-
Notifications
You must be signed in to change notification settings - Fork 0
/
hubconf.py
146 lines (110 loc) · 5.15 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
"""File for accessing YOLOv5 via PyTorch Hub https://pytorch.org/hub/
Usage:
import torch
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, channels=3, classes=80)
"""
from pathlib import Path
import torch
from models.yolo import Model
from utils.general import set_logging
from utils.google_utils import attempt_download
dependencies = ['torch', 'yaml']
set_logging()
def create(name, pretrained, channels, classes, autoshape):
"""Creates a specified YOLOv5 model
Arguments:
name (str): name of model, i.e. 'yolov5s'
pretrained (bool): load pretrained weights into the model
channels (int): number of input channels
classes (int): number of model classes
Returns:
pytorch model
"""
config = Path(__file__).parent / 'models' / f'{name}.yaml' # model.yaml path
try:
model = Model(config, channels, classes)
if pretrained:
fname = f'{name}.pt' # checkpoint filename
attempt_download(fname) # download if not found locally
ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
state_dict = ckpt['model'].float().state_dict() # to FP32
state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter
model.load_state_dict(state_dict, strict=False) # load
if len(ckpt['model'].names) == classes:
model.names = ckpt['model'].names # set class names attribute
if autoshape:
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
return model
except Exception as e:
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url
raise Exception(s) from e
def yolov5s(pretrained=False, channels=3, classes=80, autoshape=True):
"""YOLOv5-small model from https://github.com/ultralytics/yolov5
Arguments:
pretrained (bool): load pretrained weights into the model, default=False
channels (int): number of input channels, default=3
classes (int): number of model classes, default=80
Returns:
pytorch model
"""
return create('yolov5s', pretrained, channels, classes, autoshape)
def yolov5m(pretrained=False, channels=3, classes=80, autoshape=True):
"""YOLOv5-medium model from https://github.com/ultralytics/yolov5
Arguments:
pretrained (bool): load pretrained weights into the model, default=False
channels (int): number of input channels, default=3
classes (int): number of model classes, default=80
Returns:
pytorch model
"""
return create('yolov5m', pretrained, channels, classes, autoshape)
def yolov5l(pretrained=False, channels=3, classes=80, autoshape=True):
"""YOLOv5-large model from https://github.com/ultralytics/yolov5
Arguments:
pretrained (bool): load pretrained weights into the model, default=False
channels (int): number of input channels, default=3
classes (int): number of model classes, default=80
Returns:
pytorch model
"""
return create('yolov5l', pretrained, channels, classes, autoshape)
def yolov5x(pretrained=False, channels=3, classes=80, autoshape=True):
"""YOLOv5-xlarge model from https://github.com/ultralytics/yolov5
Arguments:
pretrained (bool): load pretrained weights into the model, default=False
channels (int): number of input channels, default=3
classes (int): number of model classes, default=80
Returns:
pytorch model
"""
return create('yolov5x', pretrained, channels, classes, autoshape)
def custom(path_or_model='path/to/model.pt', autoshape=True):
"""YOLOv5-custom model from https://github.com/ultralytics/yolov5
Arguments (3 options):
path_or_model (str): 'path/to/model.pt'
path_or_model (dict): torch.load('path/to/model.pt')
path_or_model (nn.Module): torch.load('path/to/model.pt')['model']
Returns:
pytorch model
"""
model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint
if isinstance(model, dict):
model = model['ema' if model.get('ema') else 'model'] # load model
hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
hub_model.load_state_dict(model.float().state_dict()) # load state_dict
hub_model.names = model.names # class names
return hub_model.autoshape() if autoshape else hub_model
if __name__ == '__main__':
model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True) # pretrained example
# model = custom(path_or_model='path/to/model.pt') # custom example
# Verify inference
import numpy as np
from PIL import Image
imgs = [Image.open('data/images/bus.jpg'), # PIL
'data/images/zidane.jpg', # filename
'https://github.com/ultralytics/yolov5/raw/master/data/images/bus.jpg', # URI
np.zeros((640, 480, 3))] # numpy
results = model(imgs) # batched inference
results.print()
results.save()