUrVuXMmXKsHfv3kJnLW6NGzfmrbfeYurUqdy4cYPWrVszdOhQWrRoQXx8PKtWrWLjxo1AelF03rx5pn0+U1qosCYiYoKImAjqVqyLk4PehouaYRg08GvAwRgtBVnS/Lj1GksXXKR1+3L0H2xeUS2Ds7MDo8ZWZ8KYU8z44AzjPwiixgPupmYSERERERGRohUVFcXLL78MpBeQlixZku0Mp5YtWzJ+/HjGjRvHxYsXGTJkCN99911xxwXSZ1Ht2LGDHTt25NjG3d2dqVOn8uqrr9plzO7du7NgwQKGDRtGfHw8K1euZOXKlVnaODs7M3XqVIYOHWqXMe/Eww8/TI0aNYiMjCQlJQWAoKAgHn744VyvCw4OZtasWbz66qukpaWxbds2tm3blqVNnTp1WL16tSmvy16mTJlCSkoKM2bMICEhIdslPf38/Fi6dCnBwcHFH7CU0VKQIiImiIiO0DKQxahhpYYcijlEmjXN7CjyX4cj4pk78xx1G3jw8uv3Ffvyjzkp4+7I/42vgaenIx+MjyImOsXsSCIiIiIiIlJELBYLAwcO5MaNGwBMmzaN2rVr59h+7NixtGvXDoC1a9dm2ZOquHz//ff885//5JlnnqFhw4ZUrlwZFxcXypQpw3333Ue3bt345z//ydmzZ+1WVMswYMAADh06xFtvvUW9evXw9PTEw8ODWrVqMXz4cMLDwxk1alSe/SQlJdmOfX197ZLNMAwGDhx4W978ePnll9mxYwe9e/fG398fZ2dn/Pz8aN26NdOmTWPPnj088MADdslpFsMwmDZtGjt27GDw4MEEBQXh5uZGuXLlaNKkCRMnTuTw4cN07NjR7KilgpGxmeC9KCAgwHr+/HmzY4jIPeZSwiX8PvTjn53/yRsPvWF2nHwzJtxe+LC+Vzr+Dvls32cMXTOUkyNOcn+F+82Oc8+7fCmFsSNP4OXtxMR/PIBHWcdC9df38duX+Vz2XeEK1+fO3OTdv5ykkr8rE/5xPy4u+l0kKZzQ0NB7ev15EZGC0HuniNwLjh49Sp06dezSV1xcHJ6ennbpS6SoHDt2zFa87NGjB6tXrzY5kdwNCvNeahjGXqvV2uxOrtGnRCIixSxjScIGfg1MTnLvyJgdqH3WzJd6K42ZH5zh1i0ro9+uXuiiWlG5r5obr7xRlchTSXw5T7+EIyIiIiIiImIPmzdvBsDBwYHJkyebnEakYFRYExEpZhnFHS0FWXzq+dXDwNA+ayXAos8vcOJYIsNG3kfAfW5mx8lVs5bePNGrIps3XGXbD9fMjiMiIiIiIiJS6mUU1kJCQqhXr57JaUQKRoU1EZFidjD6IH4eflQqW8nsKPcMd2d3HqjwgGasmWzXj9fZsOYKXXv40qpNObPj5Evf5/ypU9+DT+ec42zUTbPjiIiIiIiIiJRaaWlphIaG4urqyoQJE8yOI1JgKqyJiBSziJgIzVYzQYNKDTRjzURXL9/ik1m/88CD7gwY4m92nHxzdDQY+X/VKFPGkdn/PEPqrTSzI4mIiIiIiIiUSg4ODly7do2bN29SvXp1s+OIFJgKayIixciSZuFQzCHtr2aChn4NOXHlBIm3Es2Ocs+xWq18POscqalpDH+jKk7OpevHj3LlnfnziCqcjrzJqmUxZscRERERERERERETla5PtkRESrmTV09yM/WmZqyZoEGlBlixcuTSEbOj3HO2bLjKgb1x9B9SmcpVXM2OUyDNWnrTvlN5vlkZw4ljKs6KiIiIiIiIiNyrVFgTESlGGUsRqrBW/DK+5tpnrXhdvJDMws8u0CC4LI928zE7TqEM+nMAPj7O/GvaGZJvaklIEREREREREZF7kQprIiLFKCI6AgfDgboV65od5Z4TVD4Id2d3DkZrn7XiYrVamffRORwc4KWR9+HgYJgdqVDcPRwZ9npVLvyeworFF82OIyIiIiIiIiIiJlBhTUSkGEVER1DLpxZuTm5mR7nnOBgO1PerT0SMZqwVl+1br3PkYAIDhlTGt6KL2XHson6jsnTsXIH1qy9zOjLJ7DgiIiIiIiIiIlLMVFgTESlGEdERWgbSRA39GhIRHYHVajU7yl0vPi6VRZ+dp+aD7nTsUsHsOHbVf4g/HmUd+XTO76Sl6XtJREREREREROReosKaiEgxiUuOI/J6JA39VFgzS4NKDbiceJnohGizo9z1lsy/SHychaHDq5T6JSD/qKynEyEvBHDi10R+2HjV7DgiIiIiIiIiIlKMVFgTESkmh2IOAenFHTFHxmxB7bNWtI4dTeCH76/Stacv1YPKmB2nSLTtWI66DTxY+sVFblxPNTuOiIiIiIiIiIgUExXWRESKSUR0+t5eWgrSPA380ouaGfdC7C/NYuWLf/9OBV9nevevZHacImMYBi+8UoWbyWks+/KC2XFERERERERERKSYqLAmIlJMIqIj8HTxpLp3dbOj3LN83H0I8AwgIkaFtaKy7YdrRJ26yYAh/riVcTQ7TpGqUtWNxx73IXTTNaJ+SzI7joiIiIiIiIiIFAMV1kREisnBmIM0rNQQw7i79psqbRr4NdBSkEXkZpKFZV9epOaD7rRuV87sOMXi6b6VKOvpyMJPz2O1Ws2OIyIiIiIiIiIiRUyFNRGRYmC1WomIjrAtRSjmaVipIUcuHSE1Tfti2dvq/1zi+rVUnvtz5XumgOxR1pFn+lficEQCe3fHmh1HRERERERERESKmAprIiLF4GzsWW4k39D+aiVAA78GJFuSOXHlhNlR7iqXY1L47utLPNy+HDVre5gdp1h16upDlaquLPrsAqm30syOIyIiIiIiIiIiRUiFNRGRYhARnb6nlwpr5su4Bxn3ROxj2ZcXAeg3yN/kJMXP0dFg4AuVuXghhY3rrpodR0REREREREREipAKayIixSBjT6/6fvVNTiK1fWvjaDhyMEb7rNnLmagkdoRdp2sPX3z9XMyOY4rGzbyo36gs36yIJinRYnYcEREREREREREpIqWmsGYYxmOGYRwzDOOkYRhjsjnvbRjGGsMwDhiGcdgwjCFm5BQRyU5ETATVvavj7eZtdpR7nquTK7V9a2vGmh0tXxhNGXcHejxT0ewopurznD+xNyysW33Z7CgiIiIiIiIiIlJESkVhzTAMR2AO0BWoC/QzDKPuH5oNB45YrdZGQAfgn4Zh3Ju/Ni8iJU5EdISWgSxBGlRqoBlrdnL8aAJ7d8fyRC8/ypZ1MjuOqWo+6E7zVl589/Ul4mJTzY4jIiIiIiIiIiJFoFQU1oAWwEmr1fqb1WpNAZYBPf/Qxgp4GoZhAGWBq4A+1RIR0yWnJnPs8jEV1kqQhn4NiboeRWxyrNlRSjWr1cqyLy/iXc6Jrk/4mB2nRHg2xJ+bSWl8+59LZkcRERERERGRe4DFYmHlypX07duXBx54gLJly+Ll5UXNmjXp2rUrf//73zlx4oTdxjt9+jRjxoyhQYMGeHt7U7ZsWWrXrs2IESM4fPiw3caRovHTTz/x/PPPc//99+Pu7k6FChVo2rQp77//Ppcv228Fng4dOmAYRr7+BAYG2m3c4lJafrW8CnA20+NzQMs/tJkNfAucBzyBPlarNa144omI5Ozo5aNYrBYV1kqQBpUaAHAo5hCtq7Y2OU3pdehAPEcOJjD4pQDcyjiaHadEqFrdjTYdyrHhu8t07elLBR9nsyOJiIiIiIjIXSo8PJwXXniB8PDw287FxcVx8uRJNmzYwPnz55kxY0ahx1u8eDHDhg0jPj4+y/PHjh3j2LFjzJs3jw8++IBRo0YVeiyxL6vVyujRo5kxYwZWq9X2fFJSEteuXWPfvn3Mnj2bJUuW0LFjRxOTlg6lpbBmZPOc9Q+PuwD7gY7A/cAmwzC2W63WLNMRDMN4EXgRoHLlyoSGhto9rIhIZt9f/B6ApKgkQi+FmhvGzkrre2jCzQQA/rP9P6QEpJicpnSyWuGbJV6U9TRwLnMIc78VKtz2jJnfm1Xvd2BHmDdzpofTtlOiaTmkZImPjy+175kiImbRe6eI3Au8vb2Ji4uzS18Wi8VufUnJt3v3bnr16kVsbPrH302aNKFr165Ur14dgN9//51jx46xceNGUlJSCv29sWHDBgYNGoTFYsEwDJ588kkeeeQRnJyc2LFjB8uWLSMlJYU33ngDZ2dnBg0aVOjXKPbz3nvvMX36dAA8PDwICQmhadOmJCQksHr1arZu3Up0dDQ9e/Zkw4YNNGxYuAkCFovFdrxkyZJc25YpU6bQ3583b94s1p8bjczVyZLKMIyHgPFWq7XLfx+PBbBarVMytVkLfGC1Wrf/9/EPwBir1fpzTv0GBARYz58/X6TZRUTe3Pgms3+eTfxf43FyKC2/z3A7Y8Ltv+Ngfa/k/x2SHavVSvmp5RnQYABzus8xO06pFBEex+R3Ihk6vAqdupq7DGTfxyNue27Zd+bOEJ330Tm2b73GzE9ra9aaAOnF3g4dOpgdQ0SkVNF7p4jcC44ePUqdOnXs0ldcXByenp526UtKtujoaOrVq8eVK1dwc3Pjiy++oG/fvtm2tVgsxMTEULly5QKPl5iYSM2aNcn4LH3+/Pm3Fc42bdpEt27dSE1NpWzZspw8eZJKlSoVeEyxn/DwcJo2bYrVasXb25tt27bdVjgbP348EyZMAKB58+bs3r2b9F23CqZDhw6EhYUBUBw1qMK8lxqGsddqtTa7k2tKyx5rvwA1DcOoYRiGC9CX9GUfMzsDPAJgGEYl4EHgt2JNKSKSjYMxB6nnV69UF9XuNoZh0KBSAyJibi/ISN6sViurlkZTwdeZ9p3Kmx2nROr5bEUsFitrvtJeayIiIiIiImJfI0eO5MqVK0B6kSunohqAo6NjoYpqAJ988omtqNa7d+9sZ6M9+uijtiUg4+Pj+fDDDws1ptjPxIkTbcWtyZMnZzsb7b333qNFixYA/PLLL6xbt65YM5Y2paKwZrVaU4FXge+Bo8AKq9V62DCMYYZhDPtvs78BrQ3DOAhsAf7ParXab7c9EZECioiO0P5qJVADvwYcjD5YLL81c7c5cjCBY0cS6flMRZydS8WPEsWukr8rbTuWZ/P6K1y/dsvsOCIiIiIiIpKDsLAwHB0dMQyDatWqcf369RzbRkZG4u3tjWEYeHh4cOzYseIL+l+nT59m5cqVALRr144+ffoU+ZjLly+3HY8cOTLHdiNGjLDNclqxYkWR5fn2228xDAPDMBg9enS+rnnjjTds16xZsybLOavVyvbt23n77bfp2LEjAQEBuLq64uHhQY0aNejbty9r1qzJ8zOk8ePH28bIWJZwy5Yt9OvXjxo1auDm5oZhGERFRRXkZRdIXFwc69evB8DLy4vBgwdn284wDEaMGGF7nPmey+1KzadhVqt1ndVqrWW1Wu+3Wq2T/vvcv61W67//e3zearV2tlqtDaxWa32r1brI3MQiIhCTEMPF+Is08GtgdhT5g4aVGnIj+QZnY8+aHaXUWbU0mvIVnPhT59v3NpP/ebK3H6mpVr77WrPWRERERERESqr27dszZswYAM6ePcuLL76YbbvU1FT69+9v29Ns5syZPPjgg8WWM8OCBQtIS0sDYOjQoUU+XmxsLLt27QLS9wR86KGHcmxbtWpV6tatC8CZM2c4cuRIkWTq2rUrvr6+ACxdutT29ciJxWJh2bJlAPj6+vLYY49lOf/888/Trl07Jk+ezNatW7lw4QIpKSkkJiYSFRXF8uXL6dGjB926dbPd/7xYrVZeffVVOnXqxLJly4iKiiI5ObkAr7ZwwsLCbOO2a9cOd3f3HNt26dLFdpxRjJPslZrCmohIaXQw+iCAZqyVQBnFzox7JPlz9FA8Rw4m8EQvP1xc9GNEbipXceXh9uXYtPYKsTdSzY4jIiIiIiIiOZgwYQItW7YEYOXKlXz++efZtskoMPXq1atYilrZ2bZtm+24Y8eOXLlyhffee48GDRpQtmxZvLy8qFevHiNGjOD48eOFHu/IkSO2mVrBwcE4OOT+WUCzZv/bqurQoUOFHj87zs7Otpl6Fy5cYMuWLbm237JlCxcuXACgb9++ODtn3Qs9KSkJV1dXOnfuzLhx4/jiiy9YsWIFc+bMYeTIkVSokP6LxRs2bOC5557LV8Z//OMfzJkzB39/f8aMGcOiRYuYP38+r7zyCq6urnf6kgss8z1o2rRprm0rVqxI9erVAbh8+TIxMTF2ydC9e3cqV66Mi4sLPj4+BAcHM2LECPbv32+X/s2gDX9ERIrQwRgV1kqq+n71gfSlOrvX6m5ymtLjmxUxeJdz4pEumq2WH08968eO0OusW32Zvs/5mx1HREREREREsuHk5MSSJUsIDg4mLi6O1157jbZt21KzZk0AfvzxR6ZMmQKkz8r65JNPsu0nMTGRjRs32iVTtWrVaNKkyW3P79mzB0ifPXb69Gl69erFxYsXs7Q5cuQIR44cYe7cuUyZMoW//OUvBc6RuTgXGBiYZ/uMwswfr7W3gQMHMmfOHAAWLVrEo48+mmPbRYv+t7jdwIEDbzs/fPhw/v3vf1OuXLlsr580aRJDhgxh5cqVrF69mrCwMNq3b59rvvXr19OmTRvWrl2Ll5eX7fk/7k+3b98+zpw5k2tf+dW5c+fbZqQV5P6dPn3adq2fn1+hc2Xer+3q1atcvXqVAwcOMHv2bIYMGcKcOXMoU6ZMoccpTiqsiYgUoYjoCCp5VMLPo/B/CYl9ebt5U927OhExEWZHKTVO/5bEgX3x9H3OH1c3zVbLjypV3Wj+kBeb1l3hyd4VcSvjaHYkERERERERyUZQUBBz5szhueeeIyEhgf79+7Nz504SEhIYMGAAFosFBwcHFi5cSPny5bPtIyYmhqeeesoueQYNGsT8+fOzPJecnMyNGzcAcHR05PHHH+fatWsEBQXx/PPP88ADD3Dt2jVWr17Nhg0bsFgsvPXWW7i4uOS6N1puMu85l7H8Ym58fHyyvdbeWrVqRc2aNTlx4gRfffUVc+fOzXaZw8TERL7++msAatasaZuZmFnbtm1zHcvDw4PPPvuMdevWkZCQwMKFC/MsrHl4eLB8+fIsRbXsfPTRRyxYsCDXNvkVGRl5W/HMzPvn4+NDly5daNq0KQEBAVitVqKiovjuu+/YuXMnAF988QVnzpxhw4YNODmVnnKVPhUTESlCEdERNKik/dVKqoaVGmopyDuw5utLuLo50KmbZqvdiSeerkhCvIUfNl4zO4qIiIiIiIjkIiQkhAEDBgDpM8PeeecdXnrpJduMorFjx+ZZUClK167979+VV69e5dq1azz22GMcPnyYt99+mz59+jBs2DDWr1/Pv//9b1vbt956i3PnzhVozPj4eNuxm5tbnu0zzzyKi4sr0Jj5lTH7LD4+ntWrV2fb5ptvvrG9hpCQkAKP5enpSYMG6Z/x7d69O8/2vXr1IiAgoMDj2YtZ92/KlClcuHCBxYsX88Ybb9C3b1/69evH2LFj2bFjB1999ZWtELplyxamTp1a4LHMUHpKgCIipYwlzcLhS4d5pdkrZkeRHDTwa8C6E+tITk3G1an41rcujS7HpLAz7DqPPeFL2bL68eFO1KztwYN13Vn3zSU6d/fByckwO5KIiIiIiJRC8aGhpF66lON5S6qF60531yoZThUrUrZDh2Id81//+hc7d+4kMjIyy4f9LVu2ZPz48bleGxgYaNuPrCikpaVleezp6cmiRYuyLZi89NJLbNq0iVWrVpGSksLcuXOZNGlSocY3jJL179mBAwfy3nvvAenLPfbr1++2NpmXgcwommYnOTmZFStWsHr1ag4cOEB0dDTx8fHZ3s/8FCnzmgWXYf78+bfNTCwqxXn/HnrooVzPP/XUU3zyySe2e/KPf/yDN998s1j3nysMzVgTESkiJ6+e5GbqTe2vVoI1rNQQi9XCr5d/NTtKibdu9WUAuvXMe9kAud0TvSpy+dItdv143ewoIiIiIiIikgsvLy+WLFmSZVk6T0/P254zg6enZ5bHTz/9dJal+/7oxRdftB1v3ry5QGOWLVvWdpyUlJRn+8xt/pjX3oKCgmjdujUAGzdu5NIfCs8xMTFs2rQJgIcffpigoKBs+zl48CANGjTgueeeY9WqVZw8eZK4uLgci6SxsbF5ZqtSpcqdvJQiU5LvX//+/XnwwQcBuHHjBjt27CjS8exJv3IuIlJEIqLT9+7SUpAlV8a9iYiOoJF/I5PTlFzx8an8sPEqrduVw9fPxew4pVKT5l4E3OfKd19d4uH25Urcb/mJiIiIiEjJl9fMrbi4uCL/IPxeUaVKFTw8PGz7mTVt2jTHokxxKlu2LE5OTqSmpgLQpEmTXNs3bdrUdnzq1KkCjVmuXDnb8ZUrV/Jsn7lN5muLSkhICDt37iQ1NZVly5YxYsQI27lly5bZvlY5LQN59epVOnXqRExMDABVq1bl8ccfp3bt2lSsWBE3Nzfbv+HHjRvH4cOHb5s5mJ3MSyqaqaTfvw4dOnDs2DEAjh07RseOHYt8THtQYU1EpIhEREfgYDhQt2Jds6NIDmr51MLF0YWDMdpnLTeb113lZlIaTzxd0ewopZaDg8HjT1dk3kfnOLg/noaN9Y9dERERERGRkigtLY2QkBBbUQ0gNDSUuXPn8vLLL+d6bWJiIhs3brRLjmrVqt1WODMMg5o1a3L06FEAvL29c+0j8/nMr+dO1KpVy3YcFRWVZ/vTp09ne21RefbZZxk5ciQpKSksWrQoS2EtYxlIFxcXnn322Wyvnz17tq2oNmjQID799NMcZyYWdinN7Ozbt8+2h19hde7c2bZvWYaSfv8yz7jMvIdgSafCmohIETkYc5AHfR7EzSnvjUHFHE4OTtStWNc2u1Bud+tWGhvWXKZh47JUDyoZv21VWrX9UzlWLLzImq8uqbAmIiIiIiJSQk2ZMoWwsDAAHnnkEfbs2cONGzcYPXo07du3p27dnH+BOiYmhqeeesouOQYNGpTt3lsNGza0FdbyWpIwczEtryJcTurWrYuDgwNpaWmEh4eTlpaGg0POO0zt2bPHdly/fv0CjXknKlSoQLdu3fjmm2/4+eefOXHiBDVr1uT48eP88ssvAHTv3p3y5ctne33GEplOTk7MmDEj1+U+Mxed7OWjjz5iwYIFdukrMjKSwMDALM9lvgeZ7012Ll26ZHuNvr6++Pn52SVXbop7hpy9aI81EZEiEhEdof3VSoGGlRpqxloutm+9zvVrqTzRS7PVCsvZ2YHHnvDlYHg8Ub/lva65iIiIiIiIFK/du3czfvx4AAICAli+fDlz584F0vee6t+/P8nJySYmhK5du9qO9+7dm2vbzOcLOvvIy8uLVq1aAemFul27duXY9uzZsxw5cgRIn3GXWxHSnjIv85gxSy3jv388/0fR0dFA+syp3Ao74eHht+3hVhp06NABV1dXALZt25brPmvff/+97Tjz91lRyihiQ/HMkLMXFdZERIpAbHIskdcjaeCn/dVKugZ+DTgfd54riXmvM32vSUuz8t1Xlwi83436jcrmfYHkqVO3CriVceC7r0rfD+MiIiIiIiJ3s7i4OAYMGEBqaiqGYbBgwQJ8fHzo16+frTBz4MABxowZk2MfgYGBWK1Wu/zJbrYaQM+ePW3L/X399de57ps1b9482/Fjjz1WgK9Kuj59+tiOZ86cmWO7WbNmYbVaAXJcerEoPP7447YZaYsXL8ZqtbJ48WIAypcvT/fu3XO8NuNrGRMTQ1xcXI7tJk6caMfE/zN//ny7fc/8cbYapO/L161bNyB9hmNO31dWq5XZs2fbHme+50Vl6dKl/PrrrwB4enrSpk2bIh/TXlRYExEpAodiDgFoxlopkHGPNGvtdgf2xnH+XDKPP1XRtlGvFE7Zsk507FyBnduuc/XyLbPjiIiIiIiIyH8NHz6cU6dOATB69Gg6depkOzdnzhyCgoKA9MJS5pk9xa1cuXKMHj0aSC+UhISEcPPmzdvazZs3j1WrVgHg4eGR4/5wgYGBGIaBYRiEhoZm22bo0KEEBAQAsGLFimyXLty8eTPTp08H0os5b7755h2/toJycXGhd+/eAJw6dYpp06bx22+/AekFPhcXlxyvbd68OZBeWBo3btxt561WK++++y7ffPON/YMXk3feecf2uc7YsWOJiLh9S5SJEyeye/duIP1rklGM+6P58+fbvl86dOiQbZuPPvrI1ldOvvnmG4YOHWp7PHr0aNzcSs92OtpjTUSkCByMTi/SqLBW8mXco4joCDoEdjA3TAmz4bsrlK/gRKs25cyOclfp8oQP67+9zKb1V+gT4m92HBERERERkXve0qVLWbhwIQCNGzdm0qRJWc57enqyZMkS2rRpQ2pqKoMHDyYiIoKKFc3ZNmHMmDGsX7+ePXv2sH79eurXr8/zzz/PAw88wLVr11i9ejXr16+3tf/4448LldXd3Z158+bRs2dPLBYLQ4YMYe3atXTt2hUnJyfCwsL48ssvSU1NBWD69OlUqlQpx/4CAwNte3lt3bo1xwLNnQgJCbHN0PvrX/+a5fncvPLKK3z++edYLBY++ugj9u/fz9NPP42/vz9nz55lyZIlhIeHU7duXcqUKZPn8pslUePGjXnrrbeYOnUqN27coHXr1gwdOpQWLVoQHx/PqlWr2LhxI5BeFJ03b16hfsH6hx9+YOTIkTz44IM88sgj1KtXDx8fH6xWK1FRUaxZs4adO3fa2v/pT39i7NixhX6dxUmFNRGRIhARHYGXqxfVvKuZHUXyUMmjEr7uvrZiqKQ7f+4mB/bG0XtAJZycNFvNnir5u9KkuSdbNlzhqT5+uLhoAQERERERERGzREVF2WZzubu7s2TJkmxnOLVs2ZLx48czbtw4Ll68yJAhQ/juu++KOy6QnnPdunU8++yzhIaGcurUKd5+++3b2pUpU4a5c+cyYMCAQo/ZvXt3FixYwLBhw4iPj2flypWsXLkySxtnZ2emTp2aZSZScXn44YepUaMGkZGRpKSkABAUFMTDDz+c63XBwcHMmjWLV199lbS0NLZt28a2bduytKlTpw6rV6825XXZy5QpU0hJSWHGjBkkJCRku6Snn58fS5cuJTg42C5jHjt2jGPHjuV43jAM/vznPzN9+vRcZxWWRPokR0SkCETERNDAr4GWzysFDMOgYaWGRMTcPg3+XrZx7RWcnAweeayC2VHuSl2e8CX2hoVd22+YHUVEREREROSeZbFYGDhwIDdupP/bbNq0adSuXTvH9mPHjqVdu3YArF27NsueVMWtYsWK/PDDD6xYsYKePXtStWpVXFxc8Pb2pnHjxowdO5aTJ08yaNAgu405YMAADh06xFtvvUW9evXw9PTEw8ODWrVqMXz4cMLDwxk1alSe/SQlJdmOfX197ZLNMAwGDhz4/+zdZ1gc1/n38e/ZXui9g5BQFwL1LiS5d8dx747txIlTnX9ip7nEduInjpM4cRLbcWzHvUZyL5KFem+oFySE6EJ0FpYt87xAIpLVYWGAvT/XxQUss3N+aEfL7txz7nNc3jNxzz33sGzZMq6++moSEhIwm83ExcUxZcoUnnrqKdauXcugQYMCklMvSimeeuopli1bxm233UZmZiY2m42IiAjGjBnDI488wtatW5k9e3aXx/rjH//I888/zx133MG4ceNIS0vD4XBgsViIi4tj2rRp3H///ezYsYNnn322Y527vkQdWUwwGCUlJWllZWV6xxBC9DOaphH5RCQ3jLqBv1/8d73jBIx6+PgiofZg//gb8uPPfsxz65+j4f4GjAaj3nF01+Ly8d1btzN2Uhj33tf7Z11ed8nxRdE3P+rdbVg1TeO+e3Zhsxt47KlBUoQPAvn5+QFpbyKEEMFEnjuFEMFg+/btDBs2LCD7amxsJDQ0NCD7EqK77Ny5s6N4edlllzFv3jydE4n+oCvPpUqpdZqmjTub+8iMNSGECLADDQeod9fL+mp9yKj4Ubg8LvbW7tU7Sq+waEEtLS1+LrgkMFeNieMppTj/kmj27m5hz06X3nGEEEIIIYQQQogeMX/+fAAMBgOPP/64zmmE6BwprAkhRIAVVLbPnpHCWt9x5LHaXCXrrPn9Gl98fIhBQxwMGtL3puL3JTNmR2J3GPjsw0N6RxFCCCGEEEIIIXrEkcLazTffzIgRI3ROI0TnSGFNCCEC7EhhbWTcSJ2TiDM1PHY4BmXoeOyC2eYNTZSVuLngkmi9o/R7doeRvHOiWLm0jtoaj95xhBBCCCGEEEKIbuX3+8nPz8dqtfLwww/rHUeITpPCmhBCBFhBZQEZERmEWcP0jiLOkMPsYFDUICmsAZ99VE14hIlJ08L1jhIUzrs4Gp8P5n8qs9aEEEIIIYQQQvRvBoOB2tpaWltbSU9P1zuOEJ0mhTUhhAiwzVWbpQ1kH5Qdnx30rSAryt1sXNvIORdGYTLLS4SekJhsJWdsKAs+q8Hr8esdRwghhBBCCCGEEEKchpw1E0KIAGr1trKzeifZcVJY62uy47IprCmkqa1J7yi6+eKjQxgMcM6F0gayJ11wWQx1tV5WLqvXO4oQQgghhBBCCCGEOA2T3gGEEKI/2X5wOz7Nx6j4UXpHEWdpVPwoNDS2Vm1lYspEveP0uDa3n0ULapkwJZzIKLPecYJKdm4I8YkW5n9aw7S8SL3jiE7ytnppLHfRWNpEc1UL7vo22po9+Dx+/G1+DJqTVZs2YbQYsIRZsEdYccTZCU10EprkRBmU3r+CEEIIIYQQQgghzoAU1oQQIoCOtBKUVpB9z5HHbHPV5qAsrK1cVk9zk09mq+nAYFDMOT+K11+qoKS4lZQ0m96RxBlqrmrh4LYaDu2qw3WwpeN2W6QVW4SV8CgrrkOtKIOiob4Bc4gJzavh9/ip3lWHd2M1AEarkYgBYURlhhGVFYElRIrbQgghhBBCCCFEbyWFNSGECKCCygJsJhuDogbpHUWcpYyIDEIsIRRUFugdRRfzPz1EYrKF4aOcekcJSnnnRvHWq5XM//QQt307We844hQ8LV4qNhykavMhXNWtoCA8LZT0GUmEJrfPPjPZ/vcSe8ljawFQGGluai++Tf/lODRNo63JQ0NJE3V7G6gprOfQjlqUoZjowREkjIklIiMUpWQmmxBCCCGEEEII0ZtIYU0IIQKooLKA4bHDMRnk6bWvMSgDo+JGBWVh7UBRK7u2u7jpjkQ5ia+TsHATE6eEseSrOm64LRGLVZbB7W3cDW2UrqqkfMNB/B4/YSkhDDw/jZihkZ2aYaaUwhpqIXZYFLHDotA0DdfBFioLDlFZUE31jlpskVZSpyQQnx0jrSKFEEIIIYQQQoheQs78CiFEABVUFnBh1oV6xxCdNCpuFO9ufxdN04KqwDT/s0OYzYoZc2R9Lz3NuSCa5YvrWbG0jplzovSOIw7zuDwULSqjcmM1mqYROyKK1EkJOOMdAR1HKYUzzkHmOQ4y8pKp3lFL2Zoqdn+8n5IVFaTNSCZ2eGRQPTcJIYQQQgghhBC9kRTWhBAiQKqaq6hsriQ7TtZX66uy47N5bv1zlDWWkRwWHO343K1+liysZeLUcMLC5WWBnoaPcpKUYmX+pzVSWOsFNL9G2boqiheX4XX7SBwTS8rkBGzh1m4f22AyEDcymtgRUdTsrqcov5Sdc/dSssJO1oXphCaHdHsGIYQQQgghhBBCnJicQRNCiADZXLkZaC/OiL7pyGNXUFkQNIW1FUvqcDX7mXNBtN5Rgp5SijnnR/HKC+UUF7WQlmHXO1LQaixtYtfHRbgOthIxIJTMc9Nwxvb846GUInpwBFFZ4RzcWsO+BSVsfHkHyePjSZ+ZhNFi7PFMQgghhBBCCCFEsJMFPIQQIkCOrM01Kn6UzklEZ42MGwnA5qrNOifpOfM/qyE51crQEYFtayc6Z8acSMxmxfxPa/SOEpQ0v8b+xWVsfHkHPrefYd8cyMjrB+tSVDuaUoq4kdGM/fYIEnNjKV1dybrntlK7r0HXXEIIIYQQQgghRDCSwpoQQgRIQVUBcc444pxxekcRnRRpjyQ1LLWjSNrfFe1tYc9OF3MuiJZ1m3qJ0DATE6eFs2RhLa2tfr3jBJWWmlY2vbyD4iVlxI6IYsxdw4kZ0rvWNDPZTAy6MJ3sW4ZgMBnY8vou9i8qRfNrekcTQgghhBBCCCGChhTWhBAiQAoqCxgdP1rvGKKLsuOzg6awNv/TQ5gtihlzIvSOIo5yzgXRtLj8LF9cp3eUoHFoZy0bXthGS00rQ6/MZOjlmZhsvbdjenhqKLnfGkZ8djTFS8vZ8sYu2po8escSQgghhBBCCCGCghTWhBAiALx+L1urtsr6av3AqLhR7KjeQZuvTe8o3aq1xcey/DomT4sgJKT3FhCC0ZDhDlLSrCz49JDeUfo9TdPYv6SMbe8WYo+2MeauEcQOj9I71hkxmo0MvnQAWZdk0FDSzPp/baOhpEnvWEIIIYQQQgghRL8nhTUhhAiA3Yd24/a5pbDWD2THZ+Pxe9hZvVPvKN1q5dJ6Wlr8zLmgbxQRgolSijkXRFO4u4X9+1r0jtNv+dp8bH9/L8WLy4gbGUX2zUOxhln0jnXWEkbHkHP7MIwWAwWv7uTgdlmfTwghhBBCCCGE6E5SWBNCiAA40jpQWkH2fUeKo/29HeTCL2tISrEyeJhD7yjiBKblRWAyKRZ+IUWS7tDW7KHglZ0c2lnLgHNSGHzZAIzmvvuy2BlnJ+e2oYQmOtnx/l5KVlSgabLumhBCCCGEEEII0R367hkEIYToRQoqCzAZTAyNGap3FNFFg6MHYzaY2Vy1We8o3aas1M3ObS7yzolEKaV3HHECoWEmxk0OY2l+HR6PX+84/UprvZuC/+zAVd3KiKsHkTIxoV/8PzA7zIy6cTAxwyLZ91UJez4rRvNLcU0IIYQQQgghhAg0KawJIUQAFFQVMDRmKFaTVe8ooovMRjPDY4f36xlri76swWCA6bMj9Y4iTmHWuVE0NfpYu7JB7yj9RvPBFja9vIO2Zi8jb8giKitC70gBZTAZGHplJimTE6hYf5CdH+6T4poQQgghhBBCCBFgASmsKaXilFKXKKV+oZR6Vin1tlLqw8Of/6mUekApdbFSKjYQ4wkhRG9TUFkg66v1I9nx2f22sObzaSz+qpbccaFERpn1jiNOYdToEKJjzeR/Ke0gA6GpvJmCV3ag+WH0zUMITw3VO1K3UEoxYHYK6XnJHNxSw465e/H7ZNajEEIIIYQQ/UVeXh5KqbP+eOmllwIy/v79+7n//vsZNWoU4eHhhISEMHToUL7//e+zdevWgIwhus+KFSu44447GDhwIA6Hg6ioKMaOHcujjz5KdXV1t427bNky7r33XkaOHElUVBR2u5309HSmTZvGL37xC5YuXdptY3cHU2fvqJQaCNwEXA6c8aJCSqmNwFzgVU3T9nV2fCGE6C3qWusori8mO04Ka/1Fdnw2rxS8Qk1LDVH2KL3jBNSm9Y3U1njJO7d//V79kcGoyDsnkvffrKK6qo2YOIvekfqs5koXm9/YhdFsZNRNg7FH2vSO1O3SpiZiMCr2LShB82sMvTITg1GaVQghhBBCCBGsMjMzu7yP1157je985zs0NTUdc/vOnTvZuXMnzz33HL///e/58Y9/3OWxRGBpmsZ9993Hn//852PW5G5paaG2tpb169fzt7/9jddff53Zs2cHbNzq6mruuece3n333eN+VlxcTHFxMcuWLeOTTz5h48aNARu3u511YU0pdR7wE+Dco28+i13kHP54SCn1BfCUpmlfnm0OIYToLTZXtq/FJTPW+o9RcaOA9sd2ZsZMndMEVv6XNYRHmMgdH6Z3FHEGZp4TxXtvVLFoQS1XXR+vd5w+qflgC5tf34XBZGDUTUOwRwZPy96USQkoo2LvFwfY/t5ehl0lxTUhhBBCCCH6ujOdWbRs2TKefPJJAAYOHMj06dO7NO7HH3/Mrbfeis/nQynFN7/5Tc4//3zMZjOLFi3ilVdeoa2tjZ/85CeEhoZy5513dmk8EVgPPPAAf/rTnwBwOp1861vfYsKECTQ1NfHee+/x5ZdfUllZyeWXX86SJUvIycnp8piVlZXMmTOnYyZjeno63/zmNxkxYgQOh4PS0lL27dvHZ5991uWxetoZF9aUUtOA3wOTj9x0+PMhYDWwCtgO1B6+rQEIB6IOfwwDJgITDn8PcB5wnlJqOXC/pmnLuvLLCCGEHo60DJTCWv9x5LEsqCzoV4W1hnov61Y1cMFlMZhMZ3NNjNBLXLyFkaNDyJ9fw5XXxmEwyON2NlyHWtn82i5QilE3BldR7Yjk8fEopSj8vJjdH+9n8KUZKCXHkRBCCCGEEH3VtGnTzmi7N998s+Pr22+/vUvvA1wuF3fffTc+nw+AF198kVtvvbXj57fccgvXXXcdF110EV6vlx//+MdceumlxMfLBaK9wYYNG/h//+//ARAeHs7ixYvJzv7fecxvf/vbPPTQQzz88MM0NTVx9913s2rVqi4dM5qmcc0113QU1X72s5/x29/+FovlxN14Dhw40Omx9HBGl6wqpV4DFgFTaC+olQJ/AHI0TYvVNO1iTdMe0TTtHU3T5muatkHTtEJN09Yf/v5tTdMe1jTtIk3TYmifsfb/gJLD+5sKLFZKvdoNv6MQQnSrgsoCouxRJIUm6R1FBEhCSAIxjph+t87akoW1+HyQd460gexLZp0XycFKD1sLmk6/sejgbmhj82s7QdMYdeNgHNH9v/3jySSNiyN9ZhJVmw+x98sDx7T9EEIIIYQQQvQ/tbW1zJ07FwCDwXBMEawznn/+ecrKygC4+uqrT7i/c889t6MFZFNTU8dsOaG/Rx55pON94OOPP35MUe2IBx98kAkTJgCwZs0aPvnkky6N+eyzz7J48WIAvvOd7/DEE0+ctKgGkJqa2qXxetqZ9oK5nvYC2FfAOZqmpWma9nNN0zp1xlHTtAJN0+7XNC0dOOfwftXhcYQQok8pqCogOz5bZgD0I0opRsWNYnPVZr2jBIymaSz8ooZBQxykpgdvgaEvGj85HKfTyMIva/WO0md4W71seXMXvjY/I28YjDPWrnck3aVOTSR5Qjxla6ooXlqudxwhhBBCCCF6jUWLFmE0GlFKkZaWRl1d3Um33bdvH+Hh4SilcDqd7Ny5s+eCnoXXX38dt9sNtBe8UlJSurS/t956q+PrH/7whyfd7vvf/37H+bG33367S2OeygcffIBSCqUU99133xnd5yc/+UnHfT788MNjfqZpGkuWLOGXv/wls2fPJikpCavVitPpZMCAAVx33XV8+OGHp71I8aGHHuoYIz8/H4AFCxZw/fXXM2DAAGw2G0opioqKOvNrd0pjYyOffvopAGFhYdx2220n3E4pxfe///2O749+zM+Wpmn88Y9/BCAkJIQnnnii0/vqrc60sPYVMF3TtHM0TfsqkAE0TftK07RzgOmHxxFCiD7Dr/nZXLmZ7DhpA9nfZMdns7lqM37Nr3eUgNi7u4WSYjd550bqHUWcJYvFwNS8CNYsr6epyat3nF7P7/Wz7Z09tBxyM/ybAwmJd+gdqVdQSjHgnBTisqMpXlxG+fqDekcSQgghhBCiV5g5cyb3338/0N6O7u677z7hdl6vlxtuuIGGhgYA/vKXvzBkyJAey3k2/v3vf3d8fccdd3RpXw0NDaxcuRJobyM4efLkk26bmprK8OHDASguLmbbtm1dGvtkLrzwQmJiYgB444038PtPfe7G5/N1tMaMiYnhggsuOObnd9xxBzNmzODxxx9n4cKFlJeX09bWhsvloqioiLfeeovLLruMiy66qOPxPx1N07j33ns555xzePPNNykqKuoodvakRYsWdYw7Y8YMHI6Tv0c+//zzO74+UozrjCVLlrBnzx4ArrnmGsLCwjq9r97qjAprhwtq3br+maZpyzRNO7c7xxBCiEDbV7uPZk+zrK/WD2XHZ+PyuNhbu1fvKAGx8MsaLFbFlOkRekcRnTDrvCg8Ho1l+XV6R+nVNE1j54f7qC9uYvClGURk9L8X712hlGLwxRlEDQpnz2f7qd1br3ckIYQQQggheoWHH36YiRMnAvDOO+8cU5g6epsjBaarrrqKO++8s0cznqmCggLWr18PQFRUFJdffnmX9rdt27aOmVo5OTkYDKcuKYwbN67j6y1btnRp7JMxm81ce+21AJSXl7NgwYJTbr9gwQLKy9s7d1x33XWYzeZjft7S0oLVauW8887jV7/6FS+++CJvv/02zzzzDD/84Q+JimpfUuOzzz7jlltuOaOMf/jDH3jmmWdISEjg/vvv59VXX+Wll17iu9/9LlZrz63/ffRjMHbs2FNuGxsbS3p6OgDV1dVUVVV1aswjLSABZs+ejdfr5dlnn2XatGlER0djt9vJyMjgxhtvZP78+Z0aQ28mvQMIIURfdmQNLims9T+j4kYBsLlyM4OiBumcpmvcrX6WLapj4pRwHE6j3nFEJwwYaCd9gI3FC2o5/5IYveP0WkULS6neVkvG7GTiRkbrHadXUgbFkCsyKfjPDra/v5fRtw6VVplCCCGEECLomUwmXn/9dXJycmhsbOQHP/gB06dPJysrC4ClS5fyu9/9DmiflfX888+fcD8ul4svvvgiIJnS0tIYM2bMWd/v6KLgjTfe2OUizq5duzq+zsjIOO32RwozX79voN10000888wzALz66quce+7J5+y8+uqrx9zv6773ve/xz3/+k4iIiBPe/7HHHuP222/nnXfeYd68eSxatIiZM2eeMt+nn37KtGnT+Pjjj4+ZsfX19enWr19PcXHxKfd1ps4777zjZqR15vHbv39/x33j4uLOOsfatWs7vo6JiWHKlCmsWbPmmG3279/P/v37ef3117n22mt58cUXsdv7zntTKawJIUQXFFQWoFCMiBuhdxQRYCPiRqBQFFQWcOWwK/WO0yVrVtTT4vKTd26U3lFEF8yYHckrL5RTeqCV5FRZJ+/rKjcfomRFBYljYkmZlKB3nF7NZDUy/JpBbHxxB1vf2k3O7cOwOM2nv6MQQgghhBD9WGZmJs888wy33HILzc3N3HDDDSxfvpzm5mZuvPFGfD4fBoOBV155hcjIEy+zUFVVxZVXBuYcwq233spLL710VvfxeDy89tprHd93tQ0kcMyac0faL55KdPT/LnI81Xp1XTVp0iSysrLYvXs377//Pv/4xz9O2ObQ5XLx3//+F4CsrKyOmYlHmz59+inHcjqdvPDCC3zyySc0NzfzyiuvnLaw5nQ6eeutt07bBvHpp5/m5ZdfPuU2Z2rfvn3HFc/0ePwqKio6vr733nvZs2cPYWFh3HnnnYwdOxav18uSJUt4+eWX8Xg8vPXWW7S1tfH+++93ajw9nOkaayeklOrSGTql1EVdub8QQuitoKqArOgsHGZZw6e/cZgdZEVnUVBVoHeULlv4ZS1xCRaGjXTqHUV0wdS8CAwGWLygVu8ovU5jaRO7Py4iPD2UzPNSOxbLFidnC7cy4ppBeJq9bHtnD35v/1hPUgghhBBCiK64+eabufHGG4H2WTe//vWv+fa3v90xo+iBBx44bUFFTx988AHV1dUA5ObmkpOT0+V9NjU1dXxts53+Is+jZx01NjZ2efxTOTL7rKmpiXnz5p1wm7lz53b8DjfffHOnxwoNDWXUqPbuRqtWrTrt9ldddRVJSUmdHi9Q9Hj8ji7I7dmzh4yMDAoKCvjjH//IDTfcwC233MLzzz/PsmXLOgqP//3vf3n77bc7NZ4eujpjbbNS6mZN0746mzsppSzAH4HvAtKTSgjRZxVUFpCTkKN3DNFNsuOz2VSxSe8YXVJV2cbWgiauuSkeg0GKDX1ZRKSZ0WNDWbKwjmtvTsBglMcTwN3YxrZ3C7GGmhn2jUwMxi5dNxZUQpOcDLl8ANvfK6Tw82KyLs7QO5IQQgghhDiFXV8+R2PlydcB9/m8GI39q0FZaHwmg8+9u0fH/Pvf/87y5cvZt28fTzzxRMftEydO5KGHHjrlfTMyMjrWI9PDiy++2PF1IGarfV1vu4jxpptu4sEHHwTa2z1ef/31x21zdBvII0XTE3G73bz99tvMmzePTZs2UVlZSVNT0wkfz5KSktNmO90suCNeeumls56Z2Fk99fj5/cdeuPncc88d0yL0iPHjx/PYY4/x/e9/H4C//OUvXHPNNT2Ssau6euYhEfhCKfWEUuqMnrWVUiOBtbQX1YQQos9qamuisKaQ7DhZX62/GhU3ij01e2hua9Y7Sqcty2+f3TR99onbVIi+ZeacSGoOedhS0HT6jYOA3+tn+7uFeN0+hl89CLND2hmerZihkaROSaBiYzXlGw7qHUcIIYQQQgjdhYWF8frrr2My/e90d2ho6HG39Tbl5eV89tlnAFit1lMWkc5GSEhIx9ctLS2n3f7obUJDQwOS4WQyMzOZMmUKAF988QUHDx77nqaqqoovv/wSgKlTp5KZmXnC/WzevJlRo0Zxyy238N5777Fnzx4aGxtPWiRtaGg4bbbk5OSz+VW6jR6P39H3S09PP+X6d7fffjtmc/t7+VWrVh0zw6436+ozgY/24txPgdlKqes1Tdtzso2VUt8HngCsgAJ2dHF8IYTQzdaqrWhoZMdLYa2/yo7PRkNj68GtTEieoHecs6ZpGksW1jFspJPYOIvecUQAjJkQhtNpZPGCWrJzu/cNSl9Q+HkxjWXNDLtqIM44acnbWekzk2mscFH4eTEhcXZCk0NOfychhBBCCNHjTjdzq7GxsdsLGcEiOTkZp9NJfX09AGPHjj1pUaa3+M9//oPP5wPgiiuuOOk6cGcrIiKi4+tDhw6ddvujtzn6vt3l5ptvZvny5Xi9Xt58882O2U8Ab775Jl6vt2O7E6mpqeGcc86hqqoKgNTUVC655BKGDh1KbGwsNputY6bXr371K7Zu3XrcjKwTObqlop70ePyOvt+YMWNOua3T6WTIkCFs2bIFn89HUVERI0eO7NS4PamrhbXpwGvAAGAMsEEp9QNN0148eiOlVCzwInAh7QU1gH8BP+ri+EIIoZuCyva1t6Sw1n8deWw3V27uk4W1fYUtlJW4ufiK0y9OK/oGi8XA5OnhLF5Yi8vlw+EI3o7alQXVVGysJnVKAjFDZUZmVyiDYujlmWz49za2vVdI7reGY3HK7D8hhBBCCBGc/H4/N998c0dRDSA/P59//OMf3HPPPae8r8vl4osvvghIjrS0tNMWJY7WXW0gBw8e3PF1UVHRabffv3//Ce/bXa655hp++MMf0tbWxquvvnpMYe1IG0iLxXLSFoN/+9vfOopqt956K//6179OOjPxscceC3B6WL9+fccafl113nnn4XAce9GpHo/fkCFD+Oqr9tXDwsPDT7v90dsc/f+uN+tSYU3TtJVKqdHAP4AbASfwL6XUBcDdmqbVH/76RSCO9qJaLXCXpmnvdy26EELoq6CygFBLKOkRx/cIFv1DRkQGTrOzo4ja1yxdWIfJpJg47fQvYkTfMWNOJPM/q2H1snryzo3SO44umqta2PNpMeFpIaTP7B3tNfo6s8PE8KsGsuk/O9gxdy+jrh+MknUZhRBCCCFEEPrd737HokWLAJgzZw5r166lvr6e++67j5kzZzJ8+PCT3reqqoorr7wyIDluvfXWM157a/ny5ezcuRNon3F1zjnnBCQDwPDhwzEYDPj9fjZs2IDf78dgOPkKU2vXru34uidmHkVFRXHRRRcxd+5cVq9eze7du8nKymLXrl2sWbMGgIsvvvikM/jmz58PgMlk4s9//vMp230eXXQKlKeffpqXX345IPvat28fGRkZx9x29GNw9GNzIgcPHuz4HWNiYoiLi+tUjuzs/01COJO2mUcX086kENcbdHl1d03TmjRNu5n2wlo97cWzbwKblFIvAB8D8YdvzweypagmhOgPCqoKyI7PxqC6/FQqeimDMjAqfhQFVX2vsObzaSxfXEfu+FBCQnpvD3hx9rKGOkhIsrBoQa3eUXThdfvY/n4hRquBoVdkSvEngEISnQw8P536okYOLC/XO44QQgghhBA9btWqVTz00EMAJCUl8dZbb/GPf/wDaF976oYbbsDtduuY8MT+/e9/d3x92223nbLwdbbCwsKYNGkS0F4AWbly5Um3PXDgANu2bQPaZ9ydqggZSEe3eTwyS+3I56///OsqKysBiI6OPmXrww0bNhy3hltfkJeXh9VqBWDx4sWnXGft888/7/j6wgsv7PSYR993/fr1p9y2ubm5oyhsNpsZMGBAp8ftSQH7H6Zp2htALrCc9iJaGnDb4a/bgF8AczRNKw3UmEIIoRdN0yioLJA2kEEgOy6bzZWbT7pgbW+1ZVMTdbVeps+SFnn9jVKKmXMi2b6lmaqKNr3j9ChN09jz6X5aaloZemUmllBZOzDQ4kdHEzsiiv2Ly6gvbtQ7jhBCCCGEED2msbGRG2+8Ea/Xi1KKl19+mejoaK6//vqOwsymTZu4//77T7qPjIwMNE0LyMeZzlZzuVy8/fbbQPv7xdtvv73L/xZfd+2113Z8/Ze//OWk2/31r3/tOH9ystaL3eGSSy7pmJH22muvoWkar732GgCRkZFcfPHFJ73vkdaJVVVVNDae/D3QI488EsDE//PSSy8F7Jj5+mw1gJCQEC666CKgffbYyY4rTdP429/+1vH90Y/52UpPT2fy5MlAe/vJL7/88qTbvvjii3g8HgCmTZuG0+ns9Lg9KaDTLDRNKwLeOPLtUZ8/A/6o9bWzkkIIcRIlDSXUtdZJYS0IjIofxaGWQ5Q39a3ZG8vy63A4DeSMk4Wr+6NphwumSxYG16y1yk2HOLi1hvQZSUSkh+kdp19SSjHownRsEVZ2zN2Lx+XVO5IQQgghhBA94nvf+x6FhYUA3Hfffce0U3zmmWfIzMwE2gtLR8/s0ds777zTURDKy8s76xk/GRkZKKVQSpGfn3/Cbe68806SkpIAePvtt0/YunD+/Pn86U9/AtqLOT/96U/PKkdXWCwWrr76agAKCwt56qmn2Lt3L9Be4LNYTn5R5vjx44H2wtKvfvWr436uaRq/+c1vmDt3buCD95Bf//rXKNXe7eWBBx6goOD4zkyPPPIIq1atAtr/TY4U477upZde6jhe8vLyTjrmo48+2vH13XfffcI2mmvXruWXv/xlx/f/93//d0a/T28QsMKaUipSKfU+8DTtxTQF+A5/vhRYrZQaGqjxhBBCT0fW3JLCWv935DHuS+ustbb6Wb2inklTI7BYpFVpfxQbZ2FEtpPFX9X2udmUndVS00rhF8WEp4eSOjVR7zj9mslqZNiVmXhcXnZ9uC9ojjEhhBBCCBG83njjDV555RUAcnNzeeyxx475eWhoKK+//jomkwlN07jtttt6TVvAF198sePrO+64o1vGcDgcPPfccxiNRgBuv/12rrnmGl588UVeeeUV7rzzTi666CK83vYL8/70pz8RHx9/0v2dSTHvbB3d7vEXv/jFCW8/ke9+97sdv9fTTz/NzJkz+ctf/sJbb73Fk08+ydixY/ntb3/L8OHDGTt2bECy9rTc3Fx+9rOfAe3tPKdMmcKPfvQjXn/9dZ577jnOP//8jhaoISEhPPfccx2FuM6aPXs299xzD9A+ay07O5v77ruv4//a3XffzdSpUzvWYLvrrru61H6ypwVk0RWl1CzgP0AS7YW0WuDbQCHtM9gGA9nAOqXUfZqm/TMQ4wohhF6OFFlGxnX/IqxCX6PiRgGwuXIzFwy6QOc0Z2bdqnpaW/xMmxWhdxTRjWbMieQffyph13YXQ4b3jVYJneX3+dkxdy8Go2LIZQO6/AJfnF5IopMBc1LY+8UBytZWkTz+5G+KhRBCCCGE6MuKioo6CgAOh4PXX3/9hDOcJk6cyEMPPcSvfvUrKioquP322/noo496Ou4xCgsLWbx4MQDh4eFcddVV3TbWxRdfzMsvv8x3vvMdmpqaeOedd3jnnXeO2cZsNvPEE09w5513dluOk5k6dSoDBgxg3759tLW1L5uQmZnJ1KlTT3m/nJwc/vrXv3Lvvffi9/tZvHhxx7/pEcOGDWPevHm6/F6B8rvf/Y62tjb+/Oc/09zcfMKWnnFxcbzxxhvk5OQEZMy//e1vmEwm/va3v9HQ0MBTTz11wu3uvffejtmOfUWXLmNXSpmUUr8HvuR/RbXFwGhN097VNG0D7euuvXD4Z3bgGaXUPKVUdNeiCyGEfgqqChgQMYAwq7Qi6+8i7ZGkhKVQUNV3Zqwtza8jOtbM0BH9u9gS7CZOCcdqVSxa0P/bQe5fXEZTuYusizOwhsm6aj0laVwcUYPCKfqqhOaDJ1/gWgghhBBCiL7K5/Nx0003UV9fD8BTTz3F0KEnb7r2wAMPMGPGDAA+/vjjY9ak0sOR9bkArrvuOux2e7eOd+ONN7JlyxZ+9rOfMWLECEJDQ3E6nQwePJjvfe97bNiwgR//+Men3U9Ly//eX8TExAQkm1KKm2666bi8Z+Kee+5h2bJlXH311SQkJGA2m4mLi2PKlCk89dRTrF27lkGDBgUkp16UUjz11FMsW7aM2267jczMTGw2GxEREYwZM4ZHHnmErVu3Mnv27ICNaTAYePrpp1m+fDl33nkngwYNwuFw4HA4yMrK4s4772TdunX89a9/xWQKyBywHqO60tpFKbUGGEN70cwLPAI8dqK11JRS3wCeA6JobxVZCdyqadrJV67rZklJSVpZWZlewwsh+rARfx9BVlQWc6+bq3eUHqMePn6GiPZgcLQHu/j1izlQf4CCe3p/ca2h3st3bt7GJd+I5YbbgqNd3nWXHP+4vPlRcLRpfeaPxaxd1cCzrwzHYu2fbT/rihrY/NouEnJiyLo4Q+84Z23JY2uPu236L8fpkKRz2po8rHt+K9ZQCzm3D8Vg7J/HmRCid8rPzz/l2h1CCNEfbN++nWHDhgVkX42NjYSGyjrbonfbuXNnR/HysssuY968eTonEv1BV55LlVLrNE07qzfqXS0DHmkqug+4QdO0VSfbUNO095VSq4FXgJlAAvAJYO5iBiGE6FGt3lZ2Vu/kqmHdN71e9C7Zcdl8Wfglbb42LMbePVtm+eI6/H6YnhepdxTRA2bMiWTJwjrWrmxgyswIveMEnLfVy84P9mGPspJ5bqrecYKSJcRM1kXpbH+3kOLFZWTMStE7kjhLbdV+Wkr8uCv9uCv8uCs1vA0afo+G5gW/p307c5jCdPjDHK6wpxlwDDBiTVAog7RfFUIIIYQQgTF//nygfTbT448/rnMaITonEPPrXgW+p2la4+k21DStRCk1G7gfeChA4wshRI/afnA7Ps1HdnxwzIgRkJOQg8fvYfvB7YxOGK13nFNall9HWoaN1Ayb3lFEDxiRHUJUjJkl+bX9srC298sDtDV5yLl1KEaLUe84QStmSCTxo2M4sKKCyEHhhKfKVdC9ld+tUV/go3Grl6ZtPhq3+Wg7eOzs8iOFM2+TBgZQRkADfxugwNuggf9/2xts4MgwEjrCSPhYExFjjZgjZOaiEEIIIYTonCOFtZtvvpkRI0bonEaIzulqYesWTdNePZs7HG4T+Tul1HzgtS6OL4QQPW5T5SYAKawFkSPFtI0VG3t1Ya2izM3unS5uvD1B7yiihxgMiqkzI/hk7kEa6r2Ehfefa5YO7aqjsuAQqVMSCE0O0TtO0Ms8N5X6/Q3s+mAfY+4aIYXOXqStxk/NMi81Sz3UrvLiP7xchT3NQPhYE6HDjDgyDFjj2z+MjvbZZ0sm1h+3r+mrwtH87TPaXPv9tBT5ce3z0Vzop+rTNsrfa18E3pllIHKymdhzzTizDCglM9qEEEIIIcTp+f1+8vPzsVqtPPzww3rHEaLTunT25WyLal+77xqlVG5XxhdCCD0UVBZgN9kZGDlQ7yiih2RFZWE32TuKqr3V0vw6lKJfzlwSJzd9VgQfvneQFUvqOP+SwCz6rDePy8vuT4pwxtlJm56kdxwBmKxGBl82gIL/7GTfwlIGnZ+md6Sg5m/TOLTES8XcNurWeEEDS6wi7kIL0VNNhGabMId1rtilDApzhCI8wkD4UdeS+L0aTdt91K31UrfWS8lrbkr+48aeYSD2XDNx55uxp0rBVQghhBBCnJzBYKC2tlbvGEJ0ma6XNWua1qzn+EII0RkFlQWMjBuJ0SAnj4KF0WBkVPyoXl1Y0zSNpfm1DB/lJDqmd68DJwIrLcNOWoaNpQv7T2Gt8PNivC0+Rl4/GINJWs71FuGpoSSNj6NsTRWxwyIJT5OWkD2tpdhH+X/bqPzEg7dOw5qgSL3dSkyeGefg7p05ZjApwkaZCBtlIu128NT5qf7Kw8EvPRT/y03x824ip5hIvtZCxESTzGITQgghhBBC9Fv9p1+QEEL0AE3TKKgs4NLBl+odRfSw0fGjeW/7e2ia1itPFhbuaqGirI3LvxmndxShg2l5Ebz+UgUV5W4SEq16x+mSg9trOLithvSZSYTEO/SOI74mIy+Zmt117P64iNw7R2A0S+GzJzTv9lH8kpvqrzwoBVEzTCReYSFivAll1OdvkjnCQOI3rCR+w4q70k/lR22UvdvGlh+6cAwwkHStlfiLzRgsve9vphBCCCGEEEJ0xRm9E+6plo1KqTE9MY4QQnRWRVMFB10HyUnI0TuK6GE5CTnUtNRQ2liqd5QTWppfi9msmDg1XO8oQgdTZkagFCzLr9M7Spd4WrwUfl5MSIKD1CmJescRJ2C0GBl0UQYtNW6Kl5TpHaffa9zqZetPm1l/UxO1yz2k3GRlwoehDP+9k8hJZt2Kal9njTeQ9i0bE+aFMvhBO8oCe37fwtqrG6n4sA3Nq+kdUQghhBBCCCEC5kwvMV2rlPqvUmr06Tc9e0qpXKXUPGB1d+xfCCECZWPFRgAprAWh0fHtfwKPHAO9idersXxxHWMmhOFwSovSYBQTa2HYSCdLFtaiaX33BHbRVyV4XF6yLs5AGXpHwUAcL3JAGAk5MZSsrKCxTDq7d4fWcj/bf+li4x3NNGzykXaXlfHzwhjwPRuW6N47S9BgUcRfZCH35RBGPu3AHGVg96MtrLuhiYMLPGj+vvv8JIQQQgghhBBHnM27ssuA9Uqpj5RS1yqlbF0ZWCllU0pdp5T6FFgLXArIOy0hRK92pKiSHZ+tbxDR44485psqet86a5s3NtJQ72P6rAi9owgdTZsVSUVZG3t3t+gdpVPqihqo2FhNyqQEQhKkBWRvN2BOCpYQM7s+KsLv8+sdp9/wNmsU/aOVtdc0UrPEQ+odVsbPDSX9ThvmsL5TbFZKETnRTM6/nQx7woEywI5fuCj4djPNu316xxNCCCGEEEKILjnTwtp42meTKeBC4HWgUin1klLqVqXUsDPZiVJquFLqNqXUS0Al8Bpw3uH9rgAmnOK+Fyildiql9iil7j/JNnlKqY1Kqa1KqUVn+LsJIcQZ21i5kczITMJt0m4v2IRaQxkYOZCNlRv1jnKcpQvrcIYYyRkbqncUoaOJU8IxmxVLFtbqHeWs+Tx+dn+yH1uklbTp0gKyLzDZTAy6MB3XwRYOLCvXO06fp2kaBxd4WHt1IwdechMz28y4d0LJ+LYNk7PvFNS+TilFTJ6ZMa+FkPVLO65iP+tvbWLvn1vwNss1lUIIIYQQQoi+yXQmG2math6YrJT6BvAQMBIIBW4+/IFSqhHYDdQc/mgEwoCowx+DDt/niCPvEAuAhzRNm3uy8ZVSRuAZ4FygBFijlPpA07RtR20TAfwduEDTtGKlVNyZ/G5CCHE2NlZs7GgJKIJPTkJOr5ux1triY+3KeqbPisRk7r3twUT3c4YYyR0fxool9dx8ZxLGXrL20pkoXlpGa62bUTcOxmiWdqZ9RXRWBLEjoziwrIKYIZE442WmYWe0VfvZ8/9aOLTIS8hQI8P/n42wkWf0Nq3PUEZFwmUWomeaKPqnm9I32zg438PAn9iJmW3WO54QQgghhBBCnJWzOgOnadr7mqZlAxcA8wAv7QUyRXsRbQxwDnAN8C3gamAOkHv450e29QBzgfM0Tcs5VVHtsAnAHk3T9mqa1ga8CVz+tW1uAN7XNK34cNaqs/ndhBDidJrbmtl9aLesrxbERsePZk/NHpramvSO0mHNygbcbo1psyL1jiJ6gemzIqiv87J5Y+85Rk+nqcJFyYoK4rOjicgI0zuOOEsDz03DZDey+5P9sn7WWdI0jYoP21h3XSO1K70MuNdGzgvOfldUO5o53EDWz+3kvODEHKXY/oCLHQ+68DbKsSOEECK49eV1koUQQm96PId26tJ2TdO+0DTtSiARuAV4Bdh1+MfqBB8asBP4D+0z3BI1TfuGpmnzz3DIZODAUd+XHL7taIOBSKVUvlJqnVLqlrP/zYQQ4uQ2V21GQ5PCWhAbnTAaDY3NlZv1jtJh6cJaYuLMDB4mM0UE5IwLxek0srSPtIPU/Bq7PynC7DAx4JxUveOITjA7TGSek0pjWTMVGw7qHafP8NT52fZTF7sfbcEx0EjuqyGk3GxFmfrOTNOuCB1hIuffIaTdZeXglx7W3dBI7Rqv3rGEEEIIXRgMBvx+WbNWCCE6y+/3YzD0bBenLl0OqWlaDfDq4Q+UUhYglfbWj1bATXtbyGJN0zxdGOpE7zC/XoY0AWNpnyFnB1YopVZqmrbr6I2UUncDdwMkJiaSn5/fhVhCiGDyQdkHALTsayG/PF/fML1EsD2HtrS2APDOkndwJ7l1TgOuZkXBhghyJrSyeHEwLy0addwtwXZsHi1toIOVS70Myd6L2aJ3mlNTpWYM5Vb8Q1pZtmqp3nG6hZGQ427rd8enBoZwG7u/3M/OQ9vBIldcn1JhCIY306HZhHZpGbVTDrJ6L7C3Z2MYyT3uth4/NgcB9zhwv5XOlns1/FOr0C4qA5McQ6JdU1NT/3vOFEKIr3E6nVRXV+NwdP1iSZ/PR2NjYwBSCSFE3+FyuWhoaOjR140B7TNyuE1j4eGPQCqhvWB3RApQdoJtqjVNawaalVKLgdH8bybdkYzPAc8BJCUlaXl5eQGOKoTor9786E0ibZFcc/41KBUcV5Qf4wR1m2B7DtU0je9s+g6uMFev+N0/mVeNppVx462jSUmz6R1HN/98suC423rD46OX+JhmHr6/ELt5NNPyem+L0NZ6N+tWbyViUCjDrxrbb59Xlyxbe9xt/fH4dGW3sv75rcS3pDLkvEy94/RKmldj/7/cHHjJjT3NwNBnHIQM1u//6BLqj7tNr2PTd7VG0TOtlL0dR2hdIkMfd2BLkHVDRXuxtz8+ZwohxNFqa2txuVyEhoZ2eV+NjY0B2Y8QQvQlDQ0NDBo0iMjInnt/1VferawBspRSAw7PirsO+OBr28wDpiulTEopBzAR2N7DOYUQ/djGio2MThjdb0/+itNTSpGTkMOmyk16RwFgaX4tGQNtQV1UE8cbMtxBTKyZJfl1ekc5pb1fHgANBl6QJs+r/YAj2kbK5ASqttRQV9Sgd5xep63Gz+bvN3PgRTfxF5nJfSmEkMFGvWP1GkabYuB9dob93oFrn48NtzRRu7IrDU+EEEKIviMsLAyXy0Vtbd9o5y6EEL3JkYsTwsJ6ds32gBfWlFJxSqmLlVJ3KaV+fPjzxUqpuM7uU9M0L3Av8DntxbK3NU3bqpT6jlLqO4e32Q58BhQAq4F/aZq2peu/kRBCgM/vo6CygJz4HL2jCJ2Njh9NQWUBPr9P1xxlJa3s3d3C9F48I0now2BQTM2LYPOGRupqe+eJ6ZrCeg7trCN1WiK2cKvecUSApE5JxBZhZc9nxfi9sk7IEU07fGy8rYnGrT4GP2hn8G8cGB1STD6RmFlmcl8OwRKr2PIjF/ufb0XzS1tIIYQQ/ZvRaCQ9PZ3q6mpKS0tpaGjA5/OhafI3UAghvk7TNHw+Hw0NDZSWllJdXU16ejpGY89euBiwVpBKqSuBnwKTTrHNCuBJTdPmnu3+NU37BPjka7f982vf/wH4w9nuWwghTmdPzR5avC3kJOToHUXoLCchB5fHRWFtIYOjB+uWY2l+HcoAk2dE6JZB9F7TZ0Uy752DrFhSz4WXxegd5xh+r5/Cz4uxR1lJmRivdxwRQEazgYEXpLH1zd2UrKwgbVqS3pF0V/V5G7sfa8Ecoch+NoTQYTJL7XTsaUZyXghhzxMtFP/LTfMeH0MecmC0SzFSCCFE/2WxWMjMzKShoYG6ujrKy8vx+8/+QqXW1lZsNuloIoTo3wwGA3a7ndDQUBISEnq8qAYBKKwdbs34KnDVkZtOsflk4D2l1HvATYfXZBNCiF5vY8VGACmsCUbHjwbajwm9CmuaprE0v46R2SFERZt1ySB6t5Q0GxmZNpYurO11hbWSFRW01roZeX0WBlNf6UouzlTUwHBihkVyYFk5sSOisUcG54xEza9R9PdWSl5pIyzHyLDfObBEyfF+pow2xeDf2AkZYmTvX1op+HYTw590Yo2Tf0MhhBD9l9FoJDIysktrBOXn55ObmxvAVEIIIU4kEO9M3qO9qKYOf2wD/gb8CLjr8Oe/AVuP2uYq4N0AjC2EED1iY8VGzAYzw2KH6R1F6Gx47HBMBhObKvRbZ233DhdVFW1MmxWhWwbR+03Li6RwdwtlpW69o3RorXNzYHk5McMiicwM1zuO6CaZ56SiDIrCz/YHZQsjv1tjx69aKHmljYRvWBj1N6cU1TpBKUXydVZG/MFBywE/G+9oommHvm2YhRBCCCGEEAK6WFhTSl0HXHz42zLgQk3TRmqa9gNN057WNO2Fw59/oGnaKOACoJT24trFSqlru5ReCCF6yMbKjYyIG4HFaNE7itCZ1WRlWMwwNlXqV1hbml+HxaoYP1kKE+LkpsyIQClYlt97FkEv/LwYlCLznFS9o4huZA2zkD4zmdq9DRzaWad3nB7lqfez+fvNVC/wMOCHNgb9zIbBLC0MuyJqmpnRz4WgjLDp200cWtI7144UQgghhBBCBI+uXjr5rcOfm4GZmqZ9fqqNNU37AsgDmg7fdGcXxxdCiB6xsWJjRwtAIUYnjO5oD9rTvF6NFUvqGDshDIdD1uoRJxcVY2ZEdghL8+t6xayhQ7vqqNlTT/qMJKxhcpFCf5c0Lg5HrJ298w/g85z9+iB9UWuZn013N9O4zcfQR+2k3GBFKSmqBYIzy0jOv0NwZBrZ9nMXlR/JigJCCCGEEEII/XS1sDYa0IAXNE0rPJM7HN7uBdpnreV0cXwhhOh2FU0VVDRVyPpqokNOfA6ljaVUu6p7fOxN6xtpbPAxbVbn++6L4DFtVgSV5W3s2enSNYfP46Pwi2IcMTaSxsfpmkX0DGVQDDwvFXd9G6WrKvSO0+2ad/vYeGcTnkN+Rv3VSey5UjwONEu0gVF/cxIx1sSu37ZQ8mrvaXMrhBBCCCGECC5dLayFHP685izvd2R7RxfHF0KIbndkLS0prIkjRie0z17UY521pQtrCQ0zMnpMaI+PLfqeCVPCMVsUSxbW6ZqjZHkF7vo2Bl6QhsEoa00Fi4iMMGKGRXJgWQXuhv47w6hxq5eC7zajjJD9XAjhuSa9I/VbJqdixB8dxMwxs++vrez7W0uvmJErhBBCCCGECC5dPbNRdvjz2faiOrJ92Sm3EkKIXuDIWlrSClIcceRY6Ol11lwuH2tXNTB5egQmk7QXE6fncBgZOzGMFUvq8Hr1OfncWu+mZGUFscOjiEgP0yWD0M+AOSkA7F1wQOck3aN+g5fN9zZjClWMfjYEZ6a06O1uBoti6G/tJHzDQskrbez5XQuaX4prQgghhBBCiJ7T1cLaV4c/Tz/L+02nvYXkV6fbUAgh9LaxYiPp4elE2qX1nmgX64wlKTSpx9dZW7OiHk+bxrS8iB4dV/Rt0/IiaGzwsWl9oy7j71tQAigyZifrMr7Qly3cSsqUBKq31VK3X59jsLvUrvSw5YfNWOIMZD/rxJYkszF7ijIqBv3MRurtVirmedj1aAuaT4prQgghhBBCiJ7R1T4lTwM3A7copZ7XNO20LSGVUuOAWwH34fsLIUSvtrFiY0frPyGOGB0/usdnrC1dWEdcgoWsodJJWZy5nDGhhIQaWZZfy9gJPTtjrL64kerttaRNT8QWbu3RsUXvkTIpgcpN1ez9opjcbw1HGfr+jNtDiz1sf8CFY6CBkX9xYomUolpPU0qR8R0bygTFz7vRfDDk13aUzOjuEzSfD39DA/5mF35Xc8dnra0NfH40vx/8flIqymn84guUxYqyWFBWCwarFUNoKMbwcAyhoSijzBQVQgghhBA9q0uFNU3Ttiil7gJeAL5USv0UeEnTNO/Xt1VKmWgvqD1J+2y1OzVN29qV8YUQoru5PC52HtrJ1cOv1juK6GVyEnKYv3c+bb42LEZLt49Xc8jDlk1NXHltHErJSUNx5kxmA5OmhbP4q1paXD7sjp45Aan5NQq/OIAl1EzK5IQeGVP0TkazgcxzUtn+XiHl6w+SNC5O70hdcmhpe1EtZIiRkX9xYgqV52Q9pd/ZXlzb/w83+GDIQ1Jc6238Tc14ysvwVlfjO1SD79AhfHV14Pcfu6HBgLJYwGAArxeUIsTrpa15D5rPBz7f8TtXCkNoCMbwCEzxcZjiEzDFx2EIC5PXS0IIIYQQott0qbCmlPrN4S+/BC4CngV+r5RaAuwBXIADGARMA6IOb/8JMOio+x9H07RHupJNCCECYUvVFvyan5yEHL2jiF5mdPxoPH4PW6u2kpuY2+3jrVhch6YhbSBFp0zLi2T+pzWsWdnAjNk909a2clM1zZUuhlyRidEsswmCXfSQCCIyQtm/qJTY4VGYHV1tnKGPmuUett/vwpllZOTTTkwhcuK+N0i7zYYyKor+1ormh6GPSHFNT76GBjwHSvCUluIpLcVfV9fxM0N4OKboaCwDB2KMjMQQ4sTgdGJwOFB2e0cxrPpPfwbaT1hohwtq0T/6IVpbG5rbjb+hAV99Pb76Bvz19fhqamhZv6GjWKfsdsyJiZjT07FkpGOMiOjBfwEhhBBCCNHfdfUd7UO0zz7jqM9RwGUn2FYdtc1Fhz9ORQprQgjdHVlDSwpr4uuOFNM2VmzskcLakvxaMrPsJKXYun0s0f8MHuYgJs7MsvzaHimseVu9FOWXEpYSQuxwWZ9StLftyzwvjfXPb2X/olIGXZiud6SzVrvSw7afu3BkGqSo1gul3mxFGWDf063sMsPgB+39ou1oX6BpGr7qatr2FOIu3IPvYDUAymbDnJyEKXsU5qQkTDExKLO50+MopVBWK1itGMPCMKekHJvD68VbfQhvZSXeyko8JSW07d1LM+0FPUt6OpZBAzGnpqIM0r5VCCGEEEJ0XiAuFT3Ru5WTvYM503c2svK0EKJX2FSxiTBrGBkRGXpHEb3MoKhBhFhCWF++nttzb+/WsUqKWykqbOWWu5K6dRzRfxkMiqkzI/jgvYPU1XqIiOz8ic0zUby0HI/Ly4jrUqUVl+jgjLWTNDaOsnVVJI6Lwxlr1zvSGatb62Xbz1w40g2M+qsTc5gc171Ryo1W/G0a+//pxmBXDPq5TZ6DupG3pgb31q24d+3G39AAgCkpCceM6VjS0zFGR/fov78ymTAnxGNOiO+4zVdXR1vRfjz799O6fTutBQUohwPr4MFYhwzGlJgox4gQQgghhDhrXS2szQpICiGE6KU2Vm4kJyFH3nCL4xiUgZyEHDZUbOj2sZbm12EwwJQZ4d0+lui/ps+KZN47B1mxpJ4LL4vptnFch1opW1NF/OgYQhOd3TaO6JvSpidSufkQ+xYcYOR1g/WOc0YaNnvZ+tNmbCkGRv3NiTlcZrr0Zmm32/C3wIGX3RhtMOCHUlwLJH9bG227dtO6ZQve8nJQCnNGOo4JE7AMzMTgcOgd8RjGiAjsORHYc0ajeb207SvCvXMnrZs307pxI4awMGyjRmIbObLXZRdCCCGEEL1XlwprmqYtClQQIYTobfyan00Vm7gj9w69o4heakzCGF7Y8AI+vw+joXvWkPL7NZbm1zIqJ6TbZxmJ/i0lzUZGpo2l+bXdWljbN/8ABpMiIy+528YQfZfZYSZtWiL7FpRQu7eeyMzefcFAc6GPrT9xYYk+PFMtQopqfUH6PVZ8LRqlb7RhdCjS75Y2yl3lq6ujZf0GWrdtA48HY2QkjunTsA0bhsHZNy6iUCYT1qxBWLMG4Xe7aSssxL1tO65ly3GtXIU1KwtbzmhMCQlSjBVCCCGEEKfUN1cNF0KIHlBYU0izp1nWVxMnlZuYS/PqZvbU7GFIzJBuGWPnNhfVVR6uvTmhW/YvgsvUvEhe+3c55aVuEpOtAd9/7b4GavbUkzE7GUuIFILFiSWNi6N83UH2zi9hzJ1hvXYdrNYyP1t+0IzBAqP+6sQSLUW1vkIpReaPbfhaNIpfcGMKVSRfH/jnvGDgKS+nZe062vbsAYMB69Ah2EaN6vMtFA1WK7bhw7ENH463pobWTQW4t23DvWMHpvh47OPHYxk0sE//jkIIIYQQovvIu0MhhDiJIy3+pLAmTmZM4hgA1pev77YxluXXYrUqxk8K67YxRPCYOiMCpWBpfm3A9635NfbNP4A13ELy+PjT30EELYPJQMbsZFwHW6jYVK13nBNqq/az+d5m/G0w8mkntiR529TXKIMi6wE70bNM7P1zK1Wft+kdqU9pKy6m7q23qX/zLTwHDmAfP57Ib91B6PnnY05K6lcFJ1NUFCGz8oi8606cs2fhd7tp/Ogj6l55FffOnWh+v94RhRBCCCFELyPvEIUQ4iTWl6/HbDAzInaE3lFELzUsZhhWo7Xb1lnzePysWFrPuEnh2Ozd02pSBJeoGDPDRzlZll+HpmkB3XfV5kM0V7WQMSsFg0leYopTixkaSVhKCPsXleJ1+/SOcwxvk8aWHzbTVuNnxFMOnAPl+bevUkbF0IcdhI8xsuuRFmpXevSO1Ot5ysqof/ddGt57H39DA86ZM4m681s4p03FGBKid7xuZbBYsI8eTeSttxBywQWgaTR+8il1/3mF1h07Av53UwghhBBC9F1y1kMIIU5iffl6RsaNxGqS1kHixMxGM6PiR3XbjLWNaxtpbvIxbVZEt+xfBKepeZFUlLdRuKslYPv0eXwU5ZcSmuQkdnhkwPYr+i+lFJnnpOBp9lKyokLvOB38Ho1tP2/Gtc/P8N87CBslnfP7OoNVMfwPThwDDGy730XjNq/ekXol78GD1M+dR/1bb+M9VIMzbyaRt9+GfUwuymLRO16PUgYDtmFDibjlZkIvvhhMRpo+/Yy619+g7cABveMJIYQQQoheQAprQghxApqmsb58PWMTx+odRfRyuQm5bKjY0C1XMS/NryMs3Eh2bmjA9y2C18Qp4ZhMKqDtIEtXVdLW5GHAOSn9qj2Y6F6hySHEjoiidFUF7gb92/RpmsauR1uoX+sj61d2IifJOoH9hSlEMfLPTswRii0/dtFS3LtmSerJ73LRNH8+da++hresDMfUKUTdcTv23FyUKbgLy0oprIOziLjxRkIuuACtpYWGd9+jfu48vIcO6R1PCCGEEELoSAprQghxAgcaDnCo5VDHGlpCnMyYxDHUtNRQXF8c0P02N/lYv7qBKTMiMBqlUCECxxliZMyEUFYsqcfn63pBuK3Jw4HlFUQPiSA8VYrA4uxkzEoGoGhhic5JYP8/3Bz8zEP6PVbiLwquGTrBwBJjYOTTTgC2/NiFpz64183S/H5aNmyk9qWXad26DduYXCLvuB3HhAkosxSVj6aUwjZsKJG33Ypj2lS8paXUvfIqTQsX4ne79Y4nhBBCCCF0IIU1IYQ4gSOt/aSwJk4nNyEXIODrrK1aXo/HozEtT9rqicCblhdJfZ2XLRuburyv/YvL0HwaA2anBCCZCDa2cCvJE+Kp2lJDY1mzbjnK33dz4GU3CVdaSL1VWkD3V440IyP+4MBd5Wfbz1z424JzzSxPSQl1r75Gc34+pvh4Im66kZCZMzHYbHpH69WUyYRj/Hgi77gdW/YoWjduovall3Hv3CnrrwkhhBBCBBkprAkhxAmsL1+PURnJjs/WO4ro5bLjszEqY8DXWVuWX0tCkoWBg+0B3a8QALnjQ3E6jV1uB9l8sIWKjQdJHBuLPUpOyIrOSZmSiNlpYu/8A7qcnK5Z7mHPH1qJmmZi0E9t0s60nwvLNjH4V3YaNvrY/XhLUBVE/K2tNH45n/p33kXzeAi97FLCvnElpuhovaP1KQa7nZDZswm//joMISE0fvIpDf/9L766Or2jCSGEEEKIHiKFNSGEOIH15esZFjsMu1mKGuLU7GY7Q2OGBnTGWvXBNrZtbmZaXqSc4BXdwmw2MHFqOKtXNNDa2vl2aPsWlGC0GEmblhjAdCLYmKxG0mck03CgiUM763p07Oa9Pnb80oUzy8DQRx0okzznBoO48y2k322l6lMPB14MjlZ+7sJC6v7zCu6tW7GPHUvkLTdjHThQXmd0gTkhgYjrr8OZl4e3vILa/7yCa+1aNH9wtxkVQgghhAgGUlgTQogTWF++XtpAijM2JnFMQGesLV9Uh6bBtLyIgO1TiK+bmheBu9XPulX1nbp/7b4GagvrSZuWiNkh6/GIrknIicERa2ffVyX4fT1zUrqt1s+2+5ox2BUj/uDEaJcCQzBJvcNK3IVm9j/rpurzNr3jdBu/y0XDxx/T+MGHKLud8OuuwzljuqyjFiDKYMCem0PErbdgycjAtWQp9W+/g6+2azPChRBCCCFE7yaFNSGE+JryxnLKm8oZkyCFNXFmchNyKWsso7KpMiD7W5pfR9YQBwlJss6P6D7DRjqJijGzNL/urO+r+TX2zT+ANdxC0ri4wIcTQUcZFAPmpNBa66Z8/cFuH8/fprH95y7aDmmM+IMDa7y8LQo2SimyfmEnLNfIrkdbaCjw6h0p4Nr27qP2lVdpK9yLY8oUIm64HnNCvN6x+iVjSAihl15CyAUX4KupofbV12jZsCGoWo0KIYQQQgQTeQcphBBfc6Sln8xYE2fqyLESiHaQ+/e1UFzUylSZrSa6mcGgmDojgoL1jTTUn90J5arNh2iuaiFjVgoGk7ycFIERmRlGeEYoxUvL8bp93TaOpmnseaKFhk0+Bv/aTugIU7eNJXo3g0Ux/AkH1jgD237moqW0f7Tw0zwemhZ8RcO8eRgcDiJuuB7HxAkoo1HvaP2aUgrbsKFE3HIz5tQUmvMX0fDue/gaG/WOJoQQQgghAkzeRQohxNccaemXk5CjbxDRZxw5VjaUb+CCQRd0aV9L8+swGGDKjIiuBxPiNKblRfDh+wdZubSO8y6OOaP7+Dw+ivJLCU1yEjs8spsTimCilGLArBQ2vridkpUVZMxM7pZxSl9to/IjD2l3Wok919ItY4i+wxxuYMSfHGz6VjNbf9JMzgshmEL6bltQb2UljZ9+hq+2FvvYMTimTEGZ5G1/TzKGhBB2+eW4t26lKX8Rda++Rsh552EdmKl3NHEWvG4X7qYafG0thz9a8ba14PO0gna4CK8MGM02TBY7RosNo8WO0WLHGhKFyerQ9xcQQgghRLeSV9hCCPE168vXMzh6MKHWUL2jiD4i3BbOwMiBrK/o2jprfr/GskV1jB4bSli4/IkW3S9tgI3UdBtL88+8sFa2uoq2Jg9Dr8xEqb578ln0TqFJTmKGR1K6qpKkMbFYQgNb+Dq02MO+Z1qJOcdM2rek3a5o50gzMuz3DjZ/v5ldD7sY9oQDZehbz2+aptG6YQPNS5ZicDgIu+obWNLS9I4VtJRS2EaOxJycTMPHn9D4wQd4cnNwTpsmhc5eQtP8tNYfpPngfpqq9+M6VIq7sZrWhmrcjdX42lq6tH+jxY41NAZbWAzW0Bgc0cmExKTjjE3HFh6LUjLjXwghhOjL5BWdEEJ8zfry9UxOnax3DNHH5CbmsqG8a60gt29ppqbaw423JwQolRCnppRiWl4Eb7xcQVVFG3EJpy5ieFq8HFhRQVRWOOFpcvGB6B4ZM5M5tKOO/UvLybowPWD7bd7tY8dvXIQMNTL41/Y+VzgR3StirInMH9nY+8dWil9wk36XTe9IZ8zvdtP0xZe07dmDJTOTkPPPw2DrO/n7M2NkJBHXXUvzkqW0btiIp7SUsIsuwhgpM757kqZptDYcpP7AVupKttFYUUhzdfExxTOLMxJbeCzOmFSiBuS2F8RCojBZnf+bjWa2sfK57xy3//G3//l/s9rczbibajoKdO7Gapqqiigv+LJje6PFjjMmjdCEgUSkDCc8dQS2sFi5YEkIIYToQ6SwJoQQRznkOsT++v18b/z39I4i+pgxCWN4d9u71LfWE24L79Q+lubXYrMbGDexc/cXojOmzGwvrC1bVMuV18afctsDy8vxuX1k5KX0UDoRjOxRNhLGxFK+rorkCfE4orteIPDU+9n2s2ZMIYrhf3BgtMnJS3G8pKstNO/wUfwvN87BRmJmmvWOdFreqioaPv4Ef309junTsY8dIyfnexllMhEyKw9zWipNX3xJ3etvEHL+eVgHDdI7Wr/WUlfJocI11BZvob5kG+7GQ0B7USssMYvE7HMIiW2fQeaMScNsC+n0WGGJWafdxtPaRHN1cfsMuYP7aT64n4otCyld/wkA1tBowlOGE5k2kuiB47FHnPo1mRBCCCH0JYU1IYQ4yoaK9hlHYxLH6JxE9DW5ibkAbKzYyMyMmWd9/7Y2P6uW1TN+UhhWm7SGET0nNs7C0BFOliys44pr4k56Qtbd0EbZmiriRkXjjLP3cEoRbNKmJVJVUE1RfinDrxrYpX1pPo0dv27BfVAj+59OrLHyHCtOTCnFoJ/bad7nZ9dDLuwvhODMNOod66Rat2yh6auFGOx2wq++GnNykt6RxClYBw7EdGMsjR99TOOHH+GdMB7H5MkogzwnBYLf56HuwDYOFa6les8aXIcOAGANiyUidSThKcOJSB1GSGwGytDz/6/NthAiUoYTkTK84zbN76PpYBF1B7ZTX7KNupJtVG1fAvwDZ0wa0QPHET1wHBGpIzAY5fSdEEII0ZvIX2YhhDjK+vL2NbKksCbO1pFjZn35+k4V1jasacTV7GfaLGkNJHretLwI/vVMKUWFLQwY5DjhNvsXlwGQPlNO3IruZ3GaSZ6UQPHiMhpKmwhL7vxMgv3Puqlb5WXQA3bCRsrbH3FqBqti+O8dbLitiW3/5yLnxRDMYb1rBpjm89Gcv4jWggLMaWmEXngBBseJn7tF72IMCyP8mqtpWriQltVr8FZWEnrhhRjscsFKZ2h+H7X7C6jYuoiDO5fjdTejjCYi00aRnHsBMYPG44hK1jvmSSmDkdD4gYTGDyR13CUAuA6VUl24hkN71nBgzQcUr3ofk9VJ7JApJIyYSWR6ti6FQSGEEEIcS95ZCiHEUdaXr2dAxAAi7VLcEGcnzhlHSlgK68rXder+SxfWEhFpYuTozp88FqKzJk0L58Vny1iaX3fCwpqruoXKgmqSxsdhC7fqkFAEo5SJ8ZSvq2LfghKybx7SqfZ21Qs9HHjZTcLlZhKvOPUagkIcYY03MOz3DjZ/t5mdv3Ex4o8OlLF3FNf8LhcNH32Mt7QU+7ixOKZOlRlPfYwymQg991zMCQk0Lcyn7vU3CLv0EkxxcXpH6xM0TaOhbCcVWxdRtX0xbc11GC12YodMIW7wZCIH5GCy9N1CpSM6mbToZNImXIHX7aK2aBNVu1ZQtWMp5QVfYnFGEjdsOgkjZhKW1Lm/jUIIIYToOimsCSHEUdaVr5PZaqLTxiWNY23Z2rO+X1Ojlw1rGzn34miMveTEnQguIaEmcsaGsnxxHTfenojha8dhUX4pRrOB1CmJOiUUwchoMZI2PYnCz4qp3VNPVFbEWd2/ea+PXY+4CB1hZOBP++5JVqGP8NEmBv7Uzp7ft1D0TzcDvtf1tf66yltVRcMHH+J3uQi58AJsQ4fqHUl0gW3UKIyxsTR++BF1b71N6IUXyLprp+BtbaZ8y1eUrv+U5ur9GIxmogeNJ2FEHtEDx2E0978Lf0xWB7FDJhM7ZDK+C77HocK1VGzNp2zDp5Ss/QBnbDrJuReROHIWJptT77hCCCFEUJHCmhBCHFbfWs+emj3cnnO73lFEHzUucRxzd8ylwd1AmDXsjO+3clk9Xq/G9FkR3RdOiNOYlhfBulUNbN3cxKic0I7bG0qbOLSzjrQZSVicZh0TimCUkBND2epK9i0sJXJgOMpwZhcfeJs0tv/chcGqGPY7BwaLXLQgzl7ilRaadvoo+Y+bkKFGYufo9xzo3rWLxs+/wGCzEXHtNZji43XLIgLHnJBAxPXX0/DhBzR++BG+qVOxjx8ns5CO0lC+m9L1n1CxbRF+j5vQxCyGXvQD4odOC6piktFsJW7oVOKGTsXb2kzljqWUrv+EXV/8gz0L/03CiDyScy8kLDFL76hCCCFEUJDCmhBCHLaxYiMg66uJzhuXNA6AdWXrmDVg1hnfb+nCOpJSrAwYKDMqhH7GTgjDbjewLL+uo7CmaRpFC0sxO0ykTJSTuKLnGYwG0vOS2fH+Xqo2HyJ+dMxp76P5NXY+5KK11M+oZ5xY46VNnui8gffZaN7tY/ejLpyDQnCk9+zaRpqm0bJmDa5lyzElJhJ26SUYnMFTTAgGhhAn4VdfTeMXX+BatgxfTQ0h58xBmYL3dI2m+anevYr9K9+jvmQ7BrNVCkdHMdmcJOecT3LO+e2Fxw2fts9k2/g54SnDSJ90FTFZE1FK/v4JIYQQ3SV4X6kJIcTXrC9fD0BuQq7OSURfNTZpLABry9aecWHtYFUbO7Y2c81N8XJ1stCVxWpgwtRwVi2v547vJmOxGKjb20D9/kYyz0vFaOnZk8lCHBEzNJLQJCdFi0qJGR6F0XzqE4UHXnRTs8RL5k9shOfK2x3RNQazYtjjDtbf0sT2+13k/DsEo71n/l5rPh9NX32Fe8tWrEOGEHLeuUFdbOnPlMlE6IUX0hIVhWvFSnz19e1FVMfx6572Z36vh4otX7F/5fu4akqwhccz+NxvkzhqTlDNTjsbYYlZhCVmkTX7W5RvXkDx6rkUvPsojugU0iddRcKIWRhM0nFACCGECDS5fEUIIQ5bW76W5NBk4kNkVobonBhHDBkRGawtP/N11pbl1wEwNS+ie0IJcRam5UXQ4vKzfnUDmqaxb2EJ1nALiWNi9Y4mgphSiozZKbQ1eihfW3XKbWtXetj/vJu4C8wkXWPpoYSiv7PGGxj6iB3XPj97ft+CpmndPqbf7aZh7jzcW7ZinzCBkAsvkKJaP6eUwjFpEqEXXYS3spK6t97GV1end6we4fO0sn/V+yz7+x1s/+RpjGYrIy7/GZPveZ7U8ZdJUe0MmGxOUsdfxuR7nmfE5T/DaLKy/eO/sOzvd7B/1fv4PK16RxRCCCH6FXllLoQQh60pXcP45PF6xxB93LikcawtO7PCmqZpLM2vZchwB/EJ/W/BddH3jBgVQmSUiaX5dWRG+mmubGHIZQMwGOVaLKGviPRQIgeGc2B5OfE5MZjtx7+NcVf62fFgC44BBgbdb5dZwCKgIieaSb/Lyv7n3ISNNpL4je77u+1raKBh7jx8tbWEnHcuthEjum0s0ftYhwzGEBpCw7wPqHvzLcKuuBxzQoLesbqF3+uhdMOnFC1/m7bmWiIzRjPi0p8QmZEjz+GdZDAYSRgxk/jhM6gt2kjRinfYs+AFile+T8bUa0nOuUBmsAkhhBABIGdJhBACqGutY3fNbsYnSWFNdM24xHHsrd1LTUvNabfdv6+VkmI3U/MieyCZEKdnMComT49g07oG9i0swRlnJ3ZklN6xhABgwOxkvK0+SpaXH/czv1djx69caG0aw37n6LFWfSK4pN5uJXKyicKnWmnc7u2WMbzV1dS/+Rb+pkbCrrxCimpBypyURPi116DMZurfeZe2vfv0jhRQfp+X0g2fsfyfd7Hry2dxRCUz5qYnGHPD40QNyJWiWgAopYgakMuYGx5nzE1P4IhKZtcX/2T5P++idMNn+H3d8xwmhBBCBAsprAkhBLCubB2AFNZEl41LGgf875g6lSULazEaYfK08O6OJcQZmzYrgiFRPtrq28iYlSwnt0Sv4YxzEJcdTemaKlrr3cf8rOjvrTQU+Bj0gB1HhqwHKLqHMiiGPGzHEq3Y/oALT70/oPv3lJZS//Y7AIRfcw2WtLSA7l/0LaaoKCKuuxZTVBQNH3xA6+bNekfqMk3TqNq5nJXP3cOOT/+KNTSa3OsfZcxNvycybaTe8fqtyLSRjLnp9+Re/yjW0Gh2fPpXVj53D1U7l/dIa1shhBCiP5LCmhBCAGvK1gD/K4oI0VljEscAnLYdpN+nsXxRHTljQwkNk87MovdIS7UwMd1PnddE5EAp+oreJX1GEgDFi8s6bju0yEPpa20kXmUh7jxZV010L3O4gWG/c9BWrbHzwRY0f2BOSrsLC6l/730MDgfh116DKSYmIPsVfZvB6ST86m9iTk+naf4CXKtX6x2p0xrKd7P+1fvZ/N5jGIxmRl/zIONueVJmqPWQIzPYxt3yJKOvfhCD0cTm9x5j/av301C+W+94QgghRJ8jZ/KEEIL2wtrAyIFE2qUln+iaSHskg6IGsbb81IW1LQVN1NZ4mT5bjjnRu5StqcJm1PhoM0w+6CEmTgoVovewhVtJGhdH6epKkiclYGizsvMRFyFDjWT+yKZ3PBEkQoebGPgTG3ueaOXAS27S7ujasde6eQtNCxZgio8j7PLLMTgcAUoq+gNlsRB22aU0ffElrmXL0dxtOKZN7TPFqNaGagoX/YeKzQswO8IZcsG9JOWch8Egs4v1oJQiJmsCUQPHUrbxc/YufpU1L/6YxFGzycy7BVuoFPWFEEKIMyGFNSGEANaUrmFq2lS9Y4h+YlzSOJYfWH7KbZZ8VYvDaWDMhLAeSiXE6XlcXkpWVuJMC6NyRSvLFtdx+Tfj9I4lxDFSpyRSsbGaovmltH0aj1Iw7HcODJa+cZJZ9A8JV1qo3+Rj//NuwnNNhOd27q21a+06XEuWYE5PJ+ySi1EWuZhBHE8ZjYRccD7KYqFl7Vo0txvn7FkoQ+9tQuT3eShePZd9S99A8/tIn/xNMqZci8kqhePewGAwkjLmIhKGz6RoxdsUr55L5Y6lDJh2PWkTrsBgNOsdUQghhOjVeu+rMCGE6CGVTZUcaDgg66uJgBmXOI7i+mKqmqtO+PPWVj+rVzQwaWoEFov8KRa9x4Hl5fjafAy5IJWsoQ6W5dfpHUmI45gdJlImxVMz10zTTj+Df+PAliTPpaJnKaUY9DM79mQDO37twlN3duutaZqGa8VKXEuWYBmcRdjll0lRTZySUgrn7FnYx4+ndfNmmj77HM3n0zvWCdXu38zqF35A4cKXiB4whsnffpZBs26XolovZLI5GTTrdiZ/+1miBuRSuPAlVr/wA2r39/01/YQQQojuJO9AhRBB78haWFJYE4FyZK2+dWXrTvjzNSvqcbf6mT47ogdTCXFqrfVuytZWET8qGmesnWl5ERQXtbJ/X4ve0YQ4jrUxCooisOQ0ETVdmnAIfZiciqGPO/DUaex65MzXW9M0DdeSpbhWrsQ6fDihF16IMkpbPHF6Simc06bimDYV986dNHz4EZrXq3esDm3NdWz98CnWv3Y/Po+b0Vc/SPY3f4U9IkHvaOI07BEJjP7mr8m++jf4PG7Wv3Y/Wz98irbmOr2jCSGEEL2SFNaEEEFvTdkaDMpAbmKu3lFEP5GbmItCdRRtv27pwlpi4swMGe7s4WRCnFzxknIA0mYkATB5egQGAyyVWWuil2kp9VP4/9xYB/hpSymndk+93pFEEAsZbCTzhzZqlnkpfaPttNtrmkbzwoW0rFuHbXQ2Ieed26vb+YneyTF+PM45s/Hs20f9+//F73brmkfTNMo2fcGKZ++mcusiMqZcw6S7/05M1gRdc4mzF5s1kUl3/52MKddQuXURK569m7JNX6JpZ3bhgBBCCBEs5BW8ECLorSlbw7CYYYRYQvSOIvqJMGsYQ2KGsLb8+MJabY2Hgo1NTJ8VicEg6wGJ3qH5YAuVBdUkjY3DFm4FICzcxOgxoSxfXIf/DGdhCNHd/B6NHb9yoYww8slQbNFW9uWXnvFMISG6Q+I3LUTnmSh6ppXGrSefPaT5/TR98SWtmwqwjx2Lc9YslJLXAqJz7NnZhF54Ad7ychrefQ9/a6suOVrqq9j45q/Z/vFfCInNYOKdf2Vg3q0YzTZd8oiuM5ptDMy7lYl3/pWQ2Ay2f/xnNr75G1rqT9zmXgghhAhGUlgTQgQ1TdNYU7qG8cnSBlIE1rikcSecsbZ8UR2aH6blRfR8KCFOYn9+KUazgdSpx7ZqmpoXwaGDHnZsbdYpmRDHKvpHK03bfGT9woEjxUT6zGRcVS0c3FqjdzQRxJRSZP3SgSVOsf2XLryNxxd6NZ+Pxk8/w71tG45Jk3BMnyZFNdFl1qFDCbv0EryHDlH/7nv4W3qufbOm+SlZ9xGrnv8u9SXbGXL+PYy56fc4Y9J6LIPoXs6YNMbc9HsGn3cP9SXbWPX8dylZ9zGadnZrSgohhBD9kRTWhBBB7UDDAQ66Dsr6aiLgxiWOo6yxjLLGsmNuX7KwlswsO8mpchWv6B0aSps4tKuOlEkJmB3mY342blI4VptB2kGKXqFmuYfS19pIvMpCzOz2YzV2eCTOeAdFi0rxe+VEn9CPOUwx9LcO2qo0dj3mOqZtmub10vjRx7Tt2oVj+jQckydJUU0EjCUzk7DLLsVXU0P9ez1TXHPVlrP+tV+w8/N/EJ48lIl3/Z2UsZeglJxi6m+UMpA67hIm3vV3wpOGsPPzv7P+tV/gqi3XO5oQQgihK3nVI4QIamtK1wDts4uECKQjx9S6snUdtx0oaqVobyvTZ0XqFUuIY2iaRtFXJZidJpInxh/3c5vNwPjJYaxaWo/HI0ULoZ+2aj+7HmnBMcjAgB/878IEpRQDZifjrm+jfMNBHRMKAWGjTGTcY+PQQi/l77evt6Z5vTR89BFte/finDULxzh5zSkCz5KRQdjll+GrqW2fueZydcs4mqZRuvFzVv/rXpoq9zLs4h+Sc91vsUcc/xpC9C/2iHhyrn+UYRf9gMbKQla/8H3KNn4ua68JIYQIWlJYE0IEtTVlazAbzIyOH613FNHP5CTkYFCGY9pBLsmvxWCAKTMi9AsmxFFqCxuoL24ibWoSRovxhNtMy4ukudnHxrWNPZxOiHaaT2PHgy58LRrDHnVgtB070ydiQBjhGaEcWFqO1+3TKaUQ7ZJvtBA52cTeP7fSuL2Nho8+xrOviJA5c7DnyOtN0X0s6emEXX45vtruKa61NddR8O5v2fHJ04QlDWbiXc+QNPo8mX0ZRJRSJOWcz6Q7nyEsMYvtnzxNwXuP0tZcr3c0IYQQosdJYU0IEdTWlK0hOz4bq8mqdxTRzzgtTobHDmd12WoA/H6Npfl1jB4bSniESed0QhyerbawBFuElYQxMSfdblROCOERJmkHKXRz4BU39Wt9DLzPjmPA8QVgpRQDZqXgcXkpXVWhQ0Ih/kcZFIMftGOO8FP7+kd49u3DOXs2tuxRekcTQcCSnkbYFZfjq68PaHGtevdqVj7/PWr2rifrnDvJveExbGGxAdm36Hts4XHk3vAYWXPu5FDhWlY+/12q96zWO5YQQgjRo6SwJoQIWn7Nz7qyddIGUnSbCUkTWF26Gk3T2La5mZpqj7SBFL3Gwa01NFe1kD4zCYPx5C8JjUbF5OnhrF/dQHOTzAYSPat+k5f9z7mJPddM/KXmk24XmuQkZmgkpasqaWv29GBCIY5nDtMYdPViHFHFNLmmSlFN9ChL2lHFtXfexd/c3Ol9+Txudnz6DJveeRhrSCTjb/8zaROulLXUBEoZSJt4JRNu/wvWkEg2vf0wOz57Bp/HrXc0IYQQokfIqyEhRNDaU7OHenc945PG6x1F9FOTUiZR01LDnpo9LFlYi91uYNzEML1jCYHf52f/ojKccXZiR0SddvvpsyLxeDRWLK3r/nBCHOap97PzNy5sCQYG3W8/bbux9LxkfB4/B5aW91BCIY6n+Xw0fvIJ2qF9uK3TOPDBYKo+lWKv6FmW1NT24lpDQ/vMtU4U15qri1n70k8o3fAJaROvZPxtfyIkLiPwYUWfFhKXwfjb/kTaxCspXf8Ja1++j+bqYr1jCSGEEN1OCmtCiKC1pnQNAOOTpbAmusfElIkALN+3mlXL6pk4NRyLVf70Cv1VbKimtc5NxqyUM1obJTPLTnKqlcULansgnRDtrUp3P95C20GNoY/aMYWc/jh1RNtIGB1D+fqDtNTKFfOi57UX1T6lbU8hzpkzSfr2WMJyjBT+oYWWEpnxK3qWJTWV8CuvaC+uvf9f/C0tZ3Q/TdMo2/QFq1/8Ee7mWnKufZisOXdiMJ181rAIbgaTmaw5dzL62odxNx5i9Ys/omzTl2iapnc0IYQQotvI2T0hRNBaU7YGu8nO8NjhekcR/dSI2BE4zU6WLquitcXP9NnSBlLoz9fmo3hpGeFpIUQOPLMZlEopZsyJZNd2FxVlUrAQ3a/8/TYO5XvJ+J6N0OFnvi5l2vQklAGKF5d2Yzohjqf5/TR++hlte/bgnDkD+5hclFEx5GEHGGDnb1rwe+Uks+hZ5pQUwi6/HF9tbXtxrbX1lNt73S62fvAk2z/+C+FJQ5j4rb8SPVDa5oszEzNwHBPv/BvhSUPY/vGf2fbBk3jdgVnnTwghhOhtpLAmhAhaa8rWkJuYi8lw5ifshDgbRoORcUnjqCyIJTrWzLCRTr0jCUHp6ko8zV4yZp/ZbLUjpudFogyw+CuZtSa6V/NeH3v/3ErkZBPJ11vO6r7WMAtJ4+Op2lJDc6WczBM9Q/P7afr8c9p278Y5Ywb2MWM6fmZLMJD1gJ3GrT6K/yUXJoieZ0lLJezSS/BVV9Mwdx7+trYTbtdUVcTqF39I5bbFZM64idzrH8UaGt3DaUVfZw2NJvf6R8mccRMV2xaz+sUf0lRVpHcsIYQQIuCksCaECEptvjbWla1jUvIkvaOIfm5cxExslcOZNCMEg+HMixhCdAePy0PJigqiB0cQlhxyVveNijEzanQIi7+qxe+XWReie/jdGjt/7cLkVAz+tR3ViefNlMkJmGxG9i2UWWui+2maRtOCr3Dv2Ilj6lTsY8cct03sORbiLzFz4CU3deu9OqQUwc4yYAChF1+Et6KCxnkfoHmOXfevYms+a17+CT53C2Nu/B0Dpl2PMhh1Siv6OmUwMmDa9Yy58Xf43C2sefknVGzN1zuWEEIIEVBSWBNCBKVNFZtw+9xMSpHCmuheMVUzMGAiakSZ3lGE4MCyCnweP+l5yZ26/4w5kVRXedi+pTnAyYRoV/SPVpr3+Bn8azuW6M69VTHbTaRMSaC2sJ764sYAJxTifzRNo3nxYtxbtmCfMB7HhJOv2zvwPju2ZAM7H3ThaZCLE0TPsw4aROgF5+MpKaHhww/RvF78Pg87v3iWrfP+QGj8ICZ862ki00bqHVX0E5FpI5nwracJjR/E1nl/YNeXz+H3ycUFQggh+gcprAkhgtLKkpUAUlgT3a56cyI1jm3s9q/QO4oIcq31bsrWVRE/KhpnrL1T+xg/KRy73SDtIEW3qF3pofSNNhKvthA11dylfSWNi8cSambfVyVomhQxRPdwrVhJ6/oN2HJycEyZcsptjQ7F0N/a8RzS2PM7lxyXQhfWoUMJOe9cPPuLOTT3Hda/+gAlaz8gdcIVjLnxcawhUXpHFP2MNSSKMTc+Tur4yzmwZh7rX3sAd1ON3rGEEEKILpPCmhAiKK0sXUlSaBIpYSl6RxH9WOmBVkr2ealPXsaq0lV6xxFBrnhx+6zJtBlJnd6H1WZg4rRwVi2rp7XVH6hoQuCp87PzkRYcAwwMuNfW5f0ZzQbSpyfRWNrMoV11XQ8oxNe41q6lZdUqrCNG4MybeUZrVoYON5H+HRvVX3mp/NBz2u2F6A62ESPwjs5g6663aSzbzYjL/o/B59yFwSjrTovuYTCaGHzu3Yy4/Gc0Vhay+oUfUFu8Re9YQgghRJdIYU0IEZRWlqxkUsqkMzoJIkRnLVpQi8EAqTkNrCqRwprQT/PBFio3HyJpXBy2cGuX9jVzTiStLX7WrKgPUDoR7DRNY/djLXgbNIY84sBoC8zf5vjRMdijbRTll6LJuoAigFo2bcK1ZCmWwYMJOWfOWb2eTLnJQvhYI4VPteAq9nVjSiGOp2kaxav/y7ZVL2ByhJJlGY+zrE1mUIoekTBiJuNvfQqj1c6G1x6gePVcOfaEEEL0WVJYE0IEnarmKvbW7mVSsrSBFN3H79NY8lUtueNCmThoJPvq9nGw+aDesUSQ2p9fitFiJHVKYpf3NWS4k7h4C4sXSDtIERgVcz0cWuxlwPdshAw2Bmy/yqDIyEumpbqVyoJDAduvCG6t27bR/NVCLJmZhF5wPspwdm+plUEx5EEHBrNi569b8HvkpLLoGT6Pm63z/sDu+f8iJmsiE7/zDyInz8G9dRuuJUukwCF6REhcBhNu+zMxWRPZPf95ts77Az6PW+9YQgghxFmTwpoQIugcmTkk66uJ7lSwsYnaGi8zz4liYspEAGkHKXTRUNLEoV11pEyKx+zoepsng0ExfXYEWzY1UX2wLQAJRTBzFfnY+6cWIiaYSLrWEvD9Rw+JIDTJyf7Fpfi90r5UdI179x6avvgSc2oqoRdfhDJ2rhBsjTeQ9Us7TTt87H9OTiiL7tfaWM26V39O5bbFDMy7lVFX/RKTzYlj8iRsOaNpWbeeljVr9I4pgoTJ5mTUVb9g4MxbqNy2mHWv/pzWxmq9YwkhhBBnRQprQoigs7JkJSaDibFJY/WOIvqxRfNrCA0zMmZ8KGMTx2JURmkHKXqcpmns+6oEs9NE8oT4gO13xpxINA2WLqwL2D5F8PF7NHb+xoXBphj8GzvKEPj2zEopMmYl09booWxtVcD3L4JHW/EBGj/9FFNCAmGXXYoyde1ChZg8MwlXWCh5xU3tGm+AUgpxvPqynax58ce4DpWQffWvyZhyTUf7UqUUzrw8rEOH4Fq2nJaCAp3TimChlIGMqdeS/c1f4TpUwpoXf0xD2S69YwkhhBBnTAprQoigs7J0JaPjR+MwO/SOIvqppiYva1c2MHVmBCazAafFyaj4UawsXal3NBFkagvraTjQRNq0JIyWwLXYi0+wMmS4g8Vf1UrrKNFp+59z07TTT9Yv7Fhju+9tSURGGJGZYRxYXo63VQoY4ux5Kipp/OADjBERhF1xOcoSmNmVmT+yYU83sOthF556mVEpAq9iaz7rX/k5BqOZcbc8SWzWxOO2UUoRct55mAdk0LzgK9w7pbghek7s4EmMu+VJDEYz6179ORVb8/WOJIQQQpwRKawJIYKKz+9jdelqaQMputWKxfV4PBoz50R23DYxeSKrS1fj1+TEmegZmqZRtLAUW4SVhNyYgO9/5pxIykrcFO5qCfi+Rf9Xt9ZLyStuEi43E5Nn7vbxMmal4G3xUbKiotvHEv2Lr7aWhrlzUXYbYd+4EoPNFrB9G+2KoY848NRp7H6sRS5UEAGjaX4K819m67w/EJY0hPG3/YmQuIyTbq+MRsIuvhhTUhKNn31GW1FRj2UVIiQug/G3/YmwxCy2zvsDhfn/QZP3TEIIIXq5PlNYU0pdoJTaqZTao5S6/xTbjVdK+ZRS3+zJfEKIvmHbwW00tTVJYU10q/z5NaRl2MgYaO+4bWLyRBrcDeys3qljMhFMDm6tobmqhfS8JAzGwL/kmzQtArNFsfir2oDvW/Rvnno/Ox9yYU81kPlj++nvEAAhCQ5iR0RRurqKtkZZG1CcGV9TE/XvvQ9A+De+gTEkJOBjhAwxkvFdG4cWean4rxybouu8bhcF7z1G0fK3Sco5n9wbHsXiDD/t/ZTZTNjll2GMjqLhw4/wlJX1QFoh2lmc4eTe8BhJOedTtPwtNr/3ON42uXhLCCFE79UnCmtKKSPwDHAhMBy4Xik1/CTbPQF83rMJhRB9xcqS9lZ8UlgT3aWkuJXCXS3MnBPZsX4FwMSU9tY7q0plnTXR/fxeP0X5pTjj7cQOj+qWMRxOI+Mnh7NsUR0ej1xVLM6Mpmns+X0LnhqNIY/YMdoDv67ayaTPTELza+xfWt5jY4q+y9/aSsN776O53YRfeSXGyMjT36mTkq+zEDHRxN4/t+Iq8nXbOKL/a6mvYt1//o/q3asZfO63GXrh9zEYz3xWsMFmI/zKKzE4nTTMnYe3urob0wpxLIPRzNALv8/gc7/Nwd2rWPef/6OlXtZHFUII0Tv1icIaMAHYo2naXk3T2oA3gctPsN33gfcA+csrhDihFSUriLZHMzByoN5RRD+1aEEtBgNMzYs45vahMUMJs4axqkQKa6L7la8/iLu+jQGzU44p8AbazNmRNDf5WL+6sdvGEP1L1cceqr/ykv5tK6HDTD06tj3SRkJuDBUbDtJS09qjY4u+RfN4aJg7F199PaGXXYopPq5bx1MGxZDf2DHYFTt+48LvkZaQ4uw1lO1i7Us/prXhIDnXPkzq+Ms69RrA4HQSftU3UCYTDe//F19dfTekFeLElFKkjr+MnGsfprW+irUv/ZiG8t16xxJCCCGO01cKa8nAgaO+Lzl8WwelVDJwJfDPHswlhOhjVpasZFLKpG490SyCl8+nsXRhLbnjQomIPPbqYIMyMD5pvMxYE93O6/ZRvKyciIxQIgaEdetYo3JCiIwysXhBTbeOI/qHlgM+Cv/YQvgYIyk3WXXJkDYtCYPJQNGiUl3GF72f5vPR8NFHeCsqCb3wQiypqT0yriXGwOBf2mne6Wf/P6XwK87OwV0rWPfq/RhMVsbd+iTRmWO6tD9jeDhh37gSzeul/v338Tc3ByipEGcmOnMM4259EoPJyrpXf87BXSv1jiSEEEIco2cvE+28E50B//plfH8Gfq5pmu9UJ8yVUncDdwMkJiaSn58foIhCiN6uydvE9urtTA6ZLP/3A0T+HY9VvNdMbU0o0Qll5OfvP+7nib5EFlYs5NMFn2I39sy6QsHh+FaHwXxsqv0WDC4Lh8IqWbSo+1vepQ20s2Gth08/XoTdKbMsvs7I8WsyBeXx6QPDPwaDZqXm/C0sWuLRLYqKt1C9zU++eTGEBG8bUyO5x90WlMfm0TSNlP3FRNTWUpqaSm1pCZSW9GgENSmFkldj2W/fCoOaenTs3mTkCW4L+uPzJPxl69CKvoKQRNqyrmTNlr3A3oDs256eRsaeQkr/8wr7BmfhNxoDst/+Ro7N7qNlXYV/x/sUvPtb1IDZGBLH6h2p12tqapJjUgghekBfKayVAEdfKpgCfH0l3XHAm4eLajHARUopr6Zpc4/eSNO054DnAJKSkrS8vLxuiiyE6G2+KPwClsH1068nLzNP7zh9z6Ljb5Ln0GP9edV+QsOauOX2yZjMx08Kb0lu4dXXX8WaaSVvQF6P5+uv/vlkwXG3Beux2dbkYc3qzUQNC2fYpeN6ZMyBA1r5vzW70LzDycuL7ZEx+5Ily9Yed1swHp9Fz7Zy4ICboY/ZiT1nqq5ZvG4fa57ZTERDAqMuGaxrFj0t4fj2bsF4bB6haRrN+Ytora3FMXUKoydM0CWHb5LGhlua8M0dzJjXQjCH95UmM4FVvWHjcbcF8/F5Iprfx675/6Kk6CtiB09mxOU/xWi2BXyctv37aZg7j9E1tYRdeQXK1FdOI3WPBcv/cNxtcmx2L9+sOWyd9yQHd31FUkwoWXO+hTJIkfdk8vPz5ZgUQoge0Fdepa8BspRSA5RSFuA64IOjN9A0bYCmaRmapmUA7wLf/XpRTQgR3FaWrEShGJ80Xu8ooh9qavKydkUDU2dGnLCoBjA5dTIKxbLiZT2cTgSL4iVlaD6NjLzk028cIKnpNjKz7OR/WYumyYw1cbz6jV4OvOQm7mIzsedY9I6DyWokbWoCdfsaqN3XoHcc0Uu0rF5N68aN2MbkYh+v32tFo00x9BEHnlqN3b9rkedVcUK+tlYK3nuMkrUfkDrhCkZ944FuKaoBWNLTCTnvXDwlJTR+/rkck6LHGc02Rn3jAVLHX86BNfMoeP9xfG3SMlcIIYS++kRhTdM0L3Av8DmwHXhb07StSqnvKKW+o286IURfsbJkJcNjhxNuC9c7iuiHli+ux+vVmDkn8qTbRNgiGBE3gmUHpLAmAq+lppWKjdUk5MZgj+qek2snM+vcKIqLWtm7u6VHxxW9n7dJY+dDLmyJBgb+pPe0wE0cG4c1zELRwhI5SSxo3bwF1/IVWIcNwzljhu5r8YYMNZLxHRuHFnqp/FC/tqmid3I31bDu1Z9TvWcNg8+7h8Hn3NXts3dsw4bhmD6Ntl27ac5fJM+boscpg5HB597N4PO+Q/Xu1ax77X7cTbLGrxBCCP30icIagKZpn2iaNljTtIGapj12+LZ/apr2zxNse5umae/2fEohRG+laRqrSlcxKWWS3lFEP7Vofg1pGTYyBp76xPHU1KksP7Acn9/XQ8lEsCjKL0UZFWnTknp87KkzI7BYFQu/kBMc4lh7/tCCu0pjyMN2TCH6FiuOZjAZSJ+ZRFO5i+odtXrHETpq27uPpgULMGekE3LuOboX1Y5IvtFC+DgjhU+10FIsrxlEu+bqYta+9BOaDx1g9Dd/Teq4S3psbPvYsdhyc2nduJGWtet6bFwhjpY67lKyv/mr9v8LL99Hc3Wx3pGEEEIEqT5TWBNCiK7YUb2DmpYaJqdM1juK6IdKilsp3NXCzHMiT3tCblraNBrbGtlStaWH0olg0FjWTPX2WpInxmMJMff4+A6nkYlTwlm2uA53q7/Hxxe9U9VnbRz8zEPaHVbCRvW+NXniRkbjiLWxP78Uv0+O22Dkqaig4eOPMcXGEnbxxShj71mzRxkUQx50YDArdvymBb9XZggFu7qSbaz9z//h93kYe9MTxGT17DqASimcM2dgGTwY19KltG7b3qPjC3FEbNZExt70BH5vG2v/83/UlWzTO5IQQoggJIU1IURQONJ6b1raNJ2TiP5o4Rc1GI0wLe/kbSCPmJo6FUDaQYqA0TSNfQtLMDlMpExK0C3HrPOiaHH5WbWsXrcMovdoLfOz5/+1EJZtJO02q95xTkgZFBl5KbTUuKncdEjvOKKH+erqaJg7D4PDQdgVl6Ms+q//93XWOANZD9hp2u6j+Hm33nGEjg7uWsmG13+J2RHGuFv/SFhili45lFKEnn8e5tQUmr78kraiIl1yCBGWmMW4W57E7Ahjw+u/4uDuVXpHEkIIEWSksCaECApLi5cS44hhcPRgvaOIfsbj8bP4q1rGTgwnPOL0MzIyIjJIDEmUwpoImLp9DdQXNZI2LRGTVb/ZFsNGOklItLDwS2kHGew0r8bOB12gwZCHHShT72itdyJRWeGEpYRQvKQMn0fa7QULv8tF/fv/BU0j/BtXYnA69Y50UjGzzcRfZubAy27qN3j1jiN0ULrxcwree4yQ2AzG3fwk9gj9LqIBUCYToZdeijE6ioaPPsZTUalrHhG87JGJjLv5SUJi0yl491FKN36udyQhhBBBRAprQoigsLR4KdPSpvWadTNE/7FuVQONDT5mnx91RtsrpZiaNpVlxVJYE12naRr7virBFmEhMTdW1yxKKfLOjWL7lmbKS2VmRTA78B83DQU+Bv3Mji2pd7/dUEqRMTuZtiYPZWuq9I4jeoDm8dAwdx7+5mbCrrgcY+TpZ5vrbeCP7diSDex80IW3UVpCBgtN09i39A12fPI00ZljyL3xcSzOcL1jAWCwWgm/4koMdhsN8+bhq6vTO5IIUhZnOLk3Pk70gFx2fPI0+5a+iabJ86QQQoju17vf6QohRABUNFVQWFvY0YJPiED66vMaYmLNZOeEnPF9pqZOZX/9fkobSrsxmQgGB7fW0FzZQvrMZAwm/V/WzZgTiTJAvsxaC1qNW73s/5eb2PPMxF7Q8+v9dUZ4aihRg8I5sLwCT4vMCOrPNL+fho8/xltVRehFF2FOTNQ70hkxOhRDf2unrVpj9+9b5KRxEND8PnZ+9nf2Ln6VxFFzyP7mrzFZ7HrHOoYhxEnYlVeC30/9+//F73LpHUkEKZPFTvbVvyFh1Bz2Ln6FnZ//Hc0vs9CFEEJ0L/3PwAghRDc7MjNI1lcTgVZV2cbmjU3knRuFwXjmsyFlnTURCH6fn/2LSnHG2YkdcWYzJrtbVLSZ3LGhLP6qFp9PTvwGG59LY8dvWrDGKgb9zN6nZolnzErG5/ZRsrxc7yiim2iaRtOCBXj2FeGcPQvrwEy9I52V0OEm0u+2Uj3fQ9WnHr3jiG7k87jZ/P7vKN3wCemTv8mwS36MwXj6duN6MEVFEXbF5fibm2mYOw+trU3vSCJIGYwmhl/yY9InXUXp+k/Y/N/f4/PK8SiEEKL7SGFNCNHvLTuwDJvJxpjEMXpHEf3MkVk5eeecXRupnIQcHGaHtIMUXVK+/iCtdW0MmJ3SqwoYs86LorbGy8a1jXpHET2s8I8ttJb5GfKQA1No7zkmz4QzzkHcqGjK1lbhbpATcf2Ra+VK3Fu2Yp84EXt2tt5xOiXlZithuUYK/9BCS4nMxuiPPC2NbHzz1xzctZKsc+5m0Kzbe9Xf+BMxJyYSdvFFeKuqaPjoYzSfHJtCH0opBs2+g6xz7uLgzuVsfOPXeFqb9I4lhBCiC+ciVAAArqNJREFUn5LCmhCi31tavJQJyROwGC16RxH9iN+nkf9lLdljQomJO7tjy2w0MzF5osxYE53mdfsoXlpOeEYoEZlhesf5/+zdd5hcZfn/8feZPrO9ZntPNpveSUhIDxBCeugEVBBRUVGaIgooTUFBUVFBVEInIZ2EkARSIL33ZLM12d53p5fz+wPlp19AUnb3zMzer+viumCzO+cDnD1z5rnPfT//ZejIaGJiDXwo4yB7lPoNXmpXecm8xUzM0ODsrPgq2ePTUFUo31yldRTRyVyHDuPcvgNz/37YxozWOs4FU/QKhY/YQAcnHnai+qQzOJy42hrYs+gBWs+eYMCc+8kaNVvrSOfMlJdH5NQpeMvL6fhgvYwrFZrKGjWH/rPvp/XscfYsuh9Xe4PWkYQQQoQhKawJIcKa3WNnb/VexmXKGEjRuQ7sbaep0cvkyy9sBN/YzLHsr9lPh0eeohTn78z2GnwOH7mTgqtbDcBgUBg/OY69O9toaZZxZT2BuzZA8ZMOovrryfqmWes4F8wSayZ1WBK1BxtwNDi1jiM6iaekhI4NGzDmZBM5ZUrQXTPPlyVFR+8fW2k/7Kfi726t44hO0lFfwe5X7sXVVseQ639Br37jtY503iwDBmAbMwb3sWM4tsrDY0JbKf0nMOS6R3G11rH7n/dib6jQOpIQQogwI4U1IURY23l2J37VL/uriU63cV0T0TF6ho+KuqCfH5s1Fr/qZ8eZHZ2cTIQ7d7uHsztqSSyKIyotQus4X2jitDgCAdi8oVnrKKKLqX6VE484CPig8FErOkNoFy0yx6aiN+oo++is1lFEJ/DW1NC2+j0MSUlEz5iBotdrHalTJE0zkXyVkYqX3bQd9GkdR1yktqqT7Hn1flS/j+ELf0V8zmCtI10w6yWjsAwaiHP3bpz792sdR/Rw8blDGH7zr1D9XvYseoC2qpNaRxJCCBFGpLAmhAhrWyu2oqAwJnOM1lFEGGlp9rJ3Zxvjp8RhMF7YW+mYjDEoKDIOUpy38k1VqH6VnEkZWkf5UumZFgr72fjwgyYZBxXmzrzqpnWvn/x7rFgzQ79oYYowkj46hcYTLbSdlY7iUOZvaaFt2XJ0ERFEz5mNYgqvkeD591ixpOo4/nMHvg65zoaq5vKD7H39QQxmG8NveZqoXvlaR7ooiqIQMWkSpvw87B9+hPtUsdaRRA8XlZLP8FueQW+2svf1B2kqO6B1JCGEEGFCCmtCiLD2ceXHDEgeQKwlVusoIoxs3tCM3w+Tpl3YGEiAGEsMA5IHSGFNnBd7rYPaAw2kjUzGGhfcI/cmTYun+qyHE0cdWkcRXaT9qI/yv7hJnGKk19VGreN0moxLemGMMFD24VkpDIeogN1O67tLAYiZOwddRHB2914MQ6RC4aNW3HUqp5+W0aWhqP7UDva/+XMs0UmMWPg0trhUrSN1CkWnI2r6dAypKbSvWYP3rHQAC23Z4lIZsfBpLDHJHHjrYepPbNM6khBCiDAghTUhRNjyB/x8UvmJjIEUnUpVVTaua6Kwn430TMtFvdbYzLFsq9yGP+DvpHQi3JVuPIPBoidzbPAvvo0eF4PVqmPj+01aRxFdwO9QOfFzJ8YEhYIfW0N+36r/pDfpyRqXRmt5O03FrVrHEedJ9XhoW76CgN1O9OxZ6OPitI7UZaIHGsj6hpm6tV7q3vdoHUech5ojH3Fo8WNEJOcw/OZfYY5K0DpSp1KMRqJnz0YfHU3b8hX4GuVeQGjLHJXA8Jt/RWSvPA6++wTVB9drHUkIIUSIk8KaECJsHao7RLunnbGZY7WOIsLIscN2aqo8TLni4hdAxmWNo93TzqG6Q52QTIS75pJWmkvayByXitFq0DrOV7JY9YydGMu2rS10tMseQOHm9LNOnGcCFD5qwxgdPkW1f0sZmog13kzphjME/AGt44hzpPr9tK1+D19dHdEzrsKYGvwPIVysrK+ZiR6kp/hXTlxVcq6GgjN7VnNk+TPEZPZn2I1PYLRFax2pS+isVqLnzgG9nralS/F3yHhdoS2jNYqhNz5OfPYgjq56loqdy7WOJIQQIoRJYU0IEbY2lW0CYHz2eI2TiHCycV0TVpuOS8bGXPRrXZZ9GQCbyzdf9GuJ8KYGVEo3nMESayJteLLWcc7ZtOkJeD0qmzc2ax1FdKKGjV5qV3jJvMVM7LDgL/JeCJ1eR+7kDJyNLmr2NWgdR5wDVVXp2LARb1kZkZMnY8rL0zpSt1AMCoWP2kCFE484UP0yvjSYlX3yNife/xOJBSMZct2jGMw2rSN1KX1MDDFz5qC6XLQtXUbA7dY6kujhDCYrg699hKTCsZxa/1dOb1okY5+FEEJcECmsCSHC1qbyTeTG5pIZk6l1FBEmOjp87Pi4lXET4zBbLv4tNCsmi5zYHDaVb+qEdCKc1R1qxF7nJGdSBjpD6Ny+ZedZ6V1oY/2aJlm0CBPu2gCnnnQSWaQn65vBvc/fxYrvE0tMViTlW6rwuaTrMtg5tm3HfeQI1ksuwTJooNZxupUlTUfB/VbaDvip/KcULoKRqqoUf/h3Tn/0T3r1n8jA+T9Fbwzva+i/GXolEzXzavxNTbSvXIXqlxHoQls6g5EBcx8gdfA0yj5+k5Pr/oyqSsevEEKI8xM6KzNCCHEeAmqATeWbmJgzUesoIoxs2diC16My+fLO269lYs5ENpVtIiAf5sSX8Hv9lH10lqi0CBKLQm+voGlXJVB1xs3RQ3ato4iLpPpVTjzqIOBV6fsLKzpj+I2A/E+KopA7NROfw0flthqt44j/wXXoEM4dOzD374dtzGit42giebqJpCuMlL/kpu2wFIKDiRrwc2LtHynftpj0oVfRf9Y96PTh2e37ZUzZ2UROm4q3spKOdR/IwzZCczqdnqKrfkDWJfM4s2cVR1f8hoBfrp1CCCHOnRTWhBBh6UjdEZqcTUzInqB1FBEmVFVl/ZpG8ntbyS3ovLE9E7In0Ohs5Gj90U57TRFezu6oxdPhJXdqBooSeoWM0eNiiIjUs35No9ZRxEU687qH1j1+8n9kxZql1zpOt4hKjSB5QDxnd9TiapVOoGDkKSmhY8NGjDk5RE6ZEpLXyc5ScJ8Vc7LCiYed+OxSuAgGAb+PIyt+w9l9a8gecw2FV34HRemZyzCWfv2wjb0U9/HjOLZu1TqOECiKQsHkb5A/8VZqjnzEwSWP4ffKe70QQohz0zPv6IQQYe/fo/Um5EhhTXSOY4ftnK10M+2qhE593X8Xf/+9J6AQ/8nT4eXMthoSCmOJyYzSOs4FMZl1TJgSx85tbbQ0e7WOIy5Q+zE/5S+4SJhkoNdMo9ZxulXOpAwUBco+PKt1FPF/eKuraVv9HoakJKJnXIWi7xkF3y9jiFIofNiGqypAyW+dWsfp8fxeNweXPEbt0U3kT7yVgklf69GFXwDryJFYBg3CuXsPzn37tI4jBIqikHPptRRe+V0ai3ez/82f43PJlAUhhBBfTQprQoiwtKl802f7VwnRGT54r5GICD1jLovt1NfNic0hMzpT9lkTX6h8SxUBn0rOpAyto1yUqdPj8ftUNq1v1jqKuAB+p8qJnzswxiv0/om1xy0Mm6NNpI/qRf2RJtqrZLEtWPibm2lbvgJdRATRc2ajmExaRwoKMUMNZN5qpnaVl/oN8jCDVnxuB/vfepjG4t0UXvldci69VutIQUFRFCImTcSUn4/9o024T53SOpIQAGQMu4r+s++j9ewx9r72Ezz2Fq0jCSGECHJSWBNChB1VVdlUtknGQIpO09LsZee2NsZPjcNs6dy3TkVRmJAzgU3lm2S/CfFfHA1OavbVkzIsCVuCRes4FyUtw0L/QRGsX9tIICDneagpedaJszJA4SM2jDE98+NDxqWpGCMMlKyvlGt1EAjY7bQuXQZAzNw56CIitA0UZLJuNxPVX0/xkw7ctbKHa3fzOFrZ+9pPaD1zlP6z7yVj2FVaRwoqik5H1FXTMaSm0r5mLd4z0g0sgkNK/wkMuubn2BvPsGfR/bha67SOJIQQIoj1zE/GQoiwdqzhGPWOeibmTNQ6iggTH33QjN+nMvXK+C55/YnZE6mz13G84XiXvL4ITaUbz6A36ckal6p1lE4xdXoC9bVeDu7r0DqKOA8NH3mpWe4lY6GZ2BEGreNoxmDWk31ZGm2VHTSeaNE6To+mejy0LV9BwG4nevYs9HFxWkcKOjqDQuGjVlQ/nHjEgeqXYnB3cbU3sGfRA9gbKhg0/yFS+k/UOlJQUgyGT39/o6NpW7ECX6PswyqCQ2L+CIbe8Es89hZ2L7ofe+MZrSMJIYQIUlJYE0KEnX/vVSUda6IzBPwq69c20n9QBOmZXdM19O+9AGUcpPi35tI2mk61knlpCqaI8NjPauToaGJiDaxfI4tnocJdF+DU404i++rJvsOsdRzNpQxNwpZooXTjGQJ+6QLSgur307b6PXx1dUTPuApjang8eNAVrJl68u+x0rrXz5nXPFrH6REczdXseeV+3O0NDLnuURJ7j9I6UlDTWa1Ez50Dej1tS5fh75AHb0RwiM3sz7CbnyTg87Jn0f2015zWOpIQQoggJIU1IUTY2VS+ifSodPLi8rSOIsLA/r3tNNR5mXZVQpcdIz8un7SoNCmsCQDUgErJBxVYYj/d1ylcGIw6Jk6LY8/ONhobZJE32KkBlROPOgh4VAp/YUVn7Fn7qn0RRaeQOyUDV7Ob6r31WsfpcVRVpWPDRrxlZUROmYwpT+7zvkryDCOJU4yU/9lF+zG/1nHCWkddGXteuQ+/x8mwm54kLnuQ1pFCgj4mhpi5c1BdLtqWLiPgdmsdSQgAonrlM2Lhr9EZTOx97Se0VB7VOpIQQoggI4U1IURYUVWVTeWbmJAzAUWRRUBx8da/10hsnIERo2O67BiKojAhewKbymSfNQHVe+tx1LvInZKJzhBet2pTrkgAFTa+36R1FPEVzr7moXW3n/wfWbFl67WOEzTi8mOIzYmiYksVXqdP6zg9imPbdtxHjmC95BIsAwdqHSckKIpCwQMWjAkKJ37uwO+Ue4yu0Hr2OHtefQBF0THs5l8Rndpb60ghxZCcTNTMq/E3NdG+ciWqT66tIjjYEtIZsfDXmCJi2ffGQzSe3q11JCGEEEEkvFZrhBA93qmmU9R01MgYSNEp6us87NvdzqTL4zEYurZQOyF7AtUd1RQ3FXfpcURw8zp9lG+uIiY7ioTCWK3jdLrkFBODh0Wx8f0mfD5Z4A1W7Ud9lL3gImGigV6zwmMUaWdRFIXcqZn4nH4qtlZpHafHcB06hHPHDsz9+2MbM1rrOCHFGKOj8GEbzsoAJc+5tI4TdprKDrDv9Z9itEQy/JZfE5mUpXWkkGTKziZy2jS8lWfoWPeBPGgmgoYlJpnhC3+NLSGdA+/8ktpjW7SOJIQQIkhIYU0IEVY+KvsIkP3VROfYsLYJFJhyRXyXH2tizkQAPiz7sMuPJYJXxZYqfC4fedMyw7brdupV8TQ3+di7s03rKOIL+DpUjj/kxJSk0PuntrA9Dy9GZC8bKUMSqd5dj6PBqXWcsOcpKaFjw0aMOTlETpks5+QFiB1hIGOhmZplHho+8modJ2zUn9zGgbcexhLTi+G3PI01NkXrSCHN0q8I29ixuE+cwLFlq9ZxhPiMKSKWYTc9SXRaHw4v+zVVB9ZpHUkIIUQQkMKaECKsbCjdQHpUOn0S+mgdRYQ4rzfAh+uaGDYiisRkU5cfr09CH9Ki0thYurHLjyWCk6PBSfWeelKGJBLZy6Z1nC4zdEQ0CUlG1q1u1DqK+D9UVaX4KSeumgCFv7BhjJYCxpfJnpiOzqij5INK6azoQt7qatpWv4chKYnoGVeh6GUs6YXKvsNMZF89px534q4LaB0n5FUf3sihJU8Q2SuX4Tc/hTmy6x/C6gmsI0dgGTwY5549OPfu0zqOEJ8xWiIZev0vic8dwrHVv6Nix1KtIwkhhNCYFNaEEGEjoAbYULKBKXlT5GlmcdG2bWmltcXHFTMTu+V4iqIwJXcKG0o3EFBlwasnKll/Bp1RR/aEdK2jdCm9XmHa9AQOH+jgTIWMJQsmtSu91H/gJfubZmIGG7SOE9RMEUayL0uluaSNpuJWreOEJX9zM23LV6CLiCB6zmwUU9c/5BLOdEaFwl9YCXhVTjzsQPVLQfhCVe5exdEVvyE2awBDb3gcoy1a60hhQ1EUIiZOwFSQj33TJtwnT2odSYjP6E0WBl/zc5L7juXUhpc4vWmRPFwjhBA9mBTWhBBh42DtQRqdjUzNnap1FBHiVFVl7coG0jPNDBwS2W3HnZo3lQZHA4dqD3XbMUVwaDrdSvPpVrLGpWKKCP89rSZfEY/RqLB2ZYPWUcS/OEr9nP6Nk5jhejJvMWsdJySkjkjGmmCh5INKAj55IKIzBex2WpcuAyBm7hx0ERHaBgoTtmw9BfdZad3rp+Lvbq3jhBxVVSn7+C1OrnuBxN6XMPi6RzGYw7fDXCuKTkfU9OkY0tJoX/s+3jNntI4kxGd0eiMD5jxA6uBplH38Jic/+AuqPBQphBA9khTWhBBhY0PJBgCm5E3ROIkIdcUnHJSccnLF1Qnd2v04JffTc3dD6YZuO6bQXsAfoOSDSixxZtJGJmsdp1tExxgYOyGWLRubsXf4tY7T4wXcKscfcqCzKBQ+akPRS9f3udDpdeRNy8TV7KZqV53WccKG6vHQtnwFAbud6Nmz0MfFaR0prPSaYSJ5upGKv7lp2evTOk7IUFWV4g//zulNr5DSfyID5z2I3iBdlF1FMRiInjUTfUw0bStW4GuQB3FE8FB0eoqu+gFZo+ZyZvdKjq56jkBA7meFEKKnkcKaECJsrC9dT1FiEWlRaVpHESFuzcpGrDYd4yd372JeenQ6fRP7sr5kfbceV2irem89zkYXeVMz0el7zq3ZFTMTcbtVPvqgSesoPV7J713YiwMU/tyKOannnIOdIT4/hviCGCq2VuHp8GodJ+Spfj9tq9/DV1dH9IyrMKamah0pLBXcb8WaoePEzx14mqXT4quoAT/H1zxPxfYlpA+bQb9Z96DTy7jcrqazWomeOxfFYKRt6TL87e1aRxLiM4qiUDDlNvLGL6Tm0AYOv/skfp9H61hCCCG6kXxyFkKEBY/fw+byzZ91/AhxoZoavezY2sLEafFYrPpuP/6U3ClsLt+Mxy8fzHoCr8NHxeYqYnOjiO8do3WcbpWbb6Wwn433VzcSkL1+NNPwkZfqxR7SbzQRPzb8x5B2hbxpmQR8KmUfyriyi6GqKh0bNuItKyNy8mRMeXlaRwpbeptC38dteFtVTv7CiRqQa/CXCfi9HF7+DFX73yfn0mspvOLbKIoso3QXfXQ00XNmf9rJunQZAZfszSqCh6Io5I67nj7TvkX9yW0cePsRfB6n1rGEEEJ0E7kjFEKEhe1ntuPwOmQMpLhoG9Y2EgjAFTMSNDn+lNwp2L12dpzZocnxRfcq33wWn9tP3tSsbh07Giymz0qkrsbDvt3yFLoWXDUBTj3uJLKvnpzvWLSOE7Ks8RbSRyVTe7CR9iq71nFClmPbdtxHjmC95BIsgwZqHSfsRfbRk/d9C82f+Dj7pjzM80X8XhcHFz9G3bHNFEz+BvkTb+2R79VaMyQnE3X11fibm2lfuQrVJyNMRXDJHDmLfjN/REv5Ifa98RBep9zXCiFETyCFNSFEWNhQsgGdomNizkSto4gQ5vUGWL+miSEjokhJM2uSYWLORHSKTvZZ6wHs9U6q99aTOiyJiGSr1nE0MWJ0DPEJRtaukr1TupvqUznxMweqT6XvY1Z0RlksvhiZ49IwRhg4va4CVZXun/PlOnQI544dmPv3wzZmtNZxeozUBSYSJhoo+6OL9qNSrPhPPped/W/+nMbTe+g7/Xtkj56vdaQezZSdReTl0/CeOUP7++vkOiuCTurAKQyc9yDtNcXsffXHuDtk1LkQQoQ7KawJIcLChtINjEgbQawlVusoIoRt39pKa4uPK2cmapYhzhrH8NThUlgLc6qqcvr9CgxmPdnje+6+kAaDwrQZCRza18HZShnv1J3K/+am7aCfgh9bsWZ2/9jbcGMw68mZlEH7WTv1h2Ux7Xy4T5fQsWEjxpxsIqdMkY6gbqQoCr1/asOUqHD8pw58HVKsAPDYW9n7+k9oPXucAXPuJ33olVpHEoClqAjbuHF4Tp7EvnmL1nGE+JykwjEMufYRnC017Fl0P86WWq0jCSGE6EJSWBNChLx2dzs7zu6Q/dXERVu7soG0DDMDh0RqmmNK7hS2n9lOh6dD0xyi69Qfbaa1vJ2ciekYbT17X6spV8RjNCq8v6pR6yg9RstuH5V/d9NrhpHkK0xaxwkbvQYlEJlqo3TjGfwev9ZxQoL3bBXtq1djSE4mesYMFL0UebubMVqh7y9tuGpVTj3p7PGdQK62Bva8ej/2hkoGLfgZvfqN1zqS+A/WEcOxDBmCa+9enHv3ah1HiM+Jzx3K0Bsfx+tsY8+i+7A3VGgdSQghRBeRwpoQIuRtLt+ML+Bjat5UraOIEHbquJ3TJ51ccXUCOp22T8tPzZuKL+Bjc/lmTXOIruFz+yldX0lkio2UoUlax9FcdIyBSyfEsmlDM/YOKUZ0NU9DgOMPObBm68i/t2eOIO0qiqKQf3kWng4vlR9Xax0n6PkaGmhbvhx9dDTRc2ajmKTIq5XoQQZyvmWmYb2XmmVereNoxtFUxZ5F9+Fub2TI9b8ksWCk1pHE/6EoChETxmMqKMC+aTPuEye0jiTE58Sk92XYzb9CDfjZs+gB2qpPaR1JCCFEF5DCmhAi5K0vWY/FYOHSzEu1jiJC2OplDdgidIyfHKd1FMZmjcWsN7O+ZL3WUUQXqNhahafDS/6VWSgaF3GDxfRZibhdATasla61rqT6VI7/zIHfqVL0pA29Tc6/zhadEUnywATObK/F0SjjTb+Mv62NtneXohgMRM+dg85m0zpSj5ex0EzsJQZKnnViL+55Dzm015WyZ9F9+D0uht30JHFZA7SOJL6EotMRNf1KDGlptL+/Dk9lpdaRhPicqORchi98Gr3Jwt7XfkJzxWGtIwkhhOhkUlgTQoS890+/z4TsCVgMFq2jiBBVV+NhxyetTLkyAatN+zFUFoOFCTkTeP/0+1pHEZ3MXu+kamcdvQYnEp2u7cjRYJKTZ6X/oEjWrmzE5w1oHSdslb/kpnWvn4IHrETkaX+tC1e5kzPQGXWcfr+ix4/V+yIBp5O2d5ei+rxEz5uLPiZG60gCUHQKhQ9b0UcqHPupA7+j55y7LZVH2bvoARSdnuELf0V0am+tI4mvoBgMRM+ehT4mhvaVK/E1NGgdSYjPscWnMXzh05ijEtj/5s9oKN6ldSQhhBCdSAprQoiQVt5SzrGGY1xZIJuKiwv33vJ6dApMn5modZTPXJl/JUfrj1LRKnP5w4WqqpxeV4HepCNnUrrWcYLO1XMTaWr08smWVq2jhKWmT7xU/t1Nymwjva6SkXtdyRRpJHtCGi2lbTQcb9Y6TlBRPR7ali3D39ZG9KzZGBKD531XgClBR99f2HBWBDj1RM/Yb63x9G72vfEQxogYht/yDBGJWVpHEudIZ7EQPXcOisFI29Jl+NvbtY4kxOdYohMZfvOviUjM5ODiX1J7VEb9CyFEuJDCmhAipK0tXgsghTVxwTo6fHz4QTOXjo8lPtGodZzP/Puc/vc5LkJfw7FmWsvayZ6QjikieM61YDF4eBTpmWZWL63vEYu53cldG+DEI04iCnTk/Uj2VesOacOTiehlpeSDSnzunjdW74uofj9tq1bjq60jasZVGDPkAYNgFDvi0/3W6j/wUr3Eo3WcLlV7dDMH3vkltoR0ht/8a6wxyVpHEudJHx1N9Nw5nxbt332XgNOpdSQhPscUEcOwG58kJr0vh5f9mrP75POdEEKEAymsCSFC2trTa8mOyaYwoVDrKCJEbVjbhNsV4Oq5SVpH+S99E/uSFZMlhbUw4ff4KVlfSUQvG6nDgutcCxY6ncKMOYmUl7o4fKBD6zhhI+BTOfZTB6pXpe+TNvQW2VetOyg6hYIrs/G0e6nYWqV1HM2pqkrHug/wlpcTOXUK5vx8rSOJ/yHjFjNxlxooedZF+xGf1nG6xJm9azi87NdEpxUy/KanMEdqv8euuDCGpCSiZ8/C39pG29JlBDzhXRAWoclgiWDI9b8gIX84x9c8T/n2JVpHEkIIcZGksCaECFkev4cNJRu4suBKFEUWCsX583kDrF3RwIDBkWTnBVcXh6IoXJl/JetL1uP1e7WOIy5SxdZqPO1eCq7MQtHJ9erLjJsUR0ysgdVLZa+UzlL2Rxfth/z0ftCKLUv2VetO0RmR9BqcSNXOOuz1PbeLQlVV7Js34z5+HNvYS7EMGKB1JPEVFJ1C4SNWTEkKxx504G0Nn70vVVWl7JO3ObH2DyTkD2foDb/AYInQOpa4SMaMDKJmzMBXV0f7ipWovvAsCIvQpjdaGLTgIZKLxlO88WVOf/RPmdIghBAhTAprQoiQta1yG+2edhkDKS7YJ1taaW7yMWNucO7xcmXBlbR72tl2ZpvWUcRFsNc7Obujll6DEojOiNQ6TlAzmXRcPiOB/XvaOVPh0jpOyGvc5OXs6x5SF5hImib7qmkhd3I6erOO4rXlPXbxzLl7N669+7AMGYJ15Eit44hzZIzRUfSEDU+DyolHnKiB0D9/VVX9bDG7V78JDFrwM/RGi9axRCcx5+cRefk0vJWVtK9ZixoIn4KwCB86vZEBs+8lbciVnxb5338BVZVzVQghQpEU1oQQIWtt8VoMOgNTcqdoHUWEIFVVWb20nowsM0OGR2kd5wtNyZuCQWeQcZAhTFVVit8rR2/WkzslQ+s4IWHaVQmYzAqrl9VrHSWkOc8GOPELB5F99eT9QBaOtWK0GcmZmEFbRQf1h5u0jtPtXEeO4Nj6MebCQiImTpAJAyEmqp+BvB9aaP7ER+Urbq3jXBQ14Of4e7+nYse7pA+bQf/Z96LTG7SOJTqZpV8/IiaMx1NcTMeGjT32gQYR3BSdnr7T7yJ79HzO7l3N0RW/IeCXLkshhAg1UlgTQoSstafXMi5rHFHm4CyKiOB2+EAH5aUuZsxJCtqFvmhzNGMzx0phLYTV7m+g7UwHuVMyMNqMWscJCdExBsZPjmPLxhZammUM6oUIeFSOP+gAoOhJGzpTcF7jeoqUoYlEpUVQsqESn6vnLJy5TxXT8cF6jFlZRF5xedC+14r/LXW+iaTLjZT/xU3L7tA8fwM+L4eW/oqqA+vIGXs9hVd8G0WRpZBwZR02DOuoUbgPH8bx8cdaxxHiCymKQsHkb5A/8VZqjnzEoXefwO+T/QGFECKUyN2kECIkVbdXs79mP1fmyxhIcWFWL20gJtbAuEmxWkf5n64suJJ9Nfuo6ajROoo4Tx67l9KNZ4jOiqTXoASt44SUq+Yk4fervL+qUesoIankORcdx/0U/tyGJU1u97WmKAr5V2bhdfgo+/Cs1nG6hae8nPY1azCkpBA9ayaKXvb3C1WKotD7J1asWTqOP+TAXR9aI8t8HicH3n6E+hMf03vq7eRPWChF3h7AdukYLAMH4ty1G8fuPVrHEeJL5Vx6LYVXfJuGUzs48NbD+NwOrSMJIYQ4R/JJWwgRktadXgcg+6uJC1JW4mT/nnaunJWI0Rjcb4X/Psf/fc6L0FG6vhK/J0Dv6dmyiHee0tLNjLgkmnWrGnE6/FrHCSm173moXuIh/UYTCROkSzJYRKVGkDYymeq99bRWtmsdp0t5q6poW7ESfVwc0XNmoxjlPAx1eptC0ZM2/E6V4w85UH2hMV7P62xn3+s/pan8IEVX303WqLlaRxLdRFEUIiZPwtS7N44tW3AdOaJ1JCG+VMbwq+k/615aKg6z7/Wf4nW0aR1JCCHEOQju1UQhhPgSa0+vJSUyhUG9BmkdRYSgZe/UYbXpuPyq4O8iGtxrMCmRKawpXqN1FHEemkvbqDvcRMaYFGyJVq3jhKTZ1yRjt/tZv0a61s5Vxwk/xU85iRmmJ/e7sq9asMmZkI452kTxe+UE/KHV9XOufPX1tC1bji4ykph5c9FZ5DwMFxF5eno/aKVtv5+yP7u0jvOV3O2N7Fn0AO21pxk070HSBk3TOpLoZopOR9SVV2DMyqLjg/W4i4u1jiTEl0oZMImBCx6io66UPa/+GHe73P8KIUSwk8KaECLkeP1e1havZXrBdOkCEeet6qybHVtbufyqBCIig380laIoTC+YztritXj9st9UKAj4ApxeW44lzkzm2FSt44SsgkIbA4dEsnpZAx5PeBYhOpO3NcDRB+wYYhT6Pm5DMcj7Y7DRm/QUXJmFo8HFmW3hN97X39xM67tLUYxGYubPQxcRoXUk0cmSrzCROt/EmUUeGj4M3nsSR9NZdi+6D1dbHUOufZSkwjFaRxIaUQwGomdejaFXMu3vrcFTWal1JCG+VFLvSxh83aO42urYveg+HE1VWkcSQgjxP0hhTQgRcrZWbKXF1cKswllaRxEhaOWSOgxGhemzE7WOcs5m9plJi6uFjytlA/ZQUPlxNc4mNwVXZqEP8lGjwW72Ncm0NPvYtL5Z6yhBTfWrnPi5E0+DStGTNkzxct4Fq/jesSQWxVGxtRpHY/B3/Zwrf3s7rUveBVUlev489NHRWkcSXSTvbgtR/fWc/IUDe0nwjeptqz7F7lfuw+92MvTGx4nPHaJ1JKExxWQies4c9DExtC9fgbcm/B5sEOEjPmcww258Ar/bye5X7qWt+pTWkYQQQnwJ+dQthAg5K06swKw3My1PRrqI89PY4GHzxhYmTYsnNi509nyZlj8Ns97MihMrtI4ivoKjwUnlthqS+scTlxejdZyQ139QBAWFNlYuqcfvD409fbRQ/qKb5u0+8u+xEj3AoHUc8RXyp2WiM+goXlOOqob+eR1wOGhb8i6qx03MvLkY4uO1jiS6kM6kUPSUDZ1F4dj9DnwdwXMON5bsZe+rP0ZvtDDilmeISSvUOpIIEjqrlej581BsNtreXYqvvl7rSEJ8qei0Poy45Rn0Rgt7X/sJjaX7tI4khBDiC0hhTQgRUlRVZeXJlUzJm0KESUYMifOzamkDqCoz5ydpHeW8RJoimZw7mRUnVoTFImy4UlWVU6vL0Rt15E3N1DpOWFAUhTnXJFFX62Hb5hat4wSlxk1eKv/uptcsIylzQueBgZ7MFGUid3IGreXt1B4M7T1UAi4Xre8uxd/eTvTsORiSk7WOJLqBOVlH0RM2XFUBTjzsQA1of29Sc/hDDrz9CNa4VEbc+gy2hHStI4kgo4+MJGb+PBSTidYl7+JrbNI6khBfypaQzohbn8Eam8KBtx6h5shHWkcSQgjxf0hhTQgRUo41HON082lm9ZExkOL8tLX62Li2kbET4khKNmkd57zNKpzF6ebTHG84rnUU8SWqdtfRdqaDvGmZmCKlwNFZho2KJiPLzLJ36ggEweJtMHFU+DnxqIPIIj0F91pl39EQkjI0kejMSEo3VOKxB+9eVf+L6vXStnwF/sZGomdejTE9TetIohvFDDWQ90MLTVt9VPzNrWmWih1LObLiGWIy+jH85l9hjpSuSfHF9DExxMyfB4pC25Il+FtatI4kxJcyR8Yz/OZfEZNRxJHlT1Oxc5nWkYQQQvwHKawJIULKyhMrAbi6z9UaJxGhZu3KBjweldnXhFa32r/9+5xfeXKlxknEF3G1uCn78CxxedEkD0zQOk5Y0ekU5lyTzJkKN3t3tWkdJ2j47CrHHnCgGP81ls0sRbVQoigKva/Kxu8OUPJBpdZxzpvq99O2chW+6mqipk/HlJOjdSShgdQFJnrNMFLxkpvGzd1fIFbVAKc2vsypDS+RVDiWIdf/AoNFJlqI/00fF0fM/Hmofj+tS5bgb2/XOpIQX8pgiWDI9b8gqXAsp9a/SPHGl2WCiRBCBAkprAkhQsqKkysYnjqc9GgZ7yLOndPh5/2VjYwYHU16pkXrOBckIzqDYanDZJ+1IKSqKqfeK0dRoOCqbOka6gJjxseS3MvE0rfqZDEBUAMqJx9x4CgP0PcxG5YUuaUPRbZEK5ljU6g/0kTjyRat45wz1e+nffV7eMvLiZw6FXOf3lpHEhpRFIWCB6xEFuk58YgDR7m/244d8Ps4uvJZKrYvIX3YDAbOfQC9IfQmEghtGBITiZk3F9XlpnXxEgJ2u9aRhPhSeoOJgXMfIH3YVZRvX8LRVc8S8Pu0jiWEED2efAoXQoSMOnsd2yq3MbPPTK2jiBCzdlUjdrufOdeE9t4vM/vM5JPKT6i3y4brwaT2YCMtpW3kTMrAEmPWOk5Y0usVZs5P4vRJJwf3dWgdR3PlL7pp3Owj7wcW4kYatI4jLkLm2FQikq2ceq8crzP4F8nUQID2tWvxnD5NxKSJWAb01zqS0JjO/GnXrGJUOHq/A19H1z/84PM4OfjOL6g5vJG88QspvOLbKDp9lx9XhBdDr15Ez5lDoKOD1iXvEnA6tY4kxJdSdHoKr/gOeeNvpubQBg4u/iV+j0vrWEII0aNJYU0IETLeO/UeKiqzCmV/NXHuHA4/q96tZ+iIKPL72LSOc1FmFc5CReW9U+9pHUX8i6fdQ+n6SqIzI0kdHppjRkPFxGlxJCQZWfxabY/uWqvf4KXyZTe9ZhpJu1a6M0KdTq+jz8xcvA5v0I+EVAMBOt5fh+fkKWzjL8M6ZIjWkUSQsKToKHrchrMywIlHHKhduB+mx9HKvtcfpLF0H32v+j65466XTnFxwYzpaUTPnoW/pYW2d5cScGu7X6AQ/4uiKOSOu4G+079HY8le9r7+EzyOVq1jCSFEjyWFNSFEyFhxYgUZ0RkMSRmidRQRQtauaMDe4WfBTb20jnLRhqYMJT0qnRUnZRxkMFBVleK1FQR8AXrPyJGFvS5mNOqYe20yp044OLC3Z3atdZzwc/JRB9GD9BTcb5VzLkxEptjIvDSVukONNJ1q0TrOF1JVlY71G3AfP45t7KXYhg/XOpIIMrEjDOTdbaFpi4+yF7qmOOFsqWXPK/fRUVfGoPkPkj7kii45juhZTFlZRF99Nb6GBtqWLUf1dv9+gUKcj/ShVzJo3oN01JWx55X7cbbUah1JCCF6JCmsCSFCgtPrZN3pdczsM1MWEsU5c9j9rF7awPBRUeT3Du1uNfj0KcWZfWbyfvH7OL0yrkZrDceaaTzZQtb4NGwJobl3X6iZODWOxGQj77xW0+O61jxNAY7eZ8cQ8+nYNZ1J3gvDSda4VGxJn46E9LmCaySkqqrYN36I+8gRrJdcgm3UKK0jiSCVdo2JlLkmzrzipm6Np1Nf2xFoZdc/foTH0cLQGx4jqc+YTn190bOZ8nKJmj4dX3U1bctXoPqC6zosxP+VVDiGoTc8hsfRzO5//oi26lNaRxJCiB5HCmtCiJDw/un3sXvtzC+ar3UUEULWrGjAbvez4MbQ71b7t/n95mP32ll3ep3WUXo0j93L6fcriEyxkXFJitZxegzDv7rWTp90sn93u9Zxuk3Aq3Lsxw68LSr9fh2BKUFu4cONzqCjz9U5eOxeStaf0TrOZ1RVxb5pE66DB7GOGI5tzGitI4kgpigK+fdaiBmm5+QTTtoOdU5xotVfx2n3bvRGMyNueYbYTNnbT3Q+c5/eRF5+Od7KStpWrJTimgh6sZn9GXHLM+gMZva8+gD1p3ZoHUkIIXoU+VQuhAgJi48uJsGawIScCVpHESHC3uFn9bJ6RoyOJrcg9LvV/m1C9gTirfEsPrZY6yg9lqqqFL9Xjs/tp8+sXBSddA51pwlT40nqZeSd13vGXmuqqnL6aSdtB/z0fshKVJFe60iii0SlRZA5JoXaAw00ndZ+zxRVVXFs3Ypr334sQ4dgGzdOpgaIr6QzfNpVa07ScfR+B+7awEW9XoOvgjLPAcxKJCNu/Q0RiVmdlFSIz7P0KyJy2jS85eW0rZTimgh+EYlZjLj1GSISszi4+DEqd6/SOpIQQvQYUlgTQgQ9t8/NihMrmNN3DgadQes4IkS8t7wehz0QVt1qAEa9kTmFc1hxYgVun2ywroW6Q400nmwhZ2I6EUlWreP0OAaDwtzrelFyysneXeHftVb1joea5V4ybzWTfLlJ6ziii2VdloYt0cKp1WWajoRUVRXHJ9tw7t6DZdAgIiZMkKKaOGfGGB39nrERcKscudeO33n+D0GoqkqV9yRnvSeI1iWRbx6BOTKuC9IK8d8sA/oTOW0q3rJy2laukuKaCHrmyHiG3/QUiQUjOLnuBQJlH6KqF/dQgxBCiK8mhTUhRND7oOQD2j3tLOi3QOsoIkR0dPh4b3kDI8dEk5MXfoWPBf0W0OZuY33Jeq2j9DiuVjen11USnRlJ+qjwKtqGkvGT40hOMbEkzLvWmrZ6KXnWRcJ4A9l3mrWOI7rBZyMhO7ycXlepSQZVVXF8/AnOnTsxDxhAxORJUlQT5y0iT0/fx2zYiwOceMSBGjj3a7Xf66bcc5B6XzkJ+kxyTIPRK9KtK7qPZcAAIqdOxVtWRtsqKa6J4Kc3WRg0/yEyhl+NWrWbw0ufwu+VhzCFEKIrSWFNCBH0Fh9dTKwllsm5k7WOIkLEe8sacDrCr1vt36bkTSHGHCPjILuZqqqcXFUGqkqfmTICUksGg8K865IpKXayZ2eb1nG6RMdJP8cechDZR0/hL2xyvvUgUemRZI1Npe5QI/XHmrr12P8e/+jctQvLwIFETp0iRTVxweIvNZL7PQuNH/ko/+u5LfB67K3se/1BWgN1pBn6kG4slHNQaMIycACRU6fgLZXimggNik5Pn8vvRMmeSN3xj9n3xk/xOLQfLS2EEOFKCmtCiKDm8XtYfmI5swtnY9LLCCzx1VpbPu1WG3VpDNm54detBmDSm5jddzbLjy/H6/dqHafHqNpdR2tZO3lTM7HGSfeQ1i6bHEdKqom3F9US8IdX15q7LsCRH9kxRCn0e8aG3iqLyj1N5rhUIlNtFK8px93u6aajqji2bP3/4x+nTJaChrho6TeY6DXTSOXf3dSu/t/nsqPpLLtfuZf22hKyTYNIMmbLOSg0ZRk4kMgp/y6urZbimgh6iqKgSx/JgLk/ob26mN3/vBdHU5XWsYQQIixJYU0IEdQ+LP2QFlcL84vmax1FhIilb9XicQe4/pbw7Fb7t/lF82l2NfNh2YdaR+kRHA1OyjaeIb4ghl5DErWOIwC9XuHahSlUlLnYuqlF6zidxu/4155EdpUBv43AnCS36z2RTq+jcHYeAa/KqVVl3TDyVCV5yC6ce/ZgGTxYxj+KTqMoCgUPWIkZoefU405adn9xYaLlzFF2//NefK4Oht34BLH68L6PE6HDMmggEVMm4y0tpW3Vaq3jCHFOehWNY+hNT+BzdbD7n/fQcuao1pGEECLsyCd1IURQW3x0MVGmKKblT9M6iggBNdVuPljTxKTL40nLsGgdp0tdnn85kaZIFh+VcZBdTQ2onFhRis6oo/dV8vR8MBk9Loa8AitvL6rB4wn9TdpVv8rxnzuwnwrQ9zEbEb1lT6GezJZgIXdqBs0lbVTvru/CI6n0GrqThL5HsAwZQsSkiXKdE51KZ1To91QE1mwdRx+wYy/x/9ef1x7bwr7XHsRgiWTErb8hJqNIo6RCfDHroEFETP60uCZEqIjN6MeIW5/BYIlk32sPUntsq9aRhBAirEhhTQgRtHwBH0uPL2Vm4UwshvAukojO8fartej1MP+G8H/K2WKwMLPPTJYeX4ovIGNpulLF1io6qh0UTM/GFCUjaYOJTqdww9dSaKj38sF7jVrHuWilz7to2uIj/0cW4scatY4jgkDqsCTi8mMo3ViJo8HZBUdQ6TVsB/GFR2k60Y+IiROkqCa6hCFKof9vI9CZFY780I6nIYCqqpRufZPDS58iKrWAEbc+gy0+TeuoQnwh6+BBRE6donUMIc6LLT6dEbc+Q1RKPoeXPknpx292Qxe8EEL0DCFTWFMU5UpFUU4oilKsKMqPv+DPb1IU5eC//vpEUZTBWuQUQnSejaUbaXQ2sqBogdZRRAgoPe3kk00tTJ+VSHxCz1iQXtBvAQ2OBjaWbtQ6SthqrWinYms1yQMTSCqK1zqO+AIDh0QxcGgkS9+qw2H3f/UPBKmqJW7OvuEh7ToTadfIHn7iU4qi0OfqHHQmPSeWlxLwd2ZnpkrK8O3E9zlG4/H+1O4bJUU10aUsqTr6/yYCb4vK4XuaOfzu05RsXkRK/4kMvfEJTLYYrSMK8T9ZBg7UOoIQ581ki2HoTU+S0n8iJZsWcXTFM/h93bV/qxBChK+QKKwpiqIH/ghMB/oBNyiK0u//fFspMEFV1UHAL4G/dm9KIURne/Xgq8SYY5jee7rWUUQIeOMf1URG6Zk1P1nrKN3mqt5XEWOO4bVDr2kdJSx5nT6OLyvBEmsm/4osreOI/+HGW1PoaPezYklXjsvrOg2bvJx+xkX8ZQbyfiAd2uK/mSKN9L4qm44aBxWbqzrlNdVAgNRLthDX+zgNxwZQt38kIEU10fWiivTkP+ymJfkX1J3YRN5lt9Bv1r3oDdIRLoQQXUVvMNFv1r3kTVhIzZGP2PvaT3B3NGsdSwghQlpIFNaAUUCxqqolqqp6gDeB2f/5DaqqfqKq6r/fFbYDGd2cUQjRiRxeB0uPL2VBvwUyBlJ8pUP72zm4r4O51yYTEdlz9iSyGCzML5rPu8fexeF1aB0nrKiqyqnVZXjtPvrOzcNg7jnnVSjKLbBx6YRY3lteT3OTV+s456V1v48TP3MQVaSn7y9tKHopbojPSyyMo9fgRCo/qaG5tO2iXkv1+2lf/R6xuaepOziU+gMjkKKa6C7ttSUUH70f4isx7Lwb/7ZZWkcS4qIFHHIfLoKfoijkjr2egfMepKO2lF3/+CHttSVaxxJCiJAVKoW1dKDyP/75zL++9mVuA9Z0aSIhRJdacWIFHZ4Obhp4k9ZRRJALBFTe+EcNCUlGps1I0DpOt7tp0E10eDpYeWKl1lHCSs3eehpPtJAzKZ2o1Ait44hzcO3NvfD7VJa8Xqt1lHNmL/Fz9F475hQd/X9rQ2+V4ob4cvmXZ2JNtHBieSmejgsrIKteL20rVuApLqZm7ygajw5Bimqiu9Sf3MaeV+4DNcCIr/+azMnjqF7i4cwiGUkmQlvrO4sJdNi1jiHEOUnuO5bht/wa1AB7XrmP+pPbtY4khBAhyaB1gHP0RZ/2vnC3TUVRJvFpYW3cl/z5HcAdAKmpqXz00UedFFEI0Zl+f+j3JJoSUctUPir/SOs44ksEwzX01DETJcWRTLyyg08+2ax1nG6nqiqJpkR+/9Hv6dXQS+s4Gvn83mcXdW7adegOWiHWT7HzOMUfHb/w1xLdqmiQjQ3vNxKfUkJ8YmfuRXXh9ER+7msfffQRtBjR/akPoOC+/iQf75eFZXEOMj69Pm3/5x4C/VznVRPT+f1kl5Rg67BTlZlJ25v9P/c9wfC+LsKPqqqoZ3eiVmyGyBTUwrnsPX4GBpxBGZxD2R/jKKk9gTqy6bOfGfAFryPnpwhWnpYWql95hbKCfLwmGWsqtNXR0XFO10u18FoCx5ZycPEvUbLHo6TJXqtCCHE+QqWwdgbI/I9/zgA+t8GAoiiDgJeA6aqqNn7RC6mq+lf+tf9aWlqaOnHixE4PK4S4OA2OBnZt2cXdl9zN5EmTtY4j/m3T57+k9TXU7Qrw9j9OkJOv545vD0TXQ0eo3eq9ld/t+B0DRw0kwdbzuvb+/MzBz33tQs9NvzfA/r8fxWv1MezWIZgijReZTnSnYUN93H3HcY4fyOAnv8gNisWBLR/v/tzXxg6bwME7OnD7Agz6cySRfS7VIJkIVdVp9RS/V06+qZDMsann9DMBl4u2pUvx2R1ETb+SpL592fJ06+e+T+v3dRF+/F43x9f8gZqKzSQXjaff1XejN5o/+/PAZSpH7nHQ8m42RaOKSJzw6ftuw779n3stOT9FMNjwydOf+1r8NQtoW7aMoopKoufNxRD/+Ye+hOguH3300TlfL/2TpnJ01XPUHdtMrygDfaff9V/XaCGEEF8uVEZB7gJ6K4qSqyiKCbgeWPGf36AoShbwLrBQVdWTGmQUQnSSd468gy/g46ZBMgZS/G8rltTR1ODl1m+m99iiGsBNA2/CF/DxztF3tI4S8krWV+Kod1E4M1eKaiEoOsbAght7cXBfB3t3tWsd54v5FY7ea8d5JkC/X0cQ2Uf27xPnJ2VIIkn94inbdJbWyq8+zwN2O63vLMZX30DUzKsx9+3bDSmFAFdrHXsW3U/N4Y3kXnYTA+bc/7kFW51Rod9TNqKK9Bx/yEHrPp9GaYW4cMa0NGIWLED1+2l9+x28NaEzllr0bHqjhQFzHiD3spuoObyRPYvux9VWr3UsIYQICSFRWFNV1QfcBbwPHAPeVlX1iKIodyqKcue/vu3nQALwJ0VR9iuK8vnHg4UQIeG1Q6/RL6kfg3sN1jqKCGINdR5WLKln9GUxFA3o2XtgDUkZQlFiEa8dek3rKCGt7nAjNXvrSR/di7j8GK3jiAt0+YxE0jLMLHqpCp83OMZBfiYA7Emh7aCfwkesxI4IleERIpgoikLBVdlYYs0cX1qC1/HlhQh/aystb7+Dv6WF6NmzMefnd2NS0ZM1Vxxm59/vxtF0lkELfkbeZTd+aRex3qbQ/7c2LGk6jtxjp+Okv5vTCnHxDMnJxF53LYrRSNvixXgqKrSOJMQ5URSFvMtuZNCCn+FoOsvOl39Ac8VhrWMJIUTQC4nCGoCqqu+pqtpHVdV8VVUf/9fX/qyq6p//9fe3q6oap6rqkH/9NULbxEKIC1HWUsbHlR9z08CbgmKElwher/+jGoCbvn5uY7DCmaIo3DTwJrZWbKWspUzrOCHJXu/k1HvlRGdGkjMxXes44iIYDAoLb0+lpsrD2pVfOBlcGypwoBfURJL3QwtJU2UPFnHhDGY9fefm4bX7OLmqFFX9/PbTvro6Wt58C9XpJGb+PEzZWRokFT2NqqpU7l7JvtcfxGiJYuTXniWpz+iv/DljrI4Bv4tAH6Fw+Af2bkgqROfTx8YSc9216KKjaVu2HPepU1pHEuKcJfUZzcivPYvREsm+1x+kcveqL7y/EEII8amQKawJIXqGVw68AsCNA2/UOIkIZscO2/lkcyuz5ieRlCyL08Bno1MXHVikcZLQ43P7ObbkNHqTjr5z89Dp5fYo1A0dEc3QEVEsebOW1pYgGCumAoeSoDIaChtJv072rhAXLyo1gtwpGTSdauXs9v8eO+aprKT1ncUoOh0x112LMS1No5SiJ/H7PBxb/TtOrvszCXnDGfm13xKRmPnVP/gvlhQdA38fgRoEl20hLpQ+MpKYa6/BkJxM++r3cB06pHUkIc5ZRGImI7/2LPF5wzi57gWOvfc7/D6P1rGEECIoycqRECJoBNQAL+97mal5U8mJzdE6jghSgYDKKy9WEZ9oZOb8ZK3jBI2c2Bym5E7h5f0vE1CDbPxdEFNVlVOry3A2ueg7Nx9zlBRqw8XC21PxuAO8tahG6yhwLAHKYiG/Gfo0aZ1GhJG0kckk9o2j9MMztJS1AeA+dYq2pcvQRUYSc/11GBISNE4pegJXewN7X32A6oMfkDP2egZd8zMMlvMf1W3L1dP/WVsXJBSi++gsFmLmz8OYnU3H+g04du6Uzh8RMgyWCAZf83Nyxl5P9YEP2Pvqj3G1N2gdSwghgo4U1oQQQWNDyQbKW8u5behtWkcRQWzT+mZKTzu58WspWCzyNvafbht6G2UtZWws3ah1lJBRtauOhmPN5ExKJzY7Sus4ohOlZVi44upEPlzXRFmJU7sgJ+OgOB6yW6FfA8iUY9GJFEWh99U52BIsHFtaQvv2PbSvWo0hOZmY665FHyXXNdH1misOs+vlH2BvqGTg/J+SP2EhinLh92jRA2T/SRH6FKOR6FkzMfctxPHxJ9g3bZLimggZiqIjf8JCBs57EHtDBbtevlv2XRNCiP9DViSFEEHjb/v+Rrw1njl952gdRQSpjnYfb/yzmj5FNsZOiNU6TtCZWzSXOEscf9v3N62jhITWynZKN5whoU8sGaNTtI4jusD8G3oRFa3nb386SyDQ/YtZZ99yw/FESG+DQXVSVBNdwmDW03d+PvGBUtzbtmDMySFm/jx0FovW0USYU1WV8u1L2PfaT9CbbYy49TckF16qdSwhgoai1xN55ZVYhg7BtW8/7atWo/pk1qkIHcl9xzLi1t+gN1vZ99pPKN/xrhSIhRDiX6SwJoQICo2ORpYeX8rNA2/GYpCFIPHFXv9HDR3tfm77djqKIivU/5fFYOHmQTfz7rF3aXQ0ah0nqHk6vBx/twRzjIk+M3PkfApTEZF6bvpGKqeOO9i4rntHMNas8FDyWxekdMDQWimqiS6jBgKo+z8mQVdOi68XtYZBYJCOH9G1vK4ODi15nOKNL5PYZwyjvv47IpOyu/SYfpcs5orQoygKkRMnEjFhPJ7iYloXLyHg1LCTXojzFJmUzaivPUdin9EUb/gbh5Y8js9l1zqWEEJoTgprQoig8OrBV/H4Pdw2TMZAii92/Iidje83MX12Itl5Vq3jBK3bht6Gx+/htUOvaR0laAV8AY69exqfy0/R/HwMFlmADmfjJ8fRb2AEb/y9hpZmb7ccs26dh1NPOom9xADDa+SOW3SZgNtN27LluA4dxjpqJIYRl1F7sImafbIXiug67bWn2fX3u2ko3knvqd9k4LyfYDB3/b5oR+9zEHBLcU2EJuuwYUTNmIGvro6WN9/C39KidSQhzpnBEsHAeQ/Se+rtNBTvZOfff0B77WmtYwkhhKbkY74QQnOqqvLSvpcYkTaCQb0GaR1HBCGfN8BLfzxDQpKRa27spXWcoDY4ZTDDU4fz0t6XZEzHF1BVleK1FbRVdtBnZg6Rvbp+IVBoS1EUbvtOOi53gFf/Vt3lx6t738OJh51ED9LT79c20Mvvoega/rY2Wt9+B29lJZHTphIxdizZE9KJy4vm9PsVtJ3t0DqiCENV+99n9z/uIeDzMOzmp8gaNafbur5bdvk4+mMHAa9cV0VoMvfpTcyC+aguFy1vvoW3uuvvS4ToLIqikDVqLsNueoqA18Puf95L1YF1WscSQgjNSGFNCKG5XVW7OFx3mNuH3q51FBGkVi9r4EyFm6/fmYbFqtc6TtC7fdjtHKo7xO6q3VpHCTpVu+qoPdBA5rhUkvrFax1HdJP0TAuzFySx9aMWDu1v77Lj1K31cOIRJ9GD9Qx4NgK9ReY/iq7hraml5Y03CbS3ET1nDpYBAwBQdAqFc/IwRxs5tvg07jaPxklFuPB7XRxd9RzH3vs9MZn9GPWN3xOb0a9bMxQ8YKX5Ex/Hf+og4JPimghNxrQ0Yq+/DsVkovWdxbiLi7WOJMR5ic3sx6jbfk9MRhHHVv+Oo6uew+91aR1LCCG6nRTWhBCa++uev2I1WLl+wPVaRxFBqK7Gw5I3axk5OpoRl8RoHSck3DDgBqwGK3/Z8xetowSV5tOtlKyvJKEwluzxaVrHEd1szrXJpKSa+Nsfz+LxBDr99Wvf83DiUScxQ/5VVLNJUU10DXdxMa3vvINiMBBz3XWYsrP+68+NVgP9rinA7/Fz5O1i/B6/RklFuLA3nmH3P++l+uAH5Iy9nqHX/xJTRGy350idayLvHguNm3wc+7GDgEeKayI06ePiiL3+OgxJSbSvXIVz716ZNCFCiikilqHX/5KcsddTffADdv/zXuyNZ7SOJYQQ3UoKa0IITTU6Gnnt0GssHLSQGIsUTcR/U1WVl184i06ncOu3pBByrmIsMdw86GZeP/Q6Tc4mreMEBUeDk2NLS4hIslI4K7fbxlaJ4GEy6bjtu+nUVHtY9nZdp7527WoPJ3/hJGaYnv7PRqC3yvklOp+qqjj37KV95SoMiQmfLsomJHzh90Yk2+g7Nw97nYMTy0tlwVZcEFVVqTrwATtf/j7u9kYGX/co+RMWoui0mx6Qfq2Z/HstNG3xcfR+B36XnNsiNOlsNmIWzMdUkI9902Y61m9A9cuDECJ0KDo9+RMWMvi6R3G3N7Lr5R9QdfADuecQQvQYUlgTQmjqb/v+hsvn4q5Rd2kdRQShbZtb2b+nnWtv7kVikknrOCHle6O+h9Pn5G97/6Z1FM15nT6OvlOMTq/Q79oC9CYZJ9pTDRwSxbiJsSxfXE9lWeeMrKld5eHkL53EjtDT/zcy/lF0DdXvx77xQ+ybN2MqKCBmwQJ0ERH/82fiC2LJm5ZJ48kWyj48201JRbjwuewcWf40x1Y/R3RqH0bd/jyJ+SO0jgVA2jVmej9opXm7j6P32vE7ZRFXhCbFaCTq6quxjhqJ+/BhWpe8S8Dh0DqWEOclMX8Eo25/nqjU3hxb9RxHlj+Nzy3nsRAi/ElhTQihGX/Az592/YmJORMZ2Gug1nFEkGlp9vLyn8+S38fKFVcnah0n5AzsNZAJ2RP40+4/4Q/03KdfA/4Ax5eextXioWhBPpYYs9aRhMZu+WYaERE6XniuEt9F7tFTs8LDycecxI400O8ZKaqJrhFwOGh7dymugwexjhhO1NUzUIzGc/rZtBHJpA5L4sy2GmoONHRxUhEuWs8eZ8fL36Pu2BbyJixk2I2PY4kKrnuxlNkm+vzcSsseP4fvtuOzS3FNhCZFUYgYO5bI6Vfiq6mh5Y038TXI9VqEFktUIsNufJy88QupO7aFHX+7i9aqE1rHEkKILiWFNSGEZlaeXEl5aznfG/U9raOIIKOqKi/98SxuV4Dv/DATvV4Wqy/E90Z9j7KWMladXKV1FE2oqsqp1eW0lLZTcFU2MZlRWkcSQSA6xsBt38mgpNjJyiUXPhLy7JtuTj3uJHaUgX5P26SoJrqEr66OljfewFtdTeSVVxBx2WXnNcpWURTyLs8kNjea4vfKaSlv68K0ItSpaoCybe+wZ9H9EAgwbOGvyB17vaajH/+XXleZ6PsLK22H/Bz+vh1fuxTXROiy9O1LzLXXgN9P65tv4T59WutIQpwXRacnd9z1DLv5VxAIsOeV+yjfthhV7fy9jYUQIhhIYU0IoZk/7PwDmdGZzCqcpXUUEWS2ftTC7u1tXLcwhfRMi9ZxQtbsvrPJiM7gD7v+oHUUTZRvqqLuUCNZl6WRMji4nrQX2rpkbAyXjo9h8Rt1lJc4z+tnVVWl/EUXJc+6SJhooP8zUlQTXcN94gQtb70NAZWYa6/FUlR0Qa+j0+sompeHJd7MsSWncTR2zhhUEV7cHU3sf+NnnP7wHyT1Gc2o254nNqOf1rG+UtI0E0VP2Og47ufQXXa8rbKAK0KXMSWFmBtvQB8fT/uKlTh27pT9qkTIic3sx6jbniex92iKP/w7+9/8Oe4O2fdbCBF+pLAmhNDE0fqjbCjdwLdHfBuDzqB1HBFEmhq9/OPPVfQpsnHVbCmGXAyDzsC3R3yb9SXrOVZ/TOs43ap6bz2VH1eTMiSRrMtStY4jgtDX70wnMlL/6UhI77ktxKoBlZLfuqh4yU2vq40UPW5DZ5KimuhcaiCAfetW2t9bgyE5mdgbb8CY0uuiXtNgMdD/2t4oisLhN07ibvd0UloRDupPbmPHS3fRcuYYfad/jwFzf4LRGjpd3okTjfT7lQ17iZ+D37LjrpXimghd+shIYq69BnNhIY6PP6FjzVpUr1frWEKcF6M1ioHzfkLf6XfRUnmEHS/dRf3JbVrHEkKITiWFNSGEJp7f8TxmvZlvDv+m1lFEEFFVlRf/cAavL8C3785EJyMgL9o3h30Ts97M8zuf1zpKt8mJC1C8tpy4/BgKpmef19g00XNERRv45l3plJW4WPr2V4+EDPhUTj7qpOptD+k3muj9kBXFIOeW6FwBl4u25Stw7tqNZeAAYhbMRxcR0SmvbY0z0/+63vicPg6/eapTXlOENp/LztFVz3Jw8WOYoxIY+fVnSR96ZUi+b8aPMzLg2QjctQEOfLMDR2nP3V9WhD7FYCBy+pXYxl76affyG2/ib27WOpYQ50VRFNKHTmfk15/DHJXAwcWPcXTVc/jcDq2jCSFEp5DCmhCi29XZ6/jHgX9w86CbSbRJR5L4/zZtaGbfrnZuuDWV1HSz1nHCQlJEEjcPupm/7/87dfYL308qVPSKDHB5bx+RKTaK5uWh6EJvcVB0nxGjY7hsUizL3q6jtPjLP+T7XSrHfuygbq2X7DvN5H7fEpILzyK4+RoaaH3zLbwVFURMnkzk1Kko+s7d2yoqLYKi+fk4G2QcZE/XVHaAHS99l+pDG8kZez0jv/ZbIpOytY51UWJHGBj050gCXjhwh522Qz6tIwlxwRRFwTZqFNHz5hKw22l5/Q3cxcVaxxLivEUmZTPya78l59LrqD60gR0vfZfm8oNaxxJCiIsmhTUhRLf7/Y7f4/a5uX/s/VpHEUGkptrNP/9SRdGACK64OkHrOGHlvkvvw+1z8/yO8O5ai7GozOjrw+GF/tf1Rm/q3AVpEZ5u/VYa0TEGnn+mEpfr8+PDfB0qR35op2mrj/z7LWR9XYpqovO5jhyl5Y03CbjdxMyfh3XwoC47VlxeDH1m5XbZ64vg5ve6Obn+Rfa9/iCKwciIW54mf8JCdHqj1tE6RWShnsEvRmCIVjh0l52mT2SEnghtpuxsYm+6EX1cHO0rV2HfsgU1IONORWjR6Y3kT7yFEbc8jaI3sPe1n3By/Yv4fTKaWggRuqSwJoToVm3uNv6464/MK5pHn4Q+WscRQcLnDfD7X1eg0yt890eZ6KTLqFMVJhYyt2guf9j1B9rd7VrH6RJRJpXZ/T5dPFt5zIgpIjwWCEXXi4w08N17sqg+6+affz37X3/mqglw4I4O2g74KXzUStp86aQVnUv1+Wj/4AM61q3DmJJC3M03YczI6PLjJveP7/JjiODTVn2KnS//gMqdy8gYfjWXfON5YtL7ah2r01kz9Az+awTWbB1H73VQ+54s3IrQpo+OJubaa7AMGohz9x7a3n2XgN2udSwhzltMel8u+cbzZAy/msqdy9j18g9oq5bx1EKI0CSFNSFEt/rrnr/S4mrhgbEPaB1FBJE3Xqmh5JSTb30/g8Rkk9ZxwtIDYx+gxdXCX/f8Vesonc5mVJnd34tRDyuOGmh1SWFWnJ8BgyOZfU0yH65r5pNNLQB0HPdz4LYO3DUB+v8uguQr5NokOpe/uZmWN97EffgI1lGjiJ4/r9P2UxPiPwX8Xkq2vM7uf96D3+NgyPW/pPCKb6M3WbSO1mVMCToG/SmS6KF6Tj7q5MwiN6qqah1LiAumGAxETplC5BWX462qpuW11/FWVWkdS4jzpjdZKLzi2wy5/pf43HZ2//MeSra8TsAvHcZCiNAihTUhRLdx+9w8u/1ZJudOZmT6SK3jiCCxb3cbq5c2cPmMBEZdGqN1nLA1Kn0Uk3Im8dvtv8Xtc2sdp9N47F5m9/NiNcKqYwYaHHJrIy7Mght70afIxot/OMPplQ4O3NmBYoDBL0YSN9KgdTwRZtwnT9Ly+hsEOjqInjObiLGXoujk+iU6X2vVCXa+/ANKt7xGr6LLuOT2P5KQN0zrWN3CEKkw4NkIEqcaKf2Di+KnXAR8UlwToc3Srx+xN1wPBgOt7yzGsWuXFI1FSErIG8Ylt/+RXkWXUbrlNXa9fDdtVSe1jiWEEOdMPr0JIbrNqwdfpaq9ih+P/bHWUUSQaG7y8sKzlWTlWLj5tlSt44S9H4/7MVXtVbx26DWto3QKr9PH4TdOEm2B1ccN1HbIbY24cAaDwvfuy6KoI5Kzj3mwZukY8rdIIvJlrz7ReVSfj44PP6J99XvoE+KJvfkmTLnBs99Z5SfVWkcQncTvdXFq/Uvs/ue9+FwdDL7mYfrPvg+jNUrraN1KZ1Lo+0srmbeaqVnm4cjddrxtUoQQoc2QlETsjTdgys/HsfVj2t5dSqBDRkOK0GO0RtF/9n0MuubneF3t7PrnPZza8BJ+r0vraEII8ZVkBUoI0S18AR+/+vhXDE0ZytS8qVrHEUEg4Ff5wzOVuF0BfvBAFiaTvCV1tWl50xiaMpSntj6FL+DTOs5F8bn9HHnzFI56F2tOGKhqk/NHXBw1oNL+pp8xTXGUmZwcH9eBKVHOK9F5fI2NtLz5Jq79+7EMG0rMNdegjwquIkfZh2c5s71G6xjiIjWVHWDHi9+lYudS0odcyehvvkBi71Fax9KMolPI+Y6FPj+30rrPz4HbO3BW+rWOJcRF0VksRM24isipU/BWVdH86qt4Sku1jiXEBUnqfQmjv/kC6UOuoGLHUna8+F2ayg5oHUsIIf4nWS0QQnSLRQcWcarpFD8b/zMURfY/ErDkzVqOHOzg1m+lk54Zvnt8BBNFUfjZ+J9xqukUrx58Ves4F8zv8XP07VO0V9vpOy+Piha5nREXx2dXOfYTB2df85C6wITnWj8rVtSze0er1tFEGFBVFeeBA7S89jqBDjvRs2cROWECij74uiETi+Io3XCGsztrtY4iLoDX1cGx937PvtcfBJ2OYTc9Rd/p38Vgkb37AHrNMDHwDxF4m1X2f8NO677QfshICEVRsAwcSOyNN6CLiKBt2XI6Nm1C9cm5LUKPwRJB3+l3Meymp0DRse/1Bzn23u/xujq0jiaEEF9IVqKEEF3O4/fw6KZHGZE2gjl952gdRwSB3dtbWfJGHROmxjFpWpzWcXqUOX3nMDx1OI9uehSP36N1nPPmc/k4/MYpWis7KJydS2KhnD/i4jgr/Ry4rYPGLT7yfmgh/14Lt3wrjbzeVv74TCVnK2UUjbhwAYeDtuUrsG/8EGNmJnELb8aUl6d1rC9VODuXhMJYSj6opGp3ndZxxDlSVZW64x+z/a/fpvrAB2SPWcAlt/2BuOyBWkcLOjFDDQx5OQJjnMKhu+zUrg69eyEh/i9DQgKxN1yPZchgXHv30fLWW/ibm7WOJcQFicseyCW3/4Hs0fOpOvAB2//6beqOfyx7CQohgo4U1oQQXe6lvS9R3lrOY5Mek241wdlKF3/8TSX5va3c9p10OSe6maIoPDb5Mcpayvjb3r9pHee8eJ0+Dr1+kvYqO33n5pHcP0HrSCLENW3zsv/rHXgaVQb8LoL0680oioLJpONHD2ZjNCn85vFyHA4ZGSbOn6e0lOZFr+KtqCBi0kSi58xGFxHcnUM6vY6+c/OI7x3L6fcrqNolxbVg52iq4sBbD3Po3Scw2WIY8bXfUjDp6+iNZq2jBS1rpp7BL0USPUTPyV84Of2sk4BPFmxFaFMMBiInTSJq1kwCbe00v/Y6zgMHpRghQpLeaKZg8jcY+bXfYrLFcOjdJzjw1sM4mqq0jiaEEJ+RwpoQoks5vU4e2/wY47LGcXn+5VrHERpz2P385vFyTGYdP3wwW/ZV08gV+VcwNnMsj215DKfXqXWcc+Kxezn06gnsdU6K5ueTVBSvdSQRwlRVpfIVN0d+6MDcS8fQf0YSN9LwX9+TmGTi7h9nU1Pl5o+/qSQQkIUpcW5Un4+ODz+kbdlydDYbsTfegHXIkJB5kESn11E0L4+EPrGcXldBxdYqWZgNQn6vm5LNr7Ljxe/QcuYovafewchv/I7o1N5aRwsJxmiFAb+LIO1aE1Vvejj0XTuexoDWsYS4aOb8fGJvvgljair2jRtpe3cp/vZ2rWMJcUGiU3sz8hu/o/fUO2g5c5QdL36Hks2v4ve6tY4mhBBSWBNCdK0/7foT1R3VPD758ZBZUBJdIxBQ+eNvKqitdnP3j7NITDJpHanHUhSFxyc/TlV7FS/sfkHrOF/J3e7h4KsncDa56X9tAQl9YrWOJEKY36ly/CEnZX90kTjFyOCXIrGkffEtcb+BkSy8PY09O9p4903p3BFfzXv2LM2LXsW1/wCWYUOJveF6DImJWsc6bzqDjr7z8kgeEE/5pipKN56R4loQaSjeyfYXv03p1jdI6juWMXf+laxRs9Hpgm/fvmCmMyjk32Ol8FErHcf87Lulg7aDsjeVCH36qCii580lYvIkvNXVtLyyCNeRI3IdFyFJp9OTNWo2Y771F5IKL6V06xvsePE7NBTv1DqaEKKHk8KaEKLLtLnbeOrjp5iWN43x2eO1jiM0tuSNWvbsbGfh7WkUDYjUOk6PNyFnAlPzpvLk1idpc7dpHedLuVrdHFx0Ak+bh/7X9yYuL0brSCKEOSr8HLi9g4YNXnLustD3MSt66/9+6OPKmQmMnxzH4tdr2b29tZuSilCjer10fPgRrW+/A4EA0fPnEzlhAorB8NU/HKR0eh19ZuWSOjyJs9trKX6vHFU6NzXlbKnlwOJfcuDtR9HpTQy98QkGzL4Pc6R0cV+M5CtNDPlbJDqLwsE77VS945YChAh5iqJgHTyYuJtvRp+URMe6D2hbvoJAh13raEJcEHNUAgPm3M/QG59A0Rs48PajHFj8S5yt8vCbEEIbUlgTQnSZxzY/RoOjgSemPKF1FKGxzRubWfJGHROnxnHF1bIvVrB4csqTNDgaeHzz41pH+UIdtQ4O/OM4XoePATf2ITY7SutIIoTVve9h/60duOtU+j9rI3Oh+Zw6qRVF4fbvppPX28rzT1dw+pSjG9KKUOKprKT5lUW49u/HMmQIcQtvxpSVqXWsTqEoCvlXZJE5NpWa/Q0cX1ZCwC/j8rqb3+OiZMvrbP/rt2kq3UfBpK9zye3PE58zWOtoYSOit56h/4gkboyB08+4OPmIE79Limsi9OljY4i5ZgERE8bjraig+ZVXcB8/LsVjEbLicwZzye1/IH/S12gq3cf2v9xJyZbX8XtdWkcTQvQwUlgTQnSJ4qZintv+HF8b8jVGpI3QOo7Q0KH97fzld5X0HxTJ7d9Nl5GgQWRE2ghuHXwrz+14jtNNp7WO81+aS9s4+MpxUGDwLYVEp0uXo7gwfpfKyccdnPi5k4jeeoa9Gkn8GON5vYbJrOP+n+cQHWvg14+WUVfj6aK0IpQEPB46NmygbfES0OmIueYaIidNRDGF16hjRVHImZhO7pQMGo41c/TtYnxuv9axegRVDVB9aAPb/nIHpVteI7FgJGO+9ReyxyxApz+/65j4aoYohX5P28i+w0zd+172f60De7Gc6yL0KYqCddgwYm++CX1cHO1r1tK+YiX+tuCdWiHE/6LTG8kZcw1j7vgziQUjKd3yGtv+fAfVhzaiqvIAkBCie0hhTQjRJe5ddy9mg5knJku3Wk9WUebkt0+Uk5Zh4Z6fZmMwyttOsHliyhMYdUbu/eBeraN8pu5QI0fePIU5xsyQrxURkWzTOpIIUfYSP/u/3kHtSi+ZXzcz6E8RmHtd2HUoNs7Ijx/JxedTeeqRUjraZR+ensxTWvrpnjUHD2EZNoy4m2/CmJGudawulTE6hd4zsj978MHdJgXmrtRccZhdf/8hR1f+FnNkAsMXPs3AeT/BEp2kdbSwpugUsm6zMOB3NrytKvu+3iGjIUXYMMTHE3PdtdjGX4anooLmVxbh3LsXNSCFCBGaLDHJDJz3E4Yv/DWmyHiOrvwNu/7xI5orDmsdTQjRA8gKpxCi020o2cDyE8t5cNyDpEalah1HaKSxwcNTj5Rhseh44JEcbBF6rSOJL5AWlcaDlz3IsuPL2Fi6UdMsqqpS+Uk1J1aUEp0ZyeBbCjFHh1fnh+geqqpSs8LD/q914G1WGfA7Gzl3WlAMF9cxm55p4d6Hcqir8fD0L8vweGQhqqfxt7fTtnIVbcuWoxgNxFx3LZETxqMYe0b3UMqQJPpf1xtXi5v9fz9GR42MRu1sjuZqDi55nL2vPoDH3kL/Wfcy4mu/ITazn9bRepS4S4wMey2S2BGfjoY8ep8Db4tc80XoU3Q6bMOHE3fLQowZ6dg3babljTfx1dZqHU2ICxab2Z+RX/st/Wbdg6ejmb2vPsDBJU/gaK7WOpoQIoxJYU0I0al8AR93v383ubG5/HDMD7WOIzTisPv51SNlOO1+fvxILolJUhwJZj8a8yNyYnO4e+3d+ALadOEE/AFOr62g7MOzJPWLZ8D1vTFYDJpkEaHN2xrg+ENOTj3uJGrgp6Mf4y7pvKJH0YAIvvOjTE4cdfCn31YSCEgXQ0+g+v04du+h+Z+v4Ckrwzb2UmJvvhljWprW0bpdfH4Mg2/pCwoceOU4TadatI4UFrzOdk5teIntf7mTppK95I1fyJg7/0LKgEkoinxs14IpXkf/39rI+6GF5u0+9t7UQfMu6VYW4UEfE0P07NlEzbiKQEcHLW+8ScdHmwh4pBtZhCZF0ZE6YDJj7vwLeeMX0lSyh+1/vZNTG17C62zXOp4QIgzJipUQolM9v+N5DtcdZvE1i7EYLFrHERpwOf386tFSzla6uP/hXLLzrFpHEl/BYrDwzLRnWPDOAp7f8Xy3F8W9Di/H3i2htbydjNG9yJmcIXvxiQvStNXLySec+FpVsr9tJnOhGUXf+efSpeNjaWzw8trL1dhsZ7n9rnR0Ojlnw5X37Fk6NmzE39iIKS+PiIkT0MfEaB1LUxG9bAz5ehFH3y7myDvF5F+eRdqIZK1jhSSf20HlruWU73gXv9tJ2uBp5E1YiDkyXutogk/3pkq/3kzMMAPHf+bg8PfsZNxsIvsOCzqTXPdFaFMUBXOfPhizsnB8/AmuffvwFBcTMWE8poICuR8XIUlvtJA77nrShlxOyaZFVOxYxtn975N9yXwyR87CYJZtBoQQnUMKa0KITlPaXMpDHz7EjN4zmFc0T+s4QgMed4Cnf1nGyeMOfnB/FoOHRWkdSZyjeUXzuKr3VTz04UPMLZpLTmxOtxy3o9bB0XeK8XR46TMzh16DErvluCK8+DpUSn7npHaFF1uBjgHPRRDZp2vHz86cl4TD7mfpW3UYTQpf+1aaLECFmYDDgX3LVtxHj6KLiiJq1kzM+flaxwoa5igTgxYWcnxZKaffr8BR7yTv8kx0eumuOhd+n4eze1dT9vHbeJ1tJPUZQ974m4lMztE6mvgCkX30DP1HJCXPOjmzyEPTxz76/MxKVD9ZUhGhT2exEDllMuaivnRs2Ej7qtUYMzKImDgBQ5Ls6yhCkzkynqIZPyBz5GxKNr9KyeZFVO5aTs7Ya0kfNgO9QabqCCEujtwFCiE6haqq3Ln6TnSKjj/N+JMsLvZAXm+A3zxextFDdr77o0xGj4vVOpI4D4qi8MKMF+j3x37cuepO1ty0pst/j+uPNnFyVRkGs57BCwuJSo/s0uOJ8NSyx8fJXzpw16pk3mom63Zzt3URXHtzLzzuAKuXNWA0Kdz09VR5/wsDqs+Hc/9+nDt2ovp8WEeOwHbJJT1mH7XzoTfp6bcgn7IPz3Bmey0dtQ6K5uXL/pj/Q8Dvo/rgB5RufQN3eyPxuUPJm7CQmLRCraOJr6C3KvR+0EbCRC+nnnCy/zY7GTebyb7djM4s134R+oxpacTedCOuQ4dwfLKNltdexzJwALZLL0VnlSkkIjRFJucwaMFDtFadoOSjVzi1/iUqdiwjd9wNpA6aik4vS+NCiAsjVw8hRKd49eCrrDu9juenP09WTJbWcUQ38/lUnnuqggN7O7jj+xmMmxSndSRxAbJisnhyypN8f+33ee3Qa9w86OYuOY4aUCnfdJbKT2qISo+g3/x8TFGyCCvOj8+uUv5nF1Vve7Bk6Bj8VxvRA7v31lZRFG6+LRWvV2XVuw2YTDquvTmlWzOIzqOqKp5Tp7Bv2UqgrQ1jbi4R4y/DEC8j+f4XRaeQOyWTyLQITq0qY9/LR+k7N5/YbOla/09qwE/t0c2UbHkNZ3M1Mel96TfzHuJzBmsdTZyn+EuNDH/TQMnvnJx5xU3jZi99fmYleoAsr4jQp+h0WAcPxlxYiGPbdlwHDuA+cRLb6NFYBg9C0XftRAAhukpMWiFDb3ycprIDnN70CsfXPE/59sXkXXYTvfqNR9HJuS2EOD9y5yeEuGj19np++P4PGZMxhu+M/I7WcUQ383kD/P7pSvbsaOMb305j8uWyABnKvjPyO7xx+A3uXns3V+RfQVJE545/8XR4ObGylJaSNlKGJJJ/RRY6g4wNE+encZOX4meceOpVUq8xkftdC3qrNt0CivLpGEiPJ8C7b9ah1yvMuz5ZOtdCjLemBvtHm/BVV6NPTCR63jxM2fKg0PlIKoonIsnK0cWnOfTaCXKnZJA+qleP/10I+L3UHNpI2bbFOJuriEzOZfA1D5NQMLLH/7cJZYZIhT4/tZE0xcvJx50c+KadjJtMZN1uQW+R/68i9OksFiInTcQyaCD2jzZh37QJ16GDRFw2HmNujly/RMiKzxlMXPYzNBbv4vSmVziy4hlKtrxOzqXXkDJgEjq9TCgQQpwbKawJIS6KqqrcseoO2txtvDTrJXSKLJD3JG5XgN8+Wc6BPe3c8s1ULp8h+2OFOr1Oz4szX2ToX4byrVXfYsm1Szrtg3NzaRsnlpfgd/spmJ5NytBE+VAuzou7NsDp3zhp3OTDVqCj6Inu71L7Ijqdwh13ZRDwwzuv1eJw+Ln5GzIWMhT429pwfPwx7uMnUGw2IqdNxdyvH4pO7mcuhC3RypCvF3FyZSml68/QftZO76uyMVi0/z3tbn6vm6oD6yjfvgR3Wz1RvfIZOO9BkgrHoMj9ctiIG21k+BsGSp93cWaRh4YNXvLusZIwThZmRXgwJCQQPW8unpJS7Js307Z8OYa0NCLGjcOYnqZ1PCEuiKIoJPYeRULBCOpPbKPs47c4tvp3lGx5nezRC0gbPA290ax1TCFEkOt5n3CEEJ3qxb0vsuz4Mn5z+W/ol9RP6ziiGxl9UTzx8xJOHndwx/czpFMtjPRP7s+TU57k3g/u5aW9L/HN4d+8qNcL+ANUbK6i8pMabIkWBt5YSESy7NMgzp3qV6l6x0P5X1yofsi5y0L6DSZ0huApXOn0CnfenYHVpmP10gYcdj/f/G6G1rHElwh02HHs2onr0GEArKNGYR05Ap1JxtJeLINZT9H8fM5sq6Hso7O0V9kpnJ1LTGbPGA3pczs4u28NFTvexWNvISajH32n30VC3nAptocpQ6RC759YSbrcyOmnnRy9x0HCeAN5P7JiSZUiqgh9iqJgzs/DlJON6/ARHNu30/r225jy8rCNvRRDojxcKUKTouhI7juWpMJLaTy9m7JP3uLkuhco+/gNsi6ZR/qwqzCY5HOrEOKLSWFNCHHBjtUf4+61d3N5/uXcPfpureOIbmT2xjPh5AsUe5z84P4sRo+L1TqS6GQ/HPND3j/9Pj9Y+wMuy76Mvol9L+h1XK1uTiwroe2MnZQhieRdnoneKPPrxblrO+Tj9DMuOo77iRtjoOB+K5a04Fyo1Ok+HQsZEann3TfrcNgDjNA6lPgvAacT567dOPfvB1XF0r8f1ksuQR/VM4o+3UVRFDIvTSUmO4oTy0o5uOgEmZemknVZKjp9cP7+XiyPvYUze9+jcvcKfM524nOGkDPnemKzBkhBrYeIHW5g6KJIzr7poeIlF3uuayfzG2YybjSjM8k5IEKfotdjHTwIS78inPv249y9m5ZFr2Lu2xfbpWPQx8RoHVGIC6IoCokFI0nIH0FLxSHKPn6L4o0vU7btHTJHzCJj2FWYImK1jimECDJSWBNCXBC3z80NS24gwhTBP2b/Q0ZA9iA2dxoTTr6AzdOL+x/OYfBwWYwMRzpFxz/n/JNBfx7EDUtuYPtt2zEbzn0chqqq1B1uomRdBWpApXBOHsn9patRnDtXTYCyP7qoX+fFlKjQ9zEriVONQb9ArSgK196cQkSknkUvVTNijNaJBEDA5cK5dy+uvftQfb5PFwFHX4I+NlbraGEtOj2Sobf3o2RdBZUfV9NS2kbhnFyscRato3WajroyKnctp+bwhwT8XhJ7jyLn0uuISb+wB1JEaNMZFTIXmkm+3MjpZ52Uv+Cm7j0v+T+yEDdaxkOK8KAYjdhGjcQyaCDO3btx7tuP++RJLAMGYB05An10tNYRhbggiqIQlz2IuOxBtJ49Ttknb1G65TXKP3mblAGTyBw1h8ikbK1jCiGChBTWhBAX5L4P7uNA7QFW3rCS1KhUreOIbpLYPoSxxc+iUw181OdbLB6+X+tIogulRqXy8qyXmfXmLO774D5+P/335/Rz7nYPxe+V01TcSnRGJH1m5YTVIqroWn6HSuUrbs6+7gYg8xtmMhea0duCu6D2f82Yk0REhB52lmgdpUcLuFy49h/AuXcvqtuNqU9vbKPHYEiQQn93MZj19JmZS1x+DMVrytn30lFyp2SG9D6bqhqgsWQvlTuX0VS6D53BTOqgaWSOnEVEYqbW8UQQMPfS0e+pCJq2eTn9jIvDP3AQN8ZA7l0WIgqkc1+EB53FQsS4cViGDMG5Yweuw4dxHT6MuagI26iR8vCKCGkx6X0ZfM3D2Bsqqdy1nOpDG6k6sI743GFkjZpNvIx4FqLHk8KaEOK8/X3f33l+5/P8cPQPubrP1VrHEd0ku+FqRpY9jMNUzeY+36PDUq51JNENZhbO5O5L7ua5Hc8xPHU4tw659Uu/9z+71AI+lbxpmaSNSEbRyQcO8dXUgErdGi9lf3LhaVBJutxIznctWFJCtyN64rR4tkhhTRP+jg5ce/fhOngQ1ev9dB+YS8dgSErSOlqPldQvnqj0CE6uLKN4TTn1R5vofVU21vjQefDC73VTc3gjFTuX42isxBQZT/7EW0kfciVGm3RoiM+LH2Mk9g0DVYs9VP7dzd6FHfSaYST7Dgvm5NB9fxPiP+kjI4mcMgXrqFE4d+/BdegQ7qNHMRcWYh01EkNCgtYRhbhgEYmZ9J1+F/kTbuHsvjVU7lnF/rcexpaQSdao2aQMmIzeeO6TXYQQ4UMKa0KI87LjzA7uXH0nU3Kn8Otpv9Y6jugGgYDKW4tqGF36OLVRO/mk4B48hjatY4lu9PTlT3Ow7iDfWvUtipKKGJU+6nPf427zULzmP7rUZuaE1GKp0I6qqjRt9VH+Fxf2UwGi+uspetJC9CC5TRXnz9/cjGP3HtzHjkEggLmwD9YRI6SgFiQsMWYG3tSHmv0NlG44w94Xj5B1WRoZo1OC+iEMe0MFZ/etpfrQenwuO1Ep+fSbdQ+9ii5Dp5fxfuJ/05kUMm4002uGkcp/uKl6x0P9Oi/pN5rJWGjGEBG8574Q50MfFUXkpInYRo3EuWcvzoMHcR8/jqmgANuoURh6JWsdUYgLZrRFkzP2OrJGz6P22BYqdyzj+Jo/UPzhP0gdOIX0odOla12IHkZWLIQQ56y6vZp5b88jPSqdtxa8hUEnl5Bw57D7eeG5SnZta+N00mL2ZD2JqvNpHUt0M4POwFsL3mLkiyOZ+9Zc9tyxh5TIFAAC/gBVu+qo2FKFGkC61MQ5U1WVll1+yv/sov2IH0uGjsJfWEmaZgz78+eNf1Rz7cIU9Prw/vfsTr7aOhy7d+E5VQw6HZb+/bEOH44+NkbraOL/UBSF1KFJxBfEcPr9Cso+PEv90Wb6XJ1DZIpN63ifCfi81J34mLN719BSeRhFZyC576WkD5tBbGZ/Gf8kzpsxRkfeD6ykLjBT9icXlX93U7PMQ8YtZlLnmdBb5JwS4UEXEUHE+MuwjhyBc98+XPv201JcjCEjHeuwYZhyc1F00rEpQpNObyR1wGRS+k+ipfIIZ/eu5sye1VTuWk5s1kDSh15JcuFYdAZ58EaIcCer4kKIc2L32Jn71lxaXC1su20bCTYZ5xDuSoodPPdUBY31Hm75Zioz9v0S5PN+j5VoS2TZdcu49OVLmfPmHDbcsgFvtZ/TaytwNLiIL4gh7/JM2UtNnJPW/Z92qLXu9WPupdD7QSvJM4zoDD3jIrN8cT0njzv43n1ZxCfIh+4Lpfr9eE6fxrlvP76qKhSTCeuI4ViHDkUXEaF1PPEVzFEm+i0ooOF4M8VrK9j38lFShyaRPSEdo027j6mOpirO7l9L9YEP8DrbsMamUDDp66QOmoopIlazXCJ8WNN1FD1uo+0GH+V/cVP6OxdnXnFLgU2EHZ3VSsSll2IdPvzT/df27ad9xUp0MTFYhw7F0r8fismkdUwhLoiiKMRlDSAuawAeewvVB9dzdt8ajix/mpPWv5A2eBppQ6dji0vVOqoQootIYU0I8ZW8fi/XvHMNu6p2seTaJQzqNUjrSKILqarKutWNLHqpmpg4Aw8/lU+fogjYr3UyobXBKYN5de6rfOudO1n0p7fobx+EOcZEv2sKSOgTq3U8EeRUVaV1r5/Kf7pp2eHDGK+Qd4+F1DkmdKaetYh41z2ZvPjHs/z4+yf57j1ZDB4WpXWkkBJwOD5doDtwkEBHB7roaCLGj8fcvx86ixT3Q01i3zhisqOo2FxF1Z466o82kTU+jbTh3df97HM7qDv+MdWHNtBScQhF0ZHYZzTpw64iPmcwiiKdFaLzRQ8wMPB5A637fVT8TQpsInzpzGZswz998MVzqhjnvr3YP/oIx7ZPsAwYiGXIYPTRsk+lCF2miFiyxywga/Q8mkr3c3bfGip2LKV8+xJiswaSOnAKyX3HYjAHT2e+EOLiSWFNCPE/BdQA31jxDdYUr+GvV/+VOX3naB1JdCF7h58X/3CG7VtbGToiiu/8KJOoaHmrEJ/ye/wMa7iEt00r8HX42JO0g+9+/VsYTXKOiC+nBlQaN/s484qb9iN+jHEKOXdZSLum5y4ajpsUR26BleeequCph0uZc20y82/ohaGHdOxdKF9tHc79+3GfOAF+P8asLCImT8aUmyMjpUKc0Wog/4osUoYmUfJBBSXrKqnZV0/etCzicrtmsVUN+Gkq20/1oY3Un9hGwOfGGp9G3oSFpA2ahjlKpjOI7hEz5IsLbOnXm0iZZ8YYLe8NIjwoOh3mwj6YC/vgra7GuXcfzr17ce7dizEnB8vAgfKeLkKaouhIyBtGQt4w3O2NVB38gOpDGzi2+jlOvP8CSYVjSB045dOHdnR6reMKIS6SrIQJIb6Uqqrcu+5eXj34Ko9PfpxvDv+m1pFEF9q3u40Xnz9LS7OXG7+WwtXzktCF+T5H4twE/AFq9jVQsbUKr91HcmECa6JWcu/2H1H5YQnPXP6M7DUjPifgValb6+XMq26cZQEsaQr591voNaPnFtT+U3qmhcd+U8Df/3KWpW/VsX93O9/5YSaZOdJx9Z8CLhfuEydwHT6Cv64OjEYsA/pjGTwEQ0K81vFEJ4tItjLgxj40nmyhdP0ZDr9+kviCGLInpHfa/msddWVUH95IzeEP8XQ0YbBEkjpoCqkDpxCdVijvZ0Iz/1Vge9lN2QtuKv7hJmWmibTrzVjTpdggwocxNRXjjFT8bW24Dh3Gdfgw7aWl6CIjMQ/oj2XAAPRR0tEvQpc5KoHcsdeTc+l1tFWdoPrQBmqPbqb2yEeYIuNJGTCJ1AGTiUzO0TqqEOICSWFNCPGFVFXlnnX38Oz2Z/nBJT/gJ+N+onUk0UUcdj+vvFTFRx80k5Fl5p6HCsjvLSMKxKfXgYbjzZR9eBZXs5vozEj6XZNBdHokRerdVATK+O323wJIcU18xtMUoGaFh+rFHjz1KhG9dRT+0krSZCOKdGT9F7NFx50/yGToiGj+9qcz/PjuUyy4sRez5ieh1/fc/1aqquKtPIP7yGHcp4rB70eflETEpImYi4rQmc1aRxRdSFEUEgvjiM+P4eyuWs58UsO+vx0lsSiO7PFp2BKt5/2aHfXl1B3bSt3xrdgbKlB0ehIKRpI6YDKJBaPQGWSvQxE8YoYYGPh7A/ZTfs684ab6XQ9Viz0kTjSQfpOZ6AGyjCPChz46moixl2IbfQme0lJchw7h3L4D546d/+piG4ApJwdFL909IjQpikJMel9i0vvSZ+odNBTvpPrQBip3LqNi+xIiErNILrqM5L7jiEzK0jquEOI8yB2ZEOJzAmqAu967ixd2v8D3R32fZ694VhbMw9T+Pe389fkzNDd5mX1NEgtu7IXRKE/D9nT/LqhVflyDvdaBLclK/2sLiCuI+exaoCgKz135HCoqv93+W1w+F89f9Tw62YemR1JVlfYjfqrf8VC/wYvqhdiRevo8ZCb2EoO8h3yFS8bGUDQggpf/fJa3Xqlh17ZWvv2Dnte95m9txX38OK4jRwm0tqKYzVgGDMAyoD+G5GSt44lupjPoyByTSurQJM7sqKVqZy0Nx5tJHphA9mVpWGL/d4H1/xbTQCE2awB9Lv82vYouwxQR0z3/IkJcoIjeegp/biPnzgBV73ioWeqmYaOPqIF6UueZSJxslA5wETYUvR5zQQHmggL8ra24Dh/5rItNsVox9+mDuagvhpQUua8UIUtnMJLcdyzJfcfisbdSe2wLdce3UrrldUq3vCZFNiFCjBTWhBD/xRfw8a2V3+Ll/S/zwNgHeHLKk3LjGobq6zwseqmKnZ+0kZ5p5kdPF1BQKF1qPZ0aUKk/0kTFJ9U4G1xY4830mZlD8oAElC8YC6ooCr+78ndYDVZ+/cmvcflc/GXmXzDo5Paip/C7VBrWe6l6x0PHcT96G6TMMZE234QtV54sPh/RMQbufiCb7WNb+NufzvLA909y5cxEFtzYC1tE+P63DHTYcZ88ifvECXw1NQAYMzOwjRmDuXcBikGuJz2dwWIgZ0I6aSOSObOthqrdddQfbiKpfzwZo1OISP60g01VVdprimk4tYO64x9/rpiW3PdSzJEyPlSEHnOyjtzvWsj6upmalZ92hJ981EnJsy6SrzKSOteELSd83ydEz6OPifmsi81bXo7r2HFchw/jOnAAXWwslr59MRf1RR8bq3VUIS6YKSKGzBFXkzniatwdTdQd/+TzRba+Y0nsfQlRKQWyLidEEJJPqkKIz7S527h+8fWsKV7DwxMe5uEJD8ubd5jxeAKsXFLP8sV1AFx3SwpXz02ULrUezu8NUHeokTPbanC1uLElW+k7N4/EvnFfWFD7T4qi8NTUp7AarTy66VFq7DW8Of9NosyyJ0K4UlWV9sN+ald7qf/Ag78DbLk68u+zkDzdhCFC3jcuxuhxsfQbGMlbi2pYs6KBjze1cNPXUxk3KTZs9r0MuFx4iotxHz+B98wZUFX0SYnYxo3F3KcP+hjpJBKfZ4owkjc1k/RRvTizo4aafQ3UHqohIrUWQ2QJbTX78HQ0IcU0Ea70NoX068ykXWuidY+f6qWfFtmq3vQQM0xPyhwTCROki02ED0Wvx5SXhykvj4Db/em9w7HjOLZvx7F9O4bUFMy9+2DqXYA+OlrruEJcMHNk/BcX2ba+SenWNzBHJpBQMJKk3pcQlzMYvVHGogsRDKSwJoQAoLylnKvfuJpj9cf4y9V/4Y7hd2gdSXSiQEBl5yetvP6PGupqPIweF8PN30glMdmkdTShIXebh6o9ddTsa8Dn9BGZaqPftALie8ecV1FdURQemfgIqZGpfPe97zL25bGsunEVWTEyviKcuOsD1K3xUrvag7MsgM4MiZON9JppImaYXh7E6ETRMQa+eVcGk6+I5+9/ruJPz1ayfm0jN30jlcKiCK3jXZCA3Y7ndAnu06fxVlRAIIAuJgbrqJGYCwsxJCRoHVGECqUdS+JRbFnbaS47QEuNB1QTJmshGcMWkD12PJaoOK1TCtFlFEUhdoSB2BEGPI0Bald5qFnm4cTPnegjnCRONpI83UTMUP1XPiAlRKjQmc1Y+vfH0r8//vZ23MdP4D5xHPvmzdg3b8aQnIypdwHm3r3Rx8l7gAhd/1lk89hbaTy9i/pTO6g9uomq/WvRGczE5w4mseASEgtGYo6Se2ghtCKFNSEEW8q3cM071+DyuVh781qm5k3VOpLoJKqqcmBvB2++Uk3ZaRcZWWZ++lguA4dIN1FPpaoqbZUdVO2qo+FEMwAJfWJJG5FMTHbURRVHvjXiW+TF5XHNO9cw6sVRLL52MeOyxnVWdKEBb5tK02Yv9eu9NO/wQQCiB+vJ+KmVxMlGDJGyYNeV8nvb+MXT+Wze0Mwb/6zh4ftOM3RkFNcvTCE7z6p1vK/ka2rCc/o0ntMl+KqrAT4tpg0dgqlPHwy9eklBVnwlv8dFc8Uhmkr30VS6H3tDOQCW6CTSh15OfO5I3C2pVO9qpG6Ph5YTFaQMcZAyNAlztDxAJMKbKUFH5q0WMhaaadntp26th4YNXmpXejH3Uki6wkTydCMReTIqUoQPfVQUtpEjsI0cgb+lBfepYjzFp3B8/AmOjz9Bn5DwaZEtLw99crLca4iQZYqIIXXQVFIHTSXg89JccZCGUztpOLWDhlM7AYhIzCY+dwjxuUOJyxqI3tSz9mgWQktSWBOiB/MH/Dy59Uke/uhh8uLy+PDWDylKKtI6lugkxw7beWtRDceP2EnuZeI7P8pk3IRYdHr5YNETeexe6g83UnOgEUe9E4NFT8boFFKHJ2GJ6bxREtPyp7Httm3MenMWE/8xkUcnPsqPx/0YvU4WdEKFr12l8V/FtJadPlQfmFMVMm810+sqI9Ys+X/ZnXQ6hYnT4hl9WSzvr2xgxeJ6Hvj+KS6dEMuCG3uRlh48o2BUnw/v2Sq85eV4SkvwN31avDckJ2O7dAym/Hz0CQmywCX+JzXgp62m+LNCWuuZY6gBHzq9kdjM/qQOnEx8/nAik3L+61xKH5FG0+lWqvfUU7G1moqPq0noE0vqsCRic6Klc0eENUWnEDfKQNwoA/77Pn0fr1vj5cxrbs684sZWoCNxkpHEiUZs+Tq5DouwoY+N/f9Ftvb2T8dFnirGuX0Hzu07UGw2TDk5mHJzMGZlobNI0UGEJp3BSELecBLyhtPn8jvpqC+j6fQemkr3cXbve1TuWo6iMxCTUfRZoS06pQBFPocL0WWksCZED1XdXs3CpQvZULqBGwbcwJ+v/jPRZplLHuoCAZW9u9pYsbiek8ccxMYZ+Ma305h8eTwG2Uetx1EDKk3FrdQebKDpVCtqQCUqLYKCq7JJHhCP3tg1N9lFSUXsuWMP31r1LR768CE+Kv+IV+a8QmpUapccT1w8T0OApo99NG76tDPt38W0tOtMJE01Elkkox61ZrHomH1NMlOmx7Pq3f/X3p3HSVaW99//XKf2paur15nunn1hFgaGYUdQRhHRGNEoRjEC7kSNmvhDn8Rsmseo+T1onjyJEYXwg0SRJLiBUUFQUEBkk2VYBobZ95ne1+quqvv545zuqenpma6erXr5vl+vep3tPnddVV1z5lRd97Kfn/5oH7/5VQfnXJDh8nc0smRZ8qTH5Jyj0N7uJ9I2b/HnS8vnIRQi0txMfPVqoosWad4TOaJiYYiuXS/TsXUdHdueo2P78xRyfQCkZy1i7rlvpXbhGrJzVh5xThHzjLqlWeqWZhnoyLHryX3sfno/res7iFZFaFxVR+NpdaQaJn9vT5FjEUoYjZdFabwsymBrkX0/H2L/L4bYelOOrTfmSMz1qHtthPrXhvX/u0wroaoqEmvWkFizhmJfH4ObtzC4eRODr7xC7vnnwYxwczPRhQuIzptPqKEe8/QdWaYeM6OqcSFVjQuZf8EVFIZydGx/PmiU9Ds2PvAfbHzgPwjFkmTnrCQ7bxXZuaeSaVqKF4pUOnyRaUOJNZEZxjnHLU/dwqfv+TS5fI6b3nITH1jzAX2hmuKGhoo8dH8Hd31/Hzu25WiYFeF91zbz2ktricX1ZWEmGR7qcd8L7ex/oY2h3jyRVJjmcxuZdXr9SftBMRPLcNvbb+OShZfwiZ9+glP/9VS+dtnXuGb1NbreTALOOXpeLNL20BBtD+bpeaEABMm0PwySaSv1Y9tklE6HeffVs3nT5fX87K793PPjVh59eAMrVqW4/B0NrD6rCu8E9swpdHcztH07Q9t3MLR1K8WuLgC8bJb4qlVE588nMncOFtGXdhlbfrCfrh3r/STatnV07lhPMZ8DIFk3l9krLyY7bxW1C84gmsoe1XPEszEWvm4O81/TTOtLHex9tpXtj+xm+292k56dpPG0OhpW1hJN63Mq01u0zqPl3TFa3h1jsLVI6wND7P9lnh1BT7Zoo1F7QZiaV0XInh3WEM8ybXjJJPGVK4ivXIErFsnv2u0n2TZtpu/Bh+jjISwWIzJ3DpG5c4nMnUuotlb3vjIlhSIx6hauoW7hGgAGezto2/wUHVvX0b51Ha2vPA6AF45R3bKM7Nwg0dayjHBUDY5EjpYSayIzyMb2jVz742u5d+O9vHreq7nxLTeyrH5ZpcOSY7BrR4777m7lgXvb6e4qMH9hnE98Zi7nX5QlpCEfZwznHF3be9j/Qjv7X2hnsGcIL+xRs6SaWafVUbM4gxc6+QlWM+NDZ36IV897NR+660O8/0fv57Znb+OG37+BRTWLTno8M91ga5GOx/N0PJan/ZE8g/scGGROC7HgozFqL9LwUFNJdTbMu66azeXvaOAX97TxPz/czz98YTONs6O8/o21rL20lkz1sd/qFzo7/STaDj+ZVuzsBPB/jJrTQuTss4kumE+ouvqYn0umH1cs0Lt/G50719O1cz1dO9bTs38ruCKYR9WshbSseSPZuaeSnXvqUSfSDscLezSsrKVhZS2DPUPse76Nvc+2svHn29j4821k5qapX5albnnNcR0WWWQyitZ5NL09RtPbYwx1Fml7ME/rr/2hn3f/aAgL+fOo1rwqQu0FYd0TyLRhnkekpZlISzOpCy+k0NPD0LbtDG3bxtC2rQxueMUvl0wSnTuXcEsLkZZmP9GmHm0yBUVTWWafupbZp64F/ESb36DpOTq2rmPTQ7eP3Iul6+eRaVlGpnkZ1c3LSNXP1fCRImVSYk1kBugY6OBLv/4S//TbfyIWivGNN3+Dj5z1ETzTTeJUNJgr8sSjXdz3szbWPd1DKARnnVfNpb9Xy6rVaX0BniHyuQIdm7po29BJ24YOhnrzWMioXVJN/Ypa6pZWE4pOjhviZfXLeOB9D/DNx7/JZ+/9LCu+voJPnfcpPvfqz5GNZysd3rSV73F0PpWn49E8HY/n6XulCEA4Y2TPCVN7UZiaC8JEa/R/wVSWSIZ489sauOzNdfz24U7u/Wkbt92ym//89h7Oe1WG176hllNPS5c1v6bL58nv3Ut+126Gdu0iv3s3xe5uACweJ9LSQuSMM4jMaSFUr+GT5GDOFelv20X3no10736Zzp0v0b17A4XBfgDC8TSZ5lNYuOwCMi3LybasIBxPnbT4oukILefOouXcWfTu62f/i+20vtjOxnu3s/He7aRnJ6lbXkPt4mpSsxK6n5JpLVLtMevNUWa9OUox7+h6pkD7b/K0PzzE5n8ZYPO/QKTGqD4zTPVZIbJnhUnMV6JNpodQOk1oxXLiK5YDQSOibdsY2raNwa3byK1fD4BFo4Sbmog0NxFuaibcNBsvGq1k6CJHJZrK0rj8QhqXXwhAfqCXjh0v0LXjRTp3rmfviw+x86m7AQhFE1TNXkJ1yzKqZi2hatYiErVNmH4/FDmEEmsi01j/UD83Pnkjf/fA39HW38bVq6/m71/397RkWiodmkxQoeB47pkeHry/g8ce7qS/v0h9Q4R3XTWLtZfWUlOroYymO+ccffsHRpJpnVu6cUVHKBaiZnGGuqVZapdmCccmRzJtNM88PnrOR7l82eX85S/+kusfvp6bf3czf3Px3/DhMz9MIqIhKI5Vbk+RrmfydD1ToOvpPD0vF6EIXgwyq8M0vjFK9pww6VM8TD1ap51wxOPCi2u48OIadmwb4N6ftvGr+9p5+Fed1NSGedVrsly4NsvCxX7CwBWLFNo7/ETa7t3kd+8iv3cfFP0ErJfJEG5uItJ0FpG5cwjV1ekHVRlRzA/Rs38LPbtf8RNpezbSs3fTSBLNvDDpWQtpOu2SkRbQidrmSfMZSjUkSDUkmP/qZvrbBmhd38H+9e1suX8HW+7fQSQVoXZxhprF1WQXZogk9LVZpi8vbGTPDJM9M8zCj8fJ7S3S/kiezifydDyRZ/99QwBE6vxymTNCZE4Lk1rsYeHJ8W9a5FiEqqsJVVcTX7UK5xzFzk6Gdu4iv3MnQ7t20febR/yCZoTq6gjPaiQ8axbhxkbCDQ1YWP9HyNQSjqeoX3w29YvPBvzfGvrbdo6MMNC5cz1bf/tDXDEP+Mm2dONCqmYtomr2YtKzFpGun48X1u9QMrPp6i8yDfUM9nDD4zdw/cPXs6d3D69d8Fq++oavsqZpTaVDkwkYGiry3DO9PP5IJ48/0kVHe55E0uO8C6u5cG227B4IMjU55xjoyNGxuZvOzd10bOliqNe/sU3Ux2k+t5HaJVkyc1IVGebxaLVkWrjlbbfwyfM+yXX3XMenfvYpvvzgl7nuguu49uxrSUfTlQ5xSij0OXpeKtDzYoHu5wt0PZMnt8sB4MWh6tQQc6+JkT07TOa0EF5M14qZpGVunGs+0syV18zmyce6ePj+Vtbdv4m2R7tZPruPxfW9VNOJFfxrCuEw4dmzSJx1pt8ye/ZsvNTJ60kkk1chP0hf63Z692+ld/+2YLmV/radOOcnYYd/bGk67ZIp+WNLojbOnAtmM+eC2Qx2D9K+qYu2VzppfamDPc+0gkF6dpLq+VVUz6uiem6acFxfo2X6ijV6zL48yuzLo/796PYinU8W6HjCT7bt+7mfaPPiULUyRNUq/16j6tQQ0bqpc08qMhYzI5TNEspmYeUKAIoDA+R37/aTbXt2M7hxE7nnnvdP8LwDybbGRsJ1dYTq6/Hi8cq9CJEJMjOSdS0k61poOu11QEkjqj0b6Q4aUu169j62P/Hj4ByPRG0zqfp5Bx4N80jWthAKq2enzAz6RiAyjbzS9go3PH4DNz91M239bVyy8BJuf83tXDz/4knTQliOrHX/IOue7uHJR7t5+sluBvqLxOIeq8+s4sKLs6w5p4poVF9Yp6NivkjP7j66tvfQvaOXrh09DHb7P1xE0xGyCzNk52fILqginp3688Cc2XQm9119Hw9seYAv/uqLXPfz6/jSg1/ig2s+yB+f/ceag61EvsfR+3KQRHvRX/ZvKYKfRyNab2ROD9HyLr8VeWppCE8tyGckl89T6Oig0NpKvrWNQmsry9paWZLugLP8D0yuGGZba5onu5poLVRTs7iJxWc1c+rqDMnU5OzxKieWw0GkB5few651nQcn0Np3+3NwAJhHsqaJVP08Gpe9inTjIqpmLyJRM32GB4pWRZl1ej2zTq/HFR3dO3tpf6WTji3d7HxsLzse2eMn2mYlycxLk2lJU9WcIlYd1b22TEtmRmJuiMTcELPf6ifacrscXc/m6V5XoGtdgR3fybG94JePNhippSHSy0LB0iPe7GGe/n3I1OXF40QXLCC6YAHgN4AsdneT37OX/J495PfuYXDDK+TWPXfgnFSKUH094fo6P/FWX+/P2RaZGo1ORLxwhMzsJWRmL4HV/j7nivS376J790Z69m707xn3bWHfS48cdL+YqJldknCbS7K2hWS2iXCiSvdLMq0osSYyxfUO9nLXS3dx69O3cveGu/HM423L38Z1r7qO8+ecX+nwZBzdXXmee6aH557pZd3T3ezaMQhAtibMhRdnOfu8DKeuTiuZNs24oqOvdYDePX107+yla3sPvXv6cUX/h+9YdZTqeVVk5qTJLqgiURefljegZsbaBWtZu2Atj2x/hOsfvp6v/eZrXP/w9Vy25DKuWX0NbznlLaSiM6PnTDHn6NtSpG9Tgb5NRfo2FujbWKR/e0kSrcFILw/R8PoI6eUh0stDxBp0fZhJnHO4vj4KnZ0UOjopdLRTaG2l0NpGoaMDXPBhGW5xXVdLdMlSwg31hBsb8aqrqe4tkH+8m52/7eLuB7vp//k2zIMlS5OsOiPNqtVpli5LEo3pszVdOFck19NGf9su+jt20d++i/zZW3GpPbjUHoj0AfD8nWBeiGRtC1WNC5m98uKRH0aStS1Tphfa8WCekZmTJjMnzXygMFSke0cPnVu76dzaw+4n97Hz0b0AhJNhqpqSVDWnqGpOkW5KEU3NnPdKZg4zI95sxJujNF7m7ysMuJEe9L0vFeh5qUD7b/MQJNtCSUidEiJ9SojkohDJBR6JBZ7meJUpy8wIZTKEMhliS5cAQbKtp4fC/v3kW1sp7G8l37qf/qe2Q6Ewcq6XzRKqqfHv0WqyI73jvKoqzV0rk56Z5yfJaluYtfLVI/uL+SH62naMNMwaHumgdcNjuOKBz384liJR00SipolksExkm0jUNhFL106bhloycyixJjIF5fI57n7lbr677rvcuf5O+ob6aK5qHpmrSHOoTU7FgmP7tgE2vNTPhvV9bFjfx7YtAzgH8YTHilNTvP6NdZy6Os28BXE8teycFob68vTu7aN3bz+9e4Llvn5cIRi2L+JR1ZSk5bxZZFpSVLWkiaZn3o9x5885nzv+8A52dO3gxidv5MYnb+TK711JMpLk8mWXc+WqK7ls8WXEwlO7t54rOgb3OwZ2FBnYUaR/a5HejX4ibWCnPycaACFIzPVILvZofNOBJJqGWJoZXKHg/zjT2UWxs8PvhdbRSaGzg2JHJ25o6EDh0gTaKUsJ19YSqqsjVFNz2Dk/0ukwF62t4aK1NeSHiry8vo9nn+rh2d/18MP/3ssP/nMvoRDMX5TglOVJTlme4pQVSeoaItMyyT8dFPKD5Lr2M9C1j4GuvSXr+xjo3MdA5x6K+cGR8mYerroB652F174E65mF9c3irJuWkKxtxgvpa+JooYhHdkGG7IIMAMVCkb59A3Tv7B15tL+ya6R8tCpCqiFBstGfzy3ZkCBZnyAU0XVcppdQ3Kg+I0z1GQeuG8Wco3djgd6XivSs95Ntu+8cpDhw4LxwtZGc7yfZkgtC/vp8j1iTp573MuWYGaGqKkJVVUQXLhzZ74rFkdEE/GRbK4X2doa2bYN8/kAFoZA/11tNllC2Bq+6mlCmCi+TIVRVhUU1tJ5MXl44QrpxAenGBQftLxby9LXtpL99J/0du+gLGnh1797AvhcfGhlW3K8jSrx6FvHqBuKZA4/YyLJeQ0zKpKNvTCJT0Mf+52Pc/NTN1CXquOr0q7hy1ZVcNO8iQp6GcJosBnNFdmwbYOuWAbZuHmDjy/1s3NBPbsC/cUilQiw+JcF5F85i1RlpFi9NEtYXyCmrmC/S356jv3WA/rYB+tsOrA/1HfjCFEmFSc1K0nxOI+nGJKlG/4c2DY9zQEumhc+v/Tx//Zq/5tdbf83t627njufv4PZ1t/PBNR/kpstvqnSIR+Sco9ADuT1Fcnv8ZFn/dj+JNrDd3y7mDpS3ECTmeaRP8Wi8LEJykUdyYYjEPA8vos/F9OQo9vZS6O6h2NNNsaubYk83hWBZ7Oqm2Nt78CmeR6i6Gi9bTaRlDqFsNaHqLF62mlAmc9gEWjnCEY8Vq9KsWJXmD98Lfb0FXljXy0sv9vLyi3388p42fnZXKwA1tWEWLEowb2Gc+QsSzF8Up6k5pvk+T6BiscBgbzuDPf4j19vOYE8buR5/6SfP9jPU13HIudFUllimgVTdHOoXn31QC+FYdSMPXdBzyDnphuqT8KqmBy/kkZ6dJD07SdOZDQDkcwV6dvfRs7PXb1Szr5+Ox7pHGtNgkKiJkaxPEK+NkaiJk6iNEa+JEctoOEmZPryYUbUiTNWKA/tc0ZHb7ejbUqB/c5G+zUX6Nhdo+3WePXeWNBjxINZoxJu9A4+WA+uRWtO9s0wZ5nmEa2sJ19bC0qUj+50L7gfb2yl2dFBo7/BHIWjvYHDzloN6uQFYPI6XqSJUlTlo6aVSeOk0XjJ5TPeDIieCFwqTbphHumHeIceKxQK5zr30tfsjKfS376K/YzcD3fvp3r1xzHvbSDJLPFNPPNNANF1LLF3jL1M1RNPBI1WDp99G5STRVVdkCvr4uR/nipVX8PpFrycSmnk9WyajYsHxvdv3sG3LANu2DLB71+DIENPhsDF/YZyLL6lhybIkS5Ylmd0UVY+0KaQwWGCgc5Bc5yC5rkFynTkGuoLtzkFy3YMjQ/UBRFIREnUx6k7JkqiLk2pMkGpMzsieaEcr5IVGhon85zf9M/duvJfZ6dkVjak46Bhscwy1Ff1lqxtJoOX2OnJ7/fVi/8HneXGIz/FIzPWouSBMvMUjMcf/kUitsqcH5xwul6PY20exrxfX10ext5diXx9N0a2EbYiwDRLCX7Z966GDKwiFCGUyeOk0kfnz8YIWz151NaFsNV46fdKGB0qmQpx1XoazzvN75RQKjq2b+nnpxT5eXt/H1k0DPPO77pHfeyJRY+78OC1zYiwLel7L4RXzQwz1dzHU381gXydD/d3+dl9XsL+Lwd5OP3nW285QXxcH/QcTCCeqiKVqiGcaqJq9mHimkXimXq16KywcC5GdX0V2ftXIPld09Lfn6N3bR9++fnr3DdC/v5+2VzoPJNwACxmJmhjxmjjx6iixTJTY8DITJZqOKJkgU5p5w8NIenDBwceGOv1EW/9WvxHSwM4iuZ1F2h/JM7j/4Gughf2hsWMNHtFGj1iDEW3wiDX6y2iDR7TWCCX070UmLzMjlE4TSqdh7tyDjrli0b+P7Oqm2N3lN74KloX2dga3boXS0QuG64zH8VIp5g8O0p3L+Um3VJB0SybwEgm8eAJLxLGQEg9SWZ4XGmn0NZbS0RhyQUOy4VEZ+tp20L5tHfn+7jHONCLJDLF0LdFUDdFUNZFExn8kg2WiimiyOtiuwtPvqnKUpkxizczeCPwTEAJucs59ZdRxC47/HtAHvM859+RJD1TkJDiz6cxKhyCjeCHjF3e3EU94zJ0f51WvyTJ3fpy58+PMbo4RUmv+KacwWODpf3+RXNcg+f5RLQY9I1oVCeZCSxPPxkjUxUnU+i3Pw/Ep89/rlBAJRXjT0jed8OcZ6iiy/xdDQfLMMdhWZGh4vb1I4dDOHWAQrTNiszySCz1qzgsTm+URm+XvG2lZrV4IU4YrFCj29uIGBigODBy0PHhfDtffP7JNsXhoZZ5HyguTd1GGXJQBlybvIsy/dInf2jhdhZepwuKTdx7FUMhYuCTJwiVJLvt9f19+qMiObTm2bBpgy6Z+tm4e4LlneuntKUz7xJpzRQqDA+RzveQHev1lrpd8ru/g7YG+YNnDYEnirDDYf9i6Q9EEkUSGaLKaeHYWmZbl/o8C6Rq/RW6qZuRHgpk019lUZ56RrIuTrItDae8d58h1DTLQnvN7urcPMNCWo789R+eWLgqDo64pBrGqKI2n1bFgrYZ9l+klUu1RvdqjevWhxwoDjtyukoTbXsfg3iK5fUV61xdoe7B40BCTw7w4RGqMaK1/LxapMaI1HpEao+rUEJnTdb8uk5N53siwktB8yPGRBl1dXX4CrreXYk/vyHpo1y6Gtm33R0AY6/4UsGgUS/jJNn8Z99fjCbx4HIvHsFgcb3iZSmIR3XvIyRMKR0nWNpOsPfTfwLBifojB3nZyPW3BMhjhIdge7Gmnr21H2ffgkWSGaCJDOJ4mHEsRjif9ZSxFOJ4iHBu9nSIUjWtuuBlsStxJmFkI+DpwKbAdeMzM7nTOPV9S7E3A0uBxHvCNYCkiclL8880rNJzjNOJFPOLZGJmWtN9ivDpKvDqmVuPT2GCbY8M/+L/MhDNGpNaI1hqpZSGyNWGitUak1m8FHakxonUe0QbTkI3TzND27XR9/wdjHwyHgx8b4njxOF5tLeHh9VTSbxGcSuElk3ipFBaL8eCXnjikmuVrzjixL+IEC0c85i9KMH9RAqgZ2V8oHNqzarp45o4v0r7lGfK5PsbqQVbKvLD/xTueJhxPEU1Wk6qbM6q1bNVIEm14XcmymcXMiFfHiFfHyC449Hh+IE+ua4hcV85fdubIdQ+p97vMOKG4kVwYIrlw7B42I8Nw7ysGCTfHUIc/woDfOMofYaDnRb+xlCtA87ujSqzJlGVmI/eiY3ny/vtZu3atn4Dr76fY10exvx/XP+AvB/qDbX9Z7O2lsH8/xf7+g+d9K5G88EKS555zIl+WyIR54Qjx6kbi1Y3jlj101Ah/vXTUiOFjfe27yA/0kM/14Ypj/5s4wAjHktTMP53Tr/ir4/PCZMqYKncS5wIbnHMbAczsduCtQGli7a3AvzvnHPCImWXNrMk5t+vQ6kREjj8l1aYXM2PlFUsqHYacRIl5HufeVUWkRsmymSxcV0/60teP/GBhJYk0zV1xZNO5d3b1nBXEMvVBK9XkQS1VR297Yc2VJccuHA8TjodJNSYqHYrIpGZmhKsgXBUitejIw9s558h3A276NgQRGWZmWNJv+FUuNzTkj8aQy/kjNATLcOP4iQuRycwLR4hV1RGrKn90DeccxfzgqJEq+sbcjmcaTmD0MllNlV8HWoBtJdvbObQ32lhlWoAjJta+8IUvHI/4RERmJF1DZXL4g0P26LMpk8Xrwm8+ZJ8+nzIZvI4/PWSfPpsyWXw8U33IPn0+ZTK4aIxOo/psymTzwAMPVDoEkRlmD9y9rtJByEk2VRJrYzX5HN3EqJwymNlHgI8ANDWNPUGiiIgc6mIurnQIImOqb36h0iGIHNam4kuVDkFkTJuWPFLpEEQO69HcGJNmiUwCWwuHn+9HREREZg5zU6ALvJldAHzeOXdZsP0XAM65L5eU+SZwv3Puu8H2emDtkYaCbG5udjt37jyhsYuITDf3B2O2i4hI+XTtFBGZOF07RUQmRtdNEZGJM7MnnHNnT+Qc70QFc5w9Biw1s4VmFgXeDdw5qsydwNXmOx/o1PxqIiIiIiIiIiIiIiIicrxMiaEgnXN5M/sT4G4gBNzsnHvOzP44OH4D8BPg94ANQB/w/krFKyIiIiIiIiIiIiIiItPPlEisATjnfoKfPCvdd0PJugM+frLjEhERERERERERERERkZlhqgwFKSIiIiIiIiIiIiIiIlJRSqyJiIiIiIiIiIiIiIiIlEGJNREREREREREREREREZEyKLEmIiIiIiIiIiIiIiIiUgYl1kRERERERERERERERETKoMSaiIiIiIiIiIiIiIiISBmUWBMREREREREREREREREpgxJrIiIiIiIiIiIiIiIiImVQYk1ERERERERERERERESkDEqsiYiIiIiIiIiIiIiIiJRBiTURERERERERERERERGRMiixJiIiIiIiIiIiIiIiIlIGJdZEREREREREREREREREyqDEmoiIiIiIiIiIiIiIiEgZlFgTERERERERERERERERKYMSayIiIiIiIiIiIiIiIiJlUGJNREREREREREREREREpAxKrImIiIiIiIiIiIiIiIiUQYk1ERERERERERERERERkTIosSYiIiIiIiIiIiIiIiJSBnPOVTqGijGzbmB9peMQEZli6oH9lQ5CRGSK0bVTRGTidO0UEZkYXTdFRCZumXOuaiInhE9UJFPEeufc2ZUOQkRkKjGzx3XtFBGZGF07RUQmTtdOEZGJ0XVTRGTizOzxiZ6joSBFREREREREREREREREyqDEmoiIiIiIiIiIiIiIiEgZZnpi7VuVDkBEZArStVNEZOJ07RQRmThdO0VEJkbXTRGRiZvwtdOccyciEBEREREREREREREREZFpZab3WBMREREREREREREREREpy4xNrJnZG81svZltMLM/r3Q8IiKTnZnNNbNfmtkLZvacmX2q0jGJiEwFZhYys9+Z2Y8rHYuIyFRgZlkzu8PMXgzuPS+odEwiIpOdmf1Z8F19nZl918zilY5JRGSyMbObzWyvma0r2VdrZj83s5eDZc149czIxJqZhYCvA28CVgJXmtnKykYlIjLp5YH/5ZxbAZwPfFzXThGRsnwKeKHSQYiITCH/BPzMObccWI2uoSIiR2RmLcAngbOdc6uAEPDuykYlIjIp3QK8cdS+Pwfuc84tBe4Lto9oRibWgHOBDc65jc65QeB24K0VjklEZFJzzu1yzj0ZrHfj/8DRUtmoREQmNzObA7wZuKnSsYiITAVmlgFeA/wbgHNu0DnXUdGgRESmhjCQMLMwkAR2VjgeEZFJxzn3K6Bt1O63ArcG67cCbxuvnpmaWGsBtpVsb0c/DouIlM3MFgBrgN9WOBQRkcnu/wU+CxQrHIeIyFSxCNgH/J9gGN2bzCxV6aBERCYz59wO4HpgK7AL6HTO3VPZqEREpoxZzrld4HcsABrHO2GmJtZsjH3upEchIjIFmVka+B7wp865rkrHIyIyWZnZ7wN7nXNPVDoWEZEpJAycCXzDObcG6KWM4XhERGayYD6gtwILgWYgZWbvrWxUIiLT10xNrG0H5pZsz0Hdo0VExmVmEfyk2necc9+vdDwiIpPchcDlZrYZf+jx15nZtysbkojIpLcd2O6cGx4Z4Q78RJuIiBze64FNzrl9zrkh4PvAqyock4jIVLHHzJoAguXe8U6YqYm1x4ClZrbQzKL4k3neWeGYREQmNTMz/LkuXnDOfa3S8YiITHbOub9wzs1xzi3Av9/8hXNOLYdFRI7AObcb2GZmy4JdlwDPVzAkEZGpYCtwvpklg+/ul+DPiy4iIuO7E7gmWL8G+NF4J4RPaDiTlHMub2Z/AtwNhICbnXPPVTgsEZHJ7kLgKuBZM3sq2Pc559xPKheSiIiIiExDnwC+EzSE3Qi8v8LxiIhMas6535rZHcCTQB74HfCtykYlIjL5mNl3gbVAvZltB/4W+ArwX2b2QfyGCu8ctx7nNLWYiIiIiIiIiIiIiIiIyHhm6lCQIiIiIiIiIiIiIiIiIhOixJqIiIiIiIiIiIiIiIhIGZRYExERERERERERERERESmDEmsiIiIiIiIiIiIiIiIiZVBiTURERERERERERERERKQMSqyJiIiIiIgcJTNzweP+41Tf/cN1Ho/6xGdmfxC8rwNm1lLpeADM7Kogpg4za6x0PCIiIiIiUh4l1kRERERERE4QM3ubmX0+eGQrHc9MZGZx4GvB5recczsqGU+J24CXgGrgyxWORUREREREyqTEmoiIiIiIyInzNuBvg0e2opHMXB8DFgADwFcqG8oBzrkC8MVg831mtqKS8YiIiIiISHmUWBMRERERETlKzjkLHmuPU31rh+s8HvXNdGaWAP482LzFObezkvGM4TZgC/5387+tcCwiIiIiIlIGJdZERERERERkuroaaAjW/72SgYwl6LX2nWDzCjObV8l4RERERERkfEqsiYiIiIiIyHT10WD5inPuNxWN5PC+HSxDwEcqGYiIiIiIiIxPiTURERERETnhzGytmbng8flg32lm9i0ze8XM+s1sn5nda2ZXTqDeuWb2FTN70szazCxnZjvM7C4ze5+ZhcqoY6mZfdXMnjCzDjMbMrNWM1tvZveY2WfN7NTDnDv8mu4ftf8WM3PANSW7N5WUH37cMuq8+4ePlRH3ecH7t97Mus2sN3gvbzWz15Vx/kGxm1nSzK4zs8fNrD2o7zkz+7KZ1YxX3zjP9dclz3fnOGXfUVL2WTOLH+VzngasDjZvG6fs50uec22w7xIz+56ZbTOzgeC9/ZaZzR91btzMrjWzh4PPcF8Q95+bWWy8OJ1zLwBPBZt/ZGYaBlREREREZBILVzoAERERERGZeczsKuBGoDTxEAcuAS4xsz8CrnDODRyhjmuBfwQSow41B4/fBz5tZpc75zYfpo4PAV8HoqMO1QaPU4BLgfcAZ5Tz2k40MwsD/wp8eIzDi4LH1Wb238A1zrn+MupcBNwFrBx1aGXwuNLM1h7ufSzD3wOvB14DvMXMPuac+9cx4piD/7kAGACuPNJnYBxvK1n/5URONLOvAP/XqN3D7+0VZnaJc+53ZjYb/307e1TZVcCXgd8zs8vK+Bv8Ev/ztQA/GfjUROIVEREREZGTR4k1ERERERE52c4BPhes3wz8CigE+z8IpIA34w+Rd8VYFQRJtRtKdt0F/A/QgZ8Mez+wEDgNeNDM1jjn9o2qYw3wTfyRPPLA94JY9gIRoAlYA7zhKF7j/wf8EPgk8Npg37VB3aW2HkXd/w4M9+obAG4FHsZ/D8/Gfw+rgHcC1Wb2RufckXrAZfDfu+XAncBPgTb8JNJHgXnA/OB5X3MU8eKcK5rZe4GngRrgejN7wDn33HAZM/Pw/+bDveM+45xbdzTPF7g0WBaBxydw3sfxP3ebgP8DvARkgauAC4P47jCzVfjv25nAT4AfA6347+MngTrg1cBfAn81znM+UrJ+GUqsiYiIiIhMWnbk71ciIiIiIiLHLhher7TXUDfwBufcI6PKLQXux+9xBn6vte+NKrMAeB6/p1oBeI9z7r9GlUkA/42foAO4wzn3zlFl/gU/iQLwrtF1lJQLAec55x4e49jwF6oHnHNrxzh+CweGg1w4Xo+vYFjGiwGcc4cMCWhm7wJuDzb3AK9zzj0/qsx8/Pd6YbDrT5xzXz9C7ACDwDuccz8eVaYOeKykrvOcc48e6TUciZldgf93AXgGONc5lwuOfQ6/ZxvAj51zbzmG5wkBXUASeM45t2qc8p8H/rZk14+Bd5b2lgsSf/8DvDHY9QR+4vUq59xBQ02a2Sn4ybEEfrJ39vDrPMzzzwc2B5s/cM69/YgvUEREREREKkZzrImIiIiISCV8ZnRSDcA59zJ+j6th141x7ic5MPzjV8dKiAVD770H2BXsekeQ7Ci1JFh2ciDZcwjnXGGspFqFlA5P+P7RSTUA59wW4N3AcOLsM2XMNffF0Um1oK5W4Esluy6bYLyj67sDv5ciwOnA/wYws3OBLwT7dwMfOJbnwe9tlwzW10/w3L3Ae0cPQemcKwJ/V7LrLOCbo5NqQdmX8Hvfgd/b7dwjPWHwNxseLvL0CcYrIiIiIiInkRJrIiIiIiJysrXjD7E3Jufcz/B7pAGcH8xjVWq4N08e+OoR6unCn4sMwDh4zi2AvmBZhT/c4aQW9NRbE2w+65z76eHKBr3KfhFszsdPAh1OAfiXIxz/Rcn66DnYjsYn8YdXBPiEmf0hcBv+VAUOf164fYc7uUzzS9bbJnjufzjnOg9z7DFgqGT7kJ6AJR4sWS/nfWsPlnPN7JDeiiIiIiIiMjkosSYiIiIiIifbr51zg+OUKU3mnDO8YmaNHEiaPO2cGz1n2Wj3lKyfN+rYz4OlB/zSzD5kZvXj1FdJpb2e7jlsqbHLjH7tpV5yzrUf4fiOkvWaw5Yqk3OuF3+OuEH8hOd/AouDw19zzpXz2sZTW7I+0cTabw93wDmXx59HDaCXAwngsewpWS/nfRuuN4o/z6CIiIiIiExCSqyJiIiIiMjJtmGCZZpL1ptK1l9ifKVlmkYd+zf8+dzAn0PsRmCvmT1rZt80syvNrLqM5zhZjudrL7X/SJWMmhssXsbzjss59yTwV6N2/w743PGoH4iVrHdP8NzWcY4Pvx9t7siTlk/0fesqWU8ctpSIiIiIiFSUEmsiIiIiInKy9Y1fhN6S9XTJetVhyhxOz2HOJeg1dxnwGWBzsNuAVcBH8Icn3GNmXzezTBnPdaIdt9c+SvHowjlmo+c++1EZPRnLVZrUmujfrtz343i/b6VJ3P7DlhIRERERkYpSYk1ERERERE62ZBllSofCK00QdR+mzOGUJuUO6bnknBt0zl3vnFsInIqfULsV2B4UiQEfA35lZpXuRXRcX3slBfPm3TRq9+fM7Izj9BSlwz/WHrbU5DIc5yDlJU5FRERERKQClFgTEREREZGTbckEy+wsWd9Vsr60jHpKy+w8bCnAOfe8c+5G59z7nHNzgddxoCfbauCDZTzfiXTCXvvJZGaGn7xsCHZ9P1hGgduOUwJzc8n6VEusbR1niEkREREREakgJdZERERERORku8jMouOUeW3J+mPDK865vcCWYPMMM2vgyN5Qsv5o+SGCc+6XwJ+U7LpoIucHSocLtKM4v1Rp/JeWUf6oX/sJ9mkOxHY3cAXwrWB7BfCPx+E5NnGg19ey41DfCWVmCzgwD9szFQxFRERERETGocSaiIiIiIicbLXANYc7aGZvwB+WEeA3zrndo4p8L1iGgT89Qj1V+MM4AjjgB0cR6+aS9fBRnF86jGU5wzcelnNuM/BksLk6eJ/GZGZn4/e4Az8R+cSxPPfxEgz1+KVgcx/wvqB31p8BLwb7rzWztx7L8zjnChx4zcsnyRx5R3JeyfpvKxaFiIiIiIiMS4k1ERERERGphOvN7JzRO81sMXBzya6vjnHuPwP9wfpnzewdY9QTB74NNAe7vuece3lUma+a2fnjxPnRkvWnxyk7lk0l62cexfmj/UPJ+i1mtnx0ATObB9zOge97/0+QaKooM0sC38Uf8hHgA8NJU+dcH3Al/vxiAP9mZs2H1jIhPw+WHnD2MdZ1opUm1u6uWBQiIiIiIjKuo2lxKSIiIiIicix+gj+U4UNmdivwa6AAnIM/j1k6KPd959z3Rp/snNtsZn8G3ID/neYOM/tRUG8H/txiHwAWBafsAD4+RhzvAD5tZpuAe/GH4NsLxIC5wDuBM4KyrRwYrnAi7itZ/9/B0JXrgfxwbM65Z8utzDn3X2b2NvwkVBPwpJndAvwG/z08G/89HO6hdQ/wr0cR94nwj8BwIvDrzrkflx50zj1lZp8DrgfqgFvN7A3HMN/YD4D/O1hfC/ziKOs5GYaHPt3knDuaBK6IiIiIiJwkSqyJiIiIiMjJ9hh+z6WbgA8Fj9F+AvzR4Spwzn3TzAw/WRMH3ho8RlsHvCWYm2204fnPFgIfPkK8W4C3O+f2HKHM4eJ8xsy+i58Im4WfNCp1K/C+CVZ7Nf78YR8CEvi96j46Rrk7gKuPITF13JjZHwAfCTafAz5zmKJfAy7DT7y+HvhfHPqelcU595yZPYWfHH0P8DdHU8+JZmYrOJDA/U4FQxERERERkTJoKEgRERERETnpnHPfxu+hdhOwERgA2vB7Ff2Rc+7NzrmBceq4ATgFf3jEp/B7qw0Cu/ATc+8HzgjmJhvLmcAf4A8t+SiwHxgCcsD2oI4/BlY45548TB3luAo/8XV/8Bz5I5Yeh3Mu75z7MHAB8G/ABvxEWz/+0JPfBi5xzr3TOdd/+JpODjNrwf87g//evudwcQVJwGvw3yeAvzezYxlCc7i33mIze9Ux1HMivTdYFoAbKxmIiIiIiIiMzyZB40UREREREZnmzGwt8Mtg8wvOuc9XLBiZMYK59rYAjcC3nHPXVjikg5hZCD8xugD4T+fcuysbkYiIiIiIjEc91kRERERERGRaCno9fiXYvNrMmisZzxiuxE+qFYEvVDYUEREREREphxJrIiIiIiIiMp19A3+IzDjwFxWOZUTQW+2vgs1bnHMvVDIeEREREREpjxJrIiIiIiIiMm0FvdY+HWx+OJjzbTK4ElgGdDKJEn4iIiIiInJkSqyJiIiIiIjItOac+6FzzpxzcefcjkrHA+Cc+3YQU9Y5t7fS8YiIiIiISHmUWBMREREREREREREREREpgznnKh2DiIiIiIiIiIiIiIiIyKSnHmsiIiIiIiIiIiIiIiIiZVBiTURERERERERERERERKQMSqyJiIiIiIiIiIiIiIiIlEGJNREREREREREREREREZEyKLEmIiIiIiIiIiIiIiIiUgYl1kRERERERERERERERETK8P8DgOJPQpUh3C8AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "x = 2\n",
+ "p = 0.1\n",
+ "v = 1.0\n",
+ "noise = 0.1\n",
+ "\n",
+ "iterations = 5\n",
+ "\n",
+ "# generate list of random colors for each iteration\n",
+ "color = [\"#\"+''.join([random.choice('0123456789ABCDEF') for i in range(6)]) for j in range(iterations)]\n",
+ "\n",
+ "fig, ax = make_figure(xlims=(0, 10))\n",
+ "\n",
+ "add_gaussian_bel(ax, x, p, 'green')\n",
+ "\n",
+ "for i in range(iterations):\n",
+ " x = x + v\n",
+ " p = p + noise\n",
+ " \n",
+ " add_gaussian_bel(ax, x, p, color[i])\n",
+ "\n",
+ "update_plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7af4d2a5",
+ "metadata": {},
+ "source": [
+ "## Calculate Normal Distribution from Samples"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "142248bf",
+ "metadata": {},
+ "source": [
+ "In order to calculate the mean and variance of a set of samples, we should these steps:\n",
+ "\n",
+ "1. Calculate the mean of the samples by averaging them.\n",
+ "\n",
+ "$$\n",
+ "\\bar{x} = \\frac{1}{N} \\sum_{i=0}^{N} x_i \\ \\ ; \\ \\ i = 0, 1,\\dots , N\n",
+ "$$\n",
+ "\n",
+ "2. Calculate the square of sum of the samples deviation from the calculated mean from step (1).\n",
+ "\n",
+ "$$\n",
+ "\\sigma^2 = \\frac{1}{N} \\sum_{i=0}^{N} (x_i - \\bar{x})^2 \\ \\ ; \\ \\ i = 0, 1,\\dots , N\n",
+ "$$\n",
+ "\n",
+ "The generalization of these equations in matrix form would be:\n",
+ "\n",
+ "$$\n",
+ "\\vec{x} = \\frac{1}{N} \\sum_{i=0}^{N} \\vec{x}_i \\ \\ ; \\ \\ i = 0, 1,\\dots , N\n",
+ "$$\n",
+ "\n",
+ "$$\n",
+ "P = \\frac{1}{N} \\sum_{i=0}^{N} (\\vec{x}_i - \\vec{x})(\\vec{x}_i - \\vec{x})^T \\ \\ ; \\ \\ i = 0, 1,\\dots , N\n",
+ "$$\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "id": "0c187ac3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class Gaussian(object):\n",
+ " def __init__(self, samples):\n",
+ " self.x = self.calculate_mean(samples)\n",
+ " self.P = self.calculate_covariance(samples)\n",
+ " \n",
+ " def calculate_mean(self, samples):\n",
+ " x = 0.0\n",
+ " for x_i in samples:\n",
+ " x += x_i\n",
+ " x /= len(samples)\n",
+ " return x\n",
+ " \n",
+ " def calculate_covariance(self, samples):\n",
+ " P = 0.0\n",
+ " for x_i in samples:\n",
+ " P += (x_i - self.x)**2\n",
+ " P /= len(samples)\n",
+ " return P"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 62,
+ "id": "e55d43ad",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABtMAAAJgCAYAAAD4c5xoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACkm0lEQVR4nOzdd3gU1d+G8eekAAm9SvkhTVBAEaR3UJq9gigWmogIgiBNlCI1oAgICthQEQRFpSuKhBJ6F6QqvXcSepLz/kHIi0gJJJuT3b0/15Urm83Mzh2FMeabM2OstQIAAAAAAAAAAADwXwGuAwAAAAAAAAAAAICUimEaAAAAAAAAAAAAcA0M0wAAAAAAAAAAAIBrYJgGAAAAAAAAAAAAXAPDNAAAAAAAAAAAAOAaGKYBAAAAAAAAAAAA1xDkOsCl0NBQW6xYMdcZAHzMqVOnlDZtWtcZAHwM5xYAnsC5BYAncG4B4AmcWwB4wooVKw5ba7PfaDu/HqZlypRJy5cvd50BwMeEh4erRo0arjMA+BjOLQA8gXMLAE/g3ALAEzi3APAEY8yOhGzHZR4BAAAAAAAAAACAa2CYBgAAAAAAAAAAAFwDwzQAAAAAAAAAAADgGhimAQAAAAAAAAAAANfAMA0AAAAAAAAAAAC4BoZpAAAAAAAAAAAAwDUwTAMAAAAAAAAAAACugWEaAAAAAAAAAAAAcA0M0wAAAAAAAAAAAIBrYJgGAAAAAAAAAAAAXAPDNAAAAAAAAAAAAOAaGKYBAAAAAAAAAAAA18AwDQAAAAAAAAAAALiGINcBAAAAAAAAAOBtYmJidPLkSUVGRurMmTOKjY11neTTMmbMqA0bNrjOAOBYQECAQkJClD59emXIkEGBgYHJclyGaQAAAAAAAABwE86fP68dO3YoNDRUmTJlUp48eRQQECBjjOs0nxUZGan06dO7zgDgkLVWsbGxOnXqlCIjI3X48GHly5dPqVKl8vixGaYBAAAAAAAAQALFxMRox44dypYtmzJnzuw6BwD8hjFGgYGBypAhgzJkyKBjx45px44dKliwoMdXqHHPNAAAAAAAAABIoJMnTyo0NJRBGgA4ljlzZoWGhurkyZMePxbDNAAAAAAAAABIIC43CAApR/r06RUZGenx4zBMAwAAAAAAAIAEOnPmjNKmTes6AwAgKW3atDpz5ozHj8MwDQAAAAAAAAASKDY2VgEB/FgVAFKCgIAAxcbGev44Hj8CAAAAAAAAAPgQY4zrBACAku98zDANAAAAAAAAAAAAuIYg1wEAAAAp0YmzJ7TmwBptPrJZW45s0Z7IPTp57qQiz0fq5LmTOnPhjIICgpQxTUZlCcmi7KHZVTBzQRXOUlhFsxdV0WxFFRgQ6PrLAAAAAAAAQCIxTAMAAJB07Mwx/fbPb5r19ywt2r1IGw5tkJWVJKUKTKU86fMoY5qMOnbmmFIFplJwQLDOx5zX7pO7dfLcSS3ds1T7o/bHv166VOlUJncZVb29qh4q/JDK5i7LcA0AAAAAAMALec0wzRhTT9JQSYGSPrPWDrji8xkljZV0uy5+Xe9ba79M9lAAAOA1jp05ph/++kHj1o3T/B3zFWNjlClNJlXOW1kNizdU2TxldWfWO3V7xtvjB2Gm13+vxW17XBy6RZ2P0t9H/9afB//Ukt1LtHjPYvWd31e95/VW1pCseuKuJ/RCiRdULV81BRiutg0AAAAAAOANvGKYZowJlDRCUm1JuyUtM8ZMsdb+ddlmr0v6y1r7qDEmu6RNxphvrbXnHSQDAIAUylqrRbsXadiSYfpp4086H3Ned2a9U12qdNFDhR9SuTzlFBRwa98ipUuVTvfmvFf35rxXL5R4QZJ09MxRzfp7lqZvma4J6yfo81WfK2+GvGpRuoValG6hHGlzJOWXBwAAAAAAgCTmLb8SXU7SVmvtP3HDse8kPX7FNlZSemOMkZRO0lFJ0cmbCQAAUqpYG6uJ6yeqzKdlVPmLyvpl6y9qWbqllr+yXBte36A+9/dRpbyVbnmQdi1ZQrKo4d0N9c2T3+jAWwc0/unxuivbXXp3zrvK+2FeNZncRJuPbE7SYwIAAAAAUpbTp09r0aJF+uijj9S4cWPdfffdCgoKkjFGxhiFh4d75LhnzpzRiBEjVKdOHeXMmVOpUqVSjhw5VLFiRQ0cOFDHjx/3yHGRdBYtWqSmTZuqUKFCCg0NVZYsWVS6dGn16dNHhw8fTrLjnDhxQhMnTtRrr72m8uXLK2vWrAoODlbmzJl17733qlWrVlq2bFmij/PKK6/E/7k3xqhnz56Jj08GXrEyTVIeSbsu+3i3pPJXbDNc0hRJeyWll/SstTY2efIAAEBKFWtj9cNfP+i9ue9p/aH1ujPrnfrk4U/0QokXlC5VumRtCQ0OVcO7G6rh3Q218fBGfbTkI325+kt9veZrPX/P8+perbsKZy2crE0AAAAAAM/Lmzevjh49mqzHXLp0qerXr6+dO3f+6/lDhw7p0KFDWrx4sYYOHapx48apevXqydqGG7PWqkOHDhoyZIistfHPnzlzRseOHdPKlSs1fPhwjRs3Tvfff3+ijjVw4EB1795d586d+8/njh8/ruPHj2vt2rX65JNP9MILL2jUqFEKDQ296eOEh4fr888/T1SrK94yTPvvzUkurkS7XF1JqyXdL6mQpN+MMfOttSf/9ULGtJDUQpJy5crlsYk/AP8VFRXFuQVIIdadWKcRf4/QxsiNyheaT+8WfVfVs1dXYFSgli9cnmTHudW/8/XT1tcDZR/QxF0T9f267zX+z/F6IvcTeinfS8oQnOFf23JuAeAJnFsAeALnFvi6jBkzKjIy0nWG34mJifHqf+4xMTH/+jhv3rw6f/68Dhw4IOniyrWk/PrWr1+vOnXqxL/mXXfdpYYNGyp//vw6ceKEZs+eralTp2rv3r165JFHNGPGDJUsWTLJjo/E69Gjhz788ENJUtq0afXiiy+qdOnSOnXqlCZPnqw5c+bowIEDevzxx/XLL7+oRIkSt3ys9evXxw/S8ufPr5o1a+qee+5R1qxZdfz4cc2dO1eTJ09WTEyMxo4dq7179+rHH39UQEDCL3545swZNWvWTNZapU2bVqdOnZIknTt3LtF/9s+ePevx7z3M5RPNlMoYU1FST2tt3biPu0qStbb/ZdtMlzTAWjs/7uM/JHWx1i691uvmzp3b7t2716PtAPxPeHi4atSo4ToD8Gv7o/ar/a/tNX7deOVOn1v97u+nF0q8oMCAwES/tun139/xsT0S//3UgagD6j6nuz5b9Zkypcmkvvf3VYvSLRRgLn5jyrkFgCdwbgHgCZxb4Os2bNigokWLus7wO5GRkUqfPr3rjFv28ssvq0iRIipTpoxKly6tbNmyqXHjxvrqq68kSXPmzEnSc2f58uW1dOnFH403atRIY8aMUVDQv9fWTJ48WU8//bRiYmJUsmRJrVix4qaGI/CcVatWqXTp0rLWKmPGjJo3b95/hmU9e/ZUr169JElly5bVkiVLdPEuWDfvlVde0b59+9SxY0dVq1btqq8zf/58PfTQQ4qKipIkffHFF2rSpEmCj9GpUycNGjRIefLkUYMGDeIHhT169Ej0pR4Tc142xqyw1pa50Xbe8jdjmaTCxpgCxphUkhrq4iUdL7dT0gOSZIy5TdKdkv5J1koAAOCUtVafrfxMRUcU1aQNk/RutXe1ufVmvVzy5SQZpHnSbelu06hHR2nVq6t072336rXpr6n6mOracGiD6zQAAAAAQCJ99dVX6tatm+rWrats2bJ59FiLFy+OH6TlyZNHn3322X8GaZL0+OOPq02bNpKk1atXa9KkSR7tQsK999578Zd27Nev31VXnfXo0UPlypWTJC1btkwzZsy45eMNHDhQ06ZNU/Xq1a85kKtatar6949f36QxY8Yk+PVXrlypwYMHS5KGDRumDBky3GCPlMcrhmnW2mhJrSX9KmmDpInW2vXGmJbGmJZxm/WWVMkY86ek2ZI6W2uT7u57AAAgRdt9crdqf1Nbr0x9RSVuK6G1LdfqvZrvKW2qtK7TbkqJ20po9kuz9eXjX2r9wfUqOaqkBkYMVCy3ggUAAAAASdLcuXMVGBgoY4xuv/12HT9+/Jrbbtu2TRkzZpQxRmnTptWmTZuSL9SRP/74I/5x/fr1lSZNmmtu+/LLL8c/Hj9+vMeapkyZImOMjDHq0KFDgvZp3759/D5Tp0791+estZo/f766deum+++/X7lz51bq1KmVNm1aFShQQA0bNtTUqVN1oyvz9ezZM/4Yly4TOHv2bD333HMqUKCA0qRJI2OMtm/ffitf9i2JjIzUzJkzJUkZMmRQ48aNr7qdMSZ+GCpJEyZMuOVjZs6cOUHb1a9fP/7xn3/+maB9oqOj1axZM8XExOixxx7TU089dUuNrnnLPdNkrZ0hacYVz4287PFeSXWSuwsAALj3/frv9eq0V3Uu5pxGPjxSr5R+Jf7yiN7IGKPGJRvrocIP6bXpr6nz751VMmNJTblvivJmzOs6DwAAAACcql69urp06aJ+/fpp165datGihSZOnPif7aKjo/X888/r5MmTkqShQ4fqzjvvTO7cZLd79+74xzf6ei///K+//qrY2FiPXOrxwQcfVLZs2XT48GGNHz9egwYNuu5xYmJi9N1330mSsmXLpnr16v3r802bNr3qyqjz589r+/bt2r59uyZMmKB69eppwoQJCVoJZa1V69atNWLEiJv74pLY3Llz4+9fVq1aNYWGhl5z27p168Y/vjSA86TLL7V65syZBO0zaNAgrV69WunSpdPw4cM9leZx3vtTJgAA4PfORp9Vi6kt1OCHBiqctbBWv7par5Z51asHaZfLkTaHfqj/gz5/7HNtjNyoEiNLaOqmqTfeEQAAAAB8XK9evVS+fHlJ0vfff68vvvjiqtssXrxYkvT000+refPmydrobU6fPq2///7bI68dHBysZ599VpK0b98+zZ49+7rbz549W/v27ZMkNWzYUMHBwf/6/JkzZ5Q6dWrVqVNH77zzjr788ktNnDhRI0aMUNu2bZUlSxZJ0i+//KKXXnopQY2DBg3SiBEjlDNnTnXp0kVjx47VmDFj1KpVK6VOnfpmv+Rbtm7duvjHpUuXvu622bNnV758+SRJhw8f1sGDB5Ot7dJxr2fLli167733JEl9+vRR3rze+wvCXrMyDQAA4HLbjm3TM98/o5X7VqpL5S56r+Z7Cg4MvvGOXsYYo6almir1/tT6YOcHeuy7x/R2lbf1Xs33Uvx94AAAAADAU4KCgjRu3DiVLFlSkZGReuONN1S1alUVLlxYkrRgwYL4+zvlzZtXn3766VVf5/Tp05o1a1aSNN1+++267777kuS1EiNnzpzxjzdv3nzdba/8/KZNm+L/GSa1F154IX7V19ixY1W7du1rbjt27Nh/7Xel119/XSNHjlSmTJmuun/fvn3VpEkTff/995o8ebLmzp2r6tWrX7dv5syZqlKliqZPn/6vlWyXXwpTunj/r507d173tRKqTp06/1l5dvm/k/z589/wNfLly6cdO3bE75sjR44kabua0aNHxz9++OGHr7uttVbNmzfX2bNnVaZMGbVu3dpjXcmBYRoAAPA6v/39mxr80ECSNKXhFD1656OOizwvT0geLWy2UG1mtFG/Bf20ZM8SfV//e2UOSdh1zQEAAADA1xQsWFAjRozQSy+9pFOnTun555/XwoULderUKTVq1EgxMTEKCAjQN998c817Qh08eFBPPvlkkvS8/PLLV730YHKrUqVK/OOJEyeqf//+11xZ9dVXX/3r4+vdfy6xKlSooMKFC2vLli368ccf9cknn1z1EoanT5/WTz/9JEkqXLhw/ArEy1WtWvW6x0qbNq0+//xzzZgxQ6dOndI333xzw2Fa2rRpE3RJyGHDhv3nn9ut2rZt238GZpf/O8iWLdsNXyNr1qxX3TepLVy4UF9++aUkKU2aNGrXrt11tx81apTmzZunwMBAjR49WoGB3v0Lwb5xDSQAAOA3Pl72sR789kHlzZBXK1qs8ItB2iVpgtLo08c+1eePfa55O+apwucVtPnI9X/LEAAAAAB82YsvvqhGjRpJkpYvX653331Xr776avzKoa5du95wiOJrqlevriJFikiS9uzZo1dffVUxMTH/2W7atGn66KOP/vVcZGSkR9surTKLiorS5MmTr7rNzz//rKioKEkX//3eqvTp0+uee+6RJC1ZsuSG2z/99NPKnTv3LR8vqVz62qWLQ6sbCQkJiX/sqX9/+/fvV4MGDRQbGytJ6t2793Uv2bhnzx517txZktS2bVuVKlXKI13JiZVpAADAK8TExqjdL+00fNlwPVLkEY17apzSp05/4x19UNNSTVUkaxE9OeFJVfisgiY1mKSaBWq6zgIAAABwhXa/tNPq/atdZySrkjlLaki9Icl6zI8//lgLFy7Utm3bFBYWFv98+fLl1bNnz+vumz9/fllrPVyYvAIDAzVy5EjVqVNH0dHR+uqrr7R8+XK9+OKLKliwoE6cOKFff/1VkyZNkrVW+fPn1/bt2yVJAQGeXX/zwgsvqEePHpIuXsrxueee+882l1/i8dKg9GrOnTuniRMnavLkyVqzZo0OHDigqKioq/773L179w3bbrTa7ZIxY8Yk2wpEY0yyHOd6Tp06pccff1x79uyRdPHyjh06dLjuPq1atdLJkyd1++23x98zzduxMg0AAKR4Z6PPqsEPDTR82XC1r9BePz/7s98O0i6pcnsVLWm+RDnT5VS9b+tp4vqJrpMAAAAAwIkMGTJo3LhxCgr6/7Uj6dOn/89z/qRmzZr6/vvv4y9ZuH79enXp0kUNGjTQK6+8oh9++EGS1K1bN9WtWzd+v2tdDjOpFCxYUJUqVZIkzZo1S4cOHfrX5w8ePKjffvtNklS5cmUVLFjwqq/z559/6p577tFLL72kSZMmaevWrYqMjLzmYPTkyZM3bMuTJ8/NfCkeky5duvjHZ86cueH2l2+TPn3S/qzk7Nmzeuyxx7R06VJJF/+dTJgw4bpDvgkTJmjKlCmSpBEjRiht2rRJ2uSKf55JAACA1zh+9rge/+5xzdsxT0PqDlHbCm1dJ6UYBTMX1IKmC/TY+MfU8IeGOnjqoFqX8+4b+gIAAAC+JLlXaPmzPHnyKG3atDpx4oQkqXTp0tccxPiLJ554Qlu3btUnn3yimTNnatOmTYqKitJtt92mypUrq02bNqpcubIeeuih+H1y5szp8a4XX3xRCxcuVHR0tL777ju1adMm/nPfffedoqOj47e7mqNHj6pWrVo6ePCgJClv3rx65JFHdNdddyl79uxKkyZN/LDnnXfe0fr16+MvT3g9l18u0aVMmTLFPz5y5MgNt798m8v3Tazz58/rqaee0h9//CFJKleunGbMmHHd4djRo0fVtu3Fn9vUr19fjzzySJL1uMYwDQAApFiHTh1S7W9q669Df2n80+PV8O6GrpNSnCwhWfTbi7+p4aSGajOzjY6eOap3q72bIi4FAQAAAADJITY2Vi+++GL8IE2SwsPD9cknn+i111677r6nT5/WrFmzkqTj9ttv13333Zckr5VUsmfPru7du6t79+7X3Gb58uWSLl7iMTnubdWgQQO1bdtW58+f19ixY/81TLt0icdUqVKpQYMGV91/+PDh8YO0l19+WZ999tk1VyD27ds3ieullStXxt+TL7Hq1Kmj0NDQfz136X53kuIvv3k9O3bsuOq+iXHhwgXVr19fM2fOlCSVKlVKv/zyS/xKx2uZOnWqDhw4IOnin70+ffpcdbt58+b96/Gl7cqXL6/atWsnxZeQ5BimAQCAFGlf5D7V+qaWth3bpmnPT1OdQnVcJ6VYIcEhmtRgkppPaa4e4T10Lvqc+tzfh4EaAAAAAL/Qv39/zZ07V5L0wAMPaPny5Tpx4oQ6dOig6tWrq1ixYtfc9+DBg3ryySeTpOPll19OtntpJZUVK1bEX2qxZMmSSX6ZwKvJkiWLHnroIf38889aunSptmzZosKFC2vz5s1atmyZpIv35brWJSd///13SVJQUJCGDBly3Ut5Xj5oSirDhg3TV199lSSvtW3bNuXPn/9fz919993xjy8NOq/l0KFD8V9jtmzZlCNHjkQ3RUdH67nnnou/VOM999yj3377LUGXAL38Mpsff/xxgo43Z84czZkzR5LUtm3bFDtM455pAAAgxdl9creqj6muHcd3aGajmQzSEiAoIEhfPP6FXi39qvot6Ke3Zr3lczfRBgAAAIArLVmyRD179pQk5c6dWxMmTNAnn3wi6eK9pJ5//nmdO3fOYWHKNnr06PjHzZo1S7bjXn4Jx0ur0S69v/LzV7q08ilr1qzXvazhqlWr/nNPNm9Qo0YNpU6dWtLFVVvXu2/ar7/+Gv/4wQcfTPSxY2Ji9OKLL2rSpEmSpGLFiun3339X1qxZE/3a3o5hGgAASFH2Ru5Vza9q6sCpA5r14ixVz1/ddZLXCDAB+uThT9S2fFsNXjxYHX/ryEANAAAAgM+KjIxUo0aNFB0dLWOMvvrqK2XNmlXPPfdc/DBmzZo16tKlyzVfI3/+/LLWJsmbt61KW758uT7//HNJ0m233XbdAVZSe+SRR+JXOn377bey1urbb7+VJGXOnFkPP/zwNfe9dFnEgwcPKjIy8prbvffee0lY/P/GjBmTZH9mrlyVJknp0qWLv4/dyZMnr/nnylqr4cOHx3/87LPPJurrio2NVdOmTfXdd99JunjJyNmzZ9/UarfGjRsn6Ovu0aNH/D49evSIf37IkCGJ+ho8iWEaAABIMQ6eOqgHvn5A+6P265dGv6hS3kquk7yOMUYf1v1Qbcq10QeLPtC7c951nQQAAAAAHvH666/r77//liR16NBBtWrViv/ciBEjVLBgQUnS0KFD/7WCx9vlz59fxhgZYxQeHn7VbQ4dOqSNGzde8zUWLVqkhx9+WDExMZIuXpIvOS7xeEmqVKlUv359SdLff/+twYMH659//pF08Z5qqVKluua+ZcuWlXRxmPTOO+/85/PWWnXv3l0///xz0ocnk3ff/f97oXft2lVr1679zzbvvfeelixZIuniP5NLA7grjRkzJv7PS40aNa66jbVWr776qr7++mtJ0h133KE5c+YoZ86cSfDV+AbumQYAAFKEo2eOqtbXtbTj+A798sIvqpi3ouskr2WM0dB6Q3Uu+pz6zu+r1IGp9W51hmoAAAAAfMf48eP1zTffSJJKlSqlvn37/uvz6dOn17hx41SlShVFR0ercePGWrt2rbJnz+4iV3/88Yf++OOPfz23atWq+Meff/55/L3ALnnrrbeuexnD69mxY4fKlSuncuXKqVatWrrzzjuVOnVq7du3T7NmzdLMmTPjr2TSq1cvPfXUU9d9vfz588ffm2vOnDnXHMrcjBdffDH+MpNvv/32v56/nlatWumLL75QTEyMhg0bptWrV+upp55Szpw5tWvXLo0bN06rVq1SsWLFFBISohUrViS6NbmVKlVKnTp1UlhYmE6cOKFKlSqpefPmKleunKKiojRp0iTNmjVL0sWVbKNHj07UfdO7deumzz77TJIUHBysN954Q0uXLr3hfnXq1IlfKejrGKYBAADnzlw4o0fHP6rNRzZr2vPTVC1fNddJXs8Yo08e+UTnYs6pe3h3ZQnJotfLve46CwAAAAASbfv27XrttdckXbzk37hx4666kql8+fLq2bOn3nnnHe3fv19NmjTRtGnTkjtX0sV7X1058Lvc5fcLu6R58+a3PEyTLq42WrJkSfzqpStlypRJAwcO1CuvvHLLx0iMypUrq0CBAtq2bZvOnz8vSSpYsKAqV6583f1Kliypjz76SK1bt1ZsbKzmzZunefPm/WubokWLavLkyWrevLnH+j2tf//+On/+vIYMGaJTp05p6NCh/9kmR44cGj9+vEqWLJmoYy1cuDD+8YULF/TGG28kaL9t27Zd9VKVvojLPAIAAKdiYmP0/I/Pa9GuRRr71FjVKljrxjshQQJMgD577DM9dudjajOzjSasm+A6CQAAAAASJSYmRi+88IJOnDghSRo8eLDuuuuua27ftWtXVat28Rc2p0+f/q97TPmyokWLasyYMXrppZd09913K1u2bAoODlauXLlUtWpVDRo0SJs2bUrwIO3MmTPxj7Nly5YkjcYYvfDCC/96rlGjRgna97XXXlNERITq16+vnDlzKjg4WDly5FClSpU0ePBgLV++XHfccUeSdLpijNHgwYMVERGhxo0bq2DBgkqTJo0yZcqk++67T++9957Wr1+v+++/33WqXzD+fFP63Llz271797rOAOBjwsPDk2SpO+APrLVqPaO1Pl7+sYbWG6o3yifsN59cMr3+e9kE28Pz308l5txy5sIZ1R1bV4t3L9b056erdqHaSRsHwGvxfQsAT+DcAl+3YcMGFS1a1HWG34mMjEzWe3rh/23atCl+YPnYY49p8uTJjouAf0vMedkYs8JaW+ZG27EyDQAAOBMWEaaPl3+sjpU6esUgzVuFBIdoynNTdFe2u/T0xKe17uA610kAAAAAAC9x6V5uAQEB6tevn+MawA2GaQAAwIlv1nyjrrO76rm7n9OAWgNc5/i8TGkyafrz05U2VVo9Ov5RHTx10HUSAAAAAMALXBqmvfjiiypevLjjGsANhmkAACDZ/fb3b2o6panuL3C/vnz8SwUYviVJDnkz5tWUhlO0P2q/npzwpM5Gn3WdBAAAAABIwWJjYxUeHq7UqVOrV69ernMAZ/jJFQAASFabDm/SM98/o2LZi+nHBj8qdVBq10l+pWyesvrmyW+0cNdCNZvSTP58/1wAAAAAwPUFBATo2LFjOnv2rPLly+c6B3CGYRoAAEg2J86e0OPfPa7Ugak19bmpypgmo+skv/RMsWfU9/6+GvfnOPWZ18d1DgAAAAAAQIoW5DoAAAD4h1gbqxd+ekF/H/tbs1+ardsz3u46ya91rdJVGw9vVPfw7iqStYievftZ10kAAAAAAAApEivTAABAsugZ3lPTNk/TkLpDVC1fNdc5fs8Yo08f/VRVbq+il39+WSv2rnCdBAAAAAAAkCIxTAMAAB7344Yf1XtebzUt2VStyrZynYM4qYNS68cGPypH2hx65vtndPTMUddJAAAAAAAAKQ7DNAAA4FHrDq7TSz+9pPJ5yuvjhz+WMcZ1Ei6TPW12fV//e+05uUcv/fSSYm2s6yQAAAAAAIAUhWEaAADwmGNnjumJ755Q+tTp9eOzPyp1UGrXSbiK8v8rr8F1B2v6lukasGCA6xwAAAAAAIAUhWEaAADwCGutmk5pqp0ndurHBj8qd/rcrpNwHa+XfV0N726od+e8q9n/zHadAwAAAAAAkGIwTAMAAB4xfOlw/bzxZ4XVClPFvBVd5+AGjDH69NFPdWfWO/XcpOe05+Qe10kAAABAimWtdZ0AAFDynY8ZpgEAgCS3ct9KvfXbW3qkyCNqV6Gd6xwkULpU6TSpwSSdvnBaz/7wrC7EXHCdBAAAAKQ4AQEBio3lXsMAkBLExsYqIMDzoy6GaQAAIElFnovUsz88q+yh2fXl41/KGOM6CTehaPai+uyxzxSxK0JdZ3d1nQMAAACkOCEhITp16pTrDACApFOnTikkJMTjx2GYBgAAkoy1Vq9Nf03/HPtH458er2yh2Vwn4RY0vLuhWpVppQ8WfaBZf89ynQMAAACkKOnTp1dkZKTrDACApMjISKVPn97jx2GYBgAAksyY1WP07Z/fqmf1nqqar6rrHCTC+3XeV7HsxdT458Y6fPqw6xwAAAAgxciQIYNOnz6tY8eOuU4BAL927NgxnT59WhkyZPD4sRimAQCAJLHh0Aa1ntlaNfPX1NtV33adg0QKCQ7Rt099qyNnjqj5lObcYB0AAACIExgYqHz58unw4cPas2ePTp48qZiYGL5nBgAPs9YqJiZGJ0+e1J49e3T48GHly5dPgYGBHj92kMePAAAAfN656HNqOKmh0gan1dinxiowwPPfxMDzSuYsqX7399Nbv72lz1Z+pldKv+I6CQAAAEgRUqVKpYIFC+rkyZM6fvy49u3bp9jYWNdZPu3s2bNKkyaN6wwAjgUEBCgkJETp06dXzpw5k2WQJjFMAwAASaBHeA+tPbBW056bptzpc7vOQRJ6s+Kbmrl1ptr92k7V81dXkaxFXCcBAAAAKUJgYKAyZ86szJkzu07xC+Hh4SpVqpTrDAB+iss8AgCARFm4a6EGLRyk5qWa6+EiD7vOQRILMAH66omvlCYojZ6f9LzOx5x3nQQAAAAAAJCsGKYBAIBbFnU+Si/99JJuz3i7Btcd7DoHHpInQx59+uinWrFvhXqG93SdAwAAAAAAkKwYpgEAgFvW6bdO+ufYPxrz+BilT53edQ486KmiT6lZqWYasGCAFuxc4DoHAAAAAAAg2TBMAwAAt2TW37P0yfJP9GaFN1U9f3XXOUgGQ+oNUf5M+dV0clOdvnDadQ4AAAAAAECyYJgGAABu2rEzx9R0clMVzVZUfR/o6zoHySRdqnT67LHPtOXoFnWf0911DgAAAAAAQLJgmAYAAG7aG7+8of1R+/X1k18rTVAa1zlIRvcXuF8tS7fU4EWDtWjXItc5AAAAAAAAHscwDQAA3JSfN/6ssWvH6p1q76hM7jKuc+DAwNoDlTdjXjWd0lRno8+6zgEAAAAAAPAohmkAACDBjp89rlbTW6lkzpLqVrWb6xw4kj51en366KfaeHijeob3dJ0DAAAAAADgUQzTAABAgnX+rbMOnjqozx/7XMGBwa5z4FCdQnXUrFQzDVo4SMv2LHOdAwAAAAAA4DEM0wAAQILM3T5Xo1eO1psV3tR9ue5znYMU4IM6Hyh3+txqMrmJzkWfc50DAAAAAADgEQzTAADADZ2NPqtXpr6igpkLqlfNXq5zkEJkTJNRox8ZrfWH1qv3vN6ucwAAAAAAADyCYRoAALih3nN7a8vRLRr1yCiFBoe6zkEK8mDhB/XSvS8pLCJM6w+ud50DAAAAAACQ5BimAQCA61qzf40GLhyoxiUbq1bBWq5zkAJ9UOcDZUydUS2nt1SsjXWdAwAAAAAAkKQYpgEAgGuKiY1R86nNlSUki96v/b7rHKRQ2UKzaVDtQVqwc4G+XPWl6xwAAAAAAIAkxTANAABc07Alw7R873INqzdMWUOzus5BCta4ZGNVy1dNnX7vpEOnDrnOAQAAAAAASDIM0wAAwFXtPLFT78x5Rw8XflgNijdwnYMUzhijkQ+PVOS5SL3121uucwAAAAAAAJIMwzQAAHBVb/76pqy1GvHQCBljXOfACxTNXlSdKnfS12u+1pxtc1znAAAAAAAAJAmvGaYZY+oZYzYZY7YaY7pc5fMdjTGr497WGWNijDFZXLQCAODtftn6i37c8KPeqfaO8mXK5zoHXqRb1W4qlLmQWk5vqXPR51znAAAAAAAAJJpXDNOMMYGSRkh6UFIxSc8ZY4pdvo21dpC1tqS1tqSkrpLmWmuPJnssAABe7mz0WbWZ2UZFshZRh4odXOfAy4QEh+jjhz/W5iObFRYR5joHAAAAAAAg0bximCapnKSt1tp/rLXnJX0n6fHrbP+cpPHJUgYAgI8ZFDFIW49u1fAHhyt1UGrXOfBCdQrVUcO7G6rf/H7acmSL6xwAAAAAAIBE8ZZhWh5Juy77eHfcc/9hjAmVVE/SpGToAgDAp2w7tk39FvRT/WL1VbtQbdc58GIf1v1QqYNSq+0vbWWtdZ0DAAAAAABwy4JcBySQucpz1/qpzKOSIq51iUdjTAtJLSQpV65cCg8PT5JAALgkKiqKcwu8Vrd13aRYqX6G+vw5vgnJ8c/KG88tjfI00idbP9GAHweoYtaKrnMAXIU3nlsApHycWwB4AucWAC4Zb/hNYWNMRUk9rbV14z7uKknW2v5X2fYnSd9ba8fd6HVz585t9+7dm9S5APxceHi4atSo4ToDuGlTN03VY989poG1Bqpj5Y6uc1Is0+u/v+Nje3j++ylvPLdciLmge0feq/Mx57Wu1TqlCUrjOgnAFbzx3AIg5ePcAsATOLcA8ARjzAprbZkbbectl3lcJqmwMaaAMSaVpIaSply5kTEmo6TqkiYncx8AAF7tzIUzeuOXN1QsezG1q9DOdQ58RHBgsIbWG6q/j/2twYsGu84BAAAAAAC4JV4xTLPWRktqLelXSRskTbTWrjfGtDTGtLxs0yclzbLWnnLRCQCAtwqLCNP249s14qERCg4Mdp0DH1K7UG09edeT6ju/r3ad2HXjHQAAAAAAAFIYrximSZK1doa1toi1tpC1tm/ccyOttSMv22aMtbahu0oAALzPzhM7FRYRpmeLP6sa+Wu4zoEPGlx3sGJtrDr+xuVDAQAAAACA9/GaYRoAAPCMzr93liQNrD3QcQl8Vf5M+dW5cmdNWD9Bc7fPdZ0DAAAAAABwUximAQDgxyJ2Rui7dd+pY6WOuj3j7a5z4MM6V+6sfBnzqc3MNoqOjXadAwAAAAAAkGAM0wAA8FOxNlZtf2mrPOnzqHPlzq5z4ONCgkP0QZ0P9OfBPzVy+cgb7wAAAAAAAJBCMEwDAMBPfb3ma63Yt0IDag1Q2lRpXefADzxV9Ck9UOABdZ/TXUfPHHWdAwAAAAAAkCAM0wAA8EOR5yLVdXZXlc9TXs/f87zrHPgJY4w+rPuhTpw7od5ze7vOAQAAAAAASBCGaQAA+KH+C/prf9R+Da03VAGGbweQfO657R41K9VMw5cN1+Yjm13nAAAAAAAA3BA/PQMAwM9sO7ZNgxcN1gslXlD5/5V3nQM/9F7N95QmKI06/869+gAAAAAAQMrHMA0AAD/T8beOCgwI1IAHBrhOgZ/KmS6nulTuop83/qy52+e6zgEAAAAAALguhmkAAPiR+Tvma9KGSepSuYvyZMjjOgd+rH3F9sqbIa/az2qvWBvrOgcAAAAAAOCaGKYBAOAnrLXq+FtH5U6fWx0qdXCdAz8XEhyi/g/018p9KzV27VjXOQAAAAAAANfEMA0AAD/xw18/aMmeJepds7dCg0Nd5wB67p7nVCZ3Gb09+22dvnDadQ4AAAAAAMBVMUwDAMAPnI85r66zu+ruHHfr5Xtfdp0DSJICTIAG1xmsPZF79MHCD1znAAAAAAAAXBXDNAAA/MDI5SP197G/NbDWQAUGBLrOAeJVzVdVTxd9WmERYdoXuc91DgAAAAAAwH8wTAMAwMcdP3tc7819Tw8UeED17qjnOgf4j7BaYTofc149w3u6TgEAAAAAAPgPhmkAAPi4sAVhOnLmiAbWHihjjOsc4D8KZSmk18q8ps9Xfa6Nhze6zgEAAAAAAPgXhmkAAPiwXSd2aciSIXqhxAu6L9d9rnOAa+pWrZtCgkPU7Y9urlMAAAAAAAD+hWEaAAA+7J0578haqz41+7hOAa4rR9oc6lipo37c8KMW717sOgcAAAAAACAewzQAAHzU6v2r9c2ab/RG+TeUL1M+1znADbWv2F450uZQp986yVrrOgcAAAAAAEASwzQAAHxWl9+7KFOaTHq76tuuU4AESZcqnXpU76H5O+drxpYZrnMAAAAAAAAkMUwDAMAnhW8P169//6q3q76tTGkyuc4BEuyV+17RHVnuUJfZXRQTG+M6BwAAAAAAgGEaAAC+xlqrrrO7Kk/6PHq97Ouuc4CbEhwYrL7399W6g+s0du1Y1zkAAAAAAAAM0wAA8DVTN0/V4t2L1aN6D4UEh7jOAW7aM8WeUZncZfTunHd1Nvqs6xwAAAAAAODnGKYBAOBDYmJj9Pbst1U4S2E1KdXEdQ5wSwJMgMJqhWnXyV0asXSE6xwAAAAAAODnGKYBAOBDxv05TusPrVef+/soKCDIdQ5wy+4vcL/qFqqrvvP76sTZE65zAAAAAACAH2OYBgCAjzgfc17dw7urVM5SeqbYM65zgETre39fHTt7TIMXDXadAgAAAAAA/BjDNAAAfMToFaO1/fh29X+gvwIM/4mH9yudu7SeLvq0Bi8erMOnD7vOAQAAAAAAfoqftAEA4AOizkep97zeqp6vuuoUquM6B0gy79V8T6fOn1LYgjDXKQAAAAAAwE8xTAMAwAcMXTxUB08dVP8H+ssY4zoHSDLFshfTCyVe0PBlw7U3cq/rHAAAAAAA4IcYpgEA4OWOnjmqgQsH6vE7H1fFvBVd5wBJrmeNnoqOjVbfeX1dpwAAAAAAAD/EMA0AAC/3wcIPFHkuUr1r9nadAnhEwcwF1axUM41eOVrbjm1znQMAAAAAAPwMwzQAALzY4dOHNXTJUDUo3kD33HaP6xzAY96t9q4CTaB6ze3lOgUAAAAAAPgZhmkAAHixQRGDdPrCafWo3sN1CuBReTLk0etlX9c3a7/RhkMbXOcAAAAAAAA/wjANAAAvdSDqgIYvG67n73leRbMXdZ0DeFyXKl0UGhyqHuEMjwEAAAAAQPJhmAYAgJcaGDFQZ6PPqnv17q5TgGSRPW12tSvfTt//9b1W7VvlOgcAAAAAAPgJhmkAAHihfZH79PHyj/ViiRdVJGsR1zlAsulQqYMypcmknnN7uk4BAAAAAAB+gmEaAABeaMCCAboQc0HvVnvXdQqQrDKlyaT2FdpryqYpWrlvpescAAAAAADgBximAQDgZXaf3K1RK0apSckmKpSlkOscINm9Uf4NZU6TWT3De7pOAQAAAAAAfoBhGgAAXqbf/H6KtbHqVq2b6xTAiYxpMqp9xfaaunmqVuxd4ToHAAAAAAD4OIZpAAB4kR3Hd+izlZ+pWalmyp8pv+scwJlLq9N6ze3lOgUAAAAAAPg4hmkAAHiRvvP7yhijt6u+7ToFcCpD6gzqULGDpm6equV7l7vOAQAAAAAAPoxhGgAAXuKfY//oy9VfqsV9LZQ3Y17XOYBzbcq3YXUaAAAAAADwOIZpAAB4iT7z+ijQBKpr1a6uU4AU4dLqtGmbp7E6DQAAAAAAeAzDNAAAvMCWI1v09Zqv9VqZ15Q7fW7XOUCK0aZ8G2UJyaKe4T1dpwAAAAAAAB/FMA0AAC/Qe15vpQpMpS5VurhOAVKUS6vTpm+ZrmV7lrnOAQAAAAAAPohhGgAAKdzGwxv17Z/fqnW51rot3W2uc4AUp3W51soSkoV7pwEAAAAAAI9gmAYAQArXZ14fpQlKo46VOrpOAVKkDKkz6K2Kb2n6lulaumep6xwAAAAAAOBjGKYBAJCCbTmyRePXjVerMq2UPW121zlAitW6XGtlDcnK6jQAAAAAAJDkGKYBAJCC9V/QX6kCU6lDpQ6uU4AULX3q9Hqr0luasWUGq9MAAAAAAECSYpgGAEAKtf34dn2z9hu1uK+FcqbL6ToHSPFeL/u6soZkVc/wnq5TAAAAAACAD2GYBgBACjVgwQAFmAB1qtzJdQrgFS6tTpu5daaW7F7iOgcAAAAAAPgIhmkAAKRAu07s0hervlCzUs2UJ0Me1zmA1+DeaQAAAAAAIKkxTAMAIAUaGDFQVladK3d2nQJ4lXSp0qlDxQ6auXWmVuxd4ToHAAAAAAD4AK8Zphlj6hljNhljthpjulxjmxrGmNXGmPXGmLnJ3QgAQFLYF7lPn678VC/f+7LyZcrnOgfwOq+Xe12Z0mRS3/l9XacAAAAAAAAf4BXDNGNMoKQRkh6UVEzSc8aYYldsk0nSx5Ies9YWl1Q/uTsBAEgK7y98X9Gx0epapavrFMArZUidQW+Ue0M/bfxJ6w6uc50DAAAAAAC8nFcM0ySVk7TVWvuPtfa8pO8kPX7FNs9L+tFau1OSrLUHk7kRAIBEO3jqoD5Z/okalWikQlkKuc4BvNYb5d9QulTp1G9+P9cpAAAAAADAy3nLMC2PpF2Xfbw77rnLFZGU2RgTboxZYYx5KdnqAABIIoMXDdbZ6LN6u8rbrlMAr5Y1NKtalWmlCesnaMuRLa5zAAAAAACAFwtyHZBA5irP2Ss+DpJUWtIDkkIkLTLGLLbWbv7XCxnTQlILScqVK5fCw8OTvhaAX4uKiuLcglty4sIJDVsyTDWz19S+dfu0T/tcJyGBkuPvPOeWm1felleQCVLbH9qq052dXOcAKRLnFgCewLkFgCdwbgHgkrcM03ZLynvZx/+TtPcq2xy21p6SdMoYM0/SvZL+NUyz1o6WNFqScufObWvUqOGpZgB+Kjw8XJxbcCu6z+muMzFnNPSZobo7x92uc3Atc//7VHL8nefccmtaxrTUx8s/1ifPfqJ8mfK5zgFSHM4tADyBcwsAT+DcAsAlb7nM4zJJhY0xBYwxqSQ1lDTlim0mS6pqjAkyxoRKKi9pQzJ3AgBwS46fPa6hS4bq6aJPM0gDklDHyh1lZDQwYqDrFAAAAAAA4KW8YphmrY2W1FrSr7o4IJtorV1vjGlpjGkZt80GSb9IWitpqaTPrLXrXDUDAHAzPlrykU6eO6l3qr3jOgXwKf/L8D81KdlEn6/6XHsjr7ywAQAAAAAAwI15xTBNkqy1M6y1Ray1hay1feOeG2mtHXnZNoOstcWstXdba4c4iwUA4CZEnovUkCVD9GiRR1UyZ0nXOYDP6Vyls6Jjo/XBwg9cpwAAAAAAAC/kNcM0AAB81cfLPtbRM0f1brV3XacAPqlg5oJqVKKRRq4YqUOnDrnOAQAAAAAAXoZhGgAADp25cEaDFw9WnUJ1VDZPWdc5gM/qWqWrzlw4oyGLh7hOAQAAAAAAXoZhGgAADn2x6gsdPHVQ3ap2c50C+LS7st2l+sXr66OlH+nYmWOucwAAAAAAgBdhmAYAgCMXYi5o0MJBqpS3kqreXtV1DuDzulXtpsjzkRq+dLjrFAAAAAAA4EUYpgEA4Mj4deO148QOda3SVcYY1zmAzytxWwk9dudjGrJkiCLPRbrOAQAAAAAAXoJhGgAADsTaWA1YMEAlbiuhhws/7DoH8BvdqnbT0TNHNXL5SNcpAAAAAADASzBMAwDAgckbJ2vD4Q3qUrkLq9KAZFQuTznVKVRH7y96X2cunHGdAwAAAAAAvADDNAAAkpm1Vv0X9FfBzAVVv3h91zmA3+lWtZsOnjqoL1d/6ToFAAAAAAB4AYZpAAAksz+2/aFle5epc+XOCgoIcp0D+J2qt1dVxf9V1KCFgxQdG+06BwAAAAAApHAM0wAASGb9FvRTrnS59PK9L7tOAfySMUZdq3TV9uPbNWHdBNc5AAAAAAAghWOYBgBAMlq6Z6n+2PaH2ldsr9RBqV3nAH7r4SIPq3j24hoQMUDWWtc5AAAAAAAgBWOYBgBAMuq/oL8yp8msV0u/6joF8GsBJkBdqnTRuoPrNH3LdNc5AAAAAAAgBWOYBgBAMll/cL1+3viz2pRro/Sp07vOAfzes8WfVb6M+TRgwQDXKQAAAAAAIAVjmAYAQDIJiwhTaHCo3ij/husUAJKCA4PVsVJHReyK0Pwd813nAAAAAACAFIphGgAAyWD78e0a9+c4vVr6VWUNzeo6B0CcJqWaKHtodg2IYHUaAAAAAAC4OoZpAAAkg0ERgxRgAtS+YnvXKQAuExocqnYV2mnGlhlas3+N6xwAAAAAAJACMUwDAMDDDkQd0Berv9BL976k/2X4n+scAFdoVbaV0qdKr7CIMNcpAAAAAAAgBWKYBgCAhw1ZPETnY86rc+XOrlMAXEWmNJn0WpnXNGH9BP199G/XOQAAAAAAIIVhmAYAgAcdP3tcI5aN0DPFnlHhrIVd5wC4hnYV2ik4IFjvL3zfdQoAAAAAAEhhGKYBAOBBHy/7WJHnI9WlchfXKQCuI1f6XGpcsrG+XP2l9kftd50DAAAAAABSEIZpAAB4yOkLp/Xh4g/14B0PqlSuUq5zANxAx0oddSH2gj5c9KHrFAAAAAAAkIIwTAMAwEM+X/m5Dp8+rK5VurpOAZAAhbIUUoPiDfTJ8k90/Oxx1zkAAAAAACCFYJgGAIAHnI85r0ELB6ly3sqqmq+q6xwACdS5cmdFno/Ux8s+dp0CAAAAAABSCIZpAAB4wLg/x2nXyV16u+rbrlMA3ISSOUuq3h31NGTxEJ25cMZ1DgAAAAAASAEYpgEAkMRibawGRgxUidtK6ME7HnSdA+Amda3SVYdOH9IXq75wnQIAAAAAAFIAhmkAACSxaZunacPhDepcubOMMa5zANykqrdXVcX/VdSghYN0IeaC6xwAAAAAAOAYwzQAAJLYwIiBypcxnxoUb+A6BcAtMMaoa5Wu2nFihyasn+A6BwAAAAAAOMYwDQCAJBSxM0IRuyLUoWIHBQUEuc4BcIseLvKwimcvrgELBijWxrrOAQAAAAAADjFMAwAgCQ1cOFBZQrKoaammrlMAJEKACVCXKl20/tB6Td883XUOAAAAAABwiGEaAABJZMOhDZqyaYpal22ttKnSus4BkEjPFn9W+TLmU/8F/WWtdZ0DAAAAAAAcYZgGAEASeX/h+woJClHrcq1dpwBIAsGBwepYqaMW7V6kBTsXuM4BAAAAAACOMEwDACAJ7I3cq2/WfqOmpZoqe9rsrnMAJJEmpZooW2g2DVw40HUKAAAAAABwhGEaAABJYMjiIYqxMWpfsb3rFABJKDQ4VG3KtdG0zdO0/uB61zkAAAAAAMABhmkAACTSibMnNHL5SNUvVl8FMxd0nQMgib1e9nWFBofq/UXvu04BAAAAAAAOMEwDACCRRq0YpcjzkepUuZPrFAAekDU0q5qVaqZv136r3Sd3u84BAAAAAADJjGEaAACJcC76nIYsHqJaBWvpvlz3uc4B4CHtK7ZXrI3V0MVDXacAAAAAAIBkxjANAIBE+PbPb7Uvap86VWJVGuDL8mfKrwbFG2jUilE6fva46xwAAAAAAJCMGKYBAHCLYm2sBkYMVKmcpVSrYC3XOQA8rGOljoo8H6lRy0e5TgEAAAAAAMmIYRoAALdo6qap2nRkkzpV7iRjjOscAB5WKlcp1S5YW0OWDNG56HOucwAAAAAAQDJhmAYAwC0auHCg8mfKr2eKPeM6BUAy6Vy5s/ZH7dc3a79xnQIAAAAAAJIJwzQAAG5BxM4ILdy1UB0qdlBQQJDrHADJ5P4C9+u+XPdp0MJBirWxrnMAAAAAAEAyYJgGAMAtCIsIU9aQrGpSsonrFADJyBijTpU6afORzZqyaYrrHAAAAAAAkAwYpgEAcJP+OvSXpm6eqjbl2ihtqrSucwAks6eLPa0CmQooLCJM1lrXOQAAAAAAwMMYpgEAcJPeX/i+QoJC9Hq5112nAHAgKCBIHSp20OLdixWxK8J1DgAAAAAA8DCGaQAA3IQ9J/do7NqxalaqmbKFZnOdA8CRJqWaKGtIVg2MGOg6BQAAAAAAeBjDNAAAbsKQxUMUY2PUvmJ71ykAHAoNDlWbcm00dfNU/XXoL9c5AAAAAADAgximAQCQQMfPHteoFaPUoHgDFchcwHUOAMdeL/e6QoJC9P7C912nAAAAAAAAD2KYBgBAAo1aPkqR5yPVqVIn1ykAUoBsodnUrFQzjV07VntO7nGdAwAAAAAAPIRhGgAACXAu+pyGLBmi2gVrq1SuUq5zAKQQ7Su2V6yN1ZDFQ1ynAAAAAAAAD2GYBgBAAoxdO1b7o/arU2VWpQH4fwUyF1CD4g00asUoHT973HUOAAAAAADwAIZpAADcQKyN1aCFg1QqZyk9UOAB1zkAUpiOlToq8nykRi0f5ToFAAAAAAB4AMM0AABuYMqmKdp0ZJM6V+4sY4zrHAApTKlcpVS7YG0NWTJE56LPuc4BAAAAAABJzGuGacaYesaYTcaYrcaYLlf5fA1jzAljzOq4t+4uOgEAvsVaq7CIMBXIVEBPF3vadQ6AFKpT5U7aH7VfY9eOdZ0CAAAAAACSmFcM04wxgZJGSHpQUjFJzxljil1l0/nW2pJxb+8layQAwCdF7IrQ4t2L1aFiBwUFBLnOAZBCPVDgAZXKWUqDFg5SrI11nQMAAAAAAJKQVwzTJJWTtNVa+4+19ryk7yQ97rgJAOAHwiLClC00m5qUauI6BUAKZoxRp8qdtOnIJk3dNNV1DgAAAAAASELeMkzLI2nXZR/vjnvuShWNMWuMMTONMcWTJw0A4KvWH1yvaZunqU25NgoNDnWdAyCFe6bYM8qfKb8GLhzoOgUAAAAAACQhb7lelbnKc/aKj1dKymetjTLGPCTpZ0mF//NCxrSQ1EKScuXKpfDw8KQtBeD3oqKiOLf4iLCNYUoTkEb3nr+Xf6e4ruT488G5xTs8lu0xDds6TB9N/kj3ZLzHdQ5wQ5xbAHgC5xYAnsC5BYBLxtorZ1IpjzGmoqSe1tq6cR93lSRrbf/r7LNdUhlr7eFrbZM7d267d+/eJK4F4O/Cw8NVo0YN1xlIpN0nd6vg0IJqWaalhj04zHUOUhDT67+/42N7eP77Kc4t3uHU+VPKNySfKuWtpCnPTXGdA9wQ5xYAnsC5BYAncG4B4AnGmBXW2jI32s5bLvO4TFJhY0wBY0wqSQ0l/eunE8aYnMYYE/e4nC5+bUeSvRQA4BOGLB6iWBur9hXbu04B4EXSpkqr1uVaa+rmqfrr0F+ucwAAAAAAQBLwimGatTZaUmtJv0raIGmitXa9MaalMaZl3GbPSFpnjFkjaZikhtYblt0BAFKc42ePa9SKUXr27meVP1N+1zkAvEzrcq0VEhSi9xe+7zoFAAAAAAAkAW+5Z5qstTMkzbjiuZGXPR4uaXhydwEAfM/I5SMVdT5KHSt1dJ0CwAtlC82mZqWaadSKUepds7fyZMjjOgkAAAAAACSCV6xMAwAguZyNPquhS4aqTqE6KpmzpOscAF6qfcX2irExGrpkqOsUAAAAAACQSAzTAAC4zNi1Y7U/ar86VerkOgWAFyuQuYAaFG+gkctH6sTZE65zAAAAAABAIjBMAwAgTkxsjAYtHKTSuUrr/gL3u84B4OU6VuqoyPORGrVilOsUAAAAAACQCAzTAACIM2XTFG0+slmdKneSMcZ1DgAvd1+u+1SrYC0NWTxE56LPuc4BAAAAAAC3iGEaAACSrLUKiwhTwcwF9VTRp1znAPARnSp10r6ofRq7dqzrFAAAAAAAcIsYpgEAIGnBzgVasmeJOlTsoKCAINc5AHxErYK1VDJnSQ1aOEixNtZ1DgAAAAAAuAUM0wAAkBQWEabsodnVpGQT1ykAfIgxRp0qddKmI5s0ddNU1zkAAAAAAOAWMEwDAPi9dQfXafqW6WpTro1CgkNc5wDwMfWL11f+TPkVFhEma63rHAAAAAAAcJMYpgEA/N77C99XaHCoWpVt5ToFgA8KCghSh4odtGj3IkXsinCdAwAAAAAAbhLDNACAX9t9cre+/fNbNS/VXFlDs7rOAeCjmpZqqqwhWRUWEeY6BQAAAAAA3CSGaQAAv/bhog9lrVX7iu1dpwDwYaHBoWpTro2mbZ6m9QfXu84BAAAAAAA3gWEaAMBvHTtzTKNXjtazdz+rfJnyuc4B4ONal2ut0OBQDVo4yHUKAAAAAAC4CQzTAAB+65PlnyjqfJQ6VerkOgWAH8gamlXNSjXTt39+q90nd7vOAQAAAAAACcQwDQDgl85Gn9XQJUNV7456ujfnva5zAPiJ9hXby1qrDxd96DoFAAAAAAAkEMM0AIBf+mr1Vzp46iCr0gAkq/yZ8uvZu5/V6JWjdezMMdc5AAAAAAAgARimAQD8TkxsjN5f9L7K5i6rGvlruM4B4Gc6VeqkqPNRGrl8pOsUAAAAAACQAAzTAAB+56eNP2nr0a3qXLmzjDGucwD4mXtz3qu6hepq6JKhOht91nUOAAAAAAC4AYZpAAC/Yq1VWESYCmcprCfuesJ1DgA/1blyZx04dUBfr/nadQoAAAAAALgBhmkAAL8Svj1cy/cu11uV3lJgQKDrHAB+qkb+GiqTu4wGLRykmNgY1zkAAAAAAOA6GKYBAPxKWESYbkt7m1669yXXKQD8mDFGnSt31tajW/Xzxp9d5wAAAAAAgOtgmAYA8Bur96/Wr3//qrbl2ypNUBrXOQD83JN3Pak7styhsIgwWWtd5wAAAAAAgGtgmAYA8BuDFg5SulTp9FrZ11ynAIACAwL1VsW3tGzvMs3dMdd1DgAAAAAAuAaGaQAAv7D9+HZNWDdBr5Z+VZnSZHKdAwCSpJfufUk50uZQWESY6xQAAAAAAHANDNMAAH5h8KLBCjABalehnesUAIgXEhyituXb6petv2jtgbWucwAAAAAAwFUwTAMA+LzDpw/rs5WfqVGJRvpfhv+5zgGAf3mtzGtKlyqdBi0c5DoFAAAAAABcBcM0AIDPG750uM5En1GnSp1cpwDAf2QOyawW97XQ+D/Ha8fxHa5zAAAAAADAFRimAQB82qnzpzR86XA9dudjKpq9qOscALiqdhXayRijDxd/6DoFAAAAAABcgWEaAMCnfbHqCx05c4RVaQBStLwZ86rRPY306cpPdeT0Edc5AAAAAADgMgzTAAA+Kzo2Wh8s+kCV81ZW5dsru84BgOvqWKmjTl84rY+Xfew6BQAAAAAAXIZhGgDAZ01cP1E7TuxQp8qsSgOQ8hXPUVyPFHlEw5YO0+kLp13nAAAAAACAOEFJ8SLGmBySykkqISmfpMySQiSdkXRU0g5JayUttdYeSopjAgBwPdZaDYwYqGLZi+mRIo+4zgGABOlUqZOqjammMavHqFXZVq5zAAAAAACAEjFMM8YUkvSCpMcl3XsT+62W9LOksdbabbd6fAAArmfW37O05sAaffn4lwowLMQG4B2q3F5FFf9XUe8vfF8tSrdQUECS/O4bAAAAAABIhJv+6aIxpo4x5hdJmyV118VBmrmJt5KSekraaoyZaYypneivAgCAK4RFhClP+jx6/p7nXacAQIIZY9SpcidtO75Nk/6a5DoHAAAAAADoJlamGWOqSBogqeKlp+LeH5G0VNISSRskHYt77qSkjJKyxL0VlVReFy8HmSVu3zqS6hhjFkrqYq2NSMwXAwCAJC3bs0xzts/R+7XfV6rAVK5zAOCmPHbnY7oz650auHCgGhRvIGPMjXcCAAAAAAAek6BhmjHmW0kN9f8DtN2Sxkv61lq79mYPaowpIel5Sc9JyiupsqR5xpjx1toXbvb1AAC43MCFA5UxdUa9UvoV1ykAcNMCTIA6Vuqo5lOba/a22apVsJbrJAAAAAAA/FpCL/P4nC4O0v6QVMtae7u1tvOtDNIkyVq71lrbxVqbT1KtuNc1cccBAOCWbTmyRZP+mqRWZVspQ+oMrnMA4Ja8UOIF5UqXSwMjBrpOAQAAAADA7yV0mPaHpKrW2lrW2j+SMsBa+4e1tpakqnHHAQDgln2w6AOlCkylN8q/4ToFAG5Z6qDUalehnX775zet3LfSdQ4AAAAAAH4tQcO0uCGaR+9nZq2NsNbW9uQxAAC+bX/Ufo1ZPUYv3/uycqbL6ToHABLl1dKvKkPqDBq0cJDrFAAAAAAA/FpCV6YBAJDifbTkI52POa+3Kr3lOgUAEi1jmoxqWbqlJq6fqH+O/eM6BwAAAAAAv8UwDQDgEyLPRerj5R/rqaJPqXDWwq5zACBJtK3QVkEBQRq8aLDrFAAAAAAA/FaihmnGmCyJ3P+hxOwPAMAlo1eM1vGzx9W5cmfXKQCQZHKnz60XS7yoL1Z9oUOnDrnOAQAAAADALyV2Zdqfxpj7b3YnY0wqY8xHkqYm8vgAAOhc9DkNXjxYNfLXUNk8ZV3nAECS6lipo85Gn9WwJcNcpwAAAAAA4JcSO0zLJWmWMSbMGBOUkB2MMXdLWi6pVSKPDQCAJOmbtd9ob+RevV3lbdcpAJDk7sx2p54q+pSGLxuuk+dOus4BAAAAAMDvJHaYFiPJSHpL0iJjzB3X29gY00bSUknF4/bblMjjAwD8XExsjAZGDFTpXKVVq2At1zkA4BFdq3TV8bPHNWr5KNcpAAAAAAD4ncQO06pK2q6Lg7H7JK0yxjS5ciNjTHZjzDRJQySlidv+M0llEnl8AICfm7RhkrYc3aKuVbrKGOM6BwA8onTu0qpdsLYGLx6ss9FnXecAAAAAAOBXEjVMs9YulnSvpG91cUCWVtJnxpgJxpiMkmSMqSdpraQH47Y5JukZa20La+3pxBwfAODfrLXqN7+f7sx6p54s+qTrHADwqK5Vump/1H6NWT3GdQoAAAAAAH4lsSvTZK2Nsta+KKmRpBO6ODB7RtIaY8znkqZLui3u+XBJJay1Pyb2uAAA/LL1F605sEadK3dWgEn0f9IAIEWrkb+Gyucpr4ERAxUdG+06BwAAAAAAv5FkP3m01o6XVErSQl0cnN0uqXHc4/OS3pb0gLV2T1IdEwDg3/ov6K+8GfKqUYlGrlMAwOOMMepapau2Hd+miesnus4BAAAAAMBvJOmv8Vtrt0saf+nDy97/IukDa6292n4AANysiJ0Rmr9zvt6q9JZSBaZynQMAyeLROx9VsezF1H9Bf8XaWNc5AAAAAAD4hSQbphljMhtjfpQ0TBcHaEZSTNz7RyUtNcbclVTHAwD4t/4L+itbaDY1v6+56xQASDYBJkBdq3TVuoPrNH3zdNc5AAAAAAD4hSQZphljakpaK+lxXRyeHZfUQFJ5SZvjnishaYUxpmVSHBMA4L/W7F+j6Vumq235tgoNDnWdAwDJquHdDZU/U371X9BfXPgBAAAAAADPS9QwzRgTZIwZIOk3Sbl1cWg2T9K91tofrLWrdPE+ap/HfS5E0ghjzGRjTNbEpQMA/NWAiAFKlyqdXi/7uusUAEh2QQFB6lipoxbtXqR5O+a5zgEAAAAAwOcldmXaIkkd414nRlJ3STWttbsvbWCtPWOtfUXSM5KO6uJQ7RFJfxpjaif0QMaYesaYTcaYrcaYLtfZrqwxJsYY88ytfUkAgJRs69Gtmrh+olqVaaXMIZld5wCAE01KNlGOtDnUf0F/1ykAAAAAAPi8xA7TSuvicGybpKrW2j72Gteasdb+KKmkpLlx++SUNCMhBzHGBEoaIelBScUkPWeMKXaN7cIk/XrTXwkAwCsMihik4IBgvVnxTdcpAOBMSHCI3qzwpn79+1et2LvCdQ4AAAAAAD4tKe6ZNlZSSWvtkhttGLdi7X5J3SRduInjl5O01Vr7j7X2vKTvdPH+bFdqI2mSpIMJfF0AgBfZG7lXY9aMUZOSTZQzXU7XOQDg1GtlXlOG1Bk0IGKA6xQAAAAAAHxaYodpL1lrX7LWRiZ0B3tRf0lVJP2dwN3ySNp12ce7456LZ4zJI+lJSSMT2gIA8C6DFw1WdGy0Olbu6DoFAJzLmCajWpdtrUl/TdKmw5tc5wAAAAAA4LOCErOztXZsIvZdZowplcDNzdVe4oqPh0jqbK2NMeZqm8e9kDEtJLWQpFy5cik8PDyBCQCQMFFRUZxbPODkhZMasWSEamavqZ1rdmqndrpOAuIlx995zi24mjIxZS5e+nbSm+p0ZyfXOfBCnFsAeALnFgCewLkFgEuJGqYllrX2VAI33S0p72Uf/0/S3iu2KSPpu7hBWjZJDxljoq21P19xzNGSRktS7ty5bY0aNW4+HACuIzw8XJxbkt57c9/T2diz+vCpD3XPbfe4zoE/m/vfp5Lj7zznFlxLi+gWGrlipEY1HKW8GfPeeAfgMpxbAHgC5xYAnsC5BYBLSXHPtOSwTFJhY0wBY0wqSQ0lTbl8A2ttAWttfmttfkk/SGp15SANAOCdTp0/pWFLhunRIo8ySAOAK7xV6S1J0geLPnBcAgAAAACAb0rQMO0mLseYKMaY+672vLU2WlJrSb9K2iBporV2vTGmpTGmZXK0AQDc+XTlpzpy5oi6VunqOgUAUpx8mfLp+Xue16crP9Xh04dd5wAAAAAA4HMSujJtuTHmJ2PMvZ6IMMaUMsZMlrT0WttYa2dYa4tYawtZa/vGPTfSWjvyKts2ttb+4IlWAEDyOhd9Tu8vfF/V81VXxbwVXecAQIrUuXJnnb5wWsOWDHOdAgAAAACAz7mZyzw+JmmlMWaaMeZZY0yaxBzYGJPGGNPQGDNT0nJJj0qyiXlNAIDvGbt2rPZE7mFVGgBcR7HsxfTEXU/oo6Uf6eS5k65zAAAAAADwKQkdppXVxVVjRtKDksZJOmCMGWOMedkYUzQhL2KMKWaMaWyMGSPpgKRvJdWJe91FksrdZD8AwIfFxMYoLCJM9+W6T3UK1XGdAwApWtcqXXX87HGNWj7KdQoAAAAAAD4lKCEbWWtXSqpojHlKUk9Jd0tKL+nFuDcZYyIlbZF0NO4tUlIGSVni3u6I2+cSE/d+raSe1tqfE/elAAB8zY8bftSWo1v0ff3vZYy58Q4A4MfK5SmnBwo8oMGLB6tN+TZKE5SoC0kAAAAAAIA4N3OZR1lrf7TWlpBUT9JkSdG6OBQzujg4u09SLUkNJDWTVF/SA5JKxX3+0rYXJP0sqY61tiSDNADAlay16r+gv4pkLaIn73rSdQ4AeIWuVbpqf9R+fbnqS9cpAAAAAAD4jJsapl1irZ1lrX1SUi5JL0n6RtLmuE+bq7xZSZskfa2LK9lyWWufstb+nrh8AICvmrFlhlbtX6WuVboqMCDQdQ4AeIX7C9yv8nnKKywiTBdiLrjOAQAAAADAJyToMo/XYq09Kmls3JuMMakk5dXFyzqmlnROFy/5uNNay//NAwASxFqr3vN6K3+m/Gp0TyPXOQDgNYwxerfau3pk/CMau3asmpRq4joJAAAAAACvd0sr067FWnveWvu3tXaZtXZB3Pu/GaQBAG7G7G2ztWTPEnWp3EXBgcGucwDAqzxU+CGVyllK/Rb0U0xsjOscAAAAAAC8XpIO0wAASAq95/VWnvR51LhkY9cpAOB1jDF6p9o72np0qyasn+A6BwAAAAAAr5eoyzxejTEmh6SyknJLSicpStJeScustQeT+ngAAN8yb8c8zdsxT0PrDVXqoNSucwDAKz1x1xMqlr2Y+s7vq4Z3N1SA4XfoAAAAAAC4VUn2f9XGmCeNMRGS9kmaImmkpPfj3k+RtM8Ys8AY80RSHRMA4Hv6zOujHGlzqPl9zV2nAIDXCjAB6la1m/469Jd+2vCT6xwAAAAAALxaoodpxphUxpiJkn6QVEGSuc5bRUmTjDETjTGpEntsAIBvWbJ7iX775ze9VfEthQaHus4BAK/2bPFnVThLYfWZ30fWWtc5AAAAAAB4raRYmTZJ0tP6/4HZX5KGS2on6ZW498Mlrb9sm6d1cfgGAEC8PvP7KEtIFrUs09J1CgB4vcCAQHWt0lWr96/W9C3TXecAAAAAAOC1EjVMM8Y0lPRw3Id7JT1orb3bWvuGtXaYtfbzuPdvWGvvkVRP0h5dHKg9bIx5NlH1AACfsWrfKk3bPE1vVnhT6VOnd50DAD7hhRIvKF/GfOozj9VpAAAAAADcqsSuTGsW9/6UpOrW2l+vt7G1dpakGpKi4p7ihjgAAElSvwX9lCF1BrUu19p1CgD4jODAYHWp0kVL9izR7G2zXecAAAAAAOCVEjtMu1eSlfS5tfbvhOwQt93nurg6rWQijw8A8AF/HfpLk/6apDfKvaFMaTK5zgEAn9KkZBPlTp9bvef1dp0CAAAAAIBXSuwwLV3c+2U3ud+l7UMTeXwAgA/oN7+fQoND1bZCW9cpAOBzUgelVqdKnTRvxzzN2zHPdQ4AAAAAAF4nscO0vXHvA29yv0vb773uVgAAn7flyBaNXzdercq2UrbQbK5zAMAnvVL6FeVIm0N95vVxnQIAAAAAgNdJ7DDtj7j3VW9yv6q6eHnIP260IQDAtw1YMECpAlOpfcX2rlMAwGeFBoeqQ8UO+u2f37Rk9xLXOQAAAAAAeJXEDtOGSTov6SVjTNmE7GCMKSPpZUnn4vYHAPip7ce36+u1X6vFfS2UM11O1zkA4NNeK/OasoRkUZ/5rE4DAAAAAOBmJGqYZq1dJ+kVSUbSb8aY5saYoKtta4wJMsY0k/SbLq5Ka26tXZ+Y4wMAvNvAiIEKMAHqWLmj6xQA8HnpU6dXu/LtNG3zNK3at8p1DgAAAAAAXuOqg6+EMsZ0j3v4m6SHJI2SNMAYM1/SVkmnJYVKukNSFUlZ4rafIemOy/b/D2vte4lpAwCkbHtO7tHnqz5X43sb638Z/uc6BwD8QpvybfT+ovfVZ34fTWowyXUOAAAAAABeIVHDNEk9dXGVmS57n0XSY1fZ1ly2zUNxb9fDMA0AfNiABQMUa2PVtWpX1ykA4DcypcmktuXbqve83lp7YK1K3FbCdRIAAAAAACleYu+ZJl0ckl3+drXnrvf8tbYFAPioPSf3aPTK0WpSsonyZ8rvOgcA/Eq7Cu2UIXUGvTeX310DAAAAACAhErsyrWaSVAAA/Er/Bf0Va2P1dtW3XacAgN/JEpKF1WkAAAAAANyERA3TrLVzkyoEAOAfdp/crU9XfsqqNABw6M0Kb2rokqHqNbcX904DAAAAAOAGkuIyjwAAJNile6V1q9rNdQoA+K3MIZnVrnw7/bjhR63Zv8Z1DgAAAAAAKRrDNABAsrm0Kq1pyabKlymf6xwA8Gvx906bx73TAAAAAAC4HoZpAIBkc2lVGvdKAwD3WJ0GAAAAAEDCMEwDACSLXSd2sSoNAFIYVqcBAAAAAHBjDNMAAMmCVWkAkPKwOg0AAAAAgBtjmAYA8LhdJ3bps1WfsSoNAFKgdhXaKWPqjKxOAwAAAADgGhimAQA8bsCCAbLWsioNAFKgzCGZ1a4Cq9MAAAAAALgWhmkAAI+KX5VWilVpAJBSXVqd1mtuL9cpAAAAAACkOAzTAAAedWlVWtcqXV2nAACuIVOaTGpXoZ1+2viTVu9f7ToHAAAAAIAUhWEaAMBjWJUGAN4j/t5pc7l3GgAAAAAAl2OYBgDwmP4L+rMqDQC8BKvTAAAAAAC4OoZpAACP2HVilz5byao0APAm3DsNAAAAAID/YpgGAPCIPvP6SBKr0gDAi2RKk0lvVnhTP2/8WSv2rnCdAwAAAABAisAwDQCQ5P4++re+WP2FXi39KqvSAMDLtKvQTllCsujdOe+6TgEAAAAAIEVgmAYASHI95/ZUcECw3q76tusUAMBNypgmozpV6qSZW2cqYmeE6xwAAAAAAJxjmAYASFJ/HfpL3679Vq3LtVau9Llc5wAAbkHrcq11W9rb1O2PbrLWus4BAAAAAMAphmkAgCTVfU53pUuVTp0rd3adAgC4RWlTpVW3qt00d8dczd4223UOAAAAAABOMUwDACSZlftWatKGSWpfsb2yhmZ1nQMASIQWpVvo9oy3szoNAAAAAOD3GKYBAJLMO3+8o8xpMuvNCm+6TgEAJFLqoNTqXq27lu5Zqqmbp7rOAQAAAADAGYZpAIAkEbEzQjO3zlTnyp2VMU1G1zkAgCTw0r0v6Y4sd+jdOe8q1sa6zgEAAAAAwAmGaQCARLPW6p057+i2tLepdbnWrnMAAEkkODBYvWr00toDazVx/UTXOQAAAAAAOMEwDQCQaLO3zVb49nB1q9pNaVOldZ0DAEhCDe9uqLtz3K0e4T0UHRvtOgcAAAAAgGTHMA0AkCjWWr3zxzvKmyGvWpRu4ToHAJDEAkyAetfsrc1HNuubNd+4zgEAAAAAINkxTAMAJMq0zdO0ZM8Sda/eXamDUrvOAQB4wON3Pq4yucuo19xeOhd9znUOAAAAAADJimEaAOCWxdpYvTPnHd2R5Q69fO/LrnMAAB5ijFGfmn2048QOfbbyM9c5AAAAAAAkK4ZpAIBb9v3677X2wFr1qtFLwYHBrnMAAB5Up1AdVb29qvrM76PTF067zgEAAAAAINkwTAMA3JLo2Gj1CO+h4tmL69niz7rOAQB4mDFGfe/vq/1R+/Xxso9d5wAAAAAAkGwYpgEAbsnYtWO16cgm9a7ZW4EBga5zAADJoGq+qqpbqK4GLBigk+dOus4BAAAAACBZeM0wzRhTzxizyRiz1RjT5Sqff9wYs9YYs9oYs9wYU8VFJwD4g7PRZ9UjvIfK5C6jJ+56wnUOACAZ9bm/j46cOaIPFn7gOgUAAAAAgGThFcM0Y0ygpBGSHpRUTNJzxphiV2w2W9K91tqSkppK4s7oAOAhHy/7WDtP7FRYrTAZY1znAACSUZncZdSgeAN9sOgD7Y/a7zoHAAAAAACP84phmqRykrZaa/+x1p6X9J2kxy/fwFobZa21cR+mlWQFAEhyx88eV9/5fVW3UF3dX+B+1zkAAAf61OyjczHn9N7c91ynAAAAAADgcd4yTMsjaddlH++Oe+5fjDFPGmM2Spqui6vTAABJLGxBmI6dOaYBtQa4TgEAOFI4a2G1uK+FRq8Yrc1HNrvOAQAAAADAo8z/L+ZKuYwx9SXVtdY2j/v4RUnlrLVtrrF9NUndrbW1rvK5FpJaSFKuXLlKjxs3znPhAPxSVFSU0qVL5zrDIw6dO6QXlr6g6tmq6+2ib7vOAZyoObfmf56bU32Ox4/ry+cWeKej54+q0ZJGKp+1vHoW6+k6B7eIcwsAT+DcAsATOLcA8ISaNWuusNaWudF2QckRkwR2S8p72cf/k7T3Whtba+cZYwoZY7JZaw9f8bnRkkZLUu7cuW2NGjU8kAvAn4WHh8tXzy3NpzSXjDT6udHKnym/6xzAjbn/fSo5/s778rkF3qtzqs7qNbeXQguHqlyecq5zcAs4twDwBM4tADyBcwsAl7zlMo/LJBU2xhQwxqSS1FDSlMs3MMbcYYwxcY/vk5RK0pFkLwUAH/XXob/05eov1apMKwZpAABJUoeKHZQ9NLs6/95Z3nDFCwAAAAAAboVXDNOstdGSWkv6VdIGSROtteuNMS2NMS3jNnta0jpjzGpJIyQ9a/k/egBIMm/PflvpUqVTt2rdXKcAAFKI9KnTq3v17grfHq5ftv7iOgcAAAAAAI/wimGaJFlrZ1hri1hrC1lr+8Y9N9JaOzLucZi1tri1tqS1tqK1doHbYgDwHRE7IzR502R1rtxZ2UKzuc4BAKQgLUq3UKHMhdT5986KiY1xnQMAAAAAQJLzmmEaAMANa606/d5JudLlUtvybV3nAABSmFSBqdT3/r768+CfGvfnONc5AAAAAAAkOYZpAIDrmrJpihbuWqieNXoqbaq0rnMAAClQ/eL1VTpXab0z5x2djT7rOgcAAAAAgCTFMA0AcE3RsdHqMruL7sx6p5qWauo6BwCQQgWYAIXVCtPOEzv18bKPXecAAAAAAJCkGKYBAK5pzOox2nh4o/o/0F9BAUGucwAAKdgDBR9Q3UJ11Xd+Xx0/e9x1DgAAAAAASYZhGgDgqk5fOK0e4T1U4X8V9MRdT7jOAQB4gQG1BujomaMaGDHQdQoAAAAAAEmGYRoA4KqGLh6qvZF7FVYrTMYY1zkAAC9QMmdJNbqnkYYsHqI9J/e4zgEAAAAAIEkwTAMA/MehU4c0IGKAHinyiKrlq+Y6BwDgRXrX7K0YG6Puc7q7TgEAAAAAIEkwTAMA/Eevub106vwphdUKc50CAPAyBTIXUOuyrfXl6i+1Zv8a1zkAAAAAACQawzQAwL9sOLRBI5ePVIvSLVQsezHXOQAAL/ROtXeUOSSz2s9qL2ut6xwAAAAAABKFYRoA4F86/d5JaVOlVc8aPV2nAAC8VOaQzOpZvaf+2PaHpm+Z7joHAAAAAIBEYZgGAIg3+5/ZmrZ5mrpV7aYcaXO4zgEAeLGWZVqqSNYi6vhbR12IueA6BwAAAACAW8YwDQAgSYqJjVGHWR2UL2M+vVH+Ddc5AAAvFxwYrEG1B2nj4Y0avWK06xwAAAAAAG4ZwzQAgCTpqzVfac2BNQqrFaY0QWlc5wAAfMCjRR5Vjfw11CO8h46fPe46BwAAAACAW8IwDQCgqPNR6vZHN1X4XwU1KN7AdQ4AwEcYY/RBnQ909MxR9Zvfz3UOAAAAAAC3hGEaAECDIgZpf9R+Da4zWMYY1zkAAB9yX6779HLJlzV0yVD9c+wf1zkAAAAAANw0hmkA4Od2n9ytQQsH6dniz6pi3oqucwAAPqhPzT4KCghSl9+7uE4BAAAAAOCmMUwDAD/XdXZXxdgY9X+gv+sUAICPypMhjzpW6qjv//pe83fMd50DAAAAAMBNYZgGAH5s0a5FGrt2rN6q+JYKZC7gOgcA4MM6Vuqo/2X4n9r+0lYxsTGucwAAAAAASDCGaQDgp2JtrNr+0la50+dW16pdXecAAHxc2lRpNbDWQK3av0pfrv7SdQ4AAAAAAAnGMA0A/NTXa77Wsr3LFFYrTOlSpXOdAwDwAw3vbqgqt1fR27Pf1vGzx13nAAAAAACQIAzTAMAPnTx3Ul1+76IK/6ug5+953nUOAMBPGGM0tN5QHT59WL3n9nadAwAAAABAgjBMAwA/1HdeXx04dUDD6g1TgOE/BQCA5HNfrvvUrFQzDVs6TBsPb3SdAwAAAADADfETVADwM1uObNGHiz9U45KNVTZPWdc5AAA/1PeBvgoNDlX7X9u7TgEAAAAA4IYYpgGAn+kwq4NSB6VW/wf6u04BAPipHGlzqEf1Hpq5daZmbJnhOgcAAAAAgOtimAYAfuTXrb9q6uaperfau8qZLqfrHACAH2tdrrXuzHqn3vz1TZ2POe86BwAAAACAa2KYBgB+4kLMBbX7tZ3uyHKH2pZv6zoHAODnUgWm0pB6Q7T5yGYNWzLMdQ4AAAAAANfEMA0A/MTQJUO18fBGfVj3Q6UOSu06BwAA1bujnh4p8oh6ze2lvZF7XecAAAAAAHBVDNMAwA/sPrlbPcN76tEij+qRIo+4zgEAIN7QekN1IeaC3pr1lusUAAAAAACuimEaAPiBt2a9pRgbo6H1hrpOAQDgXwpmLqiuVbpq/LrxmrNtjuscAAAAAAD+g2EaAPi42f/M1oT1E9S1SlcVyFzAdQ4AAP/RqXInFchUQK/PeF0XYi64zgEAAAAA4F8YpgGADzsfc15tZrZRwcwF1alyJ9c5AABcVUhwiIY9OEwbDm/Q0CWsogYAAAAApCwM0wDAhw1dPFQbDm/QsHrDlCYojescAACu6ZEij+jRIo+qZ3hP7T6523UOAAAAAADxGKYBgI/afXK3es3tpcfufEwPF3nYdQ4AADc0tN5QxdgYvTXrLdcpAAAAAADEY5gGAD6qw6wOirExGlJ3iOsUAAASpEDmAupSuYsmrJ+g2f/Mdp0DAAAAAIAkhmkA4JN+/+d3TVw/UW9XeVsFMhdwnQMAQIJ1qtxJBTMXVOuZrXU+5rzrHAAAAAAAGKYBgK85G31Wraa3UqHMhdSxckfXOQAA3JSQ4BANqzdMGw9v1PsL33edAwAAAAAAwzQA8DUDFgzQlqNb9MnDnyhNUBrXOQAA3LSHizysp4s+rd7zeuvvo3+7zgEAAAAA+DmGaQDgQzYe3qj+C/qr0T2NVLtQbdc5AADcsqH1hio4IFitZrSStdZ1DgAAAADAjzFMAwAfYa1Vy2ktFRocqg/qfOA6BwCARMmTIY/6PdBPs/6epe/Wfec6BwAAAADgxximAYCP+GrNV5q7Y64G1hqo29Ld5joHAIBEe63Mayqbu6za/dpOx84cc50DAAAAAPBTDNMAwAccPn1Yb816S5XzVlaz+5q5zgEAIEkEBgRq1COjdPj0YXWd3dV1DgAAAADATzFMAwAf0PG3jjpx7oRGPTJKAYZTOwDAd5TKVUrtyrfTqBWjtHDXQtc5AAAAAAA/xE9cAcDLhW8P15jVY9SxUkcVz1HcdQ4AAEmuV81eypshr16d9qouxFxwnQMAAAAA8DMM0wDAi52NPquW01qqYOaCeqfaO65zAADwiHSp0mnEQyO07uA6vb/wfdc5AAAAAAA/wzANALxYn3l9tOnIJn380McKDQ51nQMAgMc8euejeqroU+o1t5c2H9nsOgcAAAAA4EcYpgGAl1q9f7XCIsL08r0vq+4ddV3nAADgccMfHK6Q4BA1n9JcsTbWdQ4AAAAAwE8wTAMALxQdG61mU5opa0hWDa472HUOAADJIlf6XBpcZ7Dm75yvUctHuc4BAAAAAPgJhmkA4IU+WPiBVu5bqREPjVCWkCyucwAASDaNSzZW7YK11en3Ttp5YqfrHAAAAACAH2CYBgBeZvORzeoR3kNPFX1KTxd72nUOAADJyhij0Y+OlrVWLae1lLXWdRIAAAAAwMcxTAMALxJrY9V8SnOFBIdo+IPDXecAAOBE/kz51e+Bfpq5daa+/fNb1zkAAAAAAB/HMA0AvMjI5SM1f+d8fVj3Q+VKn8t1DgAAzrxe9nVVyltJbX9pqwNRB1znAAAAAAB8GMM0APASO0/sVOffO6t2wdp6+d6XXecAAOBUYECgPnv0M0Wdj9Ibv7zhOgcAAAAA4MO8ZphmjKlnjNlkjNlqjOlylc83MsasjXtbaIy510UnAHiCtVYtpraQtVajHx0tY4zrJAAAnCuavai6V+uuiesn6scNP7rOAQAAAAD4KK8YphljAiWNkPSgpGKSnjPGFLtis22SqltrS0jqLWl08lYCgOd8uvJT/fr3rxpYe6DyZ8rvOgcAgBSjU+VOKp2rtFpOa6mDpw66zgEAAAAA+CCvGKZJKidpq7X2H2vteUnfSXr88g2stQuttcfiPlws6X/J3AgAHrHt2Da1/7W9HijwgFqWaek6BwCAFCU4MFhfPfGVTpw7odemvyZrreskAAAAAICP8ZZhWh5Juy77eHfcc9fSTNJMjxYBQDKItbFqMrmJAkyAvnj8CwUYbzltAwCQfIrnKK7eNXvrxw0/avy68a5zAAAAAAA+Jsh1QAJd7eZAV/2VU2NMTV0cplW5xudbSGohSbly5VJ4eHgSJQLARVFRUUl2bvlh9w+au2OuOhbpqH9W/aN/9E+SvC6ApJUc308k5bkF8EWlbWkVz1Bcr055Van2plK21NlcJ3kFzi0APIFzCwBP4NwCwCXjDZdBMcZUlNTTWls37uOukmSt7X/FdiUk/STpQWvt5hu9bu7cue3evXs9UAzAn4WHh6tGjRqJfp3NRzar5MiSur/A/Zr63FQZc7XfKwCQ3Eyv//5dtD08//1UUp1bAF926b+dNQvU1LTnpvHfzgTg3ALAEzi3APAEzi0APMEYs8JaW+ZG23nL9cKWSSpsjClgjEklqaGkKZdvYIy5XdKPkl5MyCANAFKymNgYvfzzy0oTlEafPvopPwwEACABimQtogG1BmjGlhn6cvWXrnMAAAAAAD7CK4Zp1tpoSa0l/Sppg6SJ1tr1xpiWxpiWcZt1l5RV0sfGmNXGmOWOcgEg0d5f+L4W716sEQ+NUK70uVznAADgNVqXa60a+Wuo3S/ttOP4Dtc5AAAAAAAf4BXDNEmy1s6w1hax1hay1vaNe26ktXZk3OPm1trM1tqScW83XJYHACnR2gNr1T28u54u+rQa3t3QdQ4AAF4lwAToy8e/lJVVk8lNFGtjXScBAAAAALyc1wzTAMAfnLlwRo1+bKTMaTLrk4c/4fKOAADcgvyZ8mtI3SGas32OBi8a7DoHAAAAAODlGKYBQArS5fcuWndwncY8MUbZ02Z3nQMAgNdqWqqpnrzrSb09+22t2rfKdQ4AAAAAwIsxTAOAFOKXrb9o2NJheqPcG6p3Rz3XOQAAeDVjjD599FNlT5tdjX5spNMXTrtOAgAAAAB4KYZpAJACHDp1SI1/bqzi2YtrQK0BrnMAAPAJWUOzaszjY7Th8AZ1+q2T6xwAAAAAgJdimAYAjllr1Xxqcx07e0zjnh6nkOAQ10kAAPiM2oVq680Kb2rEshGavnm66xwAAAAAgBdimAYAjo1eMVpTNk3RgAcGqMRtJVznAADgc/o90E/35LhHTac01cFTB13nAAAAAAC8DMM0AHBo0+FNevPXN1WrYC21rdDWdQ4AAD4pTVAajXt6nE6cPaGmk5vKWus6CQAAAADgRRimAYAjZ6PP6rlJzykkOERfPfGVAgynZAAAPOXuHHdrYO2Bmr5luj5a+pHrHAAAAACAF+EntwDgSMdZHbVq/yqNeXyMcqfP7ToHAACf16ZcGz1S5BF1/K2jVuxd4ToHAAAAAOAlGKYBgAM/bfhJw5cN15sV3tSjdz7qOgcAAL9gjNGYx8coR9ocevaHZ3Xy3EnXSQAAAAAAL8AwDQCS2fbj29V0SlOVyV1GA2oNcJ0DAIBfyRqaVeOfHq/tx7erxdQW3D8NAAAAAHBDDNMAIBldiLmghj80VKyN1YRnJihVYCrXSQAA+J0qt1fRezXf04T1E/TZys9c5wAAAAAAUjiGaQCQjLr90U1L9izRp49+qoKZC7rOAQDAb3Wp0kW1C9bWG7+8oT8P/Ok6BwAAAACQgjFMA4BkMmPLDA1aOEgtS7dUg+INXOcAAODXAkyAvnnyG2VMnVENfmigU+dPuU4CAAAAAKRQDNMAIBnsPrlbL/30kkrcVkKD6w52nQMAACTdlu42ffvUt9p0eJNazWjF/dMAAAAAAFfFMA0APOxc9Dk9M/EZnYs5pwnPTFBIcIjrJAAAEOeBgg/o3Wrv6us1X+vTlZ+6zgGA/2vvzsOjqNL2j99PEvZFdiTsRASRIGLYRBQX9mFRQAUBRRQF1HfEccZhfMdlxld/zLiMAqKigCI7IpsKLkTFDVAQBAHZFET2RVlky/n90R3siWkIId0n6Xw/19VXV1Wfrrq7i6qL1NPnFAAAAHIhimkAEGFD5g3RFz9+oTFdxqhuubq+4wAAgAz+fsXf1Tapre5++24t/nGx7zgAAAAAgFyGYhoARND45eM1cslI3df8PnWv1913HAAAkIn4uHi9ft3rqlS8krpN6aZdh3b5jgQAAAAAyEUopgFAhCzfvlwDZg/QFdWv0BPXPOE7DgAAOIWyRctq2vXTtOPgDvWa3ksn0k74jgQAAAAAyCUopgFABOz7dZ+um3ydShUupUndJykhLsF3JAAAcBopiSka3mG43t3wrh5Kfch3HAAAAABALsHVXQDIYWkuTX1n9NX3+79X6s2pOrf4ub4jAQCALLqt0W36fMvneuzjx9S0clN1qtPJdyQAAAAAgGf0TAOAHDbhhwmavXa2nmzzpFpUa+E7DgAAOEPDOwxXo0qN1GdGH63bs853HAAAAACAZxTTACAHzV4zW69sekU96/fU3U3u9h0HAABkQ+GEwpp+/XTFx8Wr88TO+vnIz74jAQAAAAA8opgGADlk5Y6V6vVGL9UuXlujO4+WmfmOBAAAsqlGqRqa1mOa1u5eq17Te+lE2gnfkQAAAAAAnlBMA4AcsOfwHnWZ1EXFChTTP+v/U0ULFPUdCQAAnKUra16pZ9s/q7nfzdWDHzzoOw4AAAAAwJME3wEAIK87nnZc10+9Xpt/3qzUm1N1ZP0R35EAAEAOGZgyUF9v+1pPfPKEGlRsoJ7JPX1HAgAAAABEGT3TAOAs3TfvPr2/8X2N6jhKzas29x0HAADkIDPTcx2eU8tqLXXrrFu1ZOsS35EAAAAAAFFGMQ0AzsLor0br2UXP6t5m96rfxf18xwEAABFQML6gpl8/XRWLVVTXSV310y8/+Y4EAAAAAIgiimkAkE0fff+RBs0dpNa1WmtY62G+4wAAgAgqX6y8Zt44U3t/3atrJ1+rw8cO+44EAAAAAIgSimkAkA1rdq1R10ldVat0LU3uPlkJcdyCEgCAWHfRuRfptWtf06IfF6nPjD5Kc2m+IwEAAAAAooBiGgCcoZ0Hd6rDhA5KiEvQWze9pdJFSvuOBAAAouS6C67Tv1r/S9O/na4H3nvAdxwAAAAAQBTQlQIAzsDhY4fVeVJnbf1lqxbcvEC1StfyHQkAAETZkOZDtH7vev3r038pqXSS7ki5w3ckAAAAAEAEUUwDgCxKc2nq+2ZffbHlC03tMVXNqjTzHQkAAHhgZnq2/bP6fv/3GvzWYFUvVV3tzmvnOxYAAAAAIEIY5hEAsuiv7/1V01ZN07DWw9StXjffcQAAgEcJcQma3H2ykismq8fUHvp629e+IwEAAAAAIoRiGgBkwQtLXtCwT4fpzkvu1H3N7/MdBwAA5ALFCxbXnJ5zdE6hc9RxQkdt+XmL70gAAAAAgAigmAYApzHj2xka9NYgtT+vvZ7r8JzMzHckAACQS1QuWVlv3fSWfj7ys9qNb6c9h/f4jgQAAAAAyGEU0wDgFD7c9KF6Tu+pxomNNbXHVCXEcatJAADw3xpUbKCZN87Ud3u+U6eJnXTo2CHfkQAAAAAAOYhiGgCEsWzbMnWe1Fm1StfS3F5zVaxgMd+RAABALnVlzSs14boJ+mzzZ7p+6vU6duKY70gAAAAAgBxCMQ0AMrF+z3q1G99OJQuV1Lze81S2aFnfkQAAQC7XrV43Pd/xec39bq76z+qvNJfmOxIAAAAAIAcwXhkAZLDtwDa1Hd9Wx9KOacHNC1T1nKq+IwEAgDzijpQ7tPPQTv3vgv9V+aLl9e82/+Z+qwAAAACQx1FMA4AQ+3/dr/avt9dPB37SB30/0AXlL/AdCQAA5DF/a/k37Ti4Q099/pQqFKugv1z2F9+RAAAAAABngWIaAAQdOHpAHSZ00Dc7vtHsnrPVtEpT35EAAEAeZGZ6pt0z2nVolx54/wEVL1hcg5sM9h0LAAAAAJBNFNMAQNKhY4fUaWInfbHlC03uPlntzmvnOxIAAMjD4ixO47qO08FjB3XX23epcEJh9W/U33csAAAAAEA2xPkOAAC+HTl+RNdOvlYfbvpQr177qrrV6+Y7EgAAiAEF4gtoSvcpapvUVrfPvl2vL3/ddyQAAAAAQDZQTAOQrx09cVQ9pvbQ/PXzNbrzaPVK7uU7EgAAiCGFEgrpjRve0BU1rtDNb96saaum+Y4EAAAAADhDFNMA5FvH047rpjdu0uy1szWiwwjdevGtviMBAIAYVLRA0ZP3Y+05vadmr5ntOxIAAAAA4AxQTAOQLx1PO65b3rxF01ZN05NtntSgxoN8RwIAADGseMHieqvXW2p4bkN1n9pd76x7x3ckAAAAAEAWUUwDkO8cO3FMfWb00esrXtdjVz2mIc2H+I4EAADygXMKn6N5veepXvl66jKpi+asneM7EgAAAAAgCyimAchXjp44qhun36hJ30zSsGuGaWjLob4jAQCAfKRMkTJ6v+/7alCxga6bfJ1mfDvDdyQAAAAAwGlQTAOQbxw5fkTdp3TXG9++oWfaPqP7W9zvOxIAAMiHyhQpo/f6vKdLEi9Rj6k9NGXlFN+RAAAAAACnQDENQL5w+NhhdZ3cVbPXztbIDiP1P83+x3ckAACQj51T+BzN7z1fzas2V8/pPTV++XjfkQAAAAAAYVBMAxDzDh49qE4TO2neunka3Wm0BjYe6DsSAACAShQqoXduekdXVL9CfWf01ZilY3xHAgAAAABkIs8U08ysnZmtMbN1ZvZAJq/XNbPPzOyImf3JR0YAuc+ew3vUZnwbLdi0QGO7jlX/Rv19RwIAADipWMFimtNrjlontdats27VM58/4zsSAAAAACCDPFFMM7N4SSMktZdUT1JPM6uXodkeSfdI+neU4wHIpX78+UddMfYKLdm6RFO6T1Hfi/r6jgQAAPA7RQsU1awbZ6nbBd1077x7NfT9oXLO+Y4FAAAAAAjKE8U0SU0krXPObXDOHZU0SVKX0AbOuR3OucWSjvkICCB3+W73d2rxSgtt2rdJb9/0trrV6+Y7EgAAQFiFEgppcvfJGtBogB5f+LjumHOHTqSd8B0LAAAAACApwXeALKosaXPI/BZJTT1lAZDLffXTV2o3vp2cnBbcvEApiSm+IwEAAJxWfFy8Rv1hlMoXK6/HPn5Muw/v1uvXva7CCYV9RwMAAACAfC2vFNMsk2XZGvfEzAZIGiBJlSpVUmpq6lnEApDbLN27VA+ufFAlEkroXw3+pQNrDyh1bWpUMxw4cIBzC5DPROOY59wC5B/XxF2jfUn7NOLbEbp0xKX6x4X/ULGEYhHZFucWAJHAuQVAJHBuAeBTXimmbZFUNWS+iqSt2VmRc+5FSS9KUmJiomvVqtVZhwOQO7y+/HU9sPABnVfmPM3vPV+VS1b2kiM1NVWcW4AY9uHvF0XjmOfcAuQvrdRKzZY3U7+Z/TR03VDN7TVXVUpWyfHtcG4BEAmcWwBEAucWAD7llXumLZZU28xqmllBSTdKmuU5E4Bcwjmnf3z4D/We0VvNqzTXx/0+9lZIAwAAyCm9G/TW3F5ztXHvRjUd3VRLf1rqOxIAAAAA5Et5opjmnDsu6S5J8yR9K2mKc26lmd1pZndKkpmda2ZbJA2R9KCZbTGzkv5SA4iGoyeOqt/Mfvp76t/V96K+mt9nvsoUKeM7FgAAQI5ok9RGn9z6ieItXi3HtNTctXN9RwIAAACAfCdPFNMkyTn3lnPufOdcknPuseCyUc65UcHpbc65Ks65ks65UsHpn/2mBhBJew/vVbvx7TTu63F6pNUjGttlrArGF/QdCwAAIEclV0zW57d9rjrl6qjzpM4auXik70gAAAAAkK/kmWIaAITasHeDLn3lUn2y+RO9du1r+vsVf5eZ+Y4FAAAQEYklEvXRLR+pY+2OGvzWYA2ZN0Qn0k74jgUAAAAA+QLFNAB5znsb3lPKiynafmC73u3zrno36O07EgAAQMQVK1hMM26YoXua3KOnP39aHSZ00N7De33HAgAAAICYRzENQJ7hnNNTnz2ltuPbqnLJylp8+2JdXv1y37EAAACiJj4uXv9p/x+91OklLdi4QI1faqyVO1b6jgUAAAAAMY1iGoA84fCxw+r7Zl/dN/8+da3bVZ/1/0xJZZJ8xwIAAPDitka3KfWWVB08dlDNXm6mGd/O8B0JAAAAAGIWxTQAud7m/ZvVckxLjV8+Xv+48h+a2mOqihcs7jsWAACAV5dWvVRLbl+ieuXr6bop1+mhBQ8pzaX5jgUAAAAAMYdiGoBc7b0N7+mSFy/R2t1rNevGWXrw8gcVZ5y6AAAAJKlyycr68JYPdUvDW/ToR4+q08RO2n1ot+9YAAAAABBTuCINIFc6kXZCD6c+rDavtVH5YuX1xW1fqFOdTr5jAQAA5DqFEwrrlc6vaHj74Xp3/bu6+IWL9fmWz33HAgAAAICYQTENQK6z/cB2tR3fVo98+Ij6XtRXi25bpAvKX+A7FgAAQK5lZhrcZLA+7f+p4uPi1XJMSz392dNyzvmOBgAAAAB5HsU0ALlK6qZUNXyhoT7Z/Ile6fyKxnYdq2IFi/mOBQAAkCekJKboqwFfqWPtjhoyf4i6Temmfb/u8x0LAAAAAPI0imkAcoXjacf1SOojuvrVq3VOoXO06LZF6ndxP9+xAAAA8pzSRUprxg0z9FSbpzR77Ww1eqGRPt38qe9YAAAAAJBnUUwD4N36PevVckxLPfzhw+qV3EuLb1+s5IrJvmMBAADkWWame5vfq4/7fSwnp5ZjWuqhBQ/p2IljvqMBAAAAQJ5DMQ2AN845jVk6Rg1faKjVu1ZrYreJeu3a11SiUAnf0QAAAGJCsyrN9PWdX6t3g9569KNH1XJMS63bs853LAAAAADIUyimAfBi96Hd6j61u26ddasaJzbW8juX68b6N/qOBQAAEHNKFiqpcV3HaXL3yVq7e60ajmqo0V+NlnPOdzQAAAAAyBMopgGIullrZin5+WTNXjNb/2r9L73X9z1VPaeq71gAAAAx7foLr9fygcvVrEoz3T77dnWe1Fk7j+z0HQsAAAAAcj2KaQCiZtehXeo1vZe6TOqi8sXKa9Hti/SnS/+kOONUBAAAEA1VSlbR/D7z9XTbp/X+hvfVb3E/vbL0FXqpAQAAAMApcAUbQMQ55zRl5RTVG1FP01ZN06OtHtXi2xer4bkNfUcDAADId+IsTn9s9kctH7hcScWT1H9Wf7Ud31bf7/vedzQAAAAAyJUopgGIqG0Htqn71O66YdoNql6qur4c8KX+94r/VcH4gr6jAQAA5GvnlTlPT1/0tEZ0GKFPN3+q+s/X18jFI5Xm0nxHAwAAAIBchWIagIg4kXZCwxcNV53hdTR37Vz9v2v+nz7r/5mSKyb7jgYAAICgOIvToMaD9M2gb9S8SnMNfmuwLn35Ui39aanvaAAAAACQa1BMA5DjFv24SI1faqy7375bTSs31fKBy/XnFn9WQlyC72gAAADIRI1SNTSv9zy92vVVbdy3USkvpeiet+/R/l/3+44GAAAAAN5RTAOQY/Yc3qM759ypZqObaduBbZrcfbLm9Z6n88ue7zsaAAAATsPM1OeiPlo9eLXuvORODV80XHVH1NXEFRPlnPMdDwAAAAC8oZgG4KwdTzuuUUtGqc7wOhr91Wj9sdkftfqu1br+wutlZr7jAQAA4AyULlJaIzqO0KLbF6lKySrq9UYvXfXqVVq2bZnvaAAAAADgBcU0AGdl/vr5ajiqoQbOHah65evpywFf6qm2T6lkoZK+owEAAOAspCSm6PP+n2tkh5FasX2FGr3QSP1n9tdPv/zkOxoAAAAARBXFNADZ8u3Ob9VxQke1Hd9Wh48f1vTrpyv15lRddO5FvqMBAAAgh8THxWtg44Fad8863dvsXr22/DXVfq62HvvoMR0+dth3PAAAAACICoppAM7IT7/8pEFzByn5+WQt/GGhhl0zTKsGrdJ1F1zHkI4AAAAxqlThUnqy7ZNaOWilWie11oMLHlTdEXU1btk4nUg74TseAAAAAEQUxTQAWbLn8B498N4DSno2SS999ZIGXDJA3939ne5vcb8KJRTyHQ8AAABRULtsbc24YYY+6PuByhUtp1tm3qLk55P1xrdvyDnnOx4AAAAARATFNACndODoAT320WOq9Z9aGvbJMHWr102rB6/WyI4jVaFYBd/xAAAA4MGVNa/UktuXaGqPqXJy6jalm5qMbqJ3179LUQ0AAABAzKGYBiBTvxz5RcM+GaZa/6mlBxc8qFY1WunrO7/Wa9e+pqQySb7jAQAAwDMzU/d63bVi4AqN6TJGOw7uUJvxbdRqXCu9t+E9imoAAAAAYgbFNAD/Ze/hvXr0w0dV/Znq+st7f1HDcxvqs/6f6c0b31RyxWTf8QAAAJDLJMQl6JaGt2jtXWv1XPvntH7PerV+rbWav9xcc9bOoagGAAAAIM+jmAZAkrTz4E4NfX+oqj9TXQ+lPqSW1Vvqi9u+0Pw+89WsSjPf8QAAAJDLFUoopLua3KX196zXqI6jtP3gdnWa2EmNXmykaaum6UTaCd8RAQAAACBbKKYB+dzqXat1x+w7VO2Zanpi4RNqX7u9lt2xTDNvnKkmlZv4jgcAAIA8plBCId2RcofW3rVWY7uM1aFjh9Rjag/VHVFXIxaN0MGjB31HBAAAAIAzQjENyIecc/pg4wf6w4Q/6IIRF+jV5a+qb4O+WjV4lSZ3n6yLzr3Id0QAAADkcQXiC+jmhjdr1aBVmtJ9isoWKau73r5LVZ+uqqHvD9XWX7b6jggAAAAAWZLgOwCA6Dl07JAmrpio4YuHa9m2ZapQrIIeafWIBqYMVPli5X3HAwAAQAyKj4tXjwt7qMeFPfTp5k/15GdP6omFT+jfn/5bN9S/QYNSBqlZlWYyM99RAQAAACBTFNOAfGDNrjV6fsnzGrtsrPYf2a/6FeprdKfRuqnBTSqcUNh3PAAAAOQTl1a9VJdWvVTr96zXf774j8YuG6vxy8er4bkNNShlkHol91KxgsV8xwQAAACA/8Iwj0CMOnL8iKaunKqrX71adUfU1cjFI9Whdgd93O9jLb9zufo36k8hDQAAAF4klUnSs+2f1Y9DftSojqOU5tI0YM4AJT6VqLvfulvLty/3HREAAAAATqJnGhBDnHNaum2pxiwdownfTNCew3tU7Zxq+r+r/k+3XnyrKhav6DsiAAAAcFKJQiV0R8odGnDJAH26+VM9v+R5vfjVixq+eLgaVWqkfg37qVdyL5UpUsZ3VAAAAAD5GMU0IAZsP7BdE7+ZqDHLxmj59uUqFF9I115wrfo17Kera16t+Lh43xEBAACAsMxMLaq1UItqLfRMu2c0YcUEjVk2Rne/fbfum3+futTpolsa3qLWtVqrQHwB33EBAAAA5DMU04A8au/hvXrj2zc0aeUkfbDxA6W5NDVObKyRHUbqxvo3qnSR0r4jAgAAAGesXNFyuqfpPbqn6T1atm2Zxiwdo9dXvK6pq6aqbJGy6l6vu3rW76mW1VsqzrhzAQAAAIDIo5gG5CH7f92vud/N1eSVk/XOund09MRRJZVO0tDLhqpnck/VK1/Pd0QAAAAgxzQ8t6H+0/4/GtZ6mOatn6eJ30zUa8tf0wtfvqDKJSrrhgtvUPd63dW0SlMKawAAAAAihmIakMtt+XmLZq2ZpTdXv6nUTak6lnZMiSUSNbjxYPWs31MpiSkyM98xAQAAgIgplFBInet0Vuc6nXXw6EHNWjNLE7+ZqOcWPaenPn9KFYtVVOc6ndW1blddVfMqFU4o7DsyAAAAgBhCMQ3IZZxzWrVzld5c/aZmrpmpxVsXS5LOL3u+7m12r7rU7aKmlZtyHzQAAADkS8UKFlPP5J7qmdxT+37dp7e/e1tvrnlTE7+ZqJe+eknFCxZX+/Paq2vdrupQu4NKFS7lOzIAAACAPI5iGpAL/HzkZy3YuEDz18/XvPXztH7veklS08pN9fjVj6tr3a6qW66u55QAAABA7lKqcKmThbUjx4/og40faOaamZq5ZqamrpqqhLgEtazWUq1rtVabpDa6uNLFDAcJAAAA4IxRTAM8OJ52XEu2LtH89fM1f/18fb7lc51wJ1SsQDG1qtFK9196vzrV6aTEEom+owIAAAB5QqGEQmpfu73a126vkR1HatGPizRz9Uy9s/4dDf1gqIZ+MFRli5TVNbWuUZukNmpdq7WqnlPVd2wAAAAAeQDFNCAKTqSd0PLty7Xwh4VK/T5V7294X/uP7JfJlJKYor+0+IvaJLVR86rNVTC+oO+4AAAAQJ4WZ3FqVqWZmlVppseveVzbD2zXexve0/wN8/Xu+nc1eeVkSVLdcnV1Tc1rdHn1y3VZtctUqUQlz8kBAAAA5EYU04AIOHzssBb9uEgf//CxFv6wUJ9u/lS/HP1FklT9nOrqUa+HWie11tU1r1bZomU9pwUAAABiW8XiFXVTg5t0U4Ob5JzTyp0rNX/9fL274V29suwVDV88XJKUVDpJl1W7TC2rtdRl1S7T+WXPl5l5Tg8AAADAN4ppwFlyzmn93vVasnWJFv+4WJ9t+UxLti7RsbRjkqT6Feqrd4PeuqzaZbqs2mWqdk41z4kBAACA/MvMVL9CfdWvUF9Dmg/RsRPHtHTbUi38YaE+/uFjzf1ursZ9PU6SVL5oeV1W7TI1qdxEjRMb65LES1SqcCm/HwAAAABA1FFMA86Ac06bf958snC25KclWrJ1ifb9uk+SVDihsBpVaqQhzYfosmqXqUXVFipdpLTf0AAAAADCKhBfQE0qN1GTyk00pPkQOee0ZvcaLfxh4cnHjNUzTravXaa2UhJTlJKYosaJjXVxpYtVvGBxj58AAAAAQKRRTAPCOHj0oFbuXKkV21doxY7gY/sK7Ty0U5KUEJegBhUb6IYLbzj5x/SF5S9UgfgCnpMjYoYNkxo3lq688uzXtWCBtHix9Oc/n/26AOSsaB/rsb495Cz2HxBxZqa65eqqbrm6uq3RbZKkPYf36MutXwZ+VLd1sRb+sFATv5koKXB/ttplaiu5YrKSKwQeDSo2UM3SNRVncT4/CgAAAIAcQjEN+d6Bowe0dvdardm1Rqt3rT5ZOFu/Z72cnCSpaIGiql+hvjrX6axGlRopJTFFDSo2UOGEwp7TI6oaN5auv16aMuXsLmIuWPDbegDkPtE+1mN9e8hZ7D/AizJFyqh1Umu1Tmp9ctn2A9tPFteWb1+uZduWafqq6Sf/hihWoJgurHChkiskq36F+qpTto7OL3u+apSqofi4eF8fBQAAAEA2UExDvnDk+BF9v/97rduz7mThbM3uwGPrL1tPtkv/VWnDcxuqT4M+alCxgZIrJPOrUgRceWXgouPZXMQMvXiZE70KAOS8aB/rsb495Cz2H5BrVCxeUR3P76iO53c8uSyz0S1mrZmll5e+fLJNwfiCOq/MeSeLa3XK1lGdcnVUs1RNnVv8XJmZj48DAAAA4BQopiFmbN6/WRv3bdTGvRu1cd9Gbdi74eT81l+2nvyFqCSVLlxadcrVUetarU/+8VqnbB0llUmitxlO7WwuYnLxEsg7on2sx/r2kLPYf0CuVaxgsZP3Xwu169Cu337QF3xevWu15qydo2Npx062K5xQWDVL1VTN0jUDzyHT55U5TyUKlYj2RwIAAAAgimmIIRe/cLF2H94tSTKZqpSsopqla+qaWtec/CM0qXSS6pSro7JFyvKLT2Rfdi5icvESyHuifazH+vaQs9h/QJ5Srmg5latWTi2qtfiv5cfTjmvTvk1au3vtyR8Fpv8w8JMfPtH+I/tPtv1by7/pn1f9M9rRAQAAAIhiGmLIC394QSUKlVDNUjVV7ZxqKpRQyHckxLIzuYjJxUsg74r2sR7r20POYv8BeV5CXILOK3OezitzXqav7z289+RoG+eXPT/K6QAAAACkyzM3gTKzdma2xszWmdkDmbxuZvZs8PXlZtbIR074061eN7VJaqPaZWtTSEN0hF7EXLAg8zZcvATyvmgf67G+PeQs9h8Q00oXKa1GlRqpW71uSq6Y7DsOAAAAkG/liWKamcVLGiGpvaR6knqaWb0MzdpLqh18DJD0fFRDAsifTnURk4uXQOwIPdYzk9PHerTPLZzL8jb2HwAAAAAAEZUnimmSmkha55zb4Jw7KmmSpC4Z2nSR9KoL+FxSKTOrFO2gAPKhzC5icvESiD3px3pmInGsR/vcwrksb2P/AQAAAAAQMXnlnmmVJW0Omd8iqWkW2lSW9NOpVvzII4/kRD4AUI2OHdX9D3+QpaTo4JIlmtajhzZ99JH00Ue+owGIsEcieKxH+9ySvr0lKSlK4VyW57D/kB0ffvih7wgAYhDnFgCRwLkFgC95pZhmmSxz2WgjMxugwDCQqlSJjmsAcs6mmjW1JCVFV3z0kT68/HJtqlnTdyQAEXCFrlCNjRtV4/sftKl6tYgf69E+t3Auy9vYfwAAAAAA5Dxz7nf1plzHzJpLetg51zY4/1dJcs49HtLmBUmpzrmJwfk1klo558L2TEtMTHRbt26NaHYA+UhwOK1N7durxttvM6wWEKvSh84bOFB6/vnIH+vRPrdE+/MhZ7H/cIZSU1PVqlUr3zEAxBjOLQAigXMLgEgwsy+dcymna5dX7pm2WFJtM6tpZgUl3ShpVoY2syT1tYBmkvafqpAGADkq5L40m2699ff3rQEQG0LvQfXoo5E/1qN9bon250POYv8BAAAAABAReaKY5pw7LukuSfMkfStpinNupZndaWZ3Bpu9JWmDpHWSXpI0yEtYAPlP6MXL9F//X3klFzGBWBPtYz3Wt4ecxf4DAAAAACBi8kQxTZKcc2855853ziU55x4LLhvlnBsVnHbOucHB15Odc0v8JgaQL2R28TIdFzGB2BHtYz3Wt4ecxf4DAAAAACCi8kwxDQBynVNdvEzHRUwg74v2sR7r20POYv8BAAAAABBxFNMAIDuycvEyHRcxgbwr2sd6rG8POYv9BwAAAABAVFBMA4AzdSYXL9NxERPIe6J9rMf69pCz2H8AAAAAAEQNxTQAOBPZuXiZjouYQN4R7WM91reHnMX+AwAAAAAgqiimAUBWnc3Fy3RcxARyv2gf67G+PeQs9h8AAAAAAFFHMQ0Asmrx4rO7eJku/SLm4sU5kwtAzor2sR7r20POYv8BAAAAABB15pzzncGbxMREt3XrVt8xAMSY1NRUtWrVyncMADGGcwuASODcAiASOLcAiATOLQAiwcy+dM6lnK4dPdMAAAAAAAAAAACAMCimAQAAAAAAAAAAAGFQTAMAAAAAAAAAAADCoJgGAAAAAAAAAAAAhEExDQAAAAAAAAAAAAiDYhoAAAAAAAAAAAAQBsU0AAAAAAAAAAAAIAyKaQAAAAAAAAAAAEAYFNMAAAAAAAAAAACAMCimAQAAAAAAAAAAAGFQTAMAAAAAAAAAAADCoJgGAAAAAAAAAAAAhEExDQAAAAAAAAAAAAjDnHO+M3hjZr9IWuM7B4CYU07SLt8hAMQczi0AIoFzC4BI4NwCIBI4twCIhDrOuRKna5QQjSS52BrnXIrvEABii5kt4dwCIKdxbgEQCZxbAEQC5xYAkcC5BUAkmNmSrLRjmEcAAAAAAAAAAAAgDIppAAAAAAAAAAAAQBj5vZj2ou8AAGIS5xYAkcC5BUAkcG4BEAmcWwBEAucWAJGQpXOLOeciHQQAAAAAAAAAAADIk/J7zzQAAAAAAAAAAAAgrHxbTDOzdma2xszWmdkDvvMAyPvM7BUz22Fm3/jOAiB2mFlVM1tgZt+a2Uoz+x/fmQDkfWZW2MwWmdnXwXPLI74zAYgNZhZvZkvNbI7vLABih5ltMrMVZrbMzJb4zgMgNphZKTObZmarg9ddmodtmx+HeTSzeElrJbWWtEXSYkk9nXOrvAYDkKeZ2eWSDkh61TlX33ceALHBzCpJquSc+8rMSkj6UlJX/t8C4GyYmUkq5pw7YGYFJC2U9D/Ouc89RwOQx5nZEEkpkko65/7gOw+A2GBmmySlOOd2+c4CIHaY2ThJHzvnRptZQUlFnXP7MmubX3umNZG0zjm3wTl3VNIkSV08ZwKQxznnPpK0x3cOALHFOfeTc+6r4PQvkr6VVNlvKgB5nQs4EJwtEHzkv19aAshRZlZFUkdJo31nAQAAOBUzKynpckkvS5Jz7mi4QpqUf4tplSVtDpnfIi5KAQCAXM7Maki6WNIXnqMAiAHBodiWSdoh6V3nHOcWAGfrGUl/lpTmOQeA2OMkzTezL81sgO8wAGJCLUk7JY0JDlE92syKhWucX4tplskyfoUJAAByLTMrLmm6pD865372nQdA3uecO+GcayipiqQmZsYw1QCyzcz+IGmHc+5L31kAxKQWzrlGktpLGhy81QYAnI0ESY0kPe+cu1jSQUkPhGucX4tpWyRVDZmvImmrpywAAACnFLyf0XRJrzvn3vCdB0BsCQ5lkiqpnd8kAPK4FpI6B+9rNEnSVWY23m8kALHCObc1+LxD0gwFbuMDAGdji6QtISN0TFOguJap/FpMWyyptpnVDN5U7kZJszxnAgAA+B0zMwXG7/7WOfeU7zwAYoOZlTezUsHpIpKukbTaaygAeZpz7q/OuSrOuRoKXGf5wDnX23MsADHAzIqZWYn0aUltJH3jNxWAvM45t03SZjOrE1x0taRV4donRCVVLuOcO25md0maJyle0ivOuZWeYwHI48xsoqRWksqZ2RZJDznnXvabCkAMaCGpj6QVwXsbSdJQ59xb/iIBiAGVJI0zs3gFfmQ5xTk3x3MmAACAzFSUNCPwO0MlSJrgnHvHbyQAMeJuSa8HO11tkNQvXENzjluFAQAAAAAAAAAAAJnJr8M8AgAAAAAAAAAAAKdFMQ0AAAAAAAAAAAAIg2IaAAAAAAAAAAAAEAbFNAAAAAAAAAAAACAMimkAAAAAAAAAAABAGBTTAAAAACCbzMwFH6k5tL7U9HXmxPoQYGbXBr/XX82ssu88kmRmfYKZ9plZBd95AAAAAIRHMQ0AAAAAIsTMuprZw8FHKd958iMzKyzpqeDsi865H33mCTFB0lpJ50h63HMWAAAAAKdAMQ0AAAAAIqerpIeCj1Jek+RfgyTVkPSrpCf8RvmNc+6EpH8GZ28xswt85gEAAAAQHsU0AAAAAMgm55wFH61yaH2t0teZE+vL78ysiKQHgrNjnXNbfebJxARJ3yvwt/lDnrMAAAAACINiGgAAAAAgVvWVVD44/arPIJkJ9k57PTjb3cyq+cwDAAAAIHMU0wAAAAAAsWpg8Hm9c+4zr0nCGx98jpc0wGcQAAAAAJmjmAYAAAAg4syslZm54OPh4LJkM3vRzNab2WEz22lm75lZzzNYb1Uze8LMvjKzPWZ2xMx+NLPZZnaLmcVnYR21zexJM/vSzPaZ2TEz221ma8xsvpn92cwuDPPe9M+UmmH5WDNzkm4OWbwxpH36Y2yG96Wmv5aF3E2D398aM/vFzA4Gv8txZnZVFt7/X9nNrKiZ/cnMlpjZ3uD6VprZ42ZW+nTrO822/jdke7NO07ZbSNsVZlY4m9tMlnRRcHbCado+HLLNVsFlV5vZdDPbbGa/Br/bF82seob3FjazO8zs0+C/4UPB3A+YWaHT5XTOfStpWXD2JjNjiE8AAAAgl0nwHQAAAABA/mNmfSS9JCm02FBY0tWSrjazmyR1d879eop13CHpaUlFMryUGHz8QdIQM+vsnNsUZh23SRohqWCGl8oEH+dLai2pl6SGWflskWZmCZJGSro9k5drBR99zWyqpJudc4ezsM5akmZLqpfhpXrBR08zaxXue8yCxyRdI+lySZ3MbJBzbmQmOaoo8O9Ckn6V1PNU/wZOo2vI9IIzeaOZPSHpLxkWp3+33c3saufcUjM7V4HvLSVD2/qSHpfUwczaZmEfLFDg31cNBQqAy84kLwAAAIDIopgGAAAAINoaSxoanH5F0keSTgSX95dUTFJHBYa/657ZCoKFtFEhi2ZLmitpnwIFsH6SakpKlrTQzC52zu3MsI6LJb2gwIgdxyVND2bZIamApEqSLpbUJhuf8VlJb0q6R9KVwWV3BNcd6odsrPtVSem9936VNE7Spwp8hykKfIclJPWQdI6ZtXPOnaqnW0kFvru6kmZJelvSHgUKRwMlVZNUPbjdy7ORV865NDPrLelrSaUl/dvMPnTOrUxvY2ZxCuzz9F5w9zvnvsnO9oJaB5/TJC05g/cNVuDf3UZJYyStlVRKUh9JLYL5pplZfQW+t0aS3pI0R9JuBb7HeySVldRS0t8kPXiabX4eMt1WFNMAAACAXMVO/TcVAAAAAJy94NB5ob2DfpHUxjn3eYZ2tSWlKtCzTAr0TpueoU0NSasU6JF2QlIv59yUDG2KSJqqQFFOkqY553pkaDNcgcKJJN2QcR0h7eIlNXXOfZrJa+l/UH3onGuVyetj9dtQjzVP17MrOOTiFZLknPvdcH9mdoOkScHZ7ZKucs6tytCmugLfdc3goruccyNOkV2Sjkrq5pybk6FNWUmLQ9bV1Dm36FSf4VTMrLsC+0WSlktq4pw7EnxtqAI92CRpjnOu01lsJ17Sz5KKSlrpnKt/mvYPS3ooZNEcST1Ce8UFi31zJbULLvpSgWJrH+fcfw0jaWbnK1AQK6JAgffc9M8ZZvvVJW0Kzs5wzl13yg8IAAAAIKq4ZxoAAAAAH+7PWEiTJOfcdwr0rEr3p0zee49+G9rxycyKYMFh9XpJ+im4qFuwwBHqvODzfv1W4Pkd59yJzAppnoQOPdgvYyFNkpxz30u6UVJ6sez+LNw77p8ZC2nBde2W9H8hi9qeYd6M65umQG9ESWogaZgkmVkTSY8El2+TdOvZbEeBXnVFg9NrzvC9OyT1zji8pHMuTdKjIYsukfRCxkJasO1aBXrZSYFebU1OtcHgPksfCrLBGeYFAAAAEGEU0wAAAABE214Fhs/LlHPuHQV6nklSs+B9qUKl99o5LunJU6znZwXuLSZJpv++h5YkHQo+l1BgKMNcLdgj7+Lg7Arn3Nvh2gZ7j30QnK2uQOEnnBOShp/i9Q9CpjPeUy077lFg6ERJutvMrpc0QYHbEDgF7vO2M9ybs6h6yPSeM3zva865/WFeWyzpWMj873r8hVgYMp2V721v8Lmqmf2uVyIAAAAAfyimAQAAAIi2j51zR0/TJrSA0zh9wswq6LdCydfOuYz3IMtofsh00wyvvRt8jpO0wMxuM7Nyp1mfT6G9m+aHbZV5m4yfPdRa59zeU7z+Y8h06bCtssg5d1CBe74dVaDIOVlSUvDlp5xzWflsp1MmZPpMi2lfhHvBOXdcgfuiSdJB/Vb0zcz2kOmsfG/p6y2owH0DAQAAAOQSFNMAAAAARNu6M2yTGDJdKWR6rU4vtE2lDK+9rMD92aTAPcFekrTDzFaY2Qtm1tPMzsnCNqIlJz97qF2nWkmGe30VzsJ2T8s595WkBzMsXippaE6sX1KhkOlfzvC9u0/zevr3sced+ibkZ/q9/RwyXSRsKwAAAABRRzENAAAAQLQdOn0THQyZLh4yXSJMm3AOhHmvgr3j2kq6X9Km4GKTVF/SAAWGHtxuZiPMrGQWthVpOfbZM0jLXpyzlvFeZjOz0GMxq0ILWWe677L6feT09xZauD0cthUAAACAqKOYBgAAACDaimahTegwd6FFoV/CtAkntBD3ux5Kzrmjzrl/O+dqSrpQgSLaOElbgk0KSRok6SMz891bKEc/u0/B++CNzrB4qJk1zKFNhA7tWCZsq9wlPedRZa1YCgAAACBKKKYBAAAAiLbzzrDN1pDpn0Kma2dhPaFttoZtJck5t8o595Jz7hbnXFVJV+m3HmsXSeqfhe1FUsQ+ezSZmSlQsCwfXPRG8LmgpAk5VLTcFDKd14ppP5xm+EgAAAAAUUYxDQAAAEC0XWZmBU/T5sqQ6cXpE865HZK+D842NLPyOrU2IdOLsh5Rcs4tkHRXyKLLzuT9QaFDAVo23h8qNH/rLLTP9mePsCH6Lds8Sd0lvRicv0DS0zmwjY36rXdXnRxYX0SZWQ39dl+15R6jAAAAAMgExTQAAAAA0VZG0s3hXjSzNgoMuShJnznntmVoMj34nCDpj6dYTwkFhmiUJCdpRjaybgqZTsjG+0OHqMzK0IxhOec2SfoqOHtR8HvKlJmlKNCzTgoUH788m23nlOAwjv8XnN0p6ZZgL6x7Ja0OLr/DzLqczXaccyf022eum0vueXcqTUOmv/CWAgAAAECmKKYBAAAA8OHfZtY440IzS5L0SsiiJzN573OSDgen/2xm3TJZT2FJ4yUlBhdNd859l6HNk2bW7DQ5B4ZMf32atpnZGDLdKBvvz+j/hUyPNbO6GRuYWTVJk/Tb33v/ChaXvDKzopImKjCcoyTdml4odc4dktRTgfuFSdLLZpb4+7WckXeDz3GSUs5yXZEWWkyb5y0FAAAAgExl55eVAAAAAHA23lJgmMJPzGycpI8lnZDUWIH7khUPtnvDOTc945udc5vM7F5JoxT4m2aamc0MrnefAvcKu1VSreBbfpQ0OJMc3SQNMbONkt5TYHi9HZIKSaoqqYekhsG2u/XbUIRn4v2Q6WHBYSnXSDqens05tyKrK3POTTGzrgoUnipJ+srMxkr6TIHvMEWB7zC9J9Z8SSOzkTsSnpaUXvwb4ZybE/qic26ZmQ2V9G9JZSWNM7M2Z3H/sBmS/hGcbiXpg2yuJxrShzXd6JzLTtEWAAAAQARRTAMAAAAQbYsV6KE0WtJtwUdGb0m6KdwKnHMvmJkpUKApLKlL8JHRN5I6Be+1llH6/cxqSrr9FHm/l3Sdc277KdqEy7nczCYqUPyqqEChKNQ4Sbec4Wr7KnA/sNskFVGg99zATNpNk9T3LIpROcbMrpU0IDi7UtL9YZo+JamtAsXWayTdp99/Z1ninFtpZssUKIj2kvT37Kwn0szsAv1WtH3dYxQAAAAAYTDMIwAAAICoc86NV6An2mhJGyT9KmmPAr2HbnLOdXTO/XqadYySdL4CQx8uU6BX2lFJPylQjOsnqWHwXmOZaSTpWgWGjVwkaZekY5KOSNoSXMedki5wzn0VZh1Z0UeBYldqcBvHT9n6NJxzx51zt0tqLullSesUKK4dVmBYyfGSrnbO9XDOHQ6/pugws8oK7Gcp8N32CpcrWPi7WYHvSZIeM7OzGR4zvVdekpldehbriaTewecTkl7yGQQAAABA5iwX/EgRAAAAQIwzs1aSFgRnH3HOPewtDPKN4L3zvpdUQdKLzrk7PEf6L2YWr0AxtIakyc65G/0mAgAAAJAZeqYBAAAAAGJSsHfjE8HZvmaW6DNPJnoqUEhLk/SI3ygAAAAAwqGYBgAAAACIZc8rMPxlYUl/9ZzlpGCvtAeDs2Odc9/6zAMAAAAgPIppAAAAAICYFeydNiQ4e3vwHm65QU9JdSTtVy4q8gEAAAD4PYppAAAAAICY5px70zlnzrnCzrkffeeRJOfc+GCmUs65Hb7zAAAAAAiPYhoAAAAAAAAAAAAQhjnnfGcAAAAAAAAAAAAAciV6pgEAAAAAAAAAAABhUEwDAAAAAAAAAAAAwqCYBgAAAAAAAAAAAIRBMQ0AAAAAAAAAAAAIg2IaAAAAAAAAAAAAEAbFNAAAAAAAAAAAACCM/w+s2+Ukf9ziegAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "samples = [2.0, 2.1, 1.9, 1.0, 2.5] # add samples in a list\n",
+ "\n",
+ "gaussian = Gaussian(samples) # calculate the mean and covariance out of these samples\n",
+ "\n",
+ "fig, ax = make_figure(xlims=(0, 6)) # create figure\n",
+ "\n",
+ "ax.plot(samples, np.zeros((len(samples), 1)), 'x', markersize=20, color='red') # plot samples\n",
+ "\n",
+ "add_gaussian_bel(ax, gaussian.x, gaussian.P, 'green') # plot gaussian distribution\n",
+ "\n",
+ "update_plot()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "id": "b1618bf1",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABtMAAAJgCAYAAAD4c5xoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACl0klEQVR4nOzdd1xW5f/H8ffFUsC9cmSutByZe++V7ekoW47MTNM0V5YjJ2qmfrXUlpVpWlauLMvEgXtlmrPcI7eCG7h+f4j8TEVRxsV983o+HjyAm3Pu88LwBH64zjHWWgEAAAAAAAAAAAC4lo/rAAAAAAAAAAAAACClYpgGAAAAAAAAAAAAxIFhGgAAAAAAAAAAABAHhmkAAAAAAAAAAABAHBimAQAAAAAAAAAAAHFgmAYAAAAAAAAAAADEwc91gEtBQUG2WLFirjMAeJnTp08rODjYdQYAL8O5BUBS4NwCIClwbgGQFDi3AEgKq1evPmKtzX6z7VL1MC1TpkxatWqV6wwAXiY0NFS1atVynQHAy3BuAZAUOLcASAqcWwAkBc4tAJKCMWZXfLbjMo8AAAAAAAAAAABAHBimAQAAAAAAAAAAAHFgmAYAAAAAAAAAAADEgWEaAAAAAAAAAAAAEAeGaQAAAAAAAAAAAEAcGKYBAAAAAAAAAAAAcWCYBgAAAAAAAAAAAMSBYRoAAAAAAAAAAAAQB4ZpAAAAAAAAAAAAQBwYpgEAAAAAAAAAAABxYJgGAAAAAAAAAAAAxIFhGgAAAAAAAAAAABAHhmkAAAAAAAAAAABAHPxcBwAAAAAAAACAp4mKitKpU6cUHh6us2fPKjo62nWSV8uYMaM2bdrkOgOAYz4+PgoMDFT69OmVIUMG+fr6JstxGaYBAAAAAAAAwC24cOGCdu3apaCgIGXKlEl58uSRj4+PjDGu07xWeHi40qdP7zoDgEPWWkVHR+v06dMKDw/XkSNHlC9fPgUEBCT5sRmmAQAAAAAAAEA8RUVFadeuXcqWLZsyZ87sOgcAUg1jjHx9fZUhQwZlyJBBx48f165du1SwYMEkX6HGPdMAAAAAAAAAIJ5OnTqloKAgBmkA4FjmzJkVFBSkU6dOJfmxGKYBAAAAAAAAQDxxuUEASDnSp0+v8PDwJD8OwzQAAAAAAAAAiKezZ88qODjYdQYAQFJwcLDOnj2b5MdhmAYAAAAAAAAA8RQdHS0fH/5ZFQBSAh8fH0VHRyf9cZL8CAAAAAAAAADgRYwxrhMAAEq+8zHDNAAAAAAAAAAAACAOfq4DAAAAACC1OHnupP749w9tPbpV245u077wfTp1/pTCL4Tr1PlTOnvxrPx8/JQxbUZlCcyi7EHZVTBzQRXOUlhFsxdV0WxF5evj6/rTAAAAAIBUhWEaAAAAACSR42eP69d/ftXcv+dq6d6l2nR4k6ysJCnAN0B50udRxrQZdfzscQX4Bsjfx18Xoi5o76m9OnX+lFbsW6GDEQdjny9dQDqVy11O1e+qrocKP6TyucszXAMAAACAJOYxwzRjTENJIyX5SvrEWjv4qo9nlDRR0l269HkNs9Z+nuyhAAAAAFK142eP67u/vtOkDZO0aNciRdkoZUqbSVXzVlXT4k1VPk953ZP1Ht2V8a7YQZjpe+11/m3vS0O3iAsR+vvY3/rz0J9avne5lu1bpgGLBqjfwn7KGphVT9z7hJ4v+bxq5KshH8OV/AEAAAAgsXnEMM0Y4ytpjKT6kvZKWmmMmWGt/euKzV6X9Je19lFjTHZJW4wxX1trLzhIBgAAAJCKWGu1dO9SjVo+Sj9s/kEXoi7onqz3qHu17nqo8EOqkKeC/Hxu78evdAHpdH/O+3V/zvv1fMnnJUnHzh7T3L/nava22ZqycYo+Xfup8mbIq9ZlW6t12dbKEZwjMT89AAAAAEjVPOXXFitI2m6t/SdmOPaNpMev2sZKSm+MMZLSSTomKTJ5MwEAAACkJtE2WlM3TlW5j8up6mdV9fP2n9WmbButemWVNr2+Sf3r9FeVvFVue5AWlyyBWdS0RFN99eRX+vetfzX56cm6N9u9enf+u8r7QV41n95cW49uTdRjAgAA4Pbt3r1b48aNU7NmzVSiRAllyJBBAQEByp49u6pVq6ZevXpp9+7diX7cs2fPasyYMWrQoIFy5sypgIAA5ciRQ5UrV9aQIUN04sSJRD8mEtfSpUvVokULFSpUSEFBQcqSJYvKli2r/v3768iRI4l2nJMnT2rq1Kl67bXXVLFiRWXNmlX+/v7KnDmz7r//frVt21YrV65M8HFeeeUVGWNiX/r06ZPw+GTgESvTJOWRtOeK9/dKqnjVNqMlzZC0X1J6SU2stdHJkwcAAAAgNYm20frur+/03oL3tPHwRt2T9R599PBHer7k80oXkC5ZW4L8g9S0RFM1LdFUm49s1v+W/0+fr/tcX/7xpZ677zn1qtFLhbMWTtYmAAAA/L8nnnhCM2bMkLX2mo8dOXJER44cUVhYmIYMGaL+/fvrrbfeSpTjrlixQo0aNbpmSHf48GEdPnxYy5Yt08iRIzVp0iTVrFkzUY6JxGOtVefOnTVixIj/fO2cPXtWx48f15o1azR69GhNmjRJderUSdCxhgwZol69eun8+fPXfOzEiRM6ceKE1q9fr48++kjPP/+8xo0bp6CgoFs+TmhoqD799NMEtbriKcO0a28gIF195nlA0jpJdSQVkvSrMWaRtfbUf57ImNaSWktSrly5FBoamuixAFK3iIgIzi0AEh3nFiDl2HByg8b8PUabwzcrX1A+vVv0XdXMXlO+Eb5atWRVoh3ndv/ONwpupLrl62rqnqn6dsO3mvznZD2R+wm9mO9FZfDP8J9tObcASAqcW+DtMmbMqPDwcNcZqU5UVJTH/rmvX78+dhhSpkwZ1ahRQ3fffbfSp0+vffv2acaMGVq2bJnOnz+vLl266NSpU+rSpUuCjrlx40Y1aNAg9s/s3nvvVdOmTZU/f36dPHlS8+bN08yZM7V//3498sgj+umnn1SqVKmEfqpIRL1799YHH3wgSQoODtYLL7ygsmXL6vTp05o+fbrmz5+vf//9V48//rh+/vlnlSxZ8raPtXHjxthBWv78+VW7dm3dd999ypo1q06cOKEFCxZo+vTpioqK0sSJE7V//359//338vGJ/8UPz549q5YtW8paq+DgYJ0+fVqSdP78+QT/3T537lySf+9hrjcNT2mMMZUl9bHWPhDzfg9JstYOumKb2ZIGW2sXxbz/u6Tu1toVcT1v7ty57f79+5O0HUDqExoaqlq1arnOAOBlOLcA7h2MOKhOv3TS5A2TlTt9bg2sM1DPl3xevj6+CX5u0/fa3x+0vRP+s9q/Ef+q1/xe+mTtJ8qUNpMG1Bmg1mVby8dc+qGXcwuApMC5Bd5u06ZNKlq0qOuMVCc8PFzp06d3nXFbSpQooVq1aql9+/a65557rrvNiBEj9Oabb0qS/Pz8tHHjRhUpUuS2j1mxYkWtWHHpn8abNWumCRMmyM/vv2trpk+frqefflpRUVEqVaqUVq9efUvDESSdtWvXqmzZsrLWKmPGjFq4cOE1w7I+ffqob9++kqTy5ctr+fLlunQXrFv3yiuv6MCBA+rSpYtq1Khx3edZtGiRHnroIUVEREiSPvvsMzVv3jzex+jatauGDh2qPHnyqHHjxrGDwt69eyf4Uo8JOS8bY1Zba8vdbDtP+ZuxUlJhY0wBY0yApKa6dEnHK+2WVFeSjDF3SLpH0j/JWgkAAADA61hr9cmaT1R0TFFN2zRN79Z4V1vbbdVLpV5KlEFaUroj3R0a9+g4rX11re6/4369Nvs11ZxQU5sOb3KdBgAAkGosWrRIo0ePjnOQJkkdO3bU008/LUmKjIzU119/fdvHW7ZsWewgLU+ePPrkk0+uGaRJ0uOPP6727dtLktatW6dp06bd9jGRuN57773Y1YwDBw687qqz3r17q0KFCpKklStX6qeffrrt4w0ZMkSzZs1SzZo14xzIVa9eXYMGxa5v0oQJE+L9/GvWrNHw4cMlSaNGjVKGDBluskfK4xHDNGttpKR2kn6RtEnSVGvtRmNMG2NMm5jN+kmqYoz5U9I8Sd2stYl39z0AAAAAqc7eU3tV/6v6emXmKyp5R0mtb7Ne79V+T8EBwa7TbknJO0pq3ovz9Pnjn2vjoY0qNa6UhoQNUTS3mQYAAB5owYIF8vX1lTFGd911l06cOBHntjt27FDGjBlljFFwcLC2bNmSfKExMmfOHK/tGjVqFPv2n3/+edvH+/333//znGnTpo1z25deein27cmTJ9/2MW9mxowZMsbIGKPOnTvHa59OnTrF7jNz5sz/fMxaq0WLFqlnz56qU6eOcufOrTRp0ig4OFgFChRQ06ZNNXPmzOvep+5Kffr0iT3G5csEzps3T88++6wKFCigtGnTyhijnTt33s6nfVvCw8M1Z84cSVKGDBn08ssvX3c7Y0zsMFSSpkyZctvHTMqv0cjISLVs2VJRUVF67LHH9NRTT91Wo2uecs80WWt/kvTTVY+NveLt/ZIaJHcXAAAAAO/07cZv9eqsV3U+6rzGPjxWr5R9JfbyiJ7IGKOXS72shwo/pNdmv6Zuv3VTqYylNKPMDOXNmNd1HgAAQLzVrFlT3bt318CBA7Vnzx61bt1aU6dOvWa7yMhIPffcczp16pQkaeTIkTdcHebalZexPHv27G0/z969e2Pfvtnne+XHf/nlF0VHRyfJpR4ffPBBZcuWTUeOHNHkyZM1dOjQGx4nKipK33zzjSQpW7Zsatiw4X8+3qJFi+uujLpw4YJ27typnTt3asqUKWrYsKGmTJkSr5VQ1lq1a9dOY8aMubVPLpEtWLAg9v5lNWrUUFBQUJzbPvDAA7FvXx7AJaXb+RodOnSo1q1bp3Tp0mn06NFJlZbkPPcnQQAAAABIAuciz6n1zNZq/F1jFc5aWOteXadXy73q0YO0K+UIzqHvGn2nTx/7VJvDN6vk2JKauWXmzXcEAABIQfr27auKFStKkr799lt99tln191m2bJlkqSnn35arVq1StbGW7Vhw4bYt/Ply5fsxz9z5oz+/vvvJHluf39/NWnSRJJ04MABzZs374bbz5s3TwcOHJAkNW3aVP7+/v/5+NmzZ5UmTRo1aNBA77zzjj7//HNNnTpVY8aMUYcOHZQlSxZJ0s8//6wXX3wxXo1Dhw7VmDFjlDNnTnXv3l0TJ07UhAkT1LZtW6VJk+ZWP+XbduXXQdmyZW+4bfbs2WO/Vo4cOaJDhw4lW1t8vka3bdum9957T5LUv39/5c3rub/E5zEr0wAAAAAgqe04vkPPfPuM1hxYo+5Vu+u92u/J39f/5jt6GGOMWpRuoTQH0+j93e/rsW8e09vV3tZ7td9L8feBAwAAkCQ/Pz9NmjRJpUqVUnh4uN544w1Vr15dhQsXliQtXrw49v5OefPm1ccff3zd5zlz5ozmzp2bKE133XWXypQpc1v7RkZG6vPPP499/+GHH77tjpw5c8a+vXXr1htue/XHt2zZEvtnmNief/752FVfEydOVP369ePcduLEif/Z72qvv/66xo4dq0yZMl13/wEDBqh58+b69ttvNX36dC1YsEA1a9a8Yd+cOXNUrVo1zZ49+z8r2a68FKZ06f5fu3fvvuFzxVeDBg2uWXl25X+T/Pnz3/Q58uXLp127dsXumyNHjkRpu57x48fHvn2zr1FrrVq1aqVz586pXLlyateuXZJ1JQeGaQAAAAAg6de/f1Xj7xpLkmY0naFH73nUcVHSyxOYR0taLlH7n9pr4OKBWr5vub5t9K0yB8bvngkAAAAuFSxYUGPGjNGLL76o06dP67nnntOSJUt0+vRpNWvWTFFRUfLx8dFXX30V5z2hDh06pCeffDJRel566aXrXnowPoYNG6bNmzdLku67774EDdOqVasW+/bUqVM1aNCgOFdWffHFF/95/0b3n0uoSpUqqXDhwtq2bZu+//57ffTRR9e9hOGZM2f0ww8/SJIKFy4cuwLxStWrV7/hsYKDg/Xpp5/qp59+0unTp/XVV1/ddJgWHBwcr0tCjho16po/t9u1Y8eOawZmV/43yJYt202fI2vWrNfdN7EtWbIkduCbNm1adezY8Ybbjxs3TgsXLpSvr6/Gjx8vX1/P/qU977hOCQAAAAAkwIcrP9SDXz+ovBnyanXr1alikHZZWr+0+vixj/XpY59q4a6FqvRpJW09euPfYAYAAEgpXnjhBTVr1kyStGrVKr377rt69dVXY1cO9ejR46ZDFNfmz5+vd999V9KlFXfjxo1L0H3LatasqSJFikiS9u3bp1dffVVRUVHXbDdr1iz973//+89j4eHht33c+Li8yiwiIkLTp0+/7jY//vijIiIiJF3673u70qdPr/vuu0+StHz58ptu//TTTyt37ty3fbzEcvlzly4NrW4mMDAw9u2k+u938OBBNW7cWNHR0ZKkfv363fCSjfv27VO3bt0kSR06dFDp0qWTpCs5sTINAAAAQKoVFR2ljj931OiVo/VIkUc06alJSp8m/c139EItSrdQkaxF9OSUJ1Xpk0qa1niaaheo7ToLAACP1vHnjlp3cJ3rjGRVKmcpjWg4IlmP+eGHH2rJkiXasWOHQkJCYh+vWLGi+vTpc8N98+fPL2ttEhfGbfPmzWrUqJEiIyMlSQMHDlTlypUT9Jy+vr4aO3asGjRooMjISH3xxRdatWqVXnjhBRUsWFAnT57UL7/8omnTpslaq/z582vnzp2SlKAhXnw8//zz6t27t6RLl3J89tlnr9nmyks8Xh6UXs/58+c1depUTZ8+XX/88Yf+/fdfRUREXPe/5969e2/adrPVbpdNmDDhtlcg3ipjTLIc50ZOnz6txx9/XPv27ZN06fKOnTt3vuE+bdu21alTp3TXXXfF3jPN07EyDQAAAECqdC7ynBp/11ijV45Wp0qd9GOTH1PtIO2yandV0/JWy5UzXU41/Lqhpm6c6joJAADgpjJkyKBJkybJz+//146kT5/+msdSmh07dqh+/fo6evSoJKljx47q0qVLojx37dq19e2338ZesnDjxo3q3r27GjdurFdeeUXfffedJKlnz5564IEHYveL63KYiaVgwYKqUqWKJGnu3Lk6fPjwfz5+6NAh/frrr5KkqlWrqmDBgtd9nj///FP33XefXnzxRU2bNk3bt29XeHh4nIPRU6dO3bQtT548t/KpJJl06dLFvn327Nmbbn/lNunTJ+7PM+fOndNjjz2mFStWSLr032TKlCk3HPJNmTJFM2bMkCSNGTNGwcHBidrkSso9kwAAAABAEjlx7oQe/+ZxLdy1UCMeGKEOlTq4TkoxCmYuqMUtFuuxyY+p6XdNdej0IbWr4Nk3CwcAwJXkXqGVmuXJk0fBwcE6efKkJKls2bJxDmJSgj179qhOnTqxK6batGmjDz74IFGP8cQTT2j79u366KOPNGfOHG3ZskURERG64447VLVqVbVv315Vq1bVQw89FLtPzpw5E7Xhel544QUtWbJEkZGR+uabb9S+ffvYj33zzTexq/TiusTjsWPHVK9ePR06dEiSlDdvXj3yyCO69957lT17dqVNmzZ22PPOO+9o48aNsZcnvJErL5foUqZMmWLfvjxovZErt7ly34S6cOGCnnrqKf3++++SpAoVKuinn3664XDs2LFj6tDh0s9WjRo10iOPPJJoPa4xTAMAAACQqhw+fVj1v6qvvw7/pclPT1bTEk1dJ6U4WQKz6NcXflXTaU3Vfk57HTt7TO/WeDdFXGYGAADgatHR0XrhhRdiB2mSFBoaqo8++kivvfbaDfc9c+aM5s6dmygdd911l8qUKXPT7fbv3686derEXlqxRYsW+vDDDxOl4WrZs2dXr1691KtXrzi3WbVqlaRLl3hMjntbNW7cWB06dNCFCxc0ceLE/wzTLl/iMSAgQI0bN77u/qNHj44dpL300kv65JNP4lyBOGDAgESul9asWRN7T76EatCggYKCgv7z2OX73UmK/Rq5kV27dl1334S4ePGiGjVqpDlz5kiSSpcurZ9//jl2pWNcZs6cqX///VfSpa+9/v37X3e7hQsX/ufty9tVrFhR9evXT4xPIdExTAMAAACQahwIP6B6X9XTjuM7NOu5WWpQqIHrpBQr0D9Q0xpPU6sZrdQ7tLfOR55X/zr9GagBAIAUZ9CgQVqwYIEkqW7dulq1apVOnjypzp07q2bNmipWrFic+x46dEhPPvlkonS89NJLN72X1sGDB1WnTh1t375d0qV7gn388cfOvsdavXp17KUWS5UqleiXCbyeLFmy6KGHHtKPP/6oFStWaNu2bSpcuLC2bt2qlStXSrp0X664Ljn522+/SZL8/Pw0YsSIG17K88pBU2IZNWqUvvjii0R5rh07dih//vz/eaxEiRKxb18edMbl8OHDsZ9jtmzZlCNHjgQ3RUZG6tlnn429VON9992nX3/9NV6XAL3yMpvxHRDPnz9f8+fPlyR16NAhxQ7TuGcaAAAAgFRh76m9qjmhpnad2KU5zeYwSIsHPx8/ffb4Z3q17KsauHig3pr7Vpz3oQAAAHBh+fLl6tOnjyQpd+7cmjJlij766CNJl+4l9dxzz+n8+fMOC//f4cOHVbduXW3ZskWS1KRJE33xxRfy8XH3z/Tjx4+Pfbtly5bJdtwrL+F4eTXa5ddXf/xql1c+Zc2a9YaXNVy7du0192TzBLVq1VKaNGkkXVq1daP7pv3yyy+xbz/44IMJPnZUVJReeOEFTZs2TZJUrFgx/fbbb8qaNWuCn9vTMUwDAAAA4PX2h+9X7S9q69/T/2ruC3NVM39N10kew8f46KOHP1KHih00fNlwdfm1CwM1AACQIoSHh6tZs2aKjIyUMUZffPGFsmbNqmeffTZ2GPPHH3+oe/fucT5H/vz5Za1NlJcbrUq7fJ+vv/76S5L01FNPaeLEifL19U3UP5NbsWrVKn366aeSpDvuuOOGA6zE9sgjj8SudPr6669lrdXXX38tScqcObMefvjhOPe9fFnEQ4cOKTw8PM7t3nvvvUQs/n8TJkxItK+Zq1elSVK6dOli72N36tSpOL+urLUaPXp07PtNmjRJ0OcVHR2tFi1a6JtvvpF06ZKR8+bNu6XVbi+//HK8Pu/evXvH7tO7d+/Yx0eMGJGgzyEpMUwDAAAA4NUOnT6kul/W1cGIg/q52c+qkreK6ySPY4zRBw98oPYV2uv9pe/r3fnvuk4CAADQ66+/rr///luS1LlzZ9WrVy/2Y2PGjFHBggUlSSNHjvzPCp7kdvLkSTVo0EDr16+XJD322GP65ptvbnh5whvJnz+/jDEyxig0NPS62xw+fFibN2+O8zmWLl2qhx9+WFFRUZIuXZIvOS7xeFlAQIAaNWokSfr77781fPhw/fPPP5Iu3VMtICAgzn3Lly8v6dIw6Z133rnm49Za9erVSz/++GPihyeTd9/9//sV9+jRI/Zr50rvvfeeli9fLunSn8nlAdzVJkyYEPv1UqtWretuY63Vq6++qi+//FKSdPfdd2v+/PnKmTNnInw23oF7pgEAAADwWsfOHlO9L+tp14ld+vn5n1U5b2XXSR7LGKORDUfqfOR5DVg0QGl80+jdmgzVAACAG5MnT9ZXX30lSSpdurQGDBjwn4+nT59ekyZNUrVq1RQZGamXX35Z69evV/bs2ZO99cEHH9Tq1aslXboUZbNmzTR79uwb7hMUFKQGDW7/suS7du1ShQoVVKFCBdWrV0/33HOP0qRJowMHDmju3LmaM2dO7NUG+vbtq6eeeuqGz5c/f/7Ye3PNnz8/zqHMrXjhhRdiLzP59ttv/+fxG2nbtq0+++wzRUVFadSoUVq3bp2eeuop5cyZU3v27NGkSZO0du1aFStWTIGBgbF/9p6kdOnS6tq1q0JCQnTy5ElVqVJFrVq1UoUKFRQREaFp06Zp7ty5ki6tZBs/fnyC7rvXs2dPffLJJ5Ikf39/vfHGG1qxYsVN92vQoEHsSkFvxzANAAAAgFc6e/GsHp38qLYe3apZz81SjXw1XCd5PGOMPnrkI52POq9eob2UJTCLXq/wuussAACQyuzcuVOvvfaapEtDp0mTJl13JVPFihXVp08fvfPOOzp48KCaN2+uWbNmJXeuli5dGvv2/v3743U5vnz58mnnzp0JOq61VsuXL49dvXS1TJkyaciQIXrllVcSdJzbVbVqVRUoUEA7duzQhQsXJEkFCxZU1apVb7hfqVKl9L///U/t2rVTdHS0Fi5cqIULF/5nm6JFi2r69Olq1apVkvUntUGDBunChQsaMWKETp8+rZEjR16zTY4cOTR58mSVKlUqQcdasmRJ7NsXL17UG2+8Ea/9duzYcd1LVXojLvMIAAAAwOtERUfpue+f09I9SzXxqYmqV7DezXdCvPgYH33y2Cd67J7H1H5Oe03ZMMV1EgAASEWioqL0/PPP6+TJk5Kk4cOH6957741z+x49eqhGjUu/VDV79uz/3GPKmxUtWlQTJkzQiy++qBIlSihbtmzy9/dXrly5VL16dQ0dOlRbtmyJ9yDt7NmzsW9ny5YtURqNMXr++ef/81izZs3ite9rr72msLAwNWrUSDlz5pS/v79y5MihKlWqaPjw4Vq1apXuvvvuROl0xRij4cOHKywsTC+//LIKFiyotGnTKlOmTCpTpozee+89bdy4UXXq1HGdmiqY1Hzj6Ny5c9v9+/e7zgDgZUJDQxNlqTsAXIlzCxB/1lq1+6mdPlz1oUY2HKk3KsbvtypdMn2vvSSL7Z30P6sl5Nxy9uJZPTDxAS3bu0yzn5ut+oXqJ24cAI/F9y3wdps2bVLRokVdZ6Q64eHhyXpPL/y/LVu2xA4sH3vsMU2fPt1xEfBfCTkvG2NWW2vL3Ww7VqYBAAAA8CohYSH6cNWH6lKli0cM0jxVoH+gZjw7Q/dmu1dPT31aGw5tcJ0EAACAJPDbb79Jknx8fDRw4EDHNYAbDNMAAAAAeI2v/vhKPeb10LMlntXgeoNd53i9TGkzafZzsxUcEKxHJz+qQ6cPuU4CAABAIrs8THvhhRdUvHhxxzWAGwzTAAAAAHiFX//+VS1mtFCdAnX0+eOfy8fw405yyJsxr2Y0naGDEQf15JQndS7ynOskAAAAJJLo6GiFhoYqTZo06tu3r+scwBl+ugQAAADg8bYc2aJnvn1GxbIX0/eNv1cavzSuk1KV8nnK66snv9KSPUvUckZLpeZ7cwMAAHgTHx8fHT9+XOfOnVO+fPlc5wDOMEwDAAAA4NFOnjupx795XGl802jmszOVMW1G10mp0jPFntGAOgM06c9J6r+wv+scAAAAAEg0fq4DAAAAAOB2RdtoPf/D8/r7+N+a9+I83ZXxLtdJqVqPaj20+chm9QrtpSJZi6hJiSaukwAAAAAgwViZBgAAAMBj9Qnto1lbZ2nEAyNUI18N1zmpnjFGHz/6sardVU0v/fiSVu9f7ToJAAAAABKMYRoAAAAAj/T9pu/Vb2E/tSjVQm3Lt3Wdgxhp/NLo+8bfK0dwDj3z7TM6dvaY6yQAAAAASBCGaQAAAAA8zoZDG/TiDy+qYp6K+vDhD2WMcZ2EK2QPzq5vG32rfaf26cUfXlS0jXadBAAAAAC3jWEaAAAAAI9y/OxxPfHNE0qfJr2+b/K90vilcZ2E66h4Z0UNf2C4Zm+brcGLB7vOAQAAAIDbxjANAAAAgMew1qrFjBbafXK3vm/8vXKnz+06CTfwevnX1bREU707/13N+2ee6xwAAAAAuC0M0wAAAAB4jNErRuvHzT8qpF6IKuet7DoHN2GM0cePfqx7st6jZ6c9q32n9rlOAgAgUVhrXScAAJR852OGaQAAAAA8wpoDa/TWr2/pkSKPqGOljq5zEE/pAtJpWuNpOnPxjJp810QXoy66TgIAIEF8fHwUHc39QAEgJYiOjpaPT9KPuhimAQAAAEjxws+Hq8l3TZQ9KLs+f/xzGWNcJ+EWFM1eVJ889onC9oSpx7wernMAAEiQwMBAnT592nUGAEDS6dOnFRgYmOTHYZgGAAAAIEWz1uq12a/pn+P/aPLTk5UtKJvrJNyGpiWaqm25tnp/6fua+/dc1zkAANy29OnTKzw83HUGAEBSeHi40qdPn+THYZgGAAAAIEWbsG6Cvv7za/Wp2UfV81V3nYMEGNZgmIplL6aXf3xZR84ccZ0DAMBtyZAhg86cOaPjx4+7TgGAVO348eM6c+aMMmTIkOTHYpgGAAAAIMXadHiT2s1pp9r5a+vt6m+7zkECBfoH6uunvtbRs0fVakarZLtZOAAAicnX11f58uXTkSNHtG/fPp06dUpRUVH8fw0Akpi1VlFRUTp16pT27dunI0eOKF++fPL19U3yY/sl+REAAAAA4DacjzyvptOaKtg/WBOfmihfn6T/AQlJr1TOUhpYZ6De+vUtfbLmE71S9hXXSQAA3LKAgAAVLFhQp06d0okTJ3TgwAFFR0e7zvJq586dU9q0aV1nAHDMx8dHgYGBSp8+vXLmzJksgzSJYRoAAACAFKp3aG+t/3e9Zj07S7nT53adg0T0ZuU3NWf7HHX8paNq5q+pIlmLuE4CAOCW+fr6KnPmzMqcObPrlFQhNDRUpUuXdp0BIJXiMo8AAAAAUpwle5Zo6JKhalW6lR4u8rDrHCQyH+OjL574Qmn90uq5ac/pQtQF10kAAAAAECeGaQAAAABSlIgLEXrxhxd1V8a7NPyB4a5zkETyZMijjx/9WKsPrFaf0D6ucwAAAAAgTgzTAAAAAKQoXX/tqn+O/6MJj09Q+jTpXecgCT1V9Cm1LN1SgxcP1uLdi13nAAAAAMB1MUwDAAAAkGLM/XuuPlr1kd6s9KZq5q/pOgfJYETDEcqfKb9aTG+hMxfPuM4BAAAAgGswTAMAAACQIhw/e1wtprdQ0WxFNaDuANc5SCbpAtLpk8c+0bZj29Rrfi/XOQAAAABwDYZpAAAAAFKEN35+QwcjDurLJ79UWr+0rnOQjOoUqKM2Zdto+NLhWrpnqescAAAAAPgPhmkAAAAAnPtx84+auH6i3qnxjsrlLuc6Bw4MqT9EeTPmVYsZLXQu8pzrHAAAAACIxTANAAAAgFMnzp1Q29ltVSpnKfWs3tN1DhxJnya9Pn70Y20+sll9Qvu4zgEAAACAWAzTAAAAADjV7dduOnT6kD597FP5+/q7zoFDDQo1UMvSLTV0yVCt3LfSdQ4AAAAASGKYBgAAAMChBTsXaPya8Xqz0psqk6uM6xykAO83eF+50+dW8+nNdT7yvOscAAAAAGCYBgAAAMCNc5Hn9MrMV1Qwc0H1rd3XdQ5SiIxpM2r8I+O18fBG9VvYz3UOAAAAADBMAwAAAOBGvwX9tO3YNo17ZJyC/INc5yAFebDwg3rx/hcVEhaijYc2us4BAAAAkMoxTAMAAACQ7P44+IeGLBmil0u9rHoF67nOQQr0foP3lTFNRrWZ3UbRNtp1DgAAAIBUjGEaAAAAgGQVFR2lVjNbKUtgFg2rP8x1DlKobEHZNLT+UC3evVifr/3cdQ4AAACAVIxhGgAAAIBkNWr5KK3av0qjGo5S1qCsrnOQgr1c6mXVyFdDXX/rqsOnD7vOAQAAAJBKMUwDAAAAkGx2n9ytd+a/o4cLP6zGxRu7zkEKZ4zR2IfHKvx8uN769S3XOQAAAABSKYZpAAAAAJLNm7+8KWutxjw0RsYY1znwAEWzF1XXql315R9fav6O+a5zAAAAAKRCHjNMM8Y0NMZsMcZsN8Z0v87Huxhj1sW8bDDGRBljsrhoBQAAAHCtn7f/rO83fa93aryjfJnyuc6BB+lZvacKZS6kNrPb6Hzkedc5AAAAAFIZjximGWN8JY2R9KCkYpKeNcYUu3Iba+1Qa20pa20pST0kLbDWHkv2WAAAAADXOBd5Tu3ntFeRrEXUuXJn1znwMIH+gfrw4Q+19ehWhYSFuM4BAAAAkMp4xDBNUgVJ2621/1hrL0j6RtLjN9j+WUmTk6UMAAAAwE0NDRuq7ce2a/SDo5XGL43rHHigBoUaqGmJphq4aKC2Hd3mOgcAAABAKuIpw7Q8kvZc8f7emMeuYYwJktRQ0rRk6AIAAABwEzuO79DAxQPVqFgj1S9U33UOPNgHD3ygNH5p1OHnDrLWus4BAAAAkEr4uQ6Ip+vdmTyun5welRQW1yUejTGtJbWWpFy5cik0NDRRAgHgsoiICM4tABId5xZ4sp4bekrRUqMMjfg6vgXJ8WflieeWZnma6aPtH2nw94NVOWtl1zkArsMTzy0AUj7OLQBcMp7w23zGmMqS+lhrH4h5v4ckWWsHXWfbHyR9a62ddLPnzZ07t92/f39i5wJI5UJDQ1WrVi3XGQC8DOcWeKqZW2bqsW8e05B6Q9SlahfXOSmW6Xvt7w/a3kn/s5onnlsuRl3U/WPv14WoC9rQdoPS+qV1nQTgKp54bgGQ8nFuAZAUjDGrrbXlbradp1zmcaWkwsaYAsaYAElNJc24eiNjTEZJNSVNT+Y+AAAAAFc5e/Gs3vj5DRXLXkwdK3V0nQMv4e/rr5ENR+rv439r+NLhrnMAAAAApAIeMUyz1kZKaifpF0mbJE211m40xrQxxrS5YtMnJc211p520QkAAADg/4WEhWjniZ0a89AY+fv6u86BF6lfqL6evPdJDVg0QHtO7rn5DgAAAACQAB4xTJMka+1P1toi1tpC1toBMY+NtdaOvWKbCdbapu4qAQAAAEjS7pO7FRIWoibFm6hW/lquc+CFhj8wXNE2Wl1+5fKhAAAAAJKWxwzTAAAAAHiObr91kyQNqT/EcQm8Vf5M+dWtajdN2ThFC3YucJ0DAAAAwIsxTAMAAACQqMJ2h+mbDd+oS5UuuivjXa5z4MW6Ve2mfBnzqf2c9oqMjnSdAwAAAMBLMUwDAAAAkGiibbQ6/NxBedLnUbeq3VznwMsF+gfq/Qbv689Df2rsqrE33wEAAAAAbgPDNAAAAACJ5ss/vtTqA6s1uN5gBQcEu85BKvBU0adUt0Bd9ZrfS8fOHnOdAwAAAMALMUwDAAAAkCjCz4erx7weqpinop677znXOUgljDH64IEPdPL8SfVb0M91DgAAAAAvxDANAAAAQKIYtHiQDkYc1MiGI+Vj+FEDyee+O+5Ty9ItNXrlaG09utV1DgAAAAAvw0+4AAAAABJsx/EdGr50uJ4v+bwq3lnRdQ5Sofdqv6e0fmnV7Tfu1QcAAAAgcTFMAwAAAJBgXX7tIl8fXw2uO9h1ClKpnOlyqnvV7vpx849asHOB6xwAAAAAXoRhGgAAAIAEWbRrkaZtmqbuVbsrT4Y8rnOQinWq3El5M+RVp7mdFG2jXecAAAAA8BIM0wAAAADcNmutuvzaRbnT51bnKp1d5yCVC/QP1KC6g7TmwBpNXD/RdQ4AAAAAL8EwDQAAAMBt++6v77R833L1q91PQf5BrnMAPXvfsyqXu5zenve2zlw84zoHAAAAgBdgmAYAAADgtlyIuqAe83qoRI4Seun+l1znAJIkH+Oj4Q2Ga1/4Pr2/5H3XOQAAAAC8AMM0AAAAALdl7Kqx+vv43xpSb4h8fXxd5wCxquerrqeLPq2QsBAdCD/gOgcAAACAh2OYBgAAAOCWnTh3Qu8teE91C9RVw7sbus4BrhFSL0QXoi6oT2gf1ykAAAAAPBzDNAAAAAC3LGRxiI6ePaoh9YfIGOM6B7hGoSyF9Fq51/Tp2k+1+chm1zkAAAAAPBjDNAAAAAC3ZM/JPRqxfISeL/m8yuQq4zoHiFPPGj0V6B+onr/3dJ0CAAAAwIMxTAMAAABwS96Z/46stepfu7/rFOCGcgTnUJcqXfT9pu+1bO8y1zkAAAAAPBTDNAAAAADxtu7gOn31x1d6o+Ibypcpn+sc4KY6Ve6kHME51PXXrrLWus4BAAAA4IEYpgEAAACIt+6/dVemtJn0dvW3XacA8ZIuIJ161+ytRbsX6adtP7nOAQAAAOCBGKYBAAAAiJfQnaH65e9f9Hb1t5UpbSbXOUC8vVLmFd2d5W51n9ddUdFRrnMAAAAAeBiGaQAAAABuylqrHvN6KE/6PHq9/Ouuc4Bb4u/rrwF1BmjDoQ2auH6i6xwAAAAAHoZhGgAAAICbmrl1ppbtXabeNXsr0D/QdQ5wy54p9ozK5S6nd+e/q3OR51znAAAAAPAgDNMAAAAA3FBUdJTenve2CmcprOalm7vOAW6Lj/FRSL0Q7Tm1R2NWjHGdAwAAAMCDMEwDAAAAcEOT/pykjYc3qn+d/vLz8XOdA9y2OgXq6IFCD2jAogE6ee6k6xwAAAAAHoJhGgAAAIA4XYi6oF6hvVQ6Z2k9U+wZ1zlAgg2oM0DHzx3X8KXDXacAAAAA8BAM0wAAAADEafzq8dp5YqcG1R0kH8OPD/B8ZXOX1dNFn9bwZcN15MwR1zkAAAAAPAA/DQMAAAC4rogLEeq3sJ9q5qupBoUauM4BEs17td/T6QunFbI4xHUKAAAAAA/AMA0AAADAdY1cNlKHTh/SoLqDZIxxnQMkmmLZi+n5ks9r9MrR2h++33UOAAAAgBSOYRoAAACAaxw7e0xDlgzR4/c8rsp5K7vOARJdn1p9FBkdqQELB7hOAQAAAJDCMUwDAAAAcI33l7yv8PPh6le7n+sUIEkUzFxQLUu31Pg147Xj+A7XOQAAAABSMIZpAAAAAP7jyJkjGrl8pBoXb6z77rjPdQ6QZN6t8a58ja/6LujrOgUAAABACsYwDQAAAMB/DA0bqjMXz6h3zd6uU4AklSdDHr1e/nV9tf4rbTq8yXUOAAAAgBSKYRoAAACAWP9G/KvRK0frufueU9HsRV3nAEmue7XuCvIPUu9QhscAAAAAro9hGgAAAIBYQ8KG6FzkOfWq2ct1CpAssgdnV8eKHfXtX99q7YG1rnMAAAAApEAM0wAAAABIkg6EH9CHqz7UCyVfUJGsRVznAMmmc5XOypQ2k/os6OM6BQAAAEAKxDANAAAAgCRp8OLBuhh1Ue/WeNd1CpCsMqXNpE6VOmnGlhlac2CN6xwAAAAAKQzDNAAAAADae2qvxq0ep+almqtQlkKuc4Bk90bFN5Q5bWb1Ce3jOgUAAABACsMwDQAAAIAGLhqoaButnjV6uk4BnMiYNqM6Ve6kmVtnavX+1a5zAAAAAKQgDNMAAACAVG7XiV36ZM0nalm6pfJnyu86B3Dm8uq0vgv6uk4BAAAAkIIwTAMAAABSuQGLBsgYo7erv+06BXAqQ5oM6ly5s2ZunalV+1e5zgEAAACQQjBMAwAAAFKxf47/o8/Xfa7WZVorb8a8rnMA59pXbM/qNAAAAAD/wTANAAAASMX6L+wvX+OrHtV7uE4BUoTLq9NmbZ3F6jQAAAAAkhimAQAAAKnWtqPb9OUfX+q1cq8pd/rcrnOAFKN9xfbKEphFfUL7uE4BAAAAkAIwTAMAAABSqX4L+ynAN0Ddq3V3nQKkKJdXp83eNlsr9610nQMAAADAMYZpAAAAQCq0+chmff3n12pXoZ3uSHeH6xwgxWlXoZ2yBGbh3mkAAAAAGKYBAAAAqVH/hf2V1i+tulTp4joFSJEypMmgtyq/pdnbZmvFvhWucwAAAAA4xDANAAAASGW2Hd2myRsmq225tsoenN11DpBitavQTlkDs7I6DQAAAEjlGKYBAAAAqcygxYMU4BugzlU6u04BUrT0adLrrSpv6adtP7E6DQAAAEjFGKYBAAAAqcjOEzv11fqv1LpMa+VMl9N1DpDivV7+dWUNzKo+oX1cpwAAAABwhGEaAAAAkIoMXjxYPsZHXat2dZ0CeITLq9PmbJ+j5XuXu84BAAAA4ADDNAAAACCV2HNyjz5b+5lalm6pPBnyuM4BPAb3TgMAAABSN4ZpAAAAQCoxJGyIrKy6Ve3mOgXwKOkC0qlz5c6as32OVu9f7ToHAAAAQDLzmGGaMaahMWaLMWa7MaZ7HNvUMsasM8ZsNMYsSO5GAAAAIKU6EH5AH6/5WC/d/5LyZcrnOgfwOK9XeF2Z0mbSgEUDXKcAAAAASGYeMUwzxvhKGiPpQUnFJD1rjCl21TaZJH0o6TFrbXFJjZK7EwAAAEiphi0ZpsjoSPWo1sN1CuCRMqTJoDcqvKEfNv+gDYc2uM4BAAAAkIw8YpgmqYKk7dbaf6y1FyR9I+nxq7Z5TtL31trdkmStPZTMjQAAAECKdOj0IX206iM1K9lMhbIUcp0DeKw3Kr6hdAHpNHDRQNcpAAAAAJKRpwzT8kjac8X7e2Meu1IRSZmNMaHGmNXGmBeTrQ4AAABIwYYvHa5zkef0drW3XacAHi1rUFa1LddWUzZO0baj21znAAAAAEgmfq4D4slc5zF71ft+kspKqispUNJSY8wya+3W/zyRMa0ltZakXLlyKTQ0NPFrAaRqERERnFsAJDrOLbhdJy+e1Kjlo1Q7e20d2HBAB3TAdRLiKTn+znNuuXUVbUX5GT91+K6Dut7T1XUOkCJxbgGQFDi3AHDJU4ZpeyXlveL9OyXtv842R6y1pyWdNsYslHS/pP8M06y14yWNl6TcuXPbWrVqJVUzgFQqNDRUnFsAJDbOLbhdveb30tmosxr5zEiVyFHCdQ7isuDah5Lj7zznltvTJqqNPlz1oT5q8pHyZcrnOgdIcTi3AEgKnFsAuOQpl3lcKamwMaaAMSZAUlNJM67aZrqk6sYYP2NMkKSKkjYlcycAAACQYpw4d0Ijl4/U00WfZpAGJKIuVbvIyGhI2BDXKQAAAACSgUcM06y1kZLaSfpFlwZkU621G40xbYwxbWK22STpZ0nrJa2Q9Im1doOrZgAAAMC1/y3/n06dP6V3arzjOgXwKndmuFPNSzXXp2s/1f7wqy+aAgAAAMDbeMQwTZKstT9Za4tYawtZawfEPDbWWjv2im2GWmuLWWtLWGtHOIsFAAAAHAs/H64Ry0fo0SKPqlTOUq5zAK/TrVo3RUZH6v0l77tOAQAAAJDEPGaYBgAAACD+Plz5oY6dPaZ3a7zrOgXwSgUzF1Szks00dvVYHT592HUOAAAAgCTEMA0AAADwMmcvntXwZcPVoFADlc9T3nUO4LV6VOuhsxfPasSyEa5TAAAAACQhhmkAAACAl/ls7Wc6dPqQelbv6ToF8Gr3ZrtXjYo30v9W/E/Hzx53nQMAAAAgiTBMAwAAALzIxaiLGrpkqKrkraLqd1V3nQN4vZ7Veyr8QrhGrxjtOgUAAABAEmGYBgAAAHiRyRsma9fJXepRrYeMMa5zAK9X8o6SeuyexzRi+QiFnw93nQMAAAAgCTBMAwAAALxEtI3W4MWDVfKOknq48MOuc4BUo2f1njp29pjGrhrrOgUAAABAEmCYBgAAAHiJ6Zuna9ORTepetTur0oBkVCFPBTUo1EDDlg7T2YtnXecAAAAASGQM0wAAAAAvYK3VoMWDVDBzQTUq3sh1DpDq9KzeU4dOH9Ln6z53nQIAAAAgkTFMAwAAALzA7zt+18r9K9Wtajf5+fi5zgFSnep3VVflOytr6JKhioyOdJ0DAAAAIBExTAMAAAC8wMDFA5UrXS69dP9LrlOAVMkYox7VemjniZ2asmGK6xwAAAAAiYhhGgAAAODhVuxbod93/K5OlTspjV8a1zlAqvVwkYdVPHtxDQ4bLGut6xwAAAAAiYRhGgAAAODhBi0epMxpM+vVsq+6TgFSNR/jo+7VumvDoQ2avW226xwAAAAAiYRhGgAAAODBNh7aqB83/6j2FdorfZr0rnOAVK9J8SbKlzGfBi8e7DoFAAAAQCJhmAYAAAB4sJCwEAX5B+mNim+4TgEgyd/XX12qdFHYnjAt2rXIdQ4AAACARMAwDQAAAPBQO0/s1KQ/J+nVsq8qa1BW1zkAYjQv3VzZg7JrcBir0wAAAABvwDANAAAA8FBDw4bKx/ioU+VOrlMAXCHIP0gdK3XUT9t+0h8H/3CdAwAAACCBGKYBAAAAHujfiH/12brP9OL9L+rODHe6zgFwlbbl2yp9QHqFhIW4TgEAAACQQAzTAAAAAA80YtkIXYi6oG5Vu7lOAXAdmdJm0mvlXtOUjVP097G/XecAAAAASACGaQAAAICHOXHuhMasHKNnij2jwlkLu84BEIeOlTrK38dfw5YMc50CAAAAIAEYpgEAAAAe5sOVHyr8Qri6V+3uOgXADeRKn0svl3pZn6/7XAcjDrrOAQAAAHCbGKYBAAAAHuTMxTP6YNkHevDuB1U6V2nXOQBuokuVLroYfVEfLP3AdQoAAACA28QwDQAAAPAgn675VEfOHFGPaj1cpwCIh0JZCqlx8cb6aNVHOnHuhOscAAAAALeBYRoAAADgIS5EXdDQJUNVNW9VVc9X3XUOgHjqVrWbwi+E68OVH7pOAQAAAHAbGKYBAAAAHmLSn5O059QevV39bdcpAG5BqZyl1PDuhhqxbITOXjzrOgcAAADALWKYBgAAAHiAaButIWFDVPKOknrw7gdd5wC4RT2q9dDhM4f12drPXKcAAAAAuEUM0wAAAAAPMGvrLG06skndqnaTMcZ1DoBbVP2u6qp8Z2UNXTJUF6Muus4BAAAAcAsYpgEAAAAeYEjYEOXLmE+Nizd2nQLgNhhj1KNaD+06uUtTNk5xnQMAAADgFjBMAwAAAFK4sN1hCtsTps6VO8vPx891DoDb9HCRh1U8e3ENXjxY0TbadQ4AAACAeGKYBgAAAKRwQ5YMUZbALGpRuoXrFAAJ4GN81L1ad208vFGzt852nQMAAAAgnhimAQAAACnYpsObNGPLDLUr307BAcGucwAkUJPiTZQvYz4NWjxI1lrXOQAAAADigWEaAAAAkIINWzJMgX6BalehnesUAInA39dfXap00dK9S7V492LXOQAAAADigWEaAAAAkELtD9+vr9Z/pRalWyh7cHbXOQASSfPSzZUtKJuGLBniOgUAAABAPDBMAwAAAFKoEctGKMpGqVPlTq5TACSiIP8gta/QXrO2ztLGQxtd5wAAAAC4CYZpAAAAQAp08txJjV01Vo2KNVLBzAVd5wBIZK+Xf11B/kEatnSY6xQAAAAAN8EwDQAAAEiBxq0ep/AL4epatavrFABJIGtQVrUs3VJfr/9ae0/tdZ0DAAAA4AYYpgEAAAApzPnI8xqxbITqFaynMrnKuM4BkEQ6Ve6kaButkctGuk4BAAAAcAMM0wAAAIAU5us/v9aBiAPqWoVVaYA3y58pvxoXb6xxq8fpxLkTrnMAAAAAxIFhGgAAAJCCRNtoDQkbotI5S6tewXqucwAksS5Vuij8QrjGrRrnOgUAAABAHBimAQAAACnIzC0zteXoFnWt2lXGGNc5AJJY6VylVb9gfY1YPkLnI8+7zgEAAABwHQzTAAAAgBRkyJIhyp8pv54p9ozrFADJpFvVbjoYcVBfrf/KdQoAAACA62CYBgAAAKQQYbvDtGTPEnWu3Fl+Pn6ucwAkkzoF6qhMrjIaumSoom206xwAAAAAV2GYBgAAAKQQIWEhyhqYVc1LNXedAiAZGWPUtUpXbT26VTO2zHCdAwAAAOAqDNMAAACAFOCvw39p5taZal+hvYIDgl3nAEhmTxd7WgUyFVBIWIista5zAAAAAFyBYRoAAACQAgxbMkyBfoF6vcLrrlMAOODn46fOlTtr2d5lCtsT5joHAAAAwBUYpgEAAACO7Tu1TxPXT1TL0i2VLSib6xwAjjQv3VxZA7NqSNgQ1ykAAAAArsAwDQAAAHBsxLIRirJR6lS5k+sUAA4F+QepfYX2mrl1pv46/JfrHAAAAAAxGKYBAAAADp04d0LjVo9T4+KNVSBzAdc5ABx7vcLrCvQL1LAlw1ynAAAAAIjBMA0AAABwaNyqcQq/EK6uVbq6TgGQAmQLyqaWpVtq4vqJ2ndqn+scAAAAAGKYBgAAADhzPvK8RiwfofoF66t0rtKucwCkEJ0qd1K0jdaIZSNcpwAAAAAQwzQAAADAmYnrJ+pgxEF1rcqqNAD/r0DmAmpcvLHGrR6nE+dOuM4BAAAAUj2GaQAAAIAD0TZaQ5cMVemcpVW3QF3XOQBSmC5Vuij8QrjGrRrnOgUAAABI9RimAQAAAA7M2DJDW45uUbeq3WSMcZ0DIIUpnau06hesrxHLR+h85HnXOQAAAECq5jHDNGNMQ2PMFmPMdmNM9+t8vJYx5qQxZl3MSy8XnQAAAMDNWGsVEhaiApkK6OliT7vOAZBCda3aVQcjDmri+omuUwAAAIBUzSOGacYYX0ljJD0oqZikZ40xxa6z6SJrbamYl/eSNRIAAACIp7A9YVq2d5k6V+4sPx8/1zkAUqi6BeqqdM7SGrpkqKJttOscAAAAINXyiGGapAqStltr/7HWXpD0jaTHHTcBAAAAtyUkLETZgrKpeenmrlMApGDGGHWt2lVbjm7RzC0zXecAAAAAqZanDNPySNpzxft7Yx67WmVjzB/GmDnGmOLJkwYAAADE38ZDGzVr6yy1r9BeQf5BrnMApHDPFHtG+TPl15AlQ1ynAAAAAKmWp1xT5np3ZLdXvb9GUj5rbYQx5iFJP0oqfM0TGdNaUmtJypUrl0JDQxO3FECqFxERwbkFQKLj3OI9QjaHKK1PWt1/4X7+m+KGkuPrg3OLZ3gs22MatX2U/jf9f7ov432uc4Cb4twCIClwbgHgkrH26plUymOMqSypj7X2gZj3e0iStXbQDfbZKamctfZIXNvkzp3b7t+/P5FrAaR2oaGhqlWrlusMAF6Gc4t32HtqrwqOLKg25dpo1IOjXOcgBTF9r/39Qds76X9W49ziGU5fOK18I/KpSt4qmvHsDNc5wE1xbgGQFDi3AEgKxpjV1tpyN9vOUy7zuFJSYWNMAWNMgKSmkv7zE4QxJqcxxsS8XUGXPrejyV4KAAAAxGHEshGKttHqVLmT6xQAHiQ4IFjtKrTTzK0z9dfhv1znAAAAAKmORwzTrLWRktpJ+kXSJklTrbUbjTFtjDFtYjZ7RtIGY8wfkkZJamo9YdkdAAAAUoUT505o3OpxalKiifJnyu86B4CHaVehnQL9AjVsyTDXKQAAAECq4yn3TJO19idJP1312Ngr3h4taXRydwEAAADxMXbVWEVciFCXKl1cpwDwQNmCsqll6ZYat3qc+tXupzwZ8rhOAgAAAFINj1iZBgAAAHiyc5HnNHL5SDUo1EClcpZynQPAQ3Wq3ElRNkojl490nQIAAACkKgzTAAAAgCQ2cf1EHYw4qK5VurpOAeDBCmQuoMbFG2vsqrE6ee6k6xwAAAAg1WCYBgAAACShqOgoDV0yVGVzlVWdAnVc5wDwcF2qdFH4hXCNWz3OdQoAAACQajBMAwAAAJLQjC0ztPXoVnWt2lXGGNc5ADxcmVxlVK9gPY1YNkLnI8+7zgEAAABSBYZpAAAAQBKx1iokLEQFMxfUU0Wfcp0DwEt0rdJVByIOaOL6ia5TAAAAgFSBYRoAAACQRBbvXqzl+5arc+XO8vPxc50DwEvUK1hPpXKW0tAlQxVto13nAAAAAF6PYRoAAACQRELCQpQ9KLual2ruOgWAFzHGqGuVrtpydItmbpnpOgcAAADwegzTAAAAgCSw4dAGzd42W+0rtFegf6DrHABeplHxRsqfKb9CwkJkrXWdAwAAAHg1hmkAAABAEhi2ZJiC/IPUtnxb1ykAvJCfj586V+6spXuXKmxPmOscAAAAwKsxTAMAAAAS2d5Te/X1n1+rVelWyhqU1XUOAC/VonQLZQ3MqpCwENcpAAAAgFdjmAYAAAAksg+WfiBrrTpV7uQ6BYAXC/IPUvsK7TVr6yxtPLTRdQ4AAADgtRimAQAAAIno+NnjGr9mvJqUaKJ8mfK5zgHg5dpVaKcg/yANXTLUdQoAAADgtRimAQAAAInoo1UfKeJChLpW6eo6BUAqkDUoq1qWbqmv//xae0/tdZ0DAAAAeCWGaQAAAEAiORd5TiOXj1TDuxvq/pz3u84BkEp0qtxJ1lp9sPQD1ykAAACAV2KYBgAAACSSL9Z9oUOnD7EqDUCyyp8pv5qUaKLxa8br+NnjrnMAAAAAr8MwDQAAAEgEUdFRGrZ0mMrnLq9a+Wu5zgGQynSt0lURFyI0dtVY1ykAAACA12GYBgAAACSCHzb/oO3Htqtb1W4yxrjOAZDK3J/zfj1Q6AGNXD5S5yLPuc4BAAAAvArDNAAAACCBrLUKCQtR4SyF9cS9T7jOAZBKdavaTf+e/ldf/vGl6xQAAADAqzBMAwAAABIodGeoVu1fpbeqvCVfH1/XOQBSqVr5a6lc7nIaumSooqKjXOcAAAAAXoNhGgAAAJBAIWEhuiP4Dr14/4uuUwCkYsYYdavaTduPbdePm390nQMAAAB4DYZpAAAAQAKsO7hOv/z9izpU7KC0fmld5wBI5Z6890ndneVuhYSFyFrrOgcAAADwCgzTAAAAgAQYumSo0gWk02vlX3OdAgDy9fHVW5Xf0sr9K7Vg1wLXOQAAAIBXYJgGAAAA3KadJ3ZqyoYperXsq8qUNpPrHACQJL14/4vKEZxDIWEhrlMAAAAAr8AwDQAAALhNw5cOl4/xUcdKHV2nAECsQP9AdajYQT9v/1nr/13vOgcAAADweAzTAAAAgNtw5MwRfbLmEzUr2Ux3ZrjTdQ4A/Mdr5V5TuoB0GrpkqOsUAAAAwOMxTAMAAABuw+gVo3U28qy6VunqOgUArpE5MLNal2mtyX9O1q4Tu1znAAAAAB6NYRoAAABwi05fOK3RK0brsXseU9HsRV3nAMB1dazUUcYYfbDsA9cpAAAAgEdjmAYAAADcos/WfqajZ4+yKg1AipY3Y141u6+ZPl7zsY6eOeo6BwAAAPBYDNMAAACAWxAZHan3l76vqnmrqupdVV3nAMANdanSRWcuntGHKz90nQIAAAB4LIZpAAAAwC2YunGqdp3cpa5VWZUGIOUrnqO4HinyiEatGKUzF8+4zgEAAAA8kl9iPIkxJoekCpJKSsonKbOkQElnJR2TtEvSekkrrLWHE+OYAAAAQHKz1mpI2BAVy15MjxR5xHUOAMRL1ypdVWNCDU1YN0Fty7d1nQMAAAB4nNsephljCkl6XtLjku6/hf3WSfpR0kRr7Y7bPT4AAACQ3Ob+PVd//PuHPn/8c/kYLvIAwDNUu6uaKt9ZWcOWDFPrsq3l55Mov1cLAAAApBq3/C8AxpgGxpifJW2V1EuXBmnmFl5KSeojabsxZo4xpn6CPwsAAAAgGYSEhShP+jx67r7nXKcAQLwZY9S1alftOLFD0/6a5joHAAAA8Djx/nU0Y0w1SYMlVb78UMzro5JWSFouaZOk4zGPnZKUUVKWmJeikirq0uUgs8Ts20BSA2PMEkndrbVhCflkAAAAgKSyct9Kzd85X8PqD1OAb4DrHAC4JY/d85juyXqPhiwZosbFG8sYc/OdAAAAAEiK5zDNGPO1pKb6/wHaXkmTJX1trV1/qwc1xpSU9JykZyXllVRV0kJjzGRr7fO3+nwAAABAUhuyZIgypsmoV8q+4joFAG6Zj/FRlypd1GpmK83bMU/1CtZznQQAAAB4jPhe5vFZXRqk/S6pnrX2Lmttt9sZpEmStXa9tba7tTafpHoxz2tijgMAAACkKNuObtO0v6apbfm2ypAmg+scALgtz5d8XrnS5dKQsCGuUwAAAACPEt9h2u+Sqltr61lrf0/MAGvt79baepKqxxwHAAAASFHeX/q+AnwD9EbFN1ynAMBtS+OXRh0rddSv//yqNQfWuM4BAAAAPEa8hmkxQ7QkvZ+ZtTbMWls/KY8BAAAA3KqDEQc1Yd0EvXT/S8qZLqfrHABIkFfLvqoMaTJo6JKhrlMAAAAAjxHflWkAAABAqvS/5f/ThagLeqvKW65TACDBMqbNqDZl22jqxqn65/g/rnMAAAAAj8AwDQAAAIhD+PlwfbjqQz1V9CkVzlrYdQ4AJIoOlTrIz8dPw5cOd50CAAAAeIQEDdOMMVkSuP9DCdkfAAAASErjV4/XiXMn1K1qN9cpAJBocqfPrRdKvqDP1n6mw6cPu84BAAAAUryErkz70xhT51Z3MsYEGGP+J2lmAo8PAAAAJInzkec1fNlw1cpfS+XzlHedAwCJqkuVLjoXeU6jlo9ynQIAAACkeAkdpuWSNNcYE2KM8YvPDsaYEpJWSWqbwGMDAAAASear9V9pf/h+vV3tbdcpAJDo7sl2j54q+pRGrxytU+dPuc4BAAAAUrSEDtOiJBlJb0laaoy5+0YbG2PaS1ohqXjMflsSeHwAAAAg0UVFR2lI2BCVzVVW9QrWc50DAEmiR7UeOnHuhMatGuc6BQAAAEjREjpMqy5ppy4NxspIWmuMaX71RsaY7MaYWZJGSEobs/0nksol8PgAAABAopu2aZq2HdumHtV6yBjjOgcAkkTZ3GVVv2B9DV82XOciz7nOAQAAAFKsBA3TrLXLJN0v6WtdGpAFS/rEGDPFGJNRkowxDSWtl/RgzDbHJT1jrW1trT2TkOMDAAAAic1aq4GLBuqerPfoyaJPus4BgCTVo1oPHYw4qAnrJrhOAQAAAFKshK5Mk7U2wlr7gqRmkk7q0sDsGUl/GGM+lTRb0h0xj4dKKmmt/T6hxwUAAACSws/bf9Yf//6hblW7ycck+NtlAEjRauWvpYp5KmpI2BBFRke6zgEAAABSpET71wFr7WRJpSUt0aXB2V2SXo55+4KktyXVtdbuS6xjAgAAAIlt0OJBypshr5qVbOY6BQCSnDFGPar10I4TOzR141TXOQAAAECKlKi/amut3Slp8uV3r3j9s6T3rbX2evsBAAAAKUHY7jAt2r1Ib1V5SwG+Aa5zACBZPHrPoyqWvZgGLR6kaBvtOgcAAABIcRJtmGaMyWyM+V7SKF0aoBlJUTGvH5W0whhzb2IdDwAAAEhsgxYPUragbGpVppXrFABINj7GRz2q9dCGQxs0e+ts1zkAAABAipMowzRjTG1J6yU9rkvDsxOSGkuqKGlrzGMlJa02xrRJjGMCAAAAiemPg39o9rbZ6lCxg4L8g1znAECyalqiqfJnyq9BiweJi8oAAAAA/5WgYZoxxs8YM1jSr5Jy69LQbKGk+62131lr1+rSfdQ+jflYoKQxxpjpxpisCUsHAAAAEs/gsMFKF5BOr5d/3XUKACQ7Px8/danSRUv3LtXCXQtd5wAAAAApSkJXpi2V1CXmeaIk9ZJU21q79/IG1tqz1tpXJD0j6ZguDdUekfSnMaZ+fA9kjGlojNlijNlujOl+g+3KG2OijDHP3N6nBAAAgNRm+7HtmrpxqtqWa6vMgZld5wCAE81LNVeO4BwatHiQ6xQAAAAgRUnoMK2sLg3Hdkiqbq3tb+O4HoS19ntJpSQtiNknp6Sf4nMQY4yvpDGSHpRUTNKzxphicWwXIumXW/5MAAAAkGoNDRsqfx9/vVn5TdcpAOBMoH+g3qz0pn75+xet3r/adQ4AAACQYiTGPdMmSiplrV1+sw1jVqzVkdRT0sVbOH4FSduttf9Yay9I+kaX7s92tfaSpkk6FM/nBQAAQCq3P3y/JvwxQc1LNVfOdDld5wCAU6+Ve00Z0mTQ4LDBrlMAAACAFCOhw7QXrbUvWmvD47uDvWSQpGqS/o7nbnkk7bni/b0xj8UyxuSR9KSksfFtAQAAAIYvHa7I6Eh1qdrFdQoAOJcxbUa1K99O0/6api1HtrjOAQAAAFIEv4TsbK2dmIB9VxpjSsdzc3O9p7jq/RGSullro4y53uYxT2RMa0mtJSlXrlwKDQ2NZwIAxE9ERATnFgCJjnNL0jh18ZTGLB+j2tlra/cfu7Vbu10nAbGS4+885xZcT7mocpcufTvtTXW9p6vrHHggzi0AkgLnFgAuJWiYllDW2tPx3HSvpLxXvH+npP1XbVNO0jcxg7Rskh4yxkRaa3+86pjjJY2XpNy5c9tatWrdejgA3EBoaKg4twBIbJxbksZ7C97Tuehz+uCpD3TfHfe5zkFqtuDah5Lj7zznFsSldWRrjV09VuOajlPejHlvvgNwBc4tAJIC5xYALiXGPdOSw0pJhY0xBYwxAZKaSppx5QbW2gLW2vzW2vySvpPU9upBGgAAAHDZ6QunNWr5KD1a5FEGaQBwlbeqvCVJen/p+45LAAAAAPfiNUy7hcsxJogxpsz1HrfWRkpqJ+kXSZskTbXWbjTGtDHGtEmONgAAAHiXj9d8rKNnj6pHtR6uUwAgxcmXKZ+eu+85fbzmYx05c8R1DgAAAOBUfFemrTLG/GCMuT8pIowxpY0x0yWtiGsba+1P1toi1tpC1toBMY+NtdaOvc62L1trv0uKVgAAAHi+85HnNWzJMNXMV1OV81Z2nQMAKVK3qt105uIZjVo+ynUKAAAA4NStXObxMUlrjDGzjDFNjDFpE3JgY0xaY0xTY8wcSaskPSrJJuQ5AQAAgPiYuH6i9oXvY1UaANxAsezF9MS9T+h/K/6nU+dPuc4BAAAAnInvMK28Lq0aM5IelDRJ0r/GmAnGmJeMMUXj8yTGmGLGmJeNMRMk/Svpa0kNYp53qaQKt9gPAAAA3JKo6CiFhIWoTK4yalCogescAEjRelTroRPnTmjcqnGuUwAAAABn/OKzkbV2jaTKxpinJPWRVEJSekkvxLzIGBMuaZukYzEv4ZIySMoS83J3zD6XmZjX6yX1sdb+mLBPBQAAALi57zd9r23HtunbRt/KGHPzHQAgFauQp4LqFqir4cuGq33F9krrl6CL1AAAAAAe6VYu8yhr7ffW2pKSGkqaLilSl4ZiRpcGZ2Uk1ZPUWFJLSY0k1ZVUOubjl7e9KOlHSQ2staUYpAEAACA5WGs1aPEgFclaRE/e+6TrHADwCD2q9dDBiIP6fO3nrlMAAAAAJ25pmHaZtXautfZJSbkkvSjpK0lbYz5srvNiJW2R9KUurWTLZa19ylr7W8LyAQAAgPj7adtPWntwrXpU6yFfH1/XOQDgEeoUqKOKeSoqJCxEF6Muus4BAAAAkl28LvMYF2vtMUkTY15kjAmQlFeXLuuYRtJ5Xbrk425rLd9xAwAAwBlrrfot7Kf8mfKr2X3NXOcAgMcwxujdGu/qkcmPaOL6iWpeurnrJAAAACBZ3dbKtLhYay9Ya/+21q601i6Oef03gzQAAAC4Nm/HPC3ft1zdq3aXv6+/6xwA8CgPFX5IpXOW1sDFAxUVHeU6BwAAAEhWiTpMAwAAAFKqfgv7KU/6PHq51MuuUwDA4xhj9E6Nd7T92HZN2TjFdQ4AAACQrBJ0mcfrMcbkkFReUm5J6SRFSNovaaW19lBiHw8AAAC4mYW7FmrhroUa2XCk0vilcZ0DAB7piXufULHsxTRg0QA1LdFUPobfzwUAAEDqkGjf+RpjnjTGhEk6IGmGpLGShsW8niHpgDFmsTHmicQ6JgAAABAf/Rf2V47gHGpVppXrFADwWD7GRz2r99Rfh//SD5t+cJ0DAAAAJJsED9OMMQHGmKmSvpNUSZK5wUtlSdOMMVONMQEJPTYAAABwM8v3Ltev//yqtyq/pSD/INc5AODRmhRvosJZCqv/ov6y1rrOAQAAAJJFYqxMmybpaf3/wOwvSaMldZT0Sszr0ZI2XrHN07o0fAMAAACSVP9F/ZUlMIvalGvjOgUAPJ6vj696VOuhdQfXafa22a5zAAAAgGSRoGGaMaappIdj3t0v6UFrbQlr7RvW2lHW2k9jXr9hrb1PUkNJ+3RpoPawMaZJguoBAACAG1h7YK1mbZ2lNyu9qfRp0rvOAQCv8HzJ55UvYz71X8jqNAAAAKQOCV2Z1jLm9WlJNa21v9xoY2vtXEm1JEXEPMRNKwAAAJBkBi4eqAxpMqhdhXauUwDAa/j7+qt7te5avm+55u2Y5zoHAAAASHIJHabdL8lK+tRa+3d8dojZ7lNdWp1WKoHHBwAAAK7rr8N/adpf0/RGhTeUKW0m1zkA4FWal2qu3Olzq9/Cfq5TAAAAgCSX0GFaupjXK29xv8vbcwd4AAAAJImBiwYqyD9IHSp1cJ0CAF4njV8ada3SVQt3LdTCXQtd5wAAAABJKqHDtP0xr31vcb/L2++/4VYAAADAbdh2dJsmb5istuXbKltQNtc5AOCVXin7inIE51D/hf1dpwAAAABJKqHDtN9jXle/xf2q69LlIX+/2YYAAADArRq8eLACfAPUqXIn1ykA4LWC/IPUuXJn/frPr1q+d7nrHAAAACDJJHSYNkrSBUkvGmPKx2cHY0w5SS9JOh+zPwAAAJBodp7YqS/Xf6nWZVorZ7qcrnMAwKu9Vu41ZQnMov6LWJ0GAAAA75WgYZq1doOkVyQZSb8aY1oZY/yut60xxs8Y01LSr7q0Kq2VtXZjQo4PAAAAXG1I2BD5GB91qdrFdQoAeL30adKrY8WOmrV1ltYeWOs6BwAAAEgS1x18xZcxplfMm79KekjSOEmDjTGLJG2XdEZSkKS7JVWTlCVm+58k3X3F/tew1r6XkDYAAACkPvtO7dOnaz/Vy/e/rDsz3Ok6BwBShfYV22vY0mHqv6i/pjWe5joHAAAASHQJGqZJ6qNLq8x0xesskh67zrbmim0einm5EYZpAAAAuCWDFw9WtI1Wj+o9XKcAQKqRKW0mdajYQf0W9tP6f9er5B0lXScBAAAAiSqh90yTLg3Jrny53mM3ejyubQEAAIB423dqn8avGa/mpZorf6b8rnMAIFXpWKmjMqTJoPcW8HuxAAAA8D4JXZlWO1EqAAAAgAQatHiQom203q7+tusUAEh1sgRmYXUaAAAAvFaChmnW2gWJFQIAAADcrr2n9urjNR+zKg0AHHqz0psauXyk+i7oy73TAAAA4FUS4zKPAAAAgFOX75XWs3pP1ykAkGplDsysjhU76vtN3+uPg3+4zgEAAAASDcM0AAAAeLTLq9JalGqhfJnyuc4BgFQt9t5pC7l3GgAAALwHwzQAAAB4tMur0rhXGgC4x+o0AAAAeCOGaQAAAPBYe07uYVUaAKQwrE4DAACAt2GYBgAAAI/FqjQASHlYnQYAAABvwzANAAAAHmnPyT36ZO0nrEoDgBSoY6WOypgmI6vTAAAA4BUYpgEAAMAjDV48WNZaVqUBQAqUOTCzOlZidRoAAAC8A8M0AAAAeJzYVWmlWZUGACnV5dVpfRf0dZ0CAAAAJAjDNAAAAHicy6vSelTr4ToFABCHTGkzqWOljvph8w9ad3Cd6xwAAADgtjFMAwAAgEdhVRoAeI7Ye6ct4N5pAAAA8FwM0wAAAOBRBi0exKo0APAQrE4DAACAN2CYBgAAAI+x5+QefbKGVWkA4Em4dxoAAAA8HcM0AAAAeIz+C/tLEqvSAMCDZEqbSW9WelM/bv5Rq/evdp0DAAAA3DKGaQAAAPAIfx/7W5+t+0yvln2VVWkA4GE6VuqoLIFZ9O78d12nAAAAALeMYRoAAAA8Qp8FfeTv46+3q7/tOgUAcIsyps2orlW6as72OQrbHeY6BwAAALglDNMAAACQ4v11+C99vf5rtavQTrnS53KdAwC4De0qtNMdwXeo5+89Za11nQMAAADEG8M0AAAApHi95vdSuoB06la1m+sUAMBtCg4IVs/qPbVg1wLN2zHPdQ4AAAAQbwzTAAAAkKKtObBG0zZNU6fKnZQ1KKvrHABAArQu21p3ZbyL1WkAAADwKAzTAAAAkKK98/s7ypw2s96s9KbrFABAAqXxS6NeNXppxb4Vmrl1puscAAAAIF4YpgEAACDFCtsdpjnb56hb1W7KmDaj6xwAQCJ48f4XdXeWu/Xu/HcVbaNd5wAAAAA3xTANAAAAKZK1Vu/Mf0d3BN+hdhXauc4BACQSf19/9a3VV+v/Xa+pG6e6zgEAAABuimEaAAAAUqR5O+YpdGeoelbvqeCAYNc5AIBE1LREU5XIUUK9Q3srMjrSdQ4AAABwQwzTAAAAkOJYa/XO7+8ob4a8al22tescAEAi8zE+6le7n7Ye3aqv/vjKdQ4AAABwQwzTAAAAkOLM2jpLy/ctV6+avZTGL43rHABAEnj8nsdVLnc59V3QV+cjz7vOAQAAAOLEMA0AAAApSrSN1jvz39HdWe7WS/e/5DoHAJBEjDHqX7u/dp3cpU/WfOI6BwAAAIgTwzQAAACkKN9u/Fbr/12vvrX6yt/X33UOACAJNSjUQNXvqq7+i/rrzMUzrnMAAACA62KYBgAAgBQjMjpSvUN7q3j24mpSvInrHABAEjPGaECdAToYcVAfrvzQdQ4AAABwXQzTAAAAkGJMXD9RW45uUb/a/eTr4+s6BwCQDKrnq64HCj2gwYsH69T5U65zAAAAgGt4zDDNGNPQGLPFGLPdGNP9Oh9/3Biz3hizzhizyhhTzUUnAAAAbs+5yHPqHdpb5XKX0xP3PuE6BwCQjPrX6a+jZ4/q/SXvu04BAAAAruERwzRjjK+kMZIelFRM0rPGmGJXbTZP0v3W2lKSWkji7sUAAAAe5MOVH2r3yd0KqRciY4zrHABAMiqXu5waF2+s95e+r4MRB13nAAAAAP/hEcM0SRUkbbfW/mOtvSDpG0mPX7mBtTbCWmtj3g2WZAUAAACPcOLcCQ1YNEAPFHpAdQrUcZ0DAHCgf+3+Oh91Xu8teM91CgAAAPAfnjJMyyNpzxXv74157D+MMU8aYzZLmq1Lq9MAAADgAUIWh+j42eMaXG+w6xQAgCOFsxZW6zKtNX71eG09utV1DgAAABDL/P9irpTLGNNI0gPW2lYx778gqYK1tn0c29eQ1MtaW+86H2stqbUk5cqVq+ykSZOSLhxAqhQREaF06dK5zgDgZbz53HL4/GE9v+J51cxWU28Xfdt1DuBE7QW1r3lsfs35SX5cbz63wDMdu3BMzZY3U8WsFdWnWB/XObhNnFsAJAXOLQCSQu3atVdba8vdbDu/5IhJBHsl5b3i/Tsl7Y9rY2vtQmNMIWNMNmvtkas+Nl7SeEnKnTu3rVWrVhLkAkjNQkNDxbkFQGLz5nNLqxmtJCONf3a88mfK7zoHcGPBtQ8lx995bz63wHN1C+imvgv6KqhwkCrkqeA6B7eBcwuApMC5BYBLnnKZx5WSChtjChhjAiQ1lTTjyg2MMXebmDvVG2PKSAqQdDTZSwEAABBvfx3+S5+v+1xty7VlkAYAkCR1rtxZ2YOyq9tv3eQJV9MBAACA9/OIYZq1NlJSO0m/SNokaaq1dqMxpo0xpk3MZk9L2mCMWSdpjKQmlu+6AQAAUrS3572tdAHp1LNGT9cpAIAUIn2a9OpVs5dCd4bq5+0/u84BAAAAPGOYJknW2p+stUWstYWstQNiHhtrrR0b83aItba4tbaUtbaytXax22IAAADcSNjuME3fMl3dqnZTtqBsrnMAAClI67KtVShzIXX7rZuioqNc5wAAACCV85hhGgAAALyHtVZdf+uqXOlyqUPFDq5zAAApTIBvgAbUGaA/D/2pSX9Ocp0DAACAVI5hGgAAAJLdjC0ztGTPEvWp1UfBAcGucwAAKVCj4o1UNldZvTP/HZ2LPOc6BwAAAKkYwzQAAAAkq8joSHWf1133ZL1HLUq3cJ0DAEihfIyPQuqFaPfJ3fpw5YeucwAAAJCKMUwDAABAspqwboI2H9msQXUHyc/Hz3UOACAFq1uwrh4o9IAGLBqgE+dOuM4BAABAKsUwDQAAAMnmzMUz6h3aW5XurKQn7n3CdQ4AwAMMrjdYx84e05CwIa5TAAAAkEoxTAMAAECyGblspPaH71dIvRAZY1znAAA8QKmcpdTsvmYasWyE9p3a5zoHAAAAqRDDNAAAACSLw6cPa3DYYD1S5BHVyFfDdQ4AwIP0q91PUTZKveb3cp0CAACAVIhhGgAAAJJF3wV9dfrCaYXUC3GdAgDwMAUyF1C78u30+brP9cfBP1znAAAAIJVhmAYAAIAkt+nwJo1dNVaty7ZWsezFXOcAADzQOzXeUebAzOo0t5Osta5zAAAAkIowTAMAAECS6/pbVwUHBKtPrT6uUwAAHipzYGb1qdlHv+/4XbO3zXadAwAAgFSEYRoAAACS1Lx/5mnW1lnqWb2ncgTncJ0DAPBgbcq1UZGsRdTl1y66GHXRdQ4AAABSCYZpAAAASDJR0VHqPLez8mXMpzcqvuE6BwDg4fx9/TW0/lBtPrJZ41ePd50DAACAVIJhGgAAAJLMF398oT/+/UMh9UKU1i+t6xwAgBd4tMijqpW/lnqH9taJcydc5wAAACAVYJgGAACAJBFxIUI9f++pSndWUuPijV3nAAC8hDFG7zd4X8fOHtPARQNd5wAAACAVYJgGAACAJDE0bKgORhzU8AbDZYxxnQMA8CJlcpXRS6Ve0sjlI/XP8X9c5wAAAMDLMUwDAABAott7aq+GLhmqJsWbqHLeyq5zAABeqH/t/vLz8VP337q7TgEAAICXY5gGAACARNdjXg9F2SgNqjvIdQoAwEvlyZBHXap00bd/fatFuxa5zgEAAIAXY5gGAACARLV0z1JNXD9Rb1V+SwUyF3CdAwDwYl2qdNGdGe5Uh587KCo6ynUOAAAAvBTDNAAAACSaaButDj93UO70udWjeg/XOQAALxccEKwh9YZo7cG1+nzd565zAAAA4KUYpgEAACDRfPnHl1q5f6VC6oUoXUA61zkAgFSgaYmmqnZXNb09722dOHfCdQ4AAAC8EMM0AAAAJIpT50+p+2/dVenOSnruvudc5wAAUgljjEY2HKkjZ46o34J+rnMAAADghRimAQAAIFEMWDhA/57+V6MajpKP4dtMAEDyKZOrjFqWbqlRK0Zp85HNrnMAAADgZfhXDgAAACTYtqPb9MGyD/RyqZdVPk951zkAgFRoQN0BCvIPUqdfOrlOAQAAgJdhmAYAAIAE6zy3s9L4pdGguoNcpwAAUqkcwTnUu2Zvzdk+Rz9t+8l1DgAAALwIwzQAAAAkyC/bf9HMrTP1bo13lTNdTtc5AIBUrF2Fdron6z1685c3dSHqguscAAAAeAmGaQAAALhtF6MuquMvHXV3lrvVoWIH1zkAgFQuwDdAIxqO0NajWzVq+SjXOQAAAPASDNMAAABw20YuH6nNRzbrgwc+UBq/NK5zAABQw7sb6pEij6jvgr7aH77fdQ4AAAC8AMM0AAAA3Ja9p/aqT2gfPVrkUT1S5BHXOQAAxBrZcKQuRl3UW3Pfcp0CAAAAL8AwDQAAALflrblvKcpGaWTDka5TAAD4j4KZC6pHtR6avGGy5u+Y7zoHAAAAHo5hGgAAAG7ZvH/macrGKepRrYcKZC7gOgcAgGt0rdpVBTIV0Os/va6LURdd5wAAAMCDMUwDAADALbkQdUHt57RXwcwF1bVqV9c5AABcV6B/oEY9OEqbjmzSyOWsogYAAMDtY5gGAACAWzJy2UhtOrJJoxqOUlq/tK5zAACI0yNFHtGjRR5Vn9A+2ntqr+scAAAAeCiGaQAAAIi3vaf2qu+Cvnrsnsf0cJGHXecAAHBTIxuOVJSN0ltz33KdAgAAAA/FMA0AAADx1nluZ0XZKI14YITrFAAA4qVA5gLqXrW7pmyconn/zHOdAwAAAA/EMA0AAADx8ts/v2nqxql6u9rbKpC5gOscAADirWvVriqYuaDazWmnC1EXXOcAAADAwzBMAwAAwE2dizyntrPbqlDmQupStYvrHAAAbkmgf6BGNRylzUc2a9iSYa5zAAAA4GEYpgEAAOCmBi8erG3Htumjhz9SWr+0rnMAALhlDxd5WE8XfVr9FvbT38f+dp0DAAAAD8IwDQAAADe0+chmDVo8SM3ua6b6heq7zgEA4LaNbDhS/j7+avtTW1lrXecAAADAQzBMAwAAQJystWozq42C/IP0foP3XecAAJAgeTLk0cC6AzX377n6ZsM3rnMAAADgIRimAQAAIE5f/PGFFuxaoCH1huiOdHe4zgEAIMFeK/eayucur46/dNTxs8dd5wAAAMADMEwDAADAdR05c0RvzX1LVfNWVcsyLV3nAACQKHx9fDXukXE6cuaIeszr4ToHAAAAHoBhGgAAAK6ry69ddPL8SY17ZJx8DN82AgC8R+lcpdWxYkeNWz1OS/YscZ0DAACAFI5/FQEAAMA1QneGasK6CepSpYuK5yjuOgcAgETXt3Zf5c2QV6/OelUXoy66zgEAAEAKxjANAAAA/3Eu8pzazGqjgpkL6p0a77jOAQAgSaQLSKcxD43RhkMbNGzJMNc5AAAASMEYpgEAAOA/+i/sry1Ht+jDhz5UkH+Q6xwAAJLMo/c8qqeKPqW+C/pq69GtrnMAAACQQjFMAwAAQKx1B9cpJCxEL93/kh64+wHXOQAAJLnRD45WoH+gWs1opWgb7ToHAAAAKRDDNAAAAEiSIqMj1XJGS2UNzKrhDwx3nQMAQLLIlT6XhjcYrkW7F2ncqnGucwAAAJACMUwDAACAJOn9Je9rzYE1GvPQGGUJzOI6BwCAZPNyqZdVv2B9df2tq3af3O06BwAAACkMwzQAAABo69Gt6h3aW08VfUpPF3vadQ4AAMnKGKPxj46XtVZtZrWRtdZ1EgAAAFIQhmkAAACpXLSNVqsZrRToH6jRD452nQMAgBP5M+XXwLoDNWf7HH3959eucwAAAJCCMEwDAABI5cauGqtFuxfpgwc+UK70uVznAADgzOvlX1eVvFXU4ecO+jfiX9c5AAAASCEYpgEAAKRiu0/uVrffuql+wfp66f6XXOcAAOCUr4+vPnn0E0VciNAbP7/hOgcAAAAphMcM04wxDY0xW4wx240x3a/z8WbGmPUxL0uMMfe76AQAAPAU1lq1ntla1lqNf3S8jDGukwAAcK5o9qLqVaOXpm6cqu83fe86BwAAACmARwzTjDG+ksZIelBSMUnPGmOKXbXZDkk1rbUlJfWTND55KwEAADzLx2s+1i9//6Ih9Ycof6b8rnMAAEgxulbtqrK5yqrNrDY6dPqQ6xwAAAA45hHDNEkVJG231v5jrb0g6RtJj1+5gbV2ibX2eMy7yyTdmcyNAAAAHmPH8R3q9Esn1S1QV23KtXGdAwBAiuLv668vnvhCJ8+f1GuzX5O11nUSAAAAHPKUYVoeSXuueH9vzGNxaSlpTpIWAQAAeKhoG63m05vLx/jos8c/k4/xlG8JAQBIPsVzFFe/2v30/abvNXnDZNc5AAAAcMjPdUA8Xe8GHtf9tTBjTG1dGqZVi+PjrSW1lqRcuXIpNDQ0kRIB4JKIiAjOLQASXWKeW77b+50W7FqgLkW66J+1/+gf/ZMozwsgcSXH9xN83wLcWFlbVsUzFNerM15VwP4AZUuTzXWSR+DcAiApcG4B4JLxhEsVGGMqS+pjrX0g5v0ekmStHXTVdiUl/SDpQWvt1ps9b+7cue3+/fuToBhAahYaGqpatWq5zgDgZRLr3LL16FaVGltKdQrU0cxnZ8qY6/3OEoDkZvpe+3fR9k76n9X4vgW4ucv/76xdoLZmPTuL/3fGA+cWAEmBcwuApGCMWW2tLXez7Tzlmj4rJRU2xhQwxgRIaippxpUbGGPukvS9pBfiM0gDAABIbaKio/TSjy8prV9affzox/xjIAAA8VAkaxENrjdYP237SZ+v+9x1DgAAABzwiGGatTZSUjtJv0jaJGmqtXajMaaNMaZNzGa9JGWV9KExZp0xZpWjXAAAgBRp2JJhWrZ3mcY8NEa50udynQMAgMdoV6GdauWvpY4/d9SuE7tc5wAAACCZecQwTZKstT9Za4tYawtZawfEPDbWWjs25u1W1trM1tpSMS83XZYHAACQWqz/d716hfbS00WfVtMSTV3nAADgUXyMjz5//HNZWTWf3lzRNtp1EgAAAJKRxwzTAAAAcHvOXjyrZt83U+a0mfXRwx9xeUcAAG5D/kz5NeKBEZq/c76GLx3uOgcAAADJiGEaAACAl+v+W3dtOLRBE56YoOzB2V3nAADgsVqUbqEn731Sb897W2sPrHWdAwAAgGTCMA0AAMCL/bz9Z41aMUpvVHhDDe9u6DoHAACPZozRx49+rOzB2dXs+2Y6c/GM6yQAAAAkA4ZpAAAAXurw6cN6+ceXVTx7cQ2uN9h1DgAAXiFrUFZNeHyCNh3ZpK6/dnWdAwAAgGTAMA0AAMALWWvVamYrHT93XJOenqRA/0DXSQAAeI36herrzUpvaszKMZq9dbbrHAAAACQxhmkAAABeaPzq8ZqxZYYG1x2skneUdJ0DAIDXGVh3oO7LcZ9azGihQ6cPuc4BAABAEmKYBgAA4GW2HNmiN395U/UK1lOHSh1c5wAA4JXS+qXVpKcn6eS5k2oxvYWsta6TAAAAkEQYpgEAAHiRc5Hn9Oy0ZxXoH6gvnvhCPoZv9wAASColcpTQkPpDNHvbbP1vxf9c5wAAACCJ8K8rAAAAXqTL3C5ae3CtJjw+QbnT53adAwCA12tfob0eKfKIuvzaRav3r3adAwAAgCTAMA0AAMBL/LDpB41eOVpvVnpTj97zqOscAABSBWOMJjw+QTmCc6jJd0106vwp10kAAABIZAzTAAAAvMDOEzvVYkYLlctdToPrDXadAwBAqpI1KKsmPz1ZO0/sVOuZrbl/GgAAgJdhmAYAAODhLkZdVNPvmiraRmvKM1MU4BvgOgkA8H/t3Xd8VFXex/HvLwm9dwmdiCACIoYmoFjoS1GKgoAiigLqs+K667LuWnZ99MG1rAKiooDSi0hVsBAVUQEBQRCQpiDSi1Kk5Tx/zARnYxJCSHIyk8/79ZrX3HvnzL3fmWHui9zfnHOQ6zSv3FxPXPuEpqydotErRvuOAwAAgExEMQ0AACDM/e2jv+nLH7/Uax1fU/US1X3HAQAg13q4+cNqVb2V7n/vfq3ZvcZ3HAAAAGQSimkAAABhbP538/XMkmd0z5X3qMdlPXzHAQAgV4uyKL1141sqlq+YekzvoaMnj/qOBAAAgExAMQ0AACBM7fh5h/rO7Kt65erpuTbP+Y4DAAAklStcThNumqAN+zZo0PxBzJ8GAAAQASimAQAAhKETp0+o29RuOnHmhKZ0m6ICeQr4jgQAAIKur369/n713/Xm12/qtRWv+Y4DAACAC0QxDQAAIAwNWTBEX/74pcZ0HqNapWv5jgMAAJL5xzX/UJu4Nrrv3fu07MdlvuMAAADgAlBMAwAACDPjV4/XyOUj9WDTB9WtdjffcQAAQAqio6I14aYJKl+4vLpO7ap9x/b5jgQAAIAMopgGAAAQRlbvXq0BcwbomirX6OkbnvYdBwAApKFUwVKa3mO69hzdo14zeulM4hnfkQAAAJABFNMAAADCxKFfD+mmKTepeP7imtxtsmKiYnxHAgAA5xAfG6/h7Yfr/S3v69GER33HAQAAQAZwBQYAACAMJLpE9Z3ZV98f/l4JtyXoosIX+Y4EAADS6c4Gd+qLHV/oyU+fVOMKjdWxZkffkQAAAHAe6JkGAAAQBib+MFFzNs7Rs62fVbPKzXzHAQAA52l4++FqUL6B+szso00HNvmOAwAAgPNAMQ0AACCHm7Nhjt7Y9oZ61ump+xrd5zsOAADIgPwx+TWjxwxFR0Wr06RO+vnEz74jAQAAIJ0opgEAAORga/esVa+3e6lG4Roa3Wm0zMx3JAAAkEFVi1fV9O7TtXH/RvWa0UtnEs/4jgQAAIB0oJgGAACQQx04fkCdJ3dWoTyF9K86/1LBPAV9RwIAABfo2mrX6sV2L2red/P0yEeP+I4DAACAdIjxHQAAAAC/dzrxtHpM66HtP29Xwm0JOrH5hO9IAAAgkwyMH6ivd32tpz97WvXK1VPPuj19RwIAAEAa6JkGAACQAz244EF9uPVDjeowSk0rNfUdBwAAZCIz00vtX1KLyi10x+w7tHznct+RAAAAkAaKaQAAADnM6BWj9eLSF/VAkwfU74p+vuMAAIAskDc6r2b0mKFyhcqpy+Qu+umXn3xHAgAAQCoopgEAAOQgn3z/iQbNG6RW1VtpWKthvuMAAIAsVKZQGc26ZZYO/npQN065UcdPHfcdCQAAACmgmAYAAJBDbNi3QV0md1H1EtU1pdsUxUQxvS0AAJHu8osu11s3vqWlPy5Vn5l9lOgSfUcCAABAMhTTAAAAcoC9R/eq/cT2iomK0fxb56tEgRK+IwEAgGxy06U36ZlWz2jGtzP08AcP+44DAACAZPi5MwAAgGfHTx1Xp8mdtPOXnVp02yJVL1HddyQAAJDNhjQdos0HN+uZJc8orkSc7o6/23ckAAAABFFMAwAA8CjRJarvO3315Y4vNa37NDWp2MR3JAAA4IGZ6cV2L+r7w99r8PzBqlK8itpe3NZ3LAAAAIhhHgEAALz66wd/1fR10zWs1TB1rd3VdxwAAOBRTFSMpnSborrl6qr7tO76etfXviMBAABAFNMAAAC8eWX5Kxq2ZJjuufIePdj0Qd9xAABADlA4b2HN7TlXxfIVU4eJHbTj5x2+IwEAAOR6FNMAAAA8mPntTA2aP0jtLm6nl9q/JDPzHQkAAOQQFYpW0Pxb5+vnEz+r7fi2OnD8gO9IAAAAuRrFNAAAgGz28baP1XNGTzWMbahp3acpJoppbAEAwH+rV66eZt0yS98d+E4dJ3XUsVPHfEcCAADItSimAQAAZKNVu1ap0+ROql6iuub1mqdCeQv5jgQAAHKoa6tdq4k3TdTn2z9Xj2k9dOrMKd+RAAAAciWKaQAAANlk84HNaju+rYrmK6oFvReoVMFSviMBAIAcrmvtrnq5w8ua99089Z/dX4ku0XckAACAXIcxhQAAALLBriO71GZ8G51KPKVFty1SpWKVfEcCAABh4u74u7X32F79fdHfVaZgGf279b+ZbxUAACAbUUwDAADIYod/Pax2E9rppyM/6aO+H+nSMpf6jgQAAMLM31r8TXuO7tFzXzynsoXK6i/N/+I7EgAAQK5BMQ0AACALHTl5RO0nttc3e77RnJ5z1LhiY9+RAABAGDIzvdD2Be07tk8Pf/iwCuctrMGNBvuOBQAAkCtQTAMAAMgix04dU8dJHfXlji81pdsUtb24re9IAAAgjEVZlMZ1Gaejp47q3nfvVf6Y/OrfoL/vWAAAABEvyncAAACASHTi9AndOOVGfbztY71545vqWrur70gAACAC5InOo6ndpqpNXBvdNecuTVg9wXckAACAiEcxDQAAIJOdPHNS3ad118LNCzW602j1qtvLdyQAABBB8sXk09s3v61rql6j2965TdPXTfcdCQAAIKJRTAMAAMhEpxNP69a3b9WcjXM0ov0I3XHFHb4jAQCACFQwT8Gz87H2nNFTczbM8R0JAAAgYlFMAwAAyCSnE0/r9ndu1/R10/Vs62c1qOEg35EAAEAEK5y3sOb3mq/6F9VXt2nd9N6m93xHAgAAiEgU0wAAADLBqTOn1GdmH01YM0FPXvekhjQd4jsSAADIBYrlL6YFvReodpna6jy5s+ZunOs7EgAAQMShmAYAAHCBTp45qVtm3KLJ30zWsBuGaWiLob4jAQCAXKRkgZL6sO+Hqleunm6acpNmfjvTdyQAAICIQjENAADgApw4fULdpnbT29++rRfavKCHmj3kOxIAAMiFShYoqQ/6fKArY69U92ndNXXtVN+RAAAAIgbFNAAAgAw6fuq4ukzpojkb52hk+5H6nyb/4zsSAADIxYrlL6aFvReqaaWm6jmjp8avHu87EgAAQESgmAYAAJABR08eVcdJHbVg0wKN7jhaAxsO9B0JAABARfIV0Xu3vqdrqlyjvjP7aszKMb4jAQAAhL2wKaaZWVsz22Bmm8zs4RQer2Vmn5vZCTP7k4+MAAAgdzhw/IBaj2+tRdsWaWyXserfoL/vSAAAAGcVyltIc3vNVau4Vrpj9h164YsXfEcCAAAIa2FRTDOzaEkjJLWTVFtSTzOrnazZAUn3S/p3NscDAAC5yI8//6hrxl6j5TuXa2q3qep7eV/fkQAAAH6nYJ6Cmn3LbHW9tKseWPCAhn44VM4537EAAADCUlgU0yQ1krTJObfFOXdS0mRJnUMbOOf2OOeWSTrlIyAAAIh83+3/Ts3eaKZth7bp3VvfVdfaXX1HAgAASFW+mHya0m2KBjQYoKcWP6W7596tM4lnfMcCAAAIOzG+A6RTBUnbQ9Z3SGrsKQsAAMiFVvy0Qm3Ht5WT06LbFik+Nt53JAAAgHOKjorWqD+MUplCZfTkp09q//H9mnDTBOWPye87GgAAQNgIl2KapbAtQ2MTmNkASQMkqXz58kpISLiAWADwe0eOHOHcAkSYlQdX6pG1j6hITBE9U+8ZHdl4RAkbE7I1A+cWIPfJju885xYg97gh6gYdijukEd+O0FUjrtI/L/unCsUUypJjcW4BkBU4twDwKVyKaTskVQpZryhpZ0Z25Jx7VdKrkhQbG+tatmx5weEAIFRCQoI4twCRY8LqCXp48cO6uOTFWth7oSoUreAlB+cWIMJ9/PtN2fGd59wC5C4t1VJNVjdRv1n9NHTTUM3rNU8Vi1bM9ONwbgGQFTi3APApXOZMWyaphplVM7O8km6RNNtzJgAAEMGcc/rnx/9U75m91bRiU33a71NvhTQAAIDM0rteb83rNU9bD25V49GNtfKnlb4jAQAA5HhhUUxzzp2WdK+kBZK+lTTVObfWzO4xs3skycwuMrMdkoZIesTMdphZUX+pAQBAuDp55qT6zeqnfyT8Q30v76uFfRaqZIGSvmMBAABkitZxrfXZHZ8p2qLVYkwLzds4z3ckAACAHC0simmS5Jyb75y7xDkX55x7MrhtlHNuVHB5l3OuonOuqHOueHD5Z7+pAQBAuDl4/KDajm+rcV+P0+MtH9fYzmOVNzqv71gAAACZqm65uvrizi9Us3RNdZrcSSOXjfQdCQAAIMcKm2IaAABAVttycIuueuMqfbb9M71141v6xzX/kJn5jgUAAJAlYovE6pPbP1GHGh00eP5gDVkwRGcSz/iOBQAAkONQTAMAAJD0wZYPFP9qvHYf2a33+7yv3vV6+44EAACQ5QrlLaSZN8/U/Y3u1/NfPK/2E9vr4PGDvmMBAADkKBTTAABAruac03OfP6c249uoQtEKWnbXMl1d5WrfsQAAALJNdFS0/tPuP3qt42tatHWRGr7WUGv3rPUdCwAAIMegmAYAAHKt46eOq+87ffXgwgfVpVYXfd7/c8WVjPMdCwAAwIs7G9yphNsTdPTUUTV5vYlmfjvTdyQAAIAcgWIaAADIlbYf3q4WY1po/Orx+ue1/9S07tNUOG9h37EAAAC8uqrSVVp+13LVLlNbN029SY8uelSJLtF3LAAAAK8opgEAgFzngy0f6MpXr9TG/Rs1+5bZeuTqRxRl/LcIAABAkioUraCPb/9Yt9e/XU988oQ6Tuqo/cf2+44FAADgDVeNAABArnEm8YweS3hMrd9qrTKFyujLO79Ux5odfccCAADIcfLH5Ncbnd7Q8HbD9f7m93XFK1foix1f+I4FAADgBcU0AACQK+w+slttxrfR4x8/rr6X99XSO5fq0jKX+o4FAACQY5mZBjcarCX9lyg6KlotxrTQ858/L+ec72gAAADZimIaAACIeAnbElT/lfr6bPtneqPTGxrbZawK5S3kOxYAAEBYiI+N14oBK9ShRgcNWThEXad21aFfD/mOBQAAkG0opgEAgIh1OvG0Hk94XNe/eb2K5SumpXcuVb8r+vmOBQAAEHZKFCihmTfP1HOtn9OcjXPU4JUGWrJ9ie9YAAAA2YJiGgAAiEibD2xWizEt9NjHj6lX3V5adtcy1S1X13csAACAsGVmeqDpA/q036dycmoxpoUeXfSoTp055TsaAABAlqKYBgAAIopzTmNWjlH9V+pr/b71mtR1kt668S0VyVfEdzQAAICI0KRiE319z9fqXa+3nvjkCbUY00KbDmzyHQsAACDLUEwDAAARY/+x/eo2rZvumH2HGsY21Op7VuuWOrf4jgUAABBxiuYrqnFdxmlKtynauH+j6o+qr9ErRss55zsaAABApqOYBgAAIsLsDbNV9+W6mrNhjp5p9Yw+6PuBKhWr5DsWAABAROtxWQ+tHrhaTSo20V1z7lKnyZ2098Re37EAAAAyFcU0AAAQ1vYd26deM3qp8+TOKlOojJbetVR/uupPijL+mwMAAJAdKhatqIV9Fur5Ns/rwy0fqt+yfnpj5Rv0UgMAABGDq0wAACAsOec0de1U1R5RW9PXTdcTLZ/QsruWqf5F9X1HAwAAyHWiLEp/bPJHrR64WnGF49R/dn+1Gd9G3x/63nc0AACAC0YxDQAAhJ1dR3ap27Ruunn6zapSvIq+GvCV/n7N35U3Oq/vaAAAALnaxSUv1vOXP68R7UdoyfYlqvNyHY1cNlKJLtF3NAAAgAyjmAYAAMLGmcQzGr50uGoOr6l5G+fp/274P33e/3PVLVfXdzQAAAAERVmUBjUcpG8GfaOmFZtq8PzBuur1q7Typ5W+owEAAGQIxTQAABAWlv64VA1fa6j73r1PjSs01uqBq/XnZn9WTFSM72gAAABIQdXiVbWg9wK92eVNbT20VfGvxev+d+/X4V8P+44GAABwXiimAQCAHO3A8QO6Z+49ajK6iXYd2aUp3aZoQe8FuqTUJb6jAQAA4BzMTH0u76P1g9frnivv0fClw1VrRC1NWjNJzjnf8QAAANKFYhoAAMiRTiee1qjlo1RzeE2NXjFaf2zyR62/d716XNZDZuY7HgAAAM5DiQIlNKLDCC29a6kqFq2oXm/30nVvXqdVu1b5jgYAAHBOFNMAAECOs3DzQtUfVV8D5w1U7TK19dWAr/Rcm+dUNF9R39EAAABwAeJj4/VF/y80sv1Irdm9Rg1eaaD+s/rrp19+8h0NAAAgVRTTAABAjvHt3m/VYWIHtRnfRsdPH9eMHjOUcFuCLr/oct/RAAAAkEmio6I1sOFAbbp/kx5o8oDeWv2WarxUQ09+8qSOnzruOx4AAMDvUEwDAADe/fTLTxo0b5DqvlxXi39YrGE3DNO6Qet006U3MaQjAABAhCqev7iebfOs1g5aq1ZxrfTIokdUa0QtjVs1TmcSz/iOBwAAcBbFNAAA4M2B4wf08AcPK+7FOL224jUNuHKAvrvvOz3U7CHli8nnOx4AAACyQY1SNTTz5pn6qO9HKl2wtG6fdbvqvlxXb3/7tpxzvuMBAABQTAMAANnvyMkjevKTJ1X9P9U17LNh6lq7q9YPXq+RHUaqbKGyvuMBAADAg2urXavldy3XtO7T5OTUdWpXNRrdSO9vfp+iGgAA8IpiGgAAyDa/nPhFwz4bpur/qa5HFj2illVb6ut7vtZbN76luJJxvuMBAADAMzNTt9rdtGbgGo3pPEZ7ju5R6/Gt1XJcS32w5QOKagAAwAuKaQAAIMsdPH5QT3z8hKq8UEV/+eAvqn9RfX3e/3O9c8s7qluuru94AAAAyGFiomJ0e/3btfHejXqp3UvafGCzWr3VSk1fb6q5G+dSVAMAANmKYhoAAMgye4/u1dAPh6rKC1X0aMKjalGlhb6880st7LNQTSo28R0PAAAAOVy+mHy6t9G92nz/Zo3qMEq7j+5Wx0kd1eDVBpq+brrOJJ7xHREAAOQCFNMAAECmW79vve6ec7cqv1BZTy9+Wu1qtNOqu1dp1i2z1KhCI9/xAAAAEGbyxeTT3fF3a+O9GzW281gdO3VM3ad1V60RtTRi6QgdPXnUd0QAABDBKKYBAIBM4ZzTR1s/0h8m/kGXjrhUb65+U33r9dW6wes0pdsUXX7R5b4jAgAAIMzlic6j2+rfpnWD1mlqt6kqVaCU7n33XlV6vpKGfjhUO3/Z6TsiAACIQDG+AwAAgPB27NQxTVozScOXDdeqXatUtlBZPd7ycQ2MH6gyhcr4jgcAAIAIFB0Vre6XdVf3y7pryfYlevbzZ/X04qf17yX/1s11btag+EFqUrGJzMx3VAAAEAEopgEAgAzZsG+DXl7+ssauGqvDJw6rTtk6Gt1xtG6td6vyx+T3HQ8AAAC5xFWVrtJVla7S5gOb9Z8v/6Oxq8Zq/Orxqn9RfQ2KH6RedXupUN5CvmMCAIAwxjCPAAAg3U6cPqFpa6fp+jevV60RtTRy2Ui1r9Fen/b7VKvvWa3+DfpTSAMAAIAXcSXj9GK7F/XjkB81qsMoJbpEDZg7QLHPxeq++fdp9e7VviMCAIAwRc80AACQJuecVu5aqTErx2jiNxN14PgBVS5WWf973f/qjivuULnC5XxHBAAAAM4qkq+I7o6/WwOuHKAl25fo5eUv69UVr2r4suFqUL6B+tXvp151e6lkgZK+owIAgDBBMQ0AAKRo95HdmvTNJI1ZNUard69Wvuh8uvHSG9Wvfj9dX+16RUdF+44IAAAApMrM1KxyMzWr3EwvtH1BE9dM1JhVY3Tfu/fpwYUPqnPNzrq9/u1qVb2V8kTn8R0XAADkYBTTAADAWQePH9Tb376tyWsn66OtHynRJaphbEONbD9St9S5RSUKlPAdEQAAADhvpQuW1v2N79f9je/Xql2rNGblGE1YM0HT1k1TqQKl1K12N/Ws01MtqrRQlDErCgAA+G8U0wAAyOUO/3pY876bpylrp+i9Te/p5JmTiisRp6HNh6pn3Z6qXaa274gAAABApql/UX39p91/NKzVMC3YvECTvpmkt1a/pVe+ekUVilTQzZfdrG61u6lxxcYU1gAAgCSKaQAA5Eo7ft6h2Rtm65317yhhW4JOJZ5SbJFYDW44WD3r9FR8bLzMzHdMAAAAIMvki8mnTjU7qVPNTjp68qhmb5itSd9M0ktLX9JzXzyncoXKqVPNTupSq4uuq3ad8sfk9x0ZAAB4QjENAIBcwDmndXvX6Z3172jWhllatnOZJOmSUpfogSYPqHOtzmpcoTHzoAEAACBXKpS3kHrW7amedXvq0K+H9O537+qdDe9o0jeT9NqK11Q4b2G1u7idutTqovY12qt4/uK+IwMAgGxEMQ0AgAj184mftWjrIi3cvFALNi/Q5oObJUmNKzTWU9c/pS61uqhW6VqeUwIAAAA5S/H8xc8W1k6cPqGPtn6kWRtmadaGWZq2bppiomLUonILtareSq3jWuuK8lcwHCQAABGOYhoAABHidOJpLd+5XAs3L9TCzQv1xY4vdMadUaE8hdSyaks9dNVD6lizo2KLxPqOCgAAAISFfDH51K5GO7Wr0U4jO4zU0h+Xatb6WXpv83sa+tFQDf1oqEoVKKUbqt+g1nGt1ap6K1UqVsl3bAAAkMkopgEAEKbOJJ7R6t2rtfiHxUr4PkEfbvlQh08clskUHxuvvzT7i1rHtVbTSk2VNzqv77gAAABAWIuyKDWp2ERNKjbRUzc8pd1HduuDLR9o4ZaFen/z+5qydookqVbpWrqh2g26usrVal65ucoXKe85OQAAuFAU0wAACBPHTx3X0h+X6tMfPtXiHxZryfYl+uXkL5KkKsWqqHvt7moV10rXV7tepQqW8pwWAAAAiGzlCpfTrfVu1a31bpVzTmv3rtXCzQv1/pb39caqNzR82XBJUlyJODWv3FwtKrdQ88rNdUmpS2RmntMDAIDzQTENAIAcyDmnzQc3a/nO5Vr24zJ9vuNzLd+5XKcST0mS6pSto971eqt55eZqXrm5Kher7DkxAAAAkHuZmeqUraM6ZetoSNMhOnXmlFbuWqnFPyzWpz98qnnfzdO4r8dJksoULKPmlZurUYVGahjbUFfGXqni+Yv7fQEAACBNFNMAAPDMOaftP28/Wzhb/tNyLd+5XId+PSRJyh+TXw3KN9CQpkPUvHJzNavUTCUKlPAbGgAAAECq8kTnUaMKjdSoQiMNaTpEzjlt2L9Bi39YfPY2c/3Ms+1rlKyh+Nh4xcfGq2FsQ11R/goVzlvY4ysAAAChKKYBAJCNjp48qrV712rN7jVasyd4271Ge4/tlSTFRMWoXrl6uvmym8/+MX1ZmcuUJzqP5+TIMsOGSQ0bStdee+H7WrRIWrZM+vOfL3xfADJXdn/XI/14yFx8fkCWMzPVKl1LtUrX0p0N7pQkHTh+QF/t/Crwo7qdy7T4h8Wa9M0kSYH52WqUrKG65eqqbtnArV65eqpWopqiLMrnSwEAIFeimAYAQBY4cvKINu7fqA37Nmj9vvVnC2ebD2yWk5MkFcxTUHXK1lGnmp3UoHwDxcfGq165esofk99zemSrhg2lHj2kqVMv7CLmokW/7QdAzpPd3/VIPx4yF58f4EXJAiXVKq6VWsW1Ortt95HdZ4trq3ev1qpdqzRj3Yyzf0MUylNIl5W9THXL1lWdsnVUs1RNXVLqElUtXlXRUdG+XgoAABGPYhoAABl04vQJfX/4e206sOls4WzD/sBt5y87z7ZL+lVp/Yvqq0+9PqpXrp7qlq3Lr0oRcO21gYuOF3IRM/TiZWb0KgCQ+bL7ux7px0Pm4vMDcoxyhcupwyUd1OGSDme3pTS6xewNs/X6ytfPtskbnVcXl7z4bHGtZqmaqlm6pqoVr6aLCl8kM/PxcgAAiBgU0wAASMP2w9u19dBWbT24VVsPbdWWg1vOru/8ZefZX4hKUon8JVSzdE21qt7q7B+vNUvVVFzJOHqbIW0XchGTi5dA+Mju73qkHw+Zi88PyLEK5S10dv61UPuO7fvtB33B+/X71mvuxrk6lXjqbLv8MflVrXg1VStRLXAfsnxxyYtVJF+R7H5JAACEHYppAACk4YpXrtD+4/slSSZTxaIVVa1ENd1Q/Yazf4TGlYhTzdI1VapAKX7xiYzLyEVMLl4C4Se7v+uRfjxkLj4/IKyULlhapSuXVrPKzf5r++nE09p2aJs27t949keBST8M/OyHz3T4xOGzbf/W4m/613X/yu7oAACEHYppAACk4ZU/vKIi+YqoWvFqqlyssvLF5PMdCZHsfC5icvESCF/Z/V2P9OMhc/H5AWEvJipGF5e8WBeXvDjFxw8eP3h2tI1LSl2SzekAAAhPYTNRi5m1NbMNZrbJzB5O4XEzsxeDj682swY+cgIAIkvX2l3VOq61apSqQSEN2SP0IuaiRSm34eIlEP6y+7se6cdD5uLzAyJaiQIl1KB8A3Wt3VV1y9X1HQcAgLAQFsU0M4uWNEJSO0m1JfU0s9rJmrWTVCN4GyDp5WwNCQAAkFnSuojJxUsgcoR+11OS2d/17D63cC4Lb3x+AAAAwFlhUUyT1EjSJufcFufcSUmTJXVO1qazpDddwBeSiptZ+ewOCgAAkClSuojJxUsg8iR911OSFd/17D63cC4Lb3x+AAAAgKTwmTOtgqTtIes7JDVOR5sKkn5Ka8ePP/54ZuQDgP/y8ccf+44AIEJU7dBB3f7wB1l8vI4uX67p3btr2yefSJ984jsagCz2eBZ+17P73JJ0vOXx8YrnXBZ2+PyQEfxNBCArcG4B4Eu4FNMshW0uA21kZgMUGAZS5cvTcQ0AAORs26pV0/L4eF3zySf6+Oqrta1aNd+RAGSBa3SNqm7dqqrf/6BtVSpn+Xc9u88tnMvCG58fAAAAcjtz7nf1phzHzJpKesw51ya4/ldJcs49FdLmFUkJzrlJwfUNklo651LtmRYbG+t27tyZpdkB5D4JCQlq2bKl7xgAIkVwOK1t7dqp6rvvMqwWEKmShs4bOFB6+eWs/65n97klu18fMhefH84TfxMByAqcWwBkBTP7yjkXf6524TJn2jJJNcysmpnllXSLpNnJ2syW1NcCmkg6nFYhDQAAIMcLmZdm2x13/H7eGgCRIXQOqieeyPrvenafW7L79SFz8fkBAAAA4VFMc86dlnSvpAWSvpU01Tm31szuMbN7gs3mS9oiaZOk1yQN8hIWAAAgM4RevEz69f+113IRE4g02f1dj/TjIXPx+QEAAACSwqSYJknOufnOuUucc3HOuSeD20Y550YFl51zbnDw8brOueV+EwMAAGRQShcvk3ARE4gc2f1dj/TjIXPx+QEAAABnhU0xDQAAIFdI6+JlEi5iAuEvu7/rkX48ZC4+PwAAAOC/UEwDAADIKdJz8TIJFzGB8JXd3/VIPx4yF58fAAAA8DsU0wAAAHKC87l4mYSLmED4ye7veqQfD5mLzw8AAABIEcU0AAAA3zJy8TIJFzGB8JHd3/VIPx4yF58fAAAAkCqKaQAAAD5dyMXLJFzEBHK+7P6uR/rxkLn4/AAAAIA0UUwDAADwadmyC7t4mSTpIuayZZmTC0Dmyu7veqQfD5mLzw8AAABIkznnfGfwJjY21u3cudN3DAARJiEhQS1btvQdA0CE4dwCICtwbgGQFTi3AMgKnFsAZAUz+8o5F3+udvRMAwAAAAAAAAAAAFJBMQ0AAAAAAAAAAABIBcU0AAAAAAAAAAAAIBUU0wAAAAAAAAAAAIBUUEwDAAAAAAAAAAAAUkExDQAAAAAAAAAAAEgFxTQAAAAAAAAAAAAgFRTTAAAAAAAAAAAAgFRQTAMAAAAAAAAAAABSQTENAAAAAAAAAAAASAXFNAAAAAAAAAAAACAVFNMAAAAAAAAAAACAVFBMAwAAAAAAAAAAAFJhzjnfGbwxs18kbfCdA0DEKS1pn+8QACIO5xYAWYFzC4CswLkFQFbg3AIgK9R0zhU5V6OY7EiSg21wzsX7DgEgspjZcs4tADIb5xYAWYFzC4CswLkFQFbg3AIgK5jZ8vS0Y5hHAAAAAAAAAAAAIBUU0wAAAAAAAAAAAIBU5PZi2qu+AwCISJxbAGQFzi0AsgLnFgBZgXMLgKzAuQVAVkjXucWcc1kdBAAAAAAAAAAAAAhLub1nGgAAAAAAAAAAAJCqXFtMM7O2ZrbBzDaZ2cO+8wAIf2b2hpntMbNvfGcBEDnMrJKZLTKzb81srZn9j+9MAMKfmeU3s6Vm9nXw3PK470wAIoOZRZvZSjOb6zsLgMhhZtvMbI2ZrTKz5b7zAIgMZlbczKab2frgdZemqbbNjcM8mlm0pI2SWknaIWmZpJ7OuXVegwEIa2Z2taQjkt50ztXxnQdAZDCz8pLKO+dWmFkRSV9J6sL/WwBcCDMzSYWcc0fMLI+kxZL+xzn3hedoAMKcmQ2RFC+pqHPuD77zAIgMZrZNUrxzbp/vLAAih5mNk/Spc260meWVVNA5dyiltrm1Z1ojSZucc1uccyclTZbU2XMmAGHOOfeJpAO+cwCILM65n5xzK4LLv0j6VlIFv6kAhDsXcCS4mid4y32/tASQqcysoqQOkkb7zgIAAJAWMysq6WpJr0uSc+5kaoU0KfcW0ypI2h6yvkNclAIAADmcmVWVdIWkLz1HARABgkOxrZK0R9L7zjnOLQAu1AuS/iwp0XMOAJHHSVpoZl+Z2QDfYQBEhOqS9koaExyierSZFUqtcW4tplkK2/gVJgAAyLHMrLCkGZL+6Jz72XceAOHPOXfGOVdfUkVJjcyMYaoBZJiZ/UHSHufcV76zAIhIzZxzDSS1kzQ4ONUGAFyIGEkNJL3snLtC0lFJD6fWOLcW03ZIqhSyXlHSTk9ZAAAA0hScz2iGpAnOubd95wEQWYJDmSRIaus3CYAw10xSp+C8RpMlXWdm4/1GAhApnHM7g/d7JM1UYBofALgQOyTtCBmhY7oCxbUU5dZi2jJJNcysWnBSuVskzfacCQAA4HfMzBQYv/tb59xzvvMAiAxmVsbMigeXC0i6QdJ6r6EAhDXn3F+dcxWdc1UVuM7ykXOut+dYACKAmRUysyJJy5JaS/rGbyoA4c45t0vSdjOrGdx0vaR1qbWPyZZUOYxz7rSZ3StpgaRoSW8459Z6jgUgzJnZJEktJZU2sx2SHnXOve43FYAI0ExSH0lrgnMbSdJQ59x8f5EARIDyksaZWbQCP7Kc6pyb6zkTAABASspJmhn4naFiJE10zr3nNxKACHGfpAnBTldbJPVLraE5x1RhAAAAAAAAAAAAQEpy6zCPAAAAAAAAAAAAwDlRTAMAAAAAAAAAAABSQTENAAAAAAAAAAAASAXFNAAAAAAAAAAAACAVFNMAAAAAAAAAAACAVFBMAwAAAIAMMjMXvCVk0v4SkvaZGftDgJndGHxffzWzCr7zSJKZ9QlmOmRmZX3nAQAAAJA6imkAAAAAkEXMrIuZPRa8FfedJzcys/ySnguuvuqc+9FnnhATJW2UVEzSU56zAAAAAEgDxTQAAAAAyDpdJD0avBX3miT3GiSpqqRfJT3tN8pvnHNnJP0ruHq7mV3qMw8AAACA1FFMAwAAAIAMcs5Z8NYyk/bXMmmfmbG/3M7MCkh6OLg61jm302eeFEyU9L0Cf5s/6jkLAAAAgFRQTAMAAAAARKq+ksoEl9/0GSQlwd5pE4Kr3cysss88AAAAAFJGMQ0AAAAAEKkGBu83O+c+95okdeOD99GSBvgMAgAAACBlFNMAAAAAZDkza2lmLnh7LLitrpm9amabzey4me01sw/MrOd57LeSmT1tZivM7ICZnTCzH81sjpndbmbR6dhHDTN71sy+MrNDZnbKzPab2QYzW2hmfzazy1J5btJrSki2fayZOUm3hWzeGtI+6TY22fMSkh5LR+7Gwfdvg5n9YmZHg+/lODO7Lh3P/6/sZlbQzP5kZsvN7GBwf2vN7CkzK3Gu/Z3jWH8POd7sc7TtGtJ2jZnlz+Ax60q6PLg68RxtHws5ZsvgtuvNbIaZbTezX4Pv7atmViXZc/Ob2d1mtiT4b/hYMPfDZpbvXDmdc99KWhVcvdXMGOITAAAAyGFifAcAAAAAkPuYWR9Jr0kKLTbkl3S9pOvN7FZJ3Zxzv6axj7slPS+pQLKHYoO3P0gaYmadnHPbUtnHnZJGSMqb7KGSwdslklpJ6iWpfnpeW1YzsxhJIyXdlcLD1YO3vmY2TdJtzrnj6dhndUlzJNVO9lDt4K2nmbVM7X1Mhycl3SDpakkdzWyQc25kCjkqKvDvQpJ+ldQzrX8D59AlZHnR+TzRzJ6W9Jdkm5Pe225mdr1zbqWZXaTA+xafrG0dSU9Jam9mbdLxGSxS4N9XVQUKgKvOJy8AAACArEUxDQAAAEB2ayhpaHD5DUmfSDoT3N5fUiFJHRQY/q5bSjsIFtJGhWyaI2mepEMKFMD6Saomqa6kxWZ2hXNub7J9XCHpFQVG7DgtaUYwyx5JeSSVl3SFpNYZeI0vSnpH0v2Srg1uuzu471A/ZGDfb0pK6r33q6RxkpYo8B7GK/AeFpHUXVIxM2vrnEurp1tRBd67WpJmS3pX0gEFCkcDJVWWVCV43KszkFfOuUQz6y3pa0klJP3bzD52zq1NamNmUQp85km94B5yzn2TkeMFtQreJ0pafh7PG6zAv7utksZI2iipuKQ+kpoF8003szoKvG8NJM2XNFfSfgXex/sllZLUQtLfJD1yjmN+EbLcRhTTAAAAgBzF0v6bCgAAAAAuXHDovNDeQb9Iau2c+yJZuxqSEhToWSYFeqfNSNamqqR1CvRIOyOpl3NuarI2BSRNU6AoJ0nTnXPdk7UZrkDhRJJuTr6PkHbRkho755ak8FjSH1QfO+dapvD4WP021GO1c/XsCg65eI0kOed+N9yfmd0saXJwdbek65xz65K1qaLAe10tuOle59yINLJL0klJXZ1zc5O1KSVpWci+Gjvnlqb1GtJiZt0U+FwkabWkRs65E8HHhirQg02S5jrnOl7AcaIl/SypoKS1zrk652j/mKRHQzbNldQ9tFdcsNg3T1Lb4KavFCi29nHO/dcwkmZ2iQIFsQIKFHgvSnqdqRy/iqRtwdWZzrmb0nyBAAAAALIVc6YBAAAA8OGh5IU0SXLOfadAz6okf0rhuffrt6Edn02pCBYcVq+XpJ+Cm7oGCxyhLg7eH9ZvBZ7fcc6dSamQ5kno0IP9khfSJMk5972kWyQlFcseSsfccf9KXkgL7mu/pP8N2dTmPPMm3990BXojSlI9ScMkycwaSXo8uH2XpDsu5DgK9KorGFzecJ7P3SOpd/LhJZ1ziZKeCNl0paRXkhfSgm03KtDLTgr0amuU1gGDn1nSUJD1zjMvAAAAgCxGMQ0AAABAdjuowPB5KXLOvadAzzNJahKclypUUq+d05KeTWM/Pyswt5gkmf57Di1JOha8L6LAUIY5WrBH3hXB1TXOuXdTaxvsPfZRcLWKAoWf1JyRNDyNxz8KWU4+p1pG3K/A0ImSdJ+Z9ZA0UYFpCJwC87ztTe3J6VQlZPnAeT73Lefc4VQeWybpVMj673r8hVgcspye9+1g8L6Smf2uVyIAAAAAfyimAQAAAMhunzrnTp6jTWgBp2HSgpmV1W+Fkq+dc8nnIEtuYchy42SPvR+8j5K0yMzuNLPS59ifT6G9mxam2irlNslfe6iNzrmDaTz+Y8hyiVRbpZNz7qgCc76dVKDIOUVSXPDh55xz6Xlt51IyZPl8i2lfpvaAc+60AvOiSdJR/Vb0TcnukOX0vG9J+82rwLyBAAAAAHIIimkAAAAAstum82wTG7JcPmR5o84ttE35ZI+9rsD8bFJgTrDXJO0xszVm9oqZ9TSzYuk4RnbJzNceal9aO0k211f+dBz3nJxzKyQ9kmzzSklDM2P/kvKFLP9yns/df47Hk96PAy7tScjP9337OWS5QKqtAAAAAGQ7imkAAAAAstuxczfR0ZDlwiHLRVJpk5ojqTxXwd5xbSQ9JGlbcLNJqiNpgAJDD+42sxFmVjQdx8pqmfbak0nMWJwLlnwus1np6LGYXqGFrPP97NL7fmT2+xZauD2eaisAAAAA2Y5iGgAAAIDsVjAdbUKHuQstCv2SSpvUhBbiftdDyTl30jn3b+dcNUmXKVBEGydpR7BJPkmDJH1iZr57C2Xqa/cpOA/e6GSbh5pZ/Uw6ROjQjiVTbZWzJOU8qfQVSwEAAABkE4ppAAAAALLbxefZZmfI8k8hyzXSsZ/QNjtTbSXJObfOOfeac+5251wlSdfptx5rl0vqn47jZaUse+3ZycxMgYJlmeCmt4P3eSVNzKSi5baQ5XArpv1wjuEjAQAAAGQzimkAAAAAsltzM8t7jjbXhiwvS1pwzu2R9H1wtb6ZlVHaWocsL01/RMk5t0jSvSGbmp/P84NChwK0DDw/VGj+Vulon+HXnsWG6LdsCyR1k/RqcP1SSc9nwjG26rfeXTUzYX9Zysyq6rd51VZ7jAIAAAAgBRTTAAAAAGS3kpJuS+1BM2utwJCLkvS5c25XsiYzgvcxkv6Yxn6KKDBEoyQ5STMzkHVbyHJMBp4fOkRleoZmTJVzbpukFcHVy4PvU4rMLF6BnnVSoPj41YUcO7MEh3H83+DqXkm3B3thPSBpfXD73WbW+UKO45w7o99ec60cMuddWhqHLH/pLQUAAACAFFFMAwAAAODDv82sYfKNZhYn6Y2QTc+m8NyXJB0PLv/ZzLqmsJ/8ksZLig1umuGc+y5Zm2fNrMk5cg4MWf76HG1TsjVkuUEGnp/c/4UsjzWzWskbmFllSZP12997zwSLS16ZWUFJkxQYzlGS7kgqlDrnjknqqcB8YZL0upnF/n4v5+X94H2UpPgL3FdWCy2mLfCWAgAAAECKMvLLSgAAAAC4EPMVGKbwMzMbJ+lTSWckNVRgXrLCwXZvO+dmJH+yc26bmT0gaZQCf9NMN7NZwf0eUmCusDskVQ8+5UdJg1PI0VXSEDPbKukDBYbX2yMpn6RKkrpLqh9su1+/DUV4Pj4MWR4WHJZyg6TTSdmcc2vSuzPn3FQz66JA4am8pBVmNlbS5wq8h/EKvIdJPbEWShqZgdxZ4XlJScW/Ec65uaEPOudWmdlQSf+WVErSODNrfQHzh82U9M/gcktJH2VwP9khaVjTrc65jBRtAQAAAGQhimkAAAAAstsyBXoojZZ0Z/CW3HxJt6a2A+fcK2ZmChRo8kvqHLwl942kjsG51pJLms+smqS70sj7vaSbnHO702iTWs7VZjZJgeJXOQUKRaHGSbr9PHfbV4H5wO6UVECB3nMDU2g3XVLfCyhGZRozu1HSgODqWkkPpdL0OUltFCi23iDpQf3+PUsX59xaM1ulQEG0l6R/ZGQ/Wc3MLtVvRdsJHqMAAAAASAXDPAIAAADIds658Qr0RBstaYukXyUdUKD30K3OuQ7OuV/PsY9Rki5RYOjDVQr0Sjsp6ScFinH9JNUPzjWWkgaSblRg2MilkvZJOiXphKQdwX3cI+lS59yKVPaRHn0UKHYlBI9xOs3W5+CcO+2cu0tSU0mvS9qkQHHtuALDSo6XdL1zrrtz7njqe8oeZlZBgc9ZCry3vVLLFSz83abA+yRJT5rZhQyPmdQrL87MrrqA/WSl3sH7M5Je8xkEAAAAQMosB/xIEQAAAECEM7OWkhYFVx93zj3mLQxyjeDced9LKivpVefc3Z4j/Rczi1agGFpV0hTn3C1+EwEAAABICT3TAAAAAAARKdi78engal8zi/WZJwU9FSikJUp63G8UAAAAAKmhmAYAAAAAiGQvKzD8ZX5Jf/Wc5axgr7RHgqtjnXPf+swDAAAAIHUU0wAAAAAAESvYO21IcPWu4BxuOUFPSTUlHVYOKvIBAAAA+D2KaQAAAACAiOace8c5Z865/M65H33nkSTn3PhgpuLOuT2+8wAAAABIHcU0AAAAAAAAAAAAIBXmnPOdAQAAAAAAAAAAAMiR6JkGAAAAAAAAAAAApIJiGgAAAAAAAAAAAJAKimkAAAAAAAAAAABAKiimAQAAAAAAAAAAAKmgmAYAAAAAAAAAAACkgmIaAAAAAAAAAAAAkIr/Bw27Y41A2n8QAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "samples = [2.0, 2.1, 1.9, 1.0, 2.5] # add samples in a list\n",
+ "samples = np.add(samples, 1.) # shift the samples by 1\n",
+ "\n",
+ "gaussian = Gaussian(samples) # calculate the mean and covariance out of these samples\n",
+ "\n",
+ "fig, ax = make_figure(xlims=(0, 6)) # create figure\n",
+ "\n",
+ "ax.plot(samples, np.zeros((len(samples), 1)), 'x', markersize=20, color='red') # plot samples\n",
+ "\n",
+ "add_gaussian_bel(ax, gaussian.x, gaussian.P, 'green') # plot gaussian distribution\n",
+ "\n",
+ "update_plot()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "id": "f1533c8f",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABtMAAAJgCAYAAAD4c5xoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACqr0lEQVR4nOzddZhVVd+H8e+aGcahWzoEJBUQJZQuCZEQVERAwSAEUUS6OwRFKbEfEFBRTBoZEFFaUDoESWkmiKn1/gHyotTAxDpxf65rrjmxztn3POB+ZvjN3ttYawUAAAAAAAAAAADgagGuAwAAAAAAAAAAAABPxTANAAAAAAAAAAAAuA6GaQAAAAAAAAAAAMB1MEwDAAAAAAAAAAAAroNhGgAAAAAAAAAAAHAdDNMAAAAAAAAAAACA6whyHeBSqlSpbPHixV1nAPAxkZGRSp06tesMAD6GfQuApMC+BUBSYN8CICmwbwGQFNatW3fcWpv1Zuv8epiWIUMGrV271nUGAB8TGhqqatWquc4A4GPYtwBICuxbACQF9i0AkgL7FgBJwRizLz7rOM0jAAAAAAAAAAAAcB0M0wAAAAAAAAAAAIDrYJgGAAAAAAAAAAAAXAfDNAAAAAAAAAAAAOA6GKYBAAAAAAAAAAAA18EwDQAAAAAAAAAAALgOhmkAAAAAAAAAAADAdTBMAwAAAAAAAAAAAK6DYRoAAAAAAAAAAABwHQzTAAAAAAAAAAAAgOtgmAYAAAAAAAAAAABcB8M0AAAAAAAAAAAA4DoYpgEAAAAAAAAAAADXEeQ6AAAAAAAAAACSQ2xsrMLCwhQeHq5z584pLi7OdRLiKX369Nq6davrDACOBQQEKGXKlEqbNq3SpUunwMDAZNkuwzQAAAAAAAAAPi8qKkr79u1TqlSplCFDBuXKlUsBAQEyxrhOQzyEh4crbdq0rjMAOGStVVxcnCIjIxUeHq7jx48rX758Cg4OTvJtM0wDAAAAAAAA4NNiY2O1b98+ZcmSRRkzZnSdAwC4DcYYBQYGKl26dEqXLp1OnTqlffv2qUCBAkl+hBrXTAMAAAAAAADg08LCwpQqVSoGaQDgQzJmzKhUqVIpLCwsybfFMA0AAAAAAACAT+MUgQDgm9KmTavw8PAk3w7DNAAAAAAAAAA+7dy5c0qdOrXrDABAIkudOrXOnTuX5NvxmmGaMaauMWa7MWaXMabnNZ5/3Rjz26WPP4wxscaYTC5aAQAAAAAAAHiOuLg4BQR4zT+FAgDiKSAgQHFxcUm/nSTfQiIwxgRKmiipnqTikp4yxhS/co21doy1trS1trSkXpKWWWtPJnssAAAAAAAAAI9jjHGdAABIZMm1b/eKYZqkcpJ2WWv3WGujJM2S1OgG65+SNDNZygAAAAAAAAAAAOCzglwHxFMuSfuvuH9AUvlrLTTGpJJUV1KnZOgCAAAAAPyHtVb7w/Zr2/Ft2nt6r/ae3qtD4YcUHhWuiKiIyx/RsdEKCghS2jvSKkNIBmUIyaAcaXIof4b8yp8hv+7OdLcKZSqkwIBA118SAAAAAD/mLcO0ax2nZ6+z9lFJP1/vFI/GmBclvShJOXLkUGhoaKIEAsA/IiIi2LcASHTsWwAkhcTat0TEROj3M79r4+mN2h6+XbsidykiJuLy84EmUFmCsyhVUCqlDEipU9GnFGSCFGACFGfjdDzsuNIGpVVETISORx1XVFzU5deGBISoQOoCKpy2sEqmL6lSGUopUzCXxwY8Gd+3wBOlT59e4eHhrjOQALGxsfwZArim8+fPJ/n3Ht4yTDsgKc8V93NLOnSdtc11g1M8WmunSpoqSTlz5rTVqlVLpEQAuCg0NFTsWwAkNvYtAJLC7e5brLXafGyzvt72tb7d/q3WHV6nOBun4MBglc5eWk8XelqlspVSiTtL6K4Mdyln2pz/OrrMDLr69yUPDTh0+b2PRh7Vn6f/1Lbj2/Tbkd/025HftPjwYn196GtJUrEsxfRo4UfVqGgjVchdQQHGW65gAPgHvm+BJ9q6davSpk3rOgMJEB4ezp8hgGsKCQnRfffdl6Tb8JZh2hpJdxtj7pJ0UBcHZi3+u8gYk15SVUktkzcPAAAAAHzfnlN79L+N/9P0TdO1+9RuSVL5XOXVr0o/Vc1XVRVyV1DKFCkTtA1jjLKlyaZsabKpQu4Klx+PiYvR+sPrFbo3VIv3LNa4X8dp9MrRypY6m54s8aSeLf2sSmcvnWwXIAcAAADgP7ximGatjTHGdJK0QFKgpA+ttZuNMe0vPT/l0tImkhZaayMdpQIAAACAT4mKjdLsLbM1Ze0U/fTXTzIyqnFXDXWv2F2PFn5UOdLmSJaOoIAglctVTuVylVP3it11+vxpzds5T19u/VJT1k3R26vf1r133qsX739Rz5R6Rmnv4DfXAQDA7Tt79qyWL1+uNWvWaM2aNdqzZ4+OHz+ukydP6o477lD27NlVpkwZNWvWTI899pgCAxPnGq8nTpzQunXrtHbt2suf//rrr8vPW3u9qx9dLSwsTOvXr//X++3atevye/z555/Knz9/onQj6fzxxx969913tWjRIh04cECBgYHKmzevGjRooPbt2ytfvnyJsp3169dr1apVWrNmjX7//XcdO3ZMx48fV0xMjDJmzKjixYurdu3aevbZZ5U9e/YbvldMTIxCQ0O1ePFirV69Wlu3btXJkyeVIkUKZcuWTWXLllXz5s316KOPJtp/O0nN3Mp/fL4mZ86c9tCh650tEgBuD6c0AZAU2LcASAo32rccP3tcU9ZO0aQ1k3Q44rAKZSqkNqXbqFXJVsqTPs81XxNf1zrNox1w+z+bnjx3UrP+mKWPfvtIaw+tVbo70qlt6bZ6ufzLuivjXQlJBXAb+L4Fnmjr1q0qVqyY6wwkQHKf5nH+/PmqV69evNaWLFlSn332mYoWLZqgbf7+++8qWbLkDdfE99/zz5w5o4wZM95wPcM0z/fGG2+od+/eio6OvubzadOm1dSpU9W8efMEbyt79uz6+++/b7ouTZo0Gjt2rF588cVrPr906VI1a9ZMJ0+evOl7lS1bVjNnzlTBggVvufdKCdnHG2PWWWsfuNk6rzgyDQAAAACQPI5GHtXYlWM1cc1ERUZH6uGCD+v9hu+rbqG6HnttskwpM6lj2Y7qWLajVh1YpfGrxmvCmgl6Z/U7al2qtXpX7q1CmQq5zgQAAF6oePHiKleunPLnz68cOXIoU6ZMOnPmjNavX69Zs2bp5MmT2rRpk6pWraqNGzfe9IidG4mNjf3X/cDAQBUtWlR79uzRuXPnbum9rLX/GqQZY1SwYEGdOHFCp06duu1GJJ8pU6bo9ddflySlSJFCrVq1UtWqVRUdHa0FCxZo9uzZCg8PV6tWrZQhQwbVrVs3wdvMkiWLKlSooBIlSihHjhzKnj27YmNjtWvXLn399dfasGGDIiIi1K5dOwUFBalt27ZXvcfBgwcvD9IyZcqkWrVqqUKFCsqRI4eio6O1evVq/e9//1NYWJjWrFmj6tWra/Xq1Qn6byc5cGQaR6YBSGT8FiaApMC+BUBSuHLfcvr8aY34aYQmrJmg8zHn1fye5updqbdK3Fki0beb2EemXcvBsIMas3KM3l33rqJjo9WyZEsNrj5YedPnTdTtALga37fAE3FkmvdL7iPTTpw4oaioKOXIcf1TWp88eVL169fXqlWrJEnt27fX5MmTb3ubu3fv1uDBg3X//ffr/vvv13333adUqVIpf/782rdvn6T4H5kWERGhF1544fJ7lSlTRunTp1e1atW0bNkySRyZ5skOHz6sQoUK6ezZswoKCtK8efNUq1atf635+OOP1aZNG0lSnjx5tGPHDoWEhNz2Njdv3qzixYvf8BrEI0aMUO/evSVJGTJk0JEjR3THHXf8a8306dM1evRo9erVS4899thVz0sXB2516tTR5s2bJUmtW7fWJ598ctvtyXFkmmf+WiEAAAAAIFlExUZp/K/jVfDtghqzcoyaFG2iLR236NPHPk2SQVpyyZUul96q+5b+7PKnupTvoll/zFLhdwqr1+JeOnP+jOs8AADg4TJnznzDQZp08aibK4dnP/zwQ4K2WbBgQX3yySd6+eWXVbFiRaVKleq23ytNmjSaOXOmunXrpurVqyt9+vQJakPyGj16tM6ePStJevXVV68apEnSs88+q8cff1yStH//fn3wwQcJ2maJEiVuOEiTpF69el0+Fenp06f1888/X7WmQYMG2rhxo5566qlrDtIkKVeuXJo1a9bl+1988cXlr9dTMUwDAAAAAD+15uQalZhUQq8seEVlcpTR+nbrNf2x6SqSpYjrtESTPU12ja0zVts7bdfjJR7XyJ9HqtA7hfTRho8UZ+Nc5wEA4DeWLVumwMBAGWOUN29enT59+rpr//zzT6VPn17GGKVOnVrbt29PvtBbVLx48cu343O9KX+1adMmGWNkjFHTpk3j9Zq333778mveeeedq55fv369hgwZorp16ypv3rwKCQlRypQplSdPHjVu3FjTp0+/6tSZ//Xxxx9f3sbHH38sSVq7dq2ef/55FSpUSKlTp5YxRqGhobf6Jd82a62++OILSRdPz9m5c+frrn355Zcv3/7ss8+SvE3699/5I0eOXPV8hgwZbjqUk6R77rnn8nUGz507p127diVeZBJgmAYAAAAAfuZg2EE98cUT6v57dwWYAM1tMVcLWy5U6eylXaclmXwZ8mlak2la9+I6FclcRG2/bauqH1fV73//7joNAAC/ULVqVfXs2VPSxaNoXnzxxWuui4mJUYsWLRQWFiZJGj9+vIoU8dxf9Nm9e/fl29myZXNY4tlKlix5+YimH3744YbD1H9Mnz5dkhQUFKTmzZv/67lBgwbp/vvvV//+/bVgwQLt379fFy5c0Pnz53XgwAF98803atWqlcqXL69budTTyJEjVaFCBX3wwQfavXu3k6OlNm/erIMHD0q6eLRYnjx5rrv2oYceUrp06SRJP//8s8LDw5O878q/8wm9ztmVp2691esCJjeGaQAAAADgJ6y1enftuyo6sai+2/Gd2uZvq03tN6ne3fXi9dujvqBMjjJa3ma5Pmj4gbYe26r73r1P/X7sp6jYKNdpAAD4vEGDBql8+fKSLp7W7cMPP7zmml9//VWS1LRpUz3//PPJ2ngrIiMj/3Vk0GOPPeawxvO1atVKknThwoXLR15dz44dO7RmzRpJUt26dZU1a9Z/PX/u3DkFBQWpcuXK6tmzp95//319/vnnmjJlinr06KFcuXJJktatW6dGjRopOjr6pn2ff/65evXqpTRp0ujll1/WJ598ounTp+v1119P1tNk/vHHH5dv33///TdcGxAQoPvuu0+SFBcXp61btyZp25QpUy7/uWTLlk0VK1a87feKiorSzp07L9/Ply9fgvuSUpDrAAAAAABA0vvrzF96/tvntWjPItW4q4amNpiq/Zv2646ga1/HwJcFmAC1va+tGhVppK4Lu2roT0P1zfZv9HHjj1UmRxnXeQAA+KygoCDNmDFDpUuXVnh4uF5++WVVrlxZd999tyRpxYoVGjFihCQpT548eu+99675PmfPntXChQsTpSlv3rwqU+bG//8fERGhxYsXS7r4y0lhYWHatGmTZs6cqcOHD0uSSpcurYEDByZKk69q0aKFevToobi4OE2fPl0vvPDCddf+c1SaJLVs2fKq55s2bapXXnnlukdGDR48WN27d9f48eO1du1azZgxQ88888wN++bNm6eiRYtqyZIlypkz5+XHn3766X+t27Ztm7Zt23bD94qvSpUqKUuWLP96bMeOHZdv58+f/6bvceUQaseOHSpXrlyCu5YvX66TJ09Kujj83Lt3r77//nutWLFCkpQyZUp99NFH170mWnx8/vnnl49QLFOmTIKPcktqDNMAAAAAwMdN3zRdHX/oqDgbp0n1J6ndA+0UYAK0X/tdpzmVOVVmfdL4EzUr1kwvfv+iyr9fXgOrDlTPSj0VGBDoOg8AAJ9UoEABTZw4Ua1bt1ZkZKRatGihlStXKjIyUk8//bRiY2MVEBCgadOmKWPGjNd8j6NHj6pJkyaJ0vPMM89cvlbW9Rw4cOC628uUKZOeeeYZDR06VKlSpUqUJl+VM2dO1ahRQ4sXL9ZPP/2kv/76S3nz5r3m2k8//VSSlC5dOjVs2PCq58uWLXvDbQUHB2vs2LH69ttv9eeff2ratGk3HaYZYzRr1qx/DdKuZdasWRo0aNAN18TX0qVLVa1atX89duUpMP87aLuWzJkzX/O1CdG9e3etWrXqqscDAwNVq1YtjRgx4vIRcbfj1KlT6t69++X7vXr1uu33Si6c5hEAAAAAfFT4hXA98/UzajWnlUplL6XfO/yuDmU7KMDwo+CVHi3yqDZ33KxmxZup79K+qj2ttg6GHXSdBQCAz2rVqtXlo33Wrl2rfv36qV27dvrrr78kXfyH9apVq7pMjLeHHnpIVatWVcqUKV2neIV/TvVorb08MPuvlStXas+ePZKkZs2a3fb/toGBgZdPK7p69WpZa2+4vnLlyipVqtRtbSsxRUREXL4dEhJy0/VX/u+T1NdMy5cvnx5++OHrDkHjIzY2Vs2bN798VOcjjzyiZs2aJVZikuHINAAAAADwQRsOb9ATs5/QnlN7NKDqAPWt0ldBAfwIeD2ZUmbSjMdmqE7BOnpp7ksqNaWUPmn8iR4p/IjrNABAMntl/iv67chvrjOSVenspfVW3beSdZuTJk3SypUr9eeff2rUqFGXHy9fvvxNT5eYP3/+mw5GElPRokUvby82NlYnTpzQ6tWrNWHCBH3//ff6/vvv1axZM3388cdKnTp1snV5o8cee0wdOnTQ2bNnNX369GsekXSzUzz+Iy4uTl9//bW+/PJLbdiwQYcOHVJ4eLji4uKuWhseHq6wsLAbXvuscuXK8foaBg4cmGyn9HR1XeN/rlsoXbw24Pbt2/XFF1/orbfe0muvvaY333xTX3/99U2v6XYtXbp0uXya1rx58970yFBPwa8jAgAAAICP+eS3T/TQhw/pXPQ5LX1mqQZWG8ggLR6MMXq29LNa/+J65UmfRw1mNtCApQMUGxfrOg0AAJ+TLl06zZgxQ0FB//89Stq0aa96zNMEBgbqzjvvVIMGDTR//nz17dtXkjR79my1adPGcZ3nS5MmjRo3bixJ2rJlizZs2PCv56Ojo/X5559LunjdvP+eAvEfBw4cULly5dS0aVPNmDFDW7du1ZkzZ645SPtHWFjYDdty5coV/y8kCaVJk+by7XPnzt10/ZVr0qZNm+g9qVOnVpkyZTRixAitXLlSadOm1YEDB1SrVi0dOnTolt6rT58+mjhxoiQpW7ZsWrRoUbxOZekJPHevBAAAAAC4JRdiLuiV+a9oyropqnFXDc1qOktZU2d1neV1imQpopVtV6rj3I4avHywVh9arU8f+1SZUmZynQYASAbJfYSWP8uVK5dSp06tM2fOSJLuv/9+FShQwHHVrRk0aJA+//xz7dixQ1988YW2bNmi4sWLu87yaK1atdKMGTMkXTwK7cprb82bN08nTpyQJD399NPXPDIrOjpaderU0ZYtWyRdvK5Yw4YNdc899yhbtmwKCQlRQMDF44jefvttLV26VNLFowpvxFNO1ZkhQ4bLt//53+JGrlxz5WuTwn333afu3burX79+On36tMaPH/+vI0tvZOjQoRo+fLiki39mixcvVuHChZMyN1ExTAMAAAAAH3A08qiafNZEK/evVPeHumtYzWEcjZYAKVOk1IcNP1SFXBXUeV5nlX2vrL576jsVz8o/jgEAkBji4uLUqlWry4M0SQoNDdXkyZPVoUOHG7727Nmzl08Tl1B58+ZVmTJlbvv1AQEBql27tnbs2CFJWrZsGcO0m6hdu7ayZ8+uI0eOaObMmRozZszl4Vd8TvE4c+bMy4O02rVra86cOdc9veb1rsuWENu2bdO2bdsS5b0qVap01ZFZVw6Y9u7de9P32Ldv3zVfm1Tq1q2rfv36Sbr432x8jB49+vJrMmbMqEWLFumee+5JqsQkwU9WAAAAAODlfv/7dz0681EdjTyqz5t9rsdLPO46yScYY9TugXYqlb2UGs9qrAc/eFCfN/tcdQrVcZ0GAIDXGzFihJYtWyZJqlmzptauXaszZ87otddeU9WqVW84kDp69KiaNGmSKB3PPPNMgq/ZdOWp9U6fPp2wID8QGBio5s2b66233tLhw4e1ZMkS1a5dW2FhYfruu+8kXTwCqkSJEtd8/eLFiy/ffvPNN294nborB02JZdasWRo0aFCivNfSpUuvOpXllUOmtWvX3vD1cXFxl0+VGRAQoGLFiiVK143c6t/3N998Uz169JB08fSuCxYsUOnSpZOoLulwzTQAAAAA8GI/7PhBD334kKLjorW8zXIGaUmgQu4KWv3Cat2V4S7Vn1FfE1ZPcJ0EAIBXW7VqlQYOHChJypkzpz777DNNnjxZ0sXrP7Vo0UIXLlxwWHhrdu3adfm2t1z/ybVWrVpdvv3P0WizZ8/W+fPnr3r+v/7+++/LtwsWLHjddUePHtVvv/2WwNLkV6JECeXOnVuStHnzZh04cOC6a1euXHn5WnAVK1ZMkmum/det/H2fOHGiunbtKuniEG7+/PkqW7ZskvYlFYZpAAAAAOCl3lv3nhrOaqjCmQtr9fOr9UDOB1wn+ay86fNqRdsValC4gTrP66xuC7spzl7/AvcAAODawsPD9fTTTysmJkbGGH3yySfKnDmznnrqqcsDlI0bN6pnz57XfY/8+fPLWpsoHwk9Ku3AgQOaO3fu5fsPPfRQgt7PX5QpU+by0YdfffWVzp49e3moFhgYqKeeeuq6r02VKtXl27t3777uuhEjRig6OjqRiv/fwIEDE+3v33+PSpMunh3h8ccv/oKctVbvvPPOdVvefvvty7effPLJRP9ar2Xq1KmXb9/o7/t7772nzp07S5JSp06tuXPn6sEHH0zyvqTCMA0AAAAAvIy1VgNDB+rF719UnYJ1tOzZZcqVLpfrLJ+XJjiNvnriK71U9iWN/WWsWs1ppajYKNdZAAB4lZdeeunyAOS1115TrVq1Lj83ceJEFShQQJI0fvx4LViwwEmjJPXo0eOmpwjcvXu3GjRooLNnz0qSqlatet1TE+bPn1/GGBlj4n2dKV/3zzXRIiIiNGnSpMun/axVq5ayZ89+3dddeWRTv379FBd39S84TZ069V+DJm/z+uuvXx4ajhs3TkuWLLlqzccff6wvvvhCkpQnTx4999xz13yv0NDQy3/38ufPf801H3/8sRYuXChr7XWboqKi9Nprr+nbb7+VJAUHB+v555+/5tpp06apffv2stYqVapU+v7771WpUqXrvrc34JppAAAAAOBFYuNi1eGHDnpv/Xt6tvSzmtpgqlIEpnCd5TcCAwL1Tr13lCttLvX+sbeORh7VV098pbR3JP0pdQAA8HYzZ87UtGnTJF28JtawYcP+9XzatGk1Y8YMVapUSTExMXr22We1adMmZc2aNdlb3333XY0ZM0YVKlRQxYoVVaRIEaVPn14xMTE6dOiQVqxYoblz5yoq6uIv1mTPnl3vvfdegrf7wQcf6M8///zXY1del6pv377/ei5jxox67bXXrvleX331ldavX/+vx65877Fjxyp9+vT/en7o0KHXfK9q1apdHnZ99NFHevbZZ2/4dcTH008/rT59+shaqz59+lweit3oFI+S1LZtWw0fPlyRkZGaM2eOypQpo1atWil37tz6+++/9dVXX2nZsmXKnj277r33Xi1atCjBrcktR44cGjt2rDp06KCYmBjVq1dPrVu3VtWqVRUTE6N58+Zp9uzZkqSgoCBNnTpVISEht7293377TW3atFHu3Ln18MMPq2TJksqaNauCg4N18uRJbdq0SXPmzNGhQ4cuv+aNN95QkSJFrnqvefPmqU2bNpf/PNu2bavTp0/r66+/vmFDmTJllDdv3tv+GpIawzQAAAAA8BJRsVFq+VVLfbHlC/Wu1FtDawyVMcZ1lt8xxqhX5V7KmTannvv2OdWaVkvznp6nTCkzuU4DAMBj7d27Vx06dJB08TR9M2bMUHBw8FXrypcvr4EDB6pv3746cuSI2rRpo++//z65cyVdPBvAL7/8ol9++eWG66pVq6b333//htfviq9p06ZdHlpdy38HkPny5bvuMO3bb7/VJ598ct33mjDh6uvAXm+YlhTy5s2rqlWrKjQ09PJQMk2aNGrcuPENX5c9e3Z9+umnat68uc6fP6+NGzdq48aN/1qTK1cuzZkzRxMnTkyq/CTXvn17RUREqHfv3oqOjtYHH3ygDz744F9r0qZNq6lTp6pu3bqJss0DBw7oww8/vOGaO++8U+PHj1fz5s2v+fyqVasUGxt7+f6ECROu+XftvxJrSJtUGKYBAAAAgBc4F31Oj3/xuH7Y+YPG1B6jbg91c53k954p/YzSh6TXk7OfVPVPqmthy4XKliab6ywAADxObGysWrZsqTNnzki6eNq6okWLXnd9r169tHDhQi1fvlw//PCDJkyYoGeeeSa5ciVJf/zxh0JDQxUaGqrff/9df//9t44ePaq4uDilT59eBQsWVNmyZfXEE0+oYsWKydrmwj+nspSUqEcKtmrV6l+nvWzSpIlSp05909c1atRI69ev1+jRo7VkyRIdOXJE6dKlU/78+dWoUSN17NhRmTNnTrROV7p166a6detqypQpWrRokQ4ePKiAgADlzZtXjzzyiDp27Kh8+fIleDvDhw9XgwYNFBoaql9++UUHDx7U0aNHFR4ertSpUytHjhwqXbq06tWrp6ZNm8brz8jXmBudA9PX5cyZ0155WCIAJIbQ0NBrXjwUABKCfQvg3yKiItRwZkOF7g3V5Ecmq90D7RLlfV3tW8ygq4+mswO892fTRbsXqfFnjZU7XW4tab1EudPldp0EOMX3LfBEW7duVbFixVxnIAHCw8OVNi2nVXYhIiJCmTJlUnR0tEqXLq3169dzdgR4lITs440x66y1D9xsXcBtvTsAAAAAIFlEREXokRmPaNm+Zfpfk/8l2iANiad2wdpa0HKBjkQcUbWPq+lA2AHXSQAAAIlm2bJlio6OliSNGDGCQRr8EsM0AAAAAPBQ/wzSVvy1QjMem6GWJVu6TsJ1VMpbSQtaLtCxs8cYqAEAAJ+yePFiSVLVqlUT7dpcgLdhmAYAAAAAHigyKvJfg7Qn73nSdRJuokLuClrQcoGORh5V9U+qM1ADAAA+YcmSJZKkkSNHOi4B3GGYBgAAAAAe5nzMeTWc1VAr/lqhTx/7lEGaF6mQu4IWtlqovyP+Vu1ptXUs8pjrJAAAgATZtGmTrLWqUKGC6xTAGYZpAAAAAOBBomOj9cQXT+jHP3/UR40+UvN7mrtOwi2qkLuCfmjxg/ae3qt6n9ZT2IUw10kAAAAAEoBhGgAAAAB4iNi4WLWa00rf7fhOk+pPUutSrV0n4TZVzldZsx+frY1/b1SjWY10Pua86yQAAAAAt4lhGgAAAAB4AGutOv7QUZ9t/kyja41Wh7IdXCchgR4p/Ig+afyJlu1dpidnP6mYuBjXSQAAAABuA8M0AAAAAPAAQ5YP0dT1U9WrUi+9XvF11zlIJC3ubaF36r2jb7d/q+e+fU5xNs51EgAAAIBbFOQ6AAAAAAD83YcbPtSA0AFqXaq1htUY5joHieylci/p5LmT6h/aXxlDMurNOm/KGOM6CwAAAEA8MUwDAAAAAIfm7ZynF797UbUL1NZ7j77HkMVH9a3SVyfPndRbq95S5pSZ1a9qP9dJAAAAAOKJYRoAAAAAOLL20Fo9/sXjujfbvfryiS8VHBjsOglJxBijsXXG6tT5U+of2l/5MuRT61KtXWcBAAAAiAeGaQAAAADgwJ5Te/TIjEeUJVUWzW0xV2nvSOs6CUkswATovUff0/6w/Xr+2+eVP0N+VclXxXUWAPgNay1HgAOAj7HWJst2ApJlKwAAAACAy46fPa660+sqJi5G81vOV460OVwnIZmkCEyh2Y/PVoGMBdTksybadXKX6yQA8AsBAQGKi4tznQEASGRxcXEKCEj6URfDNAAAAABIRudjzqvhzIbaH7Zf3zb/VkWzFHWdhGSWMWVG/dDiBxkZPTLjEZ08d9J1EgD4vJQpUyoyMtJ1BgAgkUVGRiplypRJvh2GaQAAAACQTKy1evG7F/XLgV80vcl0Vcxb0XUSHCmYqaC+bv619p7eq6afN1VUbJTrJADwaWnTplV4eLjrDABAIgsPD1fatEl/ynyGaQAAAACQTMb9Mk7TNk3ToGqD1LR4U9c5cKxS3kr6sOGHCt0bqvbft0+26z0AgD9Kly6dzp49q1OnTrlOAQAkklOnTuns2bNKly5dkm8rKMm3AAAAAADQ/F3z1X1xdzUr3kx9q/R1nQMP8XTJp7XjxA4NXj5YRTIXUY9KPVwnAYBPCgwMVL58+bRv3z6dPXtWadOmVerUqRUQECBjjOs8AEA8WGsVFxenyMhIhYeH6+zZs8qXL58CAwOTfNsM0wAAAAAgiW0/vl3NZzfXvXfeq48bfawAw0lC8P8GVhuonSd3queSniqSpYgaF23sOgkAfFJwcLAKFCigsLAwnT59WocPH1ZcXJzrLMTT+fPnFRIS4joDgGMBAQFKmTKl0qZNq+zZsyfLIE1imAYAAAAASerM+TNqNKuRUgSm0DfNv1Hq4NSuk+BhjDH6sNGH2n1qt1rPaa01L6xRkSxFXGcBgE8KDAxUxowZlTFjRtcpuEWhoaG67777XGcA8FP8OiQAAAAAJJHYuFg99eVT2n1qt7584kvly5DPdRI8VEhQiGY/PlshQSFq8lkThV8Id50EAAAA4BKGaQAAAACQRHot6aV5u+ZpQr0JqpKviusceLg86fPos2afafuJ7WrzTRtZa10nAQAAABDDNAAAAABIErP+mKUxK8eo4wMd1e6Bdq5z4CWq31Vdo2uN1pdbv9SYlWNc5wAAAAAQwzQAAAAASHRbj23V898+r4p5Kuqtum+5zoGX6fpgVz1R4gn1WtJLi/csdp0DAAAA+D2GaQAAAACQiCKjItXsi2ZKlSKVPmv2mVIEpnCdBC9jjNEHDT9QsSzF1Hx2c+07vc91EgAAAODXGKYBAAAAQCKx1qrDDx209dhWzWg6Q7nS5XKdBC+VJjiN5jw5R9Fx0Wr6eVOdjznvOgkAAADwWwzTAAAAACCRvL/+fU3bNE0Dqw1UrQK1XOfAy92d+W5NbzJd6w6vU6e5nVznAAAAAH6LYRoAAAAAJIINhzeo87zOerjgw+pbpa/rHPiIR4s8qt6VeuuDDR9oxu8zXOcAAAAAfolhGgAAAAAk0JnzZ/T4F48rS6osmt5kugIMP2oh8QyqPkiV8lZSu+/baeeJna5zAAAAAL/DT3gAAAAAkADWWrX5po32ndmnzx//XFlTZ3WdBB8TFBCkGY/NUHBgsJp/2VwXYi64TgIAAAD8CsM0AAAAAEiA8avGa862ORpVa5QeyvOQ6xz4qDzp8+ijRh9p/eH16r6ou+scAAAAwK8wTAMAAACA2/TPYKNRkUZ6tcKrrnPg4xoWaagu5bvo7dVv69vt37rOAQAAAPwGwzQAAAAAuA2RUZFq8WUL3Zn6Tn3Q8AMZY1wnwQ+MqjVKZXKUUZtv2mj/mf2ucwAAAAC/wDANAAAAAG7Dqwte1Y4TO/S/Jv9T5lSZXefAT9wRdIdmNZ2lqNgoPfXlU4qJi3GdBAAAAPg8hmkAAAAAcIvmbJ2j99a/p+4Vu6vGXTVc58DP3J35br3b4F39vP9nDQwd6DoHAAAA8HkM0wAAAADgFhwIO6Dnv3te9+e4X4OrD3adAz/V4t4Walu6rYb/NFyhe0Nd5wAAAAA+jWEaAAAAAMRTbFysWs9prQsxFzSj6QwFBwa7ToIfe7ve2yqYqaCe+foZnTl/xnUOAAAA4LMYpgEAAABAPL2x8g0t3btUb9d7W4UzF3adAz+XOji1pjeZroNhB/Xy/Jdd5wAAAAA+i2EaAAAAAMTD2kNr1XdpXzUr3kxtSrdxnQNIksrnLq8+lfvofxv/p9lbZrvOAQAAAHwSwzQAAAAAuImIqAi1+LKFcqTJoakNpsoY4zoJuKxvlb56IOcDavd9Ox0KP+Q6BwAAAPA5DNMAAAAA4CZ6LOqhXSd36X9N/qeMKTO6zgH+JUVgCk1vMl3nos+p7TdtZa11nQQAAAD4FIZpAAAAAHADi/cs1qS1k/RKhVdULX811znANRXJUkRvPPyGFuxeoMlrJ7vOAQAAAHyK1wzTjDF1jTHbjTG7jDE9r7OmmjHmN2PMZmPMsuRuBAAAAOBbzpw/o7bftFWRzEU0rMYw1znADXV4oIPqFKyjbgu7afvx7a5zAAAAAJ/hFcM0Y0ygpImS6kkqLukpY0zx/6zJIGmSpIbW2hKSHk/uTgAAAAC+peuCrjoYflCfNP5EKVOkdJ0D3JAxRh82+lApU6RUyzktFR0b7ToJAAAA8AleMUyTVE7SLmvtHmttlKRZkhr9Z00LSV9Za/+SJGvt0WRuBAAAAOBDvt/xvT787UP1qNhD5XOXd50DxEvOtDn1boN3tfbQWg3/abjrHAAAAMAneMswLZek/VfcP3DpsSsVlpTRGBNqjFlnjGmdbHUAAAAAfMqJsyf0wncv6N4779WAqgNc5wC3pFnxZmpxbwsN/WmoNh7Z6DoHAAAA8HpBrgPiyVzjMfuf+0GS7pdUU1JKSb8YY3611u741xsZ86KkFyUpR44cCg0NTfxaAH4tIiKCfQuARMe+BUheQ7YO0bHIYxpSZIh+WfGL65wk40n7Fk/p8BVPpH1C8wLn6fFPH9ek+yYpKMBbfvyHL/CkfQsA38G+BYBL3vLd9AFJea64n1vSoWusOW6tjZQUaYxZLqmUpH8N06y1UyVNlaScOXPaatWqJVUzAD8VGhoq9i0AEhv7FiD5zN4yWz8u+1GDqw3W81Wfd52TpJztW5Zd/RD7uMT3fu731fTzploVtEp9qvRxnQM/wvctAJIC+xYALnnLaR7XSLrbGHOXMSZYUnNJ3/5nzTeSKhtjgowxqSSVl7Q1mTsBAAAAeLG/I/5Whx866IGcD6hnpZ6uc4AEeazYY3qyxJMatGyQ/jj6h+scAAAAwGt5xTDNWhsjqZOkBbo4IPvcWrvZGNPeGNP+0pqtkuZL2iRptaT3rbX8tAAAAAAg3jrN66TwC+H6pPEnShGYwnUOkGDv1HtHGUIyqM03bRQTF+M6BwAAAPBKXjFMkyRr7VxrbWFrbUFr7bBLj02x1k65Ys0Ya21xa+091tq3nMUCAAAA8Dpzts7R7C2zNaDqABXPWtx1DpAosqbOqon1J2rtobV6Y+UbrnMAAAAAr+Q1wzQAAAAASCqnzp1Sx7kdVTp7aXV7qJvrHCBRPV7icTUr3kwDQgdoy7EtrnMAAAAAr8MwDQAAAIDfe33R6zoWeUwfNPyA0zvCJ02sP1Fpg9Oq7TdtFRsX6zoHAAAA8CoM0wAAAAD4tSV7luiDDR+o20PdVCZHGdc5QJK4M/WdmlB/glYdXKU3f33TdQ4AAADgVRimAQAAAPBbkVGRevH7F3V3prs1oOoA1zlAknqyxJNqXLSx+i3tp90nd7vOAQAAALwGwzQAAAAAfqv/0v7ac2qP3m/4vlKmSOk6B0hSxhhNqDdBwYHBav9De1lrXScBAAAAXoFhGgAAAAC/tPrgar216i21v7+9quSr4joHSBa50uXSyJojtXjPYk3fNN11DgAAAOAVGKYBAAAA8DtRsVF67tvnlDNtTo2qPcp1DpCs2j3QTg/leUivLnhVxyKPuc4BAAAAPB7DNAAAAAB+Z+SKkfrj6B+a/MhkpbsjnescIFkFmABNbTBVYRfC9NrC11znAAAAAB6PYRoAAAAAv7L9+HYN+2mYmt/TXA0KN3CdAzhR4s4S6lmpp6ZtmqZFuxe5zgEAAAA8GsM0AAAAAH7DWqv2P7RXqhSp9Fadt1znAE71rtxbhTMXVvsf2uts9FnXOQAAAIDHYpgGAAAAwG9M2zRNoXtDNbLmSGVLk811DuBUSFCIpjaYqj2n9mjwssGucwAAAACPxTANAAAAgF84cfaEXlv4mh7M/aBeuP8F1zmAR6iav6qeu+85vbHyDf125DfXOQAAAIBHYpgGAAAAwC/0WNxDp86d0pQGUxRg+FEI+Mfo2qOVOVVmvfDdC4qNi3WdAwAAAHgcfoIEAAAA4PN+2veTPtjwgbo+2FUls5V0nQN4lEwpM2l83fFae2itJq2Z5DoHAAAA8DgM0wAAAAD4tKjYKLX/ob3ypc+nAVUHuM4BPNKTJZ5U7QK11XdpXx2JOOI6BwAAAPAoDNMAAAAA+LSxK8dqy7EtmlB/glIHp3adA3gkY4wm1J+g8zHn1W1hN9c5AAAAgEdhmAYAAADAZ+05tUeDlw/WY8UeU4PCDVznAB6tcObC6lGxhz79/VMt/XOp6xwAAADAYzBMAwAAAOCTrLV6ae5LCgoI0vi6413nAF6hV6VeuivDXeo4t6OiYqNc5wAAAAAegWEaAAAAAJ/05dYvNX/XfA2tPlS50+V2nQN4hZQpUmpC/Qnadnybxv0yznUOAAAA4BEYpgEAAADwORFREXp1wasqla2UXir3kuscwKvUv7u+mhRtosHLBmvf6X2ucwAAAADnGKYBAAAA8DnDlg/TgbADmlh/ooICglznAF5nfN3xCjAB6jK/i+sUAAAAwDmGaQAAAAB8yvbj2zX2l7F6ptQzqpi3ouscwCvlSZ9HA6oO0Dfbv9F3279znQMAAAA4xTANAAAAgM+w1qrzvM5KlSKVRtUa5ToH8GqvVHhFxbMW18vzX9bZ6LOucwAAAABnGKYBAAAA8Blfbf1Ki/Ys0pDqQ5QtTTbXOYBXSxGYQpMfmay9p/dq+E/DXecAAAAAzjBMAwAAAOATIqMi9eqCV1UyW0l1KNvBdQ7gE6rkq6KWJVtqzMox2nVyl+scAAAAwAmGaQAAAAB8wrCfhml/2H5NrD9RQQFBrnMAnzG61mgFBwbr1QWvuk4BAAAAnGCYBgAAAMDr7TixQ2+sfEOtS7VWpbyVXOcAPiVH2hzqX6W/vt/xvebunOs6BwAAAEh2DNMAAAAAeDVrrTrP66yUKVJqdK3RrnMAn9SlQhcVyVxEXeZ30YWYC65zAAAAgGTFMA0AAACAV5uzbY4W7l6oIdWHKFuabK5zAJ8UHBis8XXHa9fJXXrz1zdd5wAAAADJimEaAAAAAK91Lvqcui7oqnvvvFcdy3Z0nQP4tDqF6qhRkUYaunyoDoYddJ0DAAAAJBuGaQAAAAC81thfxmrfmX0aX3e8ggKCXOcAPm9cnXGKiYvR64ted50CAAAAJBuGaQAAAAC80sGwgxqxYoSaFmuq6ndVd50D+IUCGQuoe8XumvnHTC3ft9x1DgAAAJAsGKYBAAAA8Eo9l/RUbFysxtQe4zoF8Cs9K/VU3vR51XleZ8XExbjOAQAAAJIcwzQAAAAAXueX/b9o+qbp6vZQN92V8S7XOYBfSZUilcY+PFab/t6kd9e+6zoHAAAASHIM0wAAAAB4lTgbpy7zuyhHmhzqWamn6xzALzUt1lQ17qqhfkv76cTZE65zAAAAgCTFMA0AAACAV5m2cZrWHFqjUbVGKU1wGtc5gF8yxmh83fE6c+GMBoYOdJ0DAAAAJCmGaQAAAAC8RviFcPVc0lPlc5XX0yWfdp0D+LV77rxH7e5vp8lrJ2vLsS2ucwAAAIAkwzANAAAAgNcY/tNwHYk4ovF1xyvA8OMM4Nrg6oOVJjiNXlv4musUAAAAIMnw0ycAAAAAr7D75G6N+3WcWpdqrfK5y7vOASApS6osGlB1gObvmq95O+e5zgEAAACSBMM0AAAAAF6h26JuShGQQiNqjnCdAuAKL5V7SXdnultdF3ZVdGy06xwAAAAg0TFMAwAAAODxFu9ZrK+3fa0+lfsoZ9qcrnMAXCE4MFhjHx6rbce3acraKa5zAAAAgETHMA0AAACAR4uJi9Er81/RXRnu0qsPvuo6B8A1NCjcQLUK1NKA0AE6ee6k6xwAAAAgUTFMAwAAAODRpq6bqs3HNmvsw2MVEhTiOgfANRhjNO7hcTpz4YwGhQ5ynQMAAAAkKoZpAAAAADzWyXMn1W9pP1XPX12NizZ2nQPgBu7Ndq9eLPOiJq6ZqK3HtrrOAQAAABINwzQAAAAAHmtg6ECdPn9ab9V9S8YY1zkAbmJw9cFKHZxa3RZ1c50CAAAAJBqGaQAAAAA80pZjWzRpzSS1u7+dSmYr6ToHQDxkTZ1V/av019ydczV/13zXOQAAAECiYJgGAAAAwCO9vuh1pQlOo8HVB7tOAXALOpfvrEKZCqnrgq6Kjo12nQMAAAAkGMM0AAAAAB5n8Z7FmrtzrvpU7qMsqbK4zgFwC4IDg/VG7Te09fhWvbvuXdc5AAAAQIIxTAMAAADgUWLjYvXawteUP0N+dS7f2XUOgNvQsEhD1byrpgaEDtDJcydd5wAAAAAJwjANAAAAgEf5ZOMn2vT3Jo2sOVIhQSGucwDcBmOMxtUZp9PnT2vwMk7VCgAAAO/GMA0AAACAx4iIilDfH/uqQu4KeqLEE65zACRAyWwl9UKZFzRxzURtO77NdQ4AAABw2ximAQAAAPAYY1eO1eGIwxr78FgZY1znAEigwdUHK1WKVHp90euuUwAAAIDbxjANAAAAgEc4FH5Io1eOVrPizfRQnodc5wBIBHemvlO9KvXS9zu+V+jeUNc5AAAAwG1hmAYAAADAI/T7sZ+iY6M1suZI1ykAElGX8l2UJ10edVvYTXE2znUOAAAAcMsYpgEAAABwbuORjfrot4/UuVxnFcxU0HUOgESUMkVKDasxTOsOr9PM32e6zgEAAABuGcM0AAAAAE5Za9VtUTdlTJlRfav0dZ0DIAk8XfJp3Zf9PvX+sbfOx5x3nQMAAADcEoZpAAAAAJyat2ueFu9ZrP5V+itjyoyucwAkgQAToDcefkN/nflLb69623UOAAAAcEsYpgEAAABwJiYuRt0WdlOhTIXUoWwH1zkAklCNu2rokbsf0fCfhuv42eOucwAAAIB4Y5gGAAAAwJn317+vrce3anSt0QoODHadAyCJja49WuFR4RqybIjrFAAAACDeGKYBAAAAcCLsQpj6L+2vynkrq3HRxq5zACSD4lmL6/n7ntektZO06+Qu1zkAAABAvDBMAwAAAODEyBUjdezsMY2rM07GGNc5AJLJoOqDdEfgHeq1pJfrFAAAACBevGaYZoypa4zZbozZZYzpeY3nqxljzhhjfrv00d9FJwAAAICb++vMX3rz1zf19L1P64GcD7jOAZCMsqfJru4Vu2v2ltlauX+l6xwAAADgprximGaMCZQ0UVI9ScUlPWWMKX6NpT9Za0tf+hicrJEAAAAA4q3vj30lScNrDndcAsCF1x58TTnS5FC3hd1krXWdAwAAANyQVwzTJJWTtMtau8daGyVplqRGjpsAAAAA3IaNRzZq+qbp6lK+i/Kmz+s6B4ADqYNTa0j1IfrlwC/6cuuXrnMAAACAG/KWYVouSfuvuH/g0mP/9aAxZqMxZp4xpkTypAEAAAC4Fb1/7K30IenVo2IP1ykAHHq29LO658571HNxT0XFRrnOAQAAAK4ryHVAPF3rauT/PQ/Eekn5rLURxpj6kr6WdPdVb2TMi5JelKQcOXIoNDQ0cUsB+L2IiAj2LQASHfsW+IqNpzdq7s65evGuF7Vx1UbXOX7Pk/YtntKB5NUqWyv1+L2Hus7sqma5m7nOQSLxpH0LAN/BvgWAS8Ybzk1ujHlQ0kBrbZ1L93tJkrV2xA1es1fSA9ba49dbkzNnTnvo0KFErgXg70JDQ1WtWjXXGQB8DPsW+AJrrR768CHtP7NfOzvvVMoUKV0n+T1X+xYz6Orfl7QDPP9nUyQ+a60env6w1h9er90v71aGkAyuk5AI+L4FQFJg3wIgKRhj1llrH7jZOm85zeMaSXcbY+4yxgRLai7p2ysXGGOyG2PMpdvldPFrO5HspQAAAACu6Zvt3+jXA79qYLWBDNIASJKMMRpTe4xOnTul4T8Nd50DAAAAXJNXDNOstTGSOklaIGmrpM+ttZuNMe2NMe0vLWsm6Q9jzEZJb0tqbr3hsDsAAADAD8TExaj3kt4qmqWoni39rOscAB6kdPbSal2qtcavGq99p/e5zgEAAACu4hXDNEmy1s611ha21ha01g679NgUa+2US7cnWGtLWGtLWWsrWGtXui0GAAAA8I//bfyfth7fqmE1hikowFsu3QwguQypPkRGRv1D+7tOAQAAAK7iNcM0AAAAAN7pXPQ5DQgdoHK5yqlJ0SaucwB4oDzp8+jl8i9r2sZp2vT3Jtc5AAAAwL8wTAMAAACQpCaumagDYQc0suZIXbrMMQBcpWelnkofkl69lvRynQIAAAD8C8M0AAAAAEnm9PnTGv7TcNUpWEfV76ruOgeAB8uUMpN6VeqluTvnKnRvqOscAAAA4DKGaQAAAACSzJifx+jU+VMaUXOE6xQAXqBzuc7KlTaXeizuIWut6xwAAABAEsM0AAAAAEnkcPhhvfnrm3rqnqd0X477XOcA8AIpU6TU4OqDtfrgan219SvXOQAAAIAkhmkAAAAAksjgZYMVHRetIdWHuE4B4EWeKfWMSmQtod4/9lZ0bLTrHAAAAIBhGgAAAIDEt/PETr23/j21u7+dCmYq6DoHgBcJDAjUiJojtOPEDn244UPXOQAAAADDNAAAAACJr+/SvgoJClG/Kv1cpwDwQg0KN1ClvJU0cNlARUZFus4BAACAn2OYBgAAACBRrTu0Tp9v/lxdH+yqbGmyuc4B4IWMMRpVa5SORBzRW7++5ToHAAAAfo5hGgAAAIBE1XNJT2VOmVndHurmOgWAF3soz0NqXLSxRv08SsfPHnedAwAAAD/GMA0AAABAolm8Z7EW71msPpX7KN0d6VznAPByw2sMV2R0pIYtH+Y6BQAAAH6MYRoAAACARGGtVc/FPZU3fV51KNvBdQ4AH1AsazG1Ld1WE9dM1J+n/nSdAwAAAD/FMA0AAABAopi9ZbbWHV6nwdUGKyQoxHUOAB8xsNpABQYEqn9of9cpAAAA8FMM0wAAAAAkWHRstPr82Ef33HmPWpZs6ToHgA/JlS6XXin/ij7d9Kl+O/Kb6xwAAAD4IYZpAAAAABLsww0faufJnRpeY7gCAwJd5wDwMT0q9VCGkAzqubin6xQAAAD4IYZpAAAAABLkbPRZDVo2SBXzVFSDwg1c5wDwQRlCMqhP5T5asHuBluxZ4joHAAAAfoZhGgAAAIAEGf/reB2OOKyRtUbKGOM6B4CPeqncS8qTLo96LO6hOBvnOgcAAAB+hGEaAAAAgNt28txJjfp5lBoUbqBKeSu5zgHgw0KCQjSk+hCtO7xOs7fMdp0DAAAAP8IwDQAAAMBtG/HTCIVdCNPwGsNdpwDwAy1LttQ9d96j3kt6Kzo22nUOAAAA/ATDNAAAAAC3Zf+Z/Xpn9TtqVaqV7s12r+scAH4gMCBQI2uO1O5Tu/Xe+vdc5wAAAMBPMEwDAAAAcFsGLRskK6vB1Qa7TgHgR+rfXV9V8lXRoGWDFBEV4ToHAAAAfoBhGgAAAIBbtvXYVn3020fq+EBH5cuQz3UOAD9ijNGoWqN0NPKoxv0yznUOAAAA/ADDNAAAAAC3rM+PfZQ6RWr1qdLHdQoAP1QhdwU9VuwxjVk5Rkcjj7rOAQAAgI9jmAYAAADglvx64FfN2TZHrz/0urKkyuI6B4CfGlZjmM5Gn9Xwn4a7TgEAAICPY5gGAAAAIN6steq5uKeypc6mVx981XUOAD9WNEtRtS3dVpPXTtbe03td5wAAAMCHMUwDAAAAEG/zd83Xsn3L1K9KP6UJTuM6B4CfG1BtgAJMgPov7e86BQAAAD6MYRoAAACAeImzceq1pJcKZCygF+5/wXUOACh3utzqXK6zpm+art///t11DgAAAHwUwzQAAAAA8TLz95na+PdGDak+RMGBwa5zAECS1LNST6W7I516/9jbdQoAAAB8FMM0AAAAADcVFRulfkv7qXT20mp+T3PXOQBwWaaUmdSjYg99v+N7rfhrhescAAAA+CCGaQAAAABuauq6qfrz9J8aUXOEAgw/RgDwLF0qdFGONDnUc3FPWWtd5wAAAMDH8FMwAAAAgBuKiIrQkOVDVC1/NdUpWMd1DgBcJVWKVBpQdYB+3v+zvt/xvescAAAA+BiGaQAAAABuaNwv43Q08qhG1hwpY4zrHAC4prb3tdXdme5W7x97KzYu1nUOAAAAfAjDNAAAAADXdSzymMasHKPHij2m8rnLu84BgOtKEZhCQ2sM1R9H/9Cnv3/qOgcAAAA+hGEaAAAAgOsa9tMwnY0+q2E1hrlOAYCbala8me7Pcb/6L+2vCzEXXOcAAADARzBMAwAAAHBNe0/v1eS1k9W2dFsVzVLUdQ4A3FSACdCImiO078w+TVk7xXUOAAAAfATDNAAAAADX1H9pfwWYAA2oNsB1CgDEW+2CtVXzrpoa+tNQhV0Ic50DAAAAH8AwDQAAAMBVNv29SdM3TVfncp2VO11u1zkAcEtG1Byh42ePa+zKsa5TAAAA4AMYpgEAAAC4Sp8f+yh9SHr1rNTTdQoA3LKyucqqWfFmGvvLWB2NPOo6BwAAAF6OYRoAAACAf1nx1wp9v+N79ajYQ5lSZnKdAwC3ZWj1oTofc15Dlw91nQIAAAAvxzANAAAAwGXWWvVY3EM50+bUy+Vfdp0DALetSJYiantfW01ZO0V/nvrTdQ4AAAC8GMM0AAAAAJd9t+M7rdy/UgOqDlCqFKlc5wBAggyoOkCBAYHqH9rfdQoAAAC8GMM0AAAAAJKk2LhY9V7SW4UzF1bb+9q6zgGABMuVLpe6lO+iTzd9qk1/b3KdAwAAAC/FMA0AAACAJGnapmnafGyzhtUYpqCAINc5AJAoelTsofQh6dV7SW/XKQAAAPBSDNMAAAAA6HzMefVf2l8P5HxATYs1dZ0DAIkmY8qM6lmxp37Y+YN+2veT6xwAAAB4IYZpAAAAADRpzSTtD9uvkTVHyhjjOgcAElXn8p2VM21O9VjcQ9Za1zkAAADwMgzTAAAAAD935vwZDftpmGoXqK2aBWq6zgGARJcqRSoNqDpAvxz4Rd/t+M51DgAAALwMwzQAAADAz72x8g2dPHdSI2uNdJ0CAEmm7X1tVThzYfVe0luxcbGucwAAAOBFGKYBAAAAfuxIxBGN+3WcnizxpMrkKOM6BwCSTFBAkIbVGKbNxzZr2qZprnMAAADgRRimAQAAAH5syLIhioqN0tAaQ12nAECSa1qsqR7I+YAGhA7Q+ZjzrnMAAADgJRimAQAAAH5q18ldmrp+ql4o84IKZSrkOgcAkpwxRiNrjtRfZ/7S5DWTXecAAADASzBMAwAAAPxUv6X9FBwYrP5V+7tOAYBkU7NATdUuUFvDfhqmsAthrnMAAADgBRimAQAAAH5o/eH1mvXHLL1a4VVlT5PddQ4AJKsRNUfoxLkTemPlG65TAAAA4AUYpgEAAAB+qNeSXsqUMpNef+h11ykAkOzuz3m/nijxhMb9Mk5/R/ztOgcAAAAejmEaAAAA4Gd+/PNHLdy9UL0r9Vb6kPSucwDAiaHVh+p8zHkNXT7UdQoAAAA8HMM0AAAAwI9Ya9VzcU/lSZdHL5V7yXUOADhzd+a79XyZ5/Xuune159Qe1zkAAADwYAzTAAAAAD/y1davtObQGg2qNkghQSGucwDAqf5V+ysoIEj9lvZznQIAAAAPxjANAAAA8BMxcTHq82MfFc9aXK1LtXadAwDO5UybU13Kd9GM32fotyO/uc4BAACAh2KYBgAAAPiJjzZ8pO0ntmt4jeEKDAh0nQMAHqFHpR7KGJJRvZf0dp0CAAAAD8UwDQAAAPADZ6PPauCygXooz0NqWKSh6xwA8BgZQjKoV6VemrdrnpbtXeY6BwAAAB6IYRoAAADgB95Z9Y4OhR/SyJojZYxxnQMAHqVTuU7KlTaXei7pKWut6xwAAAB4GIZpAAAAgI87de6URv48Uo/c/Ygq56vsOgcAPE7KFCk1sNpA/XrgV32z/RvXOQAAAPAwDNMAAAAAHzdyxUidOX9Gw2sOd50CAB7r2dLPqkjmIuq9pLdi42Jd5wAAAMCDeM0wzRhT1xiz3RizyxjT8wbryhpjYo0xzZKzDwAAAPBEB8IO6O3Vb+vpkk+rZLaSrnMAwGMFBQRpWI1h2np8q/638X+ucwAAAOBBvGKYZowJlDRRUj1JxSU9ZYwpfp11oyQtSN5CAAAAwDMNXjZYsXGxGlxtsOsUAPB4jxV7TOVyldOA0AE6H3PedQ4AAAA8hFcM0ySVk7TLWrvHWhslaZakRtdY11nSl5KOJmccAAAA4Im2H9+uDzd8qA4PdNBdGe9ynQMAHs8Yo5E1R2p/2H5NWjPJdQ4AAAA8hLcM03JJ2n/F/QOXHrvMGJNLUhNJU5KxCwAAAPBYfX7so5QpUqpPlT6uUwDAa1S/q7oeLviwhv00TGfOn3GdAwAAAA8Q5Dognsw1HrP/uf+WpB7W2lhjrrX80hsZ86KkFyUpR44cCg0NTaREALgoIiKCfQuARMe+Bbdqa9hWfbn1Sz2b71ltWbNFW7TFdRI8kCftWzylA5CkZumbaeHuheo0s5Oeu+s51zlex5P2LQB8B/sWAC4Za/87k/I8xpgHJQ201ta5dL+XJFlrR1yx5k/9/9Ati6Szkl601n59vffNmTOnPXToUFJlA/BToaGhqlatmusMAD6GfQtuhbVWNf9XU38c/UO7X96ttHekdZ0ED+Vq32IGXf0LkHaA5/9sCv/y1JdP6dvt32r3y7uVPU121zlehe9bACQF9i0AkoIxZp219oGbrfOW0zyukXS3MeYuY0ywpOaSvr1ygbX2LmttfmttfkmzJXW80SANAAAA8FULdy/U0r1L1a9KPwZpAHCbhlQfoqjYKA1ZNsR1CgAAABzzimGatTZGUidJCyRtlfS5tXazMaa9Maa92zoAAADAc8TZOPVc0lP5M+RXuwfauc4BAK9VKFMhvVDmBU1dP1W7Tu5ynQMAAACHvGKYJknW2rnW2sLW2oLW2mGXHptirZ1yjbXPWmtnJ38lAAAA4NZnf3ym3478piHVhyg4MNh1DgB4tX5V+ik4MFj9l/Z3nQIAAACHvGaYBgAAAODGomKj1HdpX5XMVlIt7m3hOgcAvF6OtDn0SvlXNPOPmdpweIPrHAAAADjCMA0AAADwEe+vf197Tu3RiJojFGD4Vh8AEkP3it2VKWUm9VrSy3UKAAAAHOEnbAAAAMAHRERFaPCywaqSr4rqFarnOgcAfEb6kPTqXam3FuxeoKV/LnWdAwAAAAcYpgEAAAA+4K1f39LfkX9rVK1RMsa4zgEAn/JSuZeUO11u9VzSU9Za1zkAAABIZgzTAAAAAC93/Oxxjf55tBoXbawKuSu4zgEAnxMSFKJB1QZp9cHV+nrb165zAAAAkMwYpgEAAABebvhPwxUZHalhNYa5TgEAn9W6VGsVzVJUvX/srZi4GNc5AAAASEZBifEmxpg7JZWTVFJSPkkZJaWUdE7SSUn7JG2StNpaeywxtgkAAABA2nt6ryaumag2pduoeNbirnMAwGcFBQRpeI3heuzzx/TJb5/ouTLPuU4CAABAMrntYZoxpqCklpIaSSp1C6/7TdLXkqZba/+83e0DAAAAkPov7a8AE6CB1Qa6TgEAn9e4aGOVz1VeA5cNVIt7WyhlipSukwAAAJAMbvk0j8aYh40x8yXtkNRfFwdp5hY+SksaKGmXMWaeMaZ2gr8KAAAAwA9tPLJR0zdNV5fyXZQ7XW7XOQDg84wxGllrpA6EHdDENRNd5wAAACCZxPvINGNMJUkjJT34z0OXPp+QtFrSKklbJZ269FiYpPSSMl36KCapvC6eDjLTpdc+LOlhY8xKST2ttT8n5IsBAAAA/EmvJb2UISSDelTs4ToFAPxGtfzVVLdQXQ3/abieL/O8MoRkcJ0EAACAJBavYZox5lNJzfX/A7QDkmZK+tRau+lWN2qMKSmphaSnJOWRVFHScmPMTGtty1t9PwAAAMDfLP1zqebtmqcxtccoY8qMrnMAwK+MqDlC9717n8b8PEbDag5znQMAAIAkFt/TPD6li4O0HyXVstbmtdb2uJ1BmiRZazdZa3taa/NJqnXpfc2l7QAAAAC4AWutui/urjzp8qhTuU6ucwDA75TOXlpP3fOU3vz1TR0OP+w6BwAAAEksvsO0HyVVttbWstb+mJgB1tofrbW1JFW+tB0AAAAANzB7y2ytPbRWg6sPVkhQiOscAPBLQ6oPUXRctAYvG+w6BQAAAEksXsO0S0O0JL2embX2Z2tt7aTcBgAAAODtomOj1fvH3rrnznvUqmQr1zkA4LcKZiqodve303vr39POEztd5wAAACAJxffINAAAAAAe4P3172vXyV0aWXOkAgMCXecAgF/rW6Wv7gi6Q/2W9nOdAgAAgCTEMA0AAADwEhFRERq0bJCq5Kui+nfXd50DAH4ve5rs6lqhqz7b/JnWH17vOgcAAABJJEHDNGNMpgS+nn8BAAAAAOLpzV/e1N+Rf2tUrVEyxrjOAQBI6vZQN2VOmVm9lvRynQIAAIAkktAj0343xtS41RcZY4KNMe9I+i6B2wcAAAD8wrHIYxq9crQeK/aYKuSu4DoHAHBJ+pD06l25txbuXqgf//zRdQ4AAACSQEKHaTkkLTTGjDLGBMXnBcaYeyStldQxgdsGAAAA/MbQ5UN1LvqchtcY7joFAPAfHct2VJ50edRzcU9Za13nAAAAIJEldJgWK8lI6ibpF2NMoRstNsZ0lrRaUolLr9uewO0DAAAAPm/PqT2avHaynrvvORXJUsR1DgDgP0KCQjS4+mCtObRGX239ynUOAAAAEllCh2mVJe3VxcFYGUkbjDFt/rvIGJPVGPO9pLckhVxa/76kBxK4fQAAAMDn9VvaT0EBQRpQbYDrFADAdbQq2UrFsxZXnx/7KCYuxnUOAAAAElGChmnW2l8llZL0qS4OyFJLet8Y85kxJr0kGWPqStokqd6lNackNbPWvmitPZuQ7QMAAAC+bsPhDZrx+wy9WuFV5Uyb03UOAOA6AgMCNbzGcG0/sV0f//ax6xwAAAAkooQemSZrbYS1tpWkpyWd0cWBWTNJG40xH0j6QVK2S4+HSippreWcBwAAAEA89FzSU5lSZlL3it1dpwAAbqJhkYZ6MPeDGhg6UOeiz7nOAQAAQCJJ8DDtH9bamZLuk7RSFwdneSU9e+l2lKTekmpaaw8m1jYBAAAAX7Z4z2It3L1QfSv3VfqQ9K5zAAA3YYzRyFojdTD8oN5Z/Y7rHAAAACSSRBumSZK1dq+kmf/cveLzfEljrbX2Wq8DAAAA8G9xNk49FvdQvvT51LFsR9c5AIB4qpKviurfXV8jVozQqXOnXOcAAAAgESTaMM0Yk9EY85Wkt3VxgGYkxV76/Kik1caYoom1PQAAAMCXfb75c60/vF5Dqg/RHUF3uM4BANyC4TWG68z5Mxr982jXKQAAAEgEiTJMM8ZUl7RJUiNdHJ6dlvSEpPKSdlx6rKSkdcaY9omxTQAAAMBXRcVGqc+PfVQyW0m1uLeF6xwAwC0qlb2UWtzbQuNXjdeh8EOucwAAAJBACRqmGWOCjDEjJS2SlFMXh2bLJZWy1s621m7QxeuofXDpuZSSJhpjvjHGZE5YOgAAAOCbpq6bqj2n9mhkzZEKDAh0nQMAuA2Dqw9WTFyMBi8b7DoFAAAACZTQI9N+kfT6pfeJldRfUnVr7YF/Flhrz1lrX5DUTNJJXRyqNZD0uzGmdgK3DwAAAPiU8AvhGrxssKrnr666heq6zgEA3KYCGQuo3f3t9P7697XjxA7XOQAAAEiAhA7T7tfF4difkipba4daa+21Flprv5JUWtKyS6/JLmluArcPAAAA+JTRP4/WsbPHNKrWKBljXOcAABKgX9V+SpkipXot6eU6BQAAAAmQGNdMmy6ptLV21c0WXjpirYakPpKiE2n7AAAAgE84GHZQY38Zq+b3NFfZXGVd5wAAEujO1HeqR8Ue+mrrV1rx1wrXOQAAALhNCR1mtbbWtrbWhsf3BfaiEZIqSdqdwO0DAAAAPqP/0v6KtbEaXmO46xQAQCLp+mBX5UybU68vel3XOZkPAAAAPFyChmnW2ukJeO0aSfclZPsAAACAr/j979/10W8fqVPZTror412ucwAAiSRVilQaUn2Ifj3wq2Zvme06BwAAALfB6WkWrbWRLrcPAAAAeIrui7srfUh69anSx3UKACCRPVPqGd17573qtaSXomKjXOcAAADgFnHNMgAAAMCxxXsWa/6u+epbua8ypczkOgcAkMgCAwI1uvZo7T61W5PXTHadAwAAgFsUr2GaMSZZTsdojCmTHNsBAAAAPEVsXKy6Leym/Bnyq1O5Tq5zAABJpE7BOqpVoJYGLx+s0+dPu84BAADALYjvkWlrjTFzjDGlkiLCGHOfMeYbSauT4v0BAAAATzV903Rt/HujhtcYrjuC7nCdAwBIIsYYjak9RqfOndKIn0a4zgEAAMAtuJXTPDaUtN4Y870x5kljTEhCNmyMCTHGNDfGzJO0VtKjkmxC3hMAAADwJueiz6nv0r4qm7OsnrznSdc5AIAkVjp7abUu1VrjV43XvtP7XOcAAAAgnuI7TCuri0eNGUn1JM2Q9Lcx5mNjzDPGmGLxeRNjTHFjzLPGmI8l/S3pU0kPX3rfXySVu8V+AAAAwGu99etbOhB2QG88/IYCDJczBgB/MLTGUBlj1OfHPq5TAAAAEE9B8VlkrV0v6UFjzGOSBkq6R1JaSa0ufcgYEy5pp6STlz7CJaWTlOnSR6FLr/mHufR5k6SB1tqvE/alAAAAAN7jWOQxjVgxQg2LNFSVfFVc5wAAkknudLn1aoVXNWLFCL1a4VXdn/N+10kAAAC4iVv69Vdr7VfW2pKS6kr6RlKMLg7FjC4OzspIqiXpCUnPSXpcUk1J9116/p+10ZK+lvSwtbY0gzQAAAD4m8HLButs9FmNqjXKdQoAIJn1qNhDWVJl0euLXpe1XPECAADA093WuWSstQuttU0k5ZDUWtI0STsuPW2u8WElbZf0P108ki2HtfYxa+3ihOUDAAAA3mfHiR2asm6KXijzgopmKeo6BwCQzNKHpNeAqgO0dO9Szd0513UOAAAAbiJep3m8HmvtSUnTL33IGBMsKY8untbxDkkXdPGUj39Za6MTlgoAAAD4hl5LeikkKEQDqw10nQIAcKTd/e309qq31X1xd9UpVEdBAQn6JxoAAAAkoUS9yrm1Nspau9tau8Zau+LS590M0gAAAICLfv7rZ3219St1f6i7sqXJ5joHAOBIisAUGllrpLYc26KPNnzkOgcAAAA3kKjDNAAAAADXZ63V64teV440OdT1wa6ucwAAjjUp2kQV81RU/9D+ioiKcJ0DAACA60j0YZox5k5jzCPGmBeMMa9e+vyIMebOxN4WAAAA4E2+3Pqlfjnwi4ZUH6LUwald5wAAHDPGaEztMToScURjV451nQMAAIDrSLQTchtjmkjqJqnCDdb8IukNa+3XibVdAAAAwBtciLmgHot76J4779GzpZ91nQMA8BAP5nlQjxd/XKNXjtYL97+gnGlzuk4CAADAfyT4yDRjTLAx5nNJs3VxkGZu8PGgpC+NMZ8bY4ITum0AAADAW7yz+h3tObVH4x4ep8CAQNc5AAAPMrLWSMXExajPj31cpwAAAOAaEuPItC8l1dfFYZkkbZH0o6RdkiIlpZZUSFJ1SSUurWkqKURSw0TYPgAAAODRjkUe05DlQ1T/7vqqXbC26xwAgIcpkLGAupTvojdWvqHO5TqrTI4yrpMAAABwhQQdmWaMaS7pkUt3D0mqZ629x1r7srX2bWvtB5c+v2ytvVdSXUkHdXHw9ogx5skE1QMAAABeYEDoAEVGReqN2m+4TgEAeKg+lfsoS6osenXBq7LWus4BAADAFRJ6msfnLn2OlFTVWrvgRouttQslVZMUcemh5xO4fQAAAMCjbT66We+ue1cdHuigYlmLuc4BAHio9CHpNbj6YC3ft1xfb/vadQ4AAACukNBhWilJVtIH1trd8XnBpXUf6OLRaaUTuH0AAADAo3Vb1E3p7kingdUGuk4BAHi458s8rxJZS+j1Ra/rQswF1zkAAAC4JKHDtDSXPq+5xdf9sz5VArcPAAAAeKz5u+Zr/q756lelnzKnyuw6BwDg4YICgjT24bHafWq3Jqye4DoHAAAAlyR0mHbo0ufAW3zdP+sP3XAVAAAA4KVi4mL02sLXVChTIXUq18l1DgDAS9QpVEf1CtXTkOVDdCzymOscAAAAKOHDtB8vfa58i6+rrIunh/zxZgsBAAAAbzR13VRtObZFY2qPUXBgsOscAIAXGfvwWEVERWhg6EDXKQAAAFDCh2lvS4qS1NoYUzY+LzDGPCDpGUkXLr0eAAAA8Cmnz5/WgNABqpa/mhoVaeQ6BwDgZYplLab2D7TXu+ve1ZZjW1znAAAA+L0EDdOstX9IekGSkbTIGPO8MSboWmuNMUHGmOckLdLFo9Ket9ZuTsj2AQAAAE80bPkwnTh7QuMeHidjjOscAIAXGlhtoNIEp1G3hd1cpwAAAPi9aw6+4ssY0//SzUWS6kt6V9JIY8xPknZJOisplaRCkipJynRp/VxJha54/VWstYMT0gYAAAC4sPvkbo1fNV7Pln5W9+W4z3UOAMBLZUmVRf2q9FO3Rd20YNcC1SlUx3USAACA30rQME3SQF08ykxXfM4kqeE11por1tS/9HEjDNMAAADgdbov7q7gwGANqzHMdQoAwMt1KtdJk9dOVteFXbWxwEYFBST0n3EAAABwOxJ6zTTp4pDsyo9rPXajx6+3FgAAAPAqy/ct11dbv1LPSj2VI20O1zkAAC93R9AdGlN7jLYc26L317/vOgcAAMBvJfRXmqonSgUAAADg5eJsnLou6Krc6XKr64NdXecAAHxE46KNVTVfVfVf2l9P3fOU0oekd50EAADgdxI0TLPWLkusEAAAAMCbTds4TesOr9P0JtOVKkUq1zkAAB9hjNG4OuP0wNQHNOynYRpde7TrJAAAAL+TGKd5TBbGmLrGmO3GmF3GmJ7XeL6RMWaTMeY3Y8xaY0wlF50AAADwP5FRker9Y2+Vy1VOT937lOscAICPKZOjjJ4p/YzGrxqvPaf2uM4BAADwO14xTDPGBEqaKKmepOKSnjLGFP/PsiWSSllrS0tqK4mTiQMAACBZjFwxUofCD+nNOm8qwHjFt9gAAC8zrMYwpQhIoW4Lu7lOAQAA8Dve8pN+OUm7rLV7rLVRkmZJanTlAmtthLXWXrqbWpIVAAAAkMT2nNqjMSvH6Ol7n9ZDeR5ynQMA8FE50+ZUn8p9NGfbHC3es9h1DgAAgF/xlmFaLkn7r7h/4NJj/2KMaWKM2SbpB108Og0AAABIUt0WdlNQQJBG1RrlOgUA4ONeffBVFchYQF3md1F0bLTrHAAAAL8R5Dognsw1HrvqyDNr7RxJc4wxVSQNkVTrqjcy5kVJL0pSjhw5FBoamrilAPxeREQE+xYAiY59i2dad2qd5mybo+fyP6ed63dqp3a6TgJuiSftWzylA/B0bXK2Ub/N/dR1Zlc1zd3Udc41edK+BYDvYN8CwCXz/2dG9FzGmAclDbTW1rl0v5ckWWtH3OA1f0oqa609fr01OXPmtIcOHUrsXAB+LjQ0VNWqVXOdAcDHsG/xPNGx0Sr9bmmdjzmvzR03KyQoxHUScMtc7VvMoKt/X9IO8PyfTQFPYK1V3U/ratWBVdrZeaeyps7qOukqfN8CICmwbwGQFIwx66y1D9xsnbec5nGNpLuNMXcZY4IlNZf07ZULjDGFjDHm0u0ykoIlnUj2UgAAAPiFyWsna8uxLRr38DgGaQCAZGOM0Vt13lJkdKT6/tjXdQ4AAIBf8IphmrU2RlInSQskbZX0ubV2szGmvTGm/aVlTSX9YYz5TdJESU9abzjsDgAAAF7nWOQxDQgdoNoFaqthkYaucwAAfqZY1mLqVLaT3lv/njYc3uA6BwAAwOd5xTBNkqy1c621ha21Ba21wy49NsVaO+XS7VHW2hLW2tLW2gettSvcFgMAAMBX9f2xryKiIjS+7nhdOjkCAADJakC1AcqSKos6z+ssfpcYAAAgaXnNMA0AAADwBBsOb9B7699Tp7KdVCxrMdc5AAA/lSEkg4bXHK6f9/+sWX/Mcp0DAADg0ximAQAAAPFkrdXL819WllRZNKDaANc5AAA/16Z0G5XJUUavL3pdkVGRrnMAAAB8FsM0AAAAIJ5m/TFLK/5aoeE1hytDSAbXOQAAPxcYEKi3676tg+EHNWLFCNc5AAAAPothGgAAABAPkVGRen3R6yqTo4zalG7jOgcAAElSxbwV9fS9T+uNlW9oz6k9rnMAAAB8EsM0AAAAIB5Grhipg+EH9XbdtxUYEOg6BwCAy0bVGqWggCB1W9jNdQoAAIBPYpgGAAAA3MSeU3s0ZuUYPX3v06qYt6LrHAAA/iVXulzqU7mP5mybo8V7FrvOAQAA8DkM0wAAAICb6Lawm4ICgjSq1ijXKQAAXNOrD76qAhkLqMv8LoqOjXadAwAA4FMYpgEAAAA3sHjPYs3ZNke9K/dWrnS5XOcAAHBNIUEhGvfwOG05tkWT1052nQMAAOBTGKYBAAAA1xEdG60u87uoQMYC6vpgV9c5AADcUMMiDfVwwYfVf2l/HY086joHAADAZzBMAwAAAK7jrV/f0pZjWzS+7niFBIW4zgEA4IaMMXq77ts6G31W3Rd1d50DAADgMximAQAAANdwIOyABi0bpIZFGqpB4QaucwAAiJciWYqo20Pd9MnGT7TirxWucwAAAHwCwzQAAADgGl5d8KribJzG1x3vOgUAgFvSp3If5U2fVx1/6KiYuBjXOQAAAF6PYRoAAADwHwt3L9TsLbPVp3If5c+Q33UOAAC3JHVwao2vO16/H/1d76x6x3UOAACA12OYBgAAAFzhQswFdZrbSYUzF1a3h7q5zgEA4LY0KtJI9e+urwGhA3Qo/JDrHAAAAK/GMA0AAAC4wpiVY7Tz5E5NqDdBdwTd4ToHAIDbYozR23XfVlRslF5b+JrrHAAAAK/GMA0AAAC45M9Tf2rYT8P0ePHHVbtgbdc5AAAkSMFMBdWrUi/N+mOWluxZ4joHAADAazFMAwAAAC7pMr+LAk2gxtUZ5zoFAIBE0aNSDxXMWFCd5nVSVGyU6xwAAACvxDANAAAAkPTd9u/03Y7vNLDaQOVOl9t1DgAAiSIkKETv1HtH245v07hf+GURAACA28EwDQAAAH7vbPRZvTz/ZZXIWkJdyndxnQMAQKKqd3c9NSnaREOWD9FfZ/5ynQMAAOB1GKYBAADA7434aYT2nt6rifUnKkVgCtc5AAAkurfqviVJemX+K047AAAAvBHDNAAAAPi1nSd2avTK0WpZsqWq5q/qOgcAgCSRN31e9avST3O2zdG8nfNc5wAAAHgVhmkAAADwW9ZadZrXSSFBIRpTe4zrHAAAklTXB7uqaJai6jyvs87HnHedAwAA4DUYpgEAAMBvfbn1Sy3cvVBDqw9V9jTZXecAAJCkggODNbH+RO0+tVujVoxynQMAAOA1GKYBAADAL0VEReiV+a+odPbS6lC2g+scAACSRY27aqj5Pc01YsUI7T6523UOAACAV2CYBgAAAL80YOkAHQw/qEn1JykoIMh1DgAAyWbsw2MVHBisl+a+JGut6xwAAACPxzANAAAAfmfD4Q16a9Vband/Oz2Y50HXOQAAJKucaXNqWI1hWrB7gT7b/JnrHAAAAI/HMA0AAAB+JTYuVi9+/6KypsqqETVHuM4BAMCJjmU7qmzOsuoyv4tOnTvlOgcAAMCjMUwDAACAX5m4ZqLWHlqr8XXHK2PKjK5zAABwIjAgUFMfnaoTZ0+o5+KernMAAAA8GsM0AAAA+I39Z/arz499VLdQXT1R4gnXOQAAOFU6e2m9UuEVTV0/VSv+WuE6BwAAwGMxTAMAAIDf6Dyvs2LjYjWp/iQZY1znAADg3KBqg5Q3fV61+76domKjXOcAAAB4JIZpAAAA8Atfb/ta32z/RgOrDdRdGe9ynQMAgEdIHZxak+pP0pZjWzTm5zGucwAAADwSwzQAAAD4vLALYeo0t5NKZiupVyu86joHAACP8kjhR/R48cc1ZPkQ7Tyx03UOAACAx2GYBgAAAJ/X78d+OhR+SFMbTFWKwBSucwAA8Djj647XHUF3qMMPHWStdZ0DAADgURimAQAAwKetObhG76x+Rx3LdlT53OVd5wAA4JFypM2hkTVHasmfSzR903TXOQAAAB6FYRoAAAB8VnRstF747gXlSJtDw2oMc50DAIBHa/dAOz2Y+0G9uuBVHYs85joHAADAYzBMAwAAgM8as3KMNv69URPrT1T6kPSucwAA8GgBJkBTH52qsAthemXBK65zAAAAPAbDNAAAAPikbce3afCywWpWvJkaF23sOgcAAK9wz533qHfl3prx+wz9sOMH1zkAAAAegWEaAAAAfE6cjdML372gVClS6Z1677jOAQDAq/Sq1EslspZQ+x/aK+xCmOscAAAA5ximAQAAwOdMWTtFK/5aoXF1xil7muyucwAA8Cp3BN2h9xu+r4NhB9VrcS/XOQAAAM4xTAMAAIBP+evMX+qxuIdqF6itZ0o94zoHAACvVCF3BXUp30WT1k7ST/t+cp0DAADgFMM0AAAA+Axrrdp/315xNk5TH50qY4zrJAAAvNbQGkOVP0N+Pf/d8zofc951DgAAgDMM0wAAAOAzZvw+Q/N2zdPwGsOVP0N+1zkAAHi11MGpNbXBVO04sUODlw12nQMAAOAMwzQAAAD4hGORx9RlfheVz1Vencp1cp0DAIBPqF2wtp4t/axG/zxavx35zXUOAACAEwzTAAAA4BO6zO+isAth+qDhBwoMCHSdAwCAzxj78FhlSZVFz337nGLiYlznAAAAJDuGaQAAAPB6327/VjP/mKk+lfuoxJ0lXOcAAOBTMqXMpAn1J2j94fUa8/MY1zkAAADJjmEaAAAAvNrJcyfV7vt2KpWtlHpV7uU6BwAAn9SseDM1K95MA5cN1B9H/3CdAwAAkKwYpgEAAMCrvTzvZR0/e1wfN/5YwYHBrnMAAPBZk+pPUvo70qvNN2043SMAAPArDNMAAADgtb7Z9o0+/f1T9a3cV6Wzl3adAwCAT8uaOqsmPTJJaw+t1eifR7vOAQAASDYM0wAAAOCVTpw9oXbft1Pp7KXVu3Jv1zkAAPiFZsWb6YkST2hg6ED9/vfvrnMAAACSBcM0AAAAeKXO8zrrxLkT+rjRx0oRmMJ1DgAAfmNCvQnKEJJBz37zrKJjo13nAAAAJDmGaQAAAPA6c7bO0cw/ZqpflX4qlb2U6xwAAPxK1tRZNfmRyVp/eL1G/TzKdQ4AAECSY5gGAAAAr3L87HG1/6G97st+n3pV6uU6BwAAv9S0eFM9WeJJDV42WJv+3uQ6BwAAIEkxTAMAAIBX6Tyvs06dO6WPG3N6RwAAXJpQf4IypsyoZ7/mdI8AAMC3MUwDAACA1/hq61ea9ccs9a/aXyWzlXSdAwCAX8uSKoumPDJFG45s0IgVI1znAAAAJBmGaQAAAPAKRyKO6MXvXtT9Oe5Xj4o9XOcAAABJTYo1UYt7W2jI8iFad2id6xwAAIAkwTANAAAAHs9aq+e/fV6R0ZGa1mQap3cEAMCDTKg3QdlSZ1PLOS11Lvqc6xwAAIBExzANAAAAHu/99e/rh50/aFStUSqWtZjrHAAAcIWMKTPq48Yfa9vxbeq1pJfrHAAAgETHMA0AAAAebffJ3Xp1wauqeVdNdSrXyXUOAAC4hloFaqlzuc4av2q81p3idI8AAMC3MEwDAACAx4qNi1Xrr1srKCBIHzX6SAGGb18BAPBUI2uNVJHMRTRq+yidPn/adQ4AAECi4V8jAAAA4LFG/zxaK/ev1MT6E5UnfR7XOQAA4AZSpUilaU2m6cSFE+o0l6PJAQCA72CYBgAAAI+04fAG9Q/trydKPKEW97ZwnQMAAOKhbK6yap2vtT79/VN9vvlz1zkAAACJwmuGacaYusaY7caYXcaYntd4/mljzKZLHyuNMaVcdAIAACDhzsecV8s5LZU1VVZNfmSyjDGukwAAQDy1zNdS5XKVU/vv2+tQ+CHXOQAAAAnmFcM0Y0ygpImS6kkqLukpY0zx/yz7U1JVa21JSUMkTU3eSgAAACSWPkv6aMuxLfqw0YfKlDKT6xwAAHALAk2gpjWZpvMx59X2m7aKs3GukwAAABLEK4ZpkspJ2mWt3WOtjZI0S1KjKxdYa1daa09duvurpNzJ3AgAAIBEsHD3Qo37dZw6PNBBdQvVdZ0DAABuQ+HMhfXGw29owe4FemfVO65zAAAAEsRbhmm5JO2/4v6BS49dz3OS5iVpEQAAABLd0cijaj2ntYpnLa43Hn7DdQ4AAEiADg90UIPCDdR9cXdtPLLRdQ4AAMBtC3IdEE/XukiGveZCY6rr4jCt0nWef1HSi5KUI0cOhYaGJlIiAFwUERHBvgVAovOHfYu1Vr3/6K2TZ09qWNFhWv3zatdJgM/zpH2Lp3QASLgr9y3PZX5OK/euVKNpjTSlzBSFBIa4jQPgtTzp+xYA/sdbhmkHJOW54n5uSVddwdYYU1LS+5LqWWtPXOuNrLVTdel6ajlz5rTVqlVL9FgA/i00NFTsWwAkNn/Yt0xYPUG/nvxV4+uO13Pln3OdA/gFZ/uWZVc/5Ov7OMCf/Hffkrpgaj08/WF9c+4bTW4w2V0YAK/mDz8TAfBc3nKaxzWS7jbG3GWMCZbUXNK3Vy4wxuSV9JWkVtbaHQ4aAQAAcJt+//t3dVvYTfUK1VPncp1d5wAAgERUu2BtdXuwm6asm6Kvt33tOgcAAOCWecUwzVobI6mTpAWStkr63Fq72RjT3hjT/tKy/pIyS5pkjPnNGLPWUS4AAABuwbnoc3rqy6eUISSDPm78sYy51hm+AQCANxtWc5jK5Cij5759TgfDDrrOAQAAuCVeMUyTJGvtXGttYWttQWvtsEuPTbHWTrl0+3lrbUZrbelLHw+4LQYAAEB8dFvYTZuPbdYnjT/RnanvdJ0DAACSQHBgsGY2nanzMefVak4rxcbFuk4CAACIN68ZpgEAAMD3fLv9W01aO0ldK3RVnUJ1XOcAAIAkVDhzYb1T7x0t3btUY1aOcZ0DAAAQbwzTAAAA4MSh8ENq+01blc5eWsNrDnedAwAAkkGb0m30ePHH1W9pP606sMp1DgAAQLwwTAMAAECyi4mL0VNfPqVzMec0s+lM3RF0h+skAACQDIwxerfBu8qZNqeaf9lcp8+fdp0EAABwUwzTAAAAkOwGhg7U8n3LNfmRySqapajrHAAAkIwypsyoz5p9pgNhB9T2m7ay1rpOAgAAuCGGaQAAAEhWC3cv1PCfhqtN6TZqXaq16xwAAOBAhdwVNLLmSM3ZNkfvrH7HdQ4AAMANMUwDAABAsjkUfkgtv2qp4lmLa0L9Ca5zAACAQ10f7KpHCz+qbgu7ac3BNa5zAAAArothGgAAAJJFTFyMWnzZQpHRkfr88c+VKkUq10kAAMAhY4w+bvyxsqfJridnP8n10wAAgMdimAYAAIBkMXjZYC3bt0yTH5ms4lmLu84BAAAeIFPKTPqs2WfaH7Zfz337HNdPAwAAHolhGgAAAJLcot2LNHT5UD1b+lmukwYAAP7lwTwPakTNEfpq61eauGai6xwAAICrMEwDAABAkjocflhPf/W0imUtpgn1uE4aAAC4WtcHu+qRux/Rawtf07pD61znAAAA/AvDNAAAACSZ6NhoNf+yuSKjI/XF418odXBq10kAAMADBZgAfdL4E92Z+k49/sXjOnXulOskAACAyximAQAAIMn0WtJLy/ct17sN3uU6aQAA4IYyp8qsLx7/QgfCDqjlnJaKs3GukwAAACQxTAMAAEAS+WLzFxr7y1i9VPYltSzZ0nUOAADwAhVyV9D4uuM1d+dcDV0+1HUOAACAJIZpAAAASAJbj21Vm2/aqELuChpXZ5zrHAAA4EXaP9BerUu11sDQgZq3c57rHAAAAIZpAAAASFxhF8LU5LMmSh2cWl88/oWCA4NdJwEAAC9ijNHkRyarZLaSevqrp/XnqT9dJwEAAD/HMA0AAACJxlqrtt+01a6Tu/RZs8+UO11u10kAAMALpUqRSl8+8aXibJyaft5U56LPuU4CAAB+jGEaAAAAEs24X8bpy61famStkaqWv5rrHAAA4MUKZiqo6Y9N14YjG9RxbkdZa10nAQAAP8UwDQAAAIkidG+oeizuoabFmuq1B19znQMAAHxAg8IN1K9KP33828d6b/17rnMAAICfYpgGAACABNt/Zr+enP2kCmUqpI8afSRjjOskAADgIwZUHaA6Beuo87zO+mX/L65zAACAH2KYBgAAgAQ5G31WjT9rrHPR5zTnyTlKe0da10kAAMCHBAYEakbTGcqdLrce+/wxHQw76DoJAAD4GYZpAAAAuG3WWj337XPacHiDZjadqWJZi7lOAgAAPihTykz6tvm3ioiKUJP/a+++w6Mo1zeO308KJXQB6SWANAEjVUAkgCBSpSlFsSFYUI+I7RzPz67Hhg0FEQSUJoKooBQLTZEqRVooShMRkSpSk/f3x25wjQkESHaym+/nuvbKzOy7M/cMu0Myz77vfNBJR04c8ToSAADIRiimAQAA4Jw9/+3zmrB6gp5t8azaVm7rdRwAABDGLr7wYo3pNEZLdi5R32l95ZzzOhIAAMgmKKYBAADgnEzbME3//urf6l6jux5q/JDXcQAAQDbQsWpHPdXsKY1ZNUYvf/ey13EAAEA2QTENAAAAZ23db+vUc3JPXVriUo3oMEJm5nUkAACQTfynyX/UtXpXPfTlQ5qxaYbXcQAAQDZAMQ0AAABnZd+RfeowoYNyR+fWx9d9rJjoGK8jAQCAbMTMNKrjKNW8sKa6T+quhD0JXkcCAABhjmIaAAAA0u1k0kl1n9xdW/dv1UfXfqQyBcp4HQkAAGRDeXLk0SfdP1F0ZLQ6TuioA0cPeB0JAACEMYppAAAASLf7Z96vWZtn6a22b6lx2cZexwEAANlYuYLlNPnaydq8b7OunXStTiad9DoSAAAIUxTTAAAAkC6DFw/W64tf132X3ac+tft4HQcAAEBXlLtCQ9sO1azNs3T353fLOed1JAAAEIaivA4AAACArO+zDZ/p3hn3qkOVDnqx5YtexwEAADjl1tq3auPejXr+2+d1UeGLNKDhAK8jAQCAMEMxDQAAAKe1ctdKdZ/cXXHF4zSu8zhFRkR6HQkAAOBvnm3xrDbv26yBswaqQqEKuqbqNV5HAgAAYYRhHgEAAJCmnYd2qt34diqYq6Cm9piqPDnyeB0JAADgHyIsQu9d857qlaqnXh/10rKdy7yOBAAAwgjFNAAAAKTq8PHDaj++vfYf3a9pPaapZL6SXkcCAABIU+7o3Pq0+6cqGlNU7ce31/YD272OBAAAwgTFNAAAAPxDYlKien7UUyt2rdAHXT/QJcUv8ToSAADAGRXLW0yf9fxMh08cVrvx7XTo2CGvIwEAgDBAMQ0AAAD/MHDWQH2a8Klea/2a2lzUxus4AAAA6XbxhRfrw24fas3uNbpu0nU6kXjC60gAACDEUUwDAADA37y84GW9uuhV3dvgXvWv39/rOAAAAGetVcVWGtJ2iKZvmq5+0/rJOed1JAAAEMKivA4AAACArGPsqrEa+MVAXXvxtRp01SCv4wAAAJyz2+rcpp8P/awn5j6hkvlK6unmT3sdCQAAhCiKaQAAAJAkzdo8Szd9cpPiy8frvWveU4QxiAEAAAhtjzV9TDsP7dQz859RibwldFf9u7yOBAAAQhDFNAAAAGjZzmXqMrGLqhetro+v+1g5o3J6HQkAAOC8mZneavuWfj38q+6efreK5S2mrtW7eh0LAACEGL5uDAAAkM1t3rtZbca1UeHchTW913QVyFXA60gAAAAZJioiSuO7jNdlpS9Tr496ae6WuV5HAgAAIYZiGgAAQDa2+/BuXTXmKp1MOqkZ189QyXwlvY4EAACQ4WKiYzS1x1RVKFRBHSd01A+//uB1JAAAEEIopgEAAGRTh44dUttxbbXz0E5N6zFNVYtU9ToSAABApikcU1gzes1Qnhx51Hpsa23dv9XrSAAAIERQTAMAAMiGjpw4ovbj22v5L8s1sdtENSzT0OtIAAAAma5cwXKa0WuG/jzxp658/0rt+mOX15EAAEAIoJgGAACQzRxPPK5uH3bTvK3z9F6n99SucjuvIwEAAARNzWI19XnPz/XLoV/U8v2W2ntkr9eRAABAFkcxDQAAIBtJTErUDVNu0GcbP9OQtkPUs2ZPryMBAAAEXcMyDfVJ90+04fcNaj2mtQ4dO+R1JAAAkIVRTAMAAMgmklyS+k7tq4lrJurFli+qX91+XkcCAADwTIsKLfRhtw/1/S/fq/349jpy4ojXkQAAQBZFMQ0AACAbcM7p/pn3690V7+rRJo9qYKOBXkcCAADwXIcqHfRep/c0b+s8df2wq44nHvc6EgAAyIIopgEAAGQDT8x9Qq8uelX31L9HTzZ70us4AAAAWUbPmj01pO0Qfb7xc90w5QYlJiV6HQkAAGQxUV4HAAAAQOZ68dsX9cTcJ3Rz3M16pfUrMjOvIwEAAGQp/er206Hjh/TAFw8oJjpGIzqMUITxHXQAAOBDMQ0AACCMvbTgJT345YO67uLr9E77d7goBAAAkIaBjQbqj+N/6Im5T8hkGt5hOL87AQAASRTTAAAAwtbLC17WA188oGsvvlZjOo9RZESk15EAAACytMeaPqYkl6Sn5j0lk+mdDnwZCQAAUEwDAAAIS4O+G6SBXwxUt+rdNLbzWEVF8GsfAADAmZiZnoh/Qs45PT3/aUVYhN5u/zYFNQAAsjmuqgAAAISZV757RffPul9dq3elkAYAAHCWzExPNntSTk7PzH9GZqah7YZSUAMAIBvjygoAAEAYeXXhqxowa4C6VOuicZ3HKToy2utIAAAAIcfM9FSzp+Sc07PfPCuTaUi7IRTUAADIpiimAQAAhInXFr6m+2bepy7Vumh8l/EU0gAAAM6Dmenp5k/Lyem5b56Tmemttm9RUAMAIBuimAYAABAGnpv/nP799b/VuVpnCmkAAAAZxMz0TPNnJEnPffOcjp48quEdhjOMNgAA2Qz/8wMAAIQw55z+8/V/9Nw3z6lXzV4a2XEkhTQAAIAMlFxQyx2VW/835//0x/E/NK7LOOWIzOF1NAAAECT0SwcAAAhRSS5J9864V89985z61u6r9zq9RyENAAAgE5iZ/tv0vxrUapAmr5usayZcoyMnjngdCwAABAnFNAAAgBCUmJSoPp/20RuL39CAywZoaLuh3L8DAAAgk93X8D4NazdMMzbNUJtxbXTo2CGvIwEAgCDgigsAAECIOZ54XD0/6qmRK0bqsaaP6aVWL8nMvI4FAACQLdxW5zaN6TxG87fOV8v3W2rfkX1eRwIAAJmMYhoAAEAIOXLiiLpM7KKJaybqpZYv6fH4xymkAQAABFnPmj01+drJWr5ruZqNbqZf//jV60gAACATUUwDAAAIEXuP7FXL91vqsw2faUjbIbq/0f1eRwIAAMi2OlbtqGk9pmnj3o1q/G5jbd672etIAAAgk1BMAwAACAG7j+5Wk5FNtGTnEn3Q9QPdXvd2ryMBAABkey0rttTXvb/W/qP71ejdRlq2c5nXkQAAQCYImWKambU2swQz22RmD6fyfFUz+87MjpnZQC8yAgAAZIbVu1frruV3acfBHZp5/Ux1u7ib15EAAADg16B0A317y7eKiY5R01FNNXPTTK8jAQCADBYSxTQzi5T0pqSrJVWX1MPMqqdotlfSPZJeCnI8AACATDNv6zw1GdlETk7zb56v+PLxXkcCAABAClWKVNGCWxao0gWV1G58O72/8n2vIwEAgAwUEsU0SfUlbXLO/eicOy5pgqSOgQ2cc7udc0sknfAiIAAAQEb7aN1HavV+KxXLU0yDLx2sWsVqeR0JAAAAaSiRr4Tm3jRXV5S7Qr0/7q0Xv31RzjmvYwEAgAwQKsW0UpK2B8zv8C8DAAAIS4MXD1bXiV11aYlL9e0t36p4ruJeRwIAAMAZFMhVQJ/3/FzXXXydHvzyQf1rxr+UmJTodSwAAHCeorwOkE6WyrJz+mqPmfWV1FeSSpQooTlz5pxHLAD4pz/++INzC4BzlugS9eamNzVl5xQ1KtxI/y3/X/2w+AfOLQAyRVY6t2SVHADOX1Y6t3ilb+G+SiyVqNcXv67Fmxbrv9X+q5ioGK9jASGNcwsAL4VKMW2HpDIB86Ul7TyXFTnnhkkaJkklS5Z08fHx5x0OAALNmTNHnFsAnIuDxw6q+6Tumr5zugZcNkAvtHxBkRGRkji3AMgcnp1b5v5zEec4IHzwe4tP82bNNXTpUPX/vL8e2fSIpvaYqrIFynodCwhZnFsAeClUhnlcIukiM4s1sxySukv61ONMAAAAGWbL/i1qNKKRZm2epbfbva2Xr3r5VCENAAAAoen2urfr816fa8v+Lar/Tn0t/nmx15EAAMA5CIlimnPupKT+kmZKWidponNujZndbma3S5KZFTezHZIGSHrUzHaYWX7vUgMAAKTPwh0L1WB4A+04uEMzrp+hvnX6eh0JAAAAGaRVxVb67tbvFBMdo6ajmurDNR96HQkAAJylkCimSZJz7nPnXGXnXEXn3DP+ZUOdc0P907ucc6Wdc/mdcwX90we9TQ0AAHB6E1ZPUPyoeOXNkVcL+yzUlRWu9DoSAAAAMlj1otW1qM8i1SlRR9dOulbPzHtGzjmvYwEAgHQKmWIaAABAOElMStTDXz6sHpN7qF6pelrUZ5GqFqnqdSwAAABkkqJ5iurL3l/q+lrX69HZj6r75O764/gfXscCAADpEOV1AAAAgOzm9z9/V8+PemrW5lnqV6efXmv9mnJG5fQ6FgAAADJZrqhceu+a91Trwlp6+KuHtfa3tZpy3RRVuqCS19EAAMBp0DMNAAAgiFbuWql679TTnC1z9E77dzS03VAKaQAAANmImemBxg9oRq8Z2nlop+q9U0/TN073OhYAADgNimkAAABBMu6HcWo4oqGOJx7XvJvmqU/tPl5HAgAAgEdaVmyppbctVbkC5dR2XFvuowYAQBZGMQ0AACCTnUw6qftn3q9eH/VSnZJ1tLTvUjUo3cDrWAAAAPBYbKFYLbh1gXrU7KFHZz+qLhO76OCxg17HAgAAKVBMAwAAyEQ7Du5Qs9HNNGjhIPWv119f9f5KxfMW9zoWAAAAsoiY6BiN6TRGg1oN0qcJn6rusLpauWul17EAAEAAimkAAACZZPrG6YobGqflvyzXmE5j9EabN5QjMofXsQAAAJDFmJnua3ifvr7xax0+cVgNhjfQ0KVDGfYRAIAsgmIaAABABjuReEIPffGQ2oxro5L5SmpZ32XqVauX17EAAACQxV1R7gqt6LdC8eXjdcdnd6j75O4M+wgAQBZAMQ0AACADbT+wXfGj4/XCghfUt3ZfLeqzSFWKVPE6FgAAAEJE0TxF9Xmvz/Vs82c1ee1k1X67tpb/stzrWAAAZGsU0wAAADLI1ISpins7Tqt+XaVxncfp7fZvK3d0bq9jAQAAIMREWIQeafKI5tw0R0dPHtVlIy7T4MWDGfYRAACPUEwDAAA4T4ePH9bt025XhwkdVCZ/GS3ru0w9avbwOhYAAABC3OVlL9eK21eoRWwL3T39brUd11a7/tjldSwAALIdimkAAADnYfHPi3Xp25dq2LJhGthwoBb1WaTKhSt7HQsAAABhokhMEX3W8zO9cfUbmr1ltmoOqamP13/sdSwAALIVimkAAADn4GTSST0590k1GtFIR08e1dc3fq0XW72onFE5vY4GAACAMGNm6l+/v5b1XaYy+cuo0wed1OfTPjp07JDX0QAAyBYopgEAAJylTXs3qcnIJnpszmPqXqO7Vt2xSvHl472OBQAAgDBXvWh1LeyzUI9c/ojeXf6u4t6O03fbv/M6FgAAYY9iGgAAQDoluSQNXjxYcUPjtH7Peo3vMl5jOo9RwVwFvY4GAACAbCJHZA492+JZzb1prhKTEnX5yMv18JcP68iJI15HAwAgbFFMAwAASIcNv29Q01FNdff0u3V52cu16vZV6l6ju9exAAAAkE01KddEq+5YpZvjbtbz3z6vuLfj9O22b72OBQBAWKKYBgAAcBonk07qxW9f1CVDL9Hq3as1quMoTe81XWUKlPE6GgAAALK5/Dnza3iH4Zp1/SwdO3lMTUY20b3T79Xh44e9jgYAQFihmAYAAJCG1btXq9GIRnrwywd1VcWrtPbOtbox7kaZmdfRAAAAgFNaVmyp1Xeu1l317tLri19XzSE19dWPX3kdCwCAsEExDQAAIIUjJ47o/2b/n2q/XVs/7f9JE7pM0JTrpqhEvhJeRwMAAABSlTdHXr3R5g3NvWmuIiMideX7V+rWT27Vnj/3eB0NAICQRzENAAAgwPSN01VjSA09Ne8pdbu4m9beuVbX1biO3mgAAAAICVeUu0Krbl+lBxo9oNErR6vq4Koa8f0IJbkkr6MBABCyKKYBAABI2nFwh7pO7Ko249ooOiJaX97wpcZ2HquieYp6HQ0AAAA4K7mjc+uFli9oeb/lqla0mvpM7aMmI5to1a+rvI4GAEBIopgGAACytROJJ/TygpdVdXBVfbbxMz3d7GmtvH2lWlRo4XU0AAAA4LzULFZTc2+aq5EdR2rD7xtU++3aun/m/Tp07JDX0QAACCkU0wAAQLb1xeYvVHtYbQ38YqDiy8dr7Z1r9Z8r/qOcUTm9jgYAAABkiAiL0E1xN2n9Xet1y6W3aNDCQar6ZlW9v/J9hn4EACCdKKYBAIBsZ8PvG9RhfAe1GtNKh48f1kfXfqSpPaYqtlCs19EAAACATFE4prCGtR+m7279TiXzlVTvj3vrsuGXacH2BV5HAwAgy6OYBgAAso19R/ZpwMwBuvitizVnyxw9f+XzWnvXWnWq1klm5nU8AAAAINNdVvoyLeqzSKOvGa2fD/2sxu82Vo/JPbR1/1avowEAkGVRTAMAAGHvROIJvbn4TV30xkV6deGrujnuZm28e6MebPygckXl8joeAAAAEFQRFqHel/RWQv8E/feK/+rj9R+r6ptV9ejXj3I/NQAAUkExDQAAhK0kl6QJqyeo+lvV1X96f9UsVlPf9/tew9oPU7G8xbyOBwAAAHgqb468erLZk0ron6DO1TrrmfnPqOLrFfXawtd07OQxr+MBAJBlUEwDAABhxzmn6Runq86wOuoxuYdyR+XW1B5T9XXvrxVXPM7reAAAAECWUrZAWY3tPFaL+ixSzWI19a+Z/1LlwZU1asUoJSYleh0PAADPUUwDAABhZcH2BYofHa8249rowNEDGtNpjFbcvkLtKrfjvmgAAADAadQvVV9f9f5KX9zwhYrGFNXNn9ysWkNracq6KXLOeR0PAADPUEwDAABhYeGOhWo7rq0av9tYCXsS9GabN7W+/3r1qtVLEcavPAAAAEB6XVnhSi25bYkmdZukxKREdZ7YWQ2GN9C0DdMoqgEAsiWuLAEAgJD2zbZvdNWYq9RwREMt2rFIzzZ/Vpvv2aw7692pHJE5vI4HAAAAhCQzU5fqXbT6ztUa3n649vy5R+3Ht1edYXU0Zd0UJbkkryMCABA0FNMAAEBImrNljpqPbq4mI5to+S/L9cKVL2jLv7bokSaPKE+OPF7HAwAAAMJCVESUbq19qxL6J2hkx5E6dPyQOk/srLihcfpwzYcU1QAA2QLFNAAAEDKSXJKmJkxVk5FN1Gx0M63bs06DWg3Sln9t0QONH1DeHHm9jggAAACEpejIaN0Ud5PW3bVO73d6X8cTj+vaSdeqxls1NHL5SB07eczriAAAZBqKaQAAIMs7evKohn8/XBe/dbE6TOigrfu36rXWr+nHe37UfQ3vU0x0jNcRAQAAgGwhKiJK19e6XmvuXKPxXcYrKiJKt3x6i2Jfi9Xz3zyv/Uf3ex0RAIAMRzENAABkWXuP7NUz855R+VfL67aptylXVC6N7TxWm+/ZrHsa3KPc0bm9jggAAABkS5ERkepeo7tW3r5SM6+fqYsvvFgPf/WwyrxSRgNmDtDW/Vu9jggAQIaJ8joAAABASqt3r9abi9/Ue6ve058n/lTrSq01sOFANY9tLjPzOh4AAAAAPzNTq4qt1KpiK63YtUIvLXhJry96Xa8vel1dqndR/3r9dXnZy/k9HgAQ0iimAQCALOFE4gl9kvCJ3lzypuZsmaOckTnVo2YPDbhsgGoWq+l1PAAAAABnEFc8TmM6j9GzLZ7V64te14jlIzRxzUTVKlZLd9W7S71q9lKeHHm8jgkAwFljmEcAAOCpXX/s0tPznlbsa7Hq9mE3/bTvJz1/5fPaMWCHRnYcSSENAAAACDFlC5TVS61e0s8DftY77d+RydRvWj+VGlRKA2YO0MbfN3odEQCAs0LPNAAAEHQnk05qxqYZGrF8hKYmTFWiS1Sriq00pO0QtbmojSIjIr2OCAAAAOA8xUTHqE/tPrr10lu1YPsCDV4yWG8sfkOvLHxFTcs1VZ/afdSlWhfuhQwAyPIopgEAgKDZvHez3l3+rkatHKWdh3bqwjwXakDDAbr10ltVpUgVr+MBAAAAyARmpsZlG6tx2cYa1GqQRq0YpRHLR+iGKTeo/+f91bNmT/Wp3Ue1S9T2OioAAKmimAYAADLVgaMH9NG6j/T+qvc1e8tsRViErq50tQZfPVjtKrdTdGS01xEBAAAABEmJfCX0SJNH9NDlD2ne1nka/v1wjVwxUkOWDlFc8Tj1rtVb3Wt0V4l8JbyOCgDAKRTTAABAhjueeFzTN07X2B/G6tOET3Us8ZgqFqqop5s9rRvjblTp/KW9jggAAADAQxEWofjy8YovH683jryhcT+M08gVIzVg1gAN/GKgWsS20PW1rlenqp2UL2c+r+MCALI5imkAACBDJCYlav62+fpg9QeauHai9h7Zq6IxRdW3Tl/1qtlL9UvVl5l5HRMAAABAFlModyHdVf8u3VX/Lq3fs15jV43V2B/G6saPb9TtUberY9WO6lGjh1pVbKVcUbm8jgsAyIYopgEAgHN2Mumk5m6Zq0lrJ+mj9R9p9+HdiomO0TVVr9H1Na/XlRWuZBhHAAAAAOlWtUhVPdX8KT3Z7El9t+M7jV01Vh+s+UATVk9Qvhz51L5Ke3Wt1lWtK7VW7ujcXscFAGQTFNMAAMBZOXryqOZsmaPJaydryvop+v3I78oTnUftKrdT1+pddXWlq5UnRx6vYwIAAAAIYWamRmUaqVGZRnq19auavWW2Jq2dpCnrp2jcD+OUJzqP2lZuqy7Vuqh1pdbKnzO/15EBAGGMYhoAADij3Yd367MNn2nqhqmatXmWDp84/LdvhV5V6SrFRMd4HRMAAABAGIqOjFariq3UqmIrvdX2rb+NjjFxzURFR0Srafmm6lC5g9pXaa/yBct7HRkAEGYopgEAgH9IcklasWuFZm6aqakbpmrhjoVyciqVr5RuqHWDOlTpoGaxzbhfAQAAAICgioqIUosKLdSiQgsNbjNY3+34TlMTpurTDZ/qnhn36J4Z96jGhTXUvnJ7XV3pal1W+jKGngcAnDeKaQAAQJK07cA2fbH5C33x4xf66qevtOfPPZKkOiXq6PH4x9W+cnvFFY+TmXmcFAAAAACkyIhIXV72cl1e9nI93/J5bdq76VRh7YVvX9Bz3zyn/Dnzq3lsc11V8Sq1qthKFQpV8Do2ACAEUUwDACCbOnjsoOZsmXOqgJbwe4IkqUTeEmpzURu1rNBSV1a4UsXzFvc4KQAAAACcWaULKum+hvfpvob3af/R/fr6p681c9NMzdw8Ux+v//hUm5YVWqppuaZqWr4pf+8AANKFYhoAANnE3iN79e22b/XNtm80f9t8Ldm5RCeTTiomOkZNyzVVvzr91LJiS11c9GJ6nwEAAAAIaQVzFVTnap3VuVpnOee0ce/GU4W1MavGaMjSIZKkyoUrK75cvJqWb6qm5ZqqVP5SHicHAGRFFNMAAAhDzjltO7BN87fN1zfbvtE3277Rmt/WSJKiI6JVr1Q9PdDoAbWs0FKNyjRSzqicHicGAAAAgMxhZqpcuLIqF66suxvcrZNJJ7X8l+Wau3Wu5m6dqwlrJmjY98MkSRULVTzVa61RmUaqWKgiXzYEAFBMAwAgHBw+flgrdq3Qkp1LtPjnxZq/bb52HNwhScqfM78alWmknjV76vKyl6teyXrKHZ3b48QAAAAA4I2oiCjVK1VP9UrV08BGA5WYlKiVv67U3C2+4tqU9VP07op3JUmFcxdW/VL11aBUAzUo3UD1S9XXBbkv8HgPAADBRjENAIAQc+zkMa36dZWW7lyqJTuXaOnOpVrz2xoluSRJUql8pU7dhLtJ2SaqcWENRUZEepwaAAAAALKmyIhI1S5RW7VL1NZ9De9TkkvS6t2rtWjHIi362feYsWmGnJwk6aILLlKD0g3UoFQD1StZTzWL1VRMdIzHewEAyEwU0wAAyML2HdmnH3b/oB9+/UGrfl2lZb8s06pfV+lE0glJUpGYIqpXsp6uqXqN6pWsp7ol66pEvhIepwYAAACA0BVhEapVrJZqFaul2+rcJkk6eOyglu5ceqrA9uWPX2rMqjGn2lcuXFlxxeN0SbFLFFc8TnHF41Q8b3EvdwMAkIEopgEAkAUcTzyuhD0J+mG3r2iW/DN5qEZJKpSrkC4tcakGNByguiXrql7JeipboCzj9wMAAABAJsufM7+axzZX89jmknz3qd5+cLuW7VymFbtWaOWvK/Xd9u80YfWEU6+5MM+FpwpsNS6soWpFqqlqkarKlzOfV7sBADhHFNMAAAiivUf2KmFPgtbvWa+E3xN8jz0J2rR306neZtER0apWtJqalmuqWsVqqeaFNVWrWC2VzFeSwlk4euEFqV49qVmz81/X7NnSkiXSgw+e/7oAZKxgf9bDfXvBxv6lX1bcP2Qc3ivAKWamsgXKqmyBsupUrdOp5fuO7NOqX1dpxa4VWvHrCq3ctVKvLnz11N97klQ6f2lVK1JN1YtWV7Ui1VStaDVVK1JNRfMU9WJXAADpQDENAIAMtu/IPv2470f9tP8n/bjvRyXsSThVONvz555T7aIjolXpgkqqUqSKOlbpqJrFfEWzyoUrK0dkDg/3AEFVr5507bXSxInnd2Fq9uy/1gMg6wn2Zz3ctxds7F/6ZNX9Q8bhvQKcUaHchdS0fFM1Ld/01LITiSe0ed9mrfttndbt8T3W/rZW73z/jv488eepdhfkvkCVLqikShdUUsVCFf/288I8F/LlSgDwEMU0AADO0h/H/9D2A9u17cA2/bjvx78Vzn7a/5P2H93/t/bF8hRTlSJV1KlqJ1UpXEVVilRRlcJVFFsoVlER/Fec7TVr5ruQdD4XpgIvSGXEN8UBZLxgf9bDfXvBxv6dWVbeP2Qc3ivAOYmOjFbVIlVVtUhVddJfvdiSXJK2H9juK7D9tk7r96zX5n2btWD7Ak1YPUFJLulU27w58qpioYqqeEFFxRaMPdUrrlyBcipboKwuyH0BxTYAyERcwQMAIMCJxBPasn+Lth/cru0Htmv7we3acXDH3+ZTFstyRuZUbKFYxRaMVaMyjVShUAXFFoz1/SwUq/w583uzMwgd53NhigtSQOgI9mc9lLYnZf1zWbifq8N9/5BxeK8AGSbCIlSuYDmVK1hOrSu1/ttzxxOPa8v+Ldq8d7M279usTXs3afO+zVr721pN3zhdR04e+Vv7mOiYvxXXyhYoq1L5SqlU/lIqnb+0YgvGKnd07mDuHgCEFYppAAAESPg9QTWH1PzbsqIxRX1/fBSK1RXlrlCZ/GVUpkAZlclfRhUKVVCJfCUUYREeJUbYOJcLU1yQAkJPsD/robC9ZKFwLgv3c3W47x8yDu8VINPliMyhyoUrq3Lhyv94zjmnPX/u0bYD27TtwDZtPbD1b9PLdy3X7sO7//aaCV0m6Loa1wUrPgCEHYppAAAEiC0Yq9HXjD5VMCudv7RyReXyOhayi7O5MMUFKSB0BfuznpW3l/J1oSDcz9Xhvn/IOLxXAM+YmYrmKaqieYqqTsk6qbY5evKodh7aqR0Hd+jngz+rcdnGQU4JAOElZL5Gb2atzSzBzDaZ2cOpPG9m9rr/+VVmVtuLnACA0JYnRx71vqS3msU2U6ULKlFIQ/AFXpiaPTv1NlyQAkJfsD/rWXF7oSzcz9Xhvn/IOLxXgCwrV1QuVShUQVeUu0I9avZQ6fylvY4EACEtJIppZhYp6U1JV0uqLqmHmVVP0exqSRf5H30lDQlqSAAAgIxyugtTXJACwkewP+tZaXvhINzP1eG+f8g4vFcAAEA2EBLFNEn1JW1yzv3onDsuaYKkjinadJT0nvNZKKmgmZUIdlAAAIAMkdqFKS5IAeEn2J/1rLK9cBHu5+pw3z9kHN4rAAAgzJlzzusMZ2RmXSW1ds718c/fIKmBc65/QJtpkv7nnPvGP/+VpIecc0vTWm/JkiVdv379Mjc8AADAeSj/00/q+uGHWlq3ruouXapJ3bppS2ys17EAZLBgf9a93l7eB//8R5vH9XimbT+zhfu5Otz3DxmH9woAAAg1jz/++DLnXN0ztYsKRpgMYKksS1kFTE8bmVlf+YaBVIkSdFwDAABZ25bYWC2tW1dN583T3Cuu4IIUEKaC/Vn3entNU/3zLXSF+7k63PcPGYf3CgAACFeh0jOtoaTHnXNX+ecfkSTn3HMBbd6WNMc5N94/nyAp3jn3S1rrLVmypNu5c2emZgeQ/cyZM0fx8fFexwAQLvxDJG25+mqVnz6doZKAcJU8HNodd0hDhmT+Zz3Y55Zg71+wsX+AD7+3AMhEXG8BkBnMLF0900LlnmlLJF1kZrFmlkNSd0mfpmjzqaTe5nOZpAOnK6QBAABkeQH3Gtlyyy3/vBcJgPAQeF+hJ5/M/M96sM8twd6/YGP/AB9+bwEAAGEsJIppzrmTkvpLmilpnaSJzrk1Zna7md3ub/a5pB8lbZL0jqQ7PQkLAACQEQIvXiZ/o7tZMy5MAeEm2J/1cN9esLF/3uZD1sF7BQAAhLmQKKZJknPuc+dcZedcRefcM/5lQ51zQ/3Tzjl3l//5ms65pd4mBgAAOEepXZBKxoUpIHwE+7Me7tsLNvYvtPcPGYf3CgAAyAZCppgGAACQLZzuglQyLkwBoS/Yn/Vw316wsX+hvX/IOLxXAABANkExDQAAIKtIzwWpZFyYAkJXsD/r4b69YGP//hKK+4eMw3sFAABkIxTTAAAAsoKzuSCVjAtTQOgJ9mc93LcXbOzfP4XS/iHj8F4BAADZDMU0AAAAr53LBalkXJgCQkewP+vhvr1gY//SFgr7h4zDewUAAGRDFNMAAAC8dD4XpJJxYQrI+oL9WQ/37QUb+3dmWXn/kHF4rwAAgGyKYhoAAICXliw5vwtSyZIvTC1ZkjG5AGSsYH/Ww317wcb+pU9W3T9kHN4rAAAgmzLnnNcZPFOyZEm3c+dOr2MACDNz5sxRfHy81zEAhBnOLQAyA+cWAJmBcwuAzMC5BUBmMLNlzrm6Z2pHzzQAAAAAAAAAAAAgDRTTAAAAAAAAAAAAgDRQTAMAAAAAAAAAAADSQDENAAAAAAAAAAAASAPFNAAAAAAAAAAAACANFNMAAAAAAAAAAACANFBMAwAAAAAAAAAAANJAMQ0AAAAAAAAAAABIA8U0AAAAAAAAAAAAIA0U0wAAAAAAAAAAAIA0UEwDAAAAAAAAAAAA0kAxDQAAAAAAAAAAAEgDxTQAAAAAAAAAAAAgDeac8zqDZ8zskKQEr3MACDtFJO3xOgSAsMO5BUBm4NwCIDNwbgGQGTi3AMgMVZxz+c7UKCoYSbKwBOdcXa9DAAgvZraUcwuAjMa5BUBm4NwCIDNwbgGQGTi3AMgMZrY0Pe0Y5hEAAAAAAAAAAABIA8U0AAAAAAAAAAAAIA3ZvZg2zOsAAMIS5xYAmYFzC4DMwLkFQGbg3AIgM3BuAZAZ0nVuMedcZgcBAAAAAAAAAAAAQlJ275kGAAAAAAAAAAAApCnbFtPMrLWZJZjZJjN72Os8AEKfmb1rZrvNbLXXWQCEDzMrY2azzWydma0xs3u9zgQg9JlZLjNbbGYr/eeWJ7zOBCA8mFmkmS03s2leZwEQPsxsi5n9YGYrzGyp13kAhAczK2hmk8xsvf+6S8M022bHYR7NLFLSBkktJe2QtERSD+fcWk+DAQhpZnaFpD8kveecq+F1HgDhwcxKSCrhnPvezPJJWibpGn5vAXA+zMwk5XHO/WFm0ZK+kXSvc26hx9EAhDgzGyCprqT8zrl2XucBEB7MbIukus65PV5nARA+zGy0pPnOueFmlkNSjHNuf2pts2vPtPqSNjnnfnTOHZc0QVJHjzMBCHHOuXmS9nqdA0B4cc794pz73j99SNI6SaW8TQUg1DmfP/yz0f5H9vumJYAMZWalJbWVNNzrLAAAAKdjZvklXSFphCQ5546nVUiTsm8xrZSk7QHzO8RFKQAAkMWZWXlJl0pa5HEUAGHAPxTbCkm7JX3hnOPcAuB8vSrpQUlJHucAEH6cpFlmtszM+nodBkBYqCDpN0kj/UNUDzezPGk1zq7FNEtlGd/CBAAAWZaZ5ZU0WdK/nHMHvc4DIPQ55xKdc3GSSkuqb2YMUw3gnJlZO0m7nXPLvM4CICw1ds7VlnS1pLv8t9oAgPMRJam2pCHOuUslHZb0cFqNs2sxbYekMgHzpSXt9CgLAADAafnvZzRZ0ljn3Ede5wEQXvxDmcyR1NrbJABCXGNJHfz3NZogqbmZjfE2EoBw4Zzb6f+5W9IU+W7jAwDnY4ekHQEjdEySr7iWquxaTFsi6SIzi/XfVK67pE89zgQAAPAPZmbyjd+9zjk3yOs8AMKDmRU1s4L+6dySrpS03tNQAEKac+4R51xp51x5+a6zfO2cu97jWADCgJnlMbN8ydOSWkla7W0qAKHOObdL0nYzq+Jf1ELS2rTaRwUlVRbjnDtpZv0lzZQUKeld59waj2MBCHFmNl5SvKQiZrZD0mPOuRHepgIQBhpLukHSD/57G0nSv51zn3sXCUAYKCFptJlFyvcly4nOuWkeZwIAAEhNMUlTfN8zVJSkcc65Gd5GAhAm7pY01t/p6kdJN6fV0JzjVmEAAAAAAAAAAABAarLrMI8AAAAAAAAAAADAGVFMAwAAAAAAAAAAANJAMQ0AAAAAAAAAAABIA8U0AAAAAAAAAAAAIA0U0wAAAAAAAAAAAIA0UEwDAAAAgHNkZs7/mJNB65uTvM6MWB98zKyT/7geNbNSXueRJDO7wZ9pv5ld6HUeAAAAAGmjmAYAAAAAmcTMrjGzx/2Pgl7nyY7MLJekQf7ZYc65n73ME2CcpA2SCkh6zuMsAAAAAE6DYhoAAAAAZJ5rJD3mfxT0NEn2daek8pKOSvqft1H+4pxLlPS0f/YmM6vmZR4AAAAAaaOYBgAAAADnyDln/kd8Bq0vPnmdGbG+7M7Mckt62D87yjm308s8qRgnaat8f5s/5nEWAAAAAGmgmAYAAAAACFe9JRX1T7/nZZDU+HunjfXPdjWzsl7mAQAAAJA6imkAAAAAgHB1h//nZufcd54mSdsY/89ISX29DAIAAAAgdRTTAAAAAGQ6M4s3M+d/PO5fVtPMhpnZZjM7Yma/mdmXZtbjLNZbxsz+Z2bfm9leMztmZj+b2VQzu8nMItOxjovM7GUzW2Zm+83shJn9bmYJZjbLzB40s4vTeG3yPs1JsXyUmTlJNwYs/imgffJjVIrXzUl+Lh25G/iPX4KZHTKzw/5jOdrMmqfj9X/LbmYxZjbQzJaa2T7/+taY2XNmVuhM6zvDtv4bsL1Pz9C2S0DbH8ws1zlus6akS/yz487Q9vGAbcb7l7Uws8lmtt3MjvqP7TAzK5fitbnMrJ+ZLfC/h//0537YzHKeKadzbp2kFf7ZXmbGEJ8AAABAFhPldQAAAAAA2Y+Z3SDpHUmBxYZcklpIamFmvSR1dc4dPc06+kl6RVLuFE+V9D/aSRpgZh2cc1vSWEcfSW9KypHiqQv8j8qSWkrqKSkuPfuW2cwsStJbkm5L5ekK/kdvM/tQ0o3OuSPpWGcFSVMlVU/xVHX/o4eZxad1HNPhGUlXSrpCUnszu9M591YqOUrL976QpKOSepzuPXAG1wRMzz6bF5rZ/yQ9lGJx8rHtamYtnHPLzay4fMetboq2NSQ9J6mNmV2Vjn+D2fK9v8rLVwBccTZ5AQAAAGQuimkAAAAAgq2epH/7p9+VNE9Son/5rZLySGor3/B3XVNbgb+QNjRg0VRJn0naL18B7GZJsZJqSvrGzC51zv2WYh2XSnpbvhE7Tkqa7M+yW1K0pBKSLpXU6hz28XVJH0u6R1Iz/7J+/nUH2nYO635PUnLvvaOSRktaIN8xrCvfMcwnqZukAmbW2jl3up5u+eU7dlUlfSppuqS98hWO7pBUVlI5/3avOIe8cs4lmdn1klZKKiTpJTOb65xbk9zGzCLk+zdP7gX3gHNu9blsz6+l/2eSpKVn8bq75Hvf/SRppKQNkgpKukFSY3++SWZWQ77jVlvS55KmSfpdvuN4j6TCkppI+o+kR8+wzYUB01eJYhoAAACQpdjp/6YCAAAAgPPnHzovsHfQIUmtnHMLU7S7SNIc+XqWSb7eaZNTtCkvaa18PdISJfV0zk1M0Sa3pA/lK8pJ0iTnXLcUbQbLVziRpOtSriOgXaSkBs65Bak8l/wH1VznXHwqz4/SX0M9xp6pZ5d/yMWmkuSc+8dwf2Z2naQJ/tlfJTV3zq1N0aacfMc61r+ov3PuzdNkl6Tjkro456alaFNY0pKAdTVwzi0+3T6cjpl1le/fRZJWSarvnDvmf+7f8vVgk6Rpzrn257GdSEkHJcVIWuOcq3GG9o9Leixg0TRJ3QJ7xfmLfZ9Jau1ftEy+YusNzrm/DSNpZpXlK4jllq/AWzx5P9PYfjlJW/yzU5xznU+7gwAAAACCinumAQAAAPDCAykLaZLknNsoX8+qZANTee09+mtox5dTK4L5h9XrKekX/6Iu/gJHoEr+nwf0V4HnH5xziakV0jwSOPTgzSkLaZLknNsqqbuk5GLZA+m4d9zTKQtp/nX9LunZgEVXnWXelOubJF9vREmqJekFSTKz+pKe8C/fJemW89mOfL3qYvzTCWf52t2Srk85vKRzLknSkwGL6kh6O2Uhzd92g3y97CRfr7b6p9ug/98seSjIWmeZFwAAAEAmo5gGAAAAINj2yTd8XqqcczPk63kmSZf570sVKLnXzklJL59mPQflu7eYJJn+fg8tSfrT/zOffEMZZmn+HnmX+md/cM5NT6utv/fY1/7ZcvIVftKSKGnwaZ7/OmA65T3VzsU98g2dKEl3m9m1ksbJdxsCJ9993n5L68XpVC5geu9ZvvZ959yBNJ5bIulEwPw/evwF+CZgOj3HbZ//Zxkz+0evRAAAAADeoZgGAAAAINjmO+eOn6FNYAGnXvKEmV2ovwolK51zKe9BltKsgOkGKZ77wv8zQtJsM+tjZkXOsD4vBfZumpVmq9TbpNz3QBucc/tO8/zPAdOF0myVTs65w/Ld8+24fEXODyRV9D89yDmXnn07kwsCps+2mLYorSeccyfluy+aJB3WX0Xf1PwaMJ2e45a83hzy3TcQAAAAQBZBMQ0AAABAsG06yzYlA6ZLBExv0JkFtimR4rkR8t2fTfLdE+wdSbvN7Acze9vMephZgXRsI1gyct8D7TndSlLc6ytXOrZ7Rs657yU9mmLxckn/zoj1S8oZMH3oLF/7+xmeTz4ee93pb0J+tsftYMB07jRbAQAAAAg6imkAAAAAgu3PMzfR4YDpvAHT+dJok5Y/0nit/L3jrpL0gKQt/sUmqYakvvINPfirmb1pZvnTsa3MlmH7nkLSucU5bynvZfZJOnospldgIets/+3Sezwy+rgFFm6PpNkKAAAAQNBRTAMAAAAQbDHpaBM4zF1gUehQGm3SEliI+0cPJefccefcS865WEkXy1dEGy1ph79JTkl3SppnZl73FsrQffeS/z54w1Ms/reZxWXQJgKHdrwgzVZZS3LO40pfsRQAAABAkFBMAwAAABBslc6yzc6A6V8Cpi9Kx3oC2+xMs5Uk59xa59w7zrmbnHNlJDXXXz3WLpF0azq2l5kybd+DycxMvoJlUf+ij/w/c0gal0FFyy0B06FWTNt2huEjAQAAAAQZxTQAAAAAwXa5meU4Q5tmAdNLkiecc7slbfXPxplZUZ1eq4DpxemPKDnnZkvqH7Do8rN5vV/gUIB2Dq8PFJi/ZTran/O+Z7IB+ivbTEldJQ3zz1eT9EoGbOMn/dW7q0oGrC9TmVl5/XVftVUeRgEAAACQCoppAAAAAILtAkk3pvWkmbWSb8hFSfrOObcrRZPJ/p9Rkv51mvXkk2+IRklykqacQ9YtAdNR5/D6wCEq0zM0Y5qcc1skfe+fvcR/nFJlZnXl61kn+YqPy85n2xnFP4zjs/7Z3yTd5O+FdZ+k9f7l/cys4/lsxzmXqL/2uWoWuefd6TQImF7kWQoAAAAAqaKYBgAAAMALL5lZvZQLzayipHcDFr2cymvfkHTEP/2gmXVJZT25JI2RVNK/aLJzbmOKNi+b2WVnyHlHwPTKM7RNzU8B07XP4fUpPR8wPcrMqqZsYGZlJU3QX3/vvegvLnnKzGIkjZdvOEdJuiW5UOqc+1NSD/nuFyZJI8ys5D/Xcla+8P+MkFT3PNeV2QKLaTM9SwEAAAAgVefyzUoAAAAAOB+fyzdM4bdmNlrSfEmJkurJd1+yvP52HznnJqd8sXNui5ndJ2mofH/TTDKzT/zr3S/fvcJukVTB/5KfJd2VSo4ukgaY2U+SvpRveL3dknJKKiOpm6Q4f9vf9ddQhGfjq4DpF/zDUiZIOpmczTn3Q3pX5pybaGbXyFd4KiHpezMbJek7+Y5hXfmOYXJPrFmS3jqH3JnhFUnJxb83nXPTAp90zq0ws39LeklSYUmjzazVedw/bIqkp/zT8ZK+Psf1BEPysKY/OefOpWgLAAAAIBNRTAMAAAAQbEvk66E0XFIf/yOlzyX1SmsFzrm3zczkK9DkktTR/0hptaT2/nutpZR8P7NYSbedJu9WSZ2dc7+epk1aOVeZ2Xj5il/F5CsUBRot6aazXG1v+e4H1kdSbvl6z92RSrtJknqfRzEqw5hZJ0l9/bNrJD2QRtNBkq6Sr9h6paT79c9jli7OuTVmtkK+gmhPSf93LuvJbGZWTX8Vbcd6GAUAAABAGhjmEQAAAEDQOefGyNcTbbikHyUdlbRXvt5DvZxzbZ1zR8+wjqGSKss39OEK+XqlHZf0i3zFuJslxfnvNZaa2pI6yTds5GJJeySdkHRM0g7/Om6XVM05930a60iPG+Qrds3xb+PkaVufgXPupHPuNkkNJY2QtEm+4toR+YaVHCOphXOum3PuSNprCg4zKyXfv7PkO7Y908rlL/zdKN9xkqRnzOx8hsdM7pVX0cwancd6MtP1/p+Jkt7xMggAAACA1FkW+JIiAAAAgDBnZvGSZvtnn3DOPe5ZGGQb/nvnbZV0oaRhzrl+Hkf6GzOLlK8YWl7SB8657t4mAgAAAJAaeqYBAAAAAMKSv3fj//yzvc2spJd5UtFDvkJakqQnvI0CAAAAIC0U0wAAAAAA4WyIfMNf5pL0iMdZTvH3SnvUPzvKObfOyzwAAAAA0kYxDQAAAAAQtvy90wb4Z2/z38MtK+ghqYqkA8pCRT4AAAAA/0QxDQAAAAAQ1pxzHzvnzDmXyzn3s9d5JMk5N8afqaBzbrfXeQAAAACkjWIaAAAAAAAAAAAAkAZzznmdAQAAAAAAAAAAAMiS6JkGAAAAAAAAAAAApIFiGgAAAAAAAAAAAJAGimkAAAAAAAAAAABAGiimAQAAAAAAAAAAAGmgmAYAAAAAAAAAAACkgWIaAAAAAAAAAAAAkIb/BzTQ/e2POc/ZAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "samples = [2.0, 2.1, 1.9, 1.0, 2.5, 2.3, 3.0] # add samples in a list, increased by 2 more samples than before\n",
+ "samples = np.add(samples, 1.) # shift the samples by 1\n",
+ "\n",
+ "gaussian = Gaussian(samples) # calculate the mean and covariance out of these samples\n",
+ "\n",
+ "fig, ax = make_figure(xlims=(0, 6)) # create figure\n",
+ "\n",
+ "ax.plot(samples, np.zeros((len(samples), 1)), 'x', markersize=20, color='red') # plot samples\n",
+ "\n",
+ "add_gaussian_bel(ax, gaussian.x, gaussian.P, 'green') # plot gaussian distribution\n",
+ "\n",
+ "update_plot()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a02ea868",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "646376a1",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.12"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/python/examples/images/gaussian_01.png b/python/examples/images/gaussian_01.png
new file mode 100644
index 0000000..899b2f0
Binary files /dev/null and b/python/examples/images/gaussian_01.png differ
diff --git a/python/examples/images/gaussian_02.png b/python/examples/images/gaussian_02.png
new file mode 100644
index 0000000..2dedfa6
Binary files /dev/null and b/python/examples/images/gaussian_02.png differ
diff --git a/python/examples/images/gaussian_03.png b/python/examples/images/gaussian_03.png
new file mode 100644
index 0000000..0762f06
Binary files /dev/null and b/python/examples/images/gaussian_03.png differ
diff --git a/python/examples/images/gaussian_04.png b/python/examples/images/gaussian_04.png
new file mode 100644
index 0000000..a0fbafb
Binary files /dev/null and b/python/examples/images/gaussian_04.png differ
diff --git a/python/examples/images/gaussian_05.png b/python/examples/images/gaussian_05.png
new file mode 100644
index 0000000..2d6fd97
Binary files /dev/null and b/python/examples/images/gaussian_05.png differ
diff --git a/python/examples/images/gaussian_06.png b/python/examples/images/gaussian_06.png
new file mode 100644
index 0000000..303474d
Binary files /dev/null and b/python/examples/images/gaussian_06.png differ
diff --git a/python/examples/images/gaussian_07.png b/python/examples/images/gaussian_07.png
new file mode 100644
index 0000000..6a99bfc
Binary files /dev/null and b/python/examples/images/gaussian_07.png differ
diff --git a/python/examples/images/gaussian_08.png b/python/examples/images/gaussian_08.png
new file mode 100644
index 0000000..cc2c951
Binary files /dev/null and b/python/examples/images/gaussian_08.png differ
diff --git a/python/examples/images/gaussian_09.png b/python/examples/images/gaussian_09.png
new file mode 100644
index 0000000..06ff588
Binary files /dev/null and b/python/examples/images/gaussian_09.png differ
diff --git a/python/examples/images/gaussian_10.png b/python/examples/images/gaussian_10.png
new file mode 100644
index 0000000..28b7937
Binary files /dev/null and b/python/examples/images/gaussian_10.png differ
diff --git a/python/examples/images/posts/ukf/figure_1.png b/python/examples/images/posts/ukf/figure_1.png
new file mode 100644
index 0000000..06a747a
Binary files /dev/null and b/python/examples/images/posts/ukf/figure_1.png differ
diff --git a/python/examples/images/posts/ukf/figure_2.png b/python/examples/images/posts/ukf/figure_2.png
new file mode 100644
index 0000000..e5457ed
Binary files /dev/null and b/python/examples/images/posts/ukf/figure_2.png differ
diff --git a/python/examples/images/posts/ukf/figure_3.png b/python/examples/images/posts/ukf/figure_3.png
new file mode 100644
index 0000000..aac8956
Binary files /dev/null and b/python/examples/images/posts/ukf/figure_3.png differ
diff --git a/python/examples/images/posts/unscented_transformation_with_python/1.png b/python/examples/images/posts/unscented_transformation_with_python/1.png
new file mode 100644
index 0000000..054602c
Binary files /dev/null and b/python/examples/images/posts/unscented_transformation_with_python/1.png differ
diff --git a/python/examples/images/posts/unscented_transformation_with_python/2.png b/python/examples/images/posts/unscented_transformation_with_python/2.png
new file mode 100644
index 0000000..0a52d0d
Binary files /dev/null and b/python/examples/images/posts/unscented_transformation_with_python/2.png differ
diff --git a/python/examples/images/posts/unscented_transformation_with_python/3.png b/python/examples/images/posts/unscented_transformation_with_python/3.png
new file mode 100644
index 0000000..89455f0
Binary files /dev/null and b/python/examples/images/posts/unscented_transformation_with_python/3.png differ
diff --git a/python/examples/images/posts/unscented_transformation_with_python/4.png b/python/examples/images/posts/unscented_transformation_with_python/4.png
new file mode 100644
index 0000000..82f3c45
Binary files /dev/null and b/python/examples/images/posts/unscented_transformation_with_python/4.png differ
diff --git a/python/examples/images/posts/unscented_transformation_with_python/5.png b/python/examples/images/posts/unscented_transformation_with_python/5.png
new file mode 100644
index 0000000..e841234
Binary files /dev/null and b/python/examples/images/posts/unscented_transformation_with_python/5.png differ
diff --git a/python/examples/images/posts/unscented_transformation_with_python/6.png b/python/examples/images/posts/unscented_transformation_with_python/6.png
new file mode 100644
index 0000000..4c5ed39
Binary files /dev/null and b/python/examples/images/posts/unscented_transformation_with_python/6.png differ
diff --git a/python/examples/images/posts/unscented_transformation_with_python/7.png b/python/examples/images/posts/unscented_transformation_with_python/7.png
new file mode 100644
index 0000000..f96f77a
Binary files /dev/null and b/python/examples/images/posts/unscented_transformation_with_python/7.png differ
diff --git a/python/examples/images/posts/unscented_transformation_with_python/8.png b/python/examples/images/posts/unscented_transformation_with_python/8.png
new file mode 100644
index 0000000..44a166e
Binary files /dev/null and b/python/examples/images/posts/unscented_transformation_with_python/8.png differ
diff --git a/python/examples/images/posts/unscented_transformation_with_python/9.png b/python/examples/images/posts/unscented_transformation_with_python/9.png
new file mode 100644
index 0000000..dc82993
Binary files /dev/null and b/python/examples/images/posts/unscented_transformation_with_python/9.png differ
diff --git a/res/images/codingcorner_cover_image.png b/res/images/codingcorner_cover_image.png
new file mode 100644
index 0000000..4501cd2
Binary files /dev/null and b/res/images/codingcorner_cover_image.png differ
diff --git a/src/examples/CMakeLists.txt b/src/examples/CMakeLists.txt
new file mode 100644
index 0000000..8fcad11
--- /dev/null
+++ b/src/examples/CMakeLists.txt
@@ -0,0 +1,10 @@
+set(EXAMPLE_EXECUTABLE_PREFIX "example_")
+
+add_subdirectory(kf_state_estimation)
+add_subdirectory(ekf_range_sensor)
+add_subdirectory(unscented_transform)
+add_subdirectory(ukf_range_sensor)
+add_subdirectory(test_least_squares)
+add_subdirectory(sr_ukf_linear_function)
+add_subdirectory(ego_motion_model_adapter)
+
diff --git a/src/examples/ego_motion_model_adapter/CMakeLists.txt b/src/examples/ego_motion_model_adapter/CMakeLists.txt
new file mode 100644
index 0000000..2ab4b1c
--- /dev/null
+++ b/src/examples/ego_motion_model_adapter/CMakeLists.txt
@@ -0,0 +1,31 @@
+##
+## Copyright 2022 Mohanad Youssef (Al-khwarizmi)
+##
+## Use of this source code is governed by an GPL-3.0 - style
+## license that can be found in the LICENSE file or at
+## https://opensource.org/licenses/GPL-3.0
+##
+## @author Mohanad Youssef
+## @file CMakeLists.h
+##
+
+file(GLOB PROJECT_FILES
+ "${CMAKE_CURRENT_SOURCE_DIR}/*.h"
+ "${CMAKE_CURRENT_SOURCE_DIR}/*.cpp"
+)
+
+set(APPLICATION_NAME ${EXAMPLE_EXECUTABLE_PREFIX}_ego_motion_model_adapter)
+
+add_executable(${APPLICATION_NAME} ${PROJECT_FILES})
+
+set_target_properties(${APPLICATION_NAME} PROPERTIES LINKER_LANGUAGE CXX)
+
+target_link_libraries(${APPLICATION_NAME}
+ PUBLIC
+ Eigen3::Eigen
+ OpenKF
+)
+
+target_include_directories(${APPLICATION_NAME} PUBLIC
+ $
+)
diff --git a/src/examples/ego_motion_model_adapter/main.cpp b/src/examples/ego_motion_model_adapter/main.cpp
new file mode 100644
index 0000000..ae2018e
--- /dev/null
+++ b/src/examples/ego_motion_model_adapter/main.cpp
@@ -0,0 +1,183 @@
+///
+/// Copyright 2022 Mohanad Youssef (Al-khwarizmi)
+///
+/// Use of this source code is governed by an GPL-3.0 - style
+/// license that can be found in the LICENSE file or at
+/// https://opensource.org/licenses/GPL-3.0
+///
+/// @author Mohanad Youssef
+/// @file main.cpp
+///
+
+#include
+#include
+
+#include "kalman_filter/kalman_filter.h"
+#include "motion_model/ego_motion_model.h"
+#include "types.h"
+
+static constexpr size_t DIM_X{5}; /// \vec{x} = [x, y, vx, vy, yaw]^T
+static constexpr size_t DIM_U{3}; /// \vec{u} = [steeringAngle, ds, dyaw]^T
+static constexpr size_t DIM_Z{2};
+
+using namespace kf;
+
+/// @brief This is an adapter example to show case how to convert from the
+/// 3-dimension state egomotion model to a higher or lower dimension state
+/// vector (e.g. 5-dimension state vector and 3-dimension input vector).
+class EgoMotionModelAdapter
+ : public motionmodel::MotionModelExtInput
+{
+ public:
+ virtual Vector f(
+ Vector const& vecX, Vector const& vecU,
+ Vector const& /*vecQ = Vector::Zero()*/) const override
+ {
+ Vector<3> tmpVecX; // \vec{x} = [x, y, yaw]^T
+ tmpVecX << vecX[0], vecX[1], vecX[4];
+
+ Vector<2> tmpVecU; // \vec{u} = [ds, dyaw]^T
+ tmpVecU << vecU[1], vecU[2];
+
+ motionmodel::EgoMotionModel const egoMotionModel;
+ tmpVecX = egoMotionModel.f(tmpVecX, tmpVecU);
+
+ Vector vecXout;
+ vecXout[0] = tmpVecX[0];
+ vecXout[1] = tmpVecX[1];
+ vecXout[4] = tmpVecX[2];
+
+ return vecXout;
+ }
+
+ virtual Matrix getProcessNoiseCov(
+ Vector const& vecX, Vector const& vecU) const override
+ {
+ // input idx -> output index mapping
+ // 0 -> 0
+ // 1 -> 1
+ // 2 -> 4
+ Vector<3> tmpVecX;
+ tmpVecX << vecX[0], vecX[1], vecX[4];
+
+ // input idx -> output index mapping
+ // 0 -> 1
+ // 1 -> 2
+ Vector<2> tmpVecU;
+ tmpVecU << vecU[1], vecU[2];
+
+ motionmodel::EgoMotionModel const egoMotionModel;
+
+ Matrix<3, 3> matQ = egoMotionModel.getProcessNoiseCov(tmpVecX, tmpVecU);
+
+ // |q00 q01 x x q02|
+ // |q10 q11 x x q12| |q00 q01 q02|
+ // Qout = | x x x x x| <- Q = |q10 q11 q12|
+ // | x x x x x| |q20 q21 q22|
+ // |q20 q21 x x q22|
+
+ Matrix matQout;
+ matQout(0, 0) = matQ(0, 0);
+ matQout(0, 1) = matQ(0, 1);
+ matQout(0, 4) = matQ(0, 2);
+ matQout(1, 0) = matQ(1, 0);
+ matQout(1, 1) = matQ(1, 1);
+ matQout(1, 4) = matQ(1, 2);
+ matQout(4, 0) = matQ(2, 0);
+ matQout(4, 1) = matQ(2, 1);
+ matQout(4, 4) = matQ(2, 1);
+
+ return matQout;
+ }
+
+ virtual Matrix getInputNoiseCov(
+ Vector const& vecX, Vector const& vecU) const override
+ {
+ Vector<3> tmpVecX;
+ tmpVecX << vecX[0], vecX[1], vecX[4];
+
+ Vector<2> tmpVecU;
+ tmpVecU << vecU[1], vecU[2];
+
+ motionmodel::EgoMotionModel const egoMotionModel;
+
+ Matrix<3, 3> matU = egoMotionModel.getInputNoiseCov(tmpVecX, tmpVecU);
+
+ Matrix matUout;
+ matUout(0, 0) = matU(0, 0);
+ matUout(0, 1) = matU(0, 1);
+ matUout(0, 4) = matU(0, 2);
+ matUout(1, 0) = matU(1, 0);
+ matUout(1, 1) = matU(1, 1);
+ matUout(1, 4) = matU(1, 2);
+ matUout(4, 0) = matU(2, 0);
+ matUout(4, 1) = matU(2, 1);
+ matUout(4, 4) = matU(2, 1);
+
+ return matUout;
+ }
+
+ virtual Matrix getJacobianFk(
+ Vector const& vecX, Vector const& vecU) const override
+ {
+ Vector<3> tmpVecX;
+ tmpVecX << vecX[0], vecX[1], vecX[4];
+
+ Vector<2> tmpVecU;
+ tmpVecU << vecU[1], vecU[2];
+
+ motionmodel::EgoMotionModel const egoMotionModel;
+
+ Matrix<3, 3> matFk = egoMotionModel.getJacobianFk(tmpVecX, tmpVecU);
+
+ Matrix matFkout;
+ matFkout(0, 0) = matFk(0, 0);
+ matFkout(0, 1) = matFk(0, 1);
+ matFkout(0, 4) = matFk(0, 2);
+ matFkout(1, 0) = matFk(1, 0);
+ matFkout(1, 1) = matFk(1, 1);
+ matFkout(1, 4) = matFk(1, 2);
+ matFkout(4, 0) = matFk(2, 0);
+ matFkout(4, 1) = matFk(2, 1);
+ matFkout(4, 4) = matFk(2, 1);
+
+ return matFkout;
+ }
+
+ virtual Matrix getJacobianBk(
+ Vector const& vecX, Vector const& vecU) const override
+ {
+ Vector<3> tmpVecX;
+ tmpVecX << vecX[0], vecX[1], vecX[4];
+
+ Vector<2> tmpVecU;
+ tmpVecU << vecU[1], vecU[2];
+
+ motionmodel::EgoMotionModel const egoMotionModel;
+
+ Matrix<3, 2> matBk = egoMotionModel.getJacobianBk(tmpVecX, tmpVecU);
+
+ Matrix matBkout;
+ matBkout(0, 1) = matBk(0, 0);
+ matBkout(0, 2) = matBk(0, 1);
+ matBkout(1, 1) = matBk(1, 0);
+ matBkout(1, 2) = matBk(1, 1);
+ matBkout(4, 1) = matBk(2, 0);
+ matBkout(4, 2) = matBk(2, 1);
+
+ return matBkout;
+ }
+};
+
+int main()
+{
+ EgoMotionModelAdapter egoMotionModelAdapter;
+
+ Vector vecU;
+ vecU << 1.0F, 2.0F, 0.01F;
+
+ KalmanFilter kf;
+ kf.predictEkf(egoMotionModelAdapter, vecU);
+
+ return 0;
+}
diff --git a/src/examples/ekf_range_sensor/CMakeLists.txt b/src/examples/ekf_range_sensor/CMakeLists.txt
new file mode 100644
index 0000000..6236de0
--- /dev/null
+++ b/src/examples/ekf_range_sensor/CMakeLists.txt
@@ -0,0 +1,31 @@
+##
+## Copyright 2022 Mohanad Youssef (Al-khwarizmi)
+##
+## Use of this source code is governed by an GPL-3.0 - style
+## license that can be found in the LICENSE file or at
+## https://opensource.org/licenses/GPL-3.0
+##
+## @author Mohanad Youssef
+## @file CMakeLists.h
+##
+
+file(GLOB PROJECT_FILES
+ "${CMAKE_CURRENT_SOURCE_DIR}/*.h"
+ "${CMAKE_CURRENT_SOURCE_DIR}/*.cpp"
+)
+
+set(APPLICATION_NAME ${EXAMPLE_EXECUTABLE_PREFIX}_ekf_range_sensor)
+
+add_executable(${APPLICATION_NAME} ${PROJECT_FILES})
+
+set_target_properties(${APPLICATION_NAME} PROPERTIES LINKER_LANGUAGE CXX)
+
+target_link_libraries(${APPLICATION_NAME}
+ PUBLIC
+ Eigen3::Eigen
+ OpenKF
+)
+
+target_include_directories(${APPLICATION_NAME} PUBLIC
+ $
+)
diff --git a/src/examples/ekf_range_sensor/main.cpp b/src/examples/ekf_range_sensor/main.cpp
new file mode 100644
index 0000000..2964741
--- /dev/null
+++ b/src/examples/ekf_range_sensor/main.cpp
@@ -0,0 +1,74 @@
+///
+/// Copyright 2022 Mohanad Youssef (Al-khwarizmi)
+///
+/// Use of this source code is governed by an GPL-3.0 - style
+/// license that can be found in the LICENSE file or at
+/// https://opensource.org/licenses/GPL-3.0
+///
+/// @author Mohanad Youssef
+/// @file main.cpp
+///
+
+#include
+#include
+
+#include "kalman_filter/kalman_filter.h"
+#include "kalman_filter/unscented_transform.h"
+#include "types.h"
+
+static constexpr size_t DIM_X{2};
+static constexpr size_t DIM_Z{2};
+
+static kf::KalmanFilter kalmanfilter;
+
+kf::Vector covertCartesian2Polar(const kf::Vector& cartesian);
+kf::Matrix calculateJacobianMatrix(const kf::Vector& vecX);
+void executeCorrectionStep();
+
+int main()
+{
+ executeCorrectionStep();
+
+ return 0;
+}
+
+kf::Vector covertCartesian2Polar(const kf::Vector& cartesian)
+{
+ const kf::Vector polar{
+ std::sqrt(cartesian[0] * cartesian[0] + cartesian[1] * cartesian[1]),
+ std::atan2(cartesian[1], cartesian[0])};
+ return polar;
+}
+
+kf::Matrix calculateJacobianMatrix(const kf::Vector& vecX)
+{
+ const kf::float32_t valX2PlusY2{(vecX[0] * vecX[0]) + (vecX[1] * vecX[1])};
+ const kf::float32_t valSqrtX2PlusY2{std::sqrt(valX2PlusY2)};
+
+ kf::Matrix matHj;
+ matHj << (vecX[0] / valSqrtX2PlusY2), (vecX[1] / valSqrtX2PlusY2),
+ (-vecX[1] / valX2PlusY2), (vecX[0] / valX2PlusY2);
+
+ return matHj;
+}
+
+void executeCorrectionStep()
+{
+ kalmanfilter.vecX() << 10.0F, 5.0F;
+ kalmanfilter.matP() << 0.3F, 0.0F, 0.0F, 0.3F;
+
+ const kf::Vector measPosCart{10.4F, 5.2F};
+ const kf::Vector vecZ{covertCartesian2Polar(measPosCart)};
+
+ kf::Matrix matR;
+ matR << 0.1F, 0.0F, 0.0F, 0.0008F;
+
+ kf::Matrix matHj{
+ calculateJacobianMatrix(kalmanfilter.vecX())}; // jacobian matrix Hj
+
+ kalmanfilter.correctEkf(covertCartesian2Polar, vecZ, matR, matHj);
+
+ std::cout << "\ncorrected state vector = \n" << kalmanfilter.vecX() << "\n";
+ std::cout << "\ncorrected state covariance = \n"
+ << kalmanfilter.matP() << "\n";
+}
diff --git a/src/examples/kf_state_estimation/CMakeLists.txt b/src/examples/kf_state_estimation/CMakeLists.txt
new file mode 100644
index 0000000..e2c1f4b
--- /dev/null
+++ b/src/examples/kf_state_estimation/CMakeLists.txt
@@ -0,0 +1,31 @@
+##
+## Copyright 2022 Mohanad Youssef (Al-khwarizmi)
+##
+## Use of this source code is governed by an GPL-3.0 - style
+## license that can be found in the LICENSE file or at
+## https://opensource.org/licenses/GPL-3.0
+##
+## @author Mohanad Youssef
+## @file CMakeLists.h
+##
+
+file(GLOB PROJECT_FILES
+ "${CMAKE_CURRENT_SOURCE_DIR}/*.h"
+ "${CMAKE_CURRENT_SOURCE_DIR}/*.cpp"
+)
+
+set(APPLICATION_NAME ${EXAMPLE_EXECUTABLE_PREFIX}_kf_state_estimation)
+
+add_executable(${APPLICATION_NAME} ${PROJECT_FILES})
+
+set_target_properties(${APPLICATION_NAME} PROPERTIES LINKER_LANGUAGE CXX)
+
+target_link_libraries(${APPLICATION_NAME}
+ PUBLIC
+ Eigen3::Eigen
+ OpenKF
+)
+
+target_include_directories(${APPLICATION_NAME} PUBLIC
+ $
+)
diff --git a/src/examples/kf_state_estimation/main.cpp b/src/examples/kf_state_estimation/main.cpp
new file mode 100644
index 0000000..bffea3d
--- /dev/null
+++ b/src/examples/kf_state_estimation/main.cpp
@@ -0,0 +1,72 @@
+///
+/// Copyright 2022 Mohanad Youssef (Al-khwarizmi)
+///
+/// Use of this source code is governed by an GPL-3.0 - style
+/// license that can be found in the LICENSE file or at
+/// https://opensource.org/licenses/GPL-3.0
+///
+/// @author Mohanad Youssef
+/// @file main.cpp
+///
+
+#include
+#include
+
+#include "kalman_filter/kalman_filter.h"
+#include "types.h"
+
+static constexpr size_t DIM_X{2};
+static constexpr size_t DIM_Z{1};
+static constexpr kf::float32_t T{1.0F};
+static constexpr kf::float32_t Q11{0.1F}, Q22{0.1F};
+
+static kf::KalmanFilter kalmanfilter;
+
+void executePredictionStep();
+void executeCorrectionStep();
+
+int main()
+{
+ executePredictionStep();
+ executeCorrectionStep();
+
+ return 0;
+}
+
+void executePredictionStep()
+{
+ kalmanfilter.vecX() << 0.0F, 2.0F;
+ kalmanfilter.matP() << 0.1F, 0.0F, 0.0F, 0.1F;
+
+ kf::Matrix F; // state transition matrix
+ F << 1.0F, T, 0.0F, 1.0F;
+
+ kf::Matrix Q; // process noise covariance
+ Q(0, 0) = (Q11 * T) + (Q22 * (std::pow(T, 3.0F) / 3.0F));
+ Q(0, 1) = Q(1, 0) = Q22 * (std::pow(T, 2.0F) / 2.0F);
+ Q(1, 1) = Q22 * T;
+
+ kalmanfilter.predictLKF(F, Q); // execute prediction step
+
+ std::cout << "\npredicted state vector = \n" << kalmanfilter.vecX() << "\n";
+ std::cout << "\npredicted state covariance = \n"
+ << kalmanfilter.matP() << "\n";
+}
+
+void executeCorrectionStep()
+{
+ kf::Vector vecZ;
+ vecZ << 2.25F;
+
+ kf::Matrix matR;
+ matR << 0.01F;
+
+ kf::Matrix matH;
+ matH << 1.0F, 0.0F;
+
+ kalmanfilter.correctLKF(vecZ, matR, matH);
+
+ std::cout << "\ncorrected state vector = \n" << kalmanfilter.vecX() << "\n";
+ std::cout << "\ncorrected state covariance = \n"
+ << kalmanfilter.matP() << "\n";
+}
diff --git a/src/examples/sr_ukf_linear_function/CMakeLists.txt b/src/examples/sr_ukf_linear_function/CMakeLists.txt
new file mode 100644
index 0000000..abc4e58
--- /dev/null
+++ b/src/examples/sr_ukf_linear_function/CMakeLists.txt
@@ -0,0 +1,31 @@
+##
+## Copyright 2022 Mohanad Youssef (Al-khwarizmi)
+##
+## Use of this source code is governed by an GPL-3.0 - style
+## license that can be found in the LICENSE file or at
+## https://opensource.org/licenses/GPL-3.0
+##
+## @author Mohanad Youssef
+## @file CMakeLists.h
+##
+
+file(GLOB PROJECT_FILES
+ "${CMAKE_CURRENT_SOURCE_DIR}/*.h"
+ "${CMAKE_CURRENT_SOURCE_DIR}/*.cpp"
+)
+
+set(APPLICATION_NAME ${EXAMPLE_EXECUTABLE_PREFIX}_sr_ukf_linear_function)
+
+add_executable(${APPLICATION_NAME} ${PROJECT_FILES})
+
+set_target_properties(${APPLICATION_NAME} PROPERTIES LINKER_LANGUAGE CXX)
+
+target_link_libraries(${APPLICATION_NAME}
+ PUBLIC
+ Eigen3::Eigen
+ OpenKF
+)
+
+target_include_directories(${APPLICATION_NAME} PUBLIC
+ $
+)
diff --git a/src/examples/sr_ukf_linear_function/main.cpp b/src/examples/sr_ukf_linear_function/main.cpp
new file mode 100644
index 0000000..a4790b5
--- /dev/null
+++ b/src/examples/sr_ukf_linear_function/main.cpp
@@ -0,0 +1,93 @@
+///
+/// Copyright 2022 Mohanad Youssef (Al-khwarizmi)
+///
+/// Use of this source code is governed by an GPL-3.0 - style
+/// license that can be found in the LICENSE file or at
+/// https://opensource.org/licenses/GPL-3.0
+///
+/// @author Mohanad Youssef
+/// @file main.cpp
+///
+
+#include
+#include
+
+#include "kalman_filter/square_root_ukf.h"
+#include "types.h"
+
+static constexpr size_t DIM_X{2};
+static constexpr size_t DIM_Z{2};
+
+void runExample1();
+
+kf::Vector funcF(const kf::Vector& x)
+{
+ return x;
+}
+
+int main()
+{
+ // example 1
+ runExample1();
+
+ return 0;
+}
+
+void runExample1()
+{
+ std::cout << " Start of Example 1: ===========================" << std::endl;
+
+ // initializations
+ // x0 = np.array([1.0, 2.0])
+ // P0 = np.array([[1.0, 0.5], [0.5, 1.0]])
+ // Q = np.array([[0.5, 0.0], [0.0, 0.5]])
+
+ // z = np.array([1.2, 1.8])
+ // R = np.array([[0.3, 0.0], [0.0, 0.3]])
+
+ kf::Vector x;
+ x << 1.0F, 2.0F;
+
+ kf::Matrix P;
+ P << 1.0F, 0.5F, 0.5F, 1.0F;
+
+ kf::Matrix Q;
+ Q << 0.5F, 0.0F, 0.0F, 0.5F;
+
+ kf::Vector z;
+ z << 1.2F, 1.8F;
+
+ kf::Matrix R;
+ R << 0.3F, 0.0F, 0.0F, 0.3F;
+
+ kf::SquareRootUKF srUkf;
+ srUkf.initialize(x, P, Q, R);
+
+ srUkf.predictSRUKF(funcF);
+
+ std::cout << "x = \n" << srUkf.vecX() << std::endl;
+ std::cout << "P = \n" << srUkf.matP() << std::endl;
+
+ // Expectation from the python results:
+ // =====================================
+ // x1 =
+ // [1. 2.]
+ // P1 =
+ // [[1.5 0.5]
+ // [0.5 1.5]]
+
+ srUkf.correctSRUKF(funcF, z);
+
+ std::cout << "x = \n" << srUkf.vecX() << std::endl;
+ std::cout << "P = \n" << srUkf.matP() << std::endl;
+
+ // Expectations from the python results:
+ // ======================================
+ // x =
+ // [1.15385 1.84615]
+ // P =
+ // [[ 0.24582 0.01505 ]
+ // [ 0.01505 0.24582 ]]
+
+ std::cout << " End of Example 1: ===========================" << std::endl;
+}
diff --git a/src/examples/test_least_squares/CMakeLists.txt b/src/examples/test_least_squares/CMakeLists.txt
new file mode 100644
index 0000000..2f429c7
--- /dev/null
+++ b/src/examples/test_least_squares/CMakeLists.txt
@@ -0,0 +1,31 @@
+##
+## Copyright 2022 Mohanad Youssef (Al-khwarizmi)
+##
+## Use of this source code is governed by an GPL-3.0 - style
+## license that can be found in the LICENSE file or at
+## https://opensource.org/licenses/GPL-3.0
+##
+## @author Mohanad Youssef
+## @file CMakeLists.h
+##
+
+file(GLOB PROJECT_FILES
+ "${CMAKE_CURRENT_SOURCE_DIR}/*.h"
+ "${CMAKE_CURRENT_SOURCE_DIR}/*.cpp"
+)
+
+set(APPLICATION_NAME ${EXAMPLE_EXECUTABLE_PREFIX}_test_least_squares)
+
+add_executable(${APPLICATION_NAME} ${PROJECT_FILES})
+
+set_target_properties(${APPLICATION_NAME} PROPERTIES LINKER_LANGUAGE CXX)
+
+target_link_libraries(${APPLICATION_NAME}
+ PUBLIC
+ Eigen3::Eigen
+ OpenKF
+)
+
+target_include_directories(${APPLICATION_NAME} PUBLIC
+ $
+)
diff --git a/src/examples/test_least_squares/main.cpp b/src/examples/test_least_squares/main.cpp
new file mode 100644
index 0000000..b76d939
--- /dev/null
+++ b/src/examples/test_least_squares/main.cpp
@@ -0,0 +1,101 @@
+///
+/// Copyright 2022 Mohanad Youssef (Al-khwarizmi)
+///
+/// Use of this source code is governed by an GPL-3.0 - style
+/// license that can be found in the LICENSE file or at
+/// https://opensource.org/licenses/GPL-3.0
+///
+/// @author Mohanad Youssef
+/// @file main.cpp
+///
+
+#include
+#include
+
+#include "types.h"
+#include "util.h"
+
+void runExample1();
+void runExample2();
+void runExample3();
+void runExample4();
+
+int main()
+{
+ runExample1();
+ runExample2();
+ runExample3();
+ runExample4();
+
+ return 0;
+}
+
+void runExample1()
+{
+ std::cout << " Start of Example 1: ===========================" << std::endl;
+
+ kf::Matrix<3, 3> A;
+ A << 3.0, 2.0, 1.0, 2.0, 3.0, 4.0, 1.0, 4.0, 3.0;
+
+ kf::Matrix<2, 3> B;
+ B << 5.0, 6.0, 7.0, 8.0, 9.0, 10.0;
+
+ kf::util::JointRows<3, 2, 3> jmat(A, B);
+ auto AB = jmat.jointMatrix();
+
+ std::cout << "Joint Rows: AB = \n" << AB << std::endl;
+
+ std::cout << " End of Example 1: ===========================" << std::endl;
+}
+
+void runExample2()
+{
+ std::cout << " Start of Example 2: ===========================" << std::endl;
+
+ kf::Matrix<3, 3> A;
+ A << 3.0, 2.0, 1.0, 2.0, 3.0, 4.0, 1.0, 4.0, 3.0;
+
+ kf::Matrix<3, 2> B;
+ B << 5.0, 6.0, 7.0, 8.0, 9.0, 10.0;
+
+ kf::util::JointCols<3, 3, 2> jmat(A, B);
+ auto AB = jmat.jointMatrix();
+
+ std::cout << "Joint Columns: AB = \n" << AB << std::endl;
+
+ std::cout << " End of Example 2: ===========================" << std::endl;
+}
+
+void runExample3()
+{
+ std::cout << " Start of Example 2: ===========================" << std::endl;
+
+ kf::Matrix<3, 3> A;
+ A << 1.0, -2.0, 1.0, 0.0, 1.0, 6.0, 0.0, 0.0, 1.0;
+
+ kf::Matrix<3, 1> b;
+ b << 4.0, -1.0, 2.0;
+
+ auto x = kf::util::backwardSubstitute<3, 1>(A, b);
+
+ std::cout << "Backward Substitution: x = \n" << x << std::endl;
+
+ std::cout << " End of Example 2: ===========================" << std::endl;
+}
+
+void runExample4()
+{
+ std::cout << " Start of Example 2: ===========================" << std::endl;
+
+ kf::Matrix<3, 3> A;
+ A << 1.0, 0.0, 0.0, -2.0, 1.0, 0.0, 1.0, 6.0, 1.0;
+
+ kf::Matrix<3, 1> b;
+ b << 4.0, -1.0, 2.0;
+
+ auto x = kf::util::forwardSubstitute<3, 1>(A, b);
+
+ std::cout << "Forward Substitution: x = \n" << x << std::endl;
+
+ std::cout << " End of Example 2: ===========================" << std::endl;
+}
diff --git a/src/examples/ukf_range_sensor/CMakeLists.txt b/src/examples/ukf_range_sensor/CMakeLists.txt
new file mode 100644
index 0000000..b1d0037
--- /dev/null
+++ b/src/examples/ukf_range_sensor/CMakeLists.txt
@@ -0,0 +1,31 @@
+##
+## Copyright 2022 Mohanad Youssef (Al-khwarizmi)
+##
+## Use of this source code is governed by an GPL-3.0 - style
+## license that can be found in the LICENSE file or at
+## https://opensource.org/licenses/GPL-3.0
+##
+## @author Mohanad Youssef
+## @file CMakeLists.h
+##
+
+file(GLOB PROJECT_FILES
+ "${CMAKE_CURRENT_SOURCE_DIR}/*.h"
+ "${CMAKE_CURRENT_SOURCE_DIR}/*.cpp"
+)
+
+set(APPLICATION_NAME ${EXAMPLE_EXECUTABLE_PREFIX}_ukf_range_sensor)
+
+add_executable(${APPLICATION_NAME} ${PROJECT_FILES})
+
+set_target_properties(${APPLICATION_NAME} PROPERTIES LINKER_LANGUAGE CXX)
+
+target_link_libraries(${APPLICATION_NAME}
+ PUBLIC
+ Eigen3::Eigen
+ OpenKF
+)
+
+target_include_directories(${APPLICATION_NAME} PUBLIC
+ $
+)
diff --git a/src/examples/ukf_range_sensor/main.cpp b/src/examples/ukf_range_sensor/main.cpp
new file mode 100644
index 0000000..2269ff2
--- /dev/null
+++ b/src/examples/ukf_range_sensor/main.cpp
@@ -0,0 +1,115 @@
+///
+/// Copyright 2022 Mohanad Youssef (Al-khwarizmi)
+///
+/// Use of this source code is governed by an GPL-3.0 - style
+/// license that can be found in the LICENSE file or at
+/// https://opensource.org/licenses/GPL-3.0
+///
+/// @author Mohanad Youssef
+/// @file main.cpp
+///
+
+#include
+#include
+
+#include "kalman_filter/unscented_kalman_filter.h"
+#include "types.h"
+
+static constexpr size_t DIM_X{4};
+static constexpr size_t DIM_V{4};
+static constexpr size_t DIM_Z{2};
+static constexpr size_t DIM_N{2};
+
+void runExample1();
+
+kf::Vector funcF(const kf::Vector& x, const kf::Vector& v)
+{
+ kf::Vector y;
+ y[0] = x[0] + x[2] + v[0];
+ y[1] = x[1] + x[3] + v[1];
+ y[2] = x[2] + v[2];
+ y[3] = x[3] + v[3];
+ return y;
+}
+
+kf::Vector funcH(const kf::Vector& x, const kf::Vector& n)
+{
+ kf::Vector y;
+
+ kf::float32_t px{x[0] + n[0]};
+ kf::float32_t py{x[1] + n[1]};
+
+ y[0] = std::sqrt((px * px) + (py * py));
+ y[1] = std::atan(py / (px + std::numeric_limits::epsilon()));
+ return y;
+}
+
+int main()
+{
+ // example 1
+ runExample1();
+
+ return 0;
+}
+
+void runExample1()
+{
+ std::cout << " Start of Example 1: ===========================" << std::endl;
+
+ kf::Vector x;
+ x << 2.0F, 1.0F, 0.0F, 0.0F;
+
+ kf::Matrix P;
+ P << 0.01F, 0.0F, 0.0F, 0.0F, 0.0F, 0.01F, 0.0F, 0.0F, 0.0F, 0.0F, 0.05F,
+ 0.0F, 0.0F, 0.0F, 0.0F, 0.05F;
+
+ kf::Matrix Q;
+ Q << 0.05F, 0.0F, 0.0F, 0.0F, 0.0F, 0.05F, 0.0F, 0.0F, 0.0F, 0.0F, 0.1F, 0.0F,
+ 0.0F, 0.0F, 0.0F, 0.1F;
+
+ kf::Matrix R;
+ R << 0.01F, 0.0F, 0.0F, 0.01F;
+
+ kf::Vector z;
+ z << 2.5F, 0.05F;
+
+ kf::UnscentedKalmanFilter ukf;
+
+ ukf.vecX() = x;
+ ukf.matP() = P;
+
+ ukf.setCovarianceQ(Q);
+ ukf.setCovarianceR(R);
+
+ ukf.predictUKF(funcF);
+
+ std::cout << "x = \n" << ukf.vecX() << std::endl;
+ std::cout << "P = \n" << ukf.matP() << std::endl;
+
+ // Expectation from the python results:
+ // =====================================
+ // x =
+ // [2.0 1.0 0.0 0.0]
+ // P =
+ // [[0.11 0.00 0.05 0.00]
+ // [0.00 0.11 0.00 0.05]
+ // [0.05 0.00 0.15 0.00]
+ // [0.00 0.05 0.00 0.15]]
+
+ ukf.correctUKF(funcH, z);
+
+ std::cout << "x = \n" << ukf.vecX() << std::endl;
+ std::cout << "P = \n" << ukf.matP() << std::endl;
+
+ // Expectations from the python results:
+ // ======================================
+ // x =
+ // [ 2.554 0.356 0.252 -0.293]
+ // P =
+ // [[ 0.01 -0.001 0.005 -0. ]
+ // [-0.001 0.01 - 0. 0.005 ]
+ // [ 0.005 - 0. 0.129 - 0. ]
+ // [-0. 0.005 - 0. 0.129]]
+
+ std::cout << " End of Example 1: ===========================" << std::endl;
+}
diff --git a/src/examples/unscented_transform/CMakeLists.txt b/src/examples/unscented_transform/CMakeLists.txt
new file mode 100644
index 0000000..458aef1
--- /dev/null
+++ b/src/examples/unscented_transform/CMakeLists.txt
@@ -0,0 +1,31 @@
+##
+## Copyright 2022 Mohanad Youssef (Al-khwarizmi)
+##
+## Use of this source code is governed by an GPL-3.0 - style
+## license that can be found in the LICENSE file or at
+## https://opensource.org/licenses/GPL-3.0
+##
+## @author Mohanad Youssef
+## @file CMakeLists.h
+##
+
+file(GLOB PROJECT_FILES
+ "${CMAKE_CURRENT_SOURCE_DIR}/*.h"
+ "${CMAKE_CURRENT_SOURCE_DIR}/*.cpp"
+)
+
+set(APPLICATION_NAME ${EXAMPLE_EXECUTABLE_PREFIX}_unscented_transform)
+
+add_executable(${APPLICATION_NAME} ${PROJECT_FILES})
+
+set_target_properties(${APPLICATION_NAME} PROPERTIES LINKER_LANGUAGE CXX)
+
+target_link_libraries(${APPLICATION_NAME}
+ PUBLIC
+ Eigen3::Eigen
+ OpenKF
+)
+
+target_include_directories(${APPLICATION_NAME} PUBLIC
+ $
+)
diff --git a/src/examples/unscented_transform/main.cpp b/src/examples/unscented_transform/main.cpp
new file mode 100644
index 0000000..64b6789
--- /dev/null
+++ b/src/examples/unscented_transform/main.cpp
@@ -0,0 +1,99 @@
+///
+/// Copyright 2022 Mohanad Youssef (Al-khwarizmi)
+///
+/// Use of this source code is governed by an GPL-3.0 - style
+/// license that can be found in the LICENSE file or at
+/// https://opensource.org/licenses/GPL-3.0
+///
+/// @author Mohanad Youssef
+/// @file main.cpp
+///
+
+#include
+#include
+
+#include "kalman_filter/kalman_filter.h"
+#include "kalman_filter/unscented_transform.h"
+#include "types.h"
+
+static constexpr size_t DIM_1{1};
+static constexpr size_t DIM_2{2};
+
+void runExample1();
+void runExample2();
+
+kf::Vector function1(const kf::Vector& x)
+{
+ kf::Vector y;
+ y[0] = x[0] * x[0];
+ return y;
+}
+
+kf::Vector function2(const kf::Vector& x)
+{
+ kf::Vector y;
+ y[0] = x[0] * x[0];
+ y[1] = x[1] * x[1];
+ return y;
+}
+
+int main()
+{
+ // example 1
+ runExample1();
+
+ // example 2
+ runExample2();
+
+ return 0;
+}
+
+void runExample1()
+{
+ std::cout << " Start of Example 1: ===========================" << std::endl;
+
+ kf::Vector x;
+ x << 0.0F;
+
+ kf::Matrix P;
+ P << 0.5F;
+
+ kf::UnscentedTransform UT;
+ UT.compute(x, P, 0.0F);
+
+ kf::Vector vecY;
+ kf::Matrix matPyy;
+
+ UT.transform(function1, vecY, matPyy);
+
+ UT.showSummary();
+ std::cout << "vecY: \n" << vecY << "\n";
+ std::cout << "matPyy: \n" << matPyy << "\n";
+
+ std::cout << " End of Example 1: ===========================" << std::endl;
+}
+
+void runExample2()
+{
+ std::cout << " Start of Example 2: ===========================" << std::endl;
+
+ kf::Vector x;
+ x << 2.0F, 1.0F;
+
+ kf::Matrix P;
+ P << 0.1F, 0.0F, 0.0F, 0.1F;
+
+ kf::UnscentedTransform UT;
+ UT.compute(x, P, 0.0F);
+
+ kf::Vector vecY;
+ kf::Matrix matPyy;
+
+ UT.transform(function2, vecY, matPyy);
+
+ UT.showSummary();
+ std::cout << "vecY: \n" << vecY << "\n";
+ std::cout << "matPyy: \n" << matPyy << "\n";
+
+ std::cout << " End of Example 2: ===========================" << std::endl;
+}
diff --git a/src/openkf/CMakeLists.txt b/src/openkf/CMakeLists.txt
new file mode 100644
index 0000000..6da824e
--- /dev/null
+++ b/src/openkf/CMakeLists.txt
@@ -0,0 +1,90 @@
+##
+## Copyright 2022 Mohanad Youssef (Al-khwarizmi)
+##
+## Use of this source code is governed by an GPL-3.0 - style
+## license that can be found in the LICENSE file or at
+## https://opensource.org/licenses/GPL-3.0
+##
+## @author Mohanad Youssef
+## @file CMakeLists.h
+##
+
+# file(GLOB LIBRARY_FILES
+# "${CMAKE_CURRENT_SOURCE_DIR}/*.h"
+# "${CMAKE_CURRENT_SOURCE_DIR}/*.cpp"
+# )
+
+set(LIBRARY_SRC_FILES
+ dummy.cpp
+ motion_model/ego_motion_model.cpp
+)
+
+set(LIBRARY_HDR_FILES
+ types.h
+ util.h
+ kalman_filter/kalman_filter.h
+ kalman_filter/unscented_transform.h
+ kalman_filter/unscented_kalman_filter.h
+ kalman_filter/square_root_ukf.h
+ motion_model/motion_model.h
+ motion_model/ego_motion_model.h
+)
+
+set(LIBRARY_NAME ${PROJECT_NAME})
+
+add_library(${LIBRARY_NAME} ${LIBRARY_SRC_FILES} ${LIBRARY_HDR_FILES})
+
+set_target_properties(${LIBRARY_NAME} PROPERTIES LINKER_LANGUAGE CXX)
+target_link_libraries(${LIBRARY_NAME} PUBLIC Eigen3::Eigen)
+
+if (MSVC)
+ # https://stackoverflow.com/a/18635749
+ set_property(TARGET ${LIBRARY_NAME} PROPERTY
+ MSVC_RUNTIME_LIBRARY "MultiThreaded$<$:Debug>")
+endif(MSVC)
+
+target_include_directories(${LIBRARY_NAME} PUBLIC
+ $
+ $
+)
+
+include(CMakePackageConfigHelpers)
+
+configure_package_config_file(
+ ${CMAKE_CURRENT_SOURCE_DIR}/conf/Config.cmake.in
+ ${CMAKE_CURRENT_BINARY_DIR}/${LIBRARY_NAME}Config.cmake
+ INSTALL_DESTINATION ${CONFIG_INSTALL_DIR}
+ PATH_VARS INCLUDE_FOLDER
+)
+
+write_basic_package_version_file(
+ ${CMAKE_CURRENT_BINARY_DIR}/${LIBRARY_NAME}ConfigVersion.cmake
+ VERSION 1.0.0
+ COMPATIBILITY SameMajorVersion
+)
+
+install(
+ FILES ${LIBRARY_HDR_FILES}
+ DESTINATION ${INCLUDE_INSTALL_DIR}
+)
+
+install(
+ FILES ${CMAKE_CURRENT_BINARY_DIR}/${LIBRARY_NAME}Config.cmake
+ ${CMAKE_CURRENT_BINARY_DIR}/${LIBRARY_NAME}ConfigVersion.cmake
+ DESTINATION ${CONFIG_INSTALL_DIR}
+)
+
+install(
+ TARGETS ${LIBRARY_NAME}
+ EXPORT "${TARGETS_EXPORT_NAME}"
+ LIBRARY DESTINATION "${LIBRARY_INSTALL_DIR}"
+ ARCHIVE DESTINATION "${LIBRARY_INSTALL_DIR}"
+ INCLUDES DESTINATION "${INCLUDE_FOLDER}"
+)
+
+# Config
+# * /lib/cmake/OpenKF/OpenKFTargets.cmake
+install(
+ EXPORT ${TARGETS_EXPORT_NAME}
+ DESTINATION ${CONFIG_INSTALL_DIR}
+)
diff --git a/src/openkf/conf/Config.cmake.in b/src/openkf/conf/Config.cmake.in
new file mode 100644
index 0000000..da23610
--- /dev/null
+++ b/src/openkf/conf/Config.cmake.in
@@ -0,0 +1,6 @@
+@PACKAGE_INIT@
+
+set_and_check(OPENKF_INCLUDE_DIR "@PACKAGE_INCLUDE_FOLDER@")
+include( "${CMAKE_CURRENT_LIST_DIR}/OpenKFTargets.cmake" )
+
+check_required_components(OpenKF)
\ No newline at end of file
diff --git a/src/openkf/dummy.cpp b/src/openkf/dummy.cpp
new file mode 100644
index 0000000..e13446f
--- /dev/null
+++ b/src/openkf/dummy.cpp
@@ -0,0 +1,2 @@
+
+static void dummyFunction() {}
diff --git a/src/openkf/kalman_filter/kalman_filter.h b/src/openkf/kalman_filter/kalman_filter.h
new file mode 100644
index 0000000..53e4f7f
--- /dev/null
+++ b/src/openkf/kalman_filter/kalman_filter.h
@@ -0,0 +1,141 @@
+///
+/// Copyright 2022 Mohanad Youssef (Al-khwarizmi)
+///
+/// Use of this source code is governed by an GPL-3.0 - style
+/// license that can be found in the LICENSE file or at
+/// https://opensource.org/licenses/GPL-3.0
+///
+/// @author Mohanad Youssef
+/// @file kalman_filter.h
+///
+
+#ifndef KALMAN_FILTER_LIB_H
+#define KALMAN_FILTER_LIB_H
+
+#include "motion_model/motion_model.h"
+#include "types.h"
+
+namespace kf
+{
+template
+class KalmanFilter
+{
+ public:
+ KalmanFilter() {}
+
+ ~KalmanFilter() {}
+
+ virtual Vector& vecX() { return m_vecX; }
+ virtual const Vector& vecX() const { return m_vecX; }
+
+ virtual Matrix& matP() { return m_matP; }
+ virtual const Matrix& matP() const { return m_matP; }
+
+ ///
+ /// @brief predict state with a linear process model.
+ /// @param matF state transition matrix
+ /// @param matQ process noise covariance matrix
+ ///
+ void predictLKF(const Matrix& matF,
+ const Matrix& matQ)
+ {
+ m_vecX = matF * m_vecX;
+ m_matP = matF * m_matP * matF.transpose() + matQ;
+ }
+
+ ///
+ /// @brief correct state of with a linear measurement model.
+ /// @param matZ measurement vector
+ /// @param matR measurement noise covariance matrix
+ /// @param matH measurement transition matrix (measurement model)
+ ///
+ void correctLKF(const Vector& vecZ, const Matrix& matR,
+ const Matrix& matH)
+ {
+ const Matrix matI{
+ Matrix::Identity()}; // Identity matrix
+ const Matrix matSk{matH * m_matP * matH.transpose() +
+ matR}; // Innovation covariance
+ const Matrix matKk{m_matP * matH.transpose() *
+ matSk.inverse()}; // Kalman Gain
+
+ m_vecX = m_vecX + matKk * (vecZ - (matH * m_vecX));
+ m_matP = (matI - matKk * matH) * m_matP;
+ }
+
+ ///
+ /// @brief predict state with a linear process model.
+ /// @param predictionModel prediction model function callback
+ /// @param matJacobF state jacobian matrix
+ /// @param matQ process noise covariance matrix
+ ///
+ template
+ void predictEkf(PredictionModelCallback predictionModelFunc,
+ const Matrix& matJacobF,
+ const Matrix& matQ)
+ {
+ m_vecX = predictionModelFunc(m_vecX);
+ m_matP = matJacobF * m_matP * matJacobF.transpose() + matQ;
+ }
+
+ ///
+ /// @brief predict state with a linear process model.
+ /// @param motionModel prediction motion model function
+ ///
+ void predictEkf(motionmodel::MotionModel const& motionModel)
+ {
+ Matrix const matFk{motionModel.getJacobianFk(m_vecX)};
+ Matrix const matQk{motionModel.getProcessNoiseCov(m_vecX)};
+ m_vecX = motionModel.f(m_vecX);
+ m_matP = matFk * m_matP * matFk.transpose() + matQk;
+ }
+
+ ///
+ /// @brief predict state with a linear process model with external input.
+ /// @param motionModel prediction motion model function
+ /// @param vecU input vector
+ ///
+ template
+ void predictEkf(
+ motionmodel::MotionModelExtInput const& motionModel,
+ Vector const& vecU)
+ {
+ Matrix const matFk{motionModel.getJacobianFk(m_vecX, vecU)};
+ Matrix const matQk{
+ motionModel.getProcessNoiseCov(m_vecX, vecU)};
+ m_vecX = motionModel.f(m_vecX, vecU);
+ m_matP = matFk * m_matP * matFk.transpose() + matQk;
+ }
+
+ ///
+ /// @brief correct state of with a linear measurement model.
+ /// @param measurementModel measurement model function callback
+ /// @param matZ measurement vector
+ /// @param matR measurement noise covariance matrix
+ /// @param matJcobH measurement jacobian matrix
+ ///
+ template
+ void correctEkf(MeasurementModelCallback measurementModelFunc,
+ const Vector& vecZ, const Matrix& matR,
+ const Matrix& matJcobH)
+ {
+ const Matrix matI{
+ Matrix::Identity()}; // Identity matrix
+ const Matrix matSk{matJcobH * m_matP * matJcobH.transpose() +
+ matR}; // Innovation covariance
+ const Matrix matKk{m_matP * matJcobH.transpose() *
+ matSk.inverse()}; // Kalman Gain
+
+ m_vecX = m_vecX + matKk * (vecZ - measurementModelFunc(m_vecX));
+ m_matP = (matI - matKk * matJcobH) * m_matP;
+ }
+
+ protected:
+ Vector m_vecX{
+ Vector::Zero()}; /// @brief estimated state vector
+ Matrix m_matP{
+ Matrix::Zero()}; /// @brief state covariance matrix
+};
+} // namespace kf
+
+#endif // KALMAN_FILTER_LIB_H
diff --git a/src/openkf/kalman_filter/square_root_ukf.h b/src/openkf/kalman_filter/square_root_ukf.h
new file mode 100644
index 0000000..e7f8571
--- /dev/null
+++ b/src/openkf/kalman_filter/square_root_ukf.h
@@ -0,0 +1,400 @@
+///
+/// Copyright 2022 Mohanad Youssef (Al-khwarizmi)
+///
+/// Use of this source code is governed by an GPL-3.0 - style
+/// license that can be found in the LICENSE file or at
+/// https://opensource.org/licenses/GPL-3.0
+///
+/// @author Mohanad Youssef
+/// @file square_root_ukf.h
+///
+
+#ifndef SQUARE_ROOT_UNSCENTED_KALMAN_FILTER_LIB_H
+#define SQUARE_ROOT_UNSCENTED_KALMAN_FILTER_LIB_H
+
+#include "kalman_filter.h"
+#include "util.h"
+
+namespace kf
+{
+template
+class SquareRootUKF : public KalmanFilter
+{
+ public:
+ static constexpr int32_t SIGMA_DIM{2 * DIM_X + 1};
+
+ SquareRootUKF() : KalmanFilter()
+ {
+ // calculate weights
+ const float32_t kappa{static_cast(3 - DIM_X)};
+ updateWeights(kappa);
+ }
+
+ ~SquareRootUKF() {}
+
+ Matrix& matP() override
+ {
+ return (m_matP = m_matSk * m_matSk.transpose());
+ }
+ // const Matrix & matP() const override { return (m_matP =
+ // m_matSk * m_matSk.transpose()); }
+
+ void initialize(const Vector& vecX, const Matrix& matP,
+ const Matrix& matQ,
+ const Matrix& matR)
+ {
+ m_vecX = vecX;
+
+ {
+ // cholesky factorization to get matrix Pk square-root
+ Eigen::LLT> lltOfP(matP);
+ m_matSk = lltOfP.matrixL(); // sqrt(P)
+ }
+
+ {
+ // cholesky factorization to get matrix Q square-root
+ Eigen::LLT