forked from triton-inference-server/tensorrtllm_backend
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inflight_batcher_llm_client.py
executable file
·859 lines (762 loc) · 30.6 KB
/
inflight_batcher_llm_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
#!/usr/bin/env python
# Copyright 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
import csv
import os
import queue
import sys
import time
from functools import partial
import numpy as np
import tritonclient.grpc as grpcclient
from transformers import AutoTokenizer
from tritonclient.utils import InferenceServerException, np_to_triton_dtype
#
# Simple streaming client for TRT-LLM inflight bacthing backend
#
# In order for this code to work properly, config.pbtxt must contain these values:
#
# model_transaction_policy {
# decoupled: True
# }
#
# parameters: {
# key: "gpt_model_type"
# value: {
# string_value: "inflight_batching"
# }
# }
#
# In order for gpt_model_type 'inflight_batching' to work, you must copy engine from
#
# tensorrt_llm/cpp/tests/resources/models/rt_engine/gpt2/fp16-inflight-batching-plugin/1-gpu/
#
np_bfloat16 = np.dtype('V2', metadata={"dtype": "bfloat16"})
_str_to_np_dict = dict(
float16=np.float16,
float32=np.float32,
int32=np.int32,
bfloat16=np_bfloat16,
)
def curate_log_output(token_sequence,
identifier="Input",
log_max_sequence_len=256):
if len(token_sequence) > log_max_sequence_len:
print(f"{identifier} sequence starts with: ",
token_sequence[:log_max_sequence_len])
else:
print(f"{identifier} sequence: ", token_sequence)
def str_dtype_to_np(dtype):
ret = _str_to_np_dict.get(dtype)
assert ret is not None, f'Unsupported dtype: {dtype}'
return ret
def check_output_names(expected_outputs, infer_result):
if expected_outputs:
output_names = set([o.name for o in infer_result._result.outputs])
if set(expected_outputs) != output_names:
raise Exception(
f"expected outputs do not match actual outputs {expected_outputs} != {output_names}"
)
class UserData:
def __init__(self):
self._completed_requests = queue.Queue()
def prepare_tensor(name, input):
t = grpcclient.InferInput(name, input.shape,
np_to_triton_dtype(input.dtype))
t.set_data_from_numpy(input)
return t
def prepare_outputs(output_names):
outputs = []
for output_name in output_names:
outputs.append(grpcclient.InferRequestedOutput(output_name))
return outputs
def prepare_inputs(input_ids_data, input_lengths_data, request_output_len_data,
beam_width_data, temperature_data, repetition_penalty_data,
presence_penalty_data, frequency_penalty_data,
streaming_data, end_id, pad_id, prompt_embedding_table_data,
prompt_vocab_size_data, lora_task_id_data,
lora_weights_data, lora_config_data, return_log_probs_data,
top_k_data, top_p_data, draft_ids_data,
return_context_logits_data, return_generation_logits_data):
inputs = [
prepare_tensor("input_ids", input_ids_data),
prepare_tensor("input_lengths", input_lengths_data),
prepare_tensor("request_output_len", request_output_len_data),
prepare_tensor("beam_width", beam_width_data),
prepare_tensor("temperature", temperature_data),
prepare_tensor("streaming", streaming_data),
prepare_tensor("end_id", end_id),
prepare_tensor("pad_id", pad_id),
prepare_tensor("return_log_probs", return_log_probs_data),
prepare_tensor("runtime_top_k", top_k_data),
prepare_tensor("runtime_top_p", top_p_data),
]
if prompt_embedding_table_data is not None:
inputs += [
prepare_tensor("prompt_embedding_table",
prompt_embedding_table_data),
prepare_tensor("prompt_vocab_size", prompt_vocab_size_data)
]
if lora_task_id_data is not None:
inputs += [prepare_tensor("lora_task_id", lora_task_id_data)]
if lora_weights_data is not None:
inputs += [
prepare_tensor("lora_weights", lora_weights_data),
prepare_tensor("lora_config", lora_config_data),
]
if repetition_penalty_data is not None:
inputs += [
prepare_tensor("repetition_penalty", repetition_penalty_data),
]
if presence_penalty_data is not None:
inputs += [
prepare_tensor("presence_penalty", presence_penalty_data),
]
if frequency_penalty_data is not None:
inputs += [
prepare_tensor("frequency_penalty", frequency_penalty_data),
]
if draft_ids_data is not None:
inputs += [
prepare_tensor("draft_input_ids", draft_ids_data),
]
if return_context_logits_data is not None:
inputs += [
prepare_tensor("return_context_logits",
return_context_logits_data),
]
if return_generation_logits_data is not None:
inputs += [
prepare_tensor("return_generation_logits",
return_generation_logits_data),
]
return inputs
def prepare_stop_signals():
inputs = [
grpcclient.InferInput('input_ids', [1, 1], "INT32"),
grpcclient.InferInput('input_lengths', [1, 1], "INT32"),
grpcclient.InferInput('request_output_len', [1, 1], "INT32"),
grpcclient.InferInput('stop', [1, 1], "BOOL"),
]
inputs[0].set_data_from_numpy(np.empty([1, 1], dtype=np.int32))
inputs[1].set_data_from_numpy(np.zeros([1, 1], dtype=np.int32))
inputs[2].set_data_from_numpy(np.array([[0]], dtype=np.int32))
inputs[3].set_data_from_numpy(np.array([[True]], dtype='bool'))
return inputs
# Define the callback function. Note the last two parameters should be
# result and error. InferenceServerClient would povide the results of an
# inference as grpcclient.InferResult in result. For successful
# inference, error will be None, otherwise it will be an object of
# tritonclientutils.InferenceServerException holding the error details
def callback(user_data, result, error):
if error:
user_data._completed_requests.put(error)
else:
user_data._completed_requests.put(result)
if (FLAGS.streaming):
if result.get_output('output_ids') is not None:
output_ids = result.as_numpy('output_ids')
seq_lens = result.as_numpy('sequence_length')
if seq_lens == None or seq_lens[0][0] > 0:
tokens = list(output_ids[0][0])
print(tokens, flush=True)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-v",
"--verbose",
action="store_true",
required=False,
default=False,
help="Enable verbose output",
)
parser.add_argument(
"-u",
"--url",
type=str,
required=False,
default="localhost:8001",
help="Inference server URL. Default is localhost:8001.",
)
parser.add_argument(
'--text',
type=str,
required=False,
default='Born in north-east France, Soyer trained as a',
help='Input text')
parser.add_argument('--input-tokens-csv',
type=str,
required=False,
default='',
help='Path to csv file containing the input tokens')
parser.add_argument('--draft-tokens-csv',
type=str,
required=False,
default='',
help='Path to csv file containing the draft tokens')
parser.add_argument(
'--output-tokens-csv',
type=str,
required=False,
default='',
help='Path to csv file containing the expected output tokens')
parser.add_argument(
'--end-id',
type=int,
required=False,
default=50256,
help='The token id for end token. Only needed if tokenizer is not used.'
)
parser.add_argument(
'--pad-id',
type=int,
required=False,
default=50256,
help='The token id for pad token. Only needed if tokenizer is not used.'
)
parser.add_argument(
"-s",
"--ssl",
action="store_true",
required=False,
default=False,
help="Enable SSL encrypted channel to the server",
)
parser.add_argument(
"-t",
"--stream-timeout",
type=float,
required=False,
default=None,
help="Stream timeout in seconds. Default is None.",
)
parser.add_argument(
"-r",
"--root-certificates",
type=str,
required=False,
default=None,
help="File holding PEM-encoded root certificates. Default is None.",
)
parser.add_argument(
"-p",
"--private-key",
type=str,
required=False,
default=None,
help="File holding PEM-encoded private key. Default is None.",
)
parser.add_argument(
"-x",
"--certificate-chain",
type=str,
required=False,
default=None,
help="File holding PEM-encoded certificate chain. Default is None.",
)
parser.add_argument(
"-C",
"--grpc-compression-algorithm",
type=str,
required=False,
default=None,
help=
"The compression algorithm to be used when sending request to server. Default is None.",
)
parser.add_argument(
"-S",
"--streaming",
action="store_true",
required=False,
default=False,
help="Enable streaming mode. Default is False.",
)
parser.add_argument(
"-c",
"--check-output",
action="store_true",
required=False,
default=False,
help="Enable check of output ids for CI",
)
parser.add_argument(
"-b",
"--beam-width",
required=False,
type=int,
default=1,
help="Beam width value",
)
parser.add_argument(
"--temperature",
type=float,
required=False,
default=1.0,
help="temperature value",
)
parser.add_argument(
"--repetition-penalty",
type=float,
required=False,
default=None,
help="The repetition penalty value",
)
parser.add_argument(
"--presence-penalty",
type=float,
required=False,
default=None,
help="The presence penalty value",
)
parser.add_argument(
"--frequency-penalty",
type=float,
required=False,
default=None,
help="The frequency penalty value",
)
parser.add_argument(
"--request-output-len",
type=int,
required=False,
default=16,
help="Request output length",
)
parser.add_argument(
'--stop-after-ms',
type=int,
required=False,
default=0,
help='Early stop the generation after a few milliseconds')
parser.add_argument(
"--stop-via-request-cancel",
action="store_true",
required=False,
default=False,
help="Early stop use request cancellation instead of stop request")
parser.add_argument('--tokenizer-dir',
type=str,
required=False,
default='',
help='Specify tokenizer directory')
parser.add_argument('--tokenizer-type',
type=str,
default='auto',
required=False,
choices=['auto', 't5', 'llama'],
help='Specify tokenizer type')
parser.add_argument('--request-id',
type=str,
default='',
required=False,
help='The request_id for the stop request')
parser.add_argument('--prompt-embedding-table-path',
type=str,
default='',
required=False,
help='The prompt embedding table to use for ptuning')
parser.add_argument("--lora-path",
type=str,
default='',
required=False,
help="LoRA weights")
parser.add_argument("--lora-task-id",
type=int,
default=None,
required=False,
help="LoRA task id")
parser.add_argument(
"--exclude-input-in-output",
action="store_true",
required=False,
default=False,
help="Expect that output IDs do not contain input IDs",
)
parser.add_argument(
'--prompt-task-id',
type=int,
default=0,
required=False,
help='The prompt task id in the prompt embedding table')
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float16', 'float32', 'bfloat16'])
parser.add_argument(
"--return-log-probs",
action="store_true",
required=False,
default=False,
help="Enable computation of log probs",
)
parser.add_argument(
"--return-context-logits",
action="store_true",
required=False,
default=False,
help=
"Return context logits, the engine must be built with gather_context_logits or gather_all_token_logits",
)
parser.add_argument(
"--return-generation-logits",
action="store_true",
required=False,
default=False,
help=
"Return generation logits, the engine must be built with gather_ generation_logits or gather_all_token_logits",
)
parser.add_argument(
"--top-k",
type=int,
required=False,
default=1,
help="top k value",
)
parser.add_argument(
"--top-p",
type=float,
required=False,
default=0.,
help="top p value",
)
parser.add_argument('--requested-outputs',
nargs='+',
default=[],
help='The requested output tensors')
parser.add_argument('--model-name',
type=str,
required=False,
default='tensorrt_llm',
help='Specify model name')
FLAGS = parser.parse_args()
tokenizer = None
draft_ids = None
if FLAGS.input_tokens_csv != "":
with open(FLAGS.input_tokens_csv) as csv_file:
csv_reader = csv.reader(csv_file, delimiter=",")
for row in csv_reader:
input_ids = [[int(val) for val in row]]
break
curate_log_output(input_ids[0], "Input")
if FLAGS.draft_tokens_csv != "":
with open(FLAGS.draft_tokens_csv) as csv_file:
csv_reader = csv.reader(csv_file, delimiter=",")
for row in csv_reader:
draft_ids = [[int(val) for val in row]]
break
end_id = FLAGS.end_id
pad_id = FLAGS.pad_id
else:
print('=========')
if (os.path.isdir(FLAGS.tokenizer_dir)
and not os.path.exists(FLAGS.tokenizer_dir)):
raise FileNotFoundError(
"Input tokens are not provided and tokenizer directory does"
f" not exist: {FLAGS.tokenizer_dir}", )
tokenizer = AutoTokenizer.from_pretrained(FLAGS.tokenizer_dir,
legacy=False,
padding_side='left',
trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
pad_id = tokenizer.encode(tokenizer.pad_token,
add_special_tokens=False)[0]
end_id = tokenizer.encode(tokenizer.eos_token,
add_special_tokens=False)[0]
input_ids = [tokenizer.encode(FLAGS.text)]
curate_log_output(input_ids[0], "Input")
end_id_data = np.array([[end_id]], dtype=np.int32)
pad_id_data = np.array([[pad_id]], dtype=np.int32)
#Get the prompt embedding table for the task id
prompt_embedding_table_data = None
prompt_vocab_size_data = None
if (FLAGS.prompt_embedding_table_path != ""):
prompt_table = np.load(FLAGS.prompt_embedding_table_path)
prompt_table = prompt_table.astype(str_dtype_to_np(FLAGS.dtype))
task_vocab_size = prompt_table.shape[1]
# squeeze the first 2 dimensions
prompt_embedding_table_data = prompt_table[FLAGS.prompt_task_id]
prompt_embedding_table_data = np.expand_dims(
prompt_table[FLAGS.prompt_task_id], axis=0)
prompt_vocab_size = [[task_vocab_size]]
prompt_vocab_size_data = np.array(prompt_vocab_size, dtype=np.int32)
lora_weights_data = None
lora_config_data = None
if (FLAGS.lora_path != ""):
lora_weights_data = np.load(
os.path.join(FLAGS.lora_path, "model.lora_weights.npy"))
try:
lora_config_data = np.load(
os.path.join(FLAGS.lora_path, "model.lora_config.npy"))
except Exception:
lora_config_data = np.load(
os.path.join(FLAGS.lora_path, "model.lora_keys.npy"))
lora_task_id_data = None
if FLAGS.lora_task_id is not None and FLAGS.lora_task_id != 0:
lora_task_id_data = np.array([[FLAGS.lora_task_id]], dtype=np.uint64)
input_ids_data = np.array(input_ids, dtype=np.int32)
input_lengths = [[len(ii)] for ii in input_ids]
input_lengths_data = np.array(input_lengths, dtype=np.int32)
request_output_len = [[FLAGS.request_output_len]]
request_output_len_data = np.array(request_output_len, dtype=np.int32)
beam_width = [[FLAGS.beam_width]]
beam_width_data = np.array(beam_width, dtype=np.int32)
top_k = [[FLAGS.top_k]]
top_k_data = np.array(top_k, dtype=np.int32)
top_p = [[FLAGS.top_p]]
top_p_data = np.array(top_p, dtype=np.float32)
temperature = [[FLAGS.temperature]]
temperature_data = np.array(temperature, dtype=np.float32)
return_log_probs = [[FLAGS.return_log_probs]]
return_log_probs_data = np.array(return_log_probs, dtype=bool)
return_context_logits_data = None
if FLAGS.return_context_logits:
return_context_logits_data = np.array([[FLAGS.return_context_logits]],
dtype=bool)
return_generation_logits_data = None
if FLAGS.return_generation_logits:
return_generation_logits_data = np.array(
[[FLAGS.return_generation_logits]], dtype=bool)
repetition_penalty_data = None
if FLAGS.repetition_penalty is not None:
repetition_penalty = [[FLAGS.repetition_penalty]]
repetition_penalty_data = np.array(repetition_penalty,
dtype=np.float32)
presence_penalty_data = None
if FLAGS.presence_penalty is not None:
presence_penalty = [[FLAGS.presence_penalty]]
presence_penalty_data = np.array(presence_penalty, dtype=np.float32)
frequency_penalty_data = None
if FLAGS.frequency_penalty is not None:
frequency_penalty = [[FLAGS.frequency_penalty]]
frequency_penalty_data = np.array(frequency_penalty, dtype=np.float32)
streaming = [[FLAGS.streaming]]
streaming_data = np.array(streaming, dtype=bool)
draft_ids_data = None
if draft_ids is not None:
draft_ids_data = np.array(draft_ids, dtype=np.int32)
inputs = prepare_inputs(
input_ids_data, input_lengths_data, request_output_len_data,
beam_width_data, temperature_data, repetition_penalty_data,
presence_penalty_data, frequency_penalty_data, streaming_data,
end_id_data, pad_id_data, prompt_embedding_table_data,
prompt_vocab_size_data, lora_task_id_data, lora_weights_data,
lora_config_data, return_log_probs_data, top_k_data, top_p_data,
draft_ids_data, return_context_logits_data,
return_generation_logits_data)
if FLAGS.requested_outputs:
# Must have at least output_ids in requested outputs
if "output_ids" not in FLAGS.requested_outputs:
raise Exception(
"requested outputs must at least have \"output_ids\"")
outputs = prepare_outputs(FLAGS.requested_outputs)
else:
outputs = None
stop_inputs = None
if FLAGS.stop_after_ms > 0 and not FLAGS.stop_via_request_cancel:
stop_inputs = prepare_stop_signals()
request_id = FLAGS.request_id
if FLAGS.output_tokens_csv != "":
with open(FLAGS.output_tokens_csv) as csv_file:
csv_reader = csv.reader(csv_file, delimiter=",")
for row in csv_reader:
expected_output_ids = [int(val) for val in row]
break
else:
expected_output_ids = ([] if FLAGS.exclude_input_in_output else
input_ids[0]) + [
21221, 290, 257, 4255, 379, 262, 1957, 7072,
11, 4689, 347, 2852, 2564, 494, 13, 679
]
if FLAGS.streaming:
actual_output_ids = [
[] if FLAGS.exclude_input_in_output else input_ids[0]
]
else:
actual_output_ids = []
sequence_lengths = []
cum_log_probs = None
output_log_probs = None
context_logits = None
generation_logits = None
user_data = UserData()
with grpcclient.InferenceServerClient(
url=FLAGS.url,
verbose=FLAGS.verbose,
ssl=FLAGS.ssl,
root_certificates=FLAGS.root_certificates,
private_key=FLAGS.private_key,
certificate_chain=FLAGS.certificate_chain,
) as triton_client:
try:
if FLAGS.streaming:
# Establish stream
triton_client.start_stream(
callback=partial(callback, user_data),
stream_timeout=FLAGS.stream_timeout,
)
# Send request
triton_client.async_stream_infer(
FLAGS.model_name,
inputs,
outputs=outputs,
request_id=request_id,
)
if FLAGS.stop_after_ms > 0:
time.sleep(FLAGS.stop_after_ms / 1000.0)
if not FLAGS.stop_via_request_cancel:
triton_client.async_stream_infer(
FLAGS.model_name,
stop_inputs,
request_id=request_id,
parameters={'Streaming': FLAGS.streaming})
# Close the grpc stream
cancel_requests = FLAGS.stop_after_ms > 0 and FLAGS.stop_via_request_cancel
triton_client.stop_stream(cancel_requests=cancel_requests)
# Parse the responses
while True:
try:
result = user_data._completed_requests.get(block=False)
except Exception:
break
if type(result) == InferenceServerException:
if result.status() == "StatusCode.CANCELLED":
print("Request is cancelled")
else:
print("Received an error from server:")
print(result)
raise result
else:
check_output_names(FLAGS.requested_outputs, result)
output_ids = result.as_numpy('output_ids')
sequence_lengths = result.as_numpy('sequence_length')
if output_ids is not None:
# Only one beam is supported
if sequence_lengths == None or sequence_lengths[0][
0] > 0:
tokens = list(output_ids[0][0])
actual_output_ids[
0] = actual_output_ids[0] + tokens
else:
print("Got cancellation response from server")
else:
# Send request
infer_future = triton_client.async_infer(
FLAGS.model_name,
inputs,
outputs=outputs,
request_id=request_id,
callback=partial(callback, user_data),
parameters={'Streaming': FLAGS.streaming})
expected_responses = 1
if FLAGS.stop_after_ms > 0:
time.sleep(FLAGS.stop_after_ms / 1000.0)
if FLAGS.stop_via_request_cancel:
infer_future.cancel()
else:
triton_client.async_infer(
FLAGS.model_name,
stop_inputs,
request_id=request_id,
callback=partial(callback, user_data),
parameters={'Streaming': FLAGS.streaming})
expected_responses += 1
processed_count = 0
while processed_count < expected_responses:
try:
result = user_data._completed_requests.get()
print("Got completed request", flush=True)
except Exception:
break
if type(result) == InferenceServerException:
if result.status() == "StatusCode.CANCELLED":
print("Request is cancelled")
else:
print("Received an error from server:")
print(result)
raise result
else:
check_output_names(FLAGS.requested_outputs, result)
output_ids = result.as_numpy('output_ids')
sequence_lengths = result.as_numpy('sequence_length')
if FLAGS.return_log_probs:
cum_log_probs = result.as_numpy('cum_log_probs')
output_log_probs = result.as_numpy(
'output_log_probs')
if FLAGS.return_context_logits:
context_logits = result.as_numpy('context_logits')
if FLAGS.return_generation_logits:
generation_logits = result.as_numpy(
'generation_logits')
if output_ids is not None:
for beam_output_ids in output_ids[0]:
tokens = list(beam_output_ids)
actual_output_ids.append(tokens)
else:
print("Got cancellation response from server")
processed_count = processed_count + 1
except Exception as e:
err = "Encountered error: " + str(e)
print(err)
sys.exit(err)
passed = True
for beam in range(FLAGS.beam_width):
seq_len = sequence_lengths[0][beam] if (
not FLAGS.streaming and len(sequence_lengths) > 0) else len(
actual_output_ids[beam])
# These should be equal when input IDs are excluded from output
output_ids_w_prompt = actual_output_ids[beam][:seq_len]
output_ids_wo_prompt = (
output_ids_w_prompt if FLAGS.exclude_input_in_output else
output_ids_w_prompt[input_ids_data.shape[1]:])
if tokenizer != None:
output_text = tokenizer.decode(output_ids_wo_prompt)
print(f'Input: {FLAGS.text}')
print(f'Output beam {beam}: {output_text}')
# If cancelled, the number of output tokens should be less than request output length.
if FLAGS.stop_after_ms > 0 and len(
output_ids_wo_prompt) >= FLAGS.request_output_len:
raise AssertionError("expect less than " +
str(FLAGS.request_output_len) +
" output tokens, got " +
str(len(output_ids_wo_prompt)))
curate_log_output(output_ids_w_prompt, "Output")
if (FLAGS.check_output and beam == 0):
passed = (output_ids_w_prompt == expected_output_ids)
print("expected_output_ids = ", expected_output_ids)
print("\n=====")
print("PASS!" if passed else "FAIL!")
print("=====")
if FLAGS.return_log_probs:
print(cum_log_probs)
print(output_log_probs)
if FLAGS.return_context_logits:
print(f"context_logits.shape: {context_logits.shape}")
print(f"context_logits: {context_logits}")
if FLAGS.return_generation_logits:
print(f"generation_logits.shape: {generation_logits.shape}")
print(f"generation_logits: {generation_logits}")
sys.exit(not passed)